

Engineering Grounded Semantic Service

Definitions from Native Service

Specifications

Yu Cao

A dissertation submitted to the University of Dublin, Trinity College

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

September 2007

DECLARATION

I declare that the work described in this dissertation is, except where otherwise stated,

entirely my own work and has not been submitted as an exercise for a degree at this or

any other university.

Name: Yu Cao

Date: 14th September, 2007

 I

PERMISSION TO LEND AND/OR COPY

I agree that Trinity College Library may lend or copy this dissertation upon request.

Name: Yu Cao

Date: 14th September, 2007

 II

ACKNOWLEDGEMENTS

Many thanks are due to my supervisor, Dr. David Lewis, for the considerable time spent

assisting me on this project, and for all the valuable advice and guidance offered.

Likewise, I would like to thank Kris McGlinn and Ian O'Keefe, for all their work and

helpful feedback.

To all my family and friends, and especially my fellow Ubicom classmates, I would like

to thank you for all your support and encouragement throughout the course of this

dissertation.

Yu Cao

University of Dublin, Trinity College

September 2007

 III

ABSTRACT

The Web Ontology Language for Services (OWL-S) is a semantic markup language for

web services to facilitate the automation of web service discovery, invocation, and

composition and to improve interoperability. Currently the standard way of generating

semantic web service is to convert a Web Service Description Language (WSDL)

definition obtained from a web service interface to an OWL-S definition. But the

generated OWL-S definition includes no semantics. Semantic information needs to be

added manually. Another issue is that there are no links between Java interfaces and

generated OWL-S definitions, so maintenance is hard to perform.

This dissertation addressed the problem by developing a tool to help software engineers

retrieve and add semantic information from Javadoc to OWL-S definitions from an

engineering perspective. An Eclipse plug-in called Semantics Editor was implemented.

Semantics Editor shows the roundtrip of identifying concepts and association

properties from Javadoc, converting Java classes to OWL-S definitions and adding

semantic information to OWL-S definitions. The tool also generates and visualizes a

link between Java classes and OWL-S definitions so that it becomes traceable between

Java classes and OWL-S definitions.

The evaluation focused on usability of user interface of the tool. A series of tests were

designed and conducted. The evaluation results shows that the user interface of the tool

reached basic functions but still needs to be improved a lot. While the research results

were quite successful and most of the questions posed by the research

objectives have been answered, this project still has a big potential for further

development.

 IV

TABLE OF CONTENTS

DECLARATION .. I

PERMISSION TO LEND AND/OR COPY ..II

ACKNOWLEDGEMENTS .. III

ABSTRACT ... IV

TABLE OF CONTENTS ..V

TABLE OF FIGURES.. VIII

LIST OF TABLES ... IX

CHAPTER 1 INTRODUCTION...1

1.1 MOTIVATION ...1

1.2 RESEARCH OBJECTIVES...2

1.3 DISSERTATION ROADMAP ..3

CHAPTER 2 STATE OF THE ART ...4

2.1 SEMANTIC WEB ..4

2.1.1 Introduction ..4

2.1.2 Ontology ...5

2.1.3 OWL..5

2.1.4 SWRL ..6

2.2 WEB SERVICE..6
2.2.1 Traditional Web Service ..6

2.2.2 Semantic Web Service ...7
2.2.2.1 OWL-S ..8
2.2.2.2 WSDL-S ..9

2.2.3 WSDL to OWL-S Conversion..9
2.4 ECLIPSE...10

2.5 JAVADOC ... 11
2.6 MDA .. 11

2.7 RELATED WORK..12
2.7.1 CODE ...12

2.7.2 Learning Ontologies from Software Artifacts ...13
2.7.3 Web Service Annotation Using Ontology Mapping...13

CHAPTER 3 REQUIREMENTS AND ANALYSIS..15

3.1 REQUIREMENTS...15

 V

3.2 ANALYSIS ..16

3.2.1 Identifying a Concept from Javadoc ...16

3.2.2 Identifying Association Properties between Concepts ..16

3.2.3 Binding a Concept to OWL-S Input/Output ..17

3.2.4 Creating Unary and Binary Preconditions ...17

3.2.5 Tracing between Java Interfaces and OWL-S Definitions ..17

CHAPTER 4 DESIGN ...19

4.1 ARCHITECTURE DESIGN ..19

4.2 DATA MODEL DESIGN ...21

4.3 USER INTERFACE DESIGN..22

4.4 DETAILED DESIGN...24

4.4.1 Use Case Design...24

4.4.2 Work Flow Design...25

4.4.3 Packages Design...25

4.4.4 Editors Design ..26

4.4.5 Javadoc Editor..28

4.4.6 OWL-S Editor ...30

CHAPTER 5 IMPLEMENTATION ...32

5.1 TECHNOLOGIES USED ...32

5.2 DATA MODEL IMPLEMENTATION..33

5.3 JAVADOC EDITOR...34

5.3.1 Section Parser...34

5.3.2 Semantics Content Outline View ...34
5.3.2.1 Tree Structured View ... 34
5.3.2.2 Traceability.. 35
5.3.2.3 Drag Operation .. 36

5.3.3 Semantic Information Reading and Writing..36

5.3.4 Properties Editing...37

5.4 OWL-S EDITOR ..38

5.4.1 Open OWL-S Process File ..38

5.4.2 Context Menu Registration ...39

5.4.3 Unary/Binary Preconditions Creation ..40

5.4.4 Drop Target Adapter ...40
5.5 JAVA2OWLS CONVERSION..40

5.6 CO-OPERATIONS BETWEEN EDITORS ...41
5.6.1 Tracing..42

5.6.2 Drag and Drop..43

CHAPTER 6 EVALUATION ..44

6.1 OVERVIEW ..44

 VI

6.2 EVALUATION APPROACH ...45

6.2.1 Pre-Test Questionnaire ...45

6.2.2 An Introduction to Semantics Editor...45

6.2.3 The Scenario Setting ...45

6.2.4 Three Short Tasks..45

6.2.5 Post-Test questionnaire...46

6.3 EVALUATION RESULTS...46

6.3.1 Background Information Statistic ...46

6.3.2 Results and Analysis ...47

6.3.3 User Comments...49
6.3.3.1 More Support... 50
6.3.3.2 More Automation... 50
6.3.3.3 More Structured... 50

CHAPTER 7 CONCLUSIONS AND FURTHER WORK..51

7.1 CONCLUSIONS...51

7.2 FURTHER WORK..52

7.2.1 Full OWL-S Editor Support ..52

7.2.2 Integrating with an OWL Editor ...53

7.2.3 Working with Multi-source of Semantic Information ..53

7.2.4 Integrating with an OWL-S Discovery and Execution Platform...53

REFERENCES ...55

APPENDICES ..58

APPENDIX A USABILITY EVALUATION DOCUMENTS..58

APPENDIX B DETAILED CLASS DIAGRAM ...69

APPENDIX C COMMONLY USED ABBREVIATION..70

 VII

TABLE OF FIGURES

FIGURE 1 W3C SEMANTIC WEB LAYER CAKE ..4

FIGURE 2 A BASIC ONTOLOGY ..5

FIGURE 3 WEB SERVICE ARCHITECTURE ...6

FIGURE 4 TOP LEVEL OF THE SERVICE ONTOLOGY ...8

FIGURE 5 WSDL-S ANNOTATION ..9

FIGURE 6 WSDL TO OWL-S GROUNDING ..10

FIGURE 7 ECLIPSE IDE.. 11

FIGURE 8 FRAME BASED PROFILE EDITOR ..13

FIGURE 9 ARCHITECTURE DESIGN...20

FIGURE 10 SEMANTICS ELEMENT DATA MODEL..21

FIGURE 11 USER INTERFACE DESIGN...22

FIGURE 12 TABBED FRAME STRUCTURE..23

FIGURE 13 USE CASE DIAGRAM..24

FIGURE 14 PACKAGES..26

FIGURE 15 EDITORS’ RELATIONSHIP..27

FIGURE 16 OPEN WITH SEMANTICS EDITOR ..27

FIGURE 17 JAVADOC EDITOR CLASS DIAGRAM ...30

FIGURE 18 OWL-S EDITOR CLASS DIAGRAM ...31

FIGURE 19 DATA MODEL TO XML MAPPING...33

FIGURE 20 SEMANTICS CONTENT OUTLINE VIEW ...35

FIGURE 21 TRACEABILITY...36

FIGURE 22 PROPERTIES EDITING ...37

FIGURE 23 OPEN OWL-S PROCESS FILE DIALOG..38
FIGURE 24 EDITING OWL-S PROCESS FILE...39

FIGURE 25 PRECONDITIONS CONTEXT MENU..40
FIGURE 26 JAVA TO OWL-S CONVERTER MENU..41 U

FIGURE 27 JAVA2OWLS CONVERTER..41
FIGURE 28 CREATE THE LINK ..42

FIGURE 29 USERS' EXPERIENCE ON ECLIPSE IDE..46
FIGURE 30 USERS' EXPERIENCE ON OWL-S..47

FIGURE 31 OVERALL PERFORMANCE ..48
FIGURE 32 USE CASE PERFORMANCE..49

FIGURE 33 DETAILED CLASS DIAGRAM...69

 VIII

 IX

LIST OF TABLES

TABLE 1 USE CASE STATISTIC ...48

Chapter 1 Introduction

This chapter introduces the dissertation topic and explores the motivation behind the

work. It is followed by an examination of the objectives to be achieved by the project,

and concludes with a summary of the document structure.

1.1 Motivation

In recent years semantic web service has gained a lot of attention as a means to enable

automatic web service discovery, invocation, composition and to also to improve

interoperability. The Web Ontology Language for Services (OWL-S) [1] is a semantic

markup language for web services to facilitate the automation of these tasks.

A standard way of generating semantic web service is to convert a Web Service

Description Language (WSDL) [2] definition obtained from a web service interface to

an OWL-S definition. This conversion process [3] only captures information which is

contained within the WSDL definition. Therefore, the generated OWL-S definition

includes no semantics inside. For example, when an input is referred to a concept, that

concept is just a subclass of thing. In order to take full advantage of the functionality of

the OWL-S definition, extra semantic information needs to be added manually.

According to normal J2EE development methodology [4], development and deployment

phases are done by different software engineers. Deployers do not have enough

information to restore missing semantic information after conversion from Java

interfaces to OWL-S definitions. Thus it slows the growth of semantic web services.

So adding the extra semantic information during the development phase so that enough

semantic information can be provided to deployers is recommended to the software

developers.

The extra semantic information can be modeled in a variety of formats, e.g. UML [27],

XML [28] , Javadoc [16] etc. Some related work has already been done to obtain

semantic information from multi-source artifacts which presented in section 2.7.2

Learning Ontologies from Software Artifacts and 2.7.3 Web Service Annotation Using

Ontology Mapping. However these work all start from an automation perspective

which generates semantic web services automatically. Use an automatic process to

 1

generate semantic web services at this stage is not a perfect solution, because

multi-source artifacts can have completely different contents. Different naming and

terminology cause low accuracy and efficiency of ontology mappings. Another more

accurate and efficient approach which starts from engineering perspective was

proposed by this dissertation. But the problem is that there is no such tool on the

market using an engineering perspective which helps the software engineers retrieve

the semantic information from a variety of formats and add it to OWL-S definitions.

Another issue is that after conversion from Java interfaces to WSDL definitions, there

are no links between Java interfaces and WSDL definitions. It is not possible to find out

which Java interface is corresponding to which service definition in WSDL without

looking at the details of conversion. Therefore after conversion from WSDL

definitions to OWL-S definitions, it will be very hard to maintain the links between

Java interfaces and OWL-S definitions. If an ontology used by an OWL-S definition

changes, it is not possible for this to be reflected in the Java interface and vice versa.

1.2 Research Objectives

In the previous section, the following issues were identified:

 Existing methods of conversion from WSDL definitions to OWL-S definitions do

not take full advantage of semantic web service definitions. Missing semantic

information needs to be added manually.

 No tools help software developers add extra semantics information to the OWL-S

definitions.

 Maintenance will be hard to perform because there are no links between Java

interfaces and OWL-S definitions

The objective of this research is to provide solutions to the above issues. This work

aims to provide a tool to assist software engineers to write OWL-S versions of existing

services which are based on Java, and to find a way to model, generate and keep the

links between Java interfaces and OWL-S definitions so that definitions of certain

components of OWL-S definition are traceable and maintainable.

 2

1.3 Dissertation Roadmap

The whole dissertation is organized as follows:

Chapter 1 – Introduction describes the topic of this dissertation and the objectives of

this research. The issues around semantic web service definition area are discussed.

Chapter 2 – State of the Art provides the background information around semantic

web services area. Semantic web, semantic web service, technologies used by this

project and some related work are studied and introduces.

Chapter 3 – Requirements and Analysis explains the functions should be provided

by Semantics Editor based on the requirements and analysis.

Chapter 4 – Design shows the architecture design, data model design and detailed

design of Semantics Editor including editor class design and user interface design.

Chapter 5 – Implementation describes the technologies used for implementation and

explains the implementation details of important components of Semantics Editor.

Chapter 6 – Evaluation presents the usability evaluation on user interface design of

Semantics Editor and the analysis on evaluation results.

Chapter 7 – Conclusions and Further Work presents the contributions of this

research and further work.

 3

Chapter 2 State of the Art

This chapter provides the background information around semantic web services area.

Semantic web, semantic web service, technologies used by this project and some

related work are studied and introduces.

2.1 Semantic Web

2.1.1 Introduction

For the decade years, web is composed content of human readable only texts. For

example, search engines are only based on text matching. No context information is

involved in searching so that a lot of useless information will also be processed and

presented to the search engine users. Semantic Web is an extension to the existing

World Wide Web that offers machine readable content. Thus it allows finding, sharing

and integrating information more easily.

Figure 1 W3C Semantic Web Layer Cake [5]

 4

The semantic web is based on the standards and tools of URI, XML, Namespaces,

XML Schema, RDF, Ontology etc. The layer cake diagram Figure 1 published by W3C

clearly shows an infrastructure that each layer is built on the lower layer.

2.1.2 Ontology

Ontology is a data model which represents a set of concepts within a domain and

describes the relationships between those concepts. It is useful in the area of artificial

intelligence, semantic web etc as it provides ability of reasoning about the objects.

A well-formed ontology is one that is expressed in a well-defined syntax that has a

well-defined machine interpretation consistent with the above ontology definition.

Ontologies generally describe:

 Individuals: the basic or "ground level" objects (e.g. John, Mary)

 Classes: sets, collections, or types of objects (e.g. people)

 Attributes: properties, features, characteristics, or parameters that objects can have

and share (e.g. John’s age is 20 years old)

 Relations: ways that objects can be related to one another (e.g. John is a people)

An example of a basic ontology is shown in Figure 2:

Figure 2 A Basic Ontology [6]

2.1.3 OWL

The web ontology language (OWL) [7] is a language for defining and instantiating

ontologies. It is designed specifically for applications to process the ontologies. OWL

 5

offers a great machine interpretability of web content by providing additional

vocabulary along with a formal semantics. OWL is based on XML, RDF and RDFS.

OWL has three species:

 OWL full is union of OWL syntax and RDF

 OWL DL restricted to FOL fragment

 OWL Lite is “easier to implement” subset of OWL DL

2.1.4 SWRL

Semantic Web Rule Language (SWRL) [8] is a proposal by W3C for additional

sophisticated inferencing and reasoning. SWRL is based on OWL DL and OWL Lite

with the Unary/Binary Datalog RuleML. It extends OWL axioms to include rules.

SWRL is a human readable language which rules are of the form of an implication

between an antecedent (body) and consequent (head). SWRL is used to express

preconditions in OWL-S definitions.

2.2 Web Service

2.2.1 Traditional Web Service

W3C defined web service as a software system identified by a URI, whose public

interfaces and bindings are defined and described using XML. Its definition can be

discovered by other software systems. These systems may then interact with the Web

service in a manner prescribed by its definition, using XML based messages conveyed

by Internet protocols. [9]

Figure 3 Web Service Architecture [10]

 6

The core specifications are followings:

 Web Service Definition language (WSDL): W3C defined that WSDL is an XML

format for describing network services as a set of endpoints operating on messages

containing either document-oriented or procedure-oriented information. The

operations and messages are described abstractly, and then bound to a concrete

network protocol and message format to define an endpoint. Related concrete

endpoints are combined into abstract endpoints (services). WSDL is extensible to

allow description of endpoints and their messages regardless of what message

formats or network protocols are used to communicate, however, the only bindings

described in this document describe how to use WSDL in conjunction with SOAP

1.1, HTTP GET/POST, and MIME. [11]

 Simple Object Access Protocol (SOAP): W3C defined that SOAP is a

lightweight protocol for exchange of information in a decentralized, distributed

environment. It is an XML based protocol that consists of three parts: an envelope

that defines a framework for describing what is in a message and how to process it,

a set of encoding rules for expressing instances of application-defined data types,

and a convention for representing remote procedure calls and responses. SOAP can

potentially be used in combination with a variety of other protocols; however, the

only bindings defined in this document describe how to use SOAP in combination

with HTTP and HTTP Extension Framework. [12]

 Universal Description, Discovery and Integration (UDDI): UDDI is a directory

service where service provider and service requester can publish and find the web

services. A UDDI registry service is a web service that maintains the information

about service providers, service implementations and service metadata. [13]

2.2.2 Semantic Web Service

Semantic web service addressed two problems:

 In order to make service composition possible, developers have to reach some sort

of agreement on the interaction of web services. This makes automatic service

composition very difficult.

 On the other hand, WSDL can only describe operations and structure of the data.

 7

There are no semantic meanings on data.

Semantic web service solves the problems by providing extra semantic meanings for

web services.

2.2.2.1 OWL-S

Web Ontology Language for Services (OWL-S) [1] is an ontology of services that built

on existing OWL framework to describe web services as semantic web services. It

enables automatic web service discovery, invocation, composition and interoperation.

Figure 4 Top level of the service ontology [1]

An upper ontology is shown in Figure 4 to describe OWL-S elements:

 Service Profile: The service profile tells "what the service does". it tells the service

requester if the service meets the requirements or not, the capability of the service

and limitation on the service.

 Service Grounding: The service grounding tells “how to access it”. It specifies the

details of service invocation. For example: communication protocols, message

formats, port numbers etc.

 Service Model: The service model tells “how it works”. It tells the service

requester how to use the services, preconditions before execution and results after

execution.

 8

2.2.2.2 WSDL-S

Web Service Semantics (WSDL-S) [14] is an annotation language for describing

semantic web service. It extends WSDL by using extensibility elements of WSDL and

adds semantic meaning to WSDL definitions by annotating elements in WSDL

definitions.

Figure 5 WSDL-S Annotation [14]

The Figure 5 above shows how WSDL-S adds the semantics to WSDL by referencing

concepts in an outside domain model.

2.2.3 WSDL to OWL-S Conversion

One issue that OWL-S facing is that for the existing web services it will be a huge

amount of work to rewrite the OWL-S version of service definition. So reuse existing

WSDL framework to generate OWL-S definition is crucial. As OWL-S has a

complementary relationship to WSDL, the conversion can be performed by following

mappings (Figure 6): [1]

 9

Figure 6 WSDL to OWL-S Grounding [1]

 An OWL-S atomic process corresponds to a WSDL operation.

 The set of inputs and the set of outputs of an OWL-S atomic process each

correspond to WSDL's concept of message.

 The types (OWL classes) of the inputs and outputs of an OWL-S atomic process

correspond to WSDL's extensible notion of abstract type (and, as such, may be

used in WSDL specifications of message parts).

2.4 Eclipse

Eclipse [15] is an open source framework. Eclipse is famous for its origin form of Java

IDE (Figure 7) and becomes the main stream of development IDE. Eclipse’s plug-in

mechanism makes itself customizable and extensible. Thousands of plug-ins provides

different functions which can be freely download from the web. The Eclipse for Rich

Client Platform (RCP) and plug-in Developers provides a Plug-in Development

Environment (PDE) [23] for developing Eclipse applications which makes developing

an Eclipse plug-in really easy.

 10

Figure 7 Eclipse IDE

2.5 Javadoc

Javadoc [16] is a tool that generates the documentation from Java code automatically.

Instead of writing and maintaining a separate documentation, software engineers just

need to write specially-formatted comments in the Java code. Javadoc will generate

nice documentation automatically in HTML form.

Rather than generating the documentation in default format, Javadoc also provides

doclets API to allow users create their own format. So Javadoc is a good tool to analyze

the structure of Java code.

2.6 MDA

The Model Drive Architecture (MDA) [17] is a software design methodology developed

by Object Management Group (OMG). MDA defined a set of guidelines to construct

models. Platform-independent model (PIM) is used to describe the overall system

specification. Then a platform definition model (PDM) is used to specify the

underlying platform information. By applying a transformation approach, PIMs can be

translated into platform-specific models (PSM) so that computers can run them.

 11

The three primary goals of MDA are portability, interoperability and reusability

through architectural separation of concerns. The core of MDA consists of following

main basic concepts:

 Model: A model describes the specification of the system. It is often presented in

the combination of texts and diagrams e.g. UML.

 Model-Driven: MDA aims to increase the power of model in software/system

design. Model driven means all designs, constructions, deployments, operations,

maintenances and modifications are around models.

 Platform Independent Model (PIM): PIM describes system from a platform

independent viewpoint. A standard technology to get platform independency is to

use the virtual machine technology to be built on top of the platform. A typical

example is Java Virtual Machine (JVM) developed by Sun. JVM has different

versions and is running on different operation systems. So software and systems

that are developed by Java programming language achieved platform independent

characteristic.

 Platform Specific Model (PSM): PSM describes system from a platform specific

viewpoint. It is a specially designed model to be running on a particular platform.

 Platform Model: A platform model is a model which contains the specifications

and characteristics of a platform e.g. CORBA Component Model.

 Model Transformation: Model transformation is the process to convert from one

model to another model. In MDA, a PIM is converted to a PSM.

2.7 Related Work

A lot of work have been done around semantic web service area, all these work have

their contributions and limitations.

2.7.1 CODE

CMU’s OWL-S Development Environment [18] is an Eclipse plug-in which supports the

whole OWL-S development processes from Java2OWL-S conversion, OWL-S

definitions editing to the deployment and UDDI registration.

 12

Figure 8 Frame Based Profile Editor

CODE provides an integrated development environment for software engineers to

develop semantic web services. It provides frames based editors e.g. profile editor

(Figure 8), process editor. It uses Apache’s Java2WSDL [21] and CMU’s

WSDL2OWL-S [3] to achieve the generation of WSDL and OWL-S. CODE uses

OWL-S2UDDI [22] to translate OWL-S profile to a UDDI compatible form. Thus it can

be automatically registered with an UDDI server, such as the CMU’s

OWL-S/UDDI Matchmaker.

2.7.2 Learning Ontologies from Software Artifacts

Kalina Bontcheva and Marta Sabou’s paper [19] presents an initial prototype of an

ontology learning system which facilitates access, maintenance and reuse of software

artifacts. The system is able to learn the ontologies from multiple information sources.

Follow the steps of term extraction, term pruning, multi-source term enrichment and

term matching, the system aims to reuse software artifacts and learn the ontologies

automatically from multiple sources.

2.7.3 Web Service Annotation Using Ontology Mapping

Zhang Duo, Li JuanZi and Xu Bin [20] take the same idea as WSDL-S [14] which adds

OWL ontologies to WSDL definitions by annotating web services. They provide a set

of rules to translate from XML schema to ontologies and develop an algorithm for

ontology mapping. Finally they generate a semantic description of web services with

the mapping result. The main contribution of their work is it provides a set of rules to

 13

translate from XML schema to ontologies which can be implemented to conduct

auto-generation of semantic web services.

 14

Chapter 3 Requirements and Analysis

This chapter presents the overall requirements of the tool. Based on analysis, several

use cases were introduced.

3.1 Requirements

For the existing tools and approaches to generate semantic web services discussed in

chapter two, they do not have the solutions to the following problems:

 The accuracy and efficiency of automatic generating semantic web services is not

high

 Maintainability of generated semantic web services is low

 There is no development environment for software engineers to develop semantic

web services from an engineering point of view

The aim of this project is to develop a tool to help software engineers to write OWL-S

version of existing web services which were based on Java starting from an

engineering perspective. The tool is used by software engineers who develop web

services. So based on purpose and users of the tool following development

requirements were identified:

 The tool will be an Eclipse plug-in

 The tool should be able to show the roundtrip of identifying semantic information

from Javadoc, converting Java interfaces to OWL-S definitions and finally adding

missing semantic information into OWL-S definitions

 The tool should help the users retrieve semantic information from Javadoc

 The tool should provide a means of storing these semantic information

 The tool should help the users restore the missing semantic information to OWL-S

definitions

 The tool should help the users generate preconditions in OWL-S definitions

 The tool should generate the links between Java interfaces and OWL-S definitions

 15

 The tool should allow the users to trace between Java interfaces and OWL-S

definitions

 The tool should provide a user interface to allow the users to perform above

operations

3.2 Analysis

After a detailed study on requirements listed above, combining with the state of the art

study, several use cases were defined to better understand the requirements and goal of

the tool.

3.2.1 Identifying a Concept from Javadoc

In order to retrieve missing and add extra semantic information, semantic resources of

related web services are crucial to the tool itself. This extra semantic information can be

modeled in a variety of formats, e.g. UMLs, XMLs, Javadoc, software manuals,

documents etc. In this project, Javadoc is taken as a sort of source of this purpose.

Generally when a software engineer is developing a web service and writing the Java

code, he will leave some explanations on the attributes, methods etc he identified. And

also comments are required for the future maintenance and development. This

information can be considered as semantic information for web services at a certain

degree.

The idea of identifying a concept is that the tool should allow the users to reuse this

information inside Java classes as a source for semantic web services. Users can

identify concepts from Javadoc and even link them to other concepts in other existing

ontologies.

3.2.2 Identifying Association Properties between Concepts

After identifying concepts, the next step is identifying association properties of that

concept. The users should be able to identify the ontology that concept belongs to, the

method that concept was bound to, input/output elements in OWL-S definitions that

concept is referred to, preconditions and related predicates.

This is how users retrieve the missing and extra semantics from Javadoc. As Javadoc is

well structured, it is better not to break the original architecture of Javadoc. So these

 16

identified association properties should be stored separately and can be reused by other

tools for other purpose in the future.

3.2.3 Binding a Concept to OWL-S Input/Output

Simple conversion from WSDL definitions to OWL-S definitions do not generate

semantics due to lack of semantic meanings of WSDL definitions. In order to take full

advantage of OWL-S definitions, semantic information needs to be added manually.

Though concepts are created as inputs and outputs in OWL-S definitions after

conversion, however those concepts just have concept names but without any attributes,

properties relationships etc. So binding concepts from other ontologies to OWL-S

inputs and outputs can add semantic meanings to OWL-S definitions. Considering the

consistency of OWL-S definitions, equivalent class relationships should be created for

concepts which do not have semantic meanings.

3.2.4 Creating Unary and Binary Preconditions

Another goal of this project is to create preconditions in OWL-S definitions. As

preconditions are not part of WSDL elements, preconditions need to be added manually

to OWL-S definitions after conversion from WSDL definitions to OWL-S definitions.

Based on current state of Semantic Web Rule Language (SWRL) [8] , the creation of

unary and binary preconditions was selected to be a function that provided by the tool to

assist users.

The users should be able to specify the class predicates and property predicates with the

help of the tool and create the unary and binary preconditions for OWL-S definitions.

3.2.5 Tracing between Java Interfaces and OWL-S Definitions

Traceability is an important part in this project. The reason to provide traceability

between Java interfaces and OWL-S definitions is that software engineers can be

involved in developing semantic web services during the development phase.

Providing this kind of function can help software engineers observe the changes of

OWL-S definitions when Java interfaces are changed. On the other hand, if a link

between Java interfaces and OWL-S definitions can be created, it will provide a direct

view of the links between Java classes and OWL-S definitions. Maintenance will be

easier to perform and development of semantic web services will become more

efficient.

 17

The tool should allow tracing between Java interfaces and OWL-S definitions in both

directions. Users should be able to find the positions of terms that are identified in

Javadoc. On the other hand, users should also be able to find corresponding input,

output, and preconditions in OWL-S definitions.

 18

Chapter 4 Design

This chapter begins with the architecture design, the data model design and the user

interface design. Based on the analysis results from chapter three, a detailed design is

presented including the use case diagram, the work flow design, the package diagram

and several class diagrams. Finally, according to the user interface framework of

Eclipse platform, a user interface is designed.

4.1 Architecture Design

As the tool is an Eclipse plug-in, so the architecture design of the tool should take

Eclipse user interface framework into account. Advantages and limitations should

both be considered. As an integrated development environment, Eclipse provides a

great extensibility on editors. Thousands of editors for different purposes have been

developed and are freely available on the web. Therefore an Eclipse plug-in called

Semantics Editor was designed and split into following three parts:

 Javadoc Editor: The Javadoc editor is responsible for adding extra semantics by

means of editing Javadoc in Java classes. Users are allowed to identify concepts

from Javadoc and identify association properties between concepts.

 Java interfaces to OWL-S definitions conversion: After having identifying the

concepts and association properties, users can use the tool to generate OWL-S

definitions from Java interfaces.

 OWL-S Editor: The OWL-S editor is used to take extra semantic information

identified by Javadoc editor and then add it to the OWL-S definitions generated

after conversion.

Figure 9 below shows the architecture of Semantics Editor and how editors interact

with extra semantic information:

 19

Javadoc

Editor

OWL-S

Editor

XML

Semantics

Java Class OWL-S WSDL

Semantics Editor

Figure 9 Architecture Design

The users first use Javadoc editor to identify concepts and association properties from

Javadoc. This semantic information will be stored in a separate XML file. Then the

users convert the Java classes to OWL-S definitions by using the conversion tool.

Finally the users use OWL-S editor to add extra semantic information in OWL-S

definitions by reading the semantic information from the XML file.

The advantages of this architecture design of Semantics Editor are the followings:

 Saving the extra semantic information identified from Javadoc to a separate XML

file will keep the consistency of the original contents of Javadoc. The users can still

read the comments and documentations in Java classes as before.

 The separate XML file creates the links between Java classes and OWL-S

definitions as both editors use this XML file. The Javadoc editor saves identified

semantic information to this file. The OWL-S editor reads this file to retrieve extra

semantic information and then adds it to the OWL-S definitions. This makes

tracing between Java classes and OWL-S definitions possible.

 As semantic information is stored independent from editors, this makes Semantic

Editor portable and extensible. Semantic information stored in XML files can be

reused by other applications and systems. The Semantics Editor can also be

extended to support multiple resources. For example, by adding a UML editor, the

Semantics Editor can support retrieve semantic information from UML diagrams.

 20

4.2 Data Model Design

Design of this tool used the model concept from Model Driven Architecture (MDA) as

described in section 2.6 MDA. A data model was designed to be the bridge between

Javadoc editor and OWL-S editor. The Semantics Editor was designed to operate

around the data model. All operations were designed to manipulate the data stored in

this model.

The SemanticsElement class (Figure 10) is a bean class used to present the data model.

It contains all fields that can be edit in Javadoc editor. Each field has get and set

methods to read and modify the values.

Figure 10 Semantics Element Data Model

 parent: the parent node of current node in a tree structured view

 children: the children nodes of current node

 position: the corresponding position in Java class of this semantics element

 name: the term identified from Javadoc

 concept: the concept to which this term can be referred

 method: the method to which this semantics element is bound

 input: the input to which this element is bound (optional)

 output: the output to which this element is bound (optional)

 precondition: the precondition to which this element is bound (optional)

 21

 unary: the class predicate of the precondition (optional)

 binary: the property predicate of the precondition (optional)

4.3 User Interface Design

The user interface design principles of Semantics Editor are the followings:

 Consistency: The user interface of Semantics Editor should look like other editors

in Eclipse IDE. Users should not need to take a long time to get familiar with the

user interface. A standard user interface of editors in Eclipse IDE should be used to

keep the consistency.

 Clearness: The user interface should be able to speak out. When users look at user

interface, it should be clearly shown to the users the functions of each part of the

user interface.

 Simplicity: The user interface should be easy to use. Interactions between users

and Semantics editor should be designed as simple as possible. Complex

interactions should be avoided.

Figure 11 User Interface Design

 22

Based on three principles presented above and restrictions on Eclipse platform, the user

interface was designed as shown in Figure 11.

The user interface is split into four parts:

 Projects Area: This is the area where the users create their projects.

 Semantics Outline View Area: Here lists semantics elements and association

properties in a tree structured view. A tree structured view was used to visualize

the content of the separate XML file. The tree view clearly shows the structure

and content of the XML file. In addition, semantics content outline view is the

visual presentation of the links between Javadoc editor and OWL-S editor.

 Property Edit Area: Here users can edit association properties of the term they

identified in edit area. The advantage of using a property edit area is that the

structure of Javadoc will be kept. Users can clearly distinguish between Javadoc

and semantic information. Users are explicitly informed that they are editing the

properties of terms in Javadoc by using this property edit area. Users can easily

understand that these properties are semantic information which belongs to the

term identified from Javadoc.

 Main Edit Area: Here is where the users edit Javadoc, the separate XML file and

OWL-S process files. This area is designed based on a tabbed frame structure

(Figure 12). By switching between different tabs, users can edit Java classes, the

separate XML file where stores semantic information and OWL-S process files.

The reason to use a tabbed frame structure is that switching between editors will

not change the content of semantics outline view. Thus the user interface shows

the meaning that the data in semantics content outline view is shared by all

editors.

Figure 12 Tabbed Frame Structure

 23

4.4 Detailed Design

4.4.1 Use Case Design

The use case diagram defines the functions of a basic system. It shows what users can

do with the system. A user case diagram (Figure 13) shown below clearly describes

what users can do with the tool.

Figure 13 Use Case Diagram

Users are allowed to:

 Identifying concepts from Javadoc

 Identifying association properties of those concepts

 Converting Java interfaces to OWL-S definitions

 Creating unary and binary preconditions

 Tracing between Java interfaces and OWL-S definitions

 24

4.4.2 Work Flow Design

The work flow defines a series of sequential steps to reach a certain goal. Based on

detailed analysis and five use cases identified in chapter three, a work flow is defined

to achieve the goals of Semantics Editor which are retrieving semantic information

from Javadoc, adding extra semantic information to OWL-S definitions and tracing

between Java classes and OWL-S definitions:

Step 1: Open a Java class that contains web service interfaces using Semantic Editor.

Step 2: Find a term in Javadoc which can be considered as or referred to a concept

and add a ‘#’ symbol right before the term. Then this term will be listed in semantics

outline view area.

Step 3: Click on the term and then the property edit area will be open for the users to

edit properties. The properties that users can specify are concept, method, input,

output, precondition, class predicate and property predicate. The use of these

properties has been already discussed in section 4.2 Data Model Design.

Step 4: Identify these properties.

Step 5: Convert Java classes to OWL-S definitions.

Step 6: Switch the tab in edit area to the OWL-S editor and open OWL-S process file

with the editor.

Step 7: Create unary or binary preconditions in OWL-S process file by drag and drop

from semantics content outline view area to OWL-S process file edit area.

Step 8: Tracing between Java classes and OWL-S definitions can be simply

performed by click on elements listed in semantics content outline view. The tool will

highlight the related terms in Java classes and OWL-S definitions based on which tab

is activated in main edit area.

4.4.3 Packages Design

A total of five packages (Figure 14) were designed for the implementation of Semantics

Editor:

 javadoc_editor: activator class for Javadoc editor

 javadoc_editor.editors: contains classes for functions of Javadoc editor

 25

 owl_s_edior: activator class for OWL-S editor

 owl_s_edior.editors: contains class for functions of OWL-S editor

 owl_s_edior.actions: contains context menu action classes for OWL-S editor

Figure 14 Packages

4.4.4 Editors Design

Considering the architecture design of Semantics Editor, users have to work with

Javadoc editor and OWL-S editor together. A tabbed frame structure was designed for

the user interface. In main edit area, users can switch between editors to edit different

files. So a multiage container was designed to hold three editors: a Javadoc editor, a

XML editor and an OWL-S editor.

The XML editor is not mentioned before because it is just an editor for XML files

where extra semantic information is stored. It is an Eclipse plug-in built inside Eclipse

IDE. It opens the separate XML file which contains extra semantic information. The

users can view the information and edit data with this editor. It provides an alternative

way of identifying association properties to the users. The users can modify the

association properties by modifying the content of this file.

 26

Figure 15 Editors’ Relationship

The diagram (Figure 15) above shows the relationships between editors.

SemanticsEditor class is the entry class of Semantics Editor. It is the container of other

three editors. When the users open a Java class with Semantics Editor (Figure 16), this

class will be called. The SemanticsEditor class creates an instance of JavadocEditor

class, an instance of XML editor class and an instance of OWLSEditor class.

Figure 16 Open with Semantics Editor

The SemantcisEditor class also controls the state and lifecycle of Javadoc editor and

OWL-S editor. When the users perform the save operation, this class will call all

doSave() methods of Javadoc editor, XML editor and OWL-S editor. Thus all three

files in different editors will be saved. When the users close the SemanticsEditor, all

instances of three editors will be destroyed.

 27

4.4.5 Javadoc Editor

The Javadoc editor is registered with ‘.java’ file type in Eclipse platform. It is

responsible for adding extra semantics by means of editing Javadoc in Java classes. In

order to realize this purpose, the following functions were designed:

 The users can identify a concept from Javadoc by adding a ‘#’ symbol right before

a term which users think that can be referred to a concept. The Semantcis Editor

should realize the changes to the Javadoc.

 The users can identify association properties of that concept by editing the property

values in property view window.

 The identified concepts and association properties should be displayed in

semantics content outline view window as a tree structured view.

 All values users identified in property edit window should be stored in

SemanticsElement beans and saved to a separate XML file.

 Each time users change the concepts and association properties, the outline view

window should be refreshed to correspond to the changes and the output XML file

should be modified accordingly.

 When the users open a Java class that already contains some semantic information

which was added by Semantics Editor before. The old semantic information should

be recognized by the editor and displayed correctly in the outline view window.

 The users should be allowed to drag the concepts and association properties from

the semantics content outline outline view window in order to perform the drag

and drop between concepts and OWL-S definitions.

The class diagram (Figure 17) below shows the details of each class and relationships

between them. A more detailed class diagram which has all fields and methods

displayed can be found in Appendix B.

JavadocEditor class: The main class of Javadoc editor. It is responsible to control the

state and lifecycle of Javadoc editor.

SemanticsContentOutlinePage class: This class is instantiated by JavadocEditor

class. It will create outline view for semantic information stored in the separate XML

file in the form of a tree structured view.

 28

SemanticsModelFactory class: It is a factory class which used by the whole tool. It

makes sure that the whole tool shares and uses same data model object and same

semantic information that are saved in the XML file.

DefaultSectionsParser class: It is a parser for reading the content of Javadoc to get

terms that identified by the users.

FindSemantics class: It will find existing semantic information in XML files that are

identified and saved by the users before.

SemanticsElement class: It is a bean class which used by almost all other classes. It

presents the data model designed in section 4.2 Data Model Design.

SemanticsElementProperties class: It is where the users edit association properties of

concepts.

TextDragListener class: A test drag listener is registered to semantics content outline

view to enable text dragging from semantics content outline view window.

 29

Figure 17 Javadoc Editor Class Diagram

4.4.6 OWL-S Editor

The OWL-S editor is registered with ‘.owl’ file type in Eclipse platform. It is

responsible for editing OWL-S process file to create unary and binary preconditions.

Two context menu actions were designed to perform unary and binary preconditions

 30

generation operations. A MyDropTargetAdapter class was designed to accept drop

operations for the OWL-S editor area. The class diagram (Figure 18) below shows the

details of each class and relationships between them.

Figure 18 OWL-S Editor Class Diagram

 31

Chapter 5 Implementation

The implementation of the Semantics Editor posed numerous challenges that needed

to be overcome in order to satisfy the project objectives set out in chapter one. This

chapter describes technologies used for the implementation and the problems

overcome in the course of its construction.

5.1 Technologies Used

The Semantics Editor is an Eclipse plug-in which consists of three editors, an outline

view and a property view. The Plug-in Development Environment (PDE) as

mentioned in section 2.4 Eclipse was used to assist developing the Eclipse plug-in on

Eclipse IDE platform. Java SE Development Kit (JDK) version 6 [24] was used to

provide development APIs and Java Runtime Environment (JRE) version 6 [24] was

used to provide runtime library. The plug-in was built on Eclipse SDK version 3.3
[25] .

Following APIs from Eclipse SDK were used to develop user interface of Semantics

Editor:

 org.eclipse.ui

 org.eclipse.ui.views

 org.eclipse.ui.ide

Following APIs from Eclipse SDK were used to develop user interface of editors and

manipulate the texts in Semantics Editor:

 org.eclipse.ui.workbench.texteditor

 org.eclipse.ui.editors

 org.eclipse.jface.text

 org.eclipse.text

The following APIs provide resources of Eclipse workspace e.g. documents and

supports for runtime platform, core utility methods and the extension registry.

 32

 org.eclipse.core.resources

 org.eclipse.core.runtime

In addition the XML Document Object Model (XML DOM) [29] was used to access

and manipulate XML files where Semantics Editor stores extra semantic information.

DOM converts XML files to objects so that random access to the data in any level of

XML tags becomes possible. Sun’s implementation of DOM [30] was used in the

project to read in and write out the semantic information stored in the separate XML

file.

5.2 Data Model Implementation

The data model is a key to Semantic Editor. All operations are designed to use this

data model to perform reading and writing semantic information from the separate

XML file. The data model designed in section 4.2 Data Model Design is implemented

to the followings:

 One object of SemanticsElement class corresponds to an entry of data in the

XML file.

 All data within a term tag in the XML file is defined as one entry.

A data model to XML mapping is clearly shown in Figure 19. All data within the term

tag is called one entry and it corresponds to an object of SemanticsElement bean

class.

Figure 19 Data Model to XML Mapping

 33

5.3 Javadoc Editor

The Javadoc editor is used to edit Javadoc inside Java classes to identify concepts and

association properties. The concepts and properties that identified are listed as a tree

structured view in semantics content outline view window. Association properties can

be displayed and edit by click on the nodes of the tree. A drag operation is allowed to

drag elements from the tree.

5.3.1 Section Parser

A section parser is implemented to read the content of Javadoc in Java classes to find

out identified concepts. The section parser will find all terms that have ‘#’ symbols

right before them by searching the whole document. Once a matched term is found,

the section parser will create an object of SemanticsElement class with the name field

filled as that term. Then it will check if this term has relevant semantic information

identified and saved before in the XML file where all semantic information is stored.

If it is, relevant fields of SemanticsElement object will be filled. All objects created by

the section parser are stored in a vector to be shared by the whole Semantics Editor

plug-in.

5.3.2 Semantics Content Outline View

5.3.2.1 Tree Structured View

The semantics content outline view visualizes the semantic information stored in the

XML file as a tree structured view. Figure 20 shows an example of semantics content

outline view. A tree can show the structure and content of the XML file clearly. For

example the term ‘Hotel’ has the attributes of ‘Concept’, ‘Method’, ‘Input’ and

‘Precondition’. In the example of this diagram the precondition is a unary

precondition which has only a class predicate ‘Hotel’. So only the class predicate

‘Hotel’ node is listed as a sub-node of ‘Precondition’ node

 34

Figure 20 Semantics Content Outline View

Converting from the XML file to a tree is done by using Sun’s DOM API [30]. As

DOM converts XML files to objects, the data of any level of XML tags can be

accessed by invoking getElementByTag() method of objects. As shown in Figure 10,

the SemanticsElement has two fields: parent and child. By declaring one

SemanticsElement object is the parent or child of another SemanticsElement object,

father nodes and child nodes can be easily created for the tree structured view.

5.3.2.2 Traceability

A selection listener is also registered to semantics content outline view to provide

traceability. When the user click on an item listed in the semantics content outline

view, the selection listener will get the object of the item selected and get data of

position field of that object. Then the position of corresponding term in the edit area

will be known and that term will be highlighted (Figure 21) by the listener.

 35

Figure 21 Traceability

Switching between editors by clicking on different editor tabs in edit area will not

cause the changes of semantics content outline view. Thus tracing operations can be

performed both in Javadoc editor and OWL-S editor. The semantics content outline

view becomes the links between two editors. This is how user interface of Semantics

Editor provides the traceability between Java classes and OWL-S definitions.

5.3.2.3 Drag Operation

A drag listener is also registered to semantics content outline view to allow dragging

tree nodes from the tree. To the users everything listed in the tree structured view

looks like just texts. In fact these are objects of SemanticsElement class. Therefore the

drag listener has to convert the objects to plain text data so that it can be accepted by

the OWL-S editor. For example, the class predicate field ‘Class:Hotel’ of object

‘Hotel’ has to be converted to text ‘Hotel’.

5.3.3 Semantic Information Reading and Writing

DOM as described in section 5.1 Technologies Used was used to read and write

semantic information. Two methods were implemented to realize reading and writing

functions respectively.

FindSemantics method is used to read semantic information which is already

identified by the users in previous operations. For example, users identify one concept

and association properties first. Then they close the project for a break. When they

 36

open the project again, previous semantic information should be loaded into semantics

content outline view of Semantics Editor. The FindSemantcs method works with the

section parser. When the parser finds a term with ‘#’ symbol, it will first use the

FindSemantics method to check if this term is already identified before. If it is, the

FindSemantics method will retrieve related semantic information for the parser and

the parser will create an object SemanticsElement class with relevant fields filled.

WriteOut method is used to write out semantic information to a separate XML file.

As mentioned in section 5.3.1 Section Parser that all objects of SemanticsElement

class are stored in a vector, this method will take all data in that vector and write out

to a XML file according to the XML file structure designed in section 5.2 Data Model

Implementation. The WriteOut method will be called when users perform save

operation of Semantics Editor. Once the output XML file is modified, the content of

semantics content outline view will be refreshed by Semantics Editor.

5.3.4 Properties Editing

As Javadoc is well structured, it is better not to break existing Javadoc structure. So a

separate edit window for properties editing was designed in section 4.3 User Interface

Design.

Figure 22 Properties Editing

Figure 22 shows how users can identify association properties for the concepts they

identified. Property column shows the property labels. Value column is editable for

the users to type in text based value.

A SemanticsElementProperties class is implemented to provide above user interface

for the users to edit properties. When the users click on an item listed in semantics

content outline view, an object of SemanticsElementProperties class will be created

and a property edit area will be open to allow the users to edit the properties of that

item. After finish editing the properties in properties edit area, when the users perform

 37

the save operation, these properties will be shown as sub-nodes of the term in

semantics content outline view as shown in Figure 20. Simultaneously these data will

be saved to the separate XML file.

5.4 OWL-S Editor

The OWL-S editor is used to edit OWL-S process file to create unary and binary

preconditions. A context menu with two options was registered with the OWL-S

editor to generate the templates of unary and binary preconditions. By identifying

class and property predicates in properties edit area, the details of preconditions can

be completed by drag and drop operations.

5.4.1 Open OWL-S Process File

The OWL-S process [1] file is main file of OWL-S definitions. It is a specification of

the way a client may interact with a service. It contains the information of inputs,

outputs, atomic processes, preconditions etc. The OWL-S editor modifies this process

file to add extra semantic information to OWL-S definitions.

When the first time users use the OWL-S editor, it will first ask users to locate

OWL-S process file that was generated by JAVA2OWLS converter as described in

section 5.5 JAVA2OWLS Conversion. Figure 23 shows the user interface

implementation of the dialog box used to open an OWL-S process file.

Figure 23 Open OWL-S Process File Dialog

After the users specify the location of OWL-S process file and click on the OK button,

the OWL-S process file will be open. Then users can start to add semantic

information to the OWL-S definitions by modifying the OWL-S process file (Figure

24).

 38

Figure 24 Editing OWL-S Process File

5.4.2 Context Menu Registration

Two kinds of preconditions can be created by Semantics Editor: unary preconditions

and binary preconditions. In order to make the user interface as easier as possible, a

means of using a context menu was implemented. Two actions for the context menu

were registered as an extension to popup menus in the configuration of Semantics

Editor plug-in. When the users want to create preconditions, they just need to right

click on the OWL-S editor area. Two extra options for precondition generation will be

popped up. The users can select generating skeletons of unary or binary preconditions

as shown in Figure 25 on their choice. After the users click on either ‘Generate Binary

Precondition Skeleton’ or ‘Generate Unary Precondition Skeleton’, the skeleton will

be generated and relevant texts will be inserted to the OWL-S process file at the

position of cursor in edit area.

 39

Figure 25 Preconditions Context Menu

5.4.3 Unary/Binary Preconditions Creation

Above operation only generates the skeletons of unary and binary preconditions. The

complete preconditions can be generated by dragging the related items from

semantics content outline view and dropping to the skeletons of preconditions. In this

project, the users need to drag the class predicates for unary preconditions and both

the class and property predicates for binary preconditions. These predicates can be

identified in properties edit area as described in section 5.3.4 Properties Editing.

5.4.4 Drop Target Adapter

In order to realize drag and drop function for preconditions generation, the OWL-S

editor should accept any text droppings. As objects have been already converted to

text data as described in section 5.3.2.3 Drag Operation, what OWL-S editor needs to

do is listening to any text drop operations. A drop target adapter class was

implemented to let the OWL-S editor listen to the text drop operations on OWL-S

editor. When the users drag an item from semantics content outline view and drop to

the OWL-S editor. This drop target adapter is activated. It will find out the current

position of user’s cursor and insert the text into the OWL-S process file.

5.5 JAVA2OWLS Conversion

As introduced in section 2.7.1 CODE, CODE uses Apache’s Java2WSDL tool and

CMU’s WSDL2OWL-S tool to achieve the generation of WSDL definitions and

 40

OWL-S definitions. This project reused this part of implementation from CODE.

A JAVA2OWLS converter was integrated with Semantics Editor. A menu was

registered to Eclipse IDE. When the users open the Java classes with Semantics Editor,

a menu as shown in Figure 26 can be found. By click on the menu option, the users

can activate JAVA2OWLS converter tool.

Figure 26 Java to OWL-S Converter Menu

The JAVA2OWLS converter is pretty simple to use. It will generate WSDL definitions

first and then convert WSDL definitions to OWL-S definitions. Four OWL-S files

will be generated (Figure 27). They are service, profile, process and grounding files.

In this project, the OWL-S process is used by OWL-S editor to create unary and

binary preconditions as it is the main file of OWL-S definitions.

Figure 27 JAVA2OWLS Converter

5.6 Co-operations between Editors

The Semantics Editor consists of a Javadoc editor, a XML editor, an OWL-S editor, a

 41

semantic outline view window and a property edit window. As a whole, editors have

to co-operate with each other to realize the traceability and drag and drop functions.

5.6.1 Tracing

By tracing the users can find out elements in OWL-S definitions which are bound to

the relevant terms identified in Javadoc. Section 5.3.2.2 Traceability only shows how

to perform tracing operations between Java classes and OWL-S definitions. Before

perform tracing, the links between Java classes and OWL-S definitions have to be

created first.

Creation of links is done by identifying association properties of concepts. Users have

to get the ID of the element in OWL-S where they want to create the link. Figure 28

shows an example of creating the link for an output process in OWL-S definitions.

The output process has already been bound to the ‘Person’ concept in previous

operations. So the link between Java classes and OWL-S definitions has to be created.

The output process has an ID of ‘Hotel_getPerson_getPersonReturn_OUT’. So what

users need to do to create the link is filling the ‘output’ property of that concept with

the value of this output process ID. Then the link between Java classes and OWL-S

definitions is created. Same operations can be applied to create the links for inputs

and preconditions. Filling the relevant properties the links will be created.

Figure 28 Create the Link

A listener is registered to semantics content outline view. As mentioned in section 4.3

User Interface Design, switching between tabs in edit area will not change the content

of semantics content outline view area. The semantics content outline view is the

visual presentation of the links between Java editor and OWL-S editor. So the listener

 42

can listen to selection operations happen in all editors in the edit area. The algorithm

of tracing operation is simple. Once a selection operation happens in the editor area,

the listener will capture the text content of the selection. It will look up the semantic

information stored in the XML file. If a matched text is found in the XML file, the

listener will find corresponding tree node in semantics content outline view and

highlight it. As IDs of processes are used to create the links, duplications can be

avoided. All editors can perform same operations. Thus the links between Java classes

and OWL-S definitions are created and tracing can be performed.

5.6.2 Drag and Drop

Drag and drop operation is a fast and easy to learn technique for users to perform

tasks. As mentioned in section 5.3.2.3 Drag Operation and 5.4.4 Drop Target Adapter,

the drag listener and drop adapter have been already registered to semantics content

outline view and OWL-S editor. The drag and drop operation can and only can be

performed between these two windows. Mis-operations can be avoided.

 43

Chapter 6 Evaluation

This chapter introduced the usability evaluation conducted to test the usability of

Semantics Editor. An analysis of user interface is presented based on the statistic of

data collected from post-test questionnaire. Finally some comments left by the users

are described and discussed.

6.1 Overview

Evaluation is a way of determining if a software product satisfies its requirements.

Evaluation can assess extent of system functionality, assess effect of interface on user

and identify specific problems. Usability test is a sort of tests for measuring

effectiveness, efficiency and satisfaction with which users accomplish tasks. Think

aloud [31] is a means of gathering data in usability tests. Users are asked to describe

what they are doing and why, what they think is happening etc while they are

performing tasks. One of the advantages is that it requires little expertise for testers.

Think aloud techniques can also provide a useful insight and can show how system is

actually used.

The main problems Semantics Editor addressed are retrieving and adding semantic

information from Javadoc to OWL-S definitions using an engineering point of view

and generating and visualizing the links between Java classes and OWL-S definitions.

So usability of the user interface of Semantics Editor is considered to be a main

evaluation aspect. In order to evaluate whether the Semantics Editor is efficient,

effective and satisfying for those who use it, a usability test was designed. The test

followed a standard usability test methodology. A collection of forms, checklist and

other useful documents was used for conducting usability tests and user interview.

Details can be found in Appendix A Usability Evaluation Documents. Think aloud

technique was applied to the whole test to gather the data. All conversations were

recorded for further analysis.

A total of five people attended the usability test. They are two Ph.D students from

KDEG group and three master students from Ubicom class. The tests were undertaken

in a quite room in Lloyd building in case noise distracted users and caused inveracity in

 44

the evaluation results.

6.2 Evaluation Approach

Users were provided a test document for them to read during the test. It contains a

pre-test questionnaire, an introduction to Semantics Editor, the scenario users were set,

three short tasks and a post-test questionnaire.

6.2.1 Pre-Test Questionnaire

A pre-test questionnaire was designed and used to gather users’ background

information. They were asked to explain their experiences using Eclipse IDE and

OWL-S definitions. This information was used to categorize user level in the further

analysis.

6.2.2 An Introduction to Semantics Editor

A brief written description about functions of Semantics Editor was presented to users

to let them get a brief idea on the tool itself as well as what they are going to do. Users

were asked to understand everything in the descriptions before they went to next steps.

The test will not continue if users have any questions.

6.2.3 The Scenario Setting

The users were supposed to be software engineers who work for a web service provider.

In order to provide better services to get more customers, they were required to develop

semantic web services based on existing web services. The architect found the

Semantics Editor is a very good tool to generate semantic web service definitions.

Semantics Editor was recommended to the software engineers to use.

6.2.4 Three Short Tasks

All use cases defined in Chapter three were split into a total of three short tasks for the

users to complete. For each task, there is an instruction to tell the user how to finish it.

The tasks were designed to allow users to have a full experience on all functions of

Semantics Editor. After completing these three short tasks, the users will go through all

functions of the tool.

When the users were using the tool to complete the tasks, the users were asked to

 45

describe what they are doing and why, what they think is happening etc. The

conversations were recorded whilst note taking was also used.

6.2.5 Post-Test questionnaire

A post-test questionnaire was designed and used to get the feedback after the test. Users

were asked to mark the tool for overall performance and for each use case. Marks were

used for further analysis. They were also asked to leave some comments for each step

the way user interface was designed. Also users can leave their suggestions on which

way the user interface can be improved.

6.3 Evaluation Results

6.3.1 Background Information Statistic

From the pre-test questionnaires, users’ background information is collected.

Background information has a huge influence on the accuracy of the evaluation

results. As Semantics Editor is an Eclipse plug-in and specially designed for software

engineers and generating semantic web services. The data for users’ experience on

both Eclipse IDE and OWL-S definitions is collected and shown in Figure 29 and

Figure 30.

10%

60%

30%

0 Year 0~2 Years >2 Years

Figure 29 Users' Experience on Eclipse IDE

Figure 29 shows that 60 percent of the users have less than two years experience on

 46

Eclipse IDE and 30 percent of the users even have more than two years experience.

Only 10 percent of the users did not use the Eclipse IDE as their development

environment before. The more experience on Eclipse IDE the less time will be spent

getting familiar with the user interface of Semantics Editor. Then the users can focus

more on using the tool itself.

40%

40%

20%

Little Moderate Expert

Figure 30 Users' Experience on OWL-S

Figure 30 shows that 80 percent of the users have experience on OWL-S definitions.

This is important because only feedbacks from the users who are familiar with

OWL-S definitions are useful to evaluate the design of each use case. These

feedbacks can be used to improve the interaction design and the way how the tool

works

The background information collected from users shown in Figure 29 and Figure 30

ensures that the results of evaluation tests conducted from selected users are trustable,

valuable and significant.

6.3.2 Results and Analysis

A post-test questionnaire is used to be filled in by all the users. The data is collected and

presented below.

Figure 31 shows that the overall satisfaction on user interface is moderate. A total of 60

percent of the users thought Semantics Editor is easy to use. 20 percent among them

even thought it is very easy to use. Only 10 percent of the users thought the tool is very

difficult to use. This means the overall user interface design of Semantics Editor is

 47

successful.

20%

40%

20%

10%

10%

Very Easy Easy Moderate Difficult Very Difficult

Figure 31 Overall Performance

A table of the usability statistic is shown below (Table 1). The data is collected by

asking the users to mark the design of each use case. The marks shown below are the

average marks got for each use case of Semantics editor. Five points is the full mark.

Table 1 Use Case Statistic

Function Marks

A. Identify a concept from Javadoc 3.2

B. Identify an association property of a concept 2.4

C. Bind a concept to OWL-S input/output 3.8

D. Create class precondition (Unary predicate) 3.8

E. Create property precondition (Binary predicate) 3.8

F. Tracing between Java interface and OWL-S definition 4.2

A chart diagram of above statistic table is created to show the results. Figure 32 shows

 48

that the way of identifying an association property of a concept is almost not satisfied

by all users. It got the lowest mark 2.4. This is because Semantics Editor at the moment

only shows how the tool works and the round trip behind it. As it is only a prototype

version, users spent a long time understanding the user interface. For example, users

spent a long understanding fields that can be edit in property edit window. It has to

admit that current user interface of Semantics Editor does not present the properties

editing function perfectly. Explanations have to be made first before the users start to

use the tool to reduce the confusion. A more significant way of identifying association

properties should be designed. Also users were tired of typing the texts for association

properties repeatedly. The user interface needs to be well designed and improved in the

future versions. Improvements are discussed in section 7.2 Further Work.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

A B C D E F

Marks

Figure 32 Use Case Performance

It was also found that most of the users showed interest in the traceability provided by

the tool. It got the highest mark 4.2. Traceability is a pretty import part in the whole

project. Most of the users thought it is a very good function and it will be useful in the

OWL-S definitions editing as well as Java coding.

6.3.3 User Comments

Users were encouraged to leave their comments as this is direct feedback from end

users and comments will be useful to develop a more user friendly user interface in the

future.

 49

6.3.3.1 More Support

The Semantics Editor that was used in evaluation test is just a prototype version. So

some users felt that manual text entry reduces the benefit of some of the features since it

no longer feels like the IDE is supporting the users. It feels like simply using a text

editor.

6.3.3.2 More Automation

More automation should be built in with the tool. For example, auto suggestion of

methods that are associated with concepts would be helpful. Perhaps the use of the class

view (tree) would aid in this (dragging between class view and semantics outline).

Auto suggestion of methods since Javadoc is associated with a specific method when

user is identifying concepts.

6.3.3.3 More Structured

Currently identifying a concept is done by using adding a ‘#’ symbol. It will be more

sensible to use something more in line with Javadoc syntax e.g. ‘@concept’ would be

better.

A more structured workflow should also be applied. Perhaps if all or most of the

concepts were defined first, with the IDE assisting with method associations, then the

later stages (adding preconditions) would be easier.

 50

Chapter 7 Conclusions and Further Work

This chapter concludes the dissertation and work involved. Further development on the

tool is discussed and described.

7.1 Conclusions

This dissertation involved the state of the art study, an investigation on problems

around semantics web service definitions area, an analysis to the problems presented

and finally a complete solution was provided to solve the problems.

Different from other approaches which aims to use automation processes to learn

ontologies and add semantic meanings to WSDL definitions. This work takes another

approach which starts from an engineering perspective to generate semantic web

services.

A complete solution was provided. An Eclipse plug-in called Semantics Editor was

designed and implemented for retrieving and adding the semantics information from

Javadoc which considered as a kind of source to OWL-S definitions. In addition a link

between Java interfaces and OWL-S definitions can be generated and visualized by

using the Semantics Editor. A data model was designed and can be easily extended

and reused according to the concept of model driven architecture.

In conclusion, Semantics Editor is a tool which starts from an engineering point of

view to help software engineers add the missing and extra semantics to OWL-S

definitions. It also generates and visualizes the links between Java interfaces and

OWL-S definitions to enable traceability and maintainability.

Semantics Editor provides the following functions:

 Identifying a concept from Javadoc

 Identifying an association property between concepts

 Binding a concept to OWL-S input/output

 Creating class precondition (unary)

 Creating properties precondition (binary)

 51

 Converting Java interfaces to OWL-S definitions

 Tracing between Java interfaces and OWL-S definitions

7.2 Further Work

While the research results were quite successful and most of the questions

posed by the research objectives have been answered, this project still has a

big potential for further development.

7.2.1 Full OWL-S Editor Support

At the moment, Semantics Editor only supports creating unary and binary

preconditions. But in fact there are more elements in OWL-S definitions e.g. effects,

complex preconditions etc. A full OWL-S editor support should be provided. But there

is also a problem among the OWL-S community itself. Currently they have not decided

which rule language to be the standard language to be supported by OWL-S. Maybe in

the next release, this will be decided. Then a full OWL-S editor support can be built into

the existing framework of Semantics Editor.

The ideal OWL-S editor should providing following functions:

 Syntax assistance: Syntax assistance can help the users get rid of remembering

the syntax of elements in OWL-S definitions. With the help of IDE, development

period will be shortened and efficiency of development will be improved.

 Semantics and syntax validation: Validation is important to ensure OWL-S

definitions are correct and consistent. An example of validation can be: validate if

a concept referred in the OWL-S definitions is exist and correct.

 Visualization of contents: At the moment, when creating the links between Java

classes and OWL-S definitions, the tool requires users to find out where the

relevant inputs, outputs and preconditions are in OWL-S definitions first. Some

users thought it is a little bit difficult to find them rapidly as OWL-S definitions

are huge and complex. It is better to visualize the content of the OWL-S

definitions, e.g. use a tree structured view, so that the elements can be found

easily.

 Full preconditions generation support: Skeletons of preconditions mentioned in

 52

section 5.4.2 Context Menu Registration are hard coded at the moment. It is not a

very good way of implementation. If more kinds of preconditions need to be

defined in the future, the code of Semantics Editor has to be modified. It will be

better to get skeletons of preconditions from text files so that users can customize

the skeletons by creating text files.

7.2.2 Integrating with an OWL Editor

Due to the time and resource problems, the current version of Semantics Editor is in a

prototype stage. It does provide a complete solution, but this solution is text based. For

example, the users have to type in the texts to identify association properties. This

meant that some of the users could not understand what it is they were doing in the

usability evaluation. An OWL editor should be integrated with the Semantics Editor to

support a more user friendly graphical user interface. For example, when identifying a

concept in Javadoc, instead of manually typing the text users can simply drag the

concept from an existing OWL ontology in the OWL editor and drop this into Javadoc

editor. And users can also create their own ontology with the help of OWL editor for the

web service they developed. Integrating with an OWL editor will make Semantics

Editor easier to use and make the user interface meaningful.

7.2.3 Working with Multi-source of Semantic Information

There is a logistic issue behind this project is that if software engineers are lazy and do

not leave a very good documentation in the Javadoc. The tool seems to be useless. As a

pre-requisition, Semantics Editor requires a very good documentation to be used as a

sort of source for semantic information.

As mentioned earlier, semantic information can be also obtained from other sources e.g.

XML, UML etc and a lot of attempts have been done to retrieve semantic information

from a multi-source of artifacts. As discussed in section 4.1 Architecture Design,

starting from an engineering perspective, the Semantics Editor can be extended by

adding a XML editor, a UML editor etc to make different kinds of sources be available

for obtaining semantic information with the benefit of existing framework.

7.2.4 Integrating with an OWL-S Discovery and Execution Platform

An OWL-S discovery and execution platform can be integrated with the tool to make

the tool become a semantic web services development and execution environment.

 53

Then this environment will cover the whole development and execution processes

from web services development, to semantic web services generation, discovery and

execution.

A decentralized discovery and execution platform [26] for composite semantic web

services has been developed in Java last year by Dominik Roblek. Therefore a typical

further work can be done is the integration of Dominik’s platform.

 54

References

[1] D Martin, M Burstein, J Hobbs, O Lassila, D McDermott, S Mcllraith, S Narayanan, M

Paolucci, B Parsia, T Payne, E Sirin, N Srinivasan, K Sycara, “OWL-S: Semantic

Markup for Web Services”, W3C Member Submission 22 November 2004, W3C, available

at http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

[2] E Christensen, F Curbera, G Meredith, S Weerawarana, “Web Services Description

Language (WSDL) 1.1”, W3C Note 15 March 2001, W3C, available at

http://www.w3.org/TR/2001/NOTE-wsdl-20010315 /.

[3] M Paolucci, N Srinivasan, K Sycara, T Nishimura, “Towards a Semantic Choreography

of Web Services: from WSDL to DAML-S”, 2003, The Robotics Institute, Carnegie

Mellon University, USA, available at

http://www-cgi.cs.cmu.edu/~softagents/papers/isws_ieee_03.pdf.

[4] KA Gabrick, DB Weiss, "J2EE and XML Development", 2002, Manning Publications.

[5] Semantic Web Layers, available at

http://www.w3.org/2006/Talks/1023-sb-W3CTechSemWeb/Overview.html#(19).

[6] A Basic Ontology, available at

http://en.wikipedia.org/wiki/Image:OntologyBasic.png.

[7] MK Smith, C Welty, DL McGuninness, "OWL Web Ontology Language", W3C

Recommendation 10 February 2004, W3C, available at

http://www.w3.org/TR/2004/REC-owl-guide-20040210/.

[8] I Horrocks, PF Patel-Schneider, H Boley, S Tabet, B Grosof, M Dean, "SWRL: A

Semantic Web Rule Language Combining OWL and RuleML", W3C Member Submission

21 May 2004, W3C, available at

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[9] W3C Working Group, “Web Services Architecture Requirements”, Note.Technical report,

W3C.

[10] Web Service Architecture, available at

http://en.wikipedia.org/wiki/Image:Webservices.png.

[11] A Ankolekar, D Martin, D McGuninness, S McIlraith, M Paolucci, B Parsia, "OWL-S'

Relationship to Selected Other Technologies ", 2004, W3C, available at

 55

http://en.wikipedia.org/wiki/Image:OntologyBasic.png

http://www.daml.org/services/owl-s/1.1/related.html#wsdl.

[12] A Ankolekar, D Martin, D McGuninness, S McIlraith, M Paolucci, B Parsia, "OWL-S'

Relationship to Selected Other Technologies ", 2004, W3C, available at

http://www.daml.org/services/owl-s/1.1/related.html#soap.

[13] A Ankolekar, D Martin, D McGuninness, S McIlraith, M Paolucci, B Parsia, "OWL-S'

Relationship to Selected Other Technologies ", 2004, W3C, available at

http://www.daml.org/services/owl-s/1.1/related.html#uddi.

[14] R Akkiraju, J Farrell, J Miller, M Nagarajan, MT Schmidt, A Sheth, K Verma, "Web

Service Semantics - WSDL-S", W3C Member Submission 7 November 2005, W3C,

available at http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/.

[15] Eclipse, available at http://www.eclipse.org/.

[16] Javadoc, available at http://java.sun.com/j2se/javadoc/.

[17] Object Management Group, Technical Guide to Model Driven Architecture: The MDA

Guide v1.0.1”, 2003, OMG, available at http://www.omg.org/docs/omg/03-06-01.pdf.

[18] N Srinivasan, M Paolucci, K Sycara, CODE: A Development Environment for OWL-S

Web services, 3rd International Semantic Web Conference (ISWC2004).

[19] K Bontcheva, M Sabou, "Learning Ontologies from Software Artifacts: Exploring and

Combining Multiple Sources", Workshop: 2nd International Workshop on Semantic Web

Enabled Software Engineering (SWESE 2006), International Semantic Web Conference

(ISWC'06).

[20] Z Duo, L Juan-Zi, X bin, "Web service annotation using ontology mapping",

Service-Oriented System Engineering, 2005. SOSE 2005. IEEE International Workshop.

[21] Apache, "Axis User's Guide Version 1.2", 2005, available at

http://ws.apache.org/axis/java/user-guide.html#Java2WSDLBuildingWSDLFrom

Java.

[22] N Srinivasan, M Paolucci, K Sycara, "Adding OWL-S to UDDI, implementation and

throughput", To appear in proceeding of Semantic Web Service and Web Process

Composition 2004.

[23] Eclipse for RCP/Plug-in Developers, available at

http://www.eclipse.org/downloads/moreinfo/rcp.php

[24] Java SE Development Kit (JDK) version 6 and Java Runtime Environment (JRE) version

6, available at http://java.sun.com/javase/6/.

 56

http://www.omg.org/docs/omg/03-06-01.pdf

[25] Eclipse Europa, available at http://www.eclipse.org/europa/.

[26] D Roblek,”Decentralized Discovery and Execution for Composite Semantic Web

Services”, 2006, Department of Computer Science Technical Report, University of

Dublin, Trinity College.

[27] Unified Modeling Language (UML), available at

http://en.wikipedia.org/wiki/Unified_Modeling_Language/.

[28] Extensible Markup Language (XML), available at http://en.wikipedia.org/wiki/XML/.

[29] DOM Interest Group, "Document Object Model (DOM)", 2005, W3C, available at

http://www.w3.org/DOM/.

[30] Sun, "Java API for XML Processing (JAXP)", available at

http://java.sun.com/webservices/jaxp/index.jsp.

[31] KA Ericsson, HA Simon,“Protocol Analysis: Verbal Reports As Data”, 1992, NetLibrary.

 57

http://en.wikipedia.org/wiki/XML/
http://java.sun.com/webservices/jaxp/index.jsp

Appendices

Appendix A Usability Evaluation Documents

The Usability Process

Usability evaluations seek to determine if the people who use the product can do so

quickly and easily to accomplish their own tasks. Usability applies to every aspect of

the product in which a person interacts, such as hardware, software, menus, icons,

messages, documentation, and help. Evaluations are designed to solicit feedback from

participants, focusing on areas of concern identified by our customers. An evaluation

typically involves several participants, each of whom represents a typical user.

Once all evaluation sessions are completed, I will compile the feedback received from

each participant, along with the notes.

Do you have any questions?

 58

Pre-Test Questionnaire

This questionnaire is designed to gather information about your experience on Eclipse

IDE and semantic web service. Please circle the number that most clearly expresses

how you feel about a particular statement.

1. How many years have been using Eclipse IDE:

A. 0

B. 0~2

C. More than 2 years

2. Do you like to use Eclipse as your main development environment:

A. Yes

B. No

C. I don’t care.

3. How much do you know about semantic web service:

A. Expert

B. Moderate

C. Little

4. How much do you know about OWL-S:

A. Expert

B. Moderate

C. Little

 59

Semantics Editor Overview

The Semantics Editor allows individuals to generate semantic web service definition

from Java code as well as Java doc. Also the tool helps the user maintaining the link

between the Java class and semantic web service definition. The user can trace the

definitions that specified with the help of the tool through out Java class and semantic

web service definition.

What you can do with the tool?

 Identify a concept from Javadoc

 Identify an association property of a concept

 Bind a concept to OWL-S input/output

 Create class precondition (Unary predicate)

 Create property precondition (Binary predicate)

 Tracing the extra semantics you have added between Java class and OWL-S file

Do you have any questions?

 60

The Setting

You are a software engineer. The company you work for is a service provider which is

developing a simple hotel reservation system. The architect required you to be able to

generate semantic web service definition (OWL-S) for the final product.

The main classes to look at :

 -com.oracle.demo.Hotel.java (contains operations to do the reservations).

 -com.oracle.demo.HotelAdmin.java (contains operations to administer the

database).

Do you have any questions?

 61

Task 1

You are writing the Java code. During the coding process, you have added some extra

semantic information in the form of Javadoc. Now you are going to:

1. Open the Java class with Semantics Editor

2. Identify a concept from Javadoc

3. Bind the concept with a specific method

4. Trace the concept you identified inside the Javadoc

Instructions:

1. To open Java file with Semantics Editor:

a) right click on the filename open with Semantics Editor

2. To identify a concept from Javadoc

a) add a ‘#’ symbol right before the term.

b) save and you will see the term appears in the outline view window

3. To bind the concept with a specific method,:

a) select the term in the outline view window

b) edit the value of Method in property view window

4. To perform tracing, simply click on the term in the outline view window

Note: if the outline and property view windows are not active, you can open them from

Menu: Window show view

 62

Task 2

After having generated OWL-S semantic web service definition using the existing tool,

you are now free to bind the input/output with the concept you identified inside

Javadoc.

1. Open the OWL-S Process file using the Semantics Editor

2. Bind the input/output with the concept

3. Trace the input/output inside OWL-S edit window

Instructions:

1. To open the OWL-S Process file using the Semantics Editor

a) click on ‘OWL-S Process’ tab right below the edit area

b) click on open button and find your OWL-S Process file

c) click on OK button to open

2. To bind the input/ouput with the concept

a) copy the ID of input/output in the OWL-S Process file to the clipboard

b) select the concept in outline view window

c) paste the value to input/output in property view window

3. To perform tracing

a) simply double click on or select ID of input/output in OWL-S Process file

b) you will see the associated concept highlighted in outline view window

 63

Task 3

Another important part of semantic web service definition is precondition. When

converting from WSDL to OWL-S, this information is normally lost and can not be

recovered. You are going to recover this information and generate the links.

1. Identify unary/binary predicate

2. Generate unary/binary precondition

3. Bind the precondition with the concept

4. Trace the precondition inside OWL-S edit window

Instructions:

1. To identify unary/binary predicate

a) click on the concept in outline window

b) fill in the class/property value (if necessary) in property view window

2. To generate unary/binary precondition

a) copy the ID of certain process which has a precondition missing

b) go to an appropriate position (inside AtomicProcess tag) and right click

c) select either unary or binary precondition generation command

d) drag over the unary/binary predicate from outline view window to the appropriate

position inside edit window

3. To bind the precondition with the concept

a) copy the ID of precondition in the OWL-S Process file to the clipboard

b) select the concept in outline view window

c) paste the value to precondition in property view window

 64

4. To perform tracing

a) simply double click on or select ID of precondition in OWL-S Process file

b) you will see the associated concept highlighted in outline view window

 65

Post-Test Questionnaire

This questionnaire is designed to tell us how you feel about Semantics Editor you used

today. Please circle the number that most clearly expresses how you feel about a

particular statement. Write in any comments you have below each question.

1. Using the Semantics Editor was:

1 2 3 4 5

Very Difficult Difficult Neither Easy

Nor Difficult

Easy Very Easy

 Identify a concept from Javadoc

1 2 3 4 5

 Identify an association property of a concept

1 2 3 4 5

 Bind a concept to OWL-S input/output

1 2 3 4 5

 Create class precondition (Unary predicate)

1 2 3 4 5

 Create property precondition (Binary predicate)

1 2 3 4 5

 Tracing the extra semantics you have added between Java class and OWL-S file

1 2 3 4 5

 66

Comment:

2. Is the tool helpful?

1 2 3 4 5

Very Useless Useless Neither Helpful

Nor Helpless

Helpful Very Helpful

 Identify a concept from Javadoc

1 2 3 4 5

 Identify an association property of a concept

1 2 3 4 5

 Bind a concept to OWL-S input/output

1 2 3 4 5

 Create class precondition (Unary predicate)

1 2 3 4 5

 Create property precondition (Binary predicate)

1 2 3 4 5

 Tracing the extra semantics you have added between Java class and OWL-S file

1 2 3 4 5

 67

Comment:

3. If I could change the Semantics Editor program I would:

 68

Appendix B Detailed Class Diagram

Figure 33 Detailed Class Diagram

 69

 70

Appendix C Commonly Used Abbreviation

OWL-S Web Ontology Language for Services

WSDL Web Service Description Language

Eclipse SDK Eclipse Software Development Kit

Eclipse IDE Eclipse Integrated Development Environment

UML Unified Modeling Language

XML Extensible Markup Language

API Application Programming Interface

	DECLARATION
	PERMISSION TO LEND AND/OR COPY
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	TABLE OF FIGURES
	LIST OF TABLES
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Dissertation Roadmap

	Chapter 2 State of the Art
	2.1 Semantic Web
	2.1.1 Introduction
	2.1.2 Ontology
	2.1.3 OWL
	2.1.4 SWRL

	2.2 Web Service
	2.2.1 Traditional Web Service
	2.2.2 Semantic Web Service
	2.2.2.1 OWL-S
	2.2.2.2 WSDL-S

	2.2.3 WSDL to OWL-S Conversion

	2.4 Eclipse
	2.5 Javadoc
	2.6 MDA
	2.7 Related Work
	2.7.1 CODE
	2.7.2 Learning Ontologies from Software Artifacts
	2.7.3 Web Service Annotation Using Ontology Mapping

	Chapter 3 Requirements and Analysis
	3.1 Requirements
	3.2 Analysis
	3.2.1 Identifying a Concept from Javadoc
	3.2.2 Identifying Association Properties between Concepts
	3.2.3 Binding a Concept to OWL-S Input/Output
	3.2.4 Creating Unary and Binary Preconditions
	3.2.5 Tracing between Java Interfaces and OWL-S Definitions

	Chapter 4 Design
	4.1 Architecture Design
	4.2 Data Model Design
	4.3 User Interface Design
	4.4 Detailed Design
	4.4.1 Use Case Design
	4.4.2 Work Flow Design
	4.4.3 Packages Design
	4.4.4 Editors Design
	4.4.5 Javadoc Editor
	4.4.6 OWL-S Editor

	Chapter 5 Implementation
	5.1 Technologies Used
	5.2 Data Model Implementation
	5.3 Javadoc Editor
	5.3.1 Section Parser
	5.3.2 Semantics Content Outline View
	5.3.2.1 Tree Structured View
	5.3.2.2 Traceability
	5.3.2.3 Drag Operation

	5.3.3 Semantic Information Reading and Writing
	5.3.4 Properties Editing

	5.4 OWL-S Editor
	5.4.1 Open OWL-S Process File
	5.4.2 Context Menu Registration
	5.4.3 Unary/Binary Preconditions Creation
	5.4.4 Drop Target Adapter

	5.5 JAVA2OWLS Conversion
	5.6 Co-operations between Editors
	5.6.1 Tracing
	5.6.2 Drag and Drop

	Chapter 6 Evaluation
	6.1 Overview
	6.2 Evaluation Approach
	6.2.1 Pre-Test Questionnaire
	6.2.2 An Introduction to Semantics Editor
	6.2.3 The Scenario Setting
	6.2.4 Three Short Tasks
	6.2.5 Post-Test questionnaire

	6.3 Evaluation Results
	6.3.1 Background Information Statistic
	6.3.2 Results and Analysis
	6.3.3 User Comments
	6.3.3.1 More Support
	6.3.3.2 More Automation
	6.3.3.3 More Structured

	Chapter 7 Conclusions and Further Work
	7.1 Conclusions
	7.2 Further Work
	7.2.1 Full OWL-S Editor Support
	7.2.2 Integrating with an OWL Editor
	7.2.3 Working with Multi-source of Semantic Information
	7.2.4 Integrating with an OWL-S Discovery and Execution Platform

	References
	Appendices
	Appendix A Usability Evaluation Documents
	Appendix B Detailed Class Diagram
	Appendix C Commonly Used Abbreviation

