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Current research into solutions for mobile ad-hoc networks (MANETs) has produced

an abundance of protocols, applications and services. The performance of these solu-

tions depends on a variety of parameters such as the number of nodes that intend to

send at the same time, size of packets that are transferred between nodes, offered load

and/or interference from other sources. Reports of experiments that are performed

to evaluate proposed solutions need to include these parameters in order to facilitate

repeatability and verification through the community. However, the facilitation of re-

peatability and the gathering of this information that is involved in experiments in

real-world scenarios is very complex. This complication has resulted in evaluations of
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solutions to be limited mostly to simulations. In this paper, we propose a framework for

the evaluation of solutions in MANETs that aims to address the issues of extensibility,

information collection and repeatability. We will present an analysis of a number of

existing projects and proposed characteristics, this information will be used to design

and implement a framework that incorporates this points.
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Chapter 1
Introduction

1.1 Background

Current research into solutions for mobile ad-hoc networks (MANETs) has produced

an abundance of protocols, applications and services [26, 20]. These solutions are

evaluated to determine their characteristics and suitability to solve the problem they

aim to address. The performance of proposed solutions for MANETs depends on a

variety of parameters such as the number of nodes that intend to send at the same

time, size of packets that are transferred between nodes, offered load or interference

from other sources. These parameters and environmental factors need to be collected

during the execution of an experiment. Reports of experiments that are performed

to evaluate proposed solutions need to include these parameters in order to facilitate

repeatability and verification through the community.

However, the facilitation of repeatability and the gathering of all information that
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is involved in experiments in real-world scenarios is very complex. This complication

has led to a situation where much of the research in ad-hoc networks has been limited

to evaluations through simulation. The simulators used typically aim to represent the

different software and hardware components within the system as well as the physical

environment in which they operate. While this provides a useful method of validation

for the first stages of the design or implementation of a novel protocol, the simplified

assumptions made of the physical environment limit the scope of what can be achieved

from them [4, 16]. For instance, the phenomena of gray-zones [18] were only discovered

through experiments conducted in a real-world environment. It is therefore necessary

to complement simulation studies with real-world experiments to identify phenomena

that would otherwise go unnoticed within a simulator.

1.2 Credibility of MANET Simulations

The inaccuracy of MANET simulations is a well known problem in the MANET com-

munity that has produced dozens of publications about it [2, 17]. The inherent problem

with MANET simulations is that it is very difficult to capture all the factors that may

influence the performance and behaviour of a MANET experiment. In addition, even if

the developers did come up with a model that accurately reflected all this factors in the

result of the simulation, this simulation would be very resource intensive and expensive

to compute. Thus all simulators do some generalisations about wireless propagation,

protocol stack interaction, etc.

Obviously this generalisations affect the outcome of the experiment, yielding results
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that may greatly differ from the results of running the same experiment in a real-world

environment. Cavin et al. [4] compared three of the most popular simulators –NS2,

Opnet and GoMoSiM– by implementing a simple flooding protocol in each one. If each

simulation reflected reality, the results should have been identical. However, the results

showed large differences between the simulators. Only one of these simulations could

have been right because they gave three signicantly distinct results, if one is right, the

other two must be wrong. The worrying part is that this differences suggest that all

three are probably wrong.

1.3 Motivation

A number of recent projects have investigated the design and implementation of testbeds

for the evaluation of MANET solutions in real-world scenarios. These projects have

identified factors that need to be measured, methods to describe experiments, and

approaches that facilitate repeatability. Factors such as the number of participating

nodes, the topology of a network, etc. influence the setup and the environment of an

experiment and need to be recorded during an experiment. Various projects [28, 23]

have proposed methods to describe experiments in the form of choreographies. All these

systems define additional aspects that are needed to provide repeatable experiments.

However, these systems focus on the investigation of new aspects of an evaluation

while paying less attention to other aspects. This concentration on the investigation of

new aspects has led to a large number of factors being identified but has failed to pro-

duce a system or collection of systems that enables researchers to describe experiments
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in a form that supports repeatability and offers mechanisms to collect all information

associated with an experiment.

The primary aim of this dissertation is to design and implement an extensible

framework that allows MANET researchers to carry out repeatable experiments in the

real-world. The design incorporates the relevant features of the systems described in

chapter 2 and addresses the open issues that have been identified in these systems.

1.4 Aims

The aims of this dissertation are,

• To identify a set of desirable characteristics that a framework for the evaluation

of protocols and services in ad-hoc networks should fulfil.

• To design and implement a framework which fulfils the requirements gathered in

the above point and that allows to carry out repeatable MANET experiments in

a real-world scenario.

• To evaluate the features of the framework against similar existing solutions.

1.5 Dissertation Roadmap

The rest of this dissertation report is laid out as follows:

Chapter 2 State of the art, provides a review and discussion of existing ad-hoc

testbeds highlighting the strong and weak points of each one.
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Chapter 3 Design, gives an overview of the design and structure of the proposed

system.

Chapter 4 Implementation, this chapter will discuss the implementation of the com-

ponents that together support Lycaon –the name of the framework.

Chapter 5 Evaluation, this chapter will discuss the experiments carried out and

results. Further, a feature comparison against the existing solutions is presented.

Chapter 6 Conclusions, this chapter summarises the work presented and points to

possible further extensions and improvements.

5



Chapter 2
State of the Art

Evaluation of ad-hoc networks is a lively field in the MANET community that has

produced a variety of systems. In the following sections we will review a number of

these systems, discuss the experiences that researchers have reported and highlight

arguments for and against each one.

2.1 The ideal testbed

Kiess et al. [15] define their criteria that an ideal testbed should provide based on their

experiences and reports from other research projects. Apart from desired characteristics

such as modularity and portability, Kiess et al. identified three key requirements that

a testbed should fulfil:

1. Reproducibility: Researchers should be able to reproduce published results based

on the data provided by authors of a publication – an implicit assumption of
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scientific work. Reproducibility represents a challenge for research conducted in

the area of ad-hoc networks because the reproduction of the exact same topology

and movement patterns during an experiment are difficult.

2. Comprehension: In order to be able to understand and explain the results of an

experiment, it is necessary to record as much information about an experiment,

its environment and other factors as possible.

3. Correctness: The results of an experiment can easily become useless because

of broken tools, errors with the setup, and random errors while conducting the

experiment. Kiess et al. argue that the perfect testbed should provide tools to

verify that any given experiment has yield valid results.

2.2 APE

The Ad hoc Protocol Evaluation (APE) testbed [28] provides a system to design ex-

periments based on scenarios, to measure data such as throughput, delay, etc, and

to correlate and process these data after an experiment. The testbed consists of a

Linux distribution that contains patches for the Linux kernel and a set of programs

and scripts. It includes support for a number of routing protocols such as AODV [22],

DSR [13], OLSR [12], LUNAR [27] and TORA [21]. Figure 2.1 shows a high-level

overview of APE’s architecture.

The focus of the APE testbed is the repeatability of experiments. In order to

support repeatability, APE introduces the concept of choreography: A choreography
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Figure 2.1: APE’s architecture

describes the movement and action of individual nodes as instructions that are given

to the user of a node. Appendix A contains a sample of an APE choreography. These

instructions are defined before the start of an experiment and relayed to users as the

experiment progresses. Individual choreographies can be reused and aim to ensure that

topology changes are consistent throughout a set of experiments.

APE synchronises the clock of nodes participating in an experiment by issuing pe-

riodic broadcasts from designated nodes. This synchronised time is used to timestamp

events.

APE records information at the level of 802.11 frames. The capture of this in-

formation is supported by a modified driver for Lucent ORINOCO adapters. This

dependency limits the system to Lucent ORINOCO adapters at the time of writing

and requires the development of additional modified drivers to support additional wire-

less adapters.
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2.2.1 Measured Parameters

APE allows a number of parameters of an ad-hoc network to be measured: Virtual

mobility, link change, connectivity, packet loss rate and hop count. The following

paragraphs explain these parameters in more detail.

Virtual Mobility (VM): VM is based on signal changes in links between nodes. The

measured signal quality of a transmission is computed with Q in dB = α − 33 ∗

log(dist/β) [14]. Empirical experiments led to a loss model: Distance D between

nodej and nodei in the range of 0.5 and 65 meters is computed as Dj(nodei) =

4 ∗ 10
40−0.9∗Qj (nodei)

33 . VM is then calculated as the difference of virtual distance

between two consecutive time intervals. This model obviously only works with

ORiNOCO cards.

VM is used to estimate the degree of similarity between two experiments and to

provide a way to evaluate the effect of changes on other parameters such as packet

loss, etc. This parameter represents changes between individual experiments in

terms of mobility and movement, but also in terms of connectivity between nodes,

since VM is dependent on inter-node connectivity.

Link Change: Link Change represents the number of link changes per time unit. The

length of a time unit is dependent on the mobility during the experiment. The

higher the mobility of nodes is, the smaller is the time unit. A lot of movement

means a higher metric and a larger “temperature”1 in the network.

1Temperature is a way to measure the mobility during an experiment. If a MANET network has

a high degree of mobility, it is said that the temperature is high.
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Connectivity: Connectivity in terms of neighbours is a metric that reflects the number

of nodes a particular node is connected to.

Packet Loss: Packet loss occurs when one or more packets of data travelling across

a network fail to reach their destination. Packet loss rate and its complement,

reception rate, are given as a ratio that represents the correlation of successful

and unsuccessful deliveries.

Hop Count: In ad-hoc networks, a hop represents one portion of the path between

source and destination. Usually a packet will be relied several times before arriv-

ing to its destination. Generally speaking, the more hops data must traverse to

reach their destination, the greater the transmission delay incurred. It must be

noted however that lower hop counts does not necessarily means higher through-

put.

2.2.2 Issues

A number of issues have been identified that have not been addressed by the APE

system:

Scalability: The scalability of APE is limited because of the manual creation of chore-

ographies. The setup of these choreographies is time consuming and cumbersome

for large experimental setups.

Choreography Dependant: In order to carry out an experiment in APE, a choreogra-

phy must be created before an experiment is undertaken. It is not possible to do
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so without a choreography.

Hardware Dependencies: APE uses a patched Linux kernel that only works with

Lucent’s Orinoco cards. Thus, it has a strong hardware dependency that refrains

APE from working in heterogeneous hardware/Linux kernels. This also affects

handcrafted metrics such as VM, that are tested and developed with a particular

hardware in mind, and only work with such hardware.

2.3 DAMON

The Distributed Architecture for MONitoring multi-hop mobile networks (DAMON)

[23] has been developed at UC Santa Barbara. DAMON2 is implemented in the pro-

gramming language Perl and distributed as an installable software package for both

Linux and Windows.

DAMON uses an agent-sink architecture to monitor mobile networks. A sink is a

node with “unlimited” resources that collects statistics from nodes in its coverage are

and generally remains in a static location or moves little compared to the mobility of

other participating nodes in the experiment. Sinks advertise their presence through

periodic beacons and are considered to be resilient to failure. Sink clients are called

agents. These agents may be a resource-limited devices depending on the characteristics

of the scenario. Figure 2.2 shows sink beaconing and agent-sink association in DAMON.

There are two types of nodes in DAMON: fully-capable nodes –nodes that have

2This review covers DAMONv1. DAMONv2 is under development and not available as of Septem-

ber 2006

11



Figure 2.2: Sinks and agents in operation

“unlimited” disk space, battery and processing power– and nodes that cannot dedicate

these resources like a PDA, but also participate in the experiment. DAMON supports

both complete coverage, where all participating nodes are sinks and log traffic, and

limited coverage scenarios –where only a limited number of nodes are sinks.

DAMON distinguishes between Time Dependant Digests (TDD) and Time Inde-

pendent Digests (TID). TDDs have higher priority than their counterparts, and are

sent in a best-effort fashion. They are real-time information like energy left, identity

of the node, etc. Multiple TDDs can be aggregated and sent together. TIDs use TCP

as transport mechanism and are the logs of traffic and the sequence numbers used to

keep track of what has been successfully delivered to a sink.

12



2.3.1 Measured Parameters

Packet Delivery Ratio: Packet delivery ratio (PDR) is computed as the ratio of the

number of data packets received by the destination nodes divided by the total

number of data packets transmitted by the source nodes. Packet delivery ratio

is a useful parameter to compare how two different routing protocols perform

under, for example, mobility.

Route Discovery Latency: Route discovery latency (RDL) is the time that takes a

routing protocol to discover a route to a given host. In reactive routing protocols

such as AODV, RDL is quite high as AODV does not discover a route until a

flow is initiated and may use an expanded-ring search, making it even worse.

Network Throughput: The rate at which a computer or network sends or receives

data. Throughput is low in ad-hoc networks because of using omni-directional

antennas –a node can forward only a single packet at a time resulting in poor

spatial reuse. Throughput is useful to see how a routing protocol copes with

mobility or bursts of data while delivering packets.

2.3.2 Issues

A number of issues have been identified that have not been addressed by DAMON:

Repeatability: DAMON does not support repeatability. It is not one of its design goals

and because of this, the system does not, for example, provide the possibility to

describe experiments through choreographies.
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Figure 2.3: Orbit’s hardware

Available Routing Protocols: The available version of DAMON is limited to the

monitoring of networks that employ AODV as routing protocol.

2.4 ORBIT

ORBIT [24] is an indoor radio grid testbed designed for reproducibility of experiments.

The project is a collaborative effort between several university research groups and

industrial partners. ORBIT is being developed and operated by WINLAB, Rutgers

University. ORBIT is open for research groups and institutions. Access to the testbed

can be granted to run experiments on it both locally and remotely through a web

interface.

14



Figure 2.4: Orbit’s experiment support architecture

ORBIT features a two-dimensional grid of 400 802.11 radio nodes as illustrated

in figure 2.3 – extracted from ORBIT project’s webpage [1] – which can be dynami-

cally interconnected into specified topologies with reproducible wireless channel models.

Each node is connected via multiple high-speed Ethernet links for transfer of applica-

tions, control and management information. By having dedicated ethernet links to

each node, real-time monitoring of data parameters without affecting the experiment

results is possible.

Experiments in ORBIT are written in the Ruby language. Different scripts define

the topology and communication pattern between nodes, a list of applications needed,

the role that each node will play during the experiment and also offers the possibility

of changing some parameters dynamically in the middle of the experiment. Figure 2.4

shows the architecture that supports the experiment deployment.

ORBIT represents a very a complex evaluation system, the discussion of all features
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is beyond the scope of this paper. We will focus on a few selected features that we con-

sider important. The Orbit Measurement Library (OML) is a distributed client/server

measurement framework. In OML, tuples of measurements are saved in a type safe

format named XDR [25]. This data is serialised and sent to a collection server where

it is inserted in a database for late analysis. Researchers can then access the results

of the experiment through any software that speaks ODBC. ORBIT also features the

Orbit Traffic Generator (OTG), a tool to generate traffic of data and test network per-

formance. OTG works along with OML, reporting statistics to it. In addition, ORBIT

uses NTP to synchronise time amongst nodes and Frisbee [11] to image disks.

Despite being a fixed testbed, mobility is supported in ORBIT through the use of

virtual mobiles (VMs). A VM is a node off the grid but connected to it. The VMs

emulate mobility by forwarding traffic with selected nodes, if the VM is supposed to be

at location x, the mobility controller will encapsulate and forward its packets to node x

which just decapsulates and transmits them. On the other hand, packets received by

node x, will be encapsulated and forwarded to the VM. If after a period of time, VM

“moves” to location y, the VM will use node y as described above.

2.4.1 Measured Parameters

Receive Signal Strength Indicator (RSSI): is an indicator of the strength of the received

signal measured in dBm or mW, depending on the card model. The problem is

that IEEE’s RSSI definition is fuzzy. Vendors provide their own levels of accuracy,

granularity, and range for the actual power and RSSI. On the other hand, other

vendors do not provide an RSSI value and instead convert directly from dBm to

16



percent.

TX Power: Transmission power –measured in dBm– at which a wireless NIC operates;

the greater the power, the bigger the range at which the NIC can communicate.

TX Power is artificially reduced in some testbeds in order to simulate different

topologies and to overcome spatial problems.

Noise: Background noise level present in the experiment. It is possible to dynamically

modify the noise present in the experiment. This is useful for example in experi-

ments at layer 2 to see how a MAC protocol performs under the presence of noise.

In ORBIT noise is injected to emulate real-world wireless network topologies onto

the testbed.

Network Throughput: The rate at which a computer or network sends or receives

data. Throughput is low in ad-hoc networks because of using omni-directional

antennas –a node can forward only a single packet at a time resulting in poor

spatial reuse. Throughput is useful to see how a routing protocol copes with

mobility or bursts of data while delivering packets.

Offered-Load: According to Duffield et al [5], offered-load is the total required band-

width that clients would use if no constraints were present i.e. if limitless band-

width would be available.

Number of Frame Retransmissions: Number of frame retransmissions is collected at

layer 2 of the OSI stack. Using a tool called athstats along with OML, it is

possible to measure for example the number of frames that were dropped due
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to errors at the physical layer. This metric targets experiments that investigate

issues at the data link layer.

2.4.2 Issues

A number of issues have been identified that have not been addressed by the ORBIT

testbed:

Mobility: ORBIT is a static solution and emulates mobility through the use of VMs.

This form of emulation brings with it similar complications to those exhibited

by simulations. The delay in the communication between the nodes performing

the experiment and the mobile nodes reporting their locations can interfere with

the accuracy of the emulation and the nodes performing the experiment do not

experience the same environment as the mobile nodes.

Real-world Issues: Being ORBIT a middle ground between reality and simulation,

real-world issues such as gray-zones [18] may not be discovered through experi-

ments in this environment.

Flexibility: The design and implementation of ORBIT is closely coupled to the hard-

ware configuration and setup of the ORBIT installation. This dependency makes

it difficult to replicate experiments in other locations and raises the effort that is

necessary to adapt ORBIT’s mechanisms to situations unforeseen in its design.
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2.5 Comparison

The three platforms discussed in the previous sections have each their individual fo-

cus: APE aims to support repeatability in real-world measurements, DAMON aims

to gather information about data transfers in ad-hoc networks, and ORBIT aims to

provide an environment for repeatable experiments for wireless communication. Ta-

ble 2.1 gives an overview of the parameters that can be measured with the individual

platforms. As we can see, only few parameters are measured by all platforms. Two

platforms measure the network throughput, one of the most obvious to measure. Packet

loss and number of frame retransmissions are related, but while the former operates at

layer 3, the later measures at layer 2.

APE DAMON ORBIT
Virtual mobility x - -
Link change x - -
Connectivity x - -
Packet loss x - -
Hop count x - -
Packet delivery ratio - x -
Route Discovery Latency - x -
Network throughput - x x
RSSI - - x
TXPower - - x
Noise - - x
Offered load - - x
Number of frame retransmissions - - x

Table 2.1: Comparison of parameters measured in each platform
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2.6 Scenarios

In the following paragraphs we will describe a number of scenarios that we consider

representative for the use of testbeds for the evaluation of MANET solutions. These

scenarios are then used to discuss the characteristics and features of the architecture

of the framework.

2.6.1 Scenario 1

Bob would like to monitor the traffic of an ad-hoc network during a conference on

ad-hoc networks, as described by Ramachandran et al. [23]. The participants will

install Lycaon on their laptops or PDAs. The parameters that are to be collected

are the maximum and average throughput, number of control packets, etc. Because

of the characteristics of the scenario, only one sink is used. Bob specifies everything

in an experiment file and runs it. The experiment is signed with Bob’s private key

transparently. The participating nodes will be sure that the experiment actually comes

from Bob. Once the experiment is finished, he analyses the resulting logs with the aid

of scripts.

2.6.2 Scenario 2

Alice is interested in performing an experiment that involves computing a new metric

that is not present in Lycaon, such as APE’s link change metric. To do so, she writes a

new plugin that computes link change metric using Lycaon’s plugin API. This plugin

is deployed on all participating nodes seamlessly using the distribution plugin when
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the experiment begins. Alice specified in the experiment that nodes should log the

information in a database, she invokes a script that handles the processing of the

different logs and outputs a single report of the experiment. After the experiment has

finished, Alice uses a visualisation plugin that will plot the link change metric against

time.

2.6.3 Scenario 3

Charlie would like to carry out an experiment in a network without the knowledge of its

topology. To do so, Charlie issues a discovery command that returns the identification

and position of each node in the network that is running Lycaon. With this information,

Charlie creates a choreography scenario for an experiment. In the scenario, Charlie

specifies the time, position, and movement of nodes, the actions they perform, the

collection of the data etc. When the scenario is complete, the description is distributed

to the participating nodes. Charlie chose a blind broadcast scheme as distribution plugin

which distributes all commands to the participating nodes using broadcast. Charlie

specified that instead of logging to a database, nodes and sinks will log files. After the

files have been transferred to a central server, sorting and merging scripts produce a

single file with the results of the experiment. Charlie can either analyse these results

with the aid of an existing visualisation plugin or create a new one that is adapted to

his needs.
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2.7 Summary

A set of desirable features that a MANET testbed should provide has been presented.

This chapter has also introduced a sound review of the state of the art in MANET

testbeds highlighting the interesting features of each one. This information and the

requirements extracted from the three presented scenarios will be incorporated into the

design presented in next chapter.
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Chapter 3
Design

This chapter is going to present a set of goals that have been identified as desirable

features for our proposed framework followed by a description of a design that satisfies

this requirements.

3.1 Design goals

The design goals of Lycaon follow the characteristics described by Kiess et al. [15].

They aim to incorporate the relevant features of the systems described in Chapter 2

and address the open issues that have been identified in these systems.

1. Distributed, Modular Architecture: Lycaon aims to evaluate protocols and appli-

cations in one of the most distributed environments: MANETs. Thus, Lycaon’s

architecture needs to consist of elements that can be distributed among the nodes

that participate in an experiment. The individual elements should consist of
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components that can be distributed throughout the network by an adequate dis-

tribution mechanism and that can be assembled depending on the experiment

that is to be performed.

2. Data Gathering Capabilities: The provision of data gathering capabilities is one

of Lycaon’s main aspects. The framework should provide functionality to capture

as much data as possible about an experiment and the environment it takes place

in. In order to do so, the framework will have to be extensible to allow the imple-

mentation of new functionality to capture classes of data that was not anticipated

during the design of the framework. Lycaon will also need to provide mechanisms

that allow to interface with legacy software in order to incorporate existing tools

that are used to gather data in experiments for wireless communication.

3. Scripting Capabilities: Experiments that are to be carried out within the frame-

work should be described in a form that allows them to be repeated with minimum

of effort. Also, the description of experiments should facilitate the comparison of

results that were produced by a set of experiments. The form of these descriptions

should be human readable and free from requirements for specific editors.

4. Portability & Heterogeneity: The nodes that make up an ad-hoc network may

consist of variety hardware and operating systems. The framework needs to take

this into account and be constructed so that experiments can be adapted to

available hardware and software. The implementation of the framework needs

to be easily portable to new platforms and existing descriptions of experiments

should be applicable to a variety of platforms.
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Figure 3.1: Lycaon’s architecture

3.2 Overall Architecture

The system will be made of a number of individual modules each with a single specific

role. A diagram detailing the relationships is provided in Figure 3.1. Each module is

discussed in turn below.

3.3 Network layer

The network layer (NL) sits at the bottom of Lycaon’s stack. Communication between

Lycaon nodes is over UDP. The reason behind using UDP as communication protocol

instead of TCP is that because of the nature of ad-hoc networks, TCP is nearly broken

[10]. Lycaon is meant to be used in large multi-hop networks where vanilla TCP just

does not work that well. Even though UDP is an unreliable protocol, if a message

is corrupted or is lost on its way to a node, chances are that another node will have

25



received and forwarded it. TCP is only used in two places right now: uploading results

of an experiment (FTP) and while using traffic generators (TG), either an iperf-like

TG, or Lycaon’s own python TG.

Upon reception of a packet, the NL will forward the packet to the loaded distribution

plugin, the distribution plugin decides if the packet should be processed or not –in case

we already saw this packet, more on this later– and whether to forward the packet or

not –depending on the plugin’s algorithm. In order to be able to decide if a packet

should be processed or not, each node maintains two hash maps that keep track of

the “open” and “closed” packets. Closed keeps the ids of the packets seen in the last

ten seconds, this avoids forwarding already forwarded packets. If an action requires a

response it will register the packet id in the open list. If an instance of that packet is

received, the callback registered with it will be fired with the packet data as arguments

and the entry in the open list will be deleted. The entries in the closed list are kept for

10 seconds, this will avoid having a closed list that grows and grows as time passes.

The distribution plugin may or may not forward the packet –again all depends on

the plugin’s algorithm, but it will always instruct the NL whether a packet must be

processed or not. The NL will process the packet with the appropriate handler for

the packet type. There are several types of packets in Lycaon, with their respective

handlers. The type of the packets range from simple beacons announcing position

and local time –the only type of packets that is not forwarded by default in Lycaon–

to experiments, plugin requests/replies, etc. Despite their differences, each handler

operates similarly. If the NL needs to communicate with other module –e.g. when an

experiment is received– it will signal the other module through the signal dispatcher
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mechanism.

3.4 The Event Dispatching System

Lycaon uses the well-known Louie dispatcher to send signals between modules. Fig-

ure 3.2 shows how the signals in Lycaon interact, and what modules communicate

through them.

For example, consider that the NL receives an experiment and is not running an

experiment previously. The EM will process the experiment and check that the depen-

dencies required for that experiment are solved. Once it has checked that has all the

plugins required to start it will send an EXP IAM OK signal that will make the NL

to send an IAM OK packet and will wait for an ALL OK signal. Now consider that

a PLUG REQ packet is received from a neighbour node at the NL. The node needs

plugin X and after being checked this plugin is present in this node’s plugin folder.

The node will reply with a PLUG REP packet with the plugin data as payload. In the

requester side, once the plugin is received, this will provoke a PLUGIN REC signal

that will in turn make the EM check if it has all the necessary plugins to start, if that

is the case it will send an IAM OK packet.

The first node that figures out that the rest of the nodes are ready to start will

signal the NL to send an ALL OK packet that will signal the rest of the nodes to start

the given experiment in Y seconds. When the experiment is complete, the node will

send an EXP FIN signal that will make all the listening modules – like tcpdump – to

stop working and process its data.
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Figure 3.2: Lycaon’s signals

3.5 Plugin system

The plugin system is composed of one class, the PluginManager (PM). The PM takes

care of loading plugins, registering and unregistering plugins, etc. PM is the only entry

point in Lycaon to access the plugin infrastructure. Plugins in Lycaon are identified

by name and version in order to support repeatability of experiments.

An implicit requirement for the plugin system is that it should feature an au-

tomatic distribution mechanism capable of transparently deploying plugins to nodes

that require one or more plugins necessary for an experiment. The reasoning behind

this requirement is that in networks with, say, more than 5 nodes having to manually

deploy the required plugins to each node would be a lengthy process.

If an experiment uses a given plugin, the ExperimentManager will query the PM if

it is present in the plugin folder. If the plugin is present it will just return an instance
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of it to the requester, otherwise it will request it from the network. Missing plugins

are requested through a PLUG REQ packet with the name and version of the plugin

as payload. If a node receives the packet and has the desired plugin it will reply with

a PLUG REP and the plugin data as payload.

The plugin architecture allows Lycaon’s users to extend it at runtime. It must be

said however, that developing an application completely extensible is a difficult and

not straightforward task. Lycaon is extensible but to some extent, the following list

summarises the points where Lycaon can be extended:

• Distribution plugin: Researchers can write their own distribution plugin, allowing

them to see, for example, the behaviour of a new broadcast algorithm.

• Result parser plugin: Researchers can write their own data processing plugin,

allowing them to specify what variables to use and how to plot them.

• Storage plugin: By writting a new storage plugin a Lycaon user can add a new

database/format for saving experiment results.

• Traffic Generator: Researchers can write their own traffic generator plugin in

pure Python.

3.6 Security

Lycaon was designed to run as a daemon service in MANET testbeds such as WAND

[3], this means that Lycaon could be running for weeks or months waiting to receive

the next experiment. A Lycaon experiment contains a choreography section where
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potentially hazardous instructions to be executed are specified, thus it is necessary that

when an experiment is received, the node should be sure that the given experiment

has originated from the network “owner” and not from a malicious peer. Experiments

then are cryptographically signed in order to ensure the authenticity of the experiment

itself. Seting up this cryptographic measures is relatively easy and only requires a file

to be present in the Lycaon folder, which is the public RSA key of the experimenter.

In addition, Lycaon must open some devices as a privileged user in order to be able to

change some wireless settings, this means that Lycaon must be run as root and must

drop privileges as soon as posible.

3.7 Experiments

The choreography of distributed experiments modeled as activities in a distributed

workflow is a very complex problem. It is quite difficult to design a format that is

able to represent the ammount of data necessary to describe an experiment. One

of Lycaon’s main goals is that experiments should be human-readable and should be

free from requirements for specific editors. This requirement lead to quickly dismiss a

XML-based experiment format.

An experiment must contain three sections:

• a metadata section where things like dependencies, experiment information, etc.

are specified

• a choreography section where actions to be run and the time that they are meant

to be run are specified
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• a signature field that contains the cryptographic signature of both the metadata

and the choreography sections.

An inherent problem with choreographies in distributed systems is how to syn-

chronise actions amongst nodes. Lycaon nodes’ clocks are not synchronised, clock

synchronisation in a distributed environment is a difficult problem that was out of the

scope of this work. To tackle this problem, the time of the actions specified in the

choreography is relative to the start of the experiment. This means that instead of

executing action A at “1157378883.956636”, action A will be executed 15 seconds after

the start of the experiment.

Another problem to address is that, in contrast to Orbit, Lycaon is going to be

used in networks where separate control channels to coordinate actions are not present.

This makes necessary to devise a mechanism to coordinate the start of the experiment

amongst the nodes. The solution is simple, each node while parsing the choreography

of the experiment is able to see which nodes have actions specified for the given exper-

iment. Thus, each node keeps a list of the participating nodes that will be updated as

IAM OK packets are received. The first node to have the participant list empty will

signal to the rest that everybody is ready to start with a ALL OK packet. This packet

has a payload the time at when the experiment will start, again this time is relative in

order to avoid synchronisation problems.
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3.8 Logging System

The logging system in Lycaon is pluggable and allows to write a new plugin to save

experiment results in the desired medium or database. The only entry to the logging

system is through the log results hook in the experiment module. This will in turn call

the loaded plugin’s log results method. If a Lycaon user wants to use an unsuported

database, say PostgreSQL, is a matter of writting a plugin that implements the IStorage

interface and copy it to the plugin folder.

Additionally, it also must be created another plugin that implements the IStor-

ageIterator interface in order to be able to analyse results saved in the new format.

This interface only has a method iterresults that returns an iterator to iterate over the

results.

3.9 Summary

The design of the system presented in chapter is highly modular and all the important

concerns are separated into individual modules. Some critical parts such as extensibility

and authentication have been identified and addressed in the presented design.
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Chapter 4
Implementation

This chapter describes the work carried out during the implementation phase of the

project. The core activity during this phase was the implementation of the architecture

described in chapter 3. This chapter describes the details of the implementation only.

Evaluation of this work is contained in chapter 5.

4.1 Implementation environment

Lycaon has been developed in the Python programming language. Python is a well

known dynamic object oriented language with a clear syntax that is very easy to read

and pick up. The reasoning behind choosing Python is simple: Lycaon is a relatively

complex system that had to be developed in a short time frame. A Python programmer

can be up to 5-10 times more productive than a Java programmer according to some

comparisons [6, 7, 8]. Being high performance not a requirement for this project, the

choice of a dynamic language that interfaces very well with C –thus with Linux/Unix–
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was obvious.

Apart from other well-known open-source projects such as gpsd or Louie, Lycaon

uses the Twisted [9] framework for network communication. Twisted is an event-driven

asynchronous framework that imposes a novel programming style for developers used

to multi-threaded applications, but one capable of great efficiency under heavy loads.

The key while programming with Twisted is that all blocking operations should return

a deferred –also known as promise or future in languages like E [19]– this deferred will

have one or more callbacks registered that will be executed with the response of the

blocking operation as argument.

4.2 The Network Layer

While designing Lycaon, we wanted to follow a design similar to DAMON’s sink-agent

architecture. Then while the implementation phase it become clear that even though

the sink-agent architecture looks like a nice solution to the problem of supporting

resource-limited devices, uploading data during an experiment would affect the result

of the experiment itself, making its results useless. So the agent-sink architecture was

dropped and instead the model used in APE was used. It is then assumed that all the

nodes are resource-unlimited devices –i.e. laptops– and each node logs its own traffic,

this log will be uploaded once the experiment is finished to the FTP server specified

in the experiment file –usually the same laptop that launched the experiment.

The NL is composed of two basic classes, SinkBase and SinkNode. SinkBase pro-

vides some of the basic infrastructure necessary for communication, such as the open
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and closed hashmaps, methods to build and send packets, garbage collection of the

closed list, etc. On the other hand, SinkNode extends SinkBase providing a pluggable

distribution mechanism, the handlers for the different types of packets in Lycaon and

also connects the appropriate methods to their respective signal handlers for the signal

dispatching system.

As Lycaon nodes communicate through UDP broadcasts, one of the first problems

that aroused was how to generate packet ids in a distributed multi-hop network that

can be comprised of several hundreds of nodes. The classical model followed in TCP

is to use sequential packet ids –up to 232-1, unfortunately this is not possible to apply

in Lycaon as there could be a possibility that two packets sent by different nodes were

sharing the same packet id, thus provoking a collision. At the moment Lycaon is using

as packet id the time since epoch, this could be changed in the future to a combination

of the IP address of the node plus a sequential packet ID ala TCP.

Another interesting problem is in situations where a node sends a request, for

example a plugin request, how to register a callback for a response –packet id– that

we do not know beforehand. To overcome this, in a plugin request it is included the

packet id that the respondant should use in case it has the given plugin.

4.3 The Event Dispatching System

The event dispatching system used in Lycaon is Louie. Louie is the only python

dispatching system that comes with support for Twisted. The different signals are

declared in the consts.py module as strings. A method then, is connected to a given

35



signal through Louie’s connect method. If during runtime the signal is sent from any

other module, this will execute the registered method(s) with the arguments passed

from the invoking send method. If the invoker needs a response, the send command

returns a tuple of a wrapper and a deferred. A callback can be registered with this

deferred as usual.

Listing 4.1 shows the handler for an experiment received. A signal, EXP RECV, is

sent through Louie and will be received at the ExperimentManager. If the EM accepts

the experiment it will reply with the id of the experiment, otherwise with None –that

is equivalent to Java’s null.

def _process_experiment(self, pkt_id, host, payload):

logmsg(’processing experiment %s from %s’ % (pkt_id, host))

d = louie.send(K.EXP_RECV, None, payload, pkt_id)[0][1]

def set_exp_running(resp):

if resp:

assert self.state == IDLE

self.state = BUSY

self.exp_id = resp

d.addCallback(set_exp_running)

Listing 4.1: Event dispatching example
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4.4 The Plugin System

The plugin system is implemented on top of Twisted’s plugin system. Twisted’s plugin

system enables developers to write extensible programs that can be enhanced in a way

that is loosely coupled: only the plugin API is required to remain stable. The only

entry point to Twisted’s plugin system is through the getPlugins method, this method

accepts two parameters: interface and package. Interface specifies the interface that

we are interested in, and package is a python module that specifies the path where

plugins will be searched. This method returns an iterator of plugins that the developer

will use accordingly. Appendix B shows one of the simplest distribution plugins you

can write, a “blind” broadcast plugin –i.e. forward all packets unless we have already

seen an instance of the packet.

The problem with Twisted’s plugin system is that in Lycaon we are usually in-

terested in just one plugin instead of a collection of plugins. Not only that, but also

the fact that plugins in Lycaon had to be identified by a tuple of name and version.

The solution was to create a layer on top of Twisted’s plugin system with some meth-

ods that allow to retrieve plugins identified by name and version, register a plugin

received from the network or get the data of a given plugin. All this is contained in

the PluginManager class.

When all the plugin requirements necessary for an experiment are satisfied, a

LOAD PLUGIN signal is sent through the signal dispatcher. This signal has as ar-

gument a Python dictionary where all the plugins to load are specified. Interested

receivers – extensible parts in Lycaon – will receive it and load the specified plugin,
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avoiding a signal for each plugin to load.

# Send the packet to the network plugin

# if its the first time we see this packet it will return 1

if self._plugin.process_packet(data, (host, port), self):

# find what handler to use

handler = getattr(self, ’_process_%s’ % pkt_type, None)

if handler:

try:

handler(pkt_id, host, payload)

except LycaonException, why:

logerr(’Exception received: %s’ % why)

else:

logerr(’Unknown packet %r I will not forward it’ % data)

Listing 4.2: Distribution mechanism’s hook

As we previously stated in section 3.5, creating a truly extensible program needs a

great deal of careful design and engineering that unfortunately could not be devoted to

Lycaon. Lycaon is then extensible but only to some extent. Lycaon has a number of

hooks where the loaded plugin’s method(s) will be called to process some data, the list

of possible plugins has already been reviewed in section 3.5. For example, listing 4.2

shows the hook present in the datagramReceived method of the SinkNode class. The

plugin will extract the packet id out of the data and will decide whether the data

should be forwarded or not and whether the packet should be processed or not by the
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NL.

4.5 Security

Lycaon uses public-key authentication in two places: while signing or checking the

signature of an experiment and to grant access to the python console that allows to

inspect each Lycaon module during an experiment – more on this later. In both places,

the public RSA key of the owner is used to authenticate either the experiment or the

ssh connection to the manhole. This key should be deployed in the .lycaon folder of

each node running the experiment, if the key is not present Lycaon will not start.

Lycaon must be run as root in order to access the network devices with root permis-

sions –a mandatory requisite for the statistics module that needs to be able to modify

wireless settings. It is a well-known fact that running applications with unlimited priv-

ileges should be avoided in Unix systems as this represents a big security risk. Lycaon

drops privileges as soon as it binds to a port. Further, when tcpdump is executed, it

also drops privileges as soon as it has opened the network interface in capture mode.

The security module also provides an interesting feature that was not planned

during the design. The Twisted API provides the infrastructure necessary to build a

service that can be seamlessly integrated with a Twisted application, and provides a

Python administrative shell that can be accessed through telnet/ssh. From this shell,

it is possible to inspect inside the components of the application like if it was a local

python shell running a script. The access to this service in Lycaon is through ssh

and only accepts connections from authenticated users –by the public RSA key. It
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is possible to see what packet ids are in the closed and open lists, interact with the

statistics module, etc. Listing 4.3 shows a snippet of an intronspection session.

$ ssh 192.168.0.1 -p 6022

...

>>> dir()

[’K’, ’LycaonProtocol’, ’Node’, ’NodeFactory’, ’SinkNode’,

’TwistedDispatchPlugin’, ’__builtins__’, ’__doc__’, ’__file__’, ’

__name__’, ’_version’, ’get_mh_factory’, ’logmsg’, ’louie’, ’

make_application’, ’protocol’]

>>> SinkNode.closed

{’1157562027.8940899’: ’1157562027.8941’, ’1157562037.8947201’: ’

1157562037.8947289’, ’1157562007.8967841’: ’1157562007.8967941’,

’1157562017.894099’: ’1157562017.8941081’, ’1157562047.8951459’:

’1157562047.8951559’}

Listing 4.3: Sample intronspection session

4.6 Experiments

As stated in section 3.7, Lycaon experiments have two main parts: metadata and

choreography. For the metadata section, Python’s ConfigParser was used. This mod-

ule implements a basic configuration file parser language which provides a structure

similar to that found in Microsoft’s Windows INI files. The choreography section was
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implemented in a handcrafted language relatively easy to read. Listing 4.4 shows a

sample Lycaon experiment. Line 2 instantiates a new Experiment object, an Experi-

ment object just has three instance variables –metadata, choreography and signature–

which are plain Python strings. The metadata section is pretty straightforward to

read and understand, there are sections –denoted by [section]– and each section has

pairs of name: value entries. Line 11 is the reportback section, where the ip address,

username and password to be used for uploading the results of the experiment are

specified. Line 17 is the beginning of the choreography. Choreography entries always

follow this format: when who what arguments. For example, line 18 states that five

seconds after the start of the experiment, node 192.168.0.1 will execute iperf with the

“-u -c 192.168.0.2 -t 10 -i 1 -b 11m” arguments –that is connect via UDP to 192.168.0.2

for 10 seconds, reporting each second and with an offered load of 11Mbits. The execute

directive will execute the arguments as command:arguments of command. The tg-tcp

directive expects an ip address as argument, the ip the TG will connect to. Finally the

instr directive prints a choreography message in the screen of the node ala APE.

4.7 Logging System

Lycaon’s loggin system is compound of two different modules, one deals with logging

the results of the experiment and the other with logging the traffic of an experiment.

Although they are two different subsystems, they are included in the same section.
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1 from lycaon.experiment import Experiment

experiment = Experiment()

3 experiment.metadata = """

[info]

5 id: sampleexp

author: Pablo Marti

7 version: 0.1

[dependencies]

9 distmech: gossip3-50

storage: sqlitedb-41

11 [reportback]

host: 192.168.1.1

13 user: huno

passwd: lycaon

15 [logging]

tcpdump: yes"""

17 experiment.choreography = """

005 192.168.0.1 execute iperf:-u -c 192.168.0.2 -t 10 -i 1 -b 11m

19 015 192.168.0.2 execute iperf:-u -c 192.168.0.1 -t 15 -i 1 -b 8m -N

020 192.168.0.1 instr Move 30 meters to the west

21 070 192.168.0.1 tg-tcp 192.168.0.2"""

Listing 4.4: Sample Lycaon experiment
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The logging system comes with two different plugins to save results, the SQLiteDB

plugin –interface to SQLite– and the TextDB plugin –a text database. The plugin

to be used will be specified in the experiment and no logging plugin will be enabled

at the start by default. SQLite should be preferred as its dependencies are minimal

and its features make it a worthy choice. For example, SQLite database files can be

freely shared between machines with different byte orders. Compare this with ORBIT,

where they use the XDR format to overcome this problem. It is our opinion that the

approach taken by ORBIT is over-engineered and this solution is simpler.

The other module included here is tcpdump.py which is not pluggable because it did

not make sense to make it. Tcpdump is present in almost every Linux/Unix machine

and libcap is the facto standard for logging network traffic. Tcpdump will only be

started if specified in the experiment; this makes it useful for scenarios where we are

just interested in the traffic distribution of the network, or for scenarios where we are

not interested in the tcpdump trace.

4.8 Statistics

The module statistics.py provides a dictionary-like –in Python jargon– interface to

layer 2/3 information during the experiment as well as GPS –if running– data. The

access to layer 2/3 is provided through two Python wrappers around the Linux wireless

stack. The current functionality is limited to that provided by the wrappers. The

only potentially blocking operations are those related to GPS, as the wrappers around

the wireless stack are not blocking. In the case of GPS, the GPSStats class updates
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itself each 5 seconds, thus caching the information for 5 seconds. When some GPS

information is requested it is possible that is 5 seconds old, thus it should be tuned to

a lower number in scenarios with high mobility.

class PyWifiStats:

def __init__(self, iface):

self.iface = Wireless(iface)

self._getters = {’statistics’: ’getStatistics’,

’encryption’: ’getEncryption’,

’fragmentation’: ’getFragmentation’,

’powermanagement’: ’getPowermanagement’,

’rts’: ’getRTS’, ’retrylimit’: ’Retrylimit’

,

’sensitivity’: ’getSensitivity’}

def __getitem__(self, key):

if self._getters.has_key(key):

return getattr(self.iface, self._getters[key])()

raise KeyError

def provides(self):

return self._getters.keys(), None

Listing 4.5: python-wifi wrapper

Despite the fact that adding a new class to the statistics module is not as easy

as plugging a plugin, the module has defined an interface that new classes should
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implement if they want to be added to the module. For example, listing 4.5 shows

the PyWifiStats, a wrapper around the python-wifi package. The instance variable

getters is a dictionary that maps the parameters that this class announces as available

to the respective methods in python-wifi’s Wireless class. The method that must be

implemented is provides, that returns a tuple with the “getters” and “setters” that the

class provides. Adding a new wrapper around, say, a Galileo receiver is a matter of

implementing this interface and adding the necessary lines of code in the Stats class.

4.9 Location Information

In the original design, LI was going to be made completely pluggable. Then it become

clear that it was not worth the effort as the only LI hardware widely available is GPS.

The package used to access GPS information is gpsd. As mentioned in section 4.8,

the class GPSStats provides a dictionary-like interface to access GPS information. As

accessing this information may block, the class updates itself every 5 seconds, thus

caching the information for 5 seconds.

4.10 Traffic Generator

Lycaon’s TG is contained in the trafficg.py module. The TG system is compound of

three classes:

• TGProtocol : The protocol represents the server side of the TG.

• TGFactory : The factory for the protocol.
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• TGProducer : The client part, where the algorithm to produce data is defined.

The TG system was originally designed to be pluggable, however because of lack

of time this feature was dropped. At the moment the traffic generator only works

with TCP connections, as Lycaon uses Twisted’s Producer/Consumer API and is lim-

ited to TCP connections. The only method that should be changed in a pluggable

implementation is resumeProducing.

4.11 Summary

The design presented in chapter 3 has been implemented with encouraging results. The

system is modular and extensible in some parts and provides features similar to the

systems presented in chapter 2 plus some of its own. This will be discussed in deep in

chapter 5. A CD-rom with Lycaon’s source code, API documentation and some misc

documentation produced durante Lycaon’s development can be found attached at the

back of this work.
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Chapter 5
Evaluation

This chapter will outline the experiments carried out, their goals, results and conclu-

sions that can be drawn from them, firstly the equipment used and configuration is

outlined.

5.1 Test Setup

The experiments where conducted using heterogeneous equipment with the same congu-

ration:

• 1 Dell Latitude D410, 2GHz Pentium M Processor, 256MB of RAM

• 1 Dell Latitude D400, 1.3GHz Pentium M Processor, 256MB of RAM

• 1 Fujitsu B Series Lifebook, 500MHz Intel Celeron, 256MB of RAM

• 1 WAND Node, 933MHz Low Power Mobile Pentium III, 128MB of RAM
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• All machines run a vanilla Linux 2.6.12 kernel

• Cisco Aironet 352 Cards in the D410 and the WAND node

• Orinoco gold cards in the D400 and the lifebook

These machines were were positioned such that there were all an equal distance

apart. 802.11 channel 7 was used as this frequency was not used by any other 802.11

devices in the proximity. The environment where the evaluation was conducted was

in the DSG lab in the second floor of the Lloyd Institute, Trinity College Dublin.

This is a relatively noisy environment with dozens of other 802.11 sources, from both

infrastructure based and ad-hoc networks.

5.2 Experiments

A series of experiments were carried out to evaluate the various components that make

up Lycaon. The experiment file used to evaluate Lycaon is shown in appendix C.

Although a single experiment file was used, it allowed us to evaluate Lycaon in two

areas:

• Evaluation of Lycaon features

• Evaluation of network performance through traffic generators
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5.3 Evaluation of Lycaon’s features

While Lycaon was being developed, the ad-hoc network where it was tested was a two

node network. With the hardware loaned from the DSG laboratory, this experiments

tested Lycaon with a 4 laptop network in order to see if features such as experiment

synchronisation, plugin distribution, etc. worked as expected with more nodes. The

first experiment was to try the plugin distribution system, for this purpose the plugin

iperf3-62 was specified as a dependency in the experiment. Only one node, the D400,

had the plugin – which was just a gossip3 plugin with an updated version number.

The test worked out satisfactorily, and the plugin was transparently deployed to the

rest of the nodes. When all the nodes had the dependencies satisfied, the experiment

started simultaneously in all the nodes at the expected time. When all the nodes

were finished, the experiment logs were uploaded to the specified FTP server with no

problems whatsoever.

Another feature to test was the traffic distribution analyser. The tcpdump trace of

the D410 during the experiment was analysed with the tethereal.py script to see the

traffic distribution during the experiment. The result is shown in figure 5.1.

5.4 Evaluation of network performance

In this experiment we compared the results of the iperf traffic generator against the

results yielded by Lycaon’s own traffic generator. As stated in section 4.10, Lycaon

only works with TCP, in addition we could only make iperf work with UDP traffic,

TCP traffic in ad-hoc networks with iperf appeared to be broken never getting output
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Figure 5.1: Traffic distribution during experiment

from the command execution. So this section is actually comparing iperf’s UDP results

against Lycaon’s TCP TG results. Despite the fact that we are comparing different

transport protocols, it is still interesting to see that the average of iperf command

shown in figure 5.2 –3.8Mb/s– is similar to the average of Lycaon’s TCP TG shown in

figure 5.3 –3.4Mb/s. The difference can be explained due to several factors, first and

most important TCP has congestion control mechanisms that make it a bit slower than

UDP traffic. It could also be argued that because iperf is implemented in C++ and

Lycaon’s TG in Python, this makes iperf a bit faster than Lycaon’s TG. This however

we do not believe it to be true as while the experiment was running CPU usage by

Python was never more than 20%, so the CPU usage –thus the overhead of using a

dynamic language– was not the bottleneck.
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Figure 5.2: Iperf’s UDP result

5.5 Evaluation against existing systems

Perhaps the features tested in the below evalution looks limited, but we argue that a

great deal of the effort put in Lycaon has gone into intangible assets such as extensi-

bility, security, reusability, etc. Lycaon may be undervaluated when compared to other

systems’ tangible assets such as more features or functionalities. This section is going

to show what Lycaon, despite its young age, has already achieved when compared to

similar systems. Table 5.1 shows a feature comparison of Lycaon against the three

testbeds reviewed in chapter 2.

The first two features compared are APE specific, and despite the fact that we have

already explained why having metrics that depend on hardware is bad in section 2.2.2,
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Figure 5.3: Lycaon’s TCP TG result

they appear in the table for the record. Connectivity and Hop count are two metrics

that could be extracted from the tcpdump trace, while the infrastructure to record the

traffic log of an experiment exists, this feature is not currently present in tethereal.py.

It should not be very difficult to implement this two metrics into the tethereal module.

Packet loss can be extracted from the pywifi wrapper around the linux wireless stack,

in section 2.2.1 we already shown that packet delivery ratio (PDR) is the complement

of packet loss, so even though PDR is not measured by python-wifi, is a metric really

straightforward to compute. On the other hand, route discovery latency is a more

tricky metric to compute that Lycaon does not supports, and does not plan to support.

Lycaon is already capable of reading and modifying in real-time metrics such as RSSI,

TXPower, Noise, Offered load and Number of frame retransmissions thanks to the
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Lycaon APE DAMON ORBIT
Virtual mobility - x - -
Link change - x - -
Connectivity - x - -
Packet loss x x - -
Hop count - x - -
Packet delivery ratio x - x -
Route Discovery Latency - - x -
Network throughput x - x x
RSSI x - - x
TXPower x - - x
Noise x - - x
Offered load x - - x
Number of frame retransmissions x - - x
Plugin architecture x - - -
Intronspection capabilities x - - -
Experiment authentication x - - -
Run as non root x - - ?
Run as ad-hoc application - x x -
Run as a 24/7 service x - - x

Table 5.1: Comparison of system capabilities

wrappers around the linux wireless stack.

In addition, Lycaon has some unique features not present in other systems. For

example, Lycaon is extensible in several parts thanks to a modular design and a plugin

architecture. This plugin architecture can transparently locate and download missing

plugins. Another nice feature of Lycaon is its introspection capabilities that allow a

researcher to connect to Lycaon through ssh and get an administrative python shell

from where she can inspect some parameters of Lycaon during an experiment.

Some of the other system, such as APE and DAMON, are “ad-hoc” applications
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that its intended usage is run them as root, carry out several experiments and finish.

In contrast, Lycaon was designed to run as a daemon service that could be weeks or

months waiting to receive an experiment, thus Lycaon had to be made secure enough

so that a malicious peer could not launch an experiment with potentially harmful

instructions. Lycaon is the only system out of the four testbeds presented in this work

that introduces security in its design from the beginning.

5.6 Summary

This chapter has presented an evaluation of Lycaon’s features and a feature comparison

with the testbeds introduced in chapter 2. Lycaon features match those present in the

other testbeds and has introduced some desirable and innovative features not present

in other solutions.
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Chapter 6
Conclusions

This chapter will outline the work presented in this thesis. A great number of the goals

and requirements identified in chapter 3 are satisfied by the implementation presented

in chapter 4. Unfortunately, not everything that was planned could be implemented

because of lack of time, this chapter will provide some insights for people interested in

expanding Lycaon.

6.1 Summary

This work has introduced a review of the state of the art in MANET testbeds. Each

presented system has been analysed and the arguments for and against each one high-

lighted. A set of desirable features not present in any platform and a design that

satisfies it has been outlined. This design has been implemented and evaluated with

satisfactorily results. Lycaon features not only matches most of the features present in

the reviewed system but also introduces some features of its own.
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6.2 Completed Work

An extensible MANET testbed has been devised, implemented and evaluated with en-

couraging results. Lycaon features a modular pluggable architecture that allows to ex-

tend its core at runtime through plugins. Plugin dependencies are solved transparently

throughout the network. Apart from matching features present in similar solutions,

Lycaon’s design tackles problems such as authentication and security. Lycaon provides

an infrastructure that researchers can use and extend for MANET experiments in the

real-world.

6.3 Future work

There are many interesting directions in which Lycaon’s core could be extended. We

had several other features in mind that had to be cut because of lack of time, this

section summarises some of them.

6.3.1 Traffic generator

The traffic generator that Lycaon features is a simple TCP TG that sends data until

a hard limit in bytes is reached. The reason because the TG is limited to TCP is

because the implementation uses Twisted’s consumer/producer API and is limited to

TCP connections. The original plan was to make TG pluggable so one could write a

new TG plugin and test it, this feature had to be deferred because of lack of time. An

interesting feature to add to Lycaon would be a new, revamped pluggable TG system
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able to work with both UDP and TCP. Its output could be made similar to that of

iperf, so the iperfparser.py module could be used to analyse both.

6.3.2 Graphical interface

Lycaon’s current interface is command-line based, while this is not a problem for the

node part, it would be nice to have an integrated environment for the experimenter

that provides a graphical interface for both creating experiments and analysing the

experiments.

6.3.3 Distributed time synchronisation

Time synchronisation is a well known problem in distributed systems, that has gen-

erated dozens of publications about it. Even if time is synchronised through NTP

amongst the participant nodes just before the experiment -and the experiment is long

enough, when the experiment is finished, all nodes will have a different time. This

is because the clocks that are embedded in computers are not terrible precise. The

drift is influenced by several factors: machine load, temperature, quality of the clock

itself, etc. At the moment each Lycaon node keeps a list with the remote time of the

neighbouring nodes learnt from beacons received. It would be very valuable if someone

implemented a distributed time synchronisation mechanism for Lycaon.
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6.3.4 Support for distributed mechanisms research

Lycaon’s extensible architecture allows to plug a new distribution mechanism contained

in a plugin. It would be interesting to have some sort of support for logging in each

node what packet ids have been received. This would enable researchers to empirically

see how a given distribution mechanism performs in the real-world.

6.3.5 Plugin System

Lycaon’s plugin system is implemented as a small layer on top of Twisted’s plugin

system. This has served well for the purpose of the project, but there is room for

improvement. For example, the algorithmic complexity of getPlugins is O(N), this is

not necessarily a problem as the number of plugins in the plugin folder will usually be

below 20-30. Nonetheless this could be improved by implementing a O(1) interface to

retrieve the plugins, this would mean however getting rid of Twisted’s plugin system

and revamping Lycaon’s plugin system. In addition, Lycaon is currently only extensible

in some sections of the system, an interesting future work would be to identify sections

that could be interesting to make extensible, for example location information.

6.3.6 Minor Improvements

• Sorting and merging scripts for the traffic logs: Currently traffic logs are uploaded

to the FTP server specified in the experiment. This logs are not merged and when

analysed only yield the results of one particular node, instead of the set of all the

traffic generated by the participant nodes in the experiment.
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• Experiment synchronisation: The algorithm that controls the experiment syn-

chronisation does not works if there are no actions specified in the choreography.

This is because to signal the start of the experiment all the participant nodes

must signal an IAM OK packet, when all are ready the experiment starts. If

there are no actions specified then the nodes have no way to know if everybody

is ready to start. A new algorithm must be devised to tackle this problem. A

choreographyless experiment is useful in cases where we just want to monitor the

packet distribution during an experiment and nothing more.
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Appendix A
Example APE choreography

# generic setup/teardown instructions

choreography.scenario.title=Relay Swap (TCP)

choreography.total.nodes=4

choreography.startup.command.0=startup

choreography.startup.command.1=tcpdump -i $IFNAME -s 200 -w /var/log

/tcpdump.apelog &

choreography.shutdown.command.0=killproc iperf

choreography.shutdown.command.1=killproc tcpdump

choreography.shutdown.command.2=copy_files

choreography.shutdown.command.3=pack_files

# node 0

node.0.ip=192.168.5.40

node.0.ipmask=255.255.255.0
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node.0.action.0.msg=This is destination node. Place at position A.

node.0.action.0.duration=30

node.0.action.0.command=my_iperf -s -f m

node.0.action.1.msg=Starting test and spyd logging!

node.0.action.1.command=start_spyd

node.0.action.1.duration=0

# above we wait 1 second less than other in order to start iperf

earlier.

node.0.action.2.msg=Stay here whole test and wait for requests...

node.0.action.2.duration=66

node.0.action.3.msg=Test soon finished.

node.0.action.3.duration=10

node.0.action.4.command=exit

# node 1

node.1.ip=192.168.5.41

node.1.ipmask=255.255.255.0

node.1.action.0.msg=This is a relay node. Go to position B.

node.1.action.0.duration=30

node.1.action.1.msg=Starting test and spyd logging!

node.1.action.1.command=start_spyd

node.1.action.1.duration=1

node.1.action.2.msg=STAY here for 20 seconds (before moving)

node.1.action.2.duration=20
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node.1.action.3.msg=Now, perform the SWAP (go to position C).

node.1.action.3.duration=25

node.1.action.4.msg=STAY here for the rest of the test.

node.1.action.4.duration=20

node.1.action.5.msg=Just 10 seconds left!

node.1.action.5.duration=10

node.1.action.6.command=exit

# node 2

node.2.ip=192.168.5.42

node.2.ipmask=255.255.255.0

node.2.action.0.msg=This is a relay node. Go to postion C.

node.2.action.0.duration=30

node.2.action.1.msg=Starting test and spyd logging!

node.2.action.1.command=start_spyd

node.2.action.1.duration=1

node.2.action.2.msg=STAY here for 20 seconds (before moving)

node.2.action.2.duration=20

node.2.action.3.msg=Now, perform the SWAP (go to position B).

node.2.action.3.duration=25

node.2.action.4.msg=STAY here for the rest of the test.

node.2.action.4.duration=20

node.2.action.5.msg=Just 10 seconds left!

node.2.action.5.duration=10
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node.2.action.6.command=exit

# node 3

node.3.ip=192.168.5.43

node.3.ipmask=255.255.255.0

node.3.action.0.msg=This is an end node. Place at position D.

node.3.action.0.duration=30

node.3.action.1.msg=Starting test and spyd logging!

node.3.action.1.command=start_spyd

node.3.action.1.duration=1

node.3.action.2.msg=Stay here whole test. Now sending data to node

0.

node.3.action.2.command=my_iperf -c 0 -t 65 -REPEAT 1 -SLEEP 0

node.3.action.2.duration=65

node.3.action.3.msg=Test soon finished.

node.3.action.3.duration=10

node.3.action.4.command=exit

Listing A.1: Example APE choreography

63



Appendix B
Lycaon’s BlindBroadcast Plugin

# twisted imports

from twisted.plugin import IPlugin

# zope imports

from zope.interface import implements

# python imports

from time import time

# lycaon imports

from lycaon import interfaces

class BlindBroadcastPlugin(object):

implements(IPlugin, interfaces.IDistributionPlugin)

_name = ’blindbroadcast’

_version = ’$Id: blindbroadcast.py 49 2006-08-25 13:30:13Z huno

$’.split()[2]
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def process_packet(self, data, (host, port), ref):

pkt_id = data.split(’:’)[0]

if ref.closed.has_key(pkt_id):

# ignore seen packets

return 0

if ref._fire_callback(pkt_id, data):

# Callback fired, log time reception

# in the close list

ref.closed[pkt_id] = repr(time())

else:

# add it to the close list

ref.closed[pkt_id] = repr(time())

ref.broadcast_data(data)

return 1

# this line is for the plugin system, don’t touch

broad = BlindBroadcastPlugin()

Listing B.1: BlindBroadcast plugin
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Appendix C
Experiment file used in evaluation

from lycaon.experiment import Experiment

experiment = Experiment()

experiment.metadata =

"""

[info]

id: evalexper

author: Pablo Marti

version: 0.1

[dependencies]

distmech: gossip3-62

storage: sqlitedb-41

[reportback]

host: 192.168.0.2
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user: huno

passwd: lycaon

[logging]

tcpdump: yes

"""

experiment.choreography =

"""

005 192.168.0.1 execute iperf:-u -c 192.168.0.2 -t 10 -i 1 -b 7m

015 192.168.0.2 execute iperf:-u -c 192.168.0.1 -t 10 -i 1 -b 7m

015 192.168.0.4 execute iperf:-u -c 192.168.0.5 -t 10 -i 1 -b 7m

015 192.168.0.5 execute iperf:-u -c 192.168.0.4 -t 10 -i 1 -b 7m

017 192.168.0.1 execute iperf:-u -c 192.168.0.4 -t 20 -i 1 -b 7m -N

040 192.168.0.2 execute iperf:-u -c 192.168.0.1 -t 15 -i 1 -b 7m -N

046 192.168.0.4 execute iperf:-u -c 192.168.0.5 -t 20 -i 1 -b 7m -N

066 192.168.0.1 tg-tcp 192.168.0.2

066 192.168.0.5 tg-tcp 192.168.0.4

"""

Listing C.1: Experiment file used in evaluation
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