

ABC:

Anonymous routing Based on

Characteristics protocol

by

Yang Guoxian

A dissertation submitted to the University of Dublin,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 2007

ii

DECLARATION

I declare that the work described in this dissertation is, except where

otherwise stated, entirely my own work and has not been submitted as

an exercise for a degree at this or any other university.

 Yang Guoxian

 September 14, 2007

iii

PERMISSION TO LEND AND/OR COPY

I agree that Trinity College Library may lend or copy this dissertation

upon request.

 Yang Guoxian

 September 14, 2007

iv

ACKNOWLEDGEMENTS

I would like to thank my project supervisor, Stefan Weber, for his

enormous help and for our enjoyable meetings during this year. To all

my family and friends for support everyday. Finally, to the UbiCom

people, for making this a most memorable year.

 YANG GUOXIAN

.

v

ABSTRACT

Ad hoc networks are a type of wireless networks that are characterized through the

absence of infrastructure. The nodes utilise radio signals for one-hop communication and

leverage routing algorithms to achieve multi-hop communication within a network. For the

last few years, wireless communication devices have seen a sharp development in both

capacity and popularization. Correspondingly, hardware development catalyzed the rise of ad

hoc applications. Wireless internet access, ad hoc data sharing, wireless sensor network and

etc are very good examples.

However, the nature of ad hoc networks introduces new challenges for end-to-end

communications. Because of the high dynamism of ad hoc networks, information of a node

may be lost in a short time. Therefore, a routing protocol that does not rely on definite

knowledge of destinations is needed.

In this project, we proposed a novel routing protocol called “anonymous routing based

on characteristics” (ABC) that does not employ IP addresses or any other type of ID but uses

characteristics of destinations to route packets. ABC leverages an analogy of coloured water

stream in real world and forwards packets to the direction of a node that contains requested

characteristics.

We have implemented ABC in OPNET modeler and performed evaluation on the

features and performance of ABC to demonstrate the feasibility our protocol.

vi

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION... 1
1.1. Background ... 1
1.2 Motivations ...3
1.3 Key points of ABC ...3

CHAPTER 2: RELATED WORK ...5
2.1 Routing Protocol ...5

2.1.1 Optimized Link State Routing Protocol: ...5
2.1.2 Termite ...6

2.2 Data-oriented Protocols..8
2.2.1 Service Discovery for Mobile Ad hoc Networks ..8
2.2.2 Content-Based Routing Protocol ...9

2.3 OPNET: A network simulator...9

CHAPTER 3: DESIGN.. 12
3.1 Overview.. 12
3.2 Terminology .. 13
3.3 Basic Design .. 14

3.3.1 Characteristics Modelling .. 14
3.3.2 Characteristic abstraction and synchronization.. 16
3.3.3 Header Design and Characteristic Table ... 16
3.3.4 Characteristics Flow... 18
3.3.5 Characteristics Request and Reply ... 20
3.3.6 An Example of Characteristic Flow and Request 21
3.3.7 Shortcoming of Basic Design ...23

3.4 Advanced Design...24
3.4.1 Initiatives and Characteristic Modelling ...24
3.4.2 Scenario of Advanced Design ..25
3.4.3 Characteristic Table ...25
3.4.4 Details of Functionality..26
3.4.5 Flow Computation..29

CHAPTER 4: IMPLEMENTATION ...32
4.1 Overview..32
4.2 Data Structure...33

4.2.1 Tables in ABC...33
4.2.2 ABC Packets ...36

4.3 State Transition of ABC ..37
4.4 Implementation of Key Functions..38

vii

4.5 Interfaces...39

CHAPTER 5: EVALUATION...42
5.1 Features of ABC...42

5.1.1 Comparison to Data-oriented protocols..44
5.2 Numerical Evaluation ...44

5.2.1 Experiments Design...44
5.2.2 Performance Analysis ..47

5.3 Sample Scenarios ..53
5.3.1 Sensor Query..53
5.3.2 Battle Field Coordination...53

CHAPTER 6: CONCLUSIONS ..55
6.1 Contributions ..55
6.2 Future work...56

CHAPTER 7: REFERENCES... 57

viii

LIST OF FIGURES

Figure 2-1: TCP/IP stack implemented in OPNET..10
Figure 3-1: Color stream .. 13
Figure 3-2: Characteristics model.. 15
Figure 3-3: Fixed header of ABC packet .. 17
Figure 3-4: Optional header – Hello packet.. 17
Figure 3-5: Optional header – Request packet.. 17
Figure 3-6: Optional header – Reply packet ... 17
Figure 3-7: Characteristics update in basic design..19
Figure 3-8: DNS Query in ABC ..21
Figure 3-9: Local table of S ... 22
Figure 3-10: Which to choose, distance or capacity? ... 23
Figure 3-11: Advanced characteristic model... 24
Figure 3-12: Characteristic Flow in Advanced Design ..25
Figure 3-13: Characteristic update in advanced design ... 28
Figure 3-14: Stable Flow Computation... 30
Figure 4-1: Node model of ABC .. 33
Figure 4-2: Characteristic table operation...35
Figure 4-3: STD of ABC routing process .. 38
Figure 5-1: Topology used in experiments...45
Figure 5-2: Average control overhead ...47
Figure 5-3: Advanced vs. basic design .. 48
Figure 5-4: Success rate on RHT .. 49
Figure 5-5: Latency on RHT.. 50
Figure 5-6: Stable vs. unstable...52
Figure 5-7: Battle field coordination..54

ix

LIST OF TABLES

Table 3-1: Characteristics encoding... 15
Table 4-1: Trace block in ABC..41
Table 5-1: Comparison of data-oriented protocols... 44
Table 5-2: Protocol configuration... 46
Table 5-3: Evaluation Matrix .. 46

1

Chapter 1: Introduction

Anonymous routing based on characteristics protocol (ABC) is a proactive distance

vector routing protocol without any assumption of underlying protocol. ABC does not employ

IP address or any other type of ID to route packets, though an ID, in this paper a MAC

address, is employed in one-hop communication between neighbours. In this chapter, we

will first introduce the general challenges and issues in ad hoc networks and analyse the

problems of current routing protocols. Based on this analysis, we introduce the basic concept

and philosophy of ABC.

1.1 Background

Ad hoc networks are a type of wireless networks that are characterized through the

absence of infrastructure. The nodes utilise radio signals for one-hop communication and

leverage routing algorithms to achieve multi-hop communication within a network. Usually

ad hoc networks connect to wired networks (i.e. internet) through gateway nodes.

For the last few years, wireless communication devices have seen a sharp development

in both capacity and popularization. Correspondingly, hardware development catalyzed the

rise of ad hoc applications. Wireless internet access, ad hoc data sharing, wireless sensor

network and etc are very good examples.

However, the nature of ad hoc networks and the requirements of applications impose

new challenges which traditional communication solutions for wired networks can not meet.

• Resources constrains: In ad hoc networks, the transmission range and

bandwidth of individual nodes are very limited. The capacity of mobile device is very

limited compared with that of traditional workstations.

• High diversity of mobile devices: Compared with wired communication,

wireless ad hoc communication highly depends on the workstation itself. However,

heterogeneous devices differ in characteristics such as storage capacity, internet

access, processing ability, mobility, and power capacity, etc.

• Dynamic topology: The mobility of devices leads to changes in network topology.

Compared to fixed wired communication, frequent path breaks and stale routing

information are major issues for end-to-end communication in ad hoc networks.

2

• Wireless communication: Due to the nature of the wireless medium, one-hop

communication experiences a high rate of packet collisions and loss. Exposed

terminal and hidden terminal problems are also known to be a challenge in a

wireless environment.

• Security and privacy: High distributed topology and wireless communication of

ad hoc networks impose security and privacy challenge to ad hoc applications.

Limited capacity of mobile devices accents the difficulty of protection

The requirement for a routing protocol in ad hoc network is to acquire the route

information to a given destination node or a set of destination nodes efficiently. Generally,

“efficiency” here means the following:

• Minimum route acquisition delay: The delay for the acquisition of a route

should be as small as possible because the topology of a network may change quickly

and short delays provide precise information which lead to better performance for

applications.

• Optimum route: The route acquired should be a valid route toward the

destination and achieve an optimization in one of the following aspects: Hop counts,

end to end delay or bandwidth. Further more, the routing protocol should provide

certain level Quality of Service (QoS) support.

• Minimum control overhead: To satisfy the first two criterions, a routing

protocol needs to exchange information between network nodes in addition to

application data. This additional information is called control overhead. However,

due the scarce bandwidth of ad hoc networks, the control overhead should be as

small as possible and achieve a best balance with the requirement above.

• Autonomous and distributed: Central control in ad hoc network introduces

large amount of control overhead and lack of flexibility. So, nodes should be able to

operate in a fully distributed manner.

• Application-oriented: “One size doesn’t fit all”. Even there are requirements for

each layer of ISO-OSI model, taking specific application requirements into the

consideration of routing protocol will benefit.

• Scalability: A routing protocol in ad hoc network should be able work extend to

large network as the density of mobile devices in an ad hoc network may be large.

3

1.2 Motivations

Current routing protocols utilize IP addresses to distinguish nodes in the network.

However, because of the high dynamism of ad hoc networks: Nodes may join or leave the

network very frequently, it makes not so much sense to look for a specific IP address but a

node that satisfies some requirements or provides certain services. Moreover, the assignment

of IP address in ad hoc network is not completely distributed. IP address of a recently joined

node may be assigned through a DHCP server. For stateless address configuration in IPv6,

where assignment is distributed, extra overhead is introduced.

Current research that can retrieve knowledge about nodes in an ad hoc network includes

service discovery, which is built upon IP layer, and content-based network, which can be

independent from underlying protocol. Most proposed protocols in both approaches are

implemented at middleware or application layer. They create large amount of overhead in ad

hoc network where bandwidth is very limited.

A network routing protocol that addresses the problem is needed. This protocol should

be light weight compared with service discovery and content-based routing protocol and

should not depend on IP layer. Instead, it should able to cooperate with IP without extra

configuration.

1.3 Key points of ABC

To meet the aforementioned challenge and requirement, we introduce a proactive

distance vector routing protocol based on characteristics rather than IP address. Each node

in ABC network periodically spread information about its characteristics and the

characteristics it hears from other nodes to its neighbours. The characteristics here could be:

• Service from application layer: Such as internet access, printing.

• Underlying characteristics of ad hoc devices: Such as CPU capacity, storage.

• IP address: This makes cooperation between IP and ABC easily.

A characteristic in an ad hoc network does not have to be unique. A node could possess

multiple characteristics while same characteristic may originate from multiple source nodes.

To achieve this, we introduce concepts of characteristic abstraction and sequence number

synchronization in basic design. In advanced design, we propose a numerical approach to

improve the performance of ABC.

4

With characteristics information disseminated throughout a network, packets that are

destined for a characteristic are forwarded to direction biased to one or multiple source

nodes.

5

Chapter 2: Related Work

2.1 Routing Protocol

General routing protocols retrieve route information and forward data packet along the

retrieved path to a specific node. They can be broken into three major categories:

• Proactive: Topology information is disseminated through an ad hoc network

periodically. All possible paths are maintained.

• Reactive: A route between a source and a destination is established on-demand in

reactive routing protocol. It creates small control overhead but experiences more

route acquisition delay.

• Hybrid: Combining the characteristics of proactive and reactive protocols, a hybrid

routing protocol performs proactive routing within multiple small regions and

performs reactive routing in a whole network.

There is no Holy Grail in ad hoc routing. Depending on node density, mobility and

applications, a routing protocol performs different. Generally, proactive routing protocols

experience a short route acquisition delay and react on topology changes well. However, a

relatively large amount of control information is introduced. Existing proactive routing

protocols focus on minimizing the control overhead as well as retaining the performance

advantage against reactive routing protocols. In this section, we examine two proactive

routing protocols as ABC is a proactive routing protocol.

2.1.1 Optimized Link State Routing Protocol:

OLSR is a proactive routing protocol. Due to the proactive nature, OLSR excels in route

acquisition delay and thus is change tolerant of network topology. Scalability and reduced

control overhead are achieved by introducing an optimized flooding control message.

6

Generally, routing protocols, link state or distance vector, use control messages to collect

and distribute topology information of the network in order to compute the optimized path

and to forward the data packets between source and destination nodes. OLSR, on the other

hand, uses control messages (HELLO message) for the efficiency of distribution of Topology

Control messages (TC messages), which are then used for forwarding of data packets. This is

like “second derivative” in mathematics term, if we compare control information of a packet

distribution to derivative of distribution function. Using the “second derivative” control

message, OLSR distribute the topology information in an optimized way.

In OLSR, neighbour nodes exchange HELLO messages, thus node can gather

information about its one-hop neighbours and two-hop neighbours. A set of symmetric one-

hop neighbour nodes, note as Multiple Point Relay (MPRs), are then selected such that all

the two hop neighbours are covered by neighbours of MPRs. The node itself is called MPRs

Selector. Node is only responsible for forwarding packets from its MPRs Selectors, and will

periodically spread the existence of its MPRs Selectors. This neighbour sensing and topology

information flooding scheme eliminates the duplicate of control information in the network

and forms the core function of OLSR. In optional design, jittering and piggybacking will

improve the performance of OLSR.

OLSR is very well suited for large and dense network. It generates more overhead

compared with general reactive routing protocol, which in turn gains robustness and reacts

quickly against the topology transformation.

2.1.2 Termite

Termite is a biologically inspired ad hoc routing protocol leveraging swarm intelligence

theory. The algorithm is analogous to the behaviours of social insects: Stigmergy, which

refers to indirect communication between individuals through the environment [3]. The

packets of Termite are considered to route themselves and are able to influence the path of

other packets.

To achieve the analogy above, Termite introduces the concept of pheromones. Each node

keeps a pheromone value for a known destination at a possible next-hop links towards the

destination. Packets destined for a certain node are biased to forward toward links with

strong pheromone gradient. At the same time, all the packets increase pheromone value for

their source nodes on their incoming links. Throughout this procedure, three fundamental

elements are used:

7

• Positive Feedback: Arrival of a packet, which is not necessarily a control packet,

increases the pheromone value of the source node on the incoming link by a

constant. The packet could either destine for the node or overheard by the node. The

more packets from a destination come from a link, the higher pheromone value the

link accounts for the destination. Positive feedback emphasized the likelihood of

selection on active next-hop link.

• Negative Feedback: In nature world, pheromone evaporates and weakens over

time. In Termite, all pheromone value decays at a const percentage periodically.

When a pheromone of a destination at a next-hop link is smaller than a predefined

value, this entry is removed from pheromone table. This is called negative feedback.

Negative feedback acts the role of timeout purge of stale route information in

general routing protocol, but in a more nature way. Without new arrival positive

feedback, route becomes less selected gradually before finally becoming stale.

• Randomized Route Selection: Termite imposes randomness based on

pheromone value onto route selection. Routes with high pheromone value are more

likely to be selected.

In Termite, all the packets a node sends out accumulate pheromone along their paths.

Packets destined for this node will go along these reverse paths. It works well in a network

with high node density and activity, because data packets also transmit topology information.

If there is not enough activity in a network, Termite allows a node emitting a seed packet to

walk through the network randomly. To prevent stale routes information, a Time-To-Live

(TTL) field is leveraged in Termite packets. Compared with sequence number, TTL requires

control overhead but can not guarantee a quick remove of stale routes.

Given the assumption of certain amount data throughput and the fact that seed packets

can be generated to spread existence information of a node, Termite can be treated as a

proactive routing protocol. It retrieves routing decision quickly, even though the routes

acquired is usually “acceptable” but optimal.

Utilizing swarm intelligence and probability techniques, Termite is a simple, robust

routing protocol. The arrival of data packet implies the topology information. Therefore, no

extra control overhead is needed to spread the existence of the node in a network with

certain amount of data communication. Control overhead in much decreased.

8

2.2 Data-oriented Protocols

As mentioned above, routing protocols based on IP address suffers from lack of

knowledge about destination. Service discovery and content-based networks are developed

to meet this requirement. They provide a pattern to directly communicate with nodes based

on the data rather than IP address of destinations. Here, “data” means either content of

information flow or services that a node provides. We use the term “data-oriented” to

differentiate this type of protocols from general IP-based routing protocols. In this section,

we examine two data-oriented protocols in ad hoc network.

2.2.1 Service Discovery for Mobile Ad hoc Networks

Service discovery is built upon the IP layer to search services in a network. There are

three important concepts service discovery that should be announced beforehand. A client is

a node that requests for a certain service. A server is a node that provides certain service(s).

Directory is a node that stores the service descriptions of the network. Thus, service

discovery protocols use a Client/Server (C/S) communication model. Generally, service

discovery in mobile ad hoc networks uses two major approaches:

• Directory-less approach: No directory is held in the network. The server floods the

network with its service advertisement or the client floods the network with request

for a service. In ad hoc networks, simple flooding schemes are not acceptable

because of the overhead that will be generated. Optimized schemes, such as Multi-

Point Relays (MPRs), which are often seen in IP routing protocol have been

introduced to improve flooding. Examples of this approach are UPnP and

DEAPspace.

• Distributed directory approach: Directories are dynamically distributed through the

network. Instead of searching for a service provider, the client tries to locate a

directory first, retrieves the service information, and then communicates with the

server. The major task for distributed directory approaches is cooperation between

directories because both client and server move frequently.

In most service discovery systems, IP addresses of servers that provide requested

services are returned to a client. The client then has to resort to IP routing protocols to

communicate with server.

9

2.2.2 Content-Based Routing Protocol

A content-based network is a virtual infrastructure where nodes’ predictions are used as

addresses to substitute traditional IP address.

In content-based routing protocols, a flow of information is routed based on the content

of the data and the specific interests of destination nodes rather than according to IP

addresses as in traditional IP routing protocols. Content-based routing uses

Publisher/Subscriber model with three components: Publishers, subscribers and brokers.

Publishers are producers of information. Subscribers are consumers of data. Brokers are

nodes between subscribers and publishers. Information flows from a publisher is filtered at a

broker according to subscriptions. Data units in a flow are then forwarded to nodes which

has subscribed to this information. In such models, subscribers and publishers are decoupled

because both can be anonymous to each other [4].

Content-based routing protocol performs a type of multicast. Compared with traditional

multicast, multicast groups are created dynamically based on the content of information of

interests instead of IP address [4]. A content-based routing protocol is not necessarily built

upon IP and IP routing protocols, which makes it a lighter weight compared to service

discovery, even though some uses underlying routing protocol to achieve better reliability.

Similar to service discovery, content-based network has initially been designed for wired

networks. In ad hoc networks, where there is no infrastructure and the topology is highly

dynamic, traditional centralized brokers are replaced with a network of distributed brokers.

The efficiency of the cooperation between these brokers and how to maintain an up to date

are important issues.

2.3 OPNET: A network simulator

OPNET is a network simulator for the study of communication based on any OSI or

user-specific layers. It provides a comprehensive development environment which consists of

model design, simulation, statistic collection and analysis.

OPNET is a hierarchical object-oriented simulator. Modelling spaces are divided into

four domains: Network, Node, Process and External System. These domains describe a

communication system from external to internal perspective. Models are defined in

corresponding domain, for example a MANET Node model is defined in Node domain. An

instance of this MANET Node model then can be configured and constitute an ad hoc

network. Instances inherited from a model are called objects. A communication system,

which itself is an object of Network model, is constitutes by a group of objects. OPENT

10

models are each associated with a set of attributes. Model attributes can be predefined before

execution, self-configured during execution, or configured through attribute interfaces.

Attribute interfaces connect cross-domain models.

The Network domain specifies a network scenario. The communicating entities in a

network scenario are instantiated from Node models and referred to as Node instances or

Node objects. The Node domain provides modelling of communication devices deployed and

interconnected in a Network scenario. A Node model describes functionalities of a class of

Node instances in term of building blocks called modules. For example, each layer in OSI

model can be implemented in a module. A possible OPNET Node model representing TCP/IP

stack is shown as follows [25]:

Figure 2-1: TCP/IP stack implemented in OPNET

There are several types of modules: Data sources/sinks, transmitters/receivers and

processors/queues. Data sources/sinks generate and destroy packets. Transmitters/receivers

simulate behaviours of physical devices by sending and receiving packets. These modules

have predefined behaviours, while processors/queues are highly programmable. They are

linked through packet streams, statistic wires, and logical associations. Modules are specified

by processes. A process is similar to an executing software program and forms tasks for a

module. The Process model which a process instantiated from is defined by process editor in

the Process domain. There is at least one process called root process in each module. A

process can create and invoke other processes. Only one process can be executing at a time.

Processes are described through finite state machines called State Transition Diagrams

(STDs). Behaviours of STDs are defined by a general C/C++ programming language in

addition to a library of high-level API known as Kernel Procedure provided by OPNET.

Processes are driven by interrupts. They are designed to respond to interrupts and to invoke

interrupts. The communication between individual processes is done through interrupts.

Interface Control Information (ICI) is a formal interface between processes. It is hooked with

an interrupt and passed to next process by the invoking process.

11

OPNET provides large amount of standard process models, from underlying

transmission devices, general applications to common protocols. Users can incorporate

these models into user-defined systems or evaluate them against user defined models. These

models form a uniform environment for all simulations.

Statistics collection and analysis are needed in order to evaluate a communication

system. General statistics have already been collected in standard models in OPNET.

Meanwhile, specific data of interest can be record via statistic variables in a process. Data

analysis in OPNET is a graphing numerical process. In addition, statistics in different

simulations can be studied in the same panel.

12

Chapter 3: Design

In this chapter, we first introduce the scenario of how characteristics spread in ABC,

which is an analogy of a coloured water stream. Terminology for this protocol is then

explained. Basic design describes the general operations and principles of ABC, followed by

an analysis of shortcomings of this design. Then, a numerical approach is applied to

characteristic modelling, which we will see an improvement on performance in later chapter.

3.1 Overview

In ABC, we replace IP addresses with characteristics of a node. There may be multiple

sources of a characteristic in a network, and a node can have multiple characteristics. Now,

we give a general overview of ABC.

In the case of an ad hoc network with a single characteristic, there can be multiple

sources of the characteristic in the network. Each source spreads out the characteristic

through hello packets to its neighbours. Its neighbours inherit this characteristic and

distributed further. This procedure could be treated as a characteristic flow. Different flows

of a characteristic can meet and merge at an intermediate node and form a new flow. After an

initiation phase, all flows should finally reach a stable state. As stated in Chapter 1, to meet

the challenge of mobile ad hoc networks, the initiation time duration should be as small as

possible. In the case of an ad hoc network with multiple characteristics, each characteristic

follows the same steps above to flow over the network. On receiving multiple characteristics,

a node fuses them before rebroadcast.

The propagation of characteristic flow and the fusion of different characteristics are

inspired by the color stream blending and propagation. Consider the following scenario:

Node B is the originator of a stream with the color red, while node C is the originator of a

stream with the color yellow. Their output streams merge A, and the colours blend there into

orange. A now carries orange and distributes the color stream further to node X. The density

of a color reduces as the color stream propagates, which means a color is blurred at a remote

observer. So the downstream node, X, contains less orange.

13

Figure 3-1: Color stream

Assume that node X issues a request for red. Since node A is the source for the color

orange it implies a possibility for the color red. Node X will send a request for red to A. A is

not the originator of red, but it has information about the real source, node B. Thus, node A

will forward the request to node B.

The basic problem for design of ABC is: How do multiple instances co-exist, while not

incurring overhead explosion? We propose an approach called “characteristic abstraction” in

the basic design and an approach called “characteristic fusion” in the advanced design.

Sequence number synchronization is used in each design to manage the pace of each

instance, since we use sequence number to prevent stale route information.

3.2 Terminology

• Characteristic: In ABC, a node is represented with a group of characteristics. As

described in Chapter 1, a characteristic can be encoded from either underlying

features of ad hoc devices or services provided at the application layer of an ad hoc

device.

• Characteristic set: In basic design of ABC, a characteristic set contains

characteristics that describe the same feature or services (FoS). For example,

internet access set contains characteristics that represent internet access services.

Instances of characteristic set vary in capacities of FoS.

14

• Weight: In advanced design of ABC, weight of a characteristic is an integer number

that describes the capacity of the characteristic. This implies in advanced design,

each characteristic set has only one characteristic.

• Internal characteristic: A characteristic that a node generates is called internal

characteristic of the node. Internal characteristic can be configured by applications.

For the purpose of this paper, we will not discuss the procedure of configuring

internal characteristics.

• External characteristic: A characteristic that a node inherits from its neighbours

is called external characteristic.

• Local characteristics: All characteristics, both internal and external, stored in a

node are called local characteristics of a node.

• Characteristic instance: A node can receive same characteristic that come from

different last hop, which means they are in different flows and may originated from

different source. In ABC, we call them characteristic instance.

• Active characteristic: An active characteristic is a characteristic that a node will

spread out through hello messages. In the basic design, internal characteristics - or

if there is none, most detailed characteristics of a characteristic set - are selected as

active characteristics. In advanced design, an active characteristic is computed from

all instances of local characteristics.

3.3 Basic Design

The objective of the basic design is to show the feasibility of characteristic-based routing.

We first compose a sample model of characteristics. According to this model, we discuss

concepts of two fundamental functions of basic design. Then we describe the routing

procedure. And at last we analyze the shortcomings of this design.

3.3.1 Characteristics Modelling

The following graph shows a sample model of characteristics. The level of the node in

the tree view shows the detail of the characteristic. The lower level of a characteristic is, the

more detailed it is. Initially, all internal characteristics should be set at leaf node level

because a characteristic is the most detailed at its source.

15

Figure 3-2: Characteristics model

In this project, we use terms “dominance” and “precedence” to denote the relations

between nodes in the model above and use kinship terminology to described related nodes in

the tree view. The characteristics are encoded based on the n-ary tree structure. An encoding

scheme for the example above could be the following:

Characteristics Code

Characteristics 1

Sensors 100

Computation capacity 101

GPS 110

Internet Access 111

1 Mbps 11111

4 Mbps 11110

6 Mbps 11101

10 Mbps 11100

Table 3-1: Characteristics encoding

In this encoding scheme, every code begins with 1 and binary numbers are appended as

suffix. This implies that the length of a code indicates the level of the characteristic that it

represents in the tree structure. All characteristic codes are brought to the same length by

 Characteristics

 Internet Access GPS service Computation

capacity

 Sensors

 Low bandwidth High bandwidth

 1 Mbps 4 Mbps 6 Mbps 10 Mbps

16

inserting prefix 0. This scheme simplifies the operations on the characteristics. See Appendix

for an optional encoding scheme.

3.3.2 Characteristic abstraction and synchronization

Characteristics abstraction describes the procedure in which a characteristic is

abstracted to higher level and becomes less detailed along the propagation. Scalability of the

basic design comes from characteristic abstraction, as multiple characteristics in the same

characteristic set can merge and fuse into an abstracted one at a remote node. In the

encoding scheme we use in this project, characteristic abstraction is to left-shift the code by 1

bit.

In ad hoc network routing protocols, sequence numbers are usually used to prevent stale

or broken routes information. Since our protocol is essentially a distance vector routing

protocol, sequence numbers are also leveraged. However, there can be multiple sources of a

characteristic, and different instances of a characteristic may merge at an intermediate node.

In this situation, there is no easy way to keep a separate sequence number for each node as in

general routing protocol. To address this issue, we introduce sequence number

synchronization in our protocol: A sequence number is maintained for each characteristic at

all nodes in a network. On receiving a characteristic instance of the same characteristic that

is associated with a higher sequence number, a node synchronizes the internal sequence

number with the external one. In this way, multiple sources of a characteristic keep the same

pace as time goes on. However, it creates large amount of overhead to keep an accurate pace

for all the sources. A predefined maximum discrepancy of sequence numbers, indicated as

sd, is used in synchronization to tune the accuracy of sequence number and overhead it

creates. Sequence number synchronization is also used in advanced design, which we will

discuss later.

Because of characteristic abstraction, different characteristics in the same characteristic

set can be abstracted into the same characteristic at higher level in intermediate nodes. This

means that not only instances of a characteristic should keep sequence number synchronized

but characteristics in the same characteristic set should also keep sequence number

synchronized.

3.3.3 Header Design and Characteristic Table

In this project, we define three types of packets: Hello packet (HELLO), request packet

(RREQ), and reply packet (RREP). They share a fixed header as shown below:

17

Figure 3-3: Fixed header of ABC packet

The “Type” field specifies the type of optional header, which is appended in “Option”

field. Since we use MAC address for communication between neighbours, the “Source

Address” field is set 48 bit. Optional headers are given below. The “Data Payload” field in

request and reply packets indicate whether the packets carry data content.

Figure 3-4: Optional header – Hello packet

Figure 3-5: Optional header – Request packet

Figure 3-6: Optional header – Reply packet

Characteristic table essentially plays a similar role as routing table in general routing

protocol. It consists of two tables:

• Local characteristic table: Same as forwarding table, it contains local characteristic

entries. Fields are <characteristic, last hop address, sequence number, hop count>

and <characteristic> is the primary key.

• Stale characteristic table: Time expired entry in local characteristic table is removed

and inserted into stale characteristic table.

18

3.3.4 Characteristics Flow

Generated from its source node, a characteristic spreads in partial or full of a network,

which can be treated as a characteristic flow. The procedure of a characteristic flow in ABC

contains four major steps:

1) Active characteristic selection: First a node evaluates and selects active characteristics

from local characteristics using the following criterions.

• It is an internal characteristic

• The most detailed characteristic in the set is selected active.

2) Characteristic spread: The node then performs the following operations on the

selected active characteristics and spreads them out through hello packet to all its

neighbours: The node increases the hop count of each active characteristic by one. If the hop

count reaches a predefined number, c, the characteristic is abstracted to a higher level. If an

abstracted characteristic is the root node of the characteristic model tree, which carries no

valuable information, the propagation of this information should stop. In this way, the

propagation range of a characteristic is limited. If a local characteristic is internal, sequence

number is increased by one. Then the processed active characteristics are disseminated out

to all the neighbours by hello message.

3) Characteristic update: On receiving characteristics from a neighbour, a node performs

validation on both the incoming characteristic and the local characteristics. According to the

validation result, the local characteristic table is updated. Internal characteristics are

synchronized if necessary. The following flow chart shows the detail operation a node follows

on receiving hello packet.

19

Figure 3-7: Characteristics update in basic design

On receiving a hello packet from a neighbour, a node first extracts characteristics from

the packet, in this thesis we call these incoming characteristics packet characteristics. The

node then examines the stale characteristic table. For a packet characteristic that matches

entry in the stale table, if the sequence number of the packet characteristic is larger than that

of the characteristic entry in the stale table, then remove the stale entry. Otherwise, the node

discards the packet characteristic.

Local characteristics that come from the same last hop with the hello packet are selected

and compared with remaining packet characteristics. Local characteristics which are not in

hello packet received from the last-hop node are treated as lost in the source, thus are

eliminated from the local table and insert into the stale table. Packet characteristics that are

20

not in the local characteristic table are treated as new characteristics from the source, thus

are inserted into the local characteristic table. Local characteristics that also appear in hello

packet are updated with packet characteristics.

The local characteristic table contains only one entry for each characteristic and all flows

of characteristics in the same set keep the same sequence pace. Now the local characteristic

table may contain duplicate or invalid entries. For local characteristics in each characteristic

set, the node first examines and retrieves the largest sequence number, and filter invalid

entries using sd. Sequence number synchronization is then performed on invalid internal

characteristics. Invalid external characteristics are removed from the local characteristic

table and inserted into the stale table. Finally duplicated entries are detected. If internal

characteristic is included, keep it and eliminates the rest. Otherwise evaluate duplicated

entries and keep the optimal one. Optimization means shortest route or if the hop counts of

multiple entries are the same, the largest sequence number.

4) Purge stale characteristic: Removed from the local characteristic table, an entry

increases its sequence number by one and is inserted into the stale table. We have already

seen two cases in which local entries may be purged: Lost at the source node and sequence

number invalidation. The third case is timer expires. In the case that a neighbour moves out

of the transmission range, a node will not receive explicit information of lost characteristics.

A timer is installed for each entry in the local characteristic table which is reset upon update.

If timer expires, local entry is purged and insert into the stale table.

Characteristic flows through the network following the steps above. All nodes in the

propagation range of a characteristic instance will sense its information. Granularity of this

information really depends on the minimum distance to the source.

3.3.5 Characteristics Request and Reply

Characteristic request in ABC is also based on one-hop communication. A node has no

knowledge about who is the real source of the requested characteristic or the originator of the

request, but the next hop towards that destination. A selected neighbour handles the request

without distinction between internal and external.

If a node wants to request for a certain characteristic, it searches local characteristic

table for a suitable neighbour, and sends request to it. A neighbour is selected if it is the last-

hop node of the requested characteristic. If no entry is found that match the characteristic,

since abstracted characteristic contains possibility of routes to child characteristics, last hop

21

of ancestor of the characteristic is selected. If no such entry is found, depends on the request

configuration, entry that is in the same set with the requested characteristic can be selected

as a compromise choice. If there is no aforementioned entry in the local table, the node then

hold the request for a certain period waiting for appearance of path information before it

drops the request and reports a failure.

On receiving the request packet, the selected neighbour records the last-hop address into

the request table for further conversation. If the requested characteristic is internal for the

node, it initiates a reply message and send to the last-hop node of the request. Otherwise it

handles the request using the same pattern stated above.

For the purpose of this project, we only focus on the routing procedure that is how to

forward the request to the destination and how to forward the reply back. We leave the

maintenance of the session for future development. See future work for detail.

3.3.6 An Example of Characteristic Flow and Request

To better understand the procedure of characteristic flows and request, consider a static

ad hoc network as follows:

Figure 3-8: DNS Query in ABC

22

Assume that the hop count limit, c, is 4, which means characteristics are abstracted to

higher level every 4 hops. All the nodes will spread their characteristics periodically. Take

GW1 for example. GW1 broadcast an ABC control packet including “bandwidth 10Mbps –

TTL 4”. At node 14, the characteristics table would be {bandwidth 10 Mbps, 1, GW1}. Node 14

will also spread its characteristics information. So at node 9 the characteristics table is

{bandwidth 10 Mbps, 2, 14}. At node 7, it would be {{bandwidth 10 Mbps, 3, 9},

{temperature sensor, 1, 13}}. At node 2, the table is {{bandwidth 10 Mbps, 4, 7},

{temperature sensor, 2, 7}}. However as the TTL of the characteristic “bandwidth 10 Mbps”

reaches 4, node 2 will broadcast information “High Bandwidth -- 4” and “temperature sensor

– TTL 2”. Then at node 1, the table is {{High Bandwidth, 1, 2}, {temperature sensor, 3, 2}}.

Finally the information would reach node S.

Received all the spread control packets, S would have a characteristics table:

Characteristics Distance(hops) Next-hop

High bandwidth 2 1

Bandwidth 1Mbps 4 6

GPS service 3 6

Temperature 4 12

Temperature 4 13

Figure 3-9: Local table of S

S would like to browse the website www.tcd.ie. The local resolver has no information of

www.tcd.ie. So a DNS query to find the mail server of www.tcd.ie is placed into ABC packet.

The DNS server address may or may not be included in the packet. (Depends on whether

application specifies the DNS address).

As DNS query doesn’t require a high bandwidth but a shorter response time, so node 6 is

selected to forward ABC packet. Node 6 would then select next-hop node according to its

characteristics table. The procedure goes on until the ABC packet reaches GW2. GW2 then

will translate the ABC packet into UPD/IP packet and send it to DNS server 134.226.36.87

and port 53. A reverse path is also set up from ABC packet. The feedback of DNS is sent

through the reverse path to S.

Brower of node S will then send RREQ to 134.226.36.23, which is the IP address of

www.tcd.ie. As website browsing may request high bandwidth, so this time node 1 is selected

as the next hop, following a similar procedure.

23

3.3.7 Shortcoming of Basic Design

The basic design focuses on the feasibility of characteristic flow. Performance has not

been really taken into considerations. Remote characteristics, after being abstracted and lose

details, can be shut down by a different characteristic which is originated nearby and has not

been abstracted yet. In this case, compromise has to be made if a node request for the remote

characteristic. To a certain extend, this compromise is acceptable. After all, those

characteristics are in the set. The real problem of basic design is the lack of balance between

capacity of a characteristic set, indicated by different characteristics within the set, and the

distance to that characteristic. This problem makes it different for an application to select a

characteristic to request for a given requirement.

Consider the scenario below, where hop count limit is also 4. Node A requires an

internet access. It difficult for A to evaluate whether B, which may provide a better

performance but may also contain uncertainty in the path towards it, or C, which is very

detailed but provides limited capacity. For example, certainty of path is more valuable in ad

hoc network, which means C should be selected. However, in this case, two characteristic

flows really have quite similar length but flow from B provides capacity 10 times as flow from

C.

Figure 3-10: Which to choose, distance or capacity?

So we need to take consideration of both the capacity of a characteristic and the distance

to the source of that characteristic. But there is not easy way to meet this requirement in

basic design, as it is difficult to evaluate characteristics at different level. That is why we

24

develop an advanced design and an improved characteristic modelling method, which

combines both elements for route selection.

3.4 Advanced Design

3.4.1 Initiatives and Characteristic Modelling

Uncertainty of a characteristic is added as the distance to its source increases. This

uncertainty lies in two aspects: The possibility of route break and the possible capacity

consumption along a path. A good example for this is that a route that consists of multiple

hops will not achieve the same throughput as single hop communication. The bandwidth is

reduced in a multiple-hop route.

In this advanced design, we assign a value called weight to describe the capacity of a

characteristic. In the case of the example in basic design, the characteristic model can be

defined as follows. Instead of assigning a separate characteristic for 1Mbps, 4Mbps, 6 Mbps,

and 10 Mbps, they are assigned a same characteristic “Internet Access” and associated with

different weights.

Figure 3-11: Advanced characteristic model

We use a Weight Cost Function to describe how the weight of a characteristic decreases

as the flow propagates, and use Weight Fuse Function to describe how weights are merged

when multiple flows meet in an intermediate node. In certain conditions, Weight

Compensation Function to compensate the weight cost along the path. These numerical

Characteristic

Internet

Access

GPS service Computation

capacity

Sensors

Weight

70

Weight

75

Weight

85

 Weight

100

25

functions substitute the characteristic abstraction and describe how a characteristic flows in

a network.

3.4.2 Scenario of Advanced Design

To illustrate how characteristic flows propagate, consider the same scenario as stated in

section 3.3.7. However, since weight is introduced, flows from node B and node C indicate

the same characteristic but differ in weight. And internet request from A can easily select B

as next hop. Further more, to distribute workload on single link, a probability scheme can be

applied to route selection.

Figure 3-12: Characteristic Flow in Advanced Design

3.4.3 Characteristic Table

There are three characteristic tables in the advanced design:

• Local characteristic table: The local table stores all valid characteristic instances.

The construct of this table is <characteristic, weight, last hop address, sequence

number>. A noticeable difference with previous design is that the primary key is

<characteristic, last hop address>. That means there can be multiple entries in local

26

table for a same characteristic, which is different in basic design. This change

increases the robustness of the protocol, as all necessary flow information is kept in

the table.

• Active characteristic table: It stores active characteristics which are computed from

the local table. The active characteristic table is like the appearance of a node. The

construct of this table is <characteristic, weight, sequence number> and the primary

key is<characteristic>. Each entry in active table is linked to a group of entries in the

local table that have the same characteristic as it.

• Stale characteristic table: In advanced design, entries removed from the local

characteristic table are not inserted into stale table, but those removed from the

active table. If an active entry loses its entire links to local table, which means there

is no incoming flow anymore, this entry is removed from active table and is inserted

into stale table.

3.4.4 Details of Functionality

Core of ABC advanced design consists of four major functionalities: Characteristic

spread, characteristic update, characteristic request and reply, and purge stale characteristic.

Weight Cost Function, Weight Fuse Function and Weight Compensation Function which

control flows in a network are included within these functionalities.

1) Characteristic spread: A node which contains local characteristics periodically inserts

its active characteristics into hello packet, which is broadcasted to all one-hop neighbours. If

an active characteristic is internal, sequence number is increased by one.

Then, Weight Cost Function is used to simulate the weight lost in a link. This function

should be an increasing function of weight because loss of a strong flow should not be

smaller than that of a weak flow. In this project, we select

constewc
w

+= τ)((1)

to describe the weight cost. τ and const are parameters for tuning the result. Further more,

we can use Taylor Expansion Equation to simplify the formula:

constwwtconsewc
w

+++=′+= 2

2

2
1)(

ττ
τ (2)

27

Since w is between 0 and 100 in this project, and we want the cost in a link for any flow

is approximately between 0 and 10, τ is set as 40 and the value of const is discussed later.

An active characteristic that is fused from multiple flows contains more reliability and

certainty than those come from a single flow. Such active characteristics need to be

emphasized so that further route selection can be biased to more reliable links. Weight

Compensation Function takes number of advertisement of a characteristic and increases

weights of such active characteristics before broadcasting hello packets. So the

Compensation function is

)(nc′ (3)

2) Characteristic update: On receiving hello packet from neighbours, a node performs

validation on both incoming and local characteristics. To prevent adverse flow which forms a

“loop” and may result in “Count to Infinite” problem, incoming characteristics are validated

on not only sequence number but also weights. A maximum discrepancy, wd, for weight

validation is used. Because there can be multiple entries for the same characteristic in the

local table, no duplication detection is needed. Then entries are either updated or inserted in

local table.

After updating the local characteristic table, active characteristics are computed from

corresponding entries in local table. This computation includes both sequence number and

weight. The sequence number of each active characteristic is selected as the largest sequence

number among all instances. The weight of each active characteristic is computed from all

instances using Weight Fusion Function. For an intermediate node where n flows meet, each

associated with a weight wi, the Weight Fusion Function is

n
wcw

wwwFWF ii
nn

∑ ∑−==
)(

),...,,()(21 (4)

The rest of the procedure is quite similar as stated in basic design. The following flow

chart shows the detail of characteristic update.

28

Figure 3-13: Characteristic update in advanced design

3) Characteristic request and reply: In previous design, local characteristic table

contains only the optimal instance of a known characteristic; while in advanced design, all

valid instances of each know characteristic are kept for route selection. In other words, there

has to be a criterion to select routes to handle request. Several design options have to be

made given a context.

The first design option is: If there are more than one advertisements of a request, should

single or multiple next-hop nodes be selected to handle the request?

The more instances probed, the higher possibility that one of them leads to a real source

of the flow. It is straightforward that if a node forwards request to multiple neighbours, the

success rate of request will be higher than single forward. On the other hand, more control

overhead is introduced in multiple forward of request. The more important a request is, the

more next hops should be selected. For a trivial general request single forward is highly

recommended. In this project, we select single forward to implement.

29

Another question raised is: How to select the next-hop neighbours? A simple way is to

select the routes associated with highest weight. But to distribute the workload on each link,

and increase the robustness of the protocol, we use a probability based route selection which

also appears in other routing protocols.

Given n instances of a requested characteristic, of which instance j is associated with

weight, the possibility of selecting route i as next hop is

F
j

nj

F
i

i Kw
Kw

wP
)(

)(
)(

1
+

+
=
∑

≤≤

 (5)

, where K and F are parameters to tune the shape of distribution. In this project, we

select K = 0 and F = 2.

4) Purge stale characteristic: A timer is set up for each entry in the local table. On

receiving characteristics carried in hello packet, corresponding entry is reset. If a timer

expires, the entry it associated with is removed from local table. If an entry in the active table

loses its entire links to local table, which means there is no incoming flow anymore, this

entry is removed from active table and is inserted into stale table.

3.4.5 Flow Computation

After an initialization period, characteristic flows should reach a stable state in an ad hoc

network whose topology is fixed. This requirement stems from the fact that in reality, if the

environment does not change, the river course stays where it is. The meaning of this is

twofold: Variable flow in a network brings uncertainty of control information distribution;

frequent table operation add extra computation load to ad hoc devices which possess scarce

resources.

Flows in a network are affected by weight functions and weight discrepancy for

validation as stated above. All possible situations where characteristic flows are stable can be

concluded as the following scenario:

30

Figure 3-14: Stable Flow Computation

Assume that node 1…n each associated with weight x1, x2…xn. In an intermediate node

where these flows meet, the weight is F(Xn). If all the flows are stable, each should be able to

enter the intermediate node again. So we have:

)()(11 nXFwdxcx ≥+− (6)

Given the rest of the flows, assume the smallest weight that flow 1 can have is x, which

means if flow 1 has weight less than x, it will not be able to enter the intermediate node again.

Thus the flow is not stable. Weight x should satisfy that:

)()(nXFwdxcx =+− (7)

On the other hand, flow from node m should not be able to enter any of nodes 1...n and

forms an adverse current. So we have:

1)())(()(xxncwdXFcXF nn ≤<′++− (8)

Combine with previous condition, the requirement of flow function and wd are: The

following system of inequation is true.

⎩
⎨
⎧

=+−
<′++−

)()(
)())(()(

n

nn

XFwdxcx
xncwdXFcXF

Change the form of the system, we have

wdxcncwdXFc n −<′++−)()())(((9)

Then

31

2
)()())((ncxcXFc

wd n ′−+
< (10)

According to equation (7), (10) can be changed into

2
)()())((ncxcwdxcxcwd

′−++−
< (11)

Given the definition of)(wc , it is an increasing function. Now, consider function R(w)

as follows:

tconswwwwcwwR ′−−−=−= 2

2

2
)()(

ττ
 (12)

R(w) is also an increasing function if]100,0[∈w and 40=τ , because its first

derivative:

011)(' 2 >−−=
ττ
wwR for),11[],100,0[+∞∈∈∀ τw

That means)())((xcwdxcxc ++− is increasing. Inequation (11) has to be true for

any possible x and all possible n. We now examine the minimum value of x and maximum

value for n. For max')(',0 cncx == , inequation (11) becomes

2

2
max

422
1

ττ
wdwdc

wdconst −−
′

+>+ (13)

In other words, form (13) is an equivalence of (6) and (8). It has to be true to guarantee

flows in a network keep stable. An easy way is to select const in Cost Function as follows:

2
maxc

wdconst
′

+= (14)

, which makes Weight Cost Function as:

22
1)(max

2

2 c
wdwwwc

′
++++=

ττ
 (15)

Function (14) guarantees the stable flows in a network even though it is not the only

form. We will show how these functions are implemented in next Chapter and analysis how

to select optimal value for each parameter in Chapter 5.

32

Chapter 4: Implementation

We choose OPNET modeler to implement and evaluate our protocol. In this chapter, we

will discuss the details of the implementation. Starting with general structures and node

model, we focus on the core implementation of the project: ABC module in the network layer.

Data structure and the operation on them affect the functionality and performance of a

process. State Transition Diagram (STD), representing state machine of ABC process model,

describes the key functionality of our protocol. And finally, interfaces need to be defined

between each domain and each module.

4.1 Overview

To perform a realistic simulation, our implementation follows OSI model. We build ABC

upon a physical layer and a data link layer. The physical layer includes a radio transmitter

module and a radio receiver module. At the MAC layer, we use the IEEE 802.11 module,

provided as a standard model by OPNET. To communicate with the routing layer, an

interface layer is inserted on top of this standard MAC module. Together, they form a data

link layer and provide an OPNET standard point to point communication for the ABC

routing protocol. Built on this stack, the implementation of our protocol incorporates the

accuracy of OPNET modeler in the first place. The standard source module and sink module

are modified to simulate the behaviour of the transport layer and applications above. The

node model of our implementation is shown in Figure 4-1.

The ABC network layer module provides the core functionality of the routing procedure.

It is set up initially with predefined internal characteristics and other preferences from

Network domain. Then it receives data/request packet from source module periodically and

generates reply back to sink module after the routing procedure. We have implemented

separate routing modules according to both basic design and advanced design. They share

similar interfaces and operate in the same stack. In this way, we are able set up scenarios to

evaluate them against each other.

We will focus here on the implementation of the advanced design. To some extend,

implementations for basic design and advanced design share some similarity. In next

chapter, we will explain these similarities.

33

Figure 4-1: Node model of ABC

4.2 Data Structure

In this section, we discuss the implementations of characteristic tables and packets of

our protocol.

4.2.1 Tables in ABC

As mentioned in previous chapter, ABC contains a requests table and three

characteristic tables, including local table, active table and stale table. One feasible way to

implement these tables is to create a compound attribute for each table, of which sub-

attributes represent fields of the table. However, operations on a compound attribute are not

flexible enough and are usually used in static routing protocol. We use a global list variable to

represent a characteristic table. All elements in a list are of the same struct type.

34

1. The following code is the structure defined for stale table. It indicates two fields in

stale table: Characteristic and sequence number.

typedef struct stale_charc_entry
 {
 int charc;
 int seq;
 } *lp_stale_charc;

2. The following structure definition is for the local characteristic table. Except for the

fields we have shown in the design, we need some extra fields for the purpose of

efficient implementation. The “related_act_charc” field stores the pointer to the

entry in active table it associated with. To set up a timer for each entry in local table

requires much computation overhead. The “status” field provides a trade-off

between functionality and performance of protocol. We only implement one timer

for all entries in local table. When the timer expires, all entries in local table are

examined. If the “status” is false, set it as true, otherwise remove the entry. On

receiving an update of the entry through hello packet, “status” is reset. In this way,

given a timer duration t, the actual time to live for a local entry floats in [t, 2t]. The

“int_charc” field represent whether a local characteristic is internal.

typedef struct local_charc_entry
 {
 int charc;
 int weight;
 int next_hop;
 int seq;
 lp_act_charc related_act_charc;
 Boolean status;
 Boolean int_charc;
 } *lp_local_charc;

3. The following definition is the structure for active table. Similar as the local table,

entries in active table also store associated local entries. However, since the relation

between active characteristic and local characteristics is one-to-many, we use a list

store pointers of all related local entries.

typedef struct act_charc_entry
 {
 int charc;
 int weight;
 int seq;
 List* original_charc;
 } *lp_act_charc;

4. The following show the definition of request table entry. The field “charc” is the

requested characteristic and “addr” records the last-hop address of the request. And

35

“status” is also used here to purge stale request. The timers for request table and

stale characteristic table have separate value.

typedef struct request_entry
 {
 int charc;
 int addr;
 Boolean status;
 } *lp_request_entry;

Figure 4-2 shows the operations on characteristic tables. Receiving hello packet from

neighbours, a node first updates the local table. And then active table is computed from local

table, lost characteristics are removed to stale table. Finally, information in active table is

inserted into hello packet and broadcast to its neighbours.

Figure 4-2: Characteristic table operation

36

The link between local table and active table is bidirectional: Each contains pointers to

the other. In original_charc list of an active entry, the pointers of the local entries associated

are sorted based on sequence number of local characteristics. This pattern benefits in two

aspects: Running time for searching an element in a sorted list with n element is only O(lgn).

Compared to simple searching approach, it is time efficient; The sequence number of an

active characteristic is set as the highest sequence number among all local entries. This

approach simplifies the operations on tables. The maintenance of the sorted list is easy. We

use an improved insertion sort approach for new entries. Running time to insert a new entry

is also O(lgn).

int low = 0;
int high = size of sorted list – 1;
int mid;
lp_local_charc local_charc;
while(low<=high)
{
mid = (low+high)/2;
local_charc = list_access(mid);
if (new_charc->seq > local_charc->seq)
 {low = mid+1;}
else if(new_charc->seq < local_charc->seq)
 {high = mid-1;}
else
 {
 insert new_charc to position mid of the list
 return;
 }
}
Insert new_charc to position low+1 of the list

4.2.2 ABC Packets

OPNET provides Packet package to implement packet format. In ABC, RREQ packet and

RREP packets have fixed length. We can simply use op_pk_nfd_set() and op_pk_nfd_get()

for operations on named fields in those packets. HELLO packet, on the other hand, contains

variable number of characteristic information. A dynamic length field is needed.

We define a structure as follows to represent the content format of characteristic flows.

Using dynamic memory allocation API op_prg_mem_alloc(), we allocate a memory block for

an array of pkt_charc_entry, which is retrieved from the active table. The array is then

inserted into a HELLO packet using op_prg_nfd_set_ptr(). However, this API uses an

“unnatural” pattern: It takes the address of the pointer of the structure as its parameter.

Unawareness of this pattern may lead to data chaos at a receiving end. Because no memory

of the structure is actually carried in a HELLO packet, the size of this variable field is 0 bit.

We then use op_prg_bulk_size_set() to set the overall size of HELLO packet.

37

typedef struct pkt_charc_entry
 {
 int charc;
 int weight;
 int seq;
 } *lp_pkt_charc;

4.3 State Transition of ABC

As we mentioned above, a process in OPNET is described by a finite state machine. The

following diagram shows the state transition of ABC. In this diagram, a red state is unforced

and green state is forced. Leaving an unforced state is driven by a certain interrupt, while a

process leaves a forced state as soon as execution of the state is complete.

The ABC process begins at state “init”. Model attributes are loaded and all state variables

are initialized inside this state. The process then waits and receives two self interrupts to

enter normal state “idle”. The reason for waiting two self interrupts is that OPNET executes

parallel interrupts for modules in the same node model. The underlying 802.11 MAC process

requires two interrupts for initialization. ABC network process has to wait for the MAC

module to be prepared before sending HELLO packets to it. After two self interrupts, the

ABC process has now synchronized itself with all other modules in the node model and

enters the “idle” state.

Before entering “idle” state, three timers are registered: Characteristic spreading timer,

stale characteristic timer and stale request timer. A timer is in fact a self interrupt, which is

scheduled at a specified simulation time. When a timer expires, the corresponding forced

state is entered. After execution, timer is reset and starts again. The process comes back to

“idle” state.

When a packet is received from the application layer, the ABC process enters the “send

packets” state. In the execution of this state, data or request packets are composed and sent

to the next-hop node whose address is retrieved from the local table.

38

Figure 4-3: STD of ABC routing process

When a packet is received from the MAC layer, the ABC process enters the “receive &

relay” state. It first examines the type of the packet. If the packet is a HELLO packet, local

table and active table are then updated accordingly. If it is a RREQ packet, the process

extracts the characteristic requested. If destined characteristic is an internal one of this node,

the process generates and sends out RREP packet. Otherwise, the node will lookup the local

table and will compute the next hop to which to forward this packet. If no entry is returned

from the local table, a self interrupt is invoked and the process enters the forced state “cache

packet”. A timer is registered in the state. When the timer expires, the process tries to

retransmit the packet.

4.4 Implementation of Key Functions

We will show briefly how the functions that control the flow are implemented in our

project. These functions are not very complex but they are the key to ABC’s performance.

• Weight Cost Function: It adds computation overheads if we actually compute the

cost of a given weight. For a mobile ad hoc device, especially a sensor, we is not an

easy workload. Computing max2

2

2
2

1)(cwdwwwc ′++++=
ττ

, on the other hand,

39

is acceptable. However, in this project, we simply use an “if else” clause to assign a

predefined integer value to a cost on an inputting weight.

• Weight Compensate Function: Similar with Weight Cost Function, we use “if else” to

achieve this function. The only considerations for this function are the return value

should not higher than maxc′ as we computed before and should be an increasing

function. We leave the optimal form of this function for further development.

• Characteristic Abstraction: This function execute in basic design. As explained in

Chapter 3, characteristic is abstracted into a higher level when it reaches the edge of

propagation. Because of the encoding scheme we selected, a characteristic is easily

abstracted by shifting the binary code left by 1 bit.

• Relation Determination: In basic design, it is important to determine the

relationship between two characteristics. Similar with previous function, we leverage

bit operations here. For a characteristic code, the bit length of the code indicates the

level of the node representing the characteristic in current scheme. The decimal

value of the code indicates its position in its level. Using Abstraction function based

on position in encoding tree, we can determine whether two characteristics have

sibling or dominance relations.

• Table operations: Entries in the local characteristic table and entries in the active

characteristic table are linked to each other. Further more, an active entry keeps the

pointers of its related local entries in a list. The list is sorted based on sequence

number. Table operations we have implemented use a “divide and conquer”

approach to reduce the running time.

• Request Holding: When failed to send out a request, a node hold the request for a

time to wait destination information to appear again. To simplify the

implementation, the request holding time is shorter than the characteristic holding

time. In this way, new characteristic information that comes during a request is held

will not disappear when the request timer expires. This implies that a node does not

have to retransmit a holding request before its timer expires.

4.5 Interfaces

We have defined the following interfaces in the ABC routing process communicate and

cooperate with other models:

40

• Packet streams

• ICIs

• Model interface

• Statistics collection

• Built-in trace code

Packet streams transmit packets between modules linked. They are unidirectional and

are specified in Node domain. They are divided into outgoing streams and incoming streams.

Each stream is assigned an index. Kernel API op_pk_send() uses this index to send out

packet to module linked by the stream. Incoming packet causes an interrupt upon which STD

receives and reacts.

As mentioned above, ICIs are used to pass control information between modules. ABC

installs the destination MAC address on its ICI, and associates with outgoing data stream to

MAC module.

Packet streams and ICIs are interfaces between ABC and modules in the same node

model. Model interface is really cross-domain interface. Model attributes of ABC include

internal characteristics and other predefined parameters. These attributes are configured as

model interface, and are passed to Node domain and Network domain. We can simple assign

protocol preference in a scenario before the execution. The routing process then reads these

attributes during process initialization.

Built-in trace code in OPNET provides examination on the value of process variables

trace throughout the simulation. In ABC we insert trace code block wrapped by kernel API

op_prg_odb_ltrace_active for values of interest. There are mainly three types of value we

have traced in the project: Content of three characteristic tables and request table for each

node; Result of all characteristic flow functions to see how flows are computed; Content of

control packets to see how flows disseminate. See the following table for the traced values.

We can “watch” these values discretely in OPNET console during simulation using “ltrace +

name” command. “Discretely” here means the values are showed when there is an action

operating on them. Some trace blocks are used for self-test, that is submitting a warning if an

unexpected value occurs during simulation.

41

Trace name Value of interest

local charc Full content of local characteristic
table at each node.

active charc Full content of active table at each
node

lost charc Entries lost in both local table and
active table, indicating also the reason

of the loss: Timeout or lost from
source

self-test Perform self testing on range of each
value and fault actions, such as

weight value and loss of internal
characteristics

seq syc Shows the detail of sequence number
synchronization: Node, characteristic,

external sequence value, and local
sequence value.

flow Content of HELLO packet in a
network: Source node, characteristics

carried, weights, and sequence
number. Also display all nodes that

receive this packet.

charc abstraction* Show the detail of the characteristic
abstraction.

Table 4-1: Trace block in ABC

* This is trace block for basic design

In a similar way, statistics are record during simulation. Statistics are set as model

attributes OPNET. And a global variable, termed as state variable, is used to store or account

certain values. Then kernel API op_stat_write() is used to write a statistics variable into

corresponding statistics model attribute. After simulation, the selected statistics can be

shown and analysed.

42

Chapter 5: Evaluation

In this chapter, we will evaluate ABC from two aspects: Features and performance. First

we will discuss the features of ABC. Then we present evaluations of the performance of ABC.

At the end of this chapter, we will give examples of possible ABC applications according to its

features and performance.

5.1 Features of ABC

Based on the discussion of the design we have given in previous chapters, we can

conclude the features of ABC as follows:

• Characteristic-based routing: ABC replaces IP addresses used in traditional routing

protocols with characteristics. A destination is described by a group of

characteristics. Packets are routed toward strong gradient of a specified

characteristic.

• Light weight: Compared with other data-oriented communication systems, ABC is

implemented at network layer. It doses not have to resort to other routing protocols

and is independent from IP. The computation load and control overhead are

reduced. Therefore, light weight is an intrinsic advantage of ABC. This can also be

observed from control overhead and latency of communication, which we will show

next section.

• Moderate description: Currently, one of the research trends in service discovery and

content-based communications is to describe and to filter information flow in a

more semantic pattern. These approaches offer powerful application-oriented

information description, yet produce more overhead. ABC provides 32-bit encoding

of characteristics. Together with the abstraction method in basic design and the

weight associated in the advanced design, ABC supports a moderate characteristic

description.

43

• Fully distributed: ABC is fully distributed. Unlike service discovery and content-

based networks, no broker is needed. A node can join, leave or fail without affecting

other nodes.

• Anycast/multicast: If the protocol is configured to forward requests to only one of

the possible next hops, the protocol will behave like an “anycast” protocol; if we

configure nodes in ABC to forward request to all possible next hops, a multicast is

then achieved. However, as discussed in chapter 3, a node can be configured to

forward its neighbours’ requests to certain number of next hops. In this case, the

routing in ABC is between anycast and multicast: Multiple but not all source nodes

of a characteristic can receive packets destined for this characteristic.

• Scalability: The analogy of color stream propagation and fusion introduces good

scalability to ABC. Two functions actually affect the scalability: A characteristic

becomes blurring during propagation; multiple flows can merge at an intermediate

node. They function together, but in detail the first determines the scalability on

number of nodes and the second one determines the scalability on number of

characteristic sources in a network.

o Characteristic abstraction in basic design and weight cost function in advance

design fade off information flows. The former function takes hop limit as

parameter, which determines the fading ratio of a characteristic. τ and const in

the latter function have a similar role. While hop limit simply affecting fading

ratio, we can also configureτ and const to change the shape of cost curve. Given

a certain cost value we want to assign for maximum weight, in the case of this

project it is 100, if both τ and const are large, the cost varies little for all

possible weights; if both τ and const are small, the cost is much less for a small

weight. This means that a data flow can fading off fast at a small area and then

disseminate into a large area with small weight, which can easily be taken over

by a strong flow at remote end.

o Characteristic fusion, together with sequence number synchronization, affects

the scalability on number of flows in a network. For a characteristic, number of

source nodes in a network does not affect control overhead. Each node exports

only one flow of a characteristic group in basic design and one flow of a

characteristic in advanced design.

• Request/Reply: The current version of ABC supports a request/reply

communication model. It means that no communication session is supported. Both

RREQ and RREP packets can carry data or instructions.

44

5.1.1 Comparison to Data-oriented protocols

Service discovery, content-based routing protocols and ABC share some similarities in

the problems they address while using different approaches. The following table shows a

comparison of the differences between them.

 Service discovery Content-based routing ABC

Implementation level Middleware layer Middleware layer Network layer

Underlying Network
protocol

IP None or IP multicast
routing

-

Communication type Unicast Multicast Anycast/Multicast

Communication model Client/Server Publisher/Subscriber -

Detail of data description* High Medium / High Medium

Table 5-1: Comparison of data-oriented protocols

 Service discovery uses service description from server which is usually semantic and

specified by application layer. Content-based routing protocol uses subscriptions

from a subscriber to filter data flow. It is also specified by application layers and can

be semantic. ABC is at network layer, and uses encoded characteristic which is

supposed to be similar length as IP address.

5.2 Numerical Evaluation

In this section, we will analyze the performance of our protocol. First we will state value

of our interest and design the experiments accordingly. In second sub-section, we discuss the

data that is collected in each experiment.

5.2.1 Experiments Design

The objective of the experiments we have performed is to demonstrate the feasibility of

our protocol. The values of interest include control overhead, latency, and success rate of

request. Control overhead is defined as the data throughput at when there is no data

delivered from application layer. The success rate is the percentage of successful requests

among all requests generated in a network.

All the experiments were performed using two topologies, as shown in Figure 5-1. The

distance between 2 orthogonal neighbours is between 600m to 700m. The distance between

diagonal neighbours is around 900m which is approximately the edge of transmission for the

ad hoc devices we configured for this experiment. A small movement may result in the loss of

45

connectivity to diagonal neighbours, and a large movement may result in loss of connectivity

to any neighbours.

(a) Mesh with 15 nodes

(b) Mesh with 9 nodes

Figure 5-1: Topology used in experiments

We use IEEE 802.11g as underlying MAC protocol. The transmission speed is configured

as 54 Mbps and the transmission power is set as 5 mW. This configuration leads to an 800m

46

to 1000m transmission range for ad hoc devices. The hello interval is randomly selected from

1.0s to 3.0s, so that the transmission collision can be reduced. Each node in the network

initiates a request to a random characteristic every 10 seconds. The fixed parameters for the

simulations are given below:

Parameter Value

Transmission Power 0.005w

τ 40

Characteristic Holding Time 10.0s

Hello Interval uniform(1.0s, 3.0s)

Request Frequency 6 requests/ min

wd 3

sd 10

maxc′
4

Table 5-2: Protocol configuration

In this project, we focus on the demonstration of ABC routing procedure. Therefore, we

apply random mobility model to all the nodes. Three types of mobility are examined: Static,

medium mobility and high mobility. The medium mobility here is set randomly between 0 to

10 m/s. And the high mobility here is set randomly between 0 to 20 m/s. For the evaluation

of scalability, we compare control overhead in different number of nodes and number of

characteristics.

Note that the duration for which a node keeps a request affects the success rate and

latency as well. We examine how they are balanced according to request holding time. Also

we evaluate how stable flows affect the performance by assigning value to Cost Function

which can not satisfy system (7) and (8).

Dimension Value of interest

Mobility Static , uniform(0,10), uniform(0,20)

Request Holding Time 0.1s, 1.0s, 10s

Number of Nodes 6, 8, 15

Stable Flow TRUE, FALSE

Design Version Basic, advanced

Table 5-3: Evaluation Matrix

47

5.2.2 Performance Analysis

At first of the numerical evaluation, we perform a control experiment where all nodes

are static. The success rate for characteristic requests is always 100% in this scenario, which

shows the correctness of ABC at a static and reachable network. Then we evaluate the

performance of ABC as follows:

Scalability

We have presented a formal analysis of scalability earlier in this chapter. To support this

analysis, we examine a mesh topology with 15 nodes and a mesh topology with 9 nodes. Each

node has one internal characteristic initially. Figure 5-2 shows that the control overhead

increases according to the number of characteristics in a network, but is independent from

the number of nodes. Further more, since each node generates a characteristic instance,

Figure 5-2 (b) also illustrates that the control overhead is independent from the number of

flows in a network.

(a) 15 nodes with different number of characteristics

(b) 4 characteristics with different number of nodes

Figure 5-2: Average control overhead

48

The control overhead results from HELLO packets used by each node. There are two

factors affecting this control overhead: The size of HELLO packets and the frequency of

HELLO packet transmission. The frequency of HELLO packet transmissions also determines

the propagation speed of a characteristic flow.

Basic and Advanced Design

We have presented the shortcomings of the basic design in Chapter 3, and based on the

analysis proposed an advanced design. The following figure shows the comparison of the

advanced design and the basic design in a dynamic topology. The speed of each node in this

experiment is 10 m/s. The comparison shows that while the success rate for the advanced

design remains constant, the success rate for the basic design reduces heavily at initial stage.

The advanced design excels the basic design through the 20 minutes simulation.

Figure 5-3: Advanced vs. basic design

Success Rate and Latency

On receiving a request, either from its application layer or from its neighbour, a node

examines local characteristic table for next hop to forward the request. If no valid entry

found, the request is hold for a small period and then try to search for valid entry again

before discard the request. If holding duration is long enough, ideally the node can retrieve

information about the requested destination. Obviously, the Request Holding Time (RHT)

affects latency of request severely.

49

In a network with medium mobility, we can see that holding a request for 10 second

gains an additional 0.5% of success rate. No obvious difference is observed between 0.1 s and

1 s RHT. The reason for this is that in such a network, it takes more time to wait for lost

destinations to appear again. A small holding time will not lead to a drastic improvement.

The second experiment, which used a high mobility, produces a much different result. The

success rates for all three RHT values are smaller than in the previous experiment. But

compared with 0.1 s RHT, 1 s RHT increase the success rate by 2% and 10 s RHT increase it

by 5%.

(a) Uniform 10 m/s

(b) Uniform 20 m/s

Figure 5-4: Success rate on RHT

50

Thus, increasing the RHT does not have a lot of influence on the success rate. The

request latency, however, experiences a strong influence. For a 10 s RHT, the latency

introduced is much higher than the others, and grows because of increasing mobility. On the

other hand, in both mobility configurations, latencies for 0.1 s and 1 s RHT have no obvious

distinction. The latency stays at same level - around 5 ms - when the mobility changes.

(a) Uniform 10m/s

(b) Uniform 20 m/s

Figure 5-5: Latency on RHT

51

According to this experiment, 1 s RHT is an advisable configuration. We use this value in

all other experiments. However, depending on the requirement of application and the

topology of a network, different RHT can be select to balance the reliability of transmission

or the performance of the protocol.

Stableness of Characteristic Flow

We have given a computation for the condition of stable flows. Based on the

computation, we compose a Weight Cost Function that will satisfy requirement of stable

flows. We would like to demonstrate here why the flow of characteristics in a network should

be stable.

According to the color stream analogy of our design, a stream should not be able to flow

backwards. In the advanced design, no hop count is used. If the stable condition formula (8)

is not satisfied, a characteristic flow may form a loop, which represents incorrect route

information. If formula (7) can not be satisfied, a valid characteristic flow may be able to

enter an intermediate node, and lose it effects on a network.

Note that there is no unique way to satisfy stable condition. The form of Weight Cost

Function we use in ABC is only one of correct approaches. To illustrate the effect of

stableness, we compose a Weight Cost Function that can not make formula (7) and (8) true:

Minus a const number 8. Again, this is not the unique way.

We use mesh topology with 15 nodes, 4 characteristics and medium mobility to evaluate

unstable flow. From the figures above, we can see that a stable flow gains overwhelming

advantage against unstable flow in both success rate and latency. Also active weights at each

node changes frequently, much more computation overhead is introduced if stable condition

can not be satisfied. In OPNET, 20 minute simulation for unstable flow generates 212277004

events while only 1081745 events generates for stable flow.

52

(a) Success rate

(b) Latency

Figure 5-6: Stable vs. unstable

53

5.3 Sample Scenarios

We have discussed the features of ABC and presented a performance evaluation of ABC.

The next issue we would like to address are possible applications that can be based on ABC.

Previously, we have shown a DNS query application. Current version of ABC provides

powerful and efficient routing for Request/Reply communication. In this section, we will

show some other sample applications for ABC.

5.3.1 Sensor Query

Because of the light weight and anonymous nature, ABC suits sensor network

applications. And it scales well in a network with large amount of nodes. Consider a sensor

network, types of sensor, such as temperature or light, are encoded as different

characteristics. Depending on the orientation, battery, computation ability, sensor accuracy

or combination of them can be mapped into weight values. The Weight Cost Function can

also be configured to suit the application. For example, in an energy efficient network, weight

cost at an intermediate node can take battery capacity of the node into consideration. The

only requirement for the Weight Cost Function is to satisfy the stable condition. A query for a

certain sensor transmits through an optimal path to one or multiple optimal destinations. A

sensor node can then follow instructions in the query to perform some actions, i.e. start

monitoring, or insert data into RREP packet and send it back.

5.3.2 Battle Field Coordination

One of the most presented motivations of ad hoc networks research comes from military

application. Usually ad hoc devices in the military field do not support IP addresses and

application in such field requires a small latency. According to our evaluation, ABC satisfies

such requirement.

Consider the following scenario: In a large battle field some troops are experiencing a

severe fight with the enemy, while others remain relatively idle. A command may want to

send information or instructions to either type of troops. The severity and idleness can be set

as two characteristics. Weight indicates the level of such status. Packets can be forwarded to

different types of troops along a path following the characteristics.

54

Figure 5-7: Battle field coordination

55

Chapter 6: Conclusions

6.1 Contributions

In this project, a novel ad hoc routing protocol called ABC has been proposed. To

analyse the feasibility and performance of ABC, we have implemented and simulated our

protocol in OPNET modeler. ABC is based on the characteristics of nodes, and the use of IP

address has been avoided. Therefore, ABC provides a semantic routing service to

applications. Compared with other data-oriented protocols, ABC is light weight but powerful

enough to supported ad hoc applications. “Light weight” here means it experience a good

performance according to our simulation. “Powerful enough” here refers to 32 bit semantic

description of nodes.

At the beginning of this thesis, we introduced briefly the idea of ad hoc networks, and

explained the problem that we would like to address in this project: Nodes in ad hoc

networks are lacking the knowledge of destinations under current routing protocols. ABC is

designed to address this problem following the coloured stream analogy. After presenting the

orientation of our protocol, we explained a basic design for ABC, which demonstrates the

feasibility characteristic-based routing but takes no consideration of performance. Based on

the analysis of the basic design, we proposed a numerical approach and discussed some

critical design options for this approach. According to the initiatives and design options, we

discussed the features of ABC and compared it with other data-oriented communication

systems to demonstrate the advantages of our protocol. In order to support our design

choices, we presented the results from a number of experiments.

The results of the evaluation show that ABC is able to achieve a characteristic-based

routing. It scales well with the number of ad hoc nodes. The latency of requests is acceptable

and can be configured to achieve a balance with success rate.

56

6.2 Future work

ABC is like a young child: It is very promising but can be improved in many aspects. The

project we have done has just opened a door. Future work includes the following:

• Multiple characteristics requests: The current version of ABC supports only request

for single characteristic. We assume that conjunct characteristics requests will lead

to improved flexibility. A numerical characteristic flow used in this project may

leverage conclusions from operations research.

• Session management: The communication between two nodes in ABC network is

stateless at the moment. A simple improvement is to assign a session id. At an

intermediate node, next-hop addresses for both direction of a session can be

recorded. Moreover, a session could be encoded as a new characteristic. In this way,

a node could perform routing for a conversation if the session is disrupted along the

path.

• Incorporate IP addresses: An IP address may be treated as a characteristic and allow

the routing for IP address.

• Improved characteristic encoding: The encoding scheme presented here is very

simplistic. Further research may focus on a more efficient encoding or a more

semantic encoding scheme.

57

Chapter 7: References

[1] Comer D. E. (2001). Internetworking With TCP/IP, vol 1. I Prentice Hall.

[2] Murthy C. Siva Ram, Manoj B.S. (2004). Ad Hoc Wireless Networks. Prentice Hall

Communications Engineering and Emerging Technologies Series.

[3] Roth M., Wicker S. (2003, December) Termite: ad-hoc networking with stigmergy.

Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE

[4] Petrovic M., Muthusamy V., and Jacobsen H.A. (2005, August). Content-Based

Routing in Mobile Ad Hoc Networks. Proceedings of IEEE MobiQuitous 2005.

[5] Lenders V., May M., and Plattner B.. (2005, June). Service Discovery in Mobile Ad

Hoc Networks: A Field Theoretic Approach. World of Wireless Mobile and

Multimedia Networks, 2005. WoWMoM 2005. Sixth IEEE International Symposium.

[6] Marin-Perianu, R.S. and Hartel, P.H. and Scholten, J. (2005) A Classification of

Service Discovery Protocols. Technical Report TR-CTIT-05-25 Centre for Telematics

and Information Technology, University of Twente, Enschede. ISSN 1381-3625

[7] Musolesi, M., C. Mascolo, S. Hailes, EMMA: Epidemic Messaging Middleware for Ad

hoc networks. Personal Ubiquitous Computing, 10(1) 2005, pages 28- 36.

[8] Jun Liu, Jiejun Kong, Xiaoyan Hong, Mario Gerla ,"Performance Evaluation of

Anonymous Routing Protocols in MANETs", IEEE Wireless Communications and

Networking Conference 2006, April 2006.

[9] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massouli. Epidemic Information

Dissemination in Distributed Systems. IEEE Computer, May 2004.

[10] A. Khelil, C. Becker, J. Tian, and K. Rothermel. An Epidemic Model for Information

Diffusion in MANETs. In Proceedings of ACM MSWiM’02, September 2002.

[11] Musolesi M., Mascolo C.(2006). Controlled Epidemic-style Dissemination

Middleware for Mobile Ad Hoc Networks, Mobile and Ubiquitous Systems -

Workshops, 2006. 3rd Annual International Conference page 136.

58

[12] Nedos A., Singh K., Clarke S. (2006). Mobile Ad Hoc Services: Semantic Service

Discovery in Mobile Ad Hoc Networks, PhD Thesis, Distributed System Group, Faculty

of Computer Science, Trinity, 2006

 [13] Cho, C. and Lee, D., Survey of Service Discovery Architectures for Mobile Ad hoc

Networks Term paper, Mobile Computing, CEN 5531, Department of Computer and

Information Science and Engineering (CICE), University of Florida, Fall, 2005.

[14] Li, L and Lamont, L., Service Discovery for Support of Real-time Multimedia SIP

Applications over OLSR MANETs OLSR Interop & Workshop 2004, San Diego, USA,

August 6-7, 2004

[15] Clausen T., Jacquet P., Optimized Link State Routing Protocol (OLSR) RFC 3626

[16] M. Kalantari and M. Shayman, Routing in wireless ad hoc networks by analogy to

electrostatic theory, in Proceedings of IEEE International Communications

Conference (ICC-04). Paris, France, June 2004.

 [17] C.P. Hall, A. Carzaniga, J. Rose, and A.L. Wolf, A Content-Based Networking Protocol

For Sensor Networks. Technical Report CU-CS-979-04, Department of Computer

Science, University of Colorado, August, 2004.

[18] A. Carzaniga, M.J. Rutherford, and A.L. Wolf, A Routing Scheme for Content-Based

Networking. Proceedings of IEEE INFOCOM 2004. Hong Kong, China. March, 2004.

[19] Jeannot E., Knutsson B. (2002). Adaptive Online Data Compression. Proceedings of

the 11th IEEE International Symposium on High Performance Distributed

Computing 2002. page 372.

[20] Van Mieghem P, Vandenberghe L(2006, April), Trade-Off Curves for QoS Routing.

INFOCOM 2006. 25th IEEE International Conference on Computer Communications.

Proceedings 2006

[21] Cormen T.H, Leiserson C.E., Rivest R. L., Stein C. Introduction to Algorithms, 2nd ed.

MIT press 2001

[22] Bulusu N., Jha S. (2005) Wireless Sensor Networks: A Systems Perspective,

ARTTECH HOUSE 2005

[23] Comer D., Stevens D. (1999). Internetworking With TCP/IP Volume II: Design,

Implementation, and Internals. Prentice Hall.

[24] The OPNET website. (n.d.). Retrieved May 2006: http://www.opnet.com

59

[25] The OPNET documentation. (n.d.). Release 11.0

[26] The OPNET documentation. (n.d.). Release 12.0

 [27] Perkins C. E., Royer E. M. Ad-hoc On-Demand Distance Vector Routing RFC3561

60

