Computation Sharing Offered within a Mobile Ad Hoc Context-Aware
Networ k

Fintan McGee

A dissertation submitted to the University of Dubli
in partial fulfilment of the requirements for thegtee of

Master of Science in Computer Science

2007

Declar ation

| declare that the work described in this dissemntais, except
where otherwise stated, entirely my own work and hat
been submitted as an exercise for a degree abitlany other

university.

Signed:

Fintan McGee
14/09/2007

Permission to lend and/or copy

| agree that Trinity College Library may lend orpgothis
dissertation upon request.

Signed:

Fintan McGee
14/09/2007

Acknowledgement

| would like to thank my supervisor, Siobhan Clarkae her support and guidance
throughout the project. | would like to also thakkdronikos Nedos, for his help and
direction and helping to focus the project. | woalso like to thank my NDS class ,

(especially Andrew for giving me use of his lapfopexperiments).

I would also like to thank my family for their qoqrt throughout my masters,

especially when the going got tough.

Fintan McGee

University of Dublin , Trinity College
September 2007

Computation Sharing offered within a Mobile Ad Hoc

Context-Aware network
Fintan McGee

University of Dublin, Trinity College, 2007

Supervisor: Siobhan Clarke

As devices supporting mobile ad-hoc networking bdji@s become more pervasive there are
potentially benefits, such as an increase in agptio throughput, in one node within the

network being able to harness the processing panefunctional capabilities of other nodes
within the network. MANETS (Mobile Ad Hoc Networka)e however generally heterogeneous
in their technology capabilities. Processing poiserot guaranteed to be uniform across the
network, nor is a specific functionality guarantéedbe available at any given node at a specific
moment in time. Each node has its own system cbd&scribing characteristics such as
processor speed, memory and processing load, haswehat services are available at that node.
This system context information reflects the apitif the node to process tasks distributed from
other nodes in the MANET.

This dissertation describes the design, implentiemtand evaluation of middleware, which
disseminates context information around a MANET disttibutes processing tasks to individual
nodes based on the context of nodes targeted te shtne computations. Nodes are initially
targeted for sharing based on the services thegrasi as being available and assigned tasks
based on their system context information. An A#3 been developed which allows an
application running on a MANET node to request 8tahe computations, organised as a job
consisting of discrete tasks, to be shared acr&&MET. Distribution of tasks based on context
information is weighted using values supplied by &pplication requesting the computation
sharing.

The evaluation of the middleware’s task distribaticses a simple test application which submits
a job for sharing. A measurement is taken of ttenlay from when the job is distributed to when
the results are returned to the original sharindené comparison is done between the
distribution of tasks evenly across nodes and igtelglition of tasks using context information.
The evaluation reveals that performance benefiterins of test application throughput are seen
when using context information to aid distributioitasks. However the evaluation also reveals
that the choice of standard underlying UDP and T@Bsaging protocols limits the ability of the
middleware to distribute tasks across the full spfaihe ad-hoc network. In order to gain as large

a performance benefit as possible an enhanced geedstivery protocol needs to be developed.

Table of Contents

(@ gF=T o1 (= g A 111 Yo [T 1 o USRS 1
AV [0 1)Y= L1 o o PP 1
L@ 0] =01 1LV PP 2
(0] o111 10110} o KU 3
Y o0 o1 3
Y o] o] 0 = Lo o PP PR 3
SETUCTUIE ...t et e e e et e e e e e e e e s ae e s e e e e ennnn e eeeennnes 4

Chapter 2 BACKQIrOUNG.uuiiii e e e e e eeeeeeeebaaa s e e e e e e e 6
(€150 @0 41 o 1] o TS 6
PEEI-TO-PEEI SYSTEIMSiiiiiiiiiii et ettt e et e e e et e e e e aeeenmna e eeennns 7
Mobile Ad-Hoc Networks (MANETS)ccoeeiiiiiiieeeee e e e e e 7

Real-world Applications of Ad hoc Networks............c.oooviiiiiiiiiiiiiiiiiiee, 8
CoNEEXT INFOIMALIONuiiiiiiiiiie e 9
Chapter 3 State Of the Art.......coo e e 11
Routing in ad-hoC NEWOTKScccoeiiiiiie e 11
Ad Hoc On Demand Distance VeCtor routing «ceeeeeeeeenneeeeeeeeeeeeneen 11
(€1 o] o1 o U1 1] o 12
Computation Sharing using a mobile agent ... TP UUPPPTPTRRPRPPRPRC A |
Peer to Peer Applications 0N MANETS:cceemmmiie e 15
Mobile Peer-to-Peer ProtoCOl............ooo e 15
Information Dissemination in mobile ad-hoc netwarks..............cccccciiiiiiiinnnn. 16
Data Formats within A-N0C NetWOrkSccceeeiiiiiiiiiiiii e 17
(O P o1 (=T g I T [| o U 18
Programming [aNQUAGEuueuiiiiiie e eeeeiiccie e 20
NOJE ArCNITECIUIE ...ttt e e nnnnees 21
Network Architecture —Peer t0 PEer.........oocceeeiiiiiiieiee e, 21
Building the Network Model................uiimmmm e, 22
Messages Detween NOUES. ... 23
MeSSage FOIMALoiiiiiiiiii e e e e e 23
Message TransSmiSSION ProtOCOL.............. s eeeeieee e 23
Unreliable Datagram ProtoCOL...............uueemmiiiiiiiiiiiieeeeeeeeeeeeeeeeeeiieiinnnns 24
Transmission Control ProtoCoL...............eeciiiiiiiiiiiee 24
Choice of message protocol for Implementation..............cccceeeeeeeeeeeeennn. 24
SNANNG JODS ..o ———————————— 25
Y= Vo L OO UTRPPPPP 26
Middleware COMPONENTS:oiiiiiiiiiiiieimmmme ettt e e e e e e e e e e eeeees 27
(O10] 01 (o B\ =T = (o [T O PP UP PR 27
System CONtEXt REIIHEVETuuuvueeees s etetieess e e e e e e e e e e e eeeeeeeeaeees 82
SEIVICE DIFECIONY....cciiiiiieieeeieet et e e e e e e e e e e e eeaes 28
Context Update MESSAJEScccevvuuuutmmmmmmmm e e eeeeeeeeeeeiiiitiana e e e e e 28
Computation Sharing MESSAQESuuuuuuimmmmmmmm e e e eeeeee e e 28
NEtWOIrK MOAEL ... e 29
NEtWOIK DISCOVEIYcociiiiiieeieeee s e e e e e e e e e e e s 29
DISCOVEIY MESSAQESciiiiiiiiiiiiiiiiiaseeeeeeeiiaaaa s s e e e e e e e aeeeeeeeeserennnnnns 29

JODb EXECULION ENQINE.....uuuiiiiiiii e et s e e e e e e e e e e e e e eeeeeeeenernnnes 30

Sharing Request HandIer ... 30

JOD TIMEOULS ..cooiieiiiieeee e 31
MESSAJE QUEUESeiiiiiii e eeee et mmmnm e et e et e e e e e e et e e e e e eenaa s aeaeaeas 32
The MeSSage RECEIVENcccceeiiiieeieeeeeeemmm e 23
The message DiSpatCher.............ouvuuiiicemmmmmm i 3.3
Local Application API DeSIgN:cccoeeeeeies e e e e e e e e et e e e eenee s 33
Chapter 5 IMmplemeEntatioN e ee e e e e eeeeeeeeees 35
Task Distribution FUNCLONAIILYcevvimmmmm e eeee e e e e e 35
Distribution of tasks evenly acroSs NOAEScccoovvveiiiiiiiiiiiiieein 35
Distribution of tasks across nodes using CONtEXt . .coceveeeeereeerreereeiiiinnnns 37
Processing of completed tasKsS.............. e eeeeeeimminan e eeeeeeesieeeeeeee 39
Job Timeout FUNCHONAIILYcoeveeeies e s e e s e e e e e e e e e e e e e eeeeeeeaennnnnnnneees 40
Dissemination of System Context and Service infaionausing a Gossip Protocol
.. 41
APLIMPIEMENTALIONooiiiiiieiiiiei et e e e e e e e ee e e e b bennnneeeeeee 42
Chapter 6 EVAlUALION...........ccooiiiiieiee e e e e e e e e e e e e e e renneeeeenannnnas 44
EVAIUALION SEIUP ..eeeieiiiiiiiie et e e e e e e e e e enneeeeennnees 44
Experiment 1: TCP Messaging in an AD-Hoc net woHeve all nodes are
NEIGNDOULIS. .o e e e e e 45
Impact of reduction of job timeout value.......ooooeeeeeeiiiii, a7
Experiment 2: UDP messaging in an Ad-Hoc networlenghall nodes are not
(TS0] 0o 10 48
Chapter 7 CONCIUSIONScooiiiieiiiiiie et ceeemem et a s e e e e e e 52
The Benefits of Computation Sharing using Contafdrimation......................... 52
Choice of network messaging ProtoCol........ccooo oo 53
Unreliable Datagram ProtoCOL...............uueemmriiiiiiiiiiieee e eeeeeeeeeeeeaiininnnnd 53
Transmission Control ProtoCOoL...............eeiiiiiiiiiee 54.
Choice of ad-hoc networking ProtoCol..........ccceuiiviivieiiiiiiiiiiiiiieee e, 54
Use of the GOSSIP ProtOCOL.........uueii e 55
Chapter 8 FUIher WOIKcooiiii ittt e e 56
Choice Of SYStemM CONEXL......ccoiiiiii e et eeeeeee e 56
Use of context information beyond system context..............cccceevvvvvvvnnnnnns 56
Extending the Functionality of the MiddleWarecceeiiiiiiniiiiiiiiiiieeiiiiiies 57
Integration of Middleware and Ad-hOC rOULING . e e evevevveeeiiiiiiiie e, 59
Appendix A : AODV Start- Up Shell SCrPt......mm e 61
Appendix B XML Messages EXAMPIES o eeeeeeereeeeeniiiniiinnnaneeeaeaeaaed 62
Context Update XML MESSAQE........cccueeurrrmmmmmmmerssrnnnanaaaaeeeeaeeaeseeeeeesesennnnns 62
Service Directory Update XML MESSAQEccmmmmieeeeeeeiieeeeeeiriiiiininnneeenns 63
Appendix C Local Application API Utilisation Samplde..............veiiiiiiiieneeennnnn. 64

List of Figures

Figure 1 Sample output from an AODV_UU Routing €abl.............cooviiiiiiiiiiinnnnnnn. 12
Figure 2 Process diagram giving an overview oftiiddleware functionlity 19
Figure 3 An example of job distribution in a 4 BAAANETccccooveiiiiiiieiiiiiieeieiiiens 20
Figure 4 Sharing job HierarChy............oovuceeiiiiiii e 26
Figure 5 Middleware COmpPONENt OVEIVIEWo eeeeeeieeeeeeiiniininiiaaaaaaeaaaaaaaaans 27
Figure 6 Sequence diagram showing message floasa of a timeout....................... 32
Figure 7 Process flow for the distribution of tadgkvenly across nodes 36

Figure 8 Process flow for the distribution of taskcross nodes using context

11 (0] 2 =14 [0 o PR RRRRPPPPP 38
Figure 9 Process flow for the handling of compligiEb pieces..........ccooeeiiiiiiiiiiiiiinns 40
Figure 10 Process followed by local applicatidosend a job to the middleware using
L L= RO OUPRRT 43
Figure 11 Network topology for experiment 1.........cccceeiiiiiiieiiieiiiieeeeeeeeiiveeee 46
Figure 12 Experiment 1 oUtpUL reSUILS. ..o 46
Figure 13 Experiment 1 output results averaged...........cccccvvvvviiiiiiiiiieeeeeeeeeeeee. a7
Figure 14 Experiment 1 task distribution Sample............oovvviviiiiiiiiiniiiieeieeeeeee. a7
Figure 15 Experiment 1 output results with recitieneout valueccooeeee 48
Figure 16 Experiment 1 averaged results with reglitmeoutcccoeeeiiiiiins 48
Figure 17 Experiment 2 partial reSuUlt........ceeeeeeeeeeieiiiiiiiiei e 49

Figure 18 Gossip Performance, using TCP and UBRGEOIS.............cceeevvvvvvevennnnnns 51

Chapter 1 Introduction

This section describes the motivation, objectigespe and contribution of this

dissertation.

Motivation

As wireless technology becomes more pervasive landhility to create networks on an
ad-hoc basis containing nodes which are mobilernesamore widespread, there is an
opportunities to share the computation power ohibeées of a Mobile Ad-Hoc Network
(MANET) in a manner similar to GRID computing. Raththan complete a computation
locally on one node of the MANET, as the procesgioger of the node may be too
small to process the data in a reasonable timieeocfuinctionality required for the
processing may not be available on the local nthaecomputations could be distributed

across the network to suitable nodes in the MANET.

However MANETS by their nature are made up of legfenous nodes. Nodes in a
MANET may have the limited processing power of ebiteoPhone or PDA or they may
be the latest high power laptop or desktop. If mpotation is shared among nodes, and
one of the nodes has considerably low processimgpat may slow down the overall
computation completion. In order to avoid thisiation, a potential problem node

should be sent less data to process, in propdxitimeir capability.

Each node in a MANET can be considered to havestesycontext. This is information
about the node such as processor frequency, nurhpeocessor cores, processor load

and memory available. This information can be usespproximate the processing

capability of a node. If this context informatianused to determine how individual
computation tasks should be distributed acros8MABIET, the distribution of tasks can
be optimised to improve performance. A node with tapability will no longer
significantly delay the completion of the overadihgputation.

Objectives

The objective of this dissertation is to demonsttadw system context information can
be used to improve the performance of computatianisg in a MANET. To this end
middleware will be developed with the following ednilities:

Retrieval of node context information.

+ Dissemination of the context information acrossNENET.

+ Dissemination of service information across thevoek. This service

information describes the functionality that carshared.

» Dissemination of computations sharing job datasgtbe network using context

information (which can be weighted).

» Dissemination of computations sharing job datassthe network evenly,
without context. (For comparison to when contexiged).

» Execution of services using shared computation. data

* Interface to receive computation sharing jobs frequesting applications.

Returning of completed computations jobs to thgional node and application.

In order to allow applications to use the middlesvapplication an API will be
developed to allow a local application to requestaf computation to shared across the

network, as well as specify context weights in¢hse where context information is

being used to distribute the information.

Contribution

The main contribution of this dissertation is stfatal evidence, gathered by
experimental evaluation, concerning the impactsafigi context information to
determine the distribution of tasks when sharinggotations on a MANET. There is a
further contribution in the development of middlew/#o support the distribution of
computation sharing tasks using user weighted gomteormation and an analysis of
issues faced in building such an implementatioohsas the choice of underlying
message delivery protocol. An API to enable aniapfbn running locally on a node to

use the middleware is also being provided.

Scope

This scope of this dissertation covers developroéatreal-world implementation of
computation sharing middleware for ad-hoc networke implementation will not run

on a simulator but on computers acting as nodes&al ad-hoc network. The purpose of
this implementation is to show the benefits oftise of context information when
sharing computations across an ad-hoc networkéalaworld scenario, as well as to
illustrate the issues encountered in such an imgteation, that may not be encountered
within a simulation. Of particular relevance is fierformance of messaging protocols
such as TCP and UDP within an ad-hoc network u808)11 wireless.

Approach

The approach taken to this project was as follows:
e Study into the state of the art or relevant areab sis GRID computing, ad-hoc
networking, peer-to-peer architectures, informatitribution within an as-hoc

network.

Research into the technical components of the systais including research on
libraries to provide XML parsing, networking capales and retrieving system
context. Research on a suitable implementatiom @fcahoc routing protocol.

» Design of the computation sharing middleware

* The implementation of the middleware

« Evaluation of the middleware and the benefit of patation sharing using a real

world ad-hoc network

Structure

The structure of this dissertation is as follows:

* Chapter 1is an introduction to the dissertation, descriliimg motivation ,

objectives contribution, and scope of the project

» Chapter 2 gives the background on relevant research arethg foroject, to help
the reader put the project in context and furthmetemstand the motivation of the

project.

e Chapter 3 develops on chapter 2 by describing the statheo&tt of the
background areas mentioned. It also describes selated work to computation
sharing across a MANET

» Chapter 4 describes the design of thmiddleware, highlighting what decisions

were made and what alternatives approaches westdeved

Chapter 5 describes the implementation of the project. lcdbss in detail
using flowchart some of the more complex algorithused by the middleware, as

well as the message flow.

Chapter 6 describes the evaluation of the project, describirdggtail 2

experiments completed as part of the evaluation.

Chapter 7 discusses what conclusions can be draw from therarental

evaluation described in chapter 6.

Chapter 8 describes options for future work, following owrin this project. It
also describes features that were not implemerggai of the middleware due
to time constraints, should be considered for iygetation as part of any future

work.

Chapter 2 Background

This chapter provides background information ormsu@ computer science which are
related to the research topic. These areas wersgdheng point for all research, and a

presented here to familiarise the reader with cptscepon which the project is based.

Grid Computing

GRID computing, using distributed systems, hastone time been utilised to solve
large scale scientific problems, which would othiseabe too computationally time
consuming to solve on single machines. The obje@iVGRID computing is to support
the sharing of resources, such as bandwidth, psowesapacity, storage, between
individuals and organisations[1]. The GRID représeasources as services which are
accessible across a network. The use of distribgpstéms to share processing power is
not just limited to large scientific organisaticarsd academic institutions with significant
network resources. BOINC[2] is a utility which alle a home PC to be used as a node
in a GRID of home PCs located across the planandiasers can contribute their PC
processing power to projects such as the searaxfoa terrestrial intelligence (SETI) or
climate prediction. Within the BOINC network a cetlised server distributes work
packets to the subscribing home PC nodes and st@essults once the computations

are finished.

Peer-to-peer systems

Peer-to-Peer systems are defined by Oram et ahs[3§ self organising system of
equal, autonomous entities (pe€rshich] aims for the shared usage of distributed

resources in a networked environment avoiding @ sirvices.”

Peer-to-Peer computing dates back to the late 1®808gthe establishment of the
ARPANET. The ARPANET was a physical network desdjteallow research facilities
in the United States to share computing resounsgésiacuments. While ARPANET
lacked some of the characteristics of modern peg@eer networks every host on the
network was treated equally therefore it can besictemed to be one of the first peer to
peer networks[4].

In the late 1990s peer to systems gained wides@wacdeness (and notoriety) with the
rise of Napster, an online peer-to-peer file slgpgearvice. Many other peer-to-peer
based file sharing services have since become agguwever there is more to peer-to-
peer architectures than providing a mechanismdople to download music and video.
Peer—to-peer systems can allow users to store dadwemotely in a secure manner [5]
and also allow files to be distributed in such axnea that the overloading of any central

server is avoided.

Mobile Ad-Hoc Networks (MANETS)

Due to the rising pervasiveness of wireless corvigcfor devices, it is increasingly
easy for devices to connect to each other withoytpdysical networking infrastructure.
For example employees in an office location withactess the local ethernet network
can connect their laptops together using wirelesdlow them to share documents.
Devices connected to each other in this mannesadeto be connected on an Ad-hoc
basis. Each node in the network acts as both a(Wwbsth receives inbound connections)
and as a router (which routes messages to thgetjaDue to the fact that there is not
centralised network infrastructure it, and the taet many devices have battery power (
or a self contained source of power), in many c#sesodes of an ad-hoc network are
free to move around in the physical world. If tisishe case the network is referred to as
a Mobile Ad-hoc Network or MANET for short.

In wired physical networks the network topologgenerally constant. Network nodes
are usually available except in the case of fajlarel each node normally has fixed
relationship with its neighbours. If a node joindeaves the network, it is in a controlled
manner. Nodes will generally have a fixed IP adsleesd location. DHCP does mean
that a laptop joining an office network every magnmay have a varying IP address,
however the laptop is a host on the network andarrouter so is not a Node in the
networking sense and is generally not relied todresistently available (unless the

network is being administered in an incompetentmaan

In ad-hoc networks all of the assumptions aboutsdzken continuously available,
reachable at a known IP via a known route and lggaifixed relationship with other
nodes can be completely disregarded. Within ancadrletwork (particularly a Mobile
Ad-Hoc Network) the network topology may be chaiggatl of the time. This renders
the routing protocols, normally used for fixed netls, useless. There are many routing
protocols which have been put forward for use InNEA's. The most interesting of
these is Ad-Hoc On Demand Distance Vector (AOD\jisTis an on demand algorithm
that determines routes to destinations only whgnired. AODV has been chose as the

underlying routing protocol used by MANET nodes thiis project.

Real-world Applications of Ad hoc Networks

Ad-hoc network are very valuable in situations vehtrere is little existing
infrastructure. Possible situations where ad-hdworks are applicable include
* In the aftermath of natural disasters, such afigaakes, where existing
infrastructure is damaged beyond use. Ad-hoc nétsvoan be used by
emergency workers communicates, as well as disériipdormation to workers

the help rescue teams target the right areastesfitheir rescue efforts on

» During Military operations military vehicles on atflefield may not have any
access to existing infrastructure. An ad-hoc nektwaould allow units and
vehicles to communicate and keep track of eachr gibtion. It would also be
possible to distribute the analysis of reconnaissatata or the decryption of

encrypted enemy communications across nodes ingtveork.

« Afleet of vehicles in the near future maybe besablcommunicate with each
other using ad-hoc networking.[6] Such communicetioan be used to warn of
impending obstacles in the road, changing weathreditions. As research
progresses on computer controlled vehicles, adaebworks will be vital for

inter-vehicular communications.

* In many countries in the developing world therktike telecommunications or
networking infrastructure. The One Laptop Per CRitdgram[7] (OLPC) is an
education project which aims to encourage learmraildren growing up in
developing countries by providing them access(i@lative) cheap, robust fully
functional laptop. Due to the lack of networkindrastructure each laptop is
equipped with wireless functionality that allowsshenetworks to be set up
between laptops in an ad-hoc fashion. The routmtppol use by the OLPC
laptops is a variation of the AODV routing protocdlhile the laptops
themselves are not exceptionally powerful thegotential for a group of laptops
to network and use their combined processing poavperform computationally

intensive tasks more quickly.

Context Information

When humans communicate with each other very oftense information implicit from
the situation to gain a more thorough understandfngeaning. Often the context of a
piece of information has a large impact on how thfamirmation should be understood.
The question “Who is making that statement?” caarohave an impact on the
understanding of what is being said. When we makestns, having more information,
or understanding the context of the situation vedlais to make better choices.

The same logic also applies to computer applicati@ontext information can help a

computer to make decisions which result in betésfggmance.

A real world example of context information beirggd by a computer system is the
London taxi company “Zingo”. When a customer c#ils taxi service on their mobile
phone, the position of the mobile phone is retrikard is compared to the GPS
positions of London taxis. The user is then comeedirectly to an available taxi driver

in a nearby taxi. The context information beingdikere is the location of the user,
which can be retrieved from the mobile phone, &eddcation of the taxi, which is
retrieved from the taxi’'s GPS device. The perforoeabenefit is a user (the customer)
being connected directly to a taxi drive who isrbgaand available to collect the user

quickly.

The definitions of context vary from applicationapplication and situation to situation.
Dey[8] defines context d&\ny information that can be used to characterie t

situation of an entity. An entity is a person, @lacr object that is considered relevant to
the interaction between a user and an applicatinaluding the user and applications

themselves.”

From this definition of context if the applicatioparpose is to process user data in a
more timely fashion, the system information is lughle piece of context. If an
application is to distribute data for processingpas remote nodes in a network the
system information of each node may be able tamfine application about how tasks

should be distributed in a manner which improve$opmance for the end user.

10

Chapter 3 State of the Art

This chapter will give an overview in the curretats of the art of relevant research
areas such as ad-hoc routing, grid computing, @ridputing in a mobile environment
and data sharing in mobile devices. It elaboratethe background information given in

the previous chapter, giving specific exampletefdtate of the art.

Routing in ad-hoc networks

Due to the topological differences between ad-retwarks and more traditional
networks, new protocols are required for the rquohdata packets. Established wired
network protocols such a Distance Vector Routing) lank State Routing depend on

relatively static network sand cannot be used th@dnetworks.

Ad Hoc On Demand Distance Vector routing

Ad-hoc On-Demand Distance Vector (AODV)[9] is ating protocol developed for ad-
hoc networks and is quite popular amongst resees@idMANETSs. AODV has been
chosen as the underlying routing protocol to belusehe development of middleware
for this dissertation.

As its name suggests AODV is a distance vectoopmfl0]. This means the algorithm
works by each node maintaining a 2 dimensionalorgce. a table) giving the best
distance known to a remote node in a network akagsehe address of the next node in
that route. The protocol is also on-demand. Thiamadhat the protocol only determines
the route to the destination node when the sourteark node wants to send data to that

destination node. This is what allows the protdo@dapt to the changing topology of

11

an ad-hoc network. In order when to spot that éertmia node is no longer viable due to
a node dropping out of the network, the AODV prolqeeriodically sends special
“HELLO” messages to each of its neighbours. If mhieour node suddenly drops out of
the network, it will fail to respond to the “HELLQHhessage and the source of the
message will know that any routes destination n@edesh were accessed via the now
defunct neighbour node are unavailable. This resulthe routing table being purged of

all routes that used the neighbour.

Time: 21:34:36.578 | P. 134.226.51.176, seqgno: 1 entries/active: 3/3

Destination Next hop HC St. Seqno Expire Flags I|face
192.168. 1. 101 192.168. 1. 101 1 VAL1 1829 ethl
192. 168. 1. 100 192. 168. 1. 100 1 VAL 1 2021 ethl
134.226.51.199 134.226.51.199 1 VAL 1 1971 ethl

Figure 1 Sample output from an AODV_UU Routing Table

An implementation of AODV called ADOV —UU has be#eveloped at Uppsala
University. It is freely available and is capabfeunning on systems which use any

recent version of the Linux operating system.

GRID computing

GRID computing is a popular research topic in regeastitutions across the world

The Globus project[11] is one of the first and astnasible projects in the area of GRID
computing. It was started in 1996 and is suppdriedumerous universities, such as the
university of Chicago and Wisconsin scientific ingions, such as NASA and members
of industry such as Microsoft and IBM.

The project is concerned with developing techn@sgo support the building of large
scale grid applications as well as building sofevirols, such as the “Globus toolkit™” ,
which supports the development of service orieafgalications for distributed

computing, as well as supporting the infrastructardo so[11].

The BOINC platform (mentioned in chapter 1) alstdicative the start of the art in

grid computing. The BOINC project boast over 1,000, users each contributing to

12

computations, with approximately 250,000 curreattyively participating on a daily
basis[12]. Ireland alone has contributed over 18@&AFLOPS. The BOINC platform
overall performance at 683.697 TeraFLOPS[12]. FL@RSa measure of Floating point
operations per second and are an indicator of ctanperformance. To put these
measurement in perspective the IBM BlueGene/L sugpeputer, said to be the world’s

fastest supercomputer boast a peak speed of 3FOLEOPS[13].

The BOINC project is not a perfect example of GRtiPnputing as it does rely on
central servers to distribute tasks to client nptlesvever it does clearly demonstrate
how harnessing large numbers if individual compatestems can be of benefit. In the
case of BOINC the benefit is in giving scientifiopects access to a vast amount of
processing power that they otherwise would notlde & use.

The Globus Toolkit™ and Globus project shows hovesneely distribute systems can

be implemented using services. The BOINC platfolearty illustrates the performance
benefits that can be gained from sharing computatacross a number of nodes. These 2
concepts are important input to the design of amgputation sharing middleware The
middleware should be able to distribute data t@sswnodes and be able to remotely

process that data using services running on eadd. no

Computation Sharing using a mobile agent

A novel approach to GRID computing within MANETSnga mobile agent is
described by Wang et Al.[14] (2006). A mobile aperdefined as aself-contained and
identifiable computer programs that can move withi@ network and act on behalf of
the user or another entitypy Pham et AI[15]. In the approach described,abite agent
carries task data and the logic (essentially ctaleerform the data around the network
looking for nodes with resources to be able to ssdthe data. The mobile agent also
stores the resource requirements for the job,deraio be able to determine whether or
not a node is capable for executing the job. lbdenis processing a job, but suddenly
cannot does not have to resources to do so, the ege save the job and move onto

another node. The agent is also capable of disinigpthe workload across several jobs.

13

When an agent is migrating between nodes, it canyghe resource status of nodes in
the network, to work out optimal paths. For mor&ade on how the agent migration

occurs, see[14].

The mobile agent approach is very interesting, vawé does have some potential
drawbacks. The bundling of execution code with aéthin the agent does provide
some security concerns. It would be necessanh®ntobile agent to execute within a
completely segregated virtual machine in order&y@nt malicious code executing on a
node. The bundling of code does have the advarited the agent has no need for a
service discovery mechanism, to search for senatesnode that are capable of process
the job data. However this also means that exaetgtboe must be specifically written

for the agent. The agent cannot take advantageeedxisting services which may exist
at a node. Also, highly complex execution logic maguire a lot of code, which in turn

may result in an increase in the footprint of tgera as it migrates between nodes.

The agent also needs to migrate around the netwarider to find nodes which have
suitable resources. This could be a significantdséthe jobs carried by the agent were
quite data intensive. An agent migrating aroundntigvork carrying a large volume of
data with it will incur a significant overhead,term of the amount of time it takes the

agent to migrate from one node to the next.

If it is necessary of the mobile agent to returthi® originating node (which in the vast
majority of cases it will be) there maybe an is$ulke network has partitioned resulting
in the agent being in an MANET isolated from thgiorating node. Obviously to
originating node can dispatch another agent, hihieiforiginal agent had completed 90%

of its task this seems like an awfully large ovedhe

The agent approach does have many merits, howksfaduation has been done using
simulators. In a real-world wireless environmeahsmission overheads, as well as
interference and lost packets could result in qaitegative impact on the ability of the

agent to navigate around the network.

Agent based computation-sharing in an MANET doe lpotential, but | believe that it

is limited to processing without a large data oeexh processing without complex

14

execution logic and ad-hoc networks where intereations between nodes are strong

enough to avoid data having to be retransmitted.

Peer to Peer Applications on MANETS:

Within any network a set nodes running peer-to-p@tications can be considered to
make up their own logical network. This is calledaverlay network and the topology
of this network may be completely unrelated touhderlying topology of the physical
network. For example, if a peer to peer applicatsorunning across the internet, two
nodes which may be physically close to each otheyr Inave several nodes between
them in the overlay network. This is the case &ermto peer networking approaches
such as Chord[16].

This logical/physical incongruence is not suitdiolerunning P2P applications on
Mobile Ad-hoc Networks, as the topology of nodethw the MANET also reflects their
availability and the cost of sending data to thosées.

Mobile Peer-to-Peer Protocol
Schollmeier et al[17] describe a Mobile Peer-torAretocol (MPP) that is designed to

allow the operation of peer to peer services oh@networks by over coming the
topology issue described above. The MPP protocsea® existing network protocols
where possible and spans from the network laydré@pplication layer, giving a P2P
application direct access to the network layer hillithe network layer MPP uses a
Enhanced Dynamic Source Routing (EDSR) protocoichvis an extension to the
existing DSR protocol, but with enhanced functidigakhich allows P2P application
search for specific nodes and content. The protoaolallow nodes to be searched for
based on a hashed description of services, ortavadse of a file when searching for

content.

15

| believe the strongest point of the MPP protosdhie integration of peer-to-peer
functionality with the Network layer functionalitifowever the MPP protocol is not
entirely suitable for computation sharing, as ®@wvare only located on demand so
when a computation needs to be shared, a listrafidate node needs to be built up for
distributing the tasks across. The purpose of cdatjmun sharing is generally to decrease
overall processing time, so if each request hasx&na over head of several discovery
messages being created once the initial requesbfaputation sharing arrives. MPP is
also designed for general peer-to-peer applicasoch as file-sharing and remote file
storage, so if provides more functionality and avier footprint than is necessary for
computation sharing. Finally the only implementatad the MPP protocol is using the
System Definition Language (SDL). There is no impéatation available as an API for
a standard operating system. To build an implentientaf MPP for a real world
network would require operating system programnsikitis and a timeframe beyond the

bounds of this dissertation.

Information Dissemination in mobile ad-hoc networks

As part of any computation sharing middleware thstributes computation tasks to
services on remotes nodes based on node systeaxt;dhere needs to be functionality
to provide service information and system contefdrmation about each node.

One approach to do this is described by Nedos &l As part of an approach to
semantic service discovery in MANETS, a gossipqooltis used to exchange
randomised subset of concepts, which describecgeravailable, between nodes.

Part of the reason for using this protocol is thate is no centralised service registry
available within MANETSs due to there ad-hoc natéyey such registry would need to
have a consistent well know location, which is pos$sible within MANET

architectures.

Whilst there is a lot more complexity to the sen@asérvice discovery described by
Nedos et al, the use of the gossip protocol iseoklit to any computation sharing
middleware which needs to have node system coatekservice information distributed
across a network. Semantic service matching isdmithe scope of this project ,

however randomly distributing node system context service name information using

16

the gossip protocol is a useful mechanism, whidhawvbid flooding a MANET with

context updates.

Data Formats within A-hoc Networks

XML[19] (Extensible Mark-up Language) is a weltaslished Internationally agreed
upon standard for formatting data . It is used leglds et al [18]. It is also used by other
MANET oriented middleware implementations such &IBDLE (Mascolo et al,
2001)[20]. XMIDDLE is a middleware application fMMANETS which allows the
replication and reconciliation of data across nadesmobile ad-hoc network.

XML is frequently chosen for data formats becanisiés hierarchical data structure, the
widespread availability of parsers and is humadabke form. These reasons also make

it valid choice as a message format for the contjmutaharing middleware.

17

Chapter 4 Design

This chapter describes the design of the middlevitast application and API. The
design decisions made for each component are Hedaas well as potential alternatives.

Middleware overview

At a very high level, the purpose of the middlewiar® receive a processing job from
an application, divide that job into smaller jolrtgavhich are distributed to remote
nodes within the MANET. Each of the remote nodesss running the middleware, and
the middleware application on each node processeddta contained in the job part and
returns the result make to the middle ware on tiggrating node.

Once all remote nodes have returned data to thdlem@re on the originating node, the

completed job is returned to the application.

18

Middleware
receives job from
local application

Job is divided into
job pieces and
distributed across
network

» Wait for results

4

A

completed Job
Piece is returned
from network

Update original job

with job piece
results

Have all job tasks
been completed?

Yes

v

Return completed
job to application

End

Figure 2 Processdiagram giving an overview of the middlewar e functionality

Figure 3 is a sequence diagram showing the sequdmaessages in an example of

middleware task distribution in an ad- hoc netwooksisting of four nodes. The local

node is running both the application requestingcthraputation sharing and an instance

of the middleware. Each of the remote nodes israisning the middleware. For

simplicity it is assumed that all nodes are capablarocessing the job data. When the

middleware application running on the local nod=ives a request it divides the job

into smaller job parts and distributes 3 of thesthe other 3 nodes in the network. The

fourth job part is processed on the local noddfitse

19

Local Remote Remote Remote

Node Node 1 Node 2 Node 3
(B 1 D N ot N e—
Local Application Middleware Application Middleware Application Middleware Application Middleware Application

|
|
|
|
}
Initial Sharing Job |
|

|

|

|

|

|

|

|

|

Job Piece 1 |
|

Job Pfece 2

Job Piece 3

I

|

|

|

|

|

|

|

|

|

|

|

}

|

} Job Piece 4 is
I processed on
| | the local node
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Job Piece 3 Result

Job Piece 1 Result

1
|
T I
} Job Piece 2 Result

T

Completed Job Result ’ r

Figure3 An exampleof job distribution in a 4 node MANET

Architecture

Programming language

The middleware, API and test application have edirbimplemented using C++, an
object oriented language which is compiled natialya target system. The reason for
choosing C++ is that, due to the fact that codmmpiled natively for a specific device,
performance is significantly better than for a laage that runs upon a virtual machine

e.g. Java.

As a requirement for this project it is necessattyaesystem context information from
the OS, there are cross-platform libraries avadlablperform this function. A language
such as java was not deemed suitable as it reqine¢eéach node run a virtual machine,

which would consume system resources and thatraystatext information would not

20

be readily available. A negative aspect of C+-hat it is more complex than most other
object oriented languages. It features fewer prognar friendly features such as array
bounds checking and garbage collection, which eafobnd in many more recent
languages such as java. Despite the increasedi¢athbhallenge in implementation, it

has been chosen for its performance and the augyailf the necessary libraries.

Node Architecture

For the purposes of the project implementation emcte in the network is running the
Linux operating system, and hence the middlewapdicgiion is built specifically for
Linux. Linux is a freely available operating systearhich is widely supported and
frequently used in networks, particularly in resgaiThere are many different
distributions of Linux. The distribution used fdrg project was Ubuntu v7.04.

Each node contains an 802.11 wireless card capabmmmunicating with other nodes
in the network in an Ad-Hoc manner. The main akléxe is the windows operating
system, however Linux was deemed preferential de@mount of free open-source
libraries available, as well as the fact that fréely available without and charge. The
libraries used for this project were

* The GNU Common C++ library[21] was used to providedlti-threading
functionality, as well as socket functionality (sBaTCP and UDP
communications).

e The LibXML++ library[22] was used to provide XML regage parsing and

generation functionality

* The gLibTop library[23] was used to retrieve pramscontext information

direct from the operating system kernel

Network Architecture —Peer to Peer

21

The high level architecture uses a peer to peeemBudie to the decentralised nature of
MANETSs any type of clients-server model would bgractical. Nodes can join or leave
a MANET at any time. Use of a client server modelid require on of the nodes in the
network to be nominated (or elected by the othelespas server. If a set of nodes
within an ad-hoc network are dependent on one aotieg as server node, the loss of
the server node would result in a significant oeah A new server would need to be
elected which would require a considerable amotimessages to be generated within
the network. This also results in the network r&ihly usable while an election takes

place.

A peer-to-peer model also allows for nodes to compaie with each other in a more
direct manner, without the necessity for messagée routed through a central server.
The negative side of using a peer to peer modbhisall nodes need to have a view of
the whole network, not just the main server. Taalk to an increase in the volume and
size of messages used to disseminate informatiout aletwork size. However given the
amount dynamic nature of MANETS, and the extra iagss for a central server re-elect

and node discovery a peer-to-peer model is the suiistble for the middleware.

Building the Network Model

In order to be able to decide what nodes to shargatations with, the middleware
application needs to know what nodes actual exidte network. Also in order to be
able to decide how to distribute tasks based otegbmformation, the middleware
needs to be aware of the system context at eaahawdell as the services available at

each node. There are two possibilities for this.

The first option is to build up a network modekidvance of receiving any sharing
requests. This means nodes have to share theextartd service information with each
other on a regular basis. This means little timetbeébe wasted between a node receiving
a computation sharing request and that request) lnstributed across the network.
Unfortunately this also results in many extra updaessages being sent around the

network from each node.

22

The second option is to build up a network viewyamice a request is received.
However this would mean a considerably delay wheade receives a request for
computation sharing. A node will need to query salvether nodes in the network to
determine which nodes are candidates for sharihig. Will take time especially if
discovery messages have to travel to nodes sdwagpalaway from the originating node.
Given that the purpose of computation sharing i®tiuce overall processing time for a
job, this overhead will impact any performance daim the sharing of the

computations.

In order to maximise the time benefit gained frdrarsng computations across the ad-
hoc network, the middleware design is adaptinditseapproach, where a complete
network model is built in advance of any computatharing requests being received by

a node

Messages between Nodes

Message Format

XML is being used as the data format for all messaML [19] (Extensible Mark-up
Language) is a well established internationallyeadrupon standard. It is text based and
is widely used for integration between applicatiofisere are also many C++
development libraries available to generate messiagan XML format. XML is a
human readable text based format, however is dedsiltransmit non-text based data
using XML. This can be done by converting the data text form guaranteed to avoid
any XML control characters. This conversion proad®ss increase the size of the
message however, to send binary data would reguinessages to be sent, one for the
text and control information and one for the bindaya. Encoding the binary data within
the XML message saves on extra messages and saaphieé messaging design.
Examples of the XML messages used to disseminaiexioupdates can be seem in

Appendix B.

Message Transmission Protocol

There are two possible protocols for the transmirssi data between nodes. The first is

the Unreliable Datagram Protocol (UDP).

23

Unreliable Datagram Protocol
UDPJ[24] is a very simple protocol which allows d#&tebe sent without a connection.

Each UDP packet consist on and 8-bit header, fatbtay a data payload. The UDP
protocol does not have any flow-control, error cohor retransmission if data is
corrupted. As a result of the lack of flow contamid the lack of a continuous connection
a sender of a UDP packet cannot be sure that thettactually received the packer,
unless it is specifically acknowledged. Anothendsack of UDP is that it is packet
oriented. The maximum packet size for a UDP messagenerally 64 kilobytes. This
means that is a message larger than 64 kilobyteshie sent it must be divided up into

smaller packets and reassembled at the destinatmthe original full message.

Transmission Control Protocol
The second protocol is the Transmission Controtdea (TCP). TCP[25] is designed

specifically to provide and reliable end to endadstteam over an unreliable internet
work. TCP provides functionality such as flow cah@nd error control. As a result of
TCP’s end-to-end connectivity, once a connectiagsiablished, a message can be
assumed to have reached the target successfullyigmalt corruption. As TCP is steam
based and manages flow control there is no rastnicin how big a message (within
reason) can be sent using TCP. The protocol witesponsible for breaking the data
into individual packets and reassembling them atdistination. However, when it
comes to transmitting data, the enhanced funciitgrafi TCP means that it has a higher
overhead than UDP. More work has to be done a pexdding System level to transmit
a TCP packet than a UDP one

Choice of message protocol for Implementation
Initially for the implementation of the middlewaf€P was chosen as the message

transmission protocol for messages between nodehwdquired a response. While
sending a TCP messages has a higher overhead WiaR anessages the end to end
connectivity of TCP was a very attractive featurd¢hie design of the middleware.
However experimentation revealed that TCP doepedbrm well running on a wireless
ad-hoc network using AODV for connectivity. TCP oewtions could only be made to
nodes which were direct neighbours in the ad-hdaorik. As a result of this the

24

middleware was designed to be able to run usimgeiCP or UDP. When the
middleware application is started, a command la@ameter specifies which protocol is
to be used. The addition of UDP also meant thaadunctionality had to be added to
the middleware. In effect aspects of the TCP prthave to be rebuilt at the application
layer. Messages received via UDP must be acknowtbdgd messages which were are
larger than 64 kilobytes would be broken up intecps which can be reassembled at the

destination node.

Sharing Jobs
When an application wants to share computatiorssibitnits a job consisting of several

tasks to the middleware. As part of the job subriss the target application, a job ID, a
timeout value and parameters for the target apmhicanust be specified. It is also
possible to specify context weights as part ofta jdhis indicates how much preference
a one piece of context information is given ovestaer when the middleware evaluates
how jobs are to be distributed. If no context weiigfiormation is specified the job is
divided evenly amongst the nodes. The individusiksebelonging to a job are atomic. A
task cannot be divided across nodes. A task habaamits own application parameter
data, but must use the service specified by thenpgob. Each task also stores the data

that is to be processed.

25

Task 1
params = “..

Task 2

1 ”

params = “..

Task 3
params = “..

Task N
params = “..

Figure4 Sharing job Hierarchy

When a job is divided across nodes, it is thkstas the job that get sent to different
nodes, as part of new smaller job messages. Eatles# new smaller job messages is
nearly identical to the original job message, extlepy have fewer tasks and a unique
“piece ID”. Tasks are considered to be the lowegtll of granularity when it comes to
dividing process across nodes.

For example if a job with 5 tasks is to be shansghé/ across 3 nodes, 2 of the nodes
will receive 2 tasks while the final node will reéee 1 task.

Services
There is no functionality within the middlewarepmcess task data directly. Other

applications are used to process the data. Thedieapons are considered services as
they offer functionality as a service to other nodethe network. Normally services are
remotely invoked using a messaging protocol sucB@&P over an agreed port. Due to

time required to build such services and the sitoescale of this project, a very simple

26

service model has been used. All services suppbstelde middleware are actually
command line applications which can be invoked walhameters. When a task is
received to be processed on a node, the taskdssaved to disk and a command line
application is invoked to processes that data.rékaelting output data of the command
line application is read from the application’smuttfile and stored as the task result
data.

Middleware Components:

The middleware is made of up 5 main components

Computation Sharing

Middleware Message

Queues

Context Network
Manager Model

Job Sharing

Execution Request
Engine Handler

Figure5 Middleware component overview

Context Manager

The context manager component looks after botlsyeEem context as well as the list of
services which are available on the nodes. Theegbntanager periodically retrieves
and dispatches context information (both systentexdrand service information) to
other nodes in the network. A simple form of tlesgp protocol is used to do this.
When the context manager tries to send a systetextarpdate message, a target node
Is chosen at random and the context manager seatisdde its own context and the
context of every node in its network model. The sapplies to service directory update
messages.

27

System context Retriever

The context Manager retrieves the local systemesant his includes processor and
battery information. Processor context informai®read using a system library. The
battery information is retrieved by parsing theuteef a command line call which

outputs the battery status. The data retrievedriadtted into XML messages ready to be

dispatched

Service Directory

The service directory stores a list of serviceslalike on the local node. This list is read
in from a text file. It is up to the node adminatr to specify what services are available
on the node. A shared service directory class réasldile, and parses the data into an

XML message ready to be dispatched around the mietwo

Context Update M essages

Periodically a nodes context manager will sentaahate to other nodes in the network.
These updates are made using a TCP or UDP, depenlithe parameter the
application was started with. It is expected thetrget node is active and if it is not the
node must be removed from he nodes network ligtrdier to verify if a node is active

when using UDP the node must send a UDP response.

Computation Sharing M essages

Computation Sharing messages are also sent viaof OPP, depending on the
application configuration. These messages can helage in size as they contain
computation sharing task data. It is also vitalritiessages are received successfully.
When running in UDP mode computation sharing message broken into 64 Kilobyte
packets. Each packet is acknowledged by the rackéfere the next one is sent, as UDP
does not guarantee delivery. When messages arasngtTCP there is no need to
perform any such acknowledgement or divide the aggsato packets.

28

It is also necessary to be sure that the taskislaiat corrupted when received by the
target node, so an MD5 checksum is included foh ¢ask. The MD5[26] digest
algorithm is used produce a message digest vaiibddask data when it is being sent.
When the receiving node receives the task daedbmputes the MD5 digest value. |
this value does not match the one included in th®Xor the task, the receiver knows

that the data has been corrupted.

Network Model

Each Node running the computation sharing middlevgéores a list of other Nodes in
the MANET which are also running the computatioarsig middleware. Against each
entry in the node list is stored the IP address mdde, the name of the node as well as
the system context information and a list of avdédaservices at that node. Periodically
updates to the system context and service infoomdtir nodes within the network

model are received via the context manager comgonen

Network Discovery

When the computation sharing service is started,afithe first pieces of code to
execute is concerned with network discovery. Avoek discovery class reads data
from the AODV routing table. This data includessa of all the IP addresses of
neighbour nodes in the network, as well as possit#yP Addresses of nodes more than
one hop away who have recently been communicatdéd Whe AODYV routing table

data is output by the AODV module approximatelyrg\&0 seconds. (This frequency of
the output is a configurable parameter, set whaniisg the AODV module). Due to the
fact that new nodes may join the network at angt{or may start running the
middleware application at any time) the networlcdisery mechanism periodically
checks the AODV routing table data for nodes wladhnot part of the network model
already and sends them a discovery message.

Discovery M essages

29

All discovery messages are UDP based whether thigcapon is running in TCP mode
or UDP mode. This is as a response in not necgssapected and the messages are
small in size. The reason a response is not nedgssgected is that it is not assumed
that all nodes within the network will be runnidgetmiddleware application. Each node
also has a UDP server running, listening for discgvmessages from other nodes. If a
discovery message is received, the node whichtkemhessage is added to the local

nodes data model, provided it does not exist inmbdel already.

Job Execution Engine

This Component takes a job piece from the Sharieguiest Handle and executes it on
the local system. The middleware does itself daésontain any code or functionality

to process the job itself.

The application name and parameters are readtfrenob and the job is executed using
the command line. Once the job has been executearitinal task data is replaced with
result data, and each task in the job is markembagplete. The completed job piece is

then sent back to the node it originated from.

Sharing Request Handler

This component handles computation job sharing agess This includes sharing
request and sharing result messages. A Sharingsegan be an initial sharing request
received from a local application, or sharing rexjdeom a remote node (which has
received an initial sharing request from a locall@ation). If a sharing request job is
received from a remote node it is passed to theyaoution engine.

If a sharing request message is an initial shaeqggest from the local node, it is divided
into smaller job pieces which are sent out to ottoetes for processing. The job’s tasks
can either be divided evenly between all nodesldapa executing the job, or it can be
divided amongst the nodes using context informatiesulting in some nodes getting
more jobs than others. The local node can alsoueseme of the jobs tasks. If this is
the case the job piece is passed directly to thexecution engine once all the other job
pieces have been dispatched to remote nodes.

Once the job task data has been processed byrta@odes, the resulting task data is
returned to the originating node for the job.

30

This component also handles sharing results friivaranodes, for requests which
originated from the current node. When the a jaz@icontaining the results of a shared
computation is received, the results are storethéygharing request handle until all job
pieces have been returned and the original jolv,gantaining result data, can be

returned to the local application.

Job Timeouts

When a job is divided into pieces for remote preoes it is given a unique piece ID and
a timeout timestamp. If the job piece has not jeness and returned by the time this
timestamp has been reached the job piece is coaditie have timed out. When a job
piece times out it is redistributed across the pétvior processing. To redistribute a job
the sharing request handle simply shares it achessetwork like it would a job from a
local node. When a job piece is redistributed kirisken again into smaller job pieces (if

possible) and redistributed across

Figure 6 illustrates the messages sequence betveel®s when a job times out. In the
diagram, remote node 2 leaves the network whikeptocessing job piece 2. When job
piece 2 times out at the local node it is redisteld as job pieces 5, 6 and 7. Job piece 7
is processed on the local node, while job piecasdb6 are sent to the remaining remote

nodes.

31

Local Remote Remote Remote

Node Node 1 Node 2 Node 3
(B 1 D N ot N e—
Local Application Middleware Application Middleware Application Middleware Application Middleware Application

| | |

| | |

| | |

| | |

| | 1
| |

Initial Sharing Job | | |

| | |

| |

| |

|

|

|

|

Job Piece 1 !

Job Piece 2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Job Piece 3

Job Piece 4 is
processed on
the local node
Job Piece 3 Result

Job Piece 1 Result

Timeout T Job Piece 5
Occurs

Job Piece 6

Job Piece 7 is
processed on
the local node

Job Piece 5 Result

Job Piece 6 Result

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Completed Job Result ’ r

T
|
|
|
|
|
|
|
|
|
|
|
|

Figure 6 Sequence diagram showing message flow in case of a timeout

Message Queues

The messages queues are the point of entry antbexail messages in the middle ware
except discovery messages. Discovery messagesearesponsibility of the network
model. There are 2 messages queues within thecapph the inbound message queue

(the message receiver) and the outbound message (fthe message dispatcher).

The M essage Receiver

When the middleware application is started a setweiad is launched which listens on a

predefined port for inbound messages. This sehreatl listens for either UDP or TCP

32

messages depending on which parameter value trdieware application was launched
with. Once an inbound message has been receivedantirety, it is passed to the
message receiver. The messages receiver contguesia of messages which have been
received. A thread processes the queue taking ges$@m the front of this queue and
passing the message to the relevant componentcadrtiext manager receives all system
context and service directory updates. The shagqgest handle receives any messages
concerning computation sharing. Once a messagedeasdispatched to the correct

component it is removed from the queue.

The message Dispatcher

Whenever the Sharing Request handler or the Cohtartiger needs to send an
outbound message, the message is added to the gumessages in the message
dispatcher. A message dispatching thread readsagesfrom the message queue and
sends them to the target node (specified in thesagess XML header) using either UDP
or TCP messaging, depending on which parametee\htimiddleware application was
launched with. Once a message has been sent sutlgesshas failed transmission 20

times it is removed from the outbound queue.

Local Application API Design:

In order to allow applications running locally omade to created jobs and pass them to
the middleware for computation sharing a small A& been designed. The API allows
a local application to create a computation shaoinjgct. All interaction between the
local application and the middleware is done using class called

“computationSharer”.

The following functionality is required in the conotption sharer class to allow a local
application to use the middleware.

* The ability to create job for sharing in a formaattcan be understood by the

middleware

33

« The ability to create tasks for the job, as welbddd task parameters and data.

e The ability do deliver the job as a computationrsttarequest to the middleware

e The ability to wait for and store the result of te@mputation sharing job.

34

Chapter 5 Implementation

This chapter will describe some aspects of theemintation including
* The algorithm for the distribution of tasks evenly
* The algorithm for the distribution of tasks usirantext information

* The gossip algorithm used for dissemination of eghand service information

Task Distribution Functionality

When the sharing request handler component recdatassent from a local application
a check is done to see whether any context wengttrnation is included. Depending on
whether or not context weight information has bseecified, tasks are distributed
evenly across nodes or distributed using the we@yhbntext information. The original
job received from the local application is dividatb job pieces when it distributed
across the remote nodes. When a job piece is egtutis used to update the original job
with the result data. Once all tasks of the oribjal have been processed it is returned

to the local calling application.

Distribution of tasks evenly across nodes

When a job is to be distributed evenly across nbdesharing request handler first reads
what service is required by the job and a call &lento the network node model to see

which nodes support the service. When the netwartehfinds a node supporting the

35

service specified it send the node a short “pingssage to verify the node is still
contactable. This “ping” consists of sending a sR@P or UDP message to the target
node. If no response is received, it is assumedhleaarget node has left the network.
The target node is not returned to the sharingastjutandler as a node suitable for

sharing, and is removed from the network node maltegjether.

Calculate Number

Retrieve target of tasks per node
nodes for sharing and remainder if Create job piece
from network " the number of for target node
model tasks does not
divide evenly A
N Remainder
Yes Tasks > 0
Assign piece ID N
and Timeout °
Timestamp. Add |«
job to job piece
vector
Dispatch job to
target 4 No Yes

Is job target
local Node?

Store local Job |« Yes Add a remainder

task to job piece

v

Decrement
— number of
remainder tasks

Store Local Job
Result

Does local Job
Process Local Job

ﬂ!
No P End

Figure 7 Processflow for the distribution of tasks evenly acr oss nodes

Once the list of target nodes is returned to tlaish request handler, the number of
tasks to be distributed is integer divided by thenber of nodes. The remainder of this
division is also stored. A new job is created faclenode and each node’s job is
assigned the number of tasks resulting from thegiert division. If there are any
remainder tasks, one of them is also assignecetadbe job and the total number of

remainder tasks is decremented.

36

Each new job created for a node is given a unigeeedD to differentiate them from
each other, and the original job received by thédieware. Each of the new jobs created
to send the tasks to the sharing nodes can bedawadito be a job piece, as they are all

pieces of the job originally submitted to the meldéare.

Each of the job pieces is given a timestamp, wiiaqual to the current time plus a
timeout value for that job piece. If the job pidwes not been processed and returned by
the time this timestamp has been reached, it isidered to have timed out and must be
redistributed for sharing across the network. Fynalcopy of the job piece is saved in a

vector, in order to track which job pieces haverbeempleted or have timed out.

Once the job piece has been added to the job pester it is ready to be dispatched.
The job piece is dispatched to its target nodeiguie outbound message queue, unless
its target node is the local node. If the job pgeta@get node is the local node there is no
point in sending it via UDP or TCP, as it can beaxed within the sharing request
handler. A job piece that is for the local nodens$y processed once all of the other jobs
have been dispatched. Once the local job piecédms processed it is used to update

the original job vector and its tasks are markedaasplete.

Distribution of tasks across nodes using context

When a job is to be distributed using context infation the first step for the sharing
request handler is the same as for when no coistepecified. The target list of nodes
for sharing is retrieved from the network node maa¢he same manner as is done
when jobs are to be distributed evenly. Once #teoli target nodes has been retrieved,
the context weight information is obtained from jble. This information tells the
sharing request handler which pieces of contextrmétion is to be used. The values of

each piece of context are retrieved from the ndtwoodel.

37

Retrieve target
nodes for sharing
from network
model

Retrieve context
information from

Y

the original job

Retrieve context
values for target
nodes from
network model

Calculate
percentage scores
for each context
metric

Assign integer
number of tasks to

Derive number of
task to be assigned to
each node from

Using weighted
scores, calculate

percentage of task

Apply Context
weights to

percentages. .
each node (unrounded float to be assigned to percentage scores
each node
value)
Remainder Yes
Tasks >0
Assign Remainder
task to node with
largest remainder
from integer
No division
Assign piece ID
. . and Timeout .
Lyl Create job piece | No»| Timestamp. Add N Is job target
for target node .) . local Node?
job to job piece
vector
A
Yes
Dispatch job to
target No

re there more
Target Nodes?

No

Does local Job

A

1

Store local Job

—Yes——

Yesk| Process Local Job

Store Local Job
Result

No

End

Figure 8 Processflow for the distribution of tasks acr oss nodes using context infor mation

Next the sharing request handler needs calculatesthtive strength of each value
returned for each context metric. A percentagessgaed to each metric value for each
node, where 100% indicates the best value acrbtm@ét nodes. For system context
metrics such as processor speed the maximum vallueeveonsidered the best. For
example if there are two nodes, one with a procegseed of 2 GHz and one with a
processor speed of 500 MHz, for the metric proaesiseed they will be assigned values
of 100% and 25% respectively. For other metrich@gprocessor load averages a

38

lower score is better. For example if there are@as, with a 1 minute load average of

1.5 and 3, they will be assigned scores of 50%18036 respectively.

At this stage each node now has a percentage fraach system context metric. The
next step is to apply the context weights. Eaclersoslystem context value score is
multiplied by the context weight value specified float node and the sum of these
weighted scores is assigned to each node. The falhod the weighted scores is then
calculated and each node is assigned a perceréiagd bn the nodes overall weighted
score relative to the sum of all weighted scorém rfesult is a percentage break down of
what percentage of tasks should be assigned toreateh The percentage values are
double values which may have many decimal placddf@number of tasks is unlikely
to divide evenly between these percentages

From this percentage values the number of tasks ssigned to each node is
calculated. This number of tasks to be assigne@dth node will also be a double value.
As tasks are discrete and nodes cannot be assaginaction of a task, each node is
assigned an integer number of tasks using a “flopgration. E.g. a node which has
initially been assigned 5.8 tasks will be assighedsks. If after this integer assignment
there any remainder tasks they will be assignetttes based on which nodes have the
largest remainder from the integer division.

Once each node has an integer value indicatingrhamy tasks should be assigned to
that node, a new job piece is created for each nodtining the specified number of
tasks. As with when jobs are being distributed gvanross nodes each job piece is
given a Piece Id and a timeout value. Also as leefibthe target node for a computation
is the local node the local node’s job piece ispadsed to the message dispatch queue.

It is executed locally once all of the other jolasséd been sent.

Processing of completed tasks

When a completed job piece is received into theumiol message queue it is passed to
the sharing request handler. The sharing requestidan&inds the original job and updates

its task with the result data and marks the tasksoaplete. The copy of the completed

39

job piece is also removed from the job piece vedtoavoid a timeout occurring

erroneously.

Receive completed Updated original . .

. . . Remove job piece

job piece from task with .
. > copy from job
inbound message completed task :

pieces vector
queue data
Dispatch

Removed job from
jobs vector

< completed job to
local application

A
Remove any
remaining job

pieces from job
pieces vector

4

End

Figure9 Processflow for the handling of completed job pieces

If all tasks of the original job have been markedplete at this stage it is dispatched
back to the local application and deleted fromjtis vector. It is possible that even at
this stage, when the job is complete, there mgglb@ieces still in the job piece array.
This may occur if job pieces timed out and werasteitbuted, and subsequently the
completed timed out job piece was received. Toqmethis any job pieces with a job ID
matching the completed job are deleted form thepjebes array.

Job Timeout Functionality

The purpose of storing a copy of job pieces whiabhehbeen distributed is to allow the
sharing request handler to be aware of when agsliimed out. As stated previously
whenever a job piece is dispatched it is stampdd avtimeout timestamp. This timeout
timestamp is derived from the original job subnuitteom the local application. When a
job is created by the local application it is assigja timeout value. This value is the
time, in seconds, in which a single task can besiclen to have timed out if no result is
returned. The timeout timestamp for a job pieasaisulated as the current time plus the

timeout value times the number of tasks withinjtie

40

In order to monitor if job pieces have timed odlhieead is run within the sharing request
handler. This thread iterates through the job @e®ztor comparing the timeout
timestamp of each job piece to the current timéhdfcurrent time is greater than the
timestamp value the job piece is redistributed. jbhepiece is distributed around the
networking the same manner as the original jobivedefrom the local application, this
means that the single job piece which has timedsosttared across several nodes. If the
original job contained context weight informatidrettimed out job piece will be
redistributed using that information. Once a jobcgi has been redistributed it is deleted
from the job pieces array to prevent another tihecaurring. The job pieces array is
made thread safe by using a mutex as there i& afrsoncurrency issues due to it being

accessed by multiple threads.

Dissemination of System Context and Service information using a

Gossip Protocol

Context information is disseminated using a GoBsgiocol. Rather than flood the
network with updates periodically each node onlyds@formation to one other node. A
very simple version of the protocol has been imgetad. Within the context manager
component a thread runs. Periodically (every 20ms@€) a context update and a service
update are sending to a node selected at randomtfr® network node list. When a
system or service update is to be sent the contartiger component refreshes the local
data. In the case of the service directory, tha tatead from the file system. In the case

of system context, the operating system is quddethe current system context.

The service directory information, as well as th#&dry and processor context
information, is parsed into XML data structuresdy to be included into context update
messages. When a system context update (or selivéaory) update message is sent, it
Is not just the information from the local nodettisadistributed. The context manager
queries the network node model for system conteatservice information retrieved
from other nodes. This information is included wtitle local node information when any
update messages are sent. Each system contexviocesgirectory update contains a
timestamp which is also stored against the nodleametwork model. This allows a

node to determine if the values for a remote nodefgext in its network model are

41

more recent than those being received in an inboweskage. If this is the case, the

update for can be discarded for that particulareneihin the network model.

APl implementation

The API has been created to allow local applicatimninterface with the middleware
using just one simple object. It consists of 2 comgnts, a computation sharer
component and a response server component.

The computation share component is used to creat@h, add task data and specify job
and task parameters, such as timeout, context tgeggia service parameters. The
computations sharer also dispatches the job tanibdleware application. When the
computation sharer instance is created, it in tneates a response server which listens
for a response from the middleware.

When the computation sharer has sent the dat&dhkapplication can wait on a
semaphore within the computation server object. Mthe response server receives the
result data from the middleware application, ittpdke semaphore allowing the original
application to continue. Figure 10 shows the predkat a local application ahs to follow
to use the API. Appendix C contains some sample dagdtrating how a local

application can use the APIL.

42

Create
computaion
sharing obejct

Create Job within

Y

Computation
Sharing obhect

Add Task
specifying

A

Figure 10 Processfollowed by local applicationsto send ajob to the middleware using the API

Set job timeout

Add context
weight information
to job

43

parameters and
source data

filename

be added ?

No

'

Dispatch Job

Wait on response

Store job Data

End

Chapter 6 Evaluation

The middleware is evaluated in 3 ways. The firshihe benefit in throughput of
distributing a job across the network using contefdrmation. The second is a
comparison of using TCP for message delivery vetHdB. The third is the success of
the gossip protocol in disseminating informatioowsrd the network.

Evaluation Setup

A test application was developed which distribytds around the network. These jobs
consisted of 11 image processing tasks. The imegpegsing tasks to be executed are
identical, meaning both the source image and psingparameters for each task are the
same. The reasoning behind this is to avoid awasee 1 node in the network
completes its assigned tasks more quickly, nottduts system contexts values such as
processing speed, but due to the fact that smédles,computationally intensive tasks
were received. Each source image is 572 kilobytesizie and so represents a significant
size of data to distribute around the network.

For a complete job to be processed on the origigdést node with no other applications
running, it takes 3 minutes and 3 seconds, equivébel6.4 seconds per task.

The evaluation program is run using a network ciimgj of 5 nodes, each running the
computation sharing software. Every node, includivgoriginating node from which

the evaluation task comes, runs the image proagssivice. This means that each node

Is capable of executing job tasks.

44

Each run of the test application distributes 1Gjalound the network. 5 without context
information, so the jobs are spread evenly actossétwork, and 5 using context
information, so that the jobs were distributeddclenode based on weighted context
information. The program has 5 iterations. Eactatten consists of 1 job being sent
with context weight information, and 1 job beingswithout. After iteration is complete
the application sleeps for a short while before mgwnto the next iteration. Prior to
starting the computation middleware AODV is stamaceach node using the shell script
attached in appendix A (with a unique IP addrese&zh node).

Each of the five nodes in the network runs Ubuntwk and is equipped with an 802.11
wireless card. Each node is also running AODV-UA®DYV implementation
developed at Uppsala University, Sweden.
The node technical specifications are as follows:

[0 1x 3.1 GHz Desktop 1GB Ram

[0 3 x 1.3 MHz Laptop

[0 1 x 500 MHz Laptop

The nodes used are varying in speed and memowctoately reflect the heterogeneous

nature of ad hoc networks in real world situations.

Experiment 1: TCP Messaging in an AD-Hoc net work where all

nodes are neighbours.

For the first experiment all nodes in the netwokevneighbours, meaning that each

node could contact any other node directly.

45

500MHz Laptop

3.1GHz
DeskTop

1.3 GHz Laptop

1.3 GHz Laptop

1.3 GHz Laptop

Figure11l Network topology for experiment 1

TCP messaging was used. The following contextitigion weights were used:
[0 CPU Frequency : 50
[J Load Average 1 minute : 3
[0 Number of processes :3

The processor speed is more heavily weighted a$ tife context information available,
processor speed will have the biggest impact omatlies being processed.

The following table illustrates the time in millsend from when the computation
sharing middleware received the job specified uhglresult data is returned to the
calling application. A high time out value of 18&cends was used to ensure each job

piece had time to complete on its target node.

Job |Context Context Aware |Difference Performance gain
ID Free(ms) |(ms) (ms) (%)

1 253378 121253 132125 52.1454112

2 242787 136054 106733 43.96157949
3 236827 133696 103131 43.54697733
4 239370 123470 115900 48.41876593
o 247682 142968 104714 42.27759789

Figure12 Experiment 1 output results

46

The averaged result over the 5 iteration:

Context Free Context Aware |Difference Performance gain
(ms) (ms) (ms) (%)
244008.8 131488.2 112520.6 46.1133369

Figure 13 Experiment 1 output results averaged

From these result it can be seen that in the dasentext free distribution the
middleware performs even worse than if the job @secution locally on the originating
node. This is due to the heterogeneous naturesaiddes, and results from the fact the
node with the least processing power will recehegame amount of tasks as the node

with the most processing power.

Where context information is used, the nodes vinthléast power are given fewer task

resulting in a shorter processing time overall.

Sample distribution information taken from an iteya of this experiment is displayed in

the table below:

Node Specification Context Aware Tasks Assigned Context Free Tasks Assigned
1.3 GHz Laptop 2 3
1.3 GHz Laptop 2 2
3.1 GHz Desktop 4 2
500 MHz laptop 1 2
1.3 GHz Laptop 2 2

Figure14 Experiment 1task distribution sample

Impact of reduction of job timeout value

Analysis of the logs output by the middleware réeddhat even when using the context
aware distribution of tasks the 500 MHz laptop nstiléproved to be a bottleneck,
requiring over twice the amount of time to procassngle task than any other node. In
an effort to improve throughput the timeout valaed task was reduced to 60 seconds.

This improved the overall through put as can ba se¢he table in figure x.x

47

Job | Context Context Aware | Difference | Performance gain
ID | Free(ms) (ms) (ms) (%)
1 176046 114373 61673 35.0323211
2 172872 109224 63648 36.8179925
3| 173353 99473 73880 42.61824139
4| 180407 95649 84758 46.98154728
5[162558 89727 72831 44.80308567

Figure15 Experiment 1 output resultswith reduced timeout value

Context Free | Context Aware | Difference Performance gain
(ms) (ms) (ms) (%)
173047.2 101689.2 71358 41.25063759
Figure 16 Experiment 1 averaged resultswith reduced timeout

As can be seen from figures 15 and 16, a redugtitime timeout value for tasks did
improve the processing time for both context freé eontext aware distribution of tasks.
With the reduced timeout value context free praogsiesult in the completion of tasks
in a time that is marginally better than processih@f the tasks on the originating node.
In the case of the context aware distribution, iorvpment was also seen. The
performance gain on average is slightly worse thiim the longer timeout, however it is

still significant.

Experiment 2: UDP messaging in an Ad-Hoc network where all nodes

are not neighbours

For the second experiment the network was set dipad@ne of the 1.3 GHz laptops was
2 hops away from the originating node. All messggised the UDP protocol. This is as
early experimentation showed the TCP messagesimn@pable of travelling more than

I hop in distance across the MANET. The same ctnteight information is used as in

experiment 1.

48

500MHz Laptop

3.1GHz
DeskTop

1.3 GHz Laptop

1.3 GHz Laptop

1.3 GHz Laptop

Figure17 Network topology for experiment 2

Only one result, for distribution without contexasvreceived:

Job |Context Context Aware |Difference Performance gain
ID Free(ms) |(ms) (ms) (%)
1 1126791 N/A N/A N/A

Figure18 Experiment 2 partial result

1126791 milliseconds is equivalent to over 18 nesutt can be clearly seen that this is
significantly worse than running the job on jusidde.

Analysis of the message dispatch logs and debuymubregvealed that in the first 20
minutes of operation the computation sharing madle, running across all nodes, sent
a total of 298 messages. The corresponding valutéomiddleware running using TCP
connections was 563 messages. Counter- intuitivalypears UDP was delivering
messages more slowly, despite the fact that UDRBages have a lower overhead. The
problem was traced to fact that many UDP messages being lost in wireless
transmission. Numerous UDP messages were timingungn after a timeout period the
sender did not receive an acknowledgement. Theagessould then be resent.
Normally the message would be successfully delt/afeer several attempts. However
in the worst case scenario, if after 20 deliverlufas the message has not been

acknowledge it is discarded, as delivery is assutmé@ impossible.

49

This frequent timeout affects computation sharemuest messages the most. Most
context and service directory update messagesealrgly less than 64 kilobytes in size
and fit in a single UDP packet. However a compatatharing message containing 2
tasks is over 1.5 megabytes in size and requirgmgkets to be sent. Given the
unreliability of the delivery of UDP packets itlikely that one outbound packet out of
25 may fail to be delivered 20 times and resuthenmessage as a whole not being
delivered.The frequent timeouts also result ineklum in the outbound message queue.
This means that when a message is dispatched toebgage queue from the sharing
request handler there is a delay before it is dgtdespatched. This delay means that a
job piece may time out and be redistributed evdarbet has been dispatched from the

outbound message queue.

The above 2 problems result in all job pieces whiate been dispatched from the
sharing request handler timing out and being thigted. The only tasks which are
executed are the ones which are to be processtutkdocal node, and as a result never
have to be dispatched. Each time a job piece istrémited, so of its tasks are
distributed to the local node. After enough jobcpetime out, every task will have been
processed on the local node and the results wikkhened to the local application. For
experiment 2, this process of repeatedly distmigutask took approximately 18 minutes.
Due to the huge disparity between the amount of toprocess the tasks directly and
using the computation sharing middleware, the erpart was stopped. Using context

information in the distribution of tasks would haesulted in no significant benefit.

In order to verify that the UDP timeouts were assult of transmission over wireless,
the experiment was rerun, using just 3 nodes aretternet router to connect the nodes.
No UDP packets timed-out and the test applicattanuntil completion. It can be

reasonably deduced the packet loss was due toitbiess transfer medium.

Gossip Protocol
In order to measure to distribution of context mfiation for each experiment the
network discovery component output the current vaéthe network model every 30

50

seconds, indicating which nodes existed in the moae well as if service and system

context information was available for each node.

Node Specification TCP full visibility UDP full visibility
3.1 GHz Desktop 0:03:00 N/A
1.3 GHz Laptop 0:02:30 0:30:30
1.3 GHz Laptop 0:02:30 N/A
500 MHz laptop 0:03:10 N/A
1.3 GHz Laptop 0:02:30 0:09:00

Figure19 Gossip Performance, using TCP and UDP protocols

Figure 19 shows the time for each node to readlvisibility of all the other nodes in

the network for both the UDP and TCP runs of theeexnent. A node has full visibility
of another node if it has both system context amdice list data for that node. When the
experiment was completed using TCP, it can me ge#nt took approximately 3
minutes for all nodes to have visibility of thewetk. There is a lot of randomness in
this time, as it depends on how many nodes weeadyractive and if the local node was
selected as an update target by a node which glfaldisibility.

In the case of the UDP messages, for many nodegdillility was never achieved, as
the two nodes that did achieve full visibility, didt maintain it. The reason for this is
the repeated time outs of UDP messages. Eventaitdlya message is not acknowledge
by a remote node, the local node will delete timeate node from its network model as it
reasonable to assume that if a node is not coaatas no longer part of the network.
Examination of the middleware logs showed that Ub#3sages were even timing out
and causing nodes which were physically quite clod® delete from a neighbours
network model. During the TCP run of the experimentnodes were ever deleted from

the network model until they were shut down.

51

Chapter 7 Conclusions

The experimental evaluations of this project giweegy useful insight in how to best
implement computation sharing in and ad-hoc netwsikg context information.
Despite the fact that the sharing of computatiores enultiple hops within an ad-hoc

network was not achieved, useful data was retriénged each experiment.

The Benefits of Computation Sharing using Context Information

The results from experiment 1 clearly show thatelere benefits to be obtained by
distributing computations around an ad-hoc netwllidt. only does the use of system
context information improve on the performance isfributing tasks across nodes event,
but in the case of the heterogeneous test netwatktee jobs used for the experiment,
the use of system context information was requinemrder to gain a significant benefit
from the sharing of processing tasks.

It can reasoned , that given the heterogeneousenatumobile ad-hoc networks in
general, in order to benefit as much as possibla the distribution of context
information around the network, some knowledgthefcontext of other nodes in the
network is required. If an ad-hoc network doestaké system context information into
account the performance gain of processing datssathe network can be weakened by
the introduction of a node with low processing powdis could be seen as a security
risk, as it provides a vector of attack for redgcihe computation power available within
an ad-hoc network, by maliciously introducing al@avith low processing power into

the network.

52

Choice of network messaging protocol

Two different protocols were used for sending mgssacross the network, UDP and
TCP. Each has there own advantages and disadvantaxyeever when it comes to
computation sharing TCP, in the author’s opinisrthie best option. However for TCP
to be of use for sharing tasks with nodes which gmeater than one hop away the

protocol needs to be enhanced or extended to @fisWwunctionality.

Unreliable Datagram Protocol

UDP is the most straightforward of all protocotssllight weight as it does not rely on a
fixed two way connection being set up, so it allonsssages to be sent more quickly.
UDP data packets traverse an ad-hoc network (use2@ODV protocol) more easily.
TCP connections generally cannot be made acrossnudre than 1 hop away.
However due to the simple implementation of thequol, if data is desired to be sent in
a reliable manner, as is required by computati@misg middleware, then the use of
UDP requires much TCP functionality to be impleneeinat the application layer. Re-
implementing message packet acknowledgement aipghiecation layer is much more
expensive than using similar functionality implertezhat the network layer.

The primary networking medium used for ad-hoc nekeas 802.11 wirelesses. This
itself is an unreliable medium, prone to interfeenand incapable of detecting
collisions between messages on the network. WhelR tddagrams are used over this
medium, a large number of packets are lost, retgithe sender to wait for an
acknowledgement and timeout before resending. @dmsadd a huge overhead in
message transmission, as was demonstrated by regmer2.

Given the performance of UDP in experiment 2, whieecomputations failed to be
distributed across the network in any sort of tyyrebnner and resulting in all remote
tasks timing out and being processed on the landé NUDP cannot be recommended as

a transport protocol for a computation sharing r@dare implementation.

53

Transmission Control Protocol

The use of TCP carries with it an extra over hefagbtiing up a continuous connection
with a target host, however given the issue withRUd2scribed above this is a
performance impact that is worth absorbing.

The biggest disadvantage of TCP is that it is apble of transmitting data to nodes
grater than 1 hop away within the network. Obvigusdtwork topology will have a
direct impact on task distribution when using TGPas was the case with experiment 1,
the originating node for the computation sharing hamerous direct neighbours, it will
clearly perform well as was evidenced by the expenital results. It is worth reiterating
here that when UDP was used computations wereveot €hared successfully with
neighbouring nodes. So despite the inability of T@Ransfer data over a distance of
greater than 1 hop it can still be considered teuyerior to UDP for computation
sharing purposes. One possible mechanism to ovee tois would to enable nodes to
forward TCP messages onto other nodes. This tegamiguld render the use of an

underlying ad-hoc protocol such as AODV unnecessary

Choice of ad-hoc networking Protocol

AODV was chosen as the underlying ad-hoc protouaeltd the widespread availability
of an implementation, and its popularity for useegsearch. However, AODV has
limitations in that TCP messages cannot be seatdi$tance of grater than 1 hop. It also
has an overhead in the amount of messages it asmust of its network discovery.

Due to these limitations and the messaging overhdadot believe that AODV is
suitable as a protocol, to be used by middlewaredmputation sharing.

| believe that an integration of ad-hoc networkingctionality and peer-to-peer
computation sharing functionality is required, embfit fully from computation sharing

in an ad-hoc environment. An approach such aqfibiexample using the
aforementioned MPP protocol) would greatly reduessage overhead and improve the
ability of connecting to nodes greater than 1 hopya Another option worth
investigating is using an approach similar to iadirTCP[27] and split an N hop TCP
connection into N individual TCP connections andviard the message along each TCP

connection until it reaches the target.

54

Use of the Gossip protocol

The gossip protocol was chosen as a means of dissteng data around the network.
From the results of the TCP evaluation experimiecamn be seen that this was a
successful mechanism for ensuring that all nodea @idl view of the network. When
running under UDP, a full network view was not &sfeid by the majority of nodes,
however this is due to issues with UDP rather thanuse of the gossip protocol. As the
implementation and evaluation were focused mortheristribution of computation
sharing tasks, there is limited output data coringrthe gossip protocol. For a full
evaluation of the benefit of using the protocol pamed to other approaches it would be
necessary to do a comparison between the protadabier alternatives such as
flooding the network. There are also potential mgations such as instead of using the
gossip protocol in a random fashion, using an immglietation where updates are sent to
the least recently updated node in the network mddhes is left as future work and is

beyond the scope of this dissertation.

55

Chapter 8 Future Work

The scope of potential research in Mobile Ad-Hodveks is massive. The same can
be said for peer to peer applications and the tiserdext awareness within applications.
Within the timeframe available | have only beereabl scratch the surface of these
areas, however | hope to have provided a startmgf or much further research into
computation sharing in MANETS, using context infation. This section details future
areas of research that have been suggested bypayience of working on this

dissertation, which | have not had time to expfoiky.

Choice of System Context
There are many different pieces of context inforamasupplied by the middleware

application which have not been used as part oétaduation. For example system
memory and battery charge are pieces of systenexiowhich respectively could be
very relevant for a specific type of memory intemresiask, or for use in nodes where
battery life is absolutely critical. Further resgais warranted to discover which types of

task are better suited for different context weigiltes.

Use of context information beyond system context
In the current implementation of the middlewareteahinformation is taken only about

the node processor and battery. It would also Issiple to use network information
such as node distance (in hops) and network lae shformation (should that
information be available).

Another item that could be eligible for considevatas a piece of context is the task

itself. The task size or complexity could be ussdndormation to help determine how to

56

best distribute a set of tasks. This could be carenformation derived purely from the

task size, by the middleware application, or ancatefined by the calling application.

Extending the Functionality of the Middleware:

Currently the middleware provides the basic funr@lay required to enable
computation sharing between neighbouring nodes mdahoc network, however there
were many other pieces of functionality which weoasidered as nice to have features,

but could not be implemented due to time constsaint

These are:
* Message Compression
o When sending messages no from of compression @ Gseen that the

amount of data associated with a task may resaltsignificant over head,
data compression could be used to speed up medskgery times. Of
course there is the question of compressing treeatatource and
uncompressing it at the destination and the imfheattthis would have on
system through put. An analysis would need to beedmm whether message

compression would benefit overall throughput.

* Message Encryption and Authentication
o Currently all messages are sent as plaintext and@en to interception.
There is no authentication of message sendersnsayibe possible for a
malicious node to compromise the quality of sha@uputations. Also there
is no redundancy built into job distribution toaall the results of different
nodes to be compared, in an effort to detect nmal&nodes. Such a
technique is used by the BOINC platform to detketgresence of malicious

nodes

« Forwarding of jobs from nodes unable to comple&arttasks

57

o Currently if a node running the middleware suddentys out of battery
power the node will shut down and if any jobs wewerently being processed
on the at node will be lost. The job will time-aitthe originating node and
be redistributed. Given that the middleware apglbcais aware of the battery
power level as part of the system context infororatissociated with the
node, a more elegant solution would be for the temode doing the
processing to forward the partially completed jodcp to another node, once
the battery power dips below a predefined threshold

e Storing of Job results if the originating node mawvailable

o Itis possible that while jobs are being processedemote nodes, the jobs
originating node may leave the network temporaailg be unavailable when
the remote node tries to return the task resu#t.daiven the dynamic nature
off MANETS, it is entirely possible for a Node tealve the network and then
rejoin it moments later. In order to prevent conapions from being redone,
it would be useful for remote nodes to store corafpon results for a fixed
period so that if the originating node returnshe hetwork, the result data

can be returned.

e Support of fully fledged services.

o Currently within the middleware, services are adyuspplications which are
invoked using a command line call from within theldieware. A full
implementation using services which are accessifileg a protocol such as
SOAP would greatly add to the usability of the nhédchre.

e Support minimum context values.
0 As was seen in experiment 1 even if context infaiomais used a node with
limited processing power can still reduce the tigiqaut of the middleware.
While this can be partially remedied with a carlgfgklected timeout value,
another option would be to allow the local applimatcalling the middleware
to specify a minimum threshold for a context vakethat if any potential

sharing target nodes have a value lower than thesy, will be ignored.

58

Integration of Middleware and Ad-hoc routing

The middleware application runs on top of an ad4eoting protocol, by reading the
routing table output to a file by the AODV protocMuch tighter integration of the
middleware and the routing protocol would raisephbssibility of combining the AODV
discovery messages with middleware discovery messddnis would reduce the
messaging overhead of the middleware. Given thagrvwhe middleware was running
using UDP, many UDP messages were dropped inedesg environment, that were not
dropped in a wired environment, reducing the nunabeverall message may increase
the percentage of UDP messages successfully dativand would also result in a lower

drain on the power sources of nodes within the adretwork.

Given that the middleware did not distribute taslscessfully in a 5 node network when
using UDP, one option would be two implement aestord forward TCP protocol,
similar to indirect TCP, a proposal by Bakne andrwath [27].

My suggested approach for future work designingiemmlementing a TCP based
computation sharing MANET middleware applicatiomssfollows:

e The network model would also act as a routing t&n@ll nodes. Due to the
limits of TCP, nodes can only connect to theredireighbours, however using
the existing gossip protocol nodes would still reeeontext and service updates

from nodes which are not their direct neighbours.

* When a node receives an update for a non neighimale it should also contain
information about the path the data took to getetirecluding hop count and the
ID of the node which forwarded the packet (i.e.nle&t node in the path to the
target node). The network work node model shoulg store the next node in

the shortest path to the target node.

« When a message is to be sent to a non-neighboey;, tieellocal node looks up
the target node in the network model and forwandsmessage to the next node
in the path to the target node. This node forwéndsdata to the next node in the
path, until the target node is reached. Due tmtlezhead of forwarding TCP

messages across nodes, the hop count to a tadgetvould need to be used as in

59

input into what nodes tasks will be distributedRor example to distribute tasks
which are 10 hops away would be pointless as tkeh@ad of message delivery

would be too significant.

60

Appendix A AODV Start- up Shell script

#! / bi n/ bash
echo "Hell o $USER'
echo "Thjis script starts AODV running on this nmachine in AD HOC MODE"

echo "sudo /etc/dbus-1/event.d/ 25Net wor kManager st op"
sudo /etc/dbus-1/event. d/ 25Net wor kManager stop
echo "sudo nodprobe ndi sw apper”

sudo nodprobe ndi swapper

echo "sudo ifconfig eth0O down"
sudo ifconfig eth0O down

echo "sudo iwconfig ethl essid aodvnet node Ad-Hoc"
sudo iwconfig ethl essid aodvnet node Ad-Hoc

echo "sudo ifconfig ethl 134.226.51. 176"
sudo ifconfig ethl 134.226.51.176

echo "sleep 2"

sl eep 2

echo "sudo iwconfig ethl essid aodvnet node Ad-Hoc"
sudo iwconfig ethl essid aodvnet node Ad-Hoc

echo "sleep 2"
sl eep 2
echo "Al'l done - displaying status”

ifconfig
iwconfig

echo "nodprobe koadv"
sudo nodprobe kaodv

sl eep 2

echo "sudo aodvd -i ethl -r 30"
sudo aodvd -i ethl -r 30

61

Appendix B XML Messages Examples

Context Update XML Message

<?xm version="1.0"?>
<! DOCTYPE cont ext shari ng_xm _doc SYSTEM "cont ext shari ng_xm _doc. dt d">
<conput ati onshari ng: conput ati onshari ng
xm ns: conput ati onsharing="http://foo" type="context update"
target="192.168. 1. 103" port="24679" source="192.168. 1. 100" Ti ne="Mon
Sep 10 21:25: 05 2007
" epochTi ne="-250035923" >
<cont ext:context xm ns:context="http://foo" epochTi ne="1189455905069"
nodel P="192. 168. 1. 100" nodenane="192. 168. 1. 100"
t cpresponseport ="24679" >
<battery: BatteryContext xm ns:battery="http://foo">
<status>No Battery</status>
<char ge>100</ char ge>
<acpower >on- | i ne</ acpower >
</ battery: BatteryCont ext >
<Processor: Processor Cont ext xml ns: Processor="http://foo0">
<CPU>
<cput ot al >210160</ cput ot al >
<user >39390</ user >
<ni ce>288</ ni ce>
<sys>16758</ sys>
<idl e>141871</idl e>
<ti ckfrequency>100</ti ckfrequency>
<scal edf requency>3000</ scal edf requency>
<noni nal frequency>3000</ noni nal f requency>
<nanme>Intel (R) Pentium R) D CPU 3.00GHz </nane>
<cor es>2</ cor es>
</ CPU>
<menory>
<ment ot al >1002</ ment ot al >
<menused>896</ menused>
<menftr ee>106</ menfr ee>
<nmensthar ed>0</ nenthar ed>
<menBuf f er ed>90</ menBuf f er ed>
<mentCached>353</ menCached>
<menUser >452</ menJser >
<menmLocked>0</ nenlLocked>
</ menory>
<| oad>
<processes>135</ processes>
<nonsyst enpr ocesses>53</ nonsyst enpr ocesses>
<noni dl epr ocesses>0</ noni dl epr ocesses>
<noni dl enonsyst enpr ocesses>0</ noni dl enonsyst enpr ocesses>
<l oadaver agel>3. 47</ | oadaver agel>
<l oadaver age5>2. 98</ | oadaver age5>
<l oadaver agel5>1. 96</| oadaver agel5>
</ | oad>
</ Processor: Processor Cont ext >
</ cont ext : cont ext >
</ conput ati onshari ng: conput ati onshari ng>

62

Service Directory Update XML Message

<?xm version="1.0"?>
<! DOCTYPE cont ext shari ng_xm _doc SYSTEM "cont ext shari ng_xm _doc. dt d">
<conput ati onshari ng: conput ati onshari ng
xm ns: conput ati onsharing="http://foo" type="service_update"
target="192. 168. 1. 103" port="24679" source="192.168. 1. 100" Ti ne="Mon
Sep 10 21:25:05 2007
" epochTi me="-250035922" >
<service_directory:service_directory
xm ns: service_directory="http://foo" epochTi me="1189455905069"
nodel P="192. 168. 1. 100" nodenane="192. 168. 1. 100"
t cpresponseport ="24679" >
<service: service xnmns:service="http://foo">
<t ype>appl i cation</type>
<nane>i magenmagi ck</ name>
</ servi ce: servi ce>
<service:service xnmns:service="http://foo">
<type>application</type>
<nane>a2np3</ nane>
</ service: servi ce>
<service: service xnmns:service="http://foo">
<type>application</type>
<nanme>np32o0gg</ name>
</ service: servi ce>
</ service_directory:service_directory>
</ conput ati onshari ng: conput ati onshari ng>

63

Appendix C Local Application API Utilisation Samplode

/I Create the computation sharer object
ComputationSharer CS(globalSocketType);

/[Create the sharing Job Naming the job and thecgeto be used to process the job
CS.createJob(JobName,"imagemagick™);

/I Specify Context weights if this information s lhe used
CS.setContextWeight(CPU_NOMINAL_FREQUENCY,10);
CS.setContextWeight(LOAD_AVERAGE_5_MINUTE,1);
CS.setContextWeight(TOTAL_PROCESSES,5);

/l Set Job Timeout in seconds
CS.setJobTimeout(60);

//Add Tasks to Job specify input data filename &stt parameters
CS.addTask("Task1", "./Picture001.jpg", "-charce@athumbnail 256");
CS.addTask("Task2", "./Picture002.jpg", "-charc®athumbnail 256");

/IDispatch the job to the middleware application
CS.dispatchJob();

//Use computation sharer semaphore to wait ongbhgonse
CS.waitforResponse();

Il save the result data from the job

/I filenames will be the input names with a “-ostiffix e.g. "./Picture001-out.jpg",
CS.writeTaskDataToFile()

64

Bibliography

10.

11.

12.

13.

14.

Mauthe, A. and O. Heckmaristributed Computing — GRID Computing
Peer-to-peer Systems and ApplicatioRs Steinmetz and K. Wehrle, Editors.
2005, Springer. p. 193-206.

Anderson, D.PBOINC: A System for Public-Resource Computing dnda§e
in 5th IEEE/ACM International Workshop on Grid Compgti2004.

Oram, A. Peer-to-Peer: Harnessing the power of disruptivehtelogies 2001:
O'Reilly & Associates inc.

Eberspacher, J. and R. Schollmefast and Futurgin Peer-to-peer Systems
and ApplicationsR. Steinmetz and K. Wehrle, Editors. 2005, Spming. 17-23.
Clarke, I., et alProtecting Free Expression Online With FreenEEE Internet
Computing 20026(1): p. 40-49.

Festag, A., et akleetnet: Bringing Car-To-Car Communication IntoelReal
World. in 11th World Congress on IT3004. Nagoya, Japan.

One Laptop Per Child Foundation|[http://www.laptop.ord

Dey, A.K.,Understanding and using conteRersonal and Ubiquitous
Computing Journal, 2005(1): p. 4-7.

Perkins, C.E. and E.M. Royéd-hoc On-Demand Distance Vector Routiimgy
IEEE Workshop on Mobile Computing Systems and éqijpins 1999: IEEE.
Tannenbaum, ADistance Vector Routingn Computer Network2003, Prentic
Hall. p. 357-358.

Foster, I. and C. Kesselm&ilpbus: A Metacomputing Infrastructure Toolkit.
International Journal of SUpercomputer Applicatiabh®97.11(2): p. 115-128.
BOINC Statistics Webpage|http://boinc.netsoft-

online.com/el107 plugins/boinc/bp.php?projeci=19

Top 500 Super Computer List — June 2007
[http://www.top500.0rg/lists/2007/06

Wang, Z., Q. Chen, and C. Gaaplementing Grid Computing over Mobile Ad-

Hoc Networks based on Mobile Agentinternational Conference on Grid and
Cooperative Computin@006.

65

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.
27.

Pham, V.A. and A. Karmouchlobile Software Agents: An Overview IEEE
Communications Magazin&998. p. 26-37.

Stoica, I., et alChord: A Scalable Peer-to-Peer Lookup Service fiberinet
Applications in ACM SIGCOMM Conferenc001. San Diego, California.
Schollmeier, R., I. Gruber, and F. Niethamrieotocol for peer-to-peer
networking in mobile environmenis 12th International Conference on
Computer Communications and Network803: IEEE.

Nedos, A., K. Singh, and S. Clarkéobile Ad Hoc Services: Semantic Service
Discovery in Mobile Ad Hoc Networka Service-Oriented Computing — ICSOC
2006 2006, Springer.

World Wide Web Consortium Extensible Mark-up Lamgu@ML) homepage
[http://www.w3.org/XML]

Mascolo, C., et alXMIDDLE: A Data-Sharing Middleware for Mobile
ComputingInternational Journal on Wireless Personal Comupaiians, 2002.
21(1): p. 77-103.

The GNU Common C++ Library [http://www.gnu.org/software/commoncpp/
The Lib XML++ library
[http://libxmlplusplus.sourceforge.net/docs/manuatifindex.html]

The gLibTop Library [http://library.gnome.org/devel/libgtop/staljle/

Tannenbaum, AThe Internet Transport Protocols: UDih Computer
Networks 2003, Prentice Hall. p. 524-532.

Tannenbaum, AT he Internet Transport Protocols : TCR Computer Networs
2003, Prentice Hall. p. 532-556.

RIVEST, R.L.RFC 1320 The MD5 Message Digest Algoriti992.

Bakre, A. and B.R. BadrinathTCP: Indirect TCP for Mobile Hostsn 15th

International Conference on Distributed Computest8gs 1995.

66

