
Real-Time Coordination of Mobile Autonomous Entities

Mélanie Bouroche

A thesis submitted to the University of Dublin, Trinity College

in ful�llment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

December 2007

ii

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any other

University, and that unless otherwise stated, it is entirely my own work. I agree that Trinity College

Library may lend or copy this thesis upon request.

Mélanie Bouroche

Dated: 28th May 2008

Acknowledgements

I have been waiting for this moment for so long. At last, the thesis done, only the acknowledgements

to write! The acknowledgements � being the only place where the writing can be a bit more creative

and can allow for feelings to be expressed � would, I believed, show that I too can write moving words

when given the space and opportunity. Alas, now that the moment has arrived, all the great ideas

and inspirations that came over the years are gone; most probably killed by the stress-versus-sleep

war of these last few weeks. Well, my acknowledgements will be simple, but to the point.

First and foremost, my thanks to Prof. Vinny Cahill, my supervisor, for letting me explore my own

ideas; for trying to understand them even when I could not explain them; and for helping me control

my stress levels.

To Ashley, for his help on the implementation of ComhorMod's gui.

To Aline, Barbara, Cormac, Andronikos, Ray, Alan and Stefan, for having proof-read chapters of this

thesis.

To my parents, for letting me do what I want and for supporting me in the best way they can, despite

the distance.

To all the people in my research group, dsg, for their support; in particular to Andronikos, Kulpreet,

Tim and David for hugs when I needed them and for making sure I took breaks, and to Aline for

moral support and scienti�c advice.

To my sister Gaëlle and all my friends, for keeping me sane; in particular, to Emeline for always being

there, to Eoin and Mathieu for helping me stay in contact with the real world, and to Astride, for

having been there all along.

Mélanie Bouroche

University of Dublin, Trinity College

December 2007

iv

Abstract

Progress in miniaturisation of computing devices, wireless communication, and sensing technology

are encouraging the deployment of autonomous mobile computer systems (�entities�) in our everyday

environment. Examples of mobile entities that operate without human control include automated

guided vehicles and other mobile service robots, as well as robots for disaster rescue, unmanned aerial

vehicles, and, in the future, autonomous cars. To ensure safe operation, such entities must coordinate

their behaviour both with each other and with their environment. This means that their aggregated

behaviour must respect some system-wide safety constraints. As the safety of humans and possibly

crucial or expensive infrastructure is at stake, the coordination of these entities is safety-critical, i.e.,

a violation of the safety constraints could result in a catastrophe. Because entities interact with their

environment, they need to cope with its pace; hence, ensuring these system-wide safety constraints

implies stringent real-time requirements on coordination.

Mobile entities may use direct communication to coordinate their behaviour. Because they are

mobile, they typically communicate over wireless (possibly ad hoc) networks. In wireless networks,

however, communication, and in particular real-time communication, is highly unreliable and the

achievable timeliness varies greatly over time and location. Environment-mediated communication,

in which entities communicate by changing their environment and detecting changes made by other

entities using sensors, can be used to supplement direct communication. The range and accuracy of

sensors, however, are inherently limited and sensor information might be a�ected by environmental

conditions (e.g., luminosity or temperature). All of these limitations imply that the information

that entities have about other entities and their environment varies signi�cantly over time and space.

Therefore entities might not be able to reach a consensus on their collective behaviour, or even to

consult each other, and might not have a complete view of their environment. Hence entities need

to take decisions independently of each other, using only limited information, while still guaranteeing

system-wide safety constraints.

Ensuring that system-wide safety constraints are respected by entities that take decisions inde-

pendently while having access to only limited information is particularly challenging. Existing coor-

dination models are typically consensus-based and either assume continuous real-time connectivity, or

o�er only best-e�ort guarantees. This thesis investigates an alternative to relying on consensus that

exploits real-time feedback on currently available information provided by novel real-time sensing and

v

communication models. In this approach, entities adapt their behaviour depending on currently avail-

able information, hence making progress when it is safe to do so, while ensuring that safety will never

be compromised.

This thesis presents Comhordú, a new coordination model supporting the development of entities

that use this adaptive approach to coordination. Comhordú de�nes a formalism in which to express

system-wide safety constraints and a notion of responsibility to allow enforcement of these constraints

to be distributed amongst entities. The notion of consensus is replaced by contracts that bind entities

a priori and allow them to make predictions about other entities' behaviours even when they do not

have current information about them. In addition, the thesis describes a systematic process that

allows developers to use Comhordú to translate system-wide safety constraints into requirements on

the behaviour of individual entities. These requirements capture the necessary information for an

entity to safely begin or continue performing any given action. During execution, each entity can, at

any time, derive the set of actions that it can safely undertake, given the information that it currently

has about its environment. A tool supporting the development of such entities by automating the

systematic steps of the process is also presented. Finally, this thesis demonstrates that the model

and associated development process can be used to solve scenarios that are not solvable using existing

coordination models.

vi

Publications Related to this Ph.D.

• Aline Senart, Mélanie Bouroche and Vinny Cahill, Modelling an Emergency Vehicle Early-

Warning System using Real-Time Feedback. In International Journal of Intelligent Information

and Database Systems (IJIIDS), volume 2, issue 1, to appear 2008.

• Mélanie Bouroche, Barbara Hughes and Vinny Cahill. Real-time Coordination of Autonomous

Vehicles. In IEEE Intelligent Transportation Systems Conference (ITSC'06), Toronto, Canada,

September 2006.

• Mélanie Bouroche and Vinny Cahill. Coordination of Autonomous Mobile Entities. In 4th

MiNEMA Workshop, Lisbon, Portugal, July 2006.

• Mélanie Bouroche, Barbara Hughes and Vinny Cahill. Building Reliable Mobile Applications

with Space-Elastic Adaptation. In international workshop on Mobile Distributed Computing

(MDC'06), in conjunction with WoWMoM 06, Niagara Falls, New York, USA, June 2006.

• Aline Senart, Mélanie Bouroche, Barbara Hughes and Vinny Cahill. Coordination of Safety-

Critical Mobile Real-Time Embedded Systems. In workshop on research directions for security

and networking in Critical Real-Time and Embedded Systems (CRTES 06), in conjunction with

RTAS 2006, San Jose, California, USA, April 2006.

vii

Contents

Acknowledgements iv

Abstract iv

List of Tables xiii

List of Figures xv

Chapter 1 Introduction 1

1.1 Motivations . 1

1.2 Background information . 2

1.2.1 Coordination . 2

1.2.2 Wireless communication . 3

1.2.3 Sensor information and environment-mediated communication 4

1.3 Context . 4

1.3.1 Application-speci�c coordination mechanisms 5

1.3.2 Consensus-based approaches . 5

1.3.3 Other approaches . 6

1.3.4 Analysis . 6

1.4 Challenges . 6

1.4.1 Spontaneous interactions . 7

1.4.2 Race conditions . 7

1.4.3 Reaction compatibility . 7

1.4.4 Ambiguity in the absence of messages . 8

1.5 Approach . 8

1.6 Goal and contributions . 9

1.7 Scope . 10

1.8 Road map . 11

1.9 Summary . 11

viii

Chapter 2 Related Work 12

2.1 Multi-agent systems . 13

2.1.1 Physical vs. software agents . 13

2.1.2 Commitments . 14

2.1.3 Environment-mediated communication . 14

2.1.4 Analysis . 15

2.2 Multi-robot systems . 16

2.2.1 Application-speci�c solutions . 16

2.2.2 Generic solutions . 17

2.2.3 Analysis . 19

2.3 Intelligent transportation systems . 20

2.3.1 Autonomous cars . 20

2.3.2 Collaborative driving . 21

2.3.3 Analysis . 23

2.4 Coordination models . 23

2.4.1 Data-centric models . 24

2.4.2 Message-centric . 26

2.4.3 Analysis . 27

2.5 Mobile real-time systems . 28

2.5.1 Specifying real-time requirements . 28

2.5.2 A Middleware for Cooperating Mobile Embedded Systems 30

2.5.3 Gear . 30

2.5.4 Analysis . 32

2.6 Comparison . 33

2.6.1 Requirements . 33

2.6.2 Systems comparison . 36

2.6.3 Analysis . 38

2.6.4 Other in�uential concepts . 40

2.7 Summary . 41

Chapter 3 Problem Modelling: Communication and Sensor Models 42

3.1 Environment model . 42

3.1.1 Elements and entities . 42

3.1.2 Indirect communication . 43

3.1.3 Element classi�cation . 43

3.2 Direct communication model . 44

3.2.1 Rationale . 44

3.2.2 Speci�cations . 45

ix

3.2.3 Guarantees . 46

3.2.4 Assumptions . 48

3.2.5 Implementation . 48

3.2.6 Conclusions . 48

3.3 Sensor and indirect communication model . 49

3.3.1 Rationale . 49

3.3.2 Speci�cations . 49

3.3.3 Guarantees . 51

3.3.4 Assumptions . 51

3.3.5 Implementation . 51

3.3.6 Conclusions . 52

3.4 Comparison of the communication models . 52

3.5 Fault model . 53

3.6 Summary . 54

Chapter 4 Comhordú - A Real-Time Coordination Model for Autonomous Mobile

Entities 55

4.1 Approach . 55

4.2 Specifying safety constraints . 57

4.2.1 Motivations . 57

4.2.2 Concepts . 57

4.2.3 Syntax . 61

4.2.4 Expressing the safety constraints . 61

4.2.5 Solvability . 62

4.2.6 Decomposition of the safety constraints . 63

4.3 Safety constraint distribution . 63

4.3.1 Responsibility . 63

4.3.2 Mode compatibility . 64

4.3.3 Coordination primitives . 65

4.4 Translating safety constraints . 67

4.4.1 Contracts between elements . 67

4.4.2 Zones . 73

4.5 Summary . 75

Chapter 5 Using Comhordú to Derive Requirements on Entity Behaviour 77

5.1 Designing a solution . 77

5.1.1 Deriving the set of solutions . 78

5.1.2 Evaluating the set of solutions . 82

x

5.1.3 Conclusion . 85

5.2 Deriving the requirements . 85

5.2.1 General approach . 86

5.2.2 Contract without transfer . 88

5.2.3 Contracts without feedback . 89

5.2.4 Contracts with feedback . 97

5.3 Combining di�erent scenarios . 100

5.3.1 Deriving requirements for a combination of safety constraints 100

5.3.2 Deriving requirements for a combination of scenarios 101

5.4 Summary . 103

Chapter 6 Design and Implementation of ComhorMod, a Tool Supporting Comhordú104

6.1 The sentient object tool chain . 104

6.1.1 MoCoA . 105

6.1.2 Mocoa tools . 108

6.2 ComhorMod . 111

6.2.1 Entity de�nition . 111

6.2.2 Safety constraint speci�cation . 112

6.2.3 Mode compatibility . 113

6.2.4 Responsibility attribution and contract choice 115

6.2.5 Requirements on entities behaviour . 115

6.2.6 Parameter estimation . 117

6.2.7 Requirements with numerical values . 118

6.2.8 Sentient object skeleton . 118

6.3 Achievements and future work . 120

6.4 Summary . 122

Chapter 7 Evaluation and Results 123

7.1 Evaluation outlook . 123

7.2 Experimental con�guration . 124

7.2.1 Using somod and the mocoa tool chain . 124

7.2.2 Direct communication modelling . 124

7.2.3 Indirect communication modelling . 126

7.3 Pedestrian tra�c light . 126

7.3.1 Modelling the scenario in comhormod . 126

7.3.2 Evaluating the solutions . 132

7.4 Early emergency vehicle arrival warning . 135

7.4.1 Modelling the scenario in comhormod . 135

xi

7.4.2 Evaluating the solutions . 140

7.5 Results . 144

7.6 Summary . 144

Chapter 8 Conclusions and Future Work 146

8.1 Achievements . 146

8.2 Perspectives . 147

8.3 Future work . 148

8.4 Summary . 149

Bibliography 151

xii

List of Tables

2.1 Comparison summary. 39

3.1 Di�erent types of elements of the environment, their characteristics and means for

getting information about them. 44

3.2 Comparison of the two communication models. 53

4.1 The three coordination primitives and their meaning. 65

4.2 Requirements imposed by the three types of contracts. 71

4.3 Use of the primitives by the contracts. 71

4.4 Di�erent types of contracts and their use of communication means. 73

5.1 Summary of which entities have their behaviour constrained when the communication

is su�cient, or not and when the behaviour of entities is compatible or not. 79

5.2 Entities that need to adapt and have fail-safe modes for the di�erent contract types. 81

5.3 Results achieved by contracts without transfer and with transfer without feedback. . . 85

5.4 Constraints for a contract without feedback. 91

5.5 Constraints for a contract with feedback. 99

6.1 Mode invariant syntax. 112

6.2 Mode invariants operators. 112

7.1 Communication parameters. 125

7.2 Mode invariants for entities of type car in the pedestrian tra�c light scenario. 127

7.3 Mode invariants for the tra�c light entity type in the pedestrian tra�c light scenario. 128

7.4 Mode compatibility matrix for entities of type car and tra�c light in the pedestrian

tra�c light scenario. 129

7.5 Numerical values of the parameters for the pedestrian tra�c light scenario. 132

7.6 Numerical values of the parameters for the pedestrian tra�c light scenario. 134

7.7 Mode invariants for the emergency vehicle entity type in the early emergency vehicle

arrival warning scenario. 135

xiii

7.8 Mode compatibility matrix for entities of type car and tra�c light in the emergency

vehicle scenario. 137

7.9 Numerical values of the parameters for the emergency-vehicle warning scenario. 140

xiv

List of Figures

2.1 Layered multi-robot architecture (Goldberg et al. 2002). 19

2.2 An architecture to support cooperating mobile embedded systems (Nett & Schemmer

2004). 31

2.3 The tcb architecture (Veríssimo et al. 2000). 31

3.1 Di�erent coverages of the space elastic model. 46

3.2 Direct communication time lines. 47

3.3 Indirect communication time lines. 50

3.4 Simpli�cation of the model of the sensing process. 51

4.1 Possible mode diagram for an entity of type car. 58

4.2 EBNF description of the safety constraint formalism. 62

4.3 Transfer primitive, and its e�ect on responsibility. 67

4.4 Time line for a contract (with transfer) without feedback. 69

4.5 Time lines for a contract (with transfer) with feedback. 70

4.6 De�nitions of the di�erent zones within the critical coverage. 76

5.1 Responsible entity and contract types combination example. 78

5.2 Summary of the solution design process. 86

5.3 A responsible entity and some of its safety zones. 87

5.4 Fault-tree for a violation of the safety constraint. 87

5.5 Fault-tree for a violation of the safety constraint for a contract without transfer. . . . 88

5.6 Fault-tree for a violation of the safety constraint for a contract without feedback. . . . 90

5.7 Time line for reaction to a message reception. 92

5.8 Time line for reaction to an adaptation. 93

5.9 Time line for reaction to a message reception in the worst case. 95

5.10 Time line for reaction to an adaptation in the worse case. 96

5.11 Fault-tree for a violation of the safety constraint for a contract with feedback. 98

5.12 Example of mode diagram combination. 102

xv

6.1 A sentient object. 105

6.2 Example of two pipelines. 107

6.3 The mocoa architecture. 107

6.4 Somod screenshot. 109

6.5 Sentient viewer screenshots. 110

6.6 MoCoA tool chain. 110

6.7 Comhormod architecture. 111

6.8 Screenshot of step 1: entity de�nition. 113

6.9 Screenshot of step 2: safety constraint speci�cation. 113

6.10 Screenshot of step 3: mode compatibility. 115

6.11 Screenshot of step 4: responsibility attribution and contract type choice. 117

6.12 Screenshot of step 5: requirements. 118

6.13 Screenshot of step 6: numerical application. 119

6.14 Screenshot of step 7: requirements with numerical values. 119

6.15 Screenshot of step 8: sentient object skeleton. 119

6.16 ComhorMod's integration in the MoCoA tool chain. 120

6.17 Alternative design for step 4. 121

7.1 Actual coverage variations over one simulation. 125

7.2 Mode diagram for the car entity type in the pedestrian tra�c light scenario. 127

7.3 Mode diagram for the tra�c light entity type in the pedestrian tra�c light scenario. . 128

7.4 Screenshot of ComhorMod's step 3 for the tra�c light scenario. 129

7.5 Requirements for the tra�c light entity type in the pedestrian tra�c light scenario. . . 131

7.6 Tra�c light colour changes. 133

7.7 Average pedestrian waiting time. 134

7.8 Mode diagram for an emergency vehicle entity type in the early emergency vehicle

arrival warning scenario. 136

7.9 Mode diagram for the tra�c light entity type in the early emergency vehicle arrival

warning scenario. 136

7.10 Requirements for the emergency vehicle entity type. 138

7.11 Requirements for the car entity type. 139

7.12 Variations of both the actual coverage and the emergency vehicle speed over time,

during one simulation. 141

7.13 Variations of the average emergency vehicle speed as a function of the communication

pro�le. 142

7.14 Variations of both the actual coverage and the emergency vehicle speed over time,

during one simulation. 143

xvi

7.15 Variations of the average emergency vehicle speed as a function of the proportion of

vehicles that send feedback. 143

xvii

xviii

Chapter 1

Introduction

This thesis presents Comhordú, a real-time coordination model for autonomous mobile computer

systems, or �entities�. Using Comhordú, developers can translate system-wide safety constraints into

requirements on the behaviour of autonomous mobile entities. If the behaviours of all entities ful�l

these requirements, system-wide safety constraints can be ensured while entities act independently,

despite having access to only limited information from sensors and unreliable wireless communication.

This chapter �rst describes the motivations for this work, de�nes the notion of coordination,

outlines the limitations of wireless communication and sensor information, and then gives an overview

of existing related work. Following this, the challenges to be overcome by the work described in this

thesis are presented. In addition, the approach chosen for this work, its goal, contributions, and scope

are outlined. Finally, a road map of the thesis and a summary of this chapter are presented.

1.1 Motivations

Progress in miniaturisation of computing devices, wireless communication, and sensing technology is

encouraging the deployment of mobile entities in our everyday environment. Many of these computer

systems operate without any human control, i.e., are autonomous. Examples of these autonomous en-

tities include pet robots (Kubota et al. 2000), automated guided vehicles (agvs) (Cawkwell 2000), and

other mobile service robots (Schraft 1994), as well as robots for disaster rescue (Hirose & Fukushima

2002), unmanned aerial vehicles (uavs) (Alighanbari et al. 2003), space robots (Fong & Nourbakhsh

2005), and, in the future, autonomous cars (Baber et al. 2005, Bouraoui et al. 2006).

These entities typically operate in the same environment as humans, other entities, and potentially

expensive infrastructure. To ensure the safety of all parties, entities must coordinate their behaviour

both with each other and with their environment. For example, agvs used in factory automation

need to collaborate while ensuring that they do not collide with each other or with factory workers.

This means that the aggregated behaviour of all these entities must respect some system-wide safety

constraints. As the safety of humans and possibly crucial or expensive infrastructure is at stake, the

1

1.2. Background information

coordination of entities is often safety-critical (Kopetz 1997), i.e., a violation of the safety constraints

could result in a catastrophe. Furthermore, because entities interact with their environment, ensuring

these system-wide safety constraints typically implies stringent real-time requirements on coordination.

For example, the time available to an agv to react to avoid another agv is bounded depending on their

speeds and trajectories. The work described in this thesis caters for this emerging class of applications

composed of autonomous mobile entities and exhibiting strong reliability and timeliness requirements.

Entities need to have information about the behaviour of other entities and their environment

in order to coordinate their behaviour. In mobile settings, however, the quality of the information

provided by both direct communication and sensor data (under real-time requirements) is limited and

varies signi�cantly over space and time. Therefore, entities might not be able to reach consensus on

their collective behaviour, or even to consult each other, and might not have a complete view of the

environment.

Ensuring that system-wide safety constraints are respected by entities that take decisions inde-

pendently, while having access to only limited information, is particularly challenging. This thesis

investigates a new approach to this problem where entities adapt their behaviour depending on cur-

rently available information about the behaviour of other entities and their environment.

1.2 Background information

For entities to coordinate, they need to have information about their environment and the behaviour

of other entities. For this purpose, entities can use both wireless communication and sensor data.

This section �rst de�nes the concepts of coordination and coordination model. It then provides some

background information about wireless communication and sensor data.

1.2.1 Coordination

Coordination is a relatively new concept. It was �rst considered between di�erent processes or pro-

grams (see, for example, Arbab 1998). Coordination in this context was de�ned as a construct to form

a single application from multiple components, and the purpose of coordination models and associated

languages has been stated (Papadopoulos & Arbab 1998) as:

�to provide a means of integrating a number of possibly heterogeneous components to-

gether, by interfacing with each component in such a way that the collective set forms

a single application that can execute on, and take advantage of parallel and distributed

systems�.

Closer to our interest, Keil & Goldin (2003) de�ne coordination in a multiagent system as:

�the management of interaction among computing entities in multiagent systems, including

creation and destruction of such entities and of communication links among them�,

2

Chapter 1. Introduction

where interaction is:

�the ongoing two-way or multiway exchange of data among computational entities, such

that the output of one entity may causally in�uence the later outputs of another entity�.

This de�nition, however, is more suited for software agents where the creation and destruction of

entities is an easy and common occurrence. Furthermore, as the quality of communication between

entities varies over time and distance, the notion of explicit creation and destruction of communication

links seems inappropriate. Inspired by the de�nition of the Oxford English Dictionary of coordination

(De�nition 4 in Oxford English Dictionary Online 1989):

�harmonious combination of agents or functions toward the production of a result�,

we add the notion of a result that the entities are trying to ensure. So our de�nition of coordination

is:

�the management of interactions both amongst entities, and between entities and their

environment, towards the production of a result�,

where we de�ne interaction as:

�any action that may causally in�uence the action of other entities�.

Note that our de�nition of interaction is more generic than the one from Keil & Goldin in that, in

our view, interaction does not require the exchange of data. In this work, the result towards which

entities interact includes the safety of entities and their environment.

We adopt the de�nition of a coordination model by Ciancarini (1996):

�a triple {E,M,L} where E is the set of coordinable entities, M is the set of coordina-

tion media, and L is the set of coordination laws that dictates how entities coordinate

themselves through the given coordination media, and using a number of coordination

primitives�.

In the following, we review the possible coordination media.

1.2.2 Wireless communication

Mobile entities typically communicate over a wireless network. Wireless networks can be either

infrastructure-based, in which case communication is managed by a set of prede�ned dedicated nodes,

or ad hoc, where nodes spontaneously create a network with other nodes in their vicinity. Commu-

nication over a wireless link is impaired by fading, as well as di�raction, scattering, re�ection, and

refraction (Neskovic et al. 2000). In addition, node mobility means that connectivity and network

topology change dynamically, as nodes move into and out of range of other nodes (Wang & Li 2002).

3

1.3. Context

These factors make routing messages in ad hoc networks particularly challenging (McDonald & Znati

1999). Furthermore, message collisions are hard to avoid in wireless, and in particularly in ad hoc,

networks, and cause unpredictable latency (Hughes & Cahill 2003). These reasons imply that com-

munication, and in particular real-time communication, in wireless networks is highly unreliable and

that the achievable timeliness varies greatly over time and location (Gaertner & Cahill 2004).

1.2.3 Sensor information and environment-mediated communication

Entities can also obtain information about their environment and other entities through sensor infor-

mation. In particular, entities can use environment-mediated communication instead, or in addition

to, wireless communication. Environment-mediated communication (emc) (Gellersen et al. 1999) is

a form of indirect communication, where agents communicate by changing their environment and

detecting these changes. An example of environment-mediated communication in everyday life is the

use of sirens by emergency vehicles: an emergency vehicle acts on its environment by producing a

sound that can be detected by drivers who then know that it is arriving.

Emc has been characterised in the study of stigmergy, in which an agent's actions leave signs in

the environment, that it and other agents sense and that determine their subsequent actions (Parunak

2003). The term stigmergy was �rst coined to refer to the nest building behaviour of termites (Grassé

1959), and the concept has since been applied to a variety of domains ranging from combinatorial

optimisation (Dorigo et al. 1999) to communications networks (Schoonderwoerd et al. 1996, Caro &

Dorigo 1998), peer-to-peer application design (Babaoglu et al. 2002) and robotics (Holland & Melhuish

1999).

Emc relies on the use of sensors. The range and accuracy of sensors, however, are inherently

limited, so sensors can only give information about their immediate vicinity, and this information is

necessarily approximate. Furthermore, sensor range and accuracy might be a�ected by environmental

conditions (e.g., luminosity or temperature) and will therefore vary over time. This implies that, as

the quality of sensor information and emc varies over time, entities cannot safely rely only on them

to get information for coordinating their behaviour.

In the following, we refer to emc as indirect communication, and to wireless communication as

direct communication to simplify the discussion.

1.3 Context

The limitations of both data communication and sensing mean that the information that entities

have about their environment varies signi�cantly over time and space. In this section, we give a brief

overview of existing work in the area of real-time coordination of autonomous mobile entities, and

assess how they deal with the unreliability of real-time communication and sensor data in mobile set-

tings. A number of applications composed of autonomous mobile entities have already been deployed,

4

Chapter 1. Introduction

mostly in the �eld of robotics, using application-speci�c coordination mechanisms, which we review in

Section 1.3.1. In contrast to these application-speci�c mechanisms, a number of generic coordination

approaches have also been proposed for autonomous mobile entities. Most of these approaches rely on

the notion of consensus. Section 1.3.2 reviews these consensus-based approaches, while Section 2.4.2

discusses existing non-consensus based approaches to coordination.

1.3.1 Application-speci�c coordination mechanisms

In the robotics community, a number of projects have investigated the coordination of autonomous

robots. While the majority of this work relates to static robots, between which continuous real-time

connectivity can be assumed, a number of applications have been built using mobile robots. The

latter include, for example, agvs (Cawkwell 2000), uavs (Alighanbari et al. 2003), autonomous cars

(Baber et al. 2005), and robots for disaster rescue (Hirose & Fukushima 2002). This work, however,

typically assumes reliable connectivity, which might be reasonable in the con�ned and protected

environments in which robots are typically deployed during experimentation, but would not be for

large-scale applications in everyday environments. In contrast, the work in this thesis caters for the

coordination of autonomous mobile entities even in the presence of communication failures.

1.3.2 Consensus-based approaches

A number of consensus-based coordination models have been proposed for mobile entities in ad hoc

networks. These models mostly use a tuple-space approach, where entities coordinate by manipulating

a shared collection of data objects, called tuples. Lime (linda in mobile environment) (Murphy et al.

2001) caters for physical mobility of hosts and logical mobility of agents, by having a tuple space

attached to each mobile entity. Entities then collaborate by transiently sharing their tuple spaces,

creating a �global virtual data structure�. EgoSpaces (Julien & Roman 2004) is an extension of lime

that introduces the concept of a view that allows nodes to specify from which nodes tuples must be

gathered. Finally, Limone (Fok et al. 2004) is another lime-inspired model, designed for use on small

devices in unstable environments. None of this work, however, considers real-time guarantees.

The work of Nett et al. (Nett et al. 2001, Nett & Schemmer 2004) aims to ensure reliable co-

operation of mobile autonomous entities. Their solution provides an event service that delivers the

global state of the system to all entities every time an event is delivered. Entities can then use a local

scheduling function to schedule shared resources. This work, however, is limited to infrastructure-

based networks. Furthermore, reliability of this service is guaranteed only under application-speci�c

assumptions. Similarly, some work deals with coordination of entities by providing entities with the

same view of their environment (Goldberg et al. 2002, Clark 2004), but does not address the possibility

of communication failures.

5

1.4. Challenges

1.3.3 Other approaches

We have identi�ed two main approaches to coordination that do not rely on consensus. Coordination

without communication, also called reactive coordination (Gervasi & Prencipe 2004, Ijspeert et al.

2001, Schermerhorn & Scheutz 2006), is based on entities reacting to the behaviour of other entities to

coordinate their actions. The approach, however, relies on entities accurately sensing the behaviour

of other entities and, as sensor information is unreliable, can only o�er best-e�ort guarantees.

Gear (Veríssimo & Casimiro 2003) is an architecture for event-driven support of real-time entities

based on the timely computing base (tcb) component. This work takes the unreliability of real-

time communication into account and is based on the idea that entities are informed in real-time of

communication failures, and can react to them. The way in which entities should react in case of a

communication failure, however, is not investigated.

1.3.4 Analysis

The majority of approaches to the coordination of autonomous mobile entities are built on the notion

of consensus between entities, either on their view of their environment, or on the action they should

take. Entities operating in mobile settings and under strong real-time constraints, however, might not

be able to communicate with each to reach a consensus on their collective behaviour or even consult

each other. Therefore, consensus-based approaches can only o�er best-e�ort guarantees and are not

suitable for applications exhibiting strong reliability and timeliness requirements.

Amongst the other approaches to coordination, the tcb approach is particularly relevant, as it

takes into account the unreliability of communication and o�ers strong reliability under real-time

constraints. The semantics and application-development support o�ered, however, are very limited.

In contrast, our work provides a systematic process to develop applications composed of autonomous

mobile entities.

1.4 Challenges

As outlined above, the limitations of direct communication and sensor data imply that entities might

not be able to communicate with each other and need to act independently. So entities need to coordi-

nate their behaviour, i.e., ensure system-wide safety constraints while taking decisions independently,

using only limited information. In this section, we review the main challenges raised by this problem.

We have identi�ed four factors that make the problem of coordinating entities particularly challeng-

ing in the presence of limited information about each other: spontaneous interaction, race conditions,

reaction compatibility and ambiguity in the absence of messages. We detail each of these in turn,

and illustrate them by means of the example of an unsignalised junction. For ease of explanation,

we assume that the safety constraints in this example state that there can be only one vehicle in the

junction at any given time.

6

Chapter 1. Introduction

1.4.1 Spontaneous interactions

Autonomous mobile entities in our everyday environment have typically been designed by di�erent

developers, at di�erent times, for di�erent purposes. This means that entities share their environment

with some entities that may not even have existed at the time at which they were deployed. Therefore,

entities operate amongst a potentially varying number of others entities, whose type is not known in

advance. Entities might need to interact with such other entities, or at least to coordinate their

behaviour with theirs. For this purpose, entities need to be able to interact spontaneously with other

entities in their vicinity.

For example, autonomous vehicles might be designed to negotiate an unsignalised junction. The

number or identity of the vehicles that a given vehicle will encounter during its lifetime are not known

in advance. Furthermore, entities of di�erent types can also operate in or around the junction, for

example, emergency vehicles, trucks, or buses.

In addition, entities can be spread over a wide space, possibly city or nation-wide. This implies

that it is impossible for an entity to build, and rely on, a complete view of the system, i.e., of all the

other entities and its environment.

1.4.2 Race conditions

Because entities are autonomous and interact spontaneously, it is not possible to set an a priori order

on their actions, and they might do things simultaneously. Simultaneous actions might lead to safety

constraints being violated.

For example, two autonomous vehicles can arrive at a junction at the same time, both establish

that there is nobody in the junction, and subsequently enter the junction at the same time, therefore

violating the safety constraints.

Race conditions make it impossible to consider a �ow of actions of an entity in isolation, and require

that possible concurrent actions of other entities in the vicinity be taken into account in ensuring the

safety constraints.

1.4.3 Reaction compatibility

When it detects that a safety constraint risks being violated, an entity might change its behaviour

so that it does not happen. If two entities, however, change their behaviour in a way that is not

compatible, the safety constraint might still be violated.

Consider, for example, two autonomous vehicles having detected that they have arrived in the

junction vicinity at the same time, and that want to avoid entering the junction simultaneously. A

possible way to adapt their behaviour so that the safety constraint is not violated would be, for

example, to delay entering the junction for a duration long enough so that the other vehicle will have

time to cross. If both vehicles, however, chose to adapt their behaviour and wait for the same time,

7

1.5. Approach

they are still likely to enter the junction at the same time.

Reaction incompatibility makes it impossible for entities to react in isolation, they need to ensure

that their reaction will be compatible with that of other entities, even though they might not be able

to communicate with them.

1.4.4 Ambiguity in the absence of messages

Because entities are mobile and their interactions are spontaneous, an entity does not know in ad-

vance whether there are any other entities in its surroundings. In addition, when communication is

unreliable, an entity might not be able to send, or reply to, a message (via direct or indirect commu-

nication). This means that it is impossible, a priori, to distinguish between de�cient communication

and the absence of other entities.

This challenge arises, for example, when an autonomous vehicle arrives at an unsignalised junction.

Such a vehicle needs to know whether there are any other vehicles on, or about to enter, the junction,

so that it can cross it safely. For this purpose, it can send a message over the junction, requesting

any entity present in the junction to reply to its message. As communication is unreliable, however,

a car in the junction might not get the message, or might not be able to reply to it. Therefore, in this

example, the ambiguity of the absence of messages, means that a vehicle cannot know whether there

are any vehicles in the junction.

If entities have to ensure system-wide safety constraints and none of them can know for sure whether

there are other entities in its vicinity, they cannot safely make progress. Therefore, ambiguity in the

absence of messages makes it impossible for entities to progress safely if they do not know about the

current state of communication.

1.5 Approach

It has been shown that distributed consensus is not solvable in the presence of arbitrary numbers of

communication failures (Gray 1978, Lynch 1996). Furthermore, consensus protocols typically rely on

knowing the identity of the participants, and then several exchanges of messages (3 for example, in the

3-phase commit protocol (Skeen & Stonebraker 1983)). These steps, however, take a signi�cant time,

and therefore the timeliness requirements of the class of application catered for imply that it might

not always be possible to reach consensus even when communication is su�cient. This implies that

existing consensus-based coordination methods that rely on continuous real-time connectivity cannot

be applied.

Instead of relying on continuous connectivity between entities, our approach is centred on the

idea that entities need to adapt their behaviour depending on currently available information. This

allows entities to make progress when it is safe to do so, while making sure that their safety will never

be compromised. This approach relies on entities being able to quantify the information currently

8

Chapter 1. Introduction

available to them, via both data communication and sensing.

An entity can evaluate its currently available information via direct communication from the

messages it receives, but it also needs some feedback about how well it can currently communicate

with other entities. The most-often-considered form of feedback on the state of communication is the

identity of entities with which an entity can currently communicate, as in group-based communication

(see, for example, Friedman 2003, Singh et al. 2006). Alternatively, the tcb model (Veríssimo &

Casimiro 2002), mentioned in 1.3.3, uses currently achievable message latency as the metric to quantify

the state of communication. In this work, however, we chose to use the space-elastic model (Hughes

2006) that uses the geographical proximity in which entities can currently communicate as a metric

for the state of current communication. This model is particularly relevant for mobile entities, as

the use of a geographical metric makes it easy to derive constraints depending on the movement of

entities.

Quality of sensing can be quanti�ed in terms of the number, type and accuracy of sensors available,

as well as their current sensing range. The contributions of this thesis include a model for sensor data

that, similarly to the space-elastic model, allows developers to reason about the geographical prox-

imities in which sensor data is available, and therefore in which indirect communication is currently

possible.

Comhordú, the coordination model presented in this thesis, shows how such feedback on the current

state of communication can be exploited to ensure that entities can make progress when possible, while

remaining safe, despite having access only to unreliable information.

1.6 Goal and contributions

As motivated by Section 1.1, the goal of this thesis is to support the development of autonomous

mobile entities able to ensure system-wide safety constraints while having access only to unreliable

information. This requires the ability to design fully decentralised solutions, i.e., solutions where

entities take decisions independently of any central coordinating entity. Moreover, this work aims to

be generic, i.e., suitable for a wide range of autonomous mobile entities.

The contributions of this thesis are fourfold:

1. a space-elastic sensor and indirect communication model, that is the equivalent for sensor and

indirect communication of the space-elastic model for wireless communication;

2. a coordination model, Comhordú, that builds on both the space-elastic model and the sensor and

indirect communication model to allow entities to adapt their behaviour depending on available

information;

3. a systematic process that allows developers to use Comhordú to program entities by translating

system-wide safety constraints into a set of requirements on the behaviour of individual entities.

9

1.7. Scope

If these requirements, expressed as conditions for safely performing certain actions, are met, the

safety constraints will be ensured;

4. a development tool, ComhorMod, that supports the development process of autonomous mobile

entities by automating the systematic steps of comhordú.

Indirect interaction is recognised as a promising research direction, but no multiagent system model

has yet been de�ned (Keil & Goldin 2005). Therefore, an indirect contribution of this thesis is to

demonstrate how indirect communication can be used in conjunction with direct communication in

the design of autonomous systems.

1.7 Scope

This thesis de�nes a real-time coordination model for autonomous mobile entities. This work also

describes a systematic process to use the model for the design of applications composed of autonomous

mobile entities. To ease this process, a tool is presented that guides entity developers through the

di�erent steps required to use the model, and automates the systematic steps. Finally, the generality of

the model is evaluated through its application to several scenarios and the behaviour of the generated

applications is assessed via simulations. This work, however, does not present a formal de�nition of

the coordination model, nor a formal proof of its correctness.

The development process allows system-wide safety constraints to be translated into requirements

on the behaviour of individual entities. If these requirements are met, the safety constraints will be

ensured. Ensuring these requirements might require entities to use speci�c hardware as well as speci�c

architectures or algorithms (e.g., cpu scheduling algorithms). How to ensure that entities ful�l these

requirements, however, is outside the scope of this work.

The de�nition and use of the model is illustrated with a number of examples from the intelligent

transportation systems domain (its). Its, however, is not the subject of this thesis, and is only one

of the possible application domains of this work. Nevertheless, it is worth mentioning that the model

has been designed for the coordination of physical mobile entities, not software agents. The constructs

de�ned facilitate reasoning about mobility of physical entities and would not be e�cient for software

agents.

Note also that while this work can be used to design entities that can support humans, the entities

are assumed to be autonomous and their interactions with humans are not covered by this work.

One consequence of this assumption is that the actuation of entities is assumed to be potentially

safety critical, i.e., best e�ort is not a su�cient approach. In addition, the real-time aspect of the

coordination is crucial for such entities, and this is also a de�ning assumption for our work.

Finally, it should be noted that the issues of trust and security (as opposed to safety) are not

considered in this thesis.

10

Chapter 1. Introduction

1.8 Road map

The remainder of this thesis is organised as follows. Chapter 2 presents a review of the state of the

art on real-time coordination of autonomous mobile entities. Chapter 3 presents the models on which

Comhordú relies. These are an environment model on which our work is built, a direct communication

model called the space-elastic model, and our sensor and indirect communication model. Chapter 4

presents the coordination model, Comhordú and Chapter 5 shows how it can be used to design

autonomous mobile entities. ComhorMod, a tool supporting the design process of such entities, is

presented in Chapter 6. The generality of Comhordú as well as the quality of the outputs generated

using the design process are evaluated in Chapter 7. Finally, Chapter 8 concludes this thesis and

outlines possible future work.

1.9 Summary

This chapter outlined the goals and scope of the work described in this thesis � essentially, the

de�nition of a real-time coordination model that allows autonomous mobile entities to operate safely

despite unreliable communication and limited sensor information. The chapter began by presenting

the basic motivation for the work described in this thesis, i.e., the need for autonomous mobile entities

to coordinate their behaviour to ensure system-wide safety constraints, despite only having access to

limited information. The problem was de�ned in more detail by examining the limitations of both

direct and environment-mediated communication. The main challenges that arise from this problem

were outlined, and a brief overview of existing work demonstrated that all of these challenges have

never been tackled simultaneously. Finally, the chapter concluded by detailing the approach of this

work, and the goals and contributions of this thesis, as well as the areas that are outside the scope of

the work.

11

Chapter 2

Related Work

This thesis deals with the real-time coordination of autonomous mobile entities. The terms coordina-

tion, collaboration and cooperation are used loosely to refer to the idea of people or systems working

together. In our view coordination di�ers from collaboration or cooperation in that collaborating or

cooperating entities typically have the same goal, while entities that have di�erent goals may also

need to coordinate their behaviour to ensure properties, such as fairness or, in our work, safety.

As explained in the introductory chapter, the problem that this thesis addresses is the provision of a

generic model for the coordination of autonomous, mobile, physical entities. Two crucial requirements

of this work are high reliability to deal with safety-critical applications, and timeliness as entities

interacting with the physical environment must do so in real-time. In particular, the safety constraints

must be met despite potential communication faults, and the entities must adapt their behaviour

within known time-bounds.

The concept of coordination has been studied in a variety of domains, which include biology,

computer science, organisation theory, operations research, economics, linguistics and psychology

(Malone & Crowston 1994). In particular, coordination has been studied in several computer science

domains, but this work has mostly not been integrated together. In this chapter we review work

on coordination from di�erent communities, focusing on reliability and timeliness. The model-driven

engineering (mde) community, similarly to the work described in this thesis, uses high-level models

to specify a system and aims to automatically generate implementations from such models. To our

knowledge, however, no work has been done in this community on the real-time coordination of entities,

therefore, this area is not surveyed in this section. Section 2.1 explores related work in the multi-

agent systems (mas) community, and introduces environment-mediated communication. Work from

the robotics community, both application-speci�c and generic, is studied in Section 2.2. Work from the

intelligent transportation systems (its) community, typically inspired by one of the two previously-

cited communities, is described in Section 2.3. Section 2.4 describes work intended to formalise generic

coordination mechanisms as coordination models. Work from the real-time community that is relevant

12

Chapter 2. Related Work

to this thesis is investigated in Section 2.5. To conclude, Section 2.6 evaluates all the mechanisms and

models presented in the previous sections and compares them. Finally, Section 2.7 summarises this

chapter.

2.1 Multi-agent systems

The mas community studies computer systems comprised of autonomous, intelligent, communicating

systems (or agents). This work is also often referred to as distributed arti�cial intelligence (dai).

Mas have been used to solve a wide range of problems in domains such as arti�cial intelligence,

distributed systems, robotics and arti�cial life (Ferber 1999). Mas have introduced the notion of

collective intelligence, and focus on how agents can coordinate their behaviour and collaborate to

reach goals that may be di�cult to achieve by an individual agent or monolithic system (Ranjit 2007).

In this section, we �rst explain the limitations of work from the mas community to solve the problems

addressed in this thesis, and then describe in more detail two concepts from the mas community that

are particularly relevant to our work: commitments and environment-mediated communication.

2.1.1 Physical vs. software agents

While some de�nitions of mas encompass the possibility of agents with some physical embodiment,

most of the research focuses on software agents and aims to optimise system performance. Therefore,

the problems tackled typically do not match the ones studied in this thesis, as software agents do

not interact with the physical environment, and therefore often do not require timeliness or reliability

guarantees. Furthermore, software agents can typically communicate reliably with each other, either

via interprocess communication or wired communication, and therefore potentially have access to

complete, timely, and reliable information about the system. Finally, software agents do not have

to deal with robot kinematics, i.e., the limitations imposed by the need to actuate on the physical

environment.

A few projects in the mas community deal with physical entities, such as work on the decentralised

control of automatic guided vehicles (agvs) (Weyns, Schelfthout & Holvoet 2005, Weyns & Holvoet

2008). This work applies concepts from a branch of mas called situated mas, in which agents have

an explicit position in the environment (Ferber 1999), to design the software. Each agv is controlled

by an agv agent, while transport agents are used to represent loads to be handled by the agvs. The

situated mas approach, motivated by a need for greater �exibility in agv behaviour and the need to

cater for a dynamic agv population, is shown to be feasible and e�cient in terms of bandwidth usage.

This work, however, does not consider the timeliness and reliability of communication. While these

characteristics are not really problematic in con�ned industrial settings, they represent signi�cant

challenges in generic settings (Gaertner & Cahill 2004). The work of Weyns, Schelfthout & Holvoet

is representative of the work in the mas community, where the emphasis is on higher-level problems

13

2.1. Multi-agent systems

and relies on assumptions about lower-level characteristics such as the reliability of communication.

As mas have been applied to a wide range of problems, however, this body of research o�ers

interesting inspiration for work with physical agents. Of particular interest for the work described in

this thesis are the notion of commitments as well as the use of indirect communication and stigmergy.

2.1.2 Commitments

A number of projects in the mas community have tried to formalise the underlying theories and

principles that govern coordination and cooperation. In particular, it has been argued that com-

mitments (pledges to undertake a speci�ed course of action) and conventions (means of monitoring

commitments in changing circumstances) are the foundations of coordination in multi-agent systems

(Jennings 1993). Agents can make commitments both about actions and beliefs, and these commit-

ments can either be about the past or the future. Because their circumstances might change, agents

might want to revoke their commitments. Conventions describe circumstances under which an agent

should reconsider its commitments and indicate the appropriate course of action to either retain, rec-

tify or abandon the commitment. The concept of commitment has been used to structure numerous

projects in the mas community, for example, for agents characterised as having beliefs, desires and

intentions, called bdi agents (Fasli 2001). Similarly, the notion of a situated commitment, based on

the roles of the involved agents and the local context in which they are placed, has been characterised

to enable explicit collaborations between situated agents (Weyns et al. 2004) .

2.1.3 Environment-mediated communication

Situated agents typically share a common environment, and adapt their behaviour depending on

the state of the environment. Therefore, when an agent changes something in its environment, this

change can be detected by another agent sensing the environment. In this way, the behaviour of

one agent can be in�uenced by the behaviour of another. This allows both coordination without

communication, where agents coordinate their behaviour by reacting to the behaviour of other agents,

and communication via the environment, also termed environment-mediated communication (emc),

where agents leave signs in the environment, that they themselves and other agents can sense. Note

that the distinction between these two concepts is not sharp, as leaving signs might be part of agents'

behaviour; this is discussed in more detail in Chapter 3.

Coordination without communication has been used to solve a large number of problems such as

�ocking (Gervasi & Prencipe 2004), large-scale assembly (Ijspeert et al. 2001), and territory explo-

ration (Schermerhorn & Scheutz 2006).

Emc is the basis of stigmergy. The term stigmergy was �rst coined by a French entomologist

studying the nest building behaviour of termites (Grassé 1959), and it is the extremely complex

coordinated behaviour achieved by such insects that remains the classical example of stigmergy in the

real world. In stigmergic interaction, an agent's actions leave signs in the environment, that it and

14

Chapter 2. Related Work

other agents sense and that determine their subsequent actions (Parunak 2003). There does not seem

to be a consensus on the etymology of the word stigmergy or its precise meaning. Beckers et al. (1994)

suggest that the origin of the word stigmergy is derived from the roots stigma 'goad' and ergon 'work',

thus implying a sense of incitement to work by the products of work. In this view, emc is a means

used by stigmergy. However, Parunak (2003) provides an alternative derivation and suggests that the

term is formed from the Greek words stigma 'sign' and ergon 'action' and so therefore captures the

notion of an entity's actions leaving signs in the environment that in�uence the subsequent actions of

other entities. In this second de�nition, stigmergy is the same as emc. Stigmergy has been applied

successfully to solve many mas problems such as combinatorial optimisation (Dorigo et al. 1999), as

well as in other domains of computer science such as load balancing and routing in communication

networks (Schoonderwoerd et al. 1996, Caro & Dorigo 1998), peer-to-peer application design (Babaoglu

et al. 2002), and coordination in robotics (Holland & Melhuish 1999).

Keil & Goldin (2005) have formalised the notion of indirect interaction, as being interaction via

persistent, observable changes to a common environment, where recipients are any agents that observe

these changes. Therefore indirect interaction encompasses both coordination without communication,

and emc. It is argued that, as message-passing cannot adequately model multi-agent interaction

which includes both direct and indirect interaction, models that allow indirect interaction as well as

direct interaction are more expressive than models that do not (Keil & Goldin 2005).

2.1.4 Analysis

While the problems addressed by the mas community are close to the ones tackled by this thesis, the

work in this community deals mostly with software agents and its emphasis is on high-level problems,

i.e., the provision of appropriate programming models that assume that characteristics such as the

reliability of communication are provided at lower system levels. Therefore, this work is not directly

applicable to work on physical autonomous entities, where interactions with the environment introduce

a number of other issues to be overcome to ensure reliability and timeliness requirements, such as

limited accuracy of sensing and actuation.

The mas community, however, is fairly mature, and its work is a source of inspiration for many

other research domains. Two notions formalised by the mas community are of particular interest for

this thesis: commitments and emc. Commitment is an essential concept, as capturing pledges of

what agents will do allows prediction of what is going to happen. This notion inspired the concept

of contracts between entities in Comhordú. Conventions describe when agents can withdraw their

commitments. When dealing with safety, however, commitments should not be revoked. Instead, in

Comhordú, entities can transfer their responsibility to another entity (see chapter 4); this is equivalent

to transferring a commitment.

Another signi�cant contribution of the mas community is the formalisation of coordination with-

out communication and emc, as indirect interactions. Comhordú uses both coordination without

15

2.2. Multi-robot systems

communication and emc.

2.2 Multi-robot systems

In the robotics community, a number of projects have investigated the coordination of autonomous

robots. While the majority of this work on multi-robot systems (mrs) relates to static robots, between

which continuous real-time connectivity is assumed, a number of applications have been built using

mobile robots. These applications span a wide range of application domains, for example, manufactur-

ing (Cawkwell 2000, Simmons et al. 2000), space exploration (Goldberg et al. 2002), defence (Parker

2003, Konolige et al. 2004), and search and rescue operations (Hirose & Fukushima 2002).

This section �rst presents work that addresses only the coordination of a speci�c aspect of robots

behaviour, and then reviews mrs projects that provide generic coordination mechanisms.

2.2.1 Application-speci�c solutions

A number of projects deal with the coordination of speci�c aspects of robot behaviour, or for un-

dertaking a speci�c task. Examples of the former include collision avoidance (Guo & Parker 2002),

while examples of the latter include terrain exploration (Rekleitis et al. 2001), multi-target observation

(Beard et al. 2002), and large object manipulation (Simmons et al. 2000).

Work on collision avoidance is particularly relevant to this work because of the strong reliability

and timeliness requirements of this task. Approaches to motion planning can be either deliberative

or reactive. In the �rst case, robots cope with environmental changes by adopting a strategy to

reorganise the behaviour of the entire team. In the second case, each robot copes with environmen-

tal changes independently (Iocchi et al. 2001). Simple reactive motion planning strategies cannot

guarantee deadlock-freedom and convergence even in simple cases (Guo & Parker 2002). Delibera-

tive motion planning for robots in a dynamic environment with moving obstacles is a hard problem.

Even for a simple case in two dimensions, the problem is np-hard and is not solvable in polynomial

time (Fujimura 1992). Because a deliberative solution to this problem is computationally intensive,

a number of algorithms have been designed to solve it a priori, i.e., before the robots move (see, for

example, Buckley 1989, Warren 1990). This design choice, however, requires that the characteristics

of the environment be known in advance, which precludes their use in dynamic environments. Online

solutions typically consider a simpli�ed version of the problem, for example, by decomposing the prob-

lem into path planning and velocity planning: a path for each robot is �rst derived, then a velocity

pro�le that avoids collisions is computed for each path. Amongst the projects that o�er an online

solution two categories of solutions emerge: centralised and decentralised. Centralised solutions allow

completeness and global optimisation (Clark et al. 2003), but rely on all information being centralised

at a single place, which is costly in terms of communication, constitutes a single point of failure, and

is not scalable. In distributed solutions, robots devise a common reaction but the decision is taken

16

Chapter 2. Related Work

collaboratively by the robots. Distributed solutions yield less e�cient solutions because only local

information is available, and are more prone to deadlock.

A particularly interesting solution is presented by Clark (2004). This solution, built on a coordi-

nation platform called Dynamic Robot Networks, aims to combine the advantages of both centralised

and decentralised systems, by letting robots form ad hoc networks and run a centralised coordina-

tion protocol on each network. The coordination platform, which takes into account both sensor and

communication limitations, is reviewed in more details in 2.2.2.3.

While the previously mentioned bodies of work acknowledge the need to provide real-time guar-

antees, their proposals limit the real-time concerns to proposing fast algorithms, that enable online

computation but do not give timing guarantees. A notable exception is the work of Yared et al. (2007)

that acknowledges that real-time communication in ad hoc networks is challenging. To tackle the fact

that communication delays in wireless networks are unbounded, they o�er a time-free solution to the

collision avoidance problem, based on path reservation, i.e., where the environment is divided in zones

that robots can request, own and then release and where a robot must own a zone before travelling

over it. The solution is time-free because a robot waits until it has received an answer from all its

neighbours before entering a zone. Their solution reduces the problem scope by exploiting the locality

of the collision avoidance problem, an approach that is also used in the work described in this thesis.

The safety guarantees provided, however, are based on two assumptions: synchronous neighbourhood

discovery, i.e., the ability for a robot to discover, within a given time bound, all other robots within

one communication hop, and a �xed communication range. Both assumptions are fairly restrictive,

and the second in particular is unlikely to be met in environments where obstacles can create zones

in which communication is impossible.

2.2.2 Generic solutions

While a large proportion of the work in the robotics community deals with speci�c (aspects of) multi-

robot systems, the goal of this thesis is to provide a generic solution to the coordination of autonomous

mobile entities. In this section, we review the principal generic approaches to robot coordination.

Because of the limitations of wireless communication and sensing outlined in Chapter 1, centralised

solutions requiring all the necessary information to be available at a single place are ignored, and only

decentralised solutions are detailed.

2.2.2.1 Multi-robot task allocation

Alliance (Parker 1998) is a framework for coordinating mrs composed of heterogeneous behaviour-

based robots. The aim of the framework is to allow robots to individually select appropriate actions

throughout their mission, based on the requirements of the mission, the activities of other robots,

the current environmental conditions, and the robots' own internal states, in order to maximise the

reliability of the team, i.e., the likelihood that the mission will be ful�lled. The actions that robots

17

2.2. Multi-robot systems

must undertake are assumed to be independent, so coordinating the robots is limited to coordinating

which robot is performing which task. Robots have sets of behaviours, which are controlled by

modules called motivational behaviours, that can cross inhibit each other, i.e., the activation of one

behaviour set suppresses the activation of all other behaviour sets. Motivational behaviours depend

on two parameters impatience, which enables a robot to handle situations when other robots fail in

performing the task, and acquiescence, which enables a robot to handle situations, in which it, itself,

fails to properly perform its task. These concepts allow adaptive, fault-tolerant task allocation.

The reliability of this framework in terms of ful�lling a mission has been formally analysed (Parker

1998). Use of the framework has been demonstrated on a variety of proof-of-concept applications

including hazardous waste cleanup, a cooperative box pushing demonstration (Parker 1994), and

multi-target observation (Parker 1999). While this work takes into account the unreliability of sensing,

communication, and the robots themselves, by allowing a robot to change its action when it senses

that it or other robots fail to perform a task, coordination in this framework is limited to selecting

independent subtasks.

A number of other works are concerned with e�cient and reliable task allocation in mrs (see, for

example, Østergaard et al. 2001). This problem has been formalised and shown to be an instance of

the well-known optimal assignment problem (oap) (Gerkey & Mataric 2003). All this work, however,

limits the problem of coordination to task allocation to ful�l a high-level mission, therefore tight

coordination is not supported and timeliness of the solution is not taken into account.

2.2.2.2 A distributed layered architecture for mobile robot coordination

To enable coordination between multiple mobile robots, Goldberg et al. (2002) extend the tradi-

tional three-layered approach adopted for many single-agent autonomous systems. This three-layered

approach provides event handling at di�erent levels of abstraction through the use of behavioural,

executive and planning layers. The planning layer decides how to achieve high-level goals and sends

plans to the executive layer. The executive layer decomposes plans into tasks, sequences the tasks and

monitors their execution. Finally, the behavioural layer interfaces to the robot's sensors and actuators,

by controlling the robot and sending back sensor data and status information to the higher layers.

The proposed extension allows robots to interact at each layer, hence allowing (1) the construction

and sharing of plans between multiple robots, (2) the establishment and maintenance of executive-

level, inter-robot synchronisation constraints and (3) the establishment of distributed behaviour-level

loops. This architecture is outlined in Figure 2.1. This approach has been tested on both large-scale

structure assembly (Simmons et al. 2000) and a Mars exploration scenario (Goldberg et al. 2002).

While this work allows tight coordination between robots, it assumes high-bandwidth, low-latency

communication between robots to achieve good performance in interacting, multi-robot behaviours.

18

Chapter 2. Related Work

Figure 2.1: Layered multi-robot architecture (Goldberg et al. 2002).

2.2.2.3 Dynamic robot networks

Dynamic Robot Networks (Clark et al. 2003, Clark 2004) is a platform for the coordination of au-

tonomous mobile robots that takes into account the fact that sensing and inter-robot communication

are limited. It is based on the idea that robots dynamically form ad hoc networks as they move, and

provides a common world view to all entities in that network, hence allowing centralised coordination

on each network. This work therefore aims to maximise the e�ciency of the planning by making use

of available local information to optimise the behaviour of robots. The unreliability of sensing and

communication is modelled as a range within which they are available. This approach is very close

to the models used in this work, but no analysis of the required communication and sensing range

is presented. Furthermore, the lack of a feedback mechanism to know the areas in which sensing

and communication are currently available implies that these are assumed constant, an assumption

unlikely to be met in the presence of obstacles in the environment.

In addition, timeliness guarantees are not evaluated. Furthermore, while this work is presented

as being a general approach for the coordination of autonomous mobile entities, the only application

detailed is motion planning. No detailed information is available about how this work could be used

for other coordination problems.

2.2.3 Analysis

This section reviewed existing work on mrs. A signi�cant proportion of this work assumes reliable

connectivity, which might be reasonable in the con�ned and protected environments in which robots are

typically deployed during experimentation, but would not be for large-scale applications in everyday

environments. In contrast, the work in this thesis caters for the coordination of autonomous mobile

entities even in the presence of communication failures.

A number of projects in the robotic community either assume that team membership is �xed and

19

2.3. Intelligent transportation systems

known, and allow tight interaction between team members, or assume that the systems are unaware

of each other, i.e, that each robot executes its own task without any knowledge about the other

members of the team, in which case communication is only indirect and the coordination is only

best e�ort (Simmons et al. 2000, Farinelli et al. 2004). In contrast, this work aims to give strong

guarantees for open systems, i.e., systems where new active agents may dynamically join and later

leave (Ciancarini 1996).

Another interesting observation is that real-time concerns are limited: coordination algorithms are

often designed to be fast, but none of the generic solutions mentions the timeliness of communication,

even though it is a signi�cant challenge in wireless networks. Furthermore, while a number of projects

provide generic infrastructure for the coordination of mrs, no coordination model has, to date, been

explicitly designed for robotics (Farinelli et al. 2004). This is what the work described in this thesis

aims to achieve.

2.3 Intelligent transportation systems

The intelligent transportation systems (its) community investigates how computers, information and

communication technologies can be applied to improve transportation infrastructure and vehicles

(Zhao 1997). Early achievements for intelligent vehicle systems were in the domain of driver assistance:

automatic reverse parking (e.g., Paromtchik & Laugier 1996), adaptive cruise control (acc) (e.g.,

Ioannou & Stefanovic 2005), and driver information systems (e.g., Nadeem et al. 2004, Ueki et al.

2004, Karam et al. 2006). More recently, some work has focused on fully autonomous vehicles. This

requires a higher level of reliability as the system is completely responsible for the safety of the

passengers. This characteristic makes this problem particularly relevant to the work described in this

thesis.

2.3.1 Autonomous cars

In the last decade, the idea of driverless, autonomous, vehicles has moved from the domain of pure

science �ction, to a vision that should be achievable in the not-too-distant future (Baber et al. 2005).

Research in this area includes the search for adequate sensors and actuators (Aufrere et al. 2003),

vehicle control algorithms (Kato et al. 2002), and assessment of the usability of such vehicles (Parents

& Gallais 2002). This has led to a number of results, including a practical demonstration of driverless

vehicles following a road lane, overtaking a slower vehicle, and crossing an unsignalised junction

(Kolodko & Vlacic 2003, Baber et al. 2005).

A good benchmark for work in the area are the challenges organised by the defense advanced

research projects agency (darpa), an agency of the United States Department of Defense, responsible

for the development of new technology for use by the military. In 2005, four of the competing

autonomous vehicles successfully completed a 132-mile (212 km) desert route for the darpa grand

20

Chapter 2. Related Work

challenge1. This shows that a number of solutions exist for autonomous cars in static environments.

Cars competing in the darpa urban challenge, in November 2007, are expected to complete a 60-mile

(96 km) urban area course while obeying all tra�c regulations, negotiating other tra�c and obstacles,

and merging into tra�c. Signi�cant competitors in the challenge include the Stanford racing team2,

the Tartan racing team from Carnegie Mellon University3, and the mit team4. While for this challenge,

cars will have to be able to avoid each other and other mobile obstacles, cars do not communicate

with each other and therefore their coordination relies only on sensor information.

2.3.2 Collaborative driving

The next signi�cant paradigm in its evolution is the notion of collaborative driving. By collabo-

rating with each other, autonomous vehicles are expected to achieve improved safety and improved

e�ciency as well as better passenger comfort (Parents & Gallais 2002, Kolodko & Vlacic 2003). Some

autonomous vehicle architectures already include the possibility for vehicles to cooperate (Kolodko &

Vlacic 2003, Naranjo et al. 2006). The support o�ered for coordination, however, is not detailed, or

is limited to exchanging position information. Furthermore, communication is assumed to be reliable.

Speci�c aspects of collaboration have been researched in more detail, however, in particular platooning

and intersection management.

Note that while there is a signi�cant body of work on achieving collaborative driving by in-

stalling infrastructure on roads and using vehicle-to-roadside communication, with technologies such

as dedicated short range communication (dsrc) (Federal Communications Commission 1999), this

section focuses mainly on car-to-car approaches as these are closer to the problems addressed by this

thesis.

2.3.2.1 Platooning

A signi�cant body of work has looked at how to achieve platoons of autonomous vehicles, i.e., groups

of vehicles whose actions on the road are coordinated by means of communication (Varaiya 1993).

Platoons are expected to enable increased road capacity and e�ciency, reduced congestion, energy

consumption and pollution, and enhanced safety and comfort (Michaud et al. 2006).

Research e�orts have mainly focused on low-level control (e.g., use of steering, throttle and brake

for lateral and longitudinal control), sensor issues (e.g., the suitability of di�erent types of sensors,

achievable accuracy), string stability (i.e., the attenuation of spacing errors as they propagate upstream

in a platoon), minimal spacing (to ensure safety while optimising tra�c �ow), and on demonstrating

the feasibility of cooperative driving scenarios in limited and controlled conditions (Michaud et al.

2006). Group communication and coordinated manoeuvring have only received minor attention due

1http://www.darpa.mil/grandchallenge
2http://cs.stanford.edu/group/roadrunner/
3http://www.tartanracing.org/
4http://grandchallenge.mit.edu/

21

2.3. Intelligent transportation systems

to the lack of reliability of existing sensing and communication devices, and the safety risks of testing

such aspects with real vehicles. The application of techniques such as team oriented programming

(top) from the mas community has been investigated to solve these problems (Hallé et al. 2004, Hallé

& Chaib-draa 2005). In this approach, platoon members are assigned roles within a team hierarchy,

and tasks relating to these roles are de�ned. This strategy is shown to be e�cient both in terms of

vehicle reactivity and number of messages exchanged. This work, however, has been tested only in a

simulator, where neither communication and sensor unreliability nor timeliness issues have been taken

into account.

Of particular interest to the work described in this thesis is work on assessing di�erent coordination

strategies between cars in a platoon, and required communication for di�erent manoeuvres (Michaud

et al. 2006). In particular, this work describes the di�erent roles that cars in a platoon can have

in a manoeuvre and identi�es a number of strategies in terms of whether cars in a given role can

communicate to cars in other roles, and whether these other cars can provide feedback to the initial

cars.

Di�erent combinations of sensors, architectures and control strategies have also been tested, and

these e�orts culminated in a number of demonstrations of cars travelling in platoons (Kato et al.

2002, Empey 2002). In these demonstrations, however, the number of cars in a platoon is limited,

the settings are protected, and only simple manoeuvres are performed. Overall, while platooning

of autonomous vehicles is a very active research area, these e�orts have not yet yielded a generic

solution to the problem that caters for a wide range of manoeuvres amongst many cars in normal road

conditions where communication and sensor information are limited.

2.3.2.2 Intersection management

Another body of work in its deals with collaborative collision avoidance, and more particularly collab-

orative intersection crossing. Techniques from the mas community have been applied to this problem,

by having a �driver� agent control each autonomous car, and an intersection manager control each

intersection (Dresner & Stone 2005). The driver agent of a vehicle approaching a junction requests

and receives slots from the intersection manager, during which the vehicle may pass. The system is

centralised, in the sense that each intersection manager coordinates the motion of all vehicles in its

vicinity. This reservation-based system is implemented in a simulator where it is shown to improve

both delay on vehicle journey and throughput of the intersection in comparison to traditional systems

such as tra�c lights or stop signs (Dresner & Stone 2004). Interactions between driver and intersection

manager agents obey a protocol that has been designed so that vehicle safety is not compromised by

message loss. The model, however, does not take into account the timeliness of communication and

vehicles behaviour, therefore safety can be compromised if vehicles do not get a reservation when they

expect or spend more time than planned in the intersection.

Another proposal for intersection management has been evaluated in an experimental testbed using

22

Chapter 2. Related Work

robots (Sheng et al. 2006). This work o�ers a fully distributed algorithm, where vehicles broadcast

their intended path. If the paths of some vehicles meet, they coordinate their velocities so that

they will not collide, by applying an algorithm on all their paths. Therefore, this work requires a

consensus amongst all vehicles whose paths meet. While this work takes into account that the range

of communication is limited, this range is assumed to be constant, which is not a realistic assumption

for environments where obstacles can obstruct wireless communication. Furthermore, real-time aspects

are not taken into account.

Finally, in the Cybercar project, an algorithm for collaborative intersection crossing that relies on

re�ning partial trajectories is demonstrated on real vehicles (Bouraoui et al. 2006). This algorithm,

however, relies on vehicles having access to an accurate view of their environment and its evolution

over a given time period. While it is suggested that this could be achieved by vehicles and obstacles

exchanging information over an ad hoc network, the timeliness of the information exchange is not

taken into account in the model. Furthermore, how vehicles should react when they have detected a

potential collision is not investigated.

2.3.3 Analysis

Autonomous cars are becoming a reality, and collaborative driving is a promising research area.

Results in this domain, however, are still limited. Because the problems involved are very complex,

simpli�ed versions are often addressed. A signi�cant body of work is inspired by work in the mas

community and typically o�ers fairly elaborate coordination means. While the models of some of this

work take car kinematics into account, they typically do not take communication unreliability and

timeliness issues into account.

Another signi�cant body of work on collaborative driving draws inspiration from the robotics

community. The use of robots has been advocated to evaluate solutions with real world constraints

such as limited perception, imprecise actions, latency, real-time decision making, embedded computing,

unanticipated events, etc (Michaud et al. 2006). Contrary to simulators, however, robots cannot model

real vehicle dynamics. Furthermore, robots typically operate in controlled conditions, where their

communication and sensing can be assumed to be reliable. In addition, work in this area typically

o�ers limited coordination mechanisms.

Finally, work on the coordination of autonomous vehicles is typically very application speci�c, and

addresses only a speci�c situation in which cars need to coordinate their behaviour.

2.4 Coordination models

Work in the area of coordination models deals with the investigation of generic models, semantics and

middleware for coordination. In this section, we review the most signi�cant work in this area related

to the problem of real-time coordination of autonomous mobile entities.

23

2.4. Coordination models

Coordination models can be split into two classes: data-centric or message-centric, depending on

whether the emphasis is on data sharing or message passing. We review each in turn, with an emphasis

on models that are suited to mobile entities.

A coordination model was de�ned in Chapter 1 as a set of coordinable entities, a set of coordination

media, and a set of coordination laws that dictate how entities coordinate themselves through the

given coordination media, using a number of coordination primitives. While most of the models

presented in this section �t into this de�nition, some of the message-centric systems (those described

in Section 2.4.2.1) o�er only communication means and no coordination laws. It can be argued,

however, that by communicating entities can have common knowledge of their environment hence

enabling coordination. For this reason, such systems are often considered as part of the coordination

community and are included in this section.

2.4.1 Data-centric models

Gelernter & Carriero (1992) advocated a clear separation between the interactional and the compu-

tational aspects of software components. This consideration has been encapsulated in the design of

Linda (Gelernter 1985), originally presented as a set of inter-agent communication primitives that

may be added to almost any programming language. This set includes primitives for process creation,

as well as for adding, deleting and testing for the presence of data in a shared dataspace. Linda

therefore allows decoupled communication between processes: each process only needs to know about

the data available, not about the processes producing or consuming it. This characteristic led it to

be recognised as a general-purpose coordination paradigm for distributed programming (Cabri et al.

2006). This work served as a basis for the de�nition of the notion of coordination models, and the

tuple-space abstraction, where entities coordinate by manipulating a shared collection of data objects,

called tuples. Most of the data-centric coordination models use a tuple-space approach. In this section,

we �rst review the data-centric models that take the mobility of entities into account and then discuss

work that introduces a notion of time.

2.4.1.1 Mobility

The most in�uential coordination model supporting mobility is lime (linda in a mobile environment)

(Murphy et al. 2001, 2006), a coordination model and middleware designed for ad hoc networks,

inspired by work on the Linda model. Lime caters for physical mobility of hosts and logical mobility

of agents (i.e., run-time migration of software components), by having a tuple space attached to each

mobile entity. Entities then collaborate by transiently sharing their tuple spaces, creating a �global

virtual data structure� (Murphy et al. 2001). This work has been extended to include information

coming from the physical environment in addition to application data (Murphy & Picco 2004). Lime

has been used for entertainment applications (Murphy et al. 2006), as well as support for human-led

space exploration (Murphy & Picco 2004), and data replication (Murphy & Picco 2006).

24

Chapter 2. Related Work

To facilitate development of context-aware applications, EgoSpaces (Julien & Roman 2002, 2004),

one of the many extensions of lime, introduces the concept of a view that allows nodes to specify from

which other nodes tuples are gathered. To o�er higher-level coordination support, the concept of views

was later extended to include reactions, which consist of actions that are automatically performed in

response to speci�ed changes in a view (Julien & Roman 2004). Use of EgoSpaces was demonstrated

on an emergency vehicle warning system, a subscription music service, and a collaborative puzzle

game (Julien & Roman 2006). Despite the strong reliability requirements of some of these examples,

the proposed applications, however, o�er only best-e�ort semantics and in particular do not o�er any

reliability or timeliness guarantees. Tota (tuples on the air) (Mamei & Zambonelli 2004) allows the

de�nition of tuples that are automatically disseminated by copying them to connected nodes according

to an application-speci�c rule. It has been shown that the tota middleware can be used to program

stigmergic coordination (Mamei & Zambonelli 2005).

Finally, Limone (lightly-coordinated mobile network) (Fok et al. 2004) is another lime-inspired

model, designed for use on devices with potentially limited power and memory over ad hoc networks.

As disconnection and message loss are frequent in ad hoc networks, in Limone each agent maintains

strict control over its local data and de�nes an acquaintance policy that governs the agents with which

it will interact. All distributed operations include mechanisms such as timeout to prevent deadlock

due to packet loss or disconnection. Therefore, Limone supports coordination in unstable networks.

This model is demonstrated on a universal remote control application that can control devices in its

proximity.

All the work presented in this section o�ers high-level semantics and is generic, i.e., suitable

for many coordination applications. None of this work, however, considers real-time guarantees.

Furthermore, because the guarantees provided by tuple-spaces are quite strong and high-level, we

believe that it would be particularly hard to provide them reliably for mobile entities under stringent

timeliness requirements.

2.4.1.2 Real-time

Recognising a need for real-time coordination, Jacquet et al. (2000) and Jacquet & Linden (2007)

have extended the Linda model with the notions of both relative and absolute time. With respect

to relative time, they describe two extensions: a delay mechanism to postpone the execution of

communication primitives, and explicit deadlines on the validity of tuples and on the duration of

suspension of communication operations. For absolute time, they introduce a wait primitive to wait

until an absolute point of time, and time intervals, to express both the validity of tuples in the data

store and on the duration within which communication operations should occur. This work, however,

does not cater for the mobility of agents. Furthermore, the work is limited to soft real-time, in that

it does not cater for coordination reliability.

25

2.4. Coordination models

2.4.2 Message-centric

Another class of coordination models is the message-centric class. Models in this class are mostly

built on the publish/subscribe or event-based communication abstraction.

2.4.2.1 Publish/subscribe architectures

Location-based publish-subscribe (lps) (Eugster et al. 2005) is a publish/subscribe architecture de-

signed speci�cally for collaboration in mobile ad hoc applications. The main di�erence between lps

and traditional publish/subscribe architectures is that event dissemination and reception is bounded

in physical space: a publisher de�nes a publication range and a subscriber de�nes a subscription range.

Only when the publication range of the publisher and the subscription range of the subscriber overlap

is an event disseminated to the subscriber.

A similar model is provided by the scalable timed events and mobility (steam) (Meier & Cahill

2003, Meier, Cahill, Nedos & Clarke 2005) middleware. Steam builds on the observation that event

consumers are typically interested in events produced by entities in their vicinity. For this reason,

steam adds the possibility to �lter events based on geographical locations, using proximities, to

traditional content-based �ltering. Proximities can be of any shape and can be de�ned either absolutely

(via gps coordinates), or relatively around the entity (using an anchor point and a size) (Killijian et al.

2001). Rt-steam (Meier, Hughes, Cunningham & Cahill 2005) is a real-time version of steam.

Newer work o�ers a context-aware publish/subscribe service in mobile ad hoc network (Frey &

Roman 2007). This service allows context information, such as position and direction, for example,

to be exploited when matching events against subscriptions.

None of these systems, however, o�ers explicit support for coordination, i.e., o�er laws that entities

can use to coordinate their behaviour.

2.4.2.2 Coordination middleware

Motivated by the observation that in some applications, coordination needs to be ensured by the ex-

change of multiple, related, messages, i.e. a (distributed) protocol, Schelfthout et al. (2006) describe a

middleware supporting protocol-based coordination in dynamic networks. They argue that protocols

often rely on some kind of identi�cation, or at least aggregate properties of their interaction part-

ners, that are not available in other existing coordination models where communication is typically

anonymous. Furthermore, protocols might need one-to-one communication, while existing models

and architectures typically support only one-to-many communication. Finally, existing coordination

models or middleware do not provide any support for stateful communication, i.e., state information

maintained between messages.

The proposed solution is based on two abstractions: roles and views (Schelfthout et al. 2005,

Schelfthout & Holvoet 2005, Schelfthout 2006). Roles specify the behaviour of a class of interaction

partner in a particular interaction, in terms of the messages that are sent and expected to be received

26

Chapter 2. Related Work

(as well as their timing, and their recipients or senders), and the relation between the role and the

behaviour of the application component that it represents. Views are collections of data objects, that

are copies or representations of data objects available on a set of nodes in the network, kept up-to-

date automatically by the middleware. Because of the nature of these abstractions, this work could

be seen as combining aspects of both data-centric and message-centric approaches. The supporting

middleware, however, provides only best-e�ort guarantees in the presence of unreliable communication.

In addition, no support for real-time is o�ered.

Finally, some work in this category caters for timeliness requirements (Limniotes et al. 2002), but

addresses only the coordination of static components, and therefore does not support the possibility

of connectivity loss.

2.4.3 Analysis

The coordination model community recognises the need for generic coordination models, to replace

application-speci�c approaches, hence allowing modularity, reusability, exchangeability and extensi-

bility of coordination mechanisms (Deugo et al. 2001). However, none of the existing work deals with

both mobility and real-time concerns. As we have established in Chapter 1, real-time communication

and coordination in mobile settings is very challenging. Therefore, the approach in our work o�ers

less high-level abstractions than some of the existing data-centred approaches. Our work, however,

aims to provide stronger reliability guarantees, suitable for safety-critical applications.

As discussed by Schelfthout (2006), the tuple-space abstraction is inherently coupled in space (as

entities must know which tuple-space to access) and decoupled in time (entities do not need to be

present at the same time). Conversely, publish/subscribe middleware is inherently decoupled in space

(entities do not need to know where other entities are) and coupled in time (entities need to be present

at the time where a message is sent). The application domain of this thesis calls for time coupling,

as real-time requirements play an essential role for such applications. This motivates our choice of

an event-based abstraction. Comhordú is based on the space-elastic model, which itself relies on

rt-steam (this is detailed in Chapter 3).

Furthermore, similarly to the middleware supporting protocol-based coordination (Schelfthout

2006), our work aims to provide application designers with the possibility of designing protocols i.e.,

the exchange of several related messages, for the coordination of entities. This is modelled in Comhordú

by the notions of roles and contracts. In addition to supporting the de�nition of such protocols, our

work aims to support developers in using Comhordú for deriving these protocols automatically from

a problem speci�cation.

27

2.5. Mobile real-time systems

2.5 Mobile real-time systems

Providing real-time guarantees requires speci�c mechanisms at every level of a system. This di�erence

characterises work in the real-time systems community. A number of projects in the real-time systems

communities are particularly relevant to the work presented in this thesis. In particular, recognising

the limitations of the deadline concept to deal with open systems, a number of projects have explored

how to capture the real-time requirements of open systems. In addition to this work, two bodies of

work deal with the real-time coordination of autonomous mobile entities. We review each of these in

detail.

2.5.1 Specifying real-time requirements

Real-time requirements are traditionally speci�ed at the level of the system implementation, by de�n-

ing deadlines for messages and tasks (Stankovic et al. 1999, Bickford et al. 1996, Schemmer & Nett

2003). This can only be done after the system is designed, and requires that developers derive low-

level real-time constraints so that the safety of the application is ensured. However it might be that

the safety constraints required by the application cannot be achieved with the given system design,

requiring a redesign of the application, and more generally a trial and error process. For this reason,

a number of projects have aimed at specifying real-time requirements at a higher level, independently

of the low-level implementation details.

2.5.1.1 Rt-entities and rt-objects

An approach to a general formulation of global timing constraints, independent of a speci�c program-

ming model has been presented (Kopetz & Kim 1990) and is partly adopted in a general model of

real-time systems (Kopetz 1997, 2001). This model comprises rt-entities, re�ecting the environment,

and rt-objects, that make up the computer system. An rt-entity is a state variable of relevance for

the given system, and is located either in the environment or in the computer system. Information

about the state of an entity at a particular point of time is captured by an observation, composed of

the name of the rt-entity, the point of time when the observation was made, and the observed value

of the real-time entity. Rt-objects contain the information about the environment as stored in the

computer system. Timing constraints on an rt-object can be expressed as the �accuracy�, denoting

the temporal gap between the state of an rt-entity in the environment and the state of an associ-

ated rt-object. So the accuracy describes the consistency between the system and the environment

in the temporal domain. The notion of �consistency constraint� is de�ned for specifying consistency

conditions to be ful�lled in the value domain between di�erent rt-objects. But no notion is de�ned

for expressing timing constraints between rt-objects. Therefore, this model is restricted to expressing

timing constraints between the environment and the system (and between replicated objects) and

cannot be applied for expressing timing constraints between autonomous systems (Mock 2004b).

28

Chapter 2. Related Work

2.5.1.2 Real-Time uml

The uni�ed modelling language (uml) is a graphical language for specifying, visualising, constructing,

and documenting object-oriented software systems. Uml in itself does not provide any means of

de�ning explicit temporal constraints or timing properties. Two approaches address these de�ciencies:

uml for real-time, and real-time uml.

Uml for real-time (uml-rt) extends uml with constructs to facilitate the design of complex

embedded real-time software systems (Lyons 1998, Selic 1998). The constructs of �capsule�, �port�

and �connector� provide additional support for modelling the structure of the system, while a �protocol�

models communication within the system. Capsules are software components, potentially physically

distributed, whose internal structure is described by sub-capsules and the connections between these.

A component interacts with its surroundings, and with its sub-capsules, through a set of ports that are

the only parts of a component that are visible to others. Connectors are used to model communication

channels between two or more ports. A protocol de�nes a number of roles, and the signals sent and

received by each role. Compared to standard uml, uml-rt provides some additional support for

modelling the architecture of interactive systems. It does not, however, provide support for modelling

timing issues (Carlson 2002).

Real-time uml (rt uml) is another extension of uml for real-time systems. The key elements of

rt uml have been standardised as a uml pro�le for schedulability, performance, and time (Object

Management Group (OMG) 2005). In this pro�le, timing constraints can be expressed by timing

annotations, and capture timing requirements on the messages exchanged both between the system

and external actors, and between objects within the system. Timing requirements, however, can

only be speci�ed at a given level if the system structure in terms of objects and messages exchanged

between the objects is already speci�ed at that level.

2.5.1.3 Precision consistency relation

Mock (2004a,b) described a framework for the coordination of autonomous systems, in which the

process of choosing a programming model and communication infrastructure, with respect to given

real-time requirements, is supported in a more formal way. For this purpose, a model is proposed to

express the mutual timing dependencies between cooperating autonomous systems, independently of

the speci�c system structure.

This model is based on the notion of the precision consistency relation (pcr), which is essentially a

mathematical relation between the variables of the di�erent objects involved, capturing the application

semantics. To this notion is added the idea of precision distance (pd) within which the pcr must

be ful�lled. This requires that for each point in time t0, there be observations in the time interval

[t0, t0 + PD] of the object variables such that the variable values ful�l the pcr. From this notion,

the suitability of programing models and communication infrastructures to implement the solution

can be assessed. The framework, however, does not allow an application to be designed in more

29

2.5. Mobile real-time systems

detail and does not o�er implementation-support. Furthermore the generality of the formalism for

the constraints implies that it would be really hard to do so.

2.5.2 A Middleware for Cooperating Mobile Embedded Systems

Nett & Schemmer (2004) and Schemmer (2004) point out the need for reliable real-time coordination

of autonomous mobile embedded systems and describe an architecture to support the coordination of

mobile embedded systems. The proposed architecture encompasses a real-time cpu scheduling service

based on the time-aware fault-tolerant (taft) scheduler (Nett et al. 1997, Becker et al. 2005). The

taft scheduler allows users to de�ne an exception part that is executed when the main part is about

to miss it deadline. This allows working with expected-case execution times (instead of worst-case

execution time as in traditional real-time approaches), and still achieves predictable timing behaviour.

The timeliness of communication is also examined in this work. The proposed solution o�ers

timely communication to clusters of systems on wireless lans (Mock et al. 1999). A bound on the

time required for joining the wlan, however, is not available in the general case and requires known

application-speci�c properties such as bounded arrival rate (Nett & Schemmer 2004).

Finally, the highest middleware layer of the architecture is the cooperative application development

interface (cadi). This interface o�ers three services: a transparent service infrastructure that allows

the mobile systems to access a distributed service infrastructure transparently, i.e., without explicitly

searching and contacting the nodes providing the services; a globally consistent system state that

provides a consistent view of the relevant local states of all participating systems with respect to the

same point of time to the application; and an homogeneous world model that provides an homogeneous

view of the environment. These services are based on the timely communication layer to distribute

the information and keep it consistent over all the systems. The authors argue that, provided that

systems have a common view of the system state, they can coordinate their behaviour by using this

state as input to decide their action locally.

The architecture, summarised in Figure 2.2, has been tested on a tra�c control application where

robots coordinate their trajectories to negotiate a shared space (Schemmer et al. 2001). The middle-

ware, however, relies on reliable communication, which is provided only for infrastructure networks

and under application-speci�c properties.

2.5.3 Gear

Following the observation that uncertainty is not ubiquitous nor everlasting, i.e., that systems have

some parts that are more predictable than others and tend to stabilise, Veríssimo et al. (2000) suggest

constructing dependable real-time applications by using a (distributed) component capable of execut-

ing timely functions. This component, called the timely computing base (tcb), can be used by other

components to execute a set of time-related services (see Figure 2.3). More precisely, the tcb subsys-

tem is assumed to have known upper bounds on processing delays, on the rate of drift of local clocks,

30

Chapter 2. Related Work

Figure 2.2: An architecture to support cooperating mobile embedded systems (Nett & Schemmer
2004).

Figure 2.3: The tcb architecture (Veríssimo et al. 2000).

and on message delivery delays. These assumptions allow the tcb to provide other components with

the following services: timely execution, duration measurement, and timing failure detection. Timely

execution is de�ned with respect to livelines (time before which an execution should not start) and

deadlines provided that they are achievable, i.e., that the task execution time is bounded by a duration

d and that there is at least d between the liveline and the deadline. These services have been shown

to be su�cient for implementing three classes of applications: fail-safe applications, which exhibit

correct behaviour or else stop in a fail-safe state; time-elastic applications, where time bounds can be

increased or decreased dynamically; and time-safe applications, where no incorrect behaviour results

from the violation of safety properties on account of the occurrence of timings failures (Veríssimo &

Casimiro 2002).

The authors have implemented the tcb on wired architectures, and have suggested a design for

wireless architectures; both designs rely on separating the control network from the payload network

31

2.5. Mobile real-time systems

(of the application) using a dual network architecture (Martins et al. 2004). The tcb model, however,

relies on the assumption that synchronous properties, such as known bounds on processing and mes-

sage delivery delays are achievable and maintained. Given the challenging characteristics of wireless

mobile networks, it is not clear that these synchrony properties can be assumed. For example, in

the implementation of a wireless tcb (Martins et al. 2005), the synchronous properties of the control

channel are maintained only by making assumptions about the infrastructure of the ad hoc network.

Gear (generic event architecture) (Veríssimo & Casimiro 2003) is an architecture that allows the

seamless integration of physical and computer information �ows, i.e., allows information from both

the environment and other parts of the systems to be treated in the same way. Its use is demonstrated

on a cooperative car scenario. This scenario is an example of the fail-safe application class: cars stop

when a timing failure occurs, hence guaranteeing that safety is ensured. The solution relies on perfect

timing failure detection, such as supported by the tcb. The proposed approach, however, seems to

be fairly ine�cient, as cars have to stop every time a timing failure occurs. It is noted that the

maximum car speed can be adapted depending on the current time bound, however, while the authors

point out that knowing when and how to make these adjustments is crucial, they do not answer these

questions. Furthermore, the characteristics of the environment might mean that in some areas cars

cannot communicate with other cars, which can lead them to being stuck in that area. Finally, the

scalability of the solution has not been studied, and no guidance is provided for the design of other

applications.

2.5.4 Analysis

This section reviewed e�orts to specify real-time requirements for mobile systems. Comhordú aims to

allow developers to program entities by supporting the translation of system-wide safety constraints

into sets of requirements on the behaviours of individual entities, therefore system-wide safety con-

straints should be expressed independently of implementation choices. For this reason, rt uml, which

allows real-time requirements for such systems to be speci�ed but requires the system to be fully spec-

i�ed beforehand, is not suitable for our goal. Comhordú, however, has been in�uenced by the work

on the precision consistency relation. Similarly to that work, Comhordú allows constraints using

conditions on the variables of entities involved to be formalised, independently of implementation.

The approach taken in the work on the precision consistency relation, however, is to formulate a very

restricting constraint and then to specify how much it can be relaxed. This, however, implies the

existence of some hard constraint(s), which should never be violated, that dictates how much the

strong constraint can be relaxed. For this reason, the approach in Comhordú is to express a hard

constraint directly, and then to extrapolate the conditions under which this constraint is not violated.

In addition, the approach adopted by Comhordú allows the systematic generation of a skeleton of the

entities' implementations, as opposed to only advising on a suitable architecture.

The second part of this section reviewed the work of Nett et all, whose goals are similar to ours.

32

Chapter 2. Related Work

Their approach to cpu scheduling relies on predicting timing failures and avoiding them by adapting

the behaviour. This approach of predicting potential failures and adapting the behaviour so that

it does not happen is at the core of Comhordú, but addresses safety faults, at a system-wide level.

The approach to coordination chosen by Nett et al is to provide entities with a consistent view of

the world. While they provide this consensus-based service on infrastructure networks, the reliability

of this service is guaranteed only under application-speci�c assumptions, and the high level of this

service implies that it would be very hard to implement on infrastructureless networks such as those

on which the applications catered for in this thesis might run.

Finally, this section introduced the work on the tcb and the gear event architecture. Similarly

to our work, this work is based on the idea that to provide dependable applications in unreliable

environments, applications should adapt their behaviour dynamically depending on the current envi-

ronmental characteristics. In these models, a notion of fail-safe states is de�ned, which is similar to the

fail-safe modes described in this thesis. In the tcb model, entities adapt their behaviour depending on

the latency with which communication is currently available. The distance dimension, however, plays

a particularly important role in mobile scenarios. In particular, it is crucial for scoping interactions.

For this reason, the approach used in Comhordú is to adapt the behaviour of entities depending on

the varying area in which real-time communication is available within a �xed latency, as opposed to

adapting the behaviour depending on the varying latency for real-time communication in a �xed area.

Therefore, the work in this thesis caters for a class of space-elastic applications, as opposed to the

time-elastic class catered by the work described in this section. Coordination support provided by the

gear architecture is limited to event delivery, and the problem of ensuring system-wide constraints

using these events is not addressed.

Finally, conversely to the work described in this section, the work described in this thesis aims

to not only o�er an execution model for entities, but also to support developers in systematically

translating system-wide safety constraints into requirements on the behaviour of individual entities.

2.6 Comparison

Previous sections have reviewed related work on the real-time coordination of autonomous mobile

entities. This section outlines the requirements that a solution to this challenge must meet. It

then compares the systems previously presented using these criteria, and analyses their approach to

coordination. Finally, the concepts presented in the previous sections that have particularly in�uenced

our work are recalled.

2.6.1 Requirements

In this section, we outline the requirements that a system needs to ful�l to ensure the safe coordination

of autonomous mobile entities. We distinguish three types of requirements: on the characteristics of

33

2.6. Comparison

the problem tackled, on the information means supported, i.e., how an entity can get information

about its environment, and on the solution characteristics.

2.6.1.1 Problem characteristics

Entities can either be physical or virtual, i.e., composed only of software. In addition, entities can

evolve either in a static environment, whose characteristics do not evolve over time, or a dynamic

one, where characteristics might evolve, for example, obstacles might move. This thesis caters for the

coordination of physical entities operating in a dynamic environment. Therefore, a solution needs to

support physical entities, and not only software ones, as well as handle a dynamic environment.

The entities in a system might interact with entities of known identity or type, as, for example, in

team robotics, or conversely, interactions can be spontaneous. To be more generic, a solution must

support interaction between an unknown number of entities, whose identities are not known in advance.

Finally, a solution might be speci�c to a certain type of entity, or to a speci�c coordination problem,

or generic, i.e., applicable to numerous coordination problems. Our work aims to be generic, which

requires that a solution make as few as possible assumptions about the entities or the coordination

problem.

2.6.1.2 Information means

Entities can get information about their environment, including the behaviour of other entities, by

direct communication, sensing and emc (or indirect communication). As explained in Chapter 1 (and

detailed further in Chapter 3), all of these information sources are inherently unreliable. Solutions

might support direct communication via wired communication only, or via wireless communication.

In addition, they may or may not take the unreliability of each of the information means into account.

The unreliability of communication channels is typically alleviated by the use of redundant chan-

nels. Using di�erent media for these redundant channels ensures that their error models are di�erent

and that their errors are not correlated. For this reason, we believe that, to enable reliable coordina-

tion, a solution needs to both support all of these information means so that they can complement

each other, and take their unreliability into account so that system safety is not violated.

2.6.1.3 Solution characteristics

Solutions can be categorised depending on their organisation: centralised or decentralised. A cen-

tralised system has an agent (the leader) that is in charge of organising the work of other agents.

In a decentralised system, agents are completely autonomous in the decision process. In a strongly-

centralised system, decisions are taken by the same pre-de�ned leader, while in weakly-centralised

systems, the leader is not chosen a priori, but is selected dynamically depending on the current situ-

ation of the team and the environment (Farinelli et al. 2004). Centralised solutions typically include

34

Chapter 2. Related Work

a single point of failure, do not scale well and are costly in terms of communication. For this reason,

centralised solutions are not considered.

Examination of the related work described in this chapter shows that decentralised systems can

be split in two categories: consensus-based systems that require entities to acquire a common view of

a problem, and emergent systems that do not. In the �rst case, entities either have a common view of

their environment and apply an algorithm to decide their actions locally, or communicate until they

devise a common plan of action. In the emergent case, properties are ensured by reactivity, i.e., as

de�ned in Section 2.2.1, entities react independently to what they perceive of their environment. The

emergent system paradigm requires the least communication, and therefore takes the least time, and

scales gracefully (Ijspeert et al. 2001). These characteristics make it the most appropriate paradigm

for solving the problem described in Chapter 1.

Coordination often relies on an explicit prede�ned protocol. Solutions supporting this feature can

be quali�ed as strongly coordinated, while ones that do not are weakly coordinated (Farinelli et al.

2004). Intuitively, strong coordination is more e�cient and more reliable.

An essential characteristic of a solution to the problem tackled in this thesis is the degree of time-

liness supported. Because entities are interacting with their environment, they must be coordinated

in real-time. Solutions might o�er no real-time support, soft real-time support where timeliness is

ensured as often as possible, and hard real-time support where timeliness must be guaranteed. As this

thesis addresses safety-critical applications, hard real-time support is required.

Finally, the last requirement on a solution is the support it o�ers for application development.

While some solutions o�er only a formalism to capture some properties or a model, others focus

on providing a middleware to support coordination. Ideally, the complete process from specifying

high-level requirements to generating the implementation and supporting the execution should be

supported.

2.6.1.4 Summary

To summarise, the requirements on a system to ensure the safe coordination of autonomous mobile

entities are the following (each criteria is listed, followed by a list of possible values, the required value

is in bold):

• Problem characteristics

� Entities: virtual, physical

� Environment: static, dynamic

� Interaction: with known entities, with known entity types, spontaneous

� Applicability: application speci�c, generic

• Information means

35

2.6. Comparison

� Direct communication: none, wired, wireless reliable, wireless unreliable

� Sensing: none, reliable, unreliable

� Indirect communication: none, reliable, unreliable

• Solution characteristics

� Organisation: strongly centralised, weakly centralised, consensus-based, emergent

� Coordination: none, weak (no protocol), strong (with a coordination protocol, i.e., a set

of rules that entities must follow)

� Timeliness: non-real-time; non-real-time and soft real-time; non real-time, soft real-

time and hard real-time

� Support: model; model and supporting middleware, model, supporting middleware

and code generation from model.

2.6.2 Systems comparison

In this section, we review the systems identi�ed in the related work using the criteria de�ned above.

Note that because most of the criteria are not explicitly mentioned in the description of the di�erent

systems, the accuracy of the following classi�cation is limited by available information.

2.6.2.1 Problem characteristics

A number of the projects reviewed, in particular in the mas and coordination model communities,

cater only for the coordination of software agents. This work cannot be applied to the coordination of

physical entities as interaction with the environment implies extra requirements for dealing with the

uncertainty of sensors and actuators. Other work in these communities (Weyns, Schelfthout, Holvoet

& Lefever 2005, Murphy & Picco 2006, Schelfthout et al. 2006), and work in the robotics, its, and

real-time communities, however, deals with physical entities. Some of these projects, in particular

the earlier work in the robotics community, solved the coordination problem only in the context of

a known and static environment. This assumption is very restrictive and not suitable for the types

of applications for which our work is catering. Most of the more recent work, however, deals with a

dynamic environment.

Some work, in particular in the robotics community (e.g., Parker 1998), only caters for the coor-

dination of a known team of robots. This, however, constrains the application and prevents evolution

and addition of new entities. Other work caters only for the coordination between entities of known

and fully-speci�ed types. This is, once again, restrictive. A solution for the problem tackled in this

thesis needs to allow the addition of new entities, and the coordination of an unspeci�ed number of

entities of types that might not be fully speci�ed a priori.

36

Chapter 2. Related Work

Finally, work in the mas, robotics, and its communities, often caters for only speci�c applications

of coordination: for entities of a speci�c type, for example, agvs (Weyns, Schelfthout & Holvoet

2005), for coordination of a speci�c aspect of behaviour: task allocation (Parker 1998), platooning

(Hallé & Chaib-draa 2005, Michaud et al. 2006), or intersection management (Dresner & Stone 2005,

Sheng et al. 2006) for example. Other work in these communities, and work in the coordination model

community, however, o�ers generic solutions.

2.6.2.2 Information means

A number of the projects reviewed rely only on direct (wireless) communication for coordination,

in particular in the its, coordination model and real-time communities (Dresner & Stone 2005,

Schelfthout et al. 2005, Schemmer 2004). Amongst the others, only four systems take into account

not only sensing, but also indirect communication (Parker 1998, Hallé & Chaib-draa 2005, Michaud

et al. 2006, Veríssimo & Casimiro 2003).

As explained in Chapter 1, wireless communication is inherently unreliable: its range is limited,

and obstacles also mean that this range varies over time and distance. Amongst the reviewed work,

these characteristics are only taken into account by �ve bodies of work (Parker 1998, Clark 2004,

Dresner & Stone 2005, Meier, Hughes, Cunningham & Cahill 2005). Similarly, sensing is limited in

range and accuracy, and only four bodies of work take this into account (Parker 1998, Michaud et al.

2006, Sheng et al. 2006, Bouraoui et al. 2006). Finally, amongst the work that has been reviewed, only

alliance (Parker 1998) supports indirect communication and takes into account sensor unreliability,

and hence the unreliability of indirect communication.

2.6.2.3 Solution characteristics

Some work, in particular in the robotics community, adopts a centralised architecture. We have not

reviewed those in detail, as a centralised architecture is not suitable for the coordination of entities

that cannot easily communicate. Therefore, the solutions that we reviewed are decentralised. Most of

these aim to obtain a consensus between all entities. The exceptions that adopt an emergent approach

are coordination without communication solutions and reactive approaches for collision avoidance in

mrs, as well as work on the tcb that relies on detecting timing failures and informing entities of them,

hence catering for cases where consensus cannot be maintained.

Most of the coordination work cited o�ers weak coordination, as no protocol is de�ned for how

entities will coordinate their behaviour, with the exception of the middleware supporting protocol-

based coordination (Schelfthout et al. 2006), and various application-speci�c solutions. Note however,

that most solutions rely on some underlying protocols to provide entities with consistent data, but

these protocols do not de�ne how entities should use the data to coordinate their behaviour.

Some systems do not take timeliness into account at all, for example, most work in the mas

community, as well as most coordination models. Most other work only caters for soft real-time

37

2.6. Comparison

requirements: timeliness is a concern, but only a best e�ort guarantee is provided. Only three bodies

of work cater for the provision of hard real-time requirements (Meier, Hughes, Cunningham & Cahill

2005, Schemmer 2004, Veríssimo & Casimiro 2003).

The level of coordination support in terms of application development is varied. In the mrs and

its community, coordination support is typically low-level and does not o�er high-level semantics. In

the coordination community, coordination is supported via high-level constructs such as tuple spaces.

In the real-time community, work is typically focused on o�ering a common view of the environment.

2.6.2.4 Summary

In this section, we classi�ed the systems reviewed according to the criteria listed in the previous section.

A summary of this classi�cation is shown in Table 2.1. This table lists only the most signi�cant systems

in each community. In addition, these systems are ranked only according to the following criteria:

applicability (generic or speci�c); information means supported and whether their unreliability is

taken into account; and timeliness. While this does not capture all the criteria mentioned above,

this subset is su�cient to show that none of the existing work addresses the real-time coordination

of autonomous entities as speci�ed in Chapter 1. Each criteria is rated using a number of stars, and

as justi�ed in the previous section, a system suitable for the problem that we tackle needs to have a

rating of two stars for each criteria (this corresponds to generic applicability, supporting both direct

and indirect communication as well as sensing with their unreliability being taken into account, and

o�ering hard real-time support). The table shows that none of the systems achieve this ranking.

2.6.3 Analysis

As outlined above, most of the work reviewed adopts a consensus-based approach. This section �rst

assesses the suitability of such an approach for solving scenarios that have stringent timeliness and

reliability requirements, such as those catered for by this thesis. We then examine the suitability of

the approaches adopted by other systems.

2.6.3.1 Consensus-based systems

In consensus-based systems, entities must reach an agreement either on their view of their environment,

or on the action that they should take. In the �rst case, which is adopted by the majority of the work

reviewed in this chapter, the common view of the environment can be used as input to an algorithm

for each entity to decide locally what actions it can and should undertake. As entities use the same

input data, the decisions taken locally can be made consistently (i.e., ensure that the resulting actions

will be safe). The common view of the environment is typically delivered by a middleware, hence

hiding the steps necessary to reach the consensus. In the second case, either a leader entity takes the

decision and communicates it to other entities, as in centralised systems, or all entities communicate

with one another until they reach an agreement on the action to take.

38

Chapter 2. Related Work

Information means

System Applica-
bility

Direct
commu-
nication

Sensor
data

Indirect
commu-
nication

Timeliness

Multi-agent systems (mas)

Decentralised control of automatic
guided vehicles (agvs) (Weyns,
Schelfthout & Holvoet 2005)

F F F - F

Multi-Robot systems (mrs)

Alliance (Parker 1998) and
successors

F FF FF FF F

A distributed layered architecture
for mobile robot coordination
(Goldberg et al. 2002)

FF F F - F

Dynamic robot networks (Clark
2004)

FF FF F - F

Intelligent transportation
systems

Collaborative Driving system using
teamwork (Hallé & Chaib-draa
2005)

F F F F -

Coordinated maneuvering of
automated vehicles in platoons
(Michaud et al. 2006)

F F FF F F

Multi-agent tra�c management
(Dresner & Stone 2005)

F FF - - -

Experimental testbed for
cooperative driving (Sheng et al.
2006)

F F FF - F

Cybercar cooperation for safe
intersections (Bouraoui et al. 2006)

F F FF - F

Coordination models

Data-centric (Lime, EgoSpaces,...)
(Murphy et al. 2006)

FF F F - -

Rt-steam (Meier, Hughes,
Cunningham & Cahill 2005)

FF FF - - FF

Middleware supporting
protocol-based coordination
(Schelfthout et al. 2006)

FF F - - -

Real-time systems

A middleware for cooperating
mobile embedded systems
(Schemmer 2004)

FF F F - FF

Gear (Veríssimo & Casimiro 2003) FF FF F F FF

Legend : Applicability: F speci�c; FF generic.
Information means: - not supported; F supported, assumed reliable; FF supported, assumed unre-
liable.
Timeliness: - none; F soft real-time; FF hard real-time.

Table 2.1: Comparison summary.
39

2.6. Comparison

In applications that exhibit timeliness requirements, consensus has to be reached within a bounded

time. To reach a consensus, entities need to communicate with each other, either via direct or indirect

communication or through some form of shared data structure to which they all have access. In mobile

settings, however, entities might not be able to communicate with each other over some periods of

time. Therefore, consensus-based approaches can only o�er best-e�ort guarantees and are not suitable

for applications exhibiting strong reliability and timeliness requirements in mobile settings.

2.6.3.2 Other systems

Amongst the work described in this chapter, we have identi�ed two main approaches to coordination

that do not rely on consensus. Coordination without communication, also called reactive coordination

(Gervasi & Prencipe 2004, Ijspeert et al. 2001, Schermerhorn & Scheutz 2006), is based on entities

reacting to the behaviour of other entities to coordinate their actions. The approach, however, relies

on entities accurately sensing the behaviour of other entities and, as sensor information is unreliable,

can only o�er best-e�ort guarantees.

The second approach is the one adopted by the tcb (Veríssimo & Casimiro 2003), where the

unreliability of real-time communication is taken into account and catered for by informing entities

in real-time of communication failures, so that they can react to them. The way in which entities

should react in case of a communication failure, however, is not investigated. In addition, the tcb

guarantees that timing failure detection is bounded only with respect to the time at which the event

was delivered or the action �nished (Veríssimo & Casimiro 2002). In particular, this means that the

delay between the time of the timing error and the entity noti�cation is not bounded, hence making

it impossible for entities to make provision for possible timing errors. Therefore, the tcb approach is

also not suitable for the provision of safety constraints with real-time requirements in mobile settings.

2.6.3.3 Conclusion

The consensus-based approach adopted by most related work is not suitable for the provision of ap-

plications exhibiting strong reliability and timeliness requirements in mobile settings. For this reason,

Comhordú adopts an alternative approach to coordination, which allows safety to be guaranteed even

in the absence of a consensus between entities. This approach uses coordination without communica-

tion, but also supports direct and indirect communication by exploiting real-time feedback on currently

available information provided by novel real-time sensing and communication models. These models

are similar to the tcb, but o�er a bound on fault noti�cation, hence allowing safety to be guaranteed

even when available information is limited.

2.6.4 Other in�uential concepts

Comhordú was designed so that it can be applied systematically, making it suitable for tool-support

and automation. Inspired by work on the precision consistency relation (Mock 2004b), Comhordú

40

Chapter 2. Related Work

encompasses a high-level formalism to express system-wide safety constraints by relations on the

states and actions of entities.

These constraints are distributed using the notion of roles, as used in some work in the mrs, its,

and coordination model communities (Hallé et al. 2003, Michaud et al. 2006, Schelfthout 2006), as

well as contracts, that are similar to the notions of commitments and conventions de�ned in the mas

community (Jennings 1993). To enforce these contracts, entities can use not only direct communica-

tion and sensing data, but also indirect communication as formalised by the mas community. The

combination of the contract and communication means used constitutes a protocol similar to those

de�ned in the middleware supporting protocol-based coordination (Schelfthout et al. 2006).

Distance plays a fundamental role in our approach by allowing interactions to be scoped and there-

fore the complexity of the problem reduced. This approach was also adopted for collision avoidance

(Yared et al. 2007) and dynamic robot networks (Clark 2004) in the mrs community, as well as

platooning (Michaud et al. 2006) in the its community. The approach in our work is to provide reli-

ability guarantees by adapting the behaviour depending on the currently available information. This

approach has been used in the real-time community (Nett & Schemmer 2004). The real-time commu-

nication and sensing models adopted are space-elastic, a contrast to the time-elastic communication

model of the tcb (Veríssimo & Casimiro 2002).

2.7 Summary

This chapter has �rst reviewed work related to real-time coordination of autonomous mobile entities

in di�erent communities: mas, mrs, its, coordination models, and real-time systems. A number of

criteria have been de�ned to rate these systems, and these criteria have allowed us to classify the work

mentioned. This demonstrated that none of the existing work is suitable for addressing the challenges

addressed in this thesis. Finally, we have shown how the design of Comhordú was in�uenced by some

of the work presented, and introduced its main characteristics. The following chapter details the

models on which Comhordú is built, while Comhordú itself is presented in Chapter 4.

41

Chapter 3

Problem Modelling: Communication

and Sensor Models

In this chapter, we describe the hypotheses on which Comhordú builds. These hypotheses are captured

in a model of the environment (presented in Section 3.1), a data or direct communication model

(outlined in Section 3.2), and a sensing and environment-mediated or indirect communication model

(detailed in Section 3.3). The chapter also presents a comparison of the direct and the indirect

communications models (in Section 3.4). The last section of this chapter presents the fault model for

our work.

3.1 Environment model

This section details a model of the environment that is used in the remainder of the thesis. In

particular, the communication models outlined in Section 3.2 and 3.3 are presented in terms of the

environment model.

3.1.1 Elements and entities

The environment is modelled as a collection of elements. These can have di�erent shape and size, and

their attributes, for example position and speed, can evolve over time or not. We distinguish between

entities, which are used to model the system, i.e., what is within the sphere of control of application

developers, and passive elements that describe the surrounding of the system. Entities can have

any of the following abilities: send and/or receive messages, sense and/or actuate. While passive

elements are assumed not to have these possibilities. The goal of this work is to derive requirements

on the behaviour of entities so that they be able to coordinate their behaviour to evolve safely in their

environment, i.e., that each entity evolve safely amongst other entities and passive elements. Note

that, as entities are autonomous, the system is fully decentralised. Furthermore, it might be that

42

Chapter 3. Problem Modelling: Communication and Sensor Models

some entities are already implemented and deployed, and therefore their behaviour cannot be altered;

requirements that takes this behaviour into account can be derived.

3.1.2 Indirect communication

An entity can change its environment via actuators, and this change might be detected by another

entity sensing the environment. Therefore, entities can use sensing to communicate through the

environment. This form of indirect communication is sometimes termed environment-mediated com-

munication (emc). This principle has been characterised in the study of stigmergy, in which an agent's

actions leave signs in the environment, signs that it and other agents sense and that can be used to

determine their subsequent actions (Parunak 2003) (see Chapter 2). Other forms of environment-

mediated communication include human environment-mediated communication, where humans use

mobile computing devices and the physical environment to communicate with each other, for example

by preparing an electronic note on a pda and leaving it on a door where a colleague's can collect it later

with his own pda (Gellersen et al. 1999). In the following, we refer to environment-mediated com-

munication between entities simply as indirect communication, as opposed to direct communication,

which is based on message passing.

A signal is a change of the environment performed by an entity to communicate with other entities.

For example, a siren is a signal used by emergency vehicles to warn cars of their arrival. It might be

noted, however, that the distinction between a signal and other entity behaviour is not always clear:

in some cases, it is not certain whether the sole goal of an action performed by an entity is to warn

other entities or if it is part of its behaviour. For example, an autonomous car approaching a junction

can be sensed by other entities that can then deduce that it is likely to cross, but it might not be clear

whether it is doing so on purpose to be detected, or merely to get ready to cross the junction.

Indirect communication, however, is more powerful than sensing, as it enables communication of

intent, i.e., information about the future behaviour of the entity. For example, a pedestrian tra�c

light can inform cars that it will let pedestrians cross soon by turning to amber. Sensing can also be

used to infer intent, but the information may not be reliable. Furthermore, sensing cannot be used to

predict non-continuous variables, nor variables whose variation rate is not bounded, unless these are

correlated with another (continuous, and with a bounded variation rate) variable. This is discussed

in more details in Chapter 5.

3.1.3 Element classi�cation

The means that an entity can use to get information about elements in its environment depend on the

elements' types. Sensors can be used to detect the presence of elements of any type and some aspects

of their states, provided they are in range. In addition, entities can use sensing to detect a signal from

another entity via indirect communication. Table 3.1 summarises the di�erent types of elements in

43

3.2. Direct communication model

Elements

Entities Passive elements

Characteristics
Can receive messages and signals X 5

Means for coordination
Detection through sensor X X
Indirect communication X 5
Direct communication X 5

Table 3.1: Di�erent types of elements of the environment, their characteristics and means for getting
information about them.

the environment, their characteristics and the means that can be used to obtain information about

them.

3.2 Direct communication model

As discussed in Chapter 2, for entities having only limited information about other entities and their

environment to make progress, while ensuring system-wide safety constraints, requires that they have

information about the current state of communication. In particular, if the safety constraints imply

real-time requirements, entities need to have feedback within a bounded time when communication is

degraded. While the feedback on the state of current communication could use any of several metrics,

such as membership like in group communication systems, or currently achievable latency like in the

tcb, this work assumes feedback in the form of a geographical proximity on which communication

is available. The reasons of this choice are twofold: �rstly, it is to our knowledge the only model for

wireless, and possibly ad hoc, networks that o�ers feedback within a bounded time from the time at

which the quality of communication is degraded, and secondly, as discussed in the previous chapter,

the choice of the distance metric is particularly suitable for applications composed of mobile entities.

This work assumes the space-elastic communication model, a model for real-time communication in

wireless networks, including ad hoc networks (Hughes 2006). In this model, real-time communication

is guaranteed within an adaptable geographical proximity of the sending entity. The rationale for

this model is �rst described, then the terminology used and the model speci�cations are detailed. Its

assumptions and implementation are then discussed.

3.2.1 Rationale

The space-elastic model exploits the rationale observed by Hartenstein et al. (2001), i.e., the relevance

of context to a particular geographical area, in guaranteeing real-time constraints only within speci�c

proximity bounds. In (ad hoc) wireless networks, varying link quality and network topology mean that

it is impossible to guarantee communication with prede�ned Quality of Service (QoS) requirements

in a �xed area. Therefore, the approach adopted by the space-elastic model is to guarantee periodic

44

Chapter 3. Problem Modelling: Communication and Sensor Models

communication with such prede�ned QoS requirements only within a dynamic (varying over time)

proximity. Message senders are noti�ed of changes in the communication coverage in real-time, hence

allowing them to adapt their behaviour to current communication conditions.

This model is motivated by a class of applications that rely on communication with prede�ned

QoS. To implement such applications in (ad hoc) wireless networks they must be able to rely on

real-time communication, or adapt their behaviour to the quality of communication. If we consider

the example of a pedestrian tra�c light that uses wireless messages to warn cars when it is red, the

normal mode of operation of a tra�c light might be to turn to red after a pedestrian has pressed a

button. But, if timely communication cannot be achieved within a wide-enough area, cars may not be

informed of the state of the tra�c light early enough to allow them to brake before arriving at it, and

the safety of pedestrians might be at risk. Therefore, it is crucial for the tra�c light to be informed

about how far it can communicate. When the area in which the QoS requirements for communication

are guaranteed is smaller than a threshold, the tra�c light must change its behaviour and remain

green independently of whether or not a pedestrian pressed the light.

3.2.2 Speci�cations

This section describes the terminology and parameters used by the space-elastic model.

3.2.2.1 Terminology

The terms used for the direct communication model are the following: a sending entity sends amessage

to a receiving entity.

3.2.2.2 Parameters de�nitions

Within this model, a sending entity announces its requirements on communication in terms of QoS

and a proximity, called the desired coverage. The QoS is de�ned by the messages' period, period, and

the latency, msgLatency, within which the messages must be delivered. The desired coverage is a

proximity that can be of any shape and can be de�ned either absolutely (via GPS coordinates), or

relatively around the entity (using an anchor point and a size) (Killijian et al. 2001).

Depending on the topology of the network (i.e., the distribution of the nodes and the quality of

the wireless links), it might not be possible over some period of time to deliver a message in time

to all interested entities within the desired coverage. Therefore, the size of the area in which timely

delivery of messages is provided, called the actual coverage, changes over time. In the worst case, no

communication is possible; this corresponds to an actual coverage of null. The sender is noti�ed of

changes to the actual coverage within a bounded time, adaptNotif . Therefore, an entity knows within

msgLatency + adaptNotif after sending a message about the area in which it has been successfully

delivered, and can adapt its behaviour accordingly. Variations of the actual coverage within the desired

coverage are shown in Figure 3.1.

45

3.2. Direct communication model

Figure 3.1: Di�erent coverages of the space elastic model.

An entity is said to be present within the actual coverage once it is able to receive messages after

arriving in the communication coverage. This takes an implementation-dependent time, present,

which might be necessary to include the entity in the real-time route for example.

To summarise, the parameters of the model are the following:

present the time required for setting up the communication from the time an entity enters the

coverage,

period the period with which messages are sent,

msgLatency the latency for a message to be delivered,

adaptNotif the time required for the message sender to be noti�ed of an adaptation of the commu-

nication coverage.

These parameters and their relationships are shown in Figure 3.2. In Figure 3.2(a), it can be seen,

for example, that it takes up to present + period from the time an entity enters the coverage until it

receives a message, as it might become present in the coverage just after the delivery time of a message.

In addition, once an entity is present in the coverage, it might take up to period + msgLatency for

the receiving entity to be noti�ed of a planned change of the state of the sending entity. Similarly,

Figure 3.2(b) shows that a sending entity is noti�ed of the zone where a message was delivered at most

msgLatency + adaptNotif after sending it. In addition, a receiving entity might be in the coverage

for up to present + period + adaptNotif before a sending entity is noti�ed that it has not received

any message.

3.2.3 Guarantees

Given the speci�cation described above, the real-time communication guarantees of the space-elastic

model are:

46

Chapter 3. Problem Modelling: Communication and Sensor Models

(a) When no adaptation occurs

(b) When an adaptation occurs

Figure 3.2: Direct communication time lines.

47

3.2. Direct communication model

• to message senders: to be able to communicate within msgLatency in the actual coverage,

and to be noti�ed within adaptNotif if this coverage changes,

• to message receivers: to receive every message of types in which they have expressed interest,

if, at the delivery time of each message, they are present within the actual coverage of the

message sender.

3.2.4 Assumptions

This model assumes that applications are space-aware, i.e., that they can specify and interpret bounds

in space, reliably; for example, autonomous vehicles might be �tted with gps. It also assumes that

an area is either covered or not, not allowing for transient messages losses, or black spots.

3.2.5 Implementation

The feasibility of the space-elastic model to provide low-jitter real-time communication and time-

bounded adaptation noti�cation has been demonstrated in real-world settings (Hughes 2006). This

evaluation is based on an implementation of the space-elastic model, in the form of an event-based

middleware called rt-steam (Meier, Hughes, Cunningham & Cahill 2005). Rt-steam is a real-time

version of steam (scalable timed events and mobility) (Meier & Cahill 2003), which uses the sear

(space-elastic adaptive routing) real-time routing and resource reservation protocol, over the tbmac

(time-bounded mac access control) protocol (Cunningham & Cahill 2002).

3.2.6 Conclusions

This model allows applications to reason about available real-time communication guarantees. In our

example, the behaviour of the tra�c light needs to change depending on whether real-time commu-

nication within a given latency is provided in an area wide enough to allow incoming cars to stop in

front of it. The space-elastic model, however, does not determine the value of this critical coverage.

Furthermore, the behaviour of the tra�c light needs to be constrained to ensure that it does not turn

to red unless it is safe to do so, and turns back to green as soon as necessary. More generally, ensuring

safety constraints requires that entities adapt their behaviour to the state of communication. This

might include, for example, changing the transmission power, or the message period.

Comhordú models the communication of entities using the space-elastic model, and derives re-

quirements on their behaviour to ensure that some safety constraints will not be violated. These

requirements include when and how entities must adapt their behaviour, and in particular the size of

the critical coverage(s).

48

Chapter 3. Problem Modelling: Communication and Sensor Models

3.3 Sensor and indirect communication model

This section presents a model for sensing and indirect communication. The rationale for the need

for, and characteristics of, such a model is �rst detailed. Then the speci�cations of the model are

presented. The following sections present the guarantees that the model provides and the assumptions

on which it builds. Finally, the implementation of such a model is discussed.

3.3.1 Rationale

As well as direct communication (i.e., sending and receiving messages), entities can use sensing to

obtain information about their environment and the behaviour of other entities. Sensor data is inher-

ently of limited accuracy, and can only give information in a limited range. The accuracy and range

of a sensor might vary over time, depending on the conditions; it may vary, for example, depending

on the luminosity or temperature (Brooks & Iyengar 1998).

Therefore, as in the case of direct communication, entities cannot rely on continuous sensor data

over a �xed range. Furthermore, sensor data is typically relevant only in a geographic area. For this

reason, we have designed a sensor model with the same characteristic features as the space-elastic

model: information is relevant to entities in a particular area, and entities receive real-time feedback

about the current state of sensing. Whether an entity can sense a characteristic of an element depends

on the distance between the entity and the element, the characteristics of the surroundings of the entity,

and potentially the intensity of the signal as well as the sensitivity of the sensor used; therefore these

will be the QoS parameters used in this model.

3.3.2 Speci�cations

This section �rst presents the terminology used by this model, and then details the parameters it

de�nes.

3.3.2.1 Terminology

We use the following terms: an entity senses an element of the environment, and receives a sensor

reading. In the case where two entities communicate through the environment, a signalling entity

emits a signal through the environment, which can then be sensed by a sensing entity.

3.3.2.2 Parameter de�nition

In our model, sensing is assumed to occur periodically, and to produce readings that are delivered

to the sensing entity. Firstly, a sensing entity speci�es a proximity over which it desires to sense,

called the desired coverage, as well as the latency with which it wants the information, and the desired

sensitivity. At any time, the sensing entity is provided with information about a sub-area of the

desired coverage, called the actual coverage. The information is provided in the form of a map of

49

3.3. Sensor and indirect communication model

(a) When no adaptation occurs. (b) When an adaptation occurs.

Figure 3.3: Indirect communication time lines.

the coverage annotated with up-to-date sensor data. Sensing entities are noti�ed within a bounded

time, adaptNotif , of any change to the actual coverage. Signalling entities emit a signal through the

environment that is assumed to be either continuous (e.g., a siren) or persistent (e.g, by leaving a

mark on the ground), so that a sensing entity can sense a signal of a signalling entity at any time

provided it is in its coverage.

The timing parameters of our sensor model are the following:

present time required before sensing the environment from the time an entity enters the coverage,

period the sensing period,

latency the latency for sensor information (between the time an element is actually sensed and the

time a reading is available at the application level),

adaptNotif the time required for the sensing entity to be noti�ed of an adaptation of the sensing

coverage.

These parameters are shown in Figure 3.3. Figure 3.3(a) shows, in particular, that it takes up to

present + period + latency from the time an element enters the coverage until an entity senses it,

as it might become present in the coverage just after a sensing time. In addition, once an entity is

present in the coverage, it might take up to period + latency for the receiving entity to be noti�ed of

a planned change of the state of the element. Similarly, Figure 3.2(b) shows that a sensing entity is

noti�ed of the zone for which it has sensing data at most adaptNotif after sensing. In addition, an

element might be in the coverage for up to present + period + adaptNotif before a sensing entity is

noti�ed that it cannot sense it.

The parameter present includes time for setting up sensing (this might include, for example, the

time required to deploy the sensors, initialise or calibrate them), and also the time to initiate the �rst

50

Chapter 3. Problem Modelling: Communication and Sensor Models

(a) Complete sensing process, and possible de�ni-
tion of the parameter present.

(b) Chosen de�nition of the parameter present.

Figure 3.4: Simpli�cation of the model of the sensing process.

sensing. It might be noted that, while present could have been de�ned as only the time required to

set up sensing (see Figure 3.4 a), in this model it also integrates the initiation of the �rst sensing

(see Figure 3.4 b). Therefore, as latency is de�ned as the time between the actual sensing and the

delivery of the sensor reading to the application, it will take up to present to initiate sensing, then

latency to receive the sensor reading, and then sensor readings will be delivered every period.

3.3.3 Guarantees

The model guarantees:

• to sensing entities: to be able to sense within latency in the actual coverage, and to be noti�ed

within adaptNotif if this coverage changes,

• to signalling entities: that their signal will be received by all entities in whose actual coverage

they are present.

3.3.4 Assumptions

This model assumes that it is possible for an entity to know for certain the area on which it has

information, and the accuracy of this information as well as being noti�ed in real-time of any changes.

3.3.5 Implementation

Sensor data can be provided either by single (physical) sensors or by some kind of virtual sensors that

generate data obtained by the fusion of readings from a group of physical sensors. We use the term

sensor to refer to either of these, as the abstraction is the same: it delivers data to the application in

response to a stimulus detected by some real-world hardware device (this de�nition is inspired by the

de�nition of a sensor in the sentient object model (Fitzpatrick et al. 2002)). This sensor model is a

51

3.4. Comparison of the communication models

higher-level abstraction of sensor readings. Sensor readings can come from one or several sensors, of

the same or di�erent types. Readings can be fused, thus creating a virtual sensor, of higher accuracy or

coverage (Brooks & Iyengar 1998). Each reading can be tagged with a timestamp, and the combined

reading can also be given a time.

Typically, sensing or sensor fusion yields sensor readings with an associated probability. These

readings correspond either to a speci�c geographic point, or to a zone, depending on the sensor type.

In our model, sensor data is represented as available or not available. This can be achieved by using

a threshold probability value, over which data is considered reliable enough to be used

Sensor readings are mapped over space. So at any time, an entity has a real-time image (Kopetz

1997) of his surroundings. This image is populated by the values of the readings where available,

and marked as no reading available otherwise. This view, however, requires that it be possible to

know where sensing data is available. We assume that this can be approximated using information

about sensor characteristics, current environmental conditions, and possibly sensor data itself (e.g.,

if an ultrasound sensor detects an obstacle, it can be inferred that it has no information about the

environment behind this obstacle, or if the readings of a sensor are aberrant or erratic, it can be

assumed that the sensor is malfunctioning). The reading map needs to be updated automatically, so

that old information is updated or removed. This will typically be achieved by applying a decay to

data as it becomes older, but the speci�c mechanism is outside the scope of this work.

3.3.6 Conclusions

This model allows applications to reason about available sensing information. If we consider the ex-

ample of a pedestrian tra�c light using green-amber-red lights to warn cars when it will let pedestrian

cross, then cars need to know how far they will be able to detect a tra�c light to ensure that they

will always have time to stop in front of it if necessary. Cars can adapt their speed depending on how

far they can sense, which maps the real-life situation of a human driver adapting it behaviour to its

visibility.

3.4 Comparison of the communication models

This section compares the two communication models.

The two models that we have de�ned use the same parameters, but three main di�erences can be

noted:

• In the direct communication model, the entity that sends a message (the sending entity) receives

feedback about where this message has been delivered. In the sensor model, however, it is the

entity receiving the information (the sensing entity) that receives the feedback.

• In the direct communication model, an entity can receive messages as soon as it becomes present

52

Chapter 3. Problem Modelling: Communication and Sensor Models

Direct communication Indirect communication

Knowledge of communication timing
(when is a message delivered)

Sending entity Sensing entity

Knowledge of communication coverage Sending entity Sensing entity

First communication with an entity
arriving

present + period present+period+latency

Maximum time elapsed without
information before feedback when
arriving next to each other

present + period +
adaptNotif

present + period +
adaptNotif

Time to detect a change, once entities
have discovered each other

period + msgLatency period + latency

Freshness of data msgLatency latency

Table 3.2: Comparison of the two communication models.

in the proximity of a sending entity. In the sensor model, however, an entity will not receive

sensor data until at least latency after having become present.

• Also, in the direct communication model, sending is periodic and receiving permanent (i.e.,

a receiving entity is assumed to be able to receive messages at any time), while in the indi-

rect communication model, signalling is assumed to be permanent (because the signal is either

continuous or persistent) and sensing periodic.

Table 3.2 details the comparison between the two models.

3.5 Fault model

In this section, we explicit how the models mentioned above relate to classical fault models for dis-

tributed systems. We �rst address timing aspects, and then the failure model.

Several di�erent assumptions can be made about the timing of events in a system. At one extreme

processes can be assumed to be completely synchronous, performing communication and computation

in perfect synchrony. At the other extreme, they can be completely asynchronous, taking steps at

arbitrary speeds and in arbitrary relative orders (Lynch 1996). A commonly accepted de�nition of

synchronism is characterised by bounded and known processing speed, load patterns, delivery delays,

and di�erences among local clocks (Verissimo & Almeida 1995). The implementation of the space-

elastic model relies on these assumptions of synchrony, and therefore our work does too. In particular,

both models rely on the availability of global time, i.e., processes having access to clocks whose

di�erences are bounded, such as provided in (Mock et al. 2000) for example.

Processes and communication may fail in many di�erent ways: a process might stop (crash failure),

might fail to respond (omission failure), might respond outside the speci�ed time interval (timing

failure), might give an incorrect response (response failure) or might exhibit more severe failures,

53

3.6. Summary

where it behaves arbitrarily (Byzantine failures) (Cristian 1991). Communication failures can include

message loss (omission failure) or duplication (response failure) (Lynch 1996). The space-elastic model

assumes only crash, omission and timing failures. It masks these failures by changing the size of the

actual coverage and notifying the sender. Our work assumes the space-elastic model, but does not

tolerate any failures of the space-elastic model, nor any process failures (unless it can be enforced that

processes switch to a fail-safe mode (see Section 4.3.2) before failing).

3.6 Summary

This chapter �rst presented a model of the environment, then a model for real-time (direct) communi-

cation and �nally a model for (real-time) sensing and indirect communication. The next section of this

chapter presented a comparison of the two communication models. Finally the last section presented

the fault model for our work. In the next chapter, we detail how Comhordú facilitates building on

these models to guarantee system-wide safety requirements.

54

Chapter 4

Comhordú - A Real-Time

Coordination Model for Autonomous

Mobile Entities

Ensuring the safe coordination of autonomous mobile entities using wireless ad hoc networks and sensor

information is challenging, especially because of the unpredictability of information available. For this

reason, the approach taken in this work is that autonomous mobile entities should take into account

the possibility that, over some periods of time, communication or sensor coverage can be degraded,

and must ensure that their behaviour remains safe even in these conditions. This chapter describes

Comhordú, a real-time coordination model for autonomous mobile entities using this approach. This

model builds on the sensor and communication models presented in Chapter 3.

The �rst section of this chapter presents our approach to the coordination problem and relates

it to classical distributed system problems. Section 4.2 describes a formalism in which to express

high-level, implementation-independent, system-wide safety constraints. In Section 4.3, the notions of

compatibility and responsibility are introduced as the basis for distributing the enforcement of these

safety constraints over entities, and three coordination primitives that entities can use to ensure the

safety constraints are de�ned. Section 4.4 de�nes the notions of contracts and zones, which can be

used to translate the system-wide safety requirements into requirements on an entity's behaviour and

the chapter is summarised in Section 4.5.

4.1 Approach

As discussed in Chapter 2, traditional approaches to the coordination of autonomous entities rely

on achieving consensus amongst these entities. As mentioned in Chapter 1, however, distributed

consensus has been proven not to be solvable in the presence of an arbitrary number of communication

55

4.1. Approach

failures (Lynch 1996). As mobile entities communicate over a wireless network where communication

is unreliable, this means that their coordination cannot be achieved via consensus.

Our approach relies on the observation that often, entities do not need to agree on their view of

the world or their actions to ensure the safety constraints, but that instead some entities can take

responsibility for ensuring them independently. For example, an entity could delay taking an action

that might violate the safety constraints. Unless the coordination problem is trivial, ensuring the

safety constraints must hinder the progress of such entities, for example, by delaying a desired action.

The coordination problem then becomes a problem of how to ensure that, at any time, in every group

of entities whose states might violate a safety constraint, at least one entity ensures that it does not

(we call this entity a responsible entity, and this property the responsibility condition in the following).

This approach only caters for a class of applications for which some entities can, independently of

other entities, take some actions to ensure that the safety constraints will not be violated. While this

criteria restricts the domain of application, we found that many applications �t into this category.

For example, for many mobile entities, it might be su�cient to stop to ensure that safety constraints

are not violated. Similarly, it is su�cient for a pedestrian tra�c light to remain green to ensure that

no cars will go through a red light (though during that time, pedestrians will not be able to cross the

road).

Ensuring the responsibility condition is similar to the classical distributed systems leader election

problem (Garcia-Molina 1982), except that instead of aiming to have at most one leader, the problem

is to have at least one responsible entity. To cater for the possibility of having several responsible

entities, the way in which responsible entities guarantee that the safety constraints are not violated

must be conservative, i.e., several entities must be able to take this action simultaneously. Consider,

for example, that a car stops before entering a four way junction (c.f. Chapter 1) to let vehicles from

another direction pass through the junction. If the vehicles approaching from all directions adopt the

same strategy, the safety constraint that only cars coming from one direction should cross the junction

simultaneously will still be ensured (though no car will progress through the junction). Similarly, if

two emergency vehicles send messages to warn vehicles to get out of their way, they might both receive

messages from one another, and get out of each other's way, which will be safe. Di�erent protocols

that satisfy the responsibility condition will lead to di�erent trade-o�s in terms of achievable progress

depending on the state of communication.

In addition, we assume that, initially, the responsibility property holds. For responsible entities

to make progress, they need to take actions that could potentially violate the safety constraints.

Therefore, they must be informed when sensing and/or communication is su�cient to ensure that

the safety can be guaranteed while they make progress. This is achieved by using the sensing and

communication models de�ned in Chapter 3.

56

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

4.2 Specifying safety constraints

This section presents the motivations for the safety constraint formalism, its main concepts, its syntax

and semantics, discusses what it means for a safety constraint to be ensured, and �nally shows how a

safety constraint can be decomposed into simpler safety constraints.

4.2.1 Motivations

Safety constraints for autonomous mobile entities are composed of constraints on the state of both

entities and their environment, which is modelled as a collection of elements (see Chapter 3). One

of the particularly relevant parameters for mobile elements is the relative positions of elements, and

in particular the distance between them. Knowledge of their relative positions allows the observation

that mobile entities most often need to coordinate their behaviour when they are in the same vicinity,

the de�nition of which is application-speci�c (Killijian et al. 2001), to be exploited. For example, an

emergency vehicle needs only to coordinate its behaviour with cars on the same stretch of road. In

this section, a formalism to express these notions and their interactions is introduced.

4.2.2 Concepts

A number of concepts are used to model the problem and formalise safety constraints: scenarios,

modes, states and state compatibility, as well as goals and priority lists.

4.2.2.1 Scenarios

A scenario encompasses a set of element types E1, E2, .., En, an ordered priority list, and a safety

constraint. For example, when considering the scenario of an emergency-vehicle warning system, the

element types might represent cars and emergency vehicles. The priorities for this scenario would be

�rst for emergency vehicles to be able to drive as fast as possible to their destinations, and secondly, for

cars to be able to progress as fast as allowable towards their destinations. A possible safety constraint

for this scenario is that no emergency vehicle should collide with any car. In this de�nition, a scenario

has a single safety constraint; if the interaction of the entities of a scenario must ful�l several safety

constraints, either several scenarios can be de�ned, or these safety constraints can be linked using a

logical conjunction.

4.2.2.2 Modes

The behaviour of an element depends on its type, and is composed of a set of modes of oper-

ation, termed simply modes, that describe the actions it can take, and the transition rules be-

tween these modes. Modes should be de�ned so that an element is always in one of its modes,

i.e., transitions between modes are assumed to be instantaneous. For example, given the maxi-

mum speed of an emergency vehicle vmax, and an increasing set of speeds {vi}i∈[0,p] with v0 =

57

4.2. Specifying safety constraints

Figure 4.1: Possible mode diagram for an entity of type car.

0 and vp = vmax, the modes of emergency vehicles can be de�ned as: stopped, {going_at_vi,

accelerating_to_vi, braking_to_vi-1}i∈[1,p]. Similarly, the behaviour of a car can be modelled with

the modes travelling, getting_out_of_the_

way, and out_of_the_way. The set of modes of element type Ei is denoted as Mi. Modes and

the transitions between them can be represented in a mode diagram, which is a state diagram where

the nodes are the modes of the scenario, and the edges are the transitions. Some transitions can be

labelled with conditions on state variables, which trigger the transition. Figure 4.1 shows a possible

mode diagram for an entity of type car.

The behaviours of elements can be speci�ed in di�erent ways. Modes represent possible actions

(actuation, sensing, sending messages or signals, processing) of an element. The modes of an element

type should be chosen to re�ect its action in relation to the safety constraint of the scenario of which

they are a part: actions that can lead to the violation of the safety constraints should be separated from

actions that are safe. Furthermore, amongst the actions that can lead to the violation of the safety

constraints, actions that might lead to di�erent parts of the safety constraints to be violated should

be separated. This implies that the speci�cation in terms of modes of an element depends on the

scenario for which it is speci�ed. For example, the behaviour of a car in an emergency-vehicle warning

system scenario could be described as outlined above as travelling, getting_out_of_the_way, and

out_of_the_way, while the behaviour of the same car for a tra�c light scenario might be described

in terms of whether the car is aware of a nearby light and whether it is stopping in front of the light,

so the modes could be cruising, obeying_traffic_light, stopping, stopped. The behaviours

of elements taking part in di�erent scenarios can be described as a composition of the behaviour

description for each scenario, this process is detailed in Section 5.3.

4.2.2.3 States and state compatibility

The situation of an element at a given time is described by its state, which is made up of a number

of state variables: the element's mode, position and, depending on its type, some application-speci�c

information. State variables can vary over time and/or over space. The set of possible states of

elements of type Ei is denoted as Si. In the example, the states of both emergency vehicles and cars

can be de�ned as of the combination of their mode, location, current speed, and direction. For an

58

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

element type Ei, the function mode Mi : Si 7→ Mi returns the mode of a given state.

The states (se1 , se2 , ..., sem
) of a �nite set of elements {e1, e2, ..., em} are said to be compatible if

the safety constraints are not violated when the elements are simultaneously in these states. This

relation is denoted as Cs(se1 , se2 , ..., sem
). For example, the states of an emergency vehicle and a car

are compatible if they are far enough away. Also, the state of a car that is o� the road is compatible

with the state of any emergency vehicle.

4.2.2.4 Relationship between states and modes: mode invariants

The (current) mode of an element describes the action(s) that this element is currently undertaking,

while an element's state describes its current situation, including its position. Modes can therefore

be used to predict state evolution. For example, the state variable �position� of a car will remain

constant as long as it is in the mode stopped. While an element is in a given mode, only some of

its state variables might change, and these changes might be constrained. This is captured using

mode invariants: predicates on state variables and their possible variations that remain true while an

element is in a given mode. An example of an invariant on the variations of a state variable is: the

state variable �position� will not vary by more than 5m/s, hence capturing the maximum speed in

that mode. Mode invariants capture semantic information about modes.

4.2.2.5 Goals and priority list

Entities have a goal, which is formalised as a condition on its state variables that the entity is aiming

to achieve. All entities of a given type have the same goal, which can be parametrised. For example,

the goal of all entities of type car might be to arrive at their destination, but each car has a speci�c

destination. The goal of an entity can change over time, for example, when an initial goal is reached,

but any entity has only one goal at a given time.

The goals of some entities might be more important than the goals of others. This is captured

by the priority list of a scenario, which is an ordered list of modes, guarded by conditions on state

variables, that capture the relative priorities of actions of entities in that scenario. The priority list

therefore expresses the relative priority of achieving the goals of entities of di�erent types. Modes can

be omitted from the priority list, if none of them has a higher priority that all the others.

If, for a mode m ∈ Mi, and a condition c on the state variables of a scenario, �if c then m� is used

to denote the predicate �if c is ful�lled, then all elements of type Ei should be in mode m�, the priority

list of a scenario can be described as a tuple

(if c1 then m1, if c2 then m2, ..., if cq then mq)

of predicates of decreasing priority, where m1,m2, ...,mq are modes of elements of this scenario and

c1, c2, ..., cq are conditions on the state variables of the elements of the scenario. So for example, the

59

4.2. Specifying safety constraints

priority list of the emergency-vehicle warning scenario can be expressed as:

(if true then going_at_vp, if true then going_at_vp-1, ..., if true then going_at_v1,

if true then travelling) ,

which captures that the priorities of the scenario are �rst for the emergency vehicle to travel as fast

as possible, and second, for the car to travel (note that the modes stopped of emergency vehicles

and out_of_the_way of cars do not appear in the priority list because neither of them has a higher

priority than the other). The true conditions can be omitted, and therefore the goal of the example

can be expressed as:

(going_at_vp, going_at_vp-1, ..., going_at_v1, travelling) .

4.2.2.6 Incompatibilities

An incompatibility is a condition on the state variables of elements, which can be used to capture a

state that must not occur. Four types of incompatibilities have been identi�ed as having a particular

interest for autonomous mobile entities:

sov: a condition on a state variable of an element (composed of the state variable, a relational

operator, and a value),

sos: a condition on the relative values of two state variables of two elements (composed of a state

variable, a relational operator and another state variable),

distance: a condition on the distance between two positions,

cardinality: a condition on the cardinality of a set of entities that satisfy some condition on their

state variables.

Examples for each of these incompatibility types are presented in Section 4.2.3. These incompatibilities

can be combined using conjunctive and disjunctive logical operators. This allows a wide range of

conditions on the states of entities in a scenario to be expressed. In particular, a condition on all

entities of a given type can be expressed using a combination of incompatibilities of types sov, sos,

and distance, while a condition on n entities of a given type can be expressed using a cardinality

incompatibility that relies on a condition on their state variables.

4.2.2.7 Summary

This work aims to derive the requirements on entities' behaviours so that they can progress towards

their goal, while ensuring system-wide safety constraints. The approach taken is that entities, while

attempting to ful�l their goal, adapt their behaviour depending on the information currently available

to them to ensure that the safety constraint is not violated. This idea is based on the rationale that

60

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

whether the safety constraint might be violated depends on the actions of entities (as well as their

initial state, and the state of the environment). So, given a safety constraint, the set of allowable

behaviours for an entity is restricted by the information currently available to it: it can only be

in modes in which it knows that the safety constraints will not be violated given the information

that it has. The priority list allows each entity to chose optimal behaviour from its set of allowable

behaviours, so that it is nearing the goal as fast as possible.

4.2.3 Syntax

In addition to the behaviour of entities, the safety constraints also need to be modelled. Safety

constraints may refer to the following elements:

• the state of any element of a given type, e.g., scar (when the safety constraint needs to refer to

several elements of the same type, these are distinguished by a number placed after the type

name, e.g., scar 2)

• the variables of a state, which can be expressed by the state name, a period and the variable

name, e.g., scar.mode

• a number of relational operators, which can be applied to the variables: <, ≤, >, ≥, =, 6=

• a number of basic incompatibilities, which can be of four types:

1. sov, e.g., scar.speed ≤ 3

2. sos, e.g., scar.speed ≤ sev.speed

3. distance, denoted distance(., .), e.g., distance(scar.position, sev.position)

4. cardinality, denoted |{E,C}|<operator><value>, where E is an entity type, and C a con-

dition on the state variables of entities of type E, e.g.,

|{ecar, scar.mode = out_of_the_way}| > 1

• two logical operators, which can link incompatibilities: ∧, ∨.

The ebnf (ISO 1996) description of the language is presented in Figure 4.2.

4.2.4 Expressing the safety constraints

This formalism can be used to express the safety constraints of a scenario as a set of incompatibilities

between states, including constraints on the relative distance of elements. For example, the safety

constraint that cars and emergency vehicles should not collide can be stated as: for any state scar of

any entity of type "car� and any state sev of any entity of type �emergency vehicle�,

Cs(scar, sev) i� q
(
(distance(scar.position, sev.position) < d)∧

(sev.mode 6= stopped) ∧ (scar.mode 6= out_of_the_way)
)
.

61

4.2. Specifying safety constraints

incompatibility = (incompatibility, "∧", incompatibility)

| (incompatibility, "∨", incompatibility)

| (element-type, ".", state-variable, rel-operator, value)

| (element-type, ".", state-variable, rel-operator,

element-type, ".", state-variable)

| ("distance(", position, ",", position, ")", rel-operator, value)

| ("|", entity-type ".", state-variable, rel-operator, value "|",

rel-operator, value)

rel-operator = "<" | "≤" | ">" | "≥" | "=" | "6="

Figure 4.2: EBNF description of the safety constraint formalism.

This expresses the fact that the safety constraints will not be violated if a car and an emergency

vehicle are far enough away, or the emergency vehicle is stopped, or the car is out of the way of the

emergency vehicle.

While being high-level and implementation-independent, this formalism captures all the salient

details of the safety constraints. Furthermore, because it uses high-level abstractions, it is easy to use

to express safety constraints. Note that this formalism does not allow the expression of any safety

constraints (for example, safety constraints referring to the relative values of three variables, such as

the height of entity e1 plus the height of entity e2 is smaller than the height of entity e3 cannot be

expressed using this formalism). The formalism does, however, capture safety constraints from a wide

range of scenarios, and is su�cient to express the safety constraints of all the examples from the its

domain that we studied.

4.2.5 Solvability

As already mentioned, the goal of this work is to derive some requirements on entities' behaviours so

that they can progress towards their goal, while ensuring the system-wide safety constraint. Such a

set of requirements, however, might not exist. A scenario is said to be solvable if there exists a set

of requirements on the behaviours of entities such that the system-wide safety constraint is always

ensured. A set of such requirements is called a solution of the scenario.

A solution, however, might not allow entities to make progress towards their goal. Whether a

solution allows entities to make progress depends on two factors: (1) whether the conditions for an

entity to transition to those modes that allow it to make progress will ever be met, and (2) whether

deadlocks in the behaviour of entities can potentially happen, i.e., whether it might happen that while

adapting their behaviour to progress towards their goal, a group of entities reach a situation in which

none of them can make any more progress unless some of the others do. The �rst factor depends on

the solution implementation, and in particular, on the characteristics of the technology used (wireless

transmitter, actuators and sensors). The second factor depends on the complete behaviour of entities,

i.e., not only the safety speci�cation. None of these factors can be assessed at the safety design

stage, as only the safety behaviour of entities is known at this stage. Therefore, this work focuses

62

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

on systematically producing a solution that will ensure that the safety constraint is not violated,

and programmers must then assess whether these solution will allow entities to make progress with

available technologies.

Solutions, however, can be evaluated within the model in terms of the hardware they require, the

progress of which entities they favour, and the a priori feasibility of their requirements. Some scenarios

have several solutions, and an evaluation makes it possible for model users to compare solutions, and

chose the optimal solution for a speci�c application. This process is detailed in Chapter 5.

4.2.6 Decomposition of the safety constraints

A safety constraint is a condition on the state variables of elements that should never become true. This

logical condition is composed of conjunctions and disjunctions of basic incompatibilities, which are

simple conditions on the state variables of one or two elements. Boolean logic states that any logical

condition can be decomposed in a disjunction of conjunctions, called the disjunctive normal form

(Hazewinkel 1994). This allows us to decompose a safety constraint into a number of safety constraints

composed only of conjunctions of basic incompatibilities. Therefore, we assume in the following that

the safety constraint of the scenario is a conjunction of basic incompatibilities. Section 5.3 will show

how the solutions of a scenario composed of several such safety constraints can be derived.

4.3 Safety constraint distribution

High-level system-wide safety constraints, while being simple and quite intuitive to state in this form,

are not easily exploitable as such. In general, it is non-trivial to deduce the necessary and su�cient

requirements on individual entities behaviour from such safety constraints, or even to check that some

speci�cation of the entities' behaviours ensures that these safety constraints will not be violated. To

ease this process, this section introduces the concepts of responsibility, mode compatibility and three

coordination primitives that can be used to derive requirements on entity behaviours.

4.3.1 Responsibility

For every possible incompatibility between the states of some elements, i.e., possible violation of the

safety constraint, at least one of these entities needs to ensure that it does not occur. We say that

this entity is responsible for the incompatibility.

The role of an entity is de�ned with respect to an interaction, as in object-oriented software

engineering (Schelfthout & Holvoet 2005). The possible roles of entities of a given type are de�ned by

model users. By default, entities only have a single (default) role, but if a safety constraint refers to

several entities of the same type, they are distinguished by their role. So, for example, if the safety

constraint in a scenario with autonomous cars states that two cars must not collide, i.e., for any two

63

4.3. Safety constraint distribution

cars carfollowingand carleading:

scarfollowing
Csscarleading i� q

(
distance(scarfollowing

.position, scarleading .position) < d
)
,

then cars might be distinguished depending on their role: 'following' or 'leading', which depend on

their relative positions. Responsibility can be attributed to entities of a certain type or to entities

in a certain role. For example, emergency vehicles might be responsible to ensure that they do not

collide with cars or cars might be responsible for ensuring that no other car collides into them from

behind, so cars in the leading car role are responsible for possible state incompatibilities with cars

behind them. Responsibility might be attributed a priori or in real-time, and might be transferred.

However, at any time, at least one entity must be responsible for each possible incompatibility. The

problem of dynamic responsibility attribution relies on roles, and is not trivial, as consistent role

selection is a hard problem, as illustrated, for example, in the context of multirobot teams (Weigel

et al. 2002). As mentioned in Section 4.1, however, the problem of responsibility attribution is simpler

than many problems of role attribution, as it is su�cient to have at least one entity in the role that is

responsible, but is acceptable to have more than one. Programmers must specify an entity type and

role that constitutes an initial partition of the entities so that there is an entity responsible for each

combination of elements whose state might violate the safety constraint.

This notion of responsibility is the �rst step in the translation of system-wide safety constraints:

it allows the duty of ensuring the safety constraint to be distributed over entities. Being responsible

for an incompatibility implies requirements on the entity's behaviour: it should ensure at any time

that the incompatibility does not happen. This requires that an entity be able to foresee when an

incompatibility might happen. This can be deduced from the modes of the di�erent elements. For

this purpose, we de�ne the notion of mode compatibility.

4.3.2 Mode compatibility

A set of modes (me1 ,me2 , ...,men
) ∈ Me1 × ...×Men

is compatible if, when some elements are simulta-

neously in these modes, their states are compatible. If we de�ne, for m ∈ Mi, Si,m as the set of states

of the element ei, in which it is in mode m, i.e., Si,m := {s ∈ Si : Mi(s) = m}, mode compatibility

can be de�ned as:

Cm(m1,m2, ...,mn) i�∀(se1 , se2 , ..., sen) ∈ S1,m1 × ...× Sn,mn , Cs(se1 , se2 , ..., sen) .

For example, the modes out_of_the_way of a car and going_at_vi of an emergency vehicle are

compatible because when they are in these modes, their states are always compatible.

While the notion of state incompatibility captures whether the safety constraints are being violated

at a given time, mode compatibility enables us to make predictions that no incompatibility will happen

(when elements are in these modes). Note that if the modes of a set of elements are not compatible,

it does not imply that the safety constraints will be violated. For example, the modes travelling

64

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

Primitives Meaning

Adapt Perform an action other than the one planned
Delay Perform a planned action later than initially planned
Transfer Send a message to other entities, either via direct communi-

cation or via the environment

Table 4.1: The three coordination primitives and their meaning.

of a car and going_at_Vi of an emergency vehicles are not compatible, as entities might collide into

each other when they are in these modes, but if they are far enough apart, the safety constraints will

not be violated (and so their states at the time are compatible).

A mode m of an entity e is said to be a fail-safe mode if it is compatible with all the modes of

all the other elements. This is noted FSM(m, e). It is su�cient for an entity to remain in a fail-safe

mode to ensure that the incompatibility for which it is responsible will not happen. For example, the

mode stopped is a fail-safe mode for emergency vehicles. Note that only entities whose actions might

change the state variables mentioned in the safety constraint can have fail-safe modes (as the actions

of other entities can never ensure that the safety constraint will not be violated).

We assume that both direct and indirect communication between entities can at times be com-

pletely impossible (see Chapter 3). Therefore, for a safety constraint never to be violated, responsible

entities need to have fail-safe modes to which they can revert when communication is de�cient. In

particular, this implies that only entities which can in�uence the state variables mentioned in the

safety constraint, can be made responsible for an incompatibility.

4.3.3 Coordination primitives

For a responsible entity to ensure that no state incompatibility will happen, it is su�cient to ensure

that, at all times, its mode is compatible with the modes of all surrounding elements. An entity does

not know, a priori, what modes the elements in its vicinity are or will be, and not even if there are

any elements in its vicinity. The behaviour of entities is modelled in terms of actions they undertake

(modes), and they can either continue the same action (remain in the mode, so delay changing to

another mode), change action (i.e., change mode), or send messages (a special kind of action that

we distinguish as it does not directly contribute to the goal). Three primitives have been de�ned to

capture these possibilities: adapting its behaviour (i.e., change mode), delaying its action (i.e., delay

changing mode), or transferring its responsibility (by sending messages to other entities if possible).

These primitives are detailed below and summarised in Table 4.1.

4.3.3.1 Adapting its behaviour

A responsible entity can have information about the modes in which other elements can be both a priori

(by previous knowledge) and in real-time, via messages or sensor information. Using this information,

a responsible entity can adapt its behaviour, i.e., enter a mode other than the one planned, to always

65

4.3. Safety constraint distribution

be in a mode in which the safety constraints will not be violated. It is su�cient for an entity to remain

in a fail-safe mode to ensure that the incompatibility for which it is responsible will not happen. This

primitive will be referred to as �Adapt�.

4.3.3.2 Delaying actions

The second primitive consists of delaying an action that can trigger an incompatibility (i.e., delaying

switching to a mode in which an incompatibility might occur). An entity can delay its action until it

gets information that it is safe to undertake it, or until it has transferred its responsibility, as explained

below. This coordination primitive will be referred to as �Delay�.

4.3.3.3 Transfer

Another means for responsible entities to ensure that the incompatibilities for which they are re-

sponsible do not occur, is to warn other entities that the incompatibility might occur so that other

entities can then change their behaviour to prevent the incompatibility. Because, as de�ned in Chap-

ter 3, passive elements cannot receive messages, this coordination primitive can only be used for the

coordination of entities, and not the coordination of entities and passive elements of their environment.

The warning can be given either by direct or indirect communication. Messages and signals might

contain information about the responsible entity's state, mode, and intention. This can then be used

by entities receiving a warning to optimise their reaction, i.e., to avoid the incompatibility while

making as much progress as possible towards their goal. For direct communication, messages need to

be sent periodically over a proximity that is big enough so that entities approaching receive a message

early enough to be able to react to its contents if necessary. For indirect communication, signals need

to be available for as long as the incompatibility can happen, and be perceptible in an area that is

wide enough to ensure that entities will have time to react.

An entity sending a warning (either by direct or indirect communication) does not know whether

any entity actually received the warning (c.f. Chapter 3). Therefore, entities that receive the warning

become responsible to ensure that no incompatibility arises with the entity that sent it and other

elements in its vicinity. This can be seen as a transfer of responsibility. This transfer is however

only partial, as the responsible entity remains responsible for the incompatibility in relation to other

entities. As shown in Figure 4.3(a), the transfer of responsibility is e�ective only if and when the

message (or signal) is received. If the message is lost, the responsible entity remains responsible,

as shown in Figure 4.3(b). Therefore this primitive relies on the communication models described

in Chapter 3, and in particular, on the real-time feedback on the state of communication that they

provide, so that entities can know whether a transfer has been successful. This primitive will be

referred to as �Transfer�.

66

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

(a) The message was received, there-
fore the responsibility is transferred.

(b) The message was lost due to
an adaptation. Therefore the re-
sponsibility was not transferred.

Figure 4.3: Transfer primitive, and its e�ect on responsibility.

4.4 Translating safety constraints

In this section, we introduce the notions of contracts and zones, which build on responsibility, mode

compatibility and the coordination primitives to translate the safety constraint into requirements on

the behaviour of entities.

4.4.1 Contracts between elements

A responsible entity can use a combination of the three coordination primitives mentioned above to

ensure that the incompatibility for which it is responsible does not occur. This must be decided a

priori, and can be seen as an implicit contract between the responsible entity and other elements. This

notion of contract is similar to the one used in software engineering and design by contract (Meyer

1992). Contracts between the elements regulate both the sending of signals and messages and the

reception of them. Responsible entities need to have a contract with elements of every type mentioned

in the safety constraint.

A contract needs to specify how and when entities should warn each other of possible incompatibilities.

Therefore, contract parameters are:

• how early should an entity warn another entity that a possible incompatibility can happen,

• how intense should a signal or message be (e.g., loudness of a siren),

• how often messages are sent or sensing is done.

We have identi�ed three types of contracts: (1) contracts without transfer, (2) contracts (with transfer)

without feedback, and (3) contracts (with transfer) with feedback. The contract types di�er in which

67

4.4. Translating safety constraints

coordination primitives are used by responsible entities and other elements that are party to the

contract. These contract types are described below, in order of increasing complexity: every contract

described builds on the contracts previously presented and adds further possibilities. Each contract

type is illustrated using the emergency-vehicle warning system example, in the case where emergency

vehicles are responsible. In the contract description, the term �responsible entity� refers to the entity

that is initially responsible (it might however, transfer its responsibility at a later stage). Moreover,

the times mentioned are times of delivery (as opposed to times of sending of messages).

4.4.1.1 Contract without transfer

In a contract without transfer, the responsible entity does not transfer its responsibility, and must

always ensure, by adapting its behaviour if necessary, that the safety constraints are not violated.

Other elements do not need to know about the contract, or even of the existence of the responsible

entity. This contract can be used between an entity and elements of any type (passive elements and

entities). In this case, the coordination primitives that can be used are only Adapt and Delay, and

they are used only by the responsible entity.

If such a contract is used in the emergency-vehicle warning example, emergency vehicles would

drive relying only on sensor information to detect the presence of cars and foresee their behaviour.

Therefore, the average speed of emergency vehicle would be slow because they are constrained by the

normal behaviour of other tra�c.

4.4.1.2 Contract without feedback

In a contract without feedback, the responsible entity must warn other entities when the safety

constraints are liable to be violated. Other entities then become responsible to ensure that the

incompatibility does not happen. This contract can only be used between entities, as it requires that

participants be able to receive messages. Note that the responsible entity can also adapt its behaviour

to ensure that an incompatibility does not happen. It must do so, in particular, when it cannot ensure

that all entities will be warned early enough in advance.

The terms of the contract are the following: the responsible entity must ensure that other entities

will receive a message of intensity iwarning at least a preagreed twarning before an incompatibility can

happen (or that no incompatibility can happen), and other entities must ensure that, at any time,

they can avoid an incompatibility provided they are warned about it, at intensity iwarning, twarning

in advance. The time line for such contract is outlined in Figure 4.4. Entities must also agree on

what communication means they will use: direct communication, indirect communication, or both.

The requirements on entities' behaviours depend on the communication mean(s) used. In all cases,

however, the responsible entity can use any of the three coordination primitives, while other entities

can use only Adapt and Delay.

If this contract is used in the emergency vehicle example, emergency vehicles would warn cars of

68

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

Figure 4.4: Time line for a contract (with transfer) without feedback.

their arrival by sending them either a signal (e.g., by using a siren), or a message. Upon receiving

such a warning, cars must get out of the way before the emergency vehicle arrives to ensure that the

safety constraint will not be violated.

4.4.1.3 Contract with feedback

In a contract with feedback, the responsible entity must also warn other entities when an incompati-

bility can happen. In this case, however, entities that are warned that an incompatibility can happen

can provide feedback to the responsible entity, by sending a message or a signal, when they cannot

adapt their behaviour to avoid violating the safety constraint. This contract can only be between

entities.

The terms of the contract include two preagreed time durations twarning and tfeedback, and two

intensities, iwarning and ifeedback. The responsible entity must warn other entities at least twarning in

advance when the safety constraints are liable to be violated, and also be able to react to their feedback

within twarning− tfeedback, and ensure that the incompatibility will not happen. Other entities must be

able at any time either to react within twarning to a transfer from a responsible entity, or give feedback

within tfeedback to this entity when they are unable to safely remain responsible. Both possibilities are

pictured in Figure 4.5 (a) and (b) respectively. Note that this contract might include the exchange

of further messages, but after the initial exchange the entities have discovered each other's presence,

and if necessary, the delay to exchange more messages can be included in the de�nition of twarning. In

this case, both responsible and other entities can use any of the three primitives. Note that contracts

with feedback require the exchange of two messages when feedback is used, hence increasing the time

cost, compared to a contract without feedback. Therefore, these contracts will be used in scenarios

where it is expected that feedback should not be used often.

If this contract type is used in the emergency vehicle warning system, every emergency vehicle

would warn cars of its arrival (by either signalling or sending messages), and cars receiving such

warnings would try to get out its way, and if this is not possible, would send feedback to the responsible

entity.

69

4.4. Translating safety constraints

(a) when the other entity reacts to the transfer (b) when the other entity sends a feedback

Figure 4.5: Time lines for a contract (with transfer) with feedback.

4.4.1.4 Contract types summary

Contracts are used to characterise the protocol under which entities will interact: they de�ne when

an entity should change its behaviour to adapt it to these of another entity, when an entity should

send a message to another entity, and when that other entity should itself send a message. The terms

of the contracts for both responsible and other entities for each of the contract types are detailed in

Table 4.2. These contracts need to be decided a priori, as is the semantic attached to responsibility

transfer (e.g., what a siren means, or what are the meaning of message parameters).

More contract types could be de�ned, for example to distinguish between cases where a responsible

entity uses both the adapt and delay primitives from cases where it uses only one of them. These three

contract types, however, capture all the di�erent possibilities in terms of interactions between entities

(i.e., responsibility transfer), and it is the interactions between entities that in�uence the requirements

on entities behaviour for ensuring system-wide safety constraints, so these three contract types are

su�cient to design solutions.

The contract without feedback is actually a sub-case of the contract with feedback, where a con-

sumer would never use the possibility of providing feedback. Opting for a contract without feedback

will typically allow to chose a smaller contract parameter twarning, as their is no need to schedule

time for feedback. Contracts that entities have with elements must be decided a-priori. The use of

the three primitives by both responsible entities (R) and other elements (O) in the three contracts is

described in table 4.3.

Note that safety constraints will be guaranteed only if the contract is respected. If it is believed

that some entities might disregard safety constraints and not obey a contract, legislation might be in-

troduced to enforce this. For example, it could be imposed that every autonomous car commercialised

obeys a number of contracts necessary to ensure the safety of all road users.

70

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

Type of contract Requirements on the responsi-
ble entity

Requirements on other ele-
ments

Type of
elements
the con-
tract can
be with

Without transfer Adapt its behaviour or delay
its actions to ensure that the
incompatibility for which it is
responsible will not happen.
Can use both sensor informa-
tion and messages received.

Elements

Without feedback Warn other entities at least
twarning in advance, when the
incompatibility for which it is
responsible is liable to occur.

Be able to receive a warning
from a responsible entity, and
react to it within twarning.

Entities

With feedback Warn other entities at least
twarning in advance when the
incompatibility for which it is
responsible is liable to occur.
Adapt to the feedback
from another entity within
twarning − tfeedback.

Be able at any time to adapt
within twarning to a warn-
ing from the responsible en-
tity, or to communicate within
tfeedback to the responsible en-
tity.

Entities

Table 4.2: Requirements imposed by the three types of contracts.

Contract Adapt Delay Transfer

Without transfer R R -
Without feedback R, O R, O R
With feedback R, O R, O R, O

Legend : R: responsible entity; O: other element.

Table 4.3: Use of the primitives by the contracts.

71

4.4. Translating safety constraints

4.4.1.5 Transfer means

In the contracts with transfer, entities can use signalling, message passing, or both, to transfer their

responsibility. The means to be used must be agreed upon by the entities; it is also part of their

contract. This implies that there are actually three types of contracts with transfer without feedback.

These are denoted Tx where x is either �d� for direct, �i� for indirect, or �di� for direct and indirect

depending on the communication means used. The contracts with transfer without feedback are

therefore

• using direct communication (Td),

• using indirect communication (Ti),

• using both direct and indirect communication (Tdi).

There are also 9 types of contracts with transfer with feedback, denoted TxFy, where x and y stand

for the communication means used for the transfer and feedback respectively:

• using direct communication for both transfer and feedback (TdFd),

• using direct communication for transfer, and indirect communication for feedback (TdFi),

• using direct communication for transfer, and either direct or indirect communication for feedback

(TdFdi),

• using indirect communication for transfer, direct communication for feedback (TiFd),

• using indirect communication for both transfer and feedback (TiFi),

• using indirect communication for transfer, and either direct or indirect communication for feed-

back (TiFdi),

• using both direct and indirect communication for transfer, and indirect communication for feed-

back (TdiFi),

• using both direct and indirect communication for transfer, and direct communication for feed-

back (TdiFd),

• using both direct and indirect communication for both transfer and feedback (TdiFdi).

In a contract Tdi, a transfer can be made via either direct or indirect communication. However,

because other entities do not know which of the two transfer means will be used, they have to be able

to react to either. In addition, as these other entities will be noti�ed of any changes in the status

of indirect communication, they will have to adapt their behaviour to such changes, as responsible

entities might have used indirect communication. Therefore, a contract Tdi corresponds to a contract

Ti where responsible entities rely on indirect communication, and direct communication can be used

72

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

Responsible entity Other entities

Direct
communication

Indirect
communication

Direct
communication

Indirect
communication

Contract without
transfer
Contract without
transfer

Contracts with
transfer without
feedback
Td X
Ti X
Tdi X X

Contracts with
feedback
TdFd X X
TdFi X X
TdFdi X X X
TiFd X X
TiFi X X
TiFdi X X X
TdiFd X X X
TdiFi X X X
TdiFdi X X X X

Table 4.4: Di�erent types of contracts and their use of communication means. A X means that, in
this contract, entities of the type described by the column use the communication means.

for optimisation. For example, an emergency vehicle warning system could be build upon a contract

Tdi where emergency vehicles are responsible, and use sirens to warn cars of their arrival, but can

also use direct communication if it allows them to go faster. Similarly, a contract TdiFy is equivalent

to a contract TiFy, where direct communication can be used as an optimisation for the transfer, and

TxFdi is equivalent to a contract TxFi where direct communication can be used as an optimisation

for the feedback. The 13 types of contracts are summarised in Table 4.4.

4.4.2 Zones

The contracts are related to geographical zones: the safety and the consistency zone, as well as the

critical coverage

4.4.2.1 Safety zone

By the de�nition of state compatibility, the states of all elements of a scenario must be compatible

at all times in order to ensure the safety constraint. The safety constraint, however, actually imposes

requirements only on speci�c states, typically when two or more elements are �close� according to

some application-speci�c de�nition. For this reason, we de�ne the safety zone SZ of an entity, as the

73

4.4. Translating safety constraints

set of positions of elements where their states are liable to be incompatible with that of the entity.

There is a safety zone per responsible entity/other entity type combination. The safety zone of the

responsible entity eR with regards to elements of type eO is denoted SZ(eR, eO).

Safety zones can be relative to an entity, or absolute and therefore the same for all entities (of

the responsible entity type and other entity type combination). For example, the safety zone of a

pedestrian tra�c light is the pedestrian crossing, the safety zone of a car in a collision scenario is

typically a zone around its �centre� that de�nes its body, and is relative to a car. In an unsignalised

junction, however, the safety zone of a car is actually the area of the junction, and is therefore absolute,

and common to all cars. We refer to the safety zone in either of these cases as �the entity's safety

zone�.

Note that the safety zone does not depend on the modes of the responsible entity or other entities.

The safety zone of a responsible entity and another entity type combination can be expressed explicitly

in the safety constraint by using the distance(., .) incompatibility (see 4.2.3) or otherwise can be

implicit, in which case programmers need to estimate its value. For example, the safety constraint in

a collision avoidance scenario can be that cars should not be closer than a distance d, in which case

the safety zone can be deduced directly from the safety constraint: it is a circle of size d around a

car. The safety constraint of a pedestrian tra�c light scenario might be that cars should not pass by

the tra�c light when it is red. In this example, the safety zone cannot be directly deducted from the

safety constraint, but model users can assess it, as it is the area around the tra�c light that should

be free when it is red (i.e., the pedestrian crossing).

4.4.2.2 Consistency zone

If a responsible entity foresees that another entity could be in a state that is not compatible with its

own state when that other entity enters its safety zone, the responsible entity can choose to transfer

its responsibility, by sending a message or emitting a signal. In this case, it must do so early enough,

so that the incoming entity will know about the possible incompatibility early enough to have time to

adapt its behaviour (either by not entering the safety zone, or by changing its mode) to prevent the

incompatibility. The time this will take depends on the mode that the responsible entity is in. The

zone in which incoming entities must know of the responsible entity to be able to adapt to it is called

the consistency zone of the mode mR that the responsible entity is in, and noted CZ(mR). If mR is

a fail-safe mode, CZ(mR) = 0, as incoming entities never need an accurate view of the state of the

responsible entity.

4.4.2.3 Critical coverage

If the responsible entity chooses to transfer its responsibility, to ensure that all incoming entities know

the state of the responsible entity when entering CZ(mR), communication must be guaranteed in a

zone CC(mR) around CZ(mR). This is called the critical coverage associated with the mode mR of

74

Chapter 4. Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities

the responsible entity. In the case of direct communication, the critical coverage is the coverage within

which timely communication is required. In the case of indirect communication, the critical coverage

is the coverage within which sensor information must be available. On failure of communication

(i.e., when the critical coverage of its current mode is not covered), a responsible entity needs to

adapt its behaviour, by entering a mode whose critical coverage is covered. If mR is a fail-safe mode,

CC(mR) = 0, as a responsible entity does not need to communicate when it is in a fail-safe mode.

4.4.2.4 Example

In the emergency-vehicle scenario, for example, the safety zone of emergency vehicles are the vehicles

themselves. This can be approximated as a zone of diameter 3m around their centre, that encompasses

the entire vehicle. No car should ever enter an emergency vehicle's safety zone to ensure that they do

not collide into it.

If emergency vehicles are responsible, every emergency vehicle needs to ensure that any car entering

its consistency zone has an accurate view of its state, i.e., knows that it is arriving. This ensures that

cars will have time to get out of the way after being warned of the arrival of an emergency vehicle.

In the case where emergency vehicles use a contract with transfer, every emergency vehicle warns

cars of its arrival (transfer of responsibility) by either direct or indirect communication. To ensure

that cars have an accurate view of its state before entering the consistency zone, an emergency vehicle

needs to be able to send messages, via direct or indirect communication, in the critical coverage. If

real-time communication is not guaranteed over the critical coverage, cars might not receive a message

before entering the consistency zone, and therefore might not have time to react to avoid entering the

safety zone, hence potentially colliding with the emergency vehicle. Therefore, entities noti�ed of the

communication coverage must adapt their behaviour when the communication is not guaranteed over

the critical coverage. If direct communication is used, emergency vehicles will be noti�ed of coverage

changes (see Chapter 3) and should slow down when communication is not guaranteed over the critical

coverage. If indirect communication is used, cars will be noti�ed of sensing coverage changes, and

should get out of the road when timely sensing is not guaranteed over the critical coverage (as they

might not �nd out about an arriving emergency vehicle early enough to have time to get out of its way).

The di�erent zones and their de�nitions are summarised in Figure 4.6. The next chapter investi-

gates how the size of the di�erent zones can be deduced from the contract parameters, hence making

it possible to derive requirements on the behaviour of entities.

4.5 Summary

In this chapter, we have de�ned Comhordú, a real-time coordination model for autonomous mobile en-

tities that builds on the environment, direct communication, and sensing and indirect communication

75

4.5. Summary

Figure 4.6: De�nitions of the di�erent zones within the critical coverage.

models de�ned in the previous chapter. Comhordú uses the notions of modes and states to formalise

a scenario and specify a safety constraint. Such a safety constraint can then be distributed amongst

entities using the notions of responsibility, mode compatibility and some coordination primitives. This

distribution translates into contracts between entities, which can be used to derive requirements on

the behaviour of entities. In the next chapter, we show how to design a solution using Comhordú,

and how to derive the set of solutions for a given scenario. In addition, we also show how scenarios

can be combined.

76

Chapter 5

Using Comhordú to Derive

Requirements on Entity Behaviour

Using the Comhordú model de�ned in the previous chapter, programmers can specify safety con-

straints and possible interactions amongst entities. This chapter shows how these speci�cations can

be used to systematically derive requirements on the behaviour of entities so that they ensure the

safety constraints. In particular, we show how developers can choose the appropriate contract type

and responsible entity in Section 5.1. We then present the approach used to distribute the safety

constraints, and detail the requirements on entities that can be derived for each contract type in

Section 5.2. In addition, we show how the requirements on entity behaviours can be derived for com-

binations of safety constraints, and how scenarios can be combined in Section 5.3. Finally, Section 5.4

summarises and concludes this chapter.

5.1 Designing a solution

To ensure system-wide safety constraints, entities must coordinate their behaviour. This requires

them to interact, and their interactions are captured by contracts. The contracts that an entity must

ful�l impose requirements on its behaviour. As de�ned in Chapter 4, a solution of a scenario is a

set of requirements on the behaviours of entities that ensure that the system-wide safety constraint

of this scenario is always respected. The entities that need to interact are the ones mentioned in the

safety constraints. If several entities of the same event type are mentioned in the safety constraint, the

way they interact can di�er depending on their role. A solution is speci�ed entirely by a combination

of a responsible entity, and a tuple of contract types, with one contract type for each entity type

and role mentioned in the safety constraint. (Note that the initially responsible entity is the same

for all of these contracts.) To simplify the explanations, we will refer to such a combination simply

as �a combination� in the following. As explained in Chapter 4, passive elements cannot be made

77

5.1. Designing a solution

Figure 5.1: Responsible entity and contract types combination example.

responsible and the only contract type that can be used with them is a contract without feedback.

To illustrate the de�nition of combinations, consider the example of a scenario with a safety

constraint mentioning entities of type E1 with two roles R1 and R2, entities of type E2, and a passive

element of type P1. In this scenario, a combination is a responsible entity type and role (either E1 in

R1, or E1 in R2, or E2), and a tuple of two contract types, between responsible entities and entities of

the other two entity types and roles. (The contract between the responsible entity type and role and

the passive element is a contract without transfer and does not need to be speci�ed.) An example of

a combination is: 〈E1 in R2, contract without transfer with E1 in R1, contract with feedback TdFi

with E2〉, as illustrated in Figure 5.1. The set of all combinations can be obtained by varying the

responsible entity, and all the contract types. In the example scenario, there is a choice of 3 possible

responsible entities, and two contracts can be picked independently of a choice of 13 (see Table 4.4),

so there are 3 · 13 · 13 = 507 combinations.

In the following, we �rst detail the heuristics used to derive the set of solutions, that is, to prune

the set of combinations of those that cannot ensure that the safety constraint will not be violated. In

the second part, we detail how the remaining solutions can be evaluated and compared.

5.1.1 Deriving the set of solutions

This section explains how the set of combinations of a scenario can be pruned of the combinations

that contain contracts that entities cannot obey. A similar problem has been studied in the MAS

community, in the form of the correctness of commitment protocols (Yolum 2005). Commitments,

however, can be revoked. Adapting the result of (Yolum 2005) to contracts (i.e., removing the possi-

bility for either entities bound by a contract to revoke it), leads to the result that for a contract to

be a solution, at every step in its execution, entities that have a commitment (i.e., are responsible)

must be able to either ful�ll it or transfer it. This intuitive result is used in the following. First, two

cases where the behaviour of entities is constrained are identi�ed, and then, for each of these cases,

the constraints on entities are identi�ed. Finally, a process that allows the assessment of the contracts

that entities cannot ful�l is presented.

78

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Communication

Su�cient Not su�cient

State
Compatible No need to adapt Sender if direct communication is

used, receiver if indirect.
Not compatible Entities that are responsible Sender if direct communication is

used, receiver if indirect.

Table 5.1: Summary of which entities have their behaviour constrained when the communication is
su�cient, or not and when the behaviour of entities is compatible or not.

5.1.1.1 Two cases where entities' behaviour is constrained

To ensure that a safety constraint will be respected, responsible entities need to ensure that their state

remains compatible with that of other entities, by either adapting their behaviour or transferring their

responsibility if possible. Consider the example of an emergency-vehicle warning system, where the

safety constraint is that emergency vehicles should not crash into ordinary vehicles. If emergency

vehicles are responsible and use a contract with transfer, emergency vehicles can either adapt their

behaviour, i.e., remain stopped or they need to ensure that they warn other vehicles before they arrive,

by sending them messages, hence transferring responsibility.

When communication is degraded, however, responsibility cannot be transferred. For this reason,

when a contract with transfer is used, the behaviour of entities noti�ed of communication degradations

is constrained because they have to ensure that the safety constraint is respected. Depending on the

communication means used, either entities that transfer their responsibility or others are noti�ed of

communication degradations and have to adapt their behaviour. If emergency vehicles, for example,

use a contract with transfer via direct communication, every emergency vehicle will be noti�ed when

the area in which its messages are delivered decreases, and will need to adapt its behaviour by slowing

down in these cases. If, however, emergency vehicles use a contract with transfer via indirect commu-

nication, each ordinary vehicle will be warned when its indirect communication coverage decreases,

and will have to ensure that the safety constraints are respected by adapting its behaviour (i.e., getting

o� the road).

To summarise, there are two possible cases where the behaviour of entities is constrained: when

they are responsible, and their state might become incompatible with that of other entities, and when

they are noti�ed that communication is degraded. Note that these two cases are not exclusive: an

emergency vehicle might be noti�ed that the area in which it sent messages is not wide enough and

therefore slow down, while, at the same time an ordinary vehicle might have received one of these

messages and hence has become responsible and will get out of the way. As both entities will react

by entering a fail-safe mode, however, the safety constraints will still be ensured. This discussion is

summarised in Table 5.1.

79

5.1. Designing a solution

5.1.1.2 Obeying the constraint for states to remain compatible

The behaviour of responsible entities is constrained because they need to ensure that their state

remains compatible with that of other entities. In addition, their behaviour is constrained by the

coordination primitives allowed by the contracts to which they obey. In particular, if the only coor-

dination primitives that an entity can use are Adapt and Delay, then entities need to have a fail-safe

mode that they can be in when the safety constraints may be violated.

This is the case of responsible entities in a contract without transfer, of other entities in a contract

with transfer without feedback, and of responsible entities in a contract with feedback (see Table 4.3

on page 71). This is summarised in the second column of Table 5.2.

5.1.1.3 Obeying the constraint to ensure safety when communication is degraded

In case of degraded communication, entities that might transfer their responsibility via direct com-

munication need to adapt their behaviour. This is the case of responsible entities in the contracts Td,

TdFd, TdFi, TdFdi, and other entities in the contracts TdFd, TiFd, and TdiFd. Similarly, in case of

degraded indirect communication, entities that can receive a transfer of responsibility are noti�ed and

need to adapt. This is the case of other entities in the contracts Ti, Tdi, TiFd, TiFi, TiFdi, TdiFd,

TdiFi, TdiFdi (remember that contracts using both communication means rely on indirect communi-

cation, and use direct communication as an optimisation, as discussed in 4.4.1.5), and of responsible

entities in the contracts TdFi, TdFdi, TiFi, TiFdi, TdiFi, TdiFdi. These results are summarised in the

third column of Table 5.2.

5.1.1.4 Using the constraints to derive the solutions

Because entities can be surrounded by many other entities, and can receive several transfers at the

same time, to be able to cater for the worst case, entities who need to adapt their behaviour need to be

able to switch to a fail-safe mode within the contract parameter twarning, so in particular, this requires

them to have a fail-safe mode in the �rst place. Therefore, contracts impose that some entities have

fail-safe modes. Whether responsible entities and other entities need to have fail-safe modes depends

on the contract type used; this is summarised in the fourth and �fth columns of Table 5.2 respectively.

The fact that some contract types impose that some entities have fail-safe modes can be used

to detect which combinations contain contracts that cannot be obeyed. The combinations that use

contracts that would require fail-safe modes for entities that do not have any are therefore not solutions

of the scenario, and can be pruned of the set of all possible combinations. If the combination set is

empty at this stage, then the scenario is not solvable. Otherwise, it is solvable, and all remaining

combinations are solutions of the scenario, because the safety constraint will be guaranteed, as entities

have fail-safe modes in which they can be when their state might become incompatible with that of

other entities, and they will be required to be able to transition back to one of these fail-safe modes

within twarning whenever they are in a non fail-safe mode.

80

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Entity type that has to adapt Need a fail-safe
mode

When behaviour
not compatible

When not enough
information

Responsible Other

Contract without
transfer

Responsible
entity

Responsible
entity

X

Contracts with transfer

Td Other entity Responsible
entity

X X

Ti Other entity Other entity X
Tdi Other entity Other entity X

Contracts with feedback

TdFd Responsible
entity

Both X X

TdFi Responsible
entity

Responsible
entity

X

TdFdi Responsible
entity

Responsible
entity

X

TiFd Responsible
entity

Other entity X X

TiFi Responsible
entity

Both X X

TiFdi Responsible
entity

Both X X

TdiFd Responsible
entity

Other entity X X

TdiFi Responsible
entity

Both X X

TdiFdi Responsible
entity

Both X X

Table 5.2: Entities that need to adapt and have fail-safe modes for the di�erent contract types. A X
means that entities of the type described by the column need to have a fail-safe mode to which they
can transition within twarning.

81

5.1. Designing a solution

5.1.1.5 Example

Consider the example of a tra�c light at a road crossing, where the safety constraint is that no car

should pass if the light in its direction is red. The behaviours of tra�c lights can be modelled with the

modes green_in_direction_1 (where the tra�c light is red in direction 2), green_in_direction_2

(where the light is red in direction 1), as well as switching_to_green_in_direction1 and switching

_to_green_in_direction2, that correspond to the colour changes. The behaviour of cars can be

modelled with the modes stopped, travelling and stopping. The mode stopped of cars is a fail-

safe mode, as it is su�cient for cars to remain stopped to ensure that the safety constraint is not

violated. The tra�c light, however, has no fail-safe modes as the safety constraints can be violated

when it is in either of the modes.

A combination for this scenario corresponds to a responsible entity type, and one contract type. As

this scenario contains two entities types and that there are 13 possible contract types (see Table 4.4),

the set of combinations for this scenario contains 26 combinations. As tra�c lights do not have a

fail-safe mode, however, they can only obey the contracts that do not require a fail-safe mode. So,

the only combinations remaining are:

• 〈car, contract without transfer with tra�c lights〉,

• 〈car, contract TdFi with tra�c lights〉,

• 〈car, contract TdFdi with tra�c lights〉,

• 〈tra�c light, contract Ti with cars〉,

• 〈tra�c light, contract Tdi with cars〉,

these are the solutions for this scenario.

5.1.2 Evaluating the set of solutions

Using the heuristics detailed in the previous section, the set of possible solutions is derived. This

is the set of all combinations that ensure that the safety constraints will not be violated. However,

these solutions do not guarantee that entities will ever make any progress towards their goal. In this

section, we show how to identify solutions in which entities will never be able to make progress, and

discuss the criteria to evaluate and compare other solutions.

Note that we are interested in scenarios where entities need to enter non fail-safe modes in order

to reach their goal. Otherwise, an entity can always remain in one of its fail-safe modes, and so the

solution to guaranteeing the safety constraint is trivial.

82

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

5.1.2.1 In�uence of the predictability of the state variables used in the safety constraint

A safety constraint is a condition on the state variables of elements. To predict whether a safety

constraint will be violated, an entity needs to be able to predict the evolution of at least some of the

state variables used in the safety constraint over time and also over distance if any of the elements

is mobile. As explained in 4.2.6, we can assume that the safety constraint is a conjunction of basic

incompatibilities.

For entities to have a fail-safe mode, they need to be able to ensure that the safety constraint

will not be violated, and therefore they need to have control over, i.e., be able to in�uence the value

of, at least one of the state variables mentioned in the safety constraint. However, as pointed above,

for the scenario to be non-trivial, entities must need to switch to a non fail-safe mode to reach their

goal. To ensure safety while being in a non fail-safe mode, responsible entities need to be able to

make predictions about the evolutions of at least some of the state variables mentioned in the safety

constraint that it cannot control.

Being able to make predictions about the evolution of a state variable requires that the entity

either controls the variable, has a priori information, or has a contract with the entity that controls

it to ensure that it will issue a warning before changing its value (and not change unless it knows the

warning was received if the warning is via direct communication). If we consider the example of a

pedestrian tra�c light, where the safety constraint is that cars should not drive through a red light,

if the light can turn from green to red at any time, cars cannot safely move (and therefore, cannot

safely make any progress towards their destination). If however, cars know the timing of the tra�c

light sequence, they can deduce the future state of the light from previous observations. Alternatively,

cars can also progress safely if they have a contract with tra�c lights in which they will be warned in

advance of the light turning to red (typically, by the tra�c light turning to amber).

This criterion therefore states that for an entity to make progress, it needs to have a priori or

real-time information su�cient for it to know that over some time, a basic incompatibility will not be

violated. In particular, as entities do not communicate in a contract without transfer, this means that

an entity cannot make progress using such a contract, unless it can predict at least some of the variables

mentioned in the safety constraints that it does not control. This allows some of the solutions to be

discarded, because they will not allow entities to make progress. For example, in the pedestrian tra�c

light scenario introduced earlier, the combination: 〈car responsible, contract without transfer with

tra�c lights〉 is a solution of the scenario (because stopped cars will not violate the safety constraint,

and therefore they can ensure the safety constraint), but, unless cars have a priori information about

the light, e.g., that the light will be green every even minute, this combination will not allow cars to

make progress toward their goal, and can therefore be discarded.

83

5.1. Designing a solution

5.1.2.2 In�uence of the priority list

The choice of contract also in�uences which entities will be able to make progress, both when there is

enough and when there is not enough information.

In a contract without transfer, if the communication is good, responsible entities can make progress

only when they know that the behaviour of other entities is, and will remain, compatible with theirs,

therefore their progress is constrained. If the communication is degraded, the progress of responsible

entities is very constrained as they may not know anything about the behaviour of other entities and

must therefore remain in a fail-safe mode. The progress of other entities in a contract without transfer,

however, is unconstrained, as they never have to adapt their behaviour.

In a contract with transfer, when the communication is good, other entities should adapt their

behaviour when they receive a transfer, therefore their behaviour is constrained. The behaviour of

responsible entities is intermittently constrained, as they need to warn other entities of incompatibil-

ities, and therefore delay some mode changes until other entities have been warned. If the transfer is

via direct communication (contract Td), when communication is degraded, the progress of responsible

entities is very constrained as they may not know anything about the behaviour of other entities and

must therefore remain in a fail-safe mode. The progress of other entities in this case is unconstrained,

as they will never receive a transfer, and will never need to adapt. If the transfer is via indirect com-

munication (as in contracts Ti and Tdi, since in the Tdi contract, direct communication is used only

as an optimisation, as explained in 4.4.1.5), other entities must adapt their behaviour when communi-

cation is degraded, so their behaviour is very constrained, while the behaviour of responsible entities

is still intermittently constrained, as they behave in the same way as if there is good communication.

Achievable results for the contract without transfer and contracts with transfer without feedback

are depicted in Table 5.3.

For contracts with feedback, because it is expected that feedback will be used only a small pro-

portion of the times that responsibility is transferred (see Section 5.2.4), the achievable progress is

the same as for a contract without feedback using the same communication means for transfer, except

that the progress of responsible entities is slightly degraded because they have to react to possible

feedback.

The priority list can be used to derive the relative importance of the progress of di�erent entity

types when communication is su�cient. This criteria can be used to rank the di�erent solutions.

The desired behaviour might be di�erent when communication is de�cient, however, and therefore

developers must also specify what the priority is in this case, and decide what weight to give to each

criterion.

5.1.2.3 Other criteria

In addition to the progress criteria (both when communication is su�cient, and when it is not), other

parameters can be used to evaluate the di�erent solutions: the required equipment, as well as the

84

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Entity type that has to adapt Progress

When
behaviour not
compatible

When not
enough
information

When enough
information

When not
enough
information

Contract
without
transfer

Responsible
entity

Responsible
entity

R: FF
O: FFFF

R: F
O: FFFF

Contracts with
transfer

Td Other entity Responsible
entity

R: FFF
O: F

R: F
O: FFFF

Ti Other entity Other entity R: FFF
O: FF

R: FFF
O: F

Tdi Other entity Other entity R: FFF
O: FF

R: FFF
O: F

Table 5.3: Results achieved by contracts without transfer and with transfer without feedback. R
stands for responsible entity, and O for other entity. The following rating is used to qualify the
entities' progress: F very constrained, FF constrained, FFF intermittently constrained, FFFF
unconstrained.

likelihood that requirements for entering non fail-safe modes, and therefore making progress, will

be met. While the latter criteria depends on the implementation, it can be noted that, all other

things being equal, the requirements for contracts without transfer are more likely to be met than

requirements for contracts with transfer, which are themselves more likely to be met than requirements

for contracts with transfer with feedback. This is due to the fact that the more communication that

is required, the longer in advance entities must be warned. This observation can be used to evaluate

the a priori feasibility of the requirements.

5.1.3 Conclusion

We have shown in this section how some solutions can be dismissed and others be evaluated. The spe-

ci�c ranking of solutions depends on the weight that model users give to the di�erent criteria: priority

lists for when communication is good and for when it is degraded, required equipment, and likelihood

of progress. The general process of �nding the set of solutions and ranking them is summarised in

Figure 5.2.

5.2 Deriving the requirements

In this section, we �rst present the general approach taken to ensure that the safety constraint is not

violated, in Section 5.2.1. Requirements on entities' behaviour depend on the type of contract used;

we cater for each contract type successively in Section 5.2.2, Section 5.2.3 and Section 5.2.4.

85

5.2. Deriving the requirements

Figure 5.2: Summary of the solution design process.

5.2.1 General approach

A safety constraint is violated when the states of some elements are not compatible. By de�nition

of the safety zones, and provided that there is a partition of responsible entities, so that at least one

of them is responsible for every possible incompatibility that can arise, this will only happen when

some element is in the safety zone of a responsible entity. Figure 5.3 shows an entity eO entering the

safety zone SZ(eR, eO) of a responsible entity of type eR, while another entity e′O is already in the

safety zone with eR. The entity eR must avoid that the states of itself, eO and e′O violate the safety

constraint.

The safety constraint can be violated only if at least one element eO is in the safety zone SZ(eR, eO),

while in a mode that is not compatible with the modes of other elements that are in the safety zones

of eR. This can be caused by either eO entering the safety zone of eR while being in a mode that is

not compatible with the mode of eR, or some entity in the safety zones of eR changing mode while eO

is in the safety zone of eR. (Note that when we say that eO enters the safety zone of eR, it does not

imply that eO moves, merely that it moves relatively to eR, for example because eR moves.)

A fault tree illustrating this reasoning is depicted in Figure 5.4. This shows that it is su�cient

to ensure that the event B1 will not occur to ensure that the safety constraint will not be violated.

This illustrates that instead of avoiding the states of elements becoming incompatible, the approach

taken here is to ensure that the modes of elements are always compatible when any of them is in the

safety zone of the other. Reasoning about mode compatibility instead of state compatibility allows to

86

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Figure 5.3: A responsible entity and some of its safety zones.

Figure 5.4: Fault-tree for a violation of the safety constraint.

87

5.2. Deriving the requirements

Figure 5.5: Fault-tree for a violation of the safety constraint for a contract without transfer.

anticipate when a safety constraint might be violated, and to prevent it.

The event B1 will not occur unless C1 and either D1 or D2 occur. The following subsections show

how it can be ensured that C1 and either D1 or D2 will not occur, for each of the di�erent contract

types.

5.2.2 Contract without transfer

A contract without transfer can be applied between two entity types (or entities of same type in

di�erent roles) or an entity type and an element type. In the case of a contract without transfer, only

the responsible entity will act to avoid incompatibilities. It has to ensure that it adapts its behaviour

so that no other entity enters its safety zone or that when they do, the modes of all entities in its

safety zones are compatible. This can be achieved by using both a priori known information and

information obtained in real-time, by messages and sensors.

A responsible entity eR using a contract without transfer needs to ensure at any time that the safety

constraint will not be violated. As explained in the previous section, and summarised on Figure 5.5, ,

it is su�cient for eR to be in a fail-safe mode for this purpose. If eR is not in a fail-safe mode, however,

it needs to ensure that neither event D1 nor event D2 occur. To prevent D1 from occurring, eR needs

to be able to be made aware of incoming elements early enough to be able to react to them. In the

worst case, the reaction to an incoming entity is to revert to a fail-safe mode. Therefore, eR needs to

know about any elements in a zone of size

CZ(mR) = SZ + R_reaction(mR) · vmax(mR) , (5.1)

where mR is the mode of the responsible entity eR, R_reaction(mR) is the maximum time necessary

for eR in mode mR to revert to a fail-safe mode, and vmax(mR) the maximum (relative) speed at

which elements might approach eR when it is in mode mR. According to our sensor and indirect

communication model (described in Chapter 3), it might take up to present for eR to be able to start

sensing, and then up to period to actually sense, and latency to receive the data, so this requires that

88

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

eR be able to sense an incoming element on a zone

CC(mR) = CZ(mR) + (present + period + latency) · vmax(mR) . (5.2)

Furthermore, to ensure that D2 does not occur, the requirements on the behaviour of eR are that,

when it senses an element eO arriving, it needs to ensure that it will be in a mode that is compatible

with that of eO before eO enters its safety zone. Lets call τ(eO) the set of modes that eO can be in

while in the safety zone of eR. In the case where eR knows only of the presence of eO, eO can be in

any mode, so τ(eO) = MO, where MO is the set of modes of element eO; this means that eR needs to

revert to a fail-safe mode. If, however, eR has information about the modes that eO is in and might

transition to, then τ(eO) is a subset of MO. In this case, eR must ensure that it is in a mode that is

compatible with the modes of all the elements that are within its safety zone, as well as all those to

which they can transition while being there. This can be expressed as eR must ensure, at any time,

that its mode mRveri�es mRCm{τ(eO), eO inCZ(eR, eO)}.

A responsible entity can use both a priori and real-time information to derive the content of the

set τ(eO). In particular, if its knows that the modes of entities of the type of eOvary according to

an a priori-known pattern this can be exploited to deduce what modes eO can be in while it is in its

safety zone. Similarly, mode invariants, and in particular invariants that express that the variations

of some state variables are bounded, allow to make predictions about the future modes that entities

can be in.

While non responsible elements do not have to do anything to prevent an incompatibility, there are

still requirements on their behaviour in the form of a bounded moving speed. Given these parameters,

the responsible entity can derive the amount of information required to be in a given mode, i.e, the

zone it needs to be able to sense.

5.2.3 Contracts without feedback

In the case of a contract with transfer without feedback, the responsible entity needs to warn other

entities, at intensity iwarning, at least twarning in advance when an incompatibility could happen, i.e., the

safety constraint will be violated. For this purpose, it can use either direct or indirect communication.

In either case, it needs to ensure that the message will be received in an area that is wide enough

so that entities will be warned twarning before the incompatibility can happen (or ensure that no

incompatibility can happen).

An incompatibility can happen when an entity enters the safety zone of a responsible entity, or

when, once an entity is in the safety zone of a responsible entity, either of the entities in the safety

zones of the responsible entity changes its mode. Therefore, as illustrated in Figure 5.6, to ensure

that the safety constraints will not be violated, the following constraints must be met:

C1 Entering a non-fail-safe mode: when a responsible entity intends to enter a non fail-safe mode,

it must warn entities, at intensity iwarning, at least twarning in advance, because an incompati-

89

5.2. Deriving the requirements

Figure 5.6: Fault-tree for a violation of the safety constraint for a contract without feedback.

90

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Constraint Name Entity a�ected

C1 Entering a non-fail-safe mode Responsible entity
F1 Being in a non-fail-safe mode Responsible entity
F2 Communication degradation Entities receiving feedback about communication
E2 Reacting to a transfer Other entity

Table 5.4: Constraints for a contract without feedback.

bility can happen when it enters that mode. This implies warning entities that will enter the

consistency zone, but also the ones within the safety zones.

F1 Being in a non-fail-safe mode: when the responsible entity is not in a fail-safe mode, it must

warn other entities, at intensity iwarning, at least twarning before they enter the safety zones,

F2 Communication degradation: when the entities cannot communicate, at least one of them will

be noti�ed (the entity sending a message in the case of direct communication, the entity sensing

in case of indirect communication). An entity receiving feedback that communication is not

su�cient must ensure that its mode is compatible with those of entities that might enter its

safety zones.

E2 Reacting to a transfer: other entities need to be able to react to a transfer, at intensity iwarning,

from a responsible entity about a possible incompatibility, within twarning, so that the incom-

patibility cannot happen.

The constraints are summarised in Table 5.5. In the following we identify the requirements implied

by these constraints depending on the communication means used for the transfer of responsibility:

direct communication, indirect communication, or both.

5.2.3.1 Transfer via direct communication

Constraint F1: Being in a non-fail-safe mode To ensure F1, incoming entities of some type eO

must know of the responsible entity early enough to have time to adapt their behaviour. This implies

that they must know of the responsible entity eR before entering its consistency zone of size:

CZ(mR) ≥ SZ + twarning · vmax(mR) , (5.3)

where mR is the mode of the responsible entity, SZ the safety zone of the responsible entity eR and

incoming entities of type eO, twarning is the parameter de�ned in the contract between entities of types

eR and eO, and vmax(mR) the maximum (relative) speed at which entities of type eO might approach

an entity of type eR that is in mode mR.

If the responsible entity uses direct communication, it needs to send messages at intensity iwarning,

in a zone CC(mR) around itself wide enough to allow any incoming entity to receive them before

entering the consistency zone. If an entity eO enters the critical coverage of a responsible entity eO at

91

5.2. Deriving the requirements

Figure 5.7: Time line for reaction to a message reception.

time t0, it will become present at time t1 = t0 + present. In the worst case, the entity eO will have to

wait for the time period before it receives a message from eR. Only then (at time t2 = t1 + period) it

will have a consistent view of eR. Entity eO should still be outside of the consistency zone at t2, so

that it has time to react to the message before entering the safety zone. As illustrated on Figure 5.7,

this requires:

CC(mR) ≥ (present + period) · vmax(mR) + CZ(mR), (5.4)

where present is the time required for an entity to become present, once in the coverage, and period

is the period at which messages are sent.

Constraint F2: Communication degradation Constraint F2 states that, when the communi-

cation is degraded, the entity being noti�ed must ensure that its mode is compatible with the ones

of entities that might enter its safety zone. In the case of direct communication, it is the responsible

entity who will receive feedback. This implies that a responsible entity must have time to revert to a

fail-safe mode if one of its messages is not delivered in the critical coverage.

If an adaptation occurs before delivery of a message, this message might not be delivered to the

entire critical coverage. It will take up to adaptNotif for entity eR to be noti�ed of the adaptation.

In the case where the coverage is not big enough, the responsible entity must have time to switch

to another mode m′
R whose critical coverage CC(m′

R) is covered before the incoming entity enters

CC(m′
R). So to cater for the worst case which would be an adaptation occurring just at the message

delivery time (t2 as de�ned above, see Figure 5.8), the following is required:

CC(mR) ≥
(
present + period + adaptNotif + R_reaction(mR)

)
· vmax(mR) + CC(m′

R) , (5.5)

where adaptNotif is the maximum bound on the time for the producer to be noti�ed of an adaptation

of the critical coverage, and m′
R is the mode, among all modes to which the responsible entity might

switch from mR when CC(mR) is not covered, whose critical coverage is the largest (to ensure that

it can switch to either of them).

92

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Figure 5.8: Time line for reaction to an adaptation.

Constraint C1: Entering a non-fail-safe mode When a responsible entity enters a non fail-safe

mode, it needs to warn other entities at least a prede�ned time ∆ in advance. This delay must ensure

that all incoming entities will have been informed of the planned mode switch (this takes msgLatency),

and after that, that entities still have twarning to react. This implies:

∆ ≥ msgLatency + twarning . (5.6)

The responsible entity must also ensure that after its message has been delivered, it will have time to

be noti�ed of the proximity on which it was delivered (this duration is bounded by adaptNotif), to

cancel its mode switch if the delivery zone is not big enough. This requires:

∆ ≥ msgLatency + adaptNotif . (5.7)

So, the value of ∆ can be derived:

∆ = msgLatency +max(twarning, adaptNotif). (5.8)

Constraint E2: Reacting to a transfer To ensure that an entity will have time to react to a

warning within twarning, it needs to ensure that it can, within twarning, either switch to a mode that is

compatible with the modes of all elements in the safety zone of the entity that has sent the message

(using both a priori information and information potentially included in the transfer), or avoid entering

the safety zone, or leave it if it was inside it. So there must be an upper bound O_reaction(mR) to

the time required to perform either of these actions, and we need twarning ≥ O_reaction(mR).

Requirements summary From Equations 5.4 and 5.5, we can deduce:

CC(mR) ≥ (present + period) · vmax(mR) +max
(
CZ(mR),(

adaptNotif + R_reaction(mR)
)
· vmax(mR) + CC(m′

R)
)

. (5.9)

93

5.2. Deriving the requirements

Alternatively, using the formula for the size of the consistency zone CZ from Equation 5.3, this can

be expressed as:

CC(mR) ≥ (present + period) · vmax(mR) +max
(
SZ + twarning · vmax(mR),(

adaptNotif + R_reaction(mR)
)
· vmax(mR) + CC(m′

R)
)

. (5.10)

The minimum requirements on entities obeying a contract with transfer via direct communication

can therefore be summarised as follows:

The responsible entity must:

• send messages at intensity iwarning within a critical coverage of size

CC(mR) = (present + period) · vmax(mR) +max
(
SZ + twarning · vmax(mR),(

adaptNotif + R_reaction(mR)
)
· vmax(mR) + CC(m′

R)
)

(5.11)

when it intends to enter or is in a non fail-safe mode mR;

• warn entities at least

∆ = msgLatency +max(twarning, adaptNotif) (5.12)

in advance before entering a non fail-safe mode;

• enter a fail-safe mode within R_reaction(mR) after having been noti�ed of an adaptation.

Other entities must:

• upon reception of a warning message at intensity iwarning, enter a mode that is compatible with

the modes of all elements in the safety zone of the entity that has sent the message, or ensure not

to enter its safety zone or leave it, within O_reaction(mR), with O_reaction(mR) ≤ twarning.

5.2.3.2 Transfer via indirect communication

Constraint F1: Being in a non-fail-safe mode To ensure constraint C1 when it is in mode mR,

a responsible entity must continuously signal at an intensity isignalling (mR), such that over the zone

CZ(mR) = SZ + twarning · vmax(mR), the intensity of the signal is at least iwarning (where vmax(mR)

is the maximum relative speed at which the responsible entity can approach other entities when it is

in mode mR).

Constraint E2 : Reacting to a transfer To ensure that it will have time to react to a warning

before an incompatibility can happen, a sensing entity must ensure that its sensing coverage is big

enough. Consider the case where an entity eR enters the sensing coverage of an entity eO at time t0.

In the worst case, sensing will not be initiated until after eR has spent a period within the sensing

94

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Figure 5.9: Time line for reaction to a message reception in the worst case.

range i.e., at t1 = t0 + period. Then, it will take present before the entity eR is actually sensed at

t2 = t1 + present. Eventually, eO will receive the sensed data at t3 = t2 + latency. As illustrated

on Figure 5.9 , this requires that the sensing entity eO in a mode mO can sense a signal of intensity

iwarning in a zone of size CC(mO) that ful�ls the condition:

CC(mO) ≥ (present + period + latency) · vmax(mO), (5.13)

where present is the time required for an entity to become present, once in the coverage. As it knows

that it will be warned at least twarning in advance, entity e1 must ensure that within this warning

time, it will have time to react. Therefore eO must be able to change its mode so that it is compatible,

or leave or not enter the safety zone within twarning.

Constraint F2: Communication degradation In the case of indirect communication, sensing

entities are noti�ed of the degradation of communication conditions. This implies that when the

sensing coverage required for a mode is not covered, they need to have time to revert to a mode whose

sensing coverage is covered before any responsible entity might enter that coverage. It will take up

to adaptNotif for entity eO to be noti�ed of the adaptation. In the case where the sensing range

is not big enough, eO must have time to switch to another mode m′
O whose sensing range CC(m′

O)

is covered before the incoming entity enters it. So to cater for the worst case which would be an

adaptation occurring just at the sensing time (t2 as de�ned above, see Figure 5.10), the following is

required:

CC(mO) ≥
(
present + period + adaptNotif + O_reaction(mO)

)
· vmax(mO) + CC(m′

O) , (5.14)

where adaptNotif is the maximum bound on the time for eO to be noti�ed of an adaptation of the

sensing coverage, m′
O is the mode, among all modes to which the sensing entity might switch to from

mO when CC(mO) is not covered, whose critical coverage is the largest; and O_reaction(mO) the

time required by entity eO to switch from mO to m′
O.

Constraint C1: Entering a non-fail-safe mode When a responsible entity enters a non fail-safe

mode, it needs to warn other entities at least a prede�ned ∆ in advance. This delay must ensure that

95

5.2. Deriving the requirements

Figure 5.10: Time line for reaction to an adaptation in the worse case.

all incoming entities have been informed of the planned mode switch (this takes latency for the signal

to be propagated, and then period for the entity to sense it), and after that, that entities still have

twarning to react. This implies:

∆ = latency + period + twarning . (5.15)

An entity sensing the signal can su�er an adaptation of its sensing range In the worst case, the

adaptation can happen just at the sensing time. So the sensing entity needs to have time to be

noti�ed of the adaptation and react to it within twarning.

Requirements summary So, from Equations 5.13 and 5.14, we can deduce a lower bound on the

critical sensing coverage :

CC(mO) ≥ (present + period) · vmax(mO) +max
(
latency · vmax(mO),(

adaptNotif + O_reaction(mO)
)
· vmax(mO) + CC(m′

O)
)

. (5.16)

The minimum requirements on entities obeying a contract with transfer using indirect communi-

cation are therefore as follows:

The responsible entity must:

• continuously signal at an intensity isignalling (mR), such that over the zone

CZ(mR) = SZ + twarning · vmax(mR) , (5.17)

the intensity of the signal is at least iwarning when it intends to enter or is in a non-fail-safe

mode.

• warn entities at least

∆ = latency + period + twarning , (5.18)

in advance before entering a non fail-safe mode.

96

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Other entities must:

• at any time be in a mode mO whose sensing coverage

CC(mO) = (present + period) · vmax(mO) +max
(
latency · vmax(mO),(

adaptNotif + R_reaction(mO)
)
· vmax(mO) + CC(m′

O)
)

, (5.19)

is covered,

• ensure that at any time, they can switch to a mode that is compatible with those of all elements

in the safety zone of the responsible entity or avoid entering, or leave, the safety zone within

twarning.

5.2.3.3 Transfer via either direct or indirect communication

A responsible entity in a contract with transfer without feedback can use both direct and indirect

communication. At any time, it can use either or both means, to ensure that other entities will

be warned of the possible incompatibility. As other entities do not know in general whether the

responsible entity uses indirect communication, they must at any time be able to sense a signal and

react to it. For other entities to know the sensing coverage (c.f. Equation 5.21), they need to know

the maximum speed vmax(mO) at which a responsible entity can approach them by default. The

responsible entity, however, might approach faster when the communication coverage is su�cient to

ensure that other entities are warned.

Therefore sensors can be used to supplement direct communication: when communication is not

su�cient, the responsible entity can revert to a mode for which sensing is su�cient. The requirements

for this contract can thus be deduced from the requirements for the contracts without transfer via

direct and indirect communication derived above: a responsible entity must ensure that either the

(direct communication) coverage covers the critical coverage of the mode it is in, or that it signals

over the consistency zone of this mode; and other entities must be ensure that they are in a mode

whose sensing coverage is covered, and be able to react, at any time, to a warning received by either

direct or indirect communication.

5.2.4 Contracts with feedback

In a contract with feedback, entities that receive a transfer can choose to transfer the responsibility

back to the responsible entity by sending feedback. Therefore, the safety constraint will not be violated

unless the responsible entity is not in a fail-safe mode, and a transfer has not been received, or an

entity has not reacted appropriately to a transfer that it has received. As illustrated on the fault tree

depicted in Figure 5.11, this requires that:

C1 Entering a non-fail-safe mode: when a responsible entity intends to enter a non fail-safe mode, it

must warn entities at intensity iwarning at least twarning in advance, because an incompatibility can

97

5.2. Deriving the requirements

Figure 5.11: Fault-tree for a violation of the safety constraint for a contract with feedback.

98

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

Constraint Name Entity a�ected

C1 Entering a non-fail-safe mode Responsible entity
F1 Being in a non-fail-safe mode Responsible entity
F2 Communication degradation Entities receiving feedback about the means of

communication used for transfer
F3 Reacting to a transfer Other entity
G1 Communication degradation Entities receiving feedback about the means of

communication used for feedback
G2 Reacting to a feedback Responsible entity

Table 5.5: Constraints for a contract with feedback.

happen when it enters that mode. This implies warning entities that will enter the consistency

zone, but also entities already within the safety zone.

F1 Being in a non-fail-safe mode: when the responsible entity is not in a fail-safe mode, it must

warn other entities twarning before they enter the safety zone,

F2 Communication degradation: when the communication means used for transfer degrades, at

least one of the entities in the contract will be noti�ed (the entity sending message in the case

of direct communication, the entity sensing in case of indirect communication). An entity being

noti�ed that communication is not su�cient anymore must ensure that its mode is compatible

with those of entities that might enter its safety zones.

F3 Reacting to a transfer: when an entity receives a warning from a responsible entity about a

possible incompatibility, it should adapt its behaviour within twarning so that the incompatibility

cannot happen, or send feedback within tfeedback − latency.

G1 Communication degradation: same as F2, but for feedback instead of transfer.

G2 Reacting to feedback: when a responsible entity receives feedback, it needs to ensure that the

safety constraint will not be violated by changing mode within twarning − tfeedback.

The constraints are summarised in Table 5.5. Note that constraints C1, F2 and F3 are the same

as for contracts with transfer. Communication degradation constraints (F2 and G1) can impose

constraints on both responsible and other entities because of the two potential exchange of messages

(for transfer and feedback). Therefore, the requirements for entities in a contract TxFy (contract with

transfer via communication means 'x' and feedback via communication means 'y', see Chapter 4) are

the same as for a contract Tx (contract with transfer via communication means 'x', no feedback),

except that:

• Other entities have the choice upon reception of a transfer to either switch to a mode that is

compatible with those of all elements within the safety zones of the entity sending the message

or avoid entering the safety zone, or leave the safety zone if they were inside it, within twarning,

or send a message within tfeedback(constraint F3).

99

5.3. Combining di�erent scenarios

• The communication must be su�cient for the feedback (constraint G1). This implies that if

the feedback is via direct communication, other entities must ensure that their messages are

delivered on a zone of size

CCF (mO) = (present + period) · vmax(mO) +max
(
SZ + twarning · vmax(mO),(

adaptNotif + O_reaction(mO)
)
· vmax(mO) + CC(m′

O)
)

, (5.20)

which corresponds to equation 5.11 with mR = mO and twarning = tfeedback. If the critical

coverage for the feedback is not covered, other entities must enter a fail-safe mode within

O_reaction(mO).

If the feedback is via indirect communication, responsible entities must ensure that they will be

able to sense on a coverage of:

CCF (mO) = (present + period) · vmax(mO) +max
(
latency · vmax(mO),(

adaptNotif + R_reaction(mO)
)
· vmax(mO) + CC(m′

O)
)

. (5.21)

If the critical coverage for the feedback is not covered, the responsible entity must enter a fail-safe

mode.

• The responsible entity must be able to react to feedback, i.e., must at any time when it has sent

messages, be able to, upon reception of feedback, ensure that no incompatibility will happen,

by, within twarning−tfeedback, either switching to a mode that is compatible with the modes of all

elements within its safety zone and all entities that have sent feedback, or change its trajectory

so that no entity that has given feedback will enter its safety zone (constraint G2).

5.3 Combining di�erent scenarios

The previous sections of this chapter have shown how requirements on the behaviour of entities of

a scenario can be derived from a single safety constraint. In this section, we �rst discuss how the

requirements on entity behaviour can be derived for a combination of safety constraints, and we then

show how scenarios can be combined.

5.3.1 Deriving requirements for a combination of safety constraints

The safety constraints of a scenario can be expressed as a condition on the states of the elements in

this scenario. Di�erent constraints can be linked by disjunction, as described in 4.2.3. The set of

requirements on the behaviour of entities imposed by a combination of safety constraints is the union

of the requirements on the behaviour of entities imposed by each safety constraint. In other words, the

set of conditions that must be ful�lled for switching to (respectively remaining in) a mode to ensure

100

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

two safety constraints is the union of the sets of conditions for switching to (respectively remaining

in) this mode for each of the safety constraints.

Because requirements on the behaviour of entities might be contradictory, the requirements im-

posed by the combination of two solutions might not be implementable. In such cases, we say that

the solutions are not compatible. For example, the requirements on a car might be to stop when

approaching a red tra�c light and get out of the way of emergency vehicles, which are incompatible if

the emergency vehicle is approaching a red tra�c light. Other solutions, however, might be compati-

ble. For example, the solution of the emergency vehicle safety constraint where entities use a contract

with feedback might be compatible with the solution of the tra�c light safety constraint.

Assessing whether two solutions are compatible is a challenging problem because whether require-

ments are contradictory depends on the details of the entity behaviour and cannot easily be evaluated.

For example, it is not trivial to systematically deduce that stopping and getting out of the way are not

compatible, unless the semantics of each of the modes are de�ned and in particular the speed invariant

(the speed is null in the stopped mode, and needs to be non null for getting out of the way). This

work does not investigate how to predict whether two solutions are compatible. Note that, however,

if the requirements are on di�erent unrelated actuators, or if the modes for which the requirements

are contradictory cannot be reached (for example because an emergency vehicle will never transfer its

behaviour next to an intersection), then the solutions are compatible.

5.3.2 Deriving requirements for a combination of scenarios

Di�erent scenarios not only have di�erent safety constraints, but also have di�erent elements, or

potentially the same elements described using a di�erent set of modes, because, as explained in

Section 4.2, modes should be chosen with respect to a given safety constraint. The requirements on

the behaviour of the elements that appear in only one of the scenarios remain the same for a combined

scenario as for the scenario in which it appears. For entities de�ned in two scenarios, if their modes

di�er in both solutions, their mode diagrams need to be combined. The modes and the transitions

of the combined diagram are the cross product of the modes and transitions, respectively, of the two

mode diagrams. More formally, if we denote mode diagram by (M, δ) where M is the mode set and

δ : M×M 7→ {0; 1} the transition function, then the cross diagram of the mode diagrams (M1, δ1) and

(M2, δ2) is the mode diagram (MC, δC) where

MC =
{
m1 ×m2, (m1,m2) ∈ M1 ×M2

}
and

∀(ma ×mb,mc ×md) ∈ MC ×MC, δC(ma ×mb,mc ×md) = δ1(ma,mc) ∨ δ2(mb,md) .

Consider for example, the combination of two scenarios: �pedestrian tra�c light� and �overtak-

ing�. Cars are involved in both scenarios, and their modes will typically have been de�ned dif-

101

5.3. Combining di�erent scenarios

Figure 5.12: Example of mode diagram combination.

102

Chapter 5. Using Comhordú to Derive Requirements on Entity Behaviour

ferently in the two scenarios: travelling, stopping, and stopped for the tra�c light scenario,

and cruising and overtaking for the overtaking scenario. The modes of cars in the combined

scenario are: travelling-and-cruising, travelling-and-overtaking, stopping-and-cruising,

stopping-and-overtaking, stopped-and-cruising and stopped-and-overtaking. This

cross-product process is illustrated in Figure 5.12.

Practically, however, semantic enables a number of the cross modes to be discarded. For example,

if it is known to model users that cars do not overtake when approaching a junction, the mode

stopped-and-overtaking, which would express that while a car was overtaking it has stopped to

obey a tra�c light, can be discarded because it will never be reached.

The state variables of an element de�ned in a combined scenario is the union of the set of state

variables in each scenario. So, for example, if the state variables of entities of type car are its speed,

direction and position in the tra�c light scenario; and its speed, position, and its indicator status in

the overtaking scenario, then the state variables for the combined scenario are its speed, direction,

position and indicator status.

The set of invariants of a mode product of two modes is the conjunction of the set of invariants

of each mode. So, for example, if the mode travelling has an invariant that the speed is non-

null, and if the mode overtaking has an invariant expressing that the indicator is on, the mode

travelling-and-overtaking has two invariants: that the speed is non null and that the indicator is

on. Incompatible invariants enable the detection of unreachable product modes. For example, if the

mode stopped has an invariant that the speed is null and the mode overtaking has an invariant that

the speed is non-null, then it can be automatically detected that the mode stopped-and-overtaking

can be discarded because it will never be reached.

The safety constraint of the combined scenario is the conjunction of the safety constraints (or the

disjunction of the incompatibilities, since those are conditions that should not occur). The require-

ments on entities of a combined scenario can be derived as explained in the previous section.

The priority list of the combined scenario must be de�ned by merging and sorting the priority lists

of both scenarios.

5.4 Summary

In this chapter, we have shown how to design a solution using Comhordú, and how the set of solutions

for a given scenario can be derived. In addition, we have discussed how scenarios can be combined.

In the next chapter, we describe a tool that we have designed to support the use of the model and

automate the systematic steps of the development process, such as assessing mode compatibility,

deriving the solution set, and deriving the requirements on entities behaviours.

103

Chapter 6

Design and Implementation of

ComhorMod, a Tool Supporting

Comhordú

This chapter describes the design and implementation of ComhorMod, a modelling tool to support

the use of the Comhordú model. This tool is intended to assist the developers of autonomous mobile

entities by guiding them through the development process outlined in Chapter 5. ComhorMod en-

compasses a graphical user interface that allows developers to specify the application and its safety

constraints graphically. From this speci�cation, ComhorMod automatically generates requirements on

the behaviour of entities to ensure the application's safety constraints. Additionally, ComhorMod gen-

erates skeletons of the implementation of entities that can be completed using existing tools provided

by the mocoa framework (Senart et al. 2006).

This chapter �rst describes the mocoa framework and the associated tool chain. It then presents

the architecture of comhormod and its development steps, as well as the key algorithms used. Finally,

this chapter describes how comhormod can be used in conjunction with the MoCoA tool chain to

generate applications, and highlights possible future work for the extension of the tool.

6.1 The sentient object tool chain

The work described in this thesis forms part of the Aithne project, the goal of which is the devel-

opment of a middleware framework for sentient computing, called MoCoA. This section introduces

existing work from this project, �rst focusing on the abstractions de�ned, and then describing exist-

ing tools from this framework that are of particular interest for this work. The overview presented in

section 6.1.1 is largely adapted from the description presented in (Senart et al. 2006), of which the

author is a co-author.

104

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Sensor Actuator

Object
Sentient Sentient

Object

Sensor

Sentient Object

Indirect Communication

Infrastructure
Event

Figure 6.1: A sentient object.

6.1.1 MoCoA

MoCoA (Senart et al. 2006) is a customisable middleware for context-aware mobile applications.

It supports a small set of programming abstractions that are suitable for building a wide range of

context-aware applications for deployment in a �xed or (ad hoc) mobile environment. For each of these

abstractions, MoCoA provides a set of implementations via a library of components, hence allowing

easy development and reuse. The abstractions are reviewed in the following sections.

6.1.1.1 Sentient objects, sensors and actuators

In the MoCoA framework, applications are structured using the sentient object abstraction (Verissimo

et al. 2002, Biegel & Cahill 2004). Sentient objects are mobile intelligent entities, that extract, interpret

and use context information obtained from sensors, other sentient objects, and their computational

infrastructure, to drive their behaviour. The granularity of a sentient object is not constrained: a

robot, a component of a robot, or a tra�c light controller are all potential examples of sentient objects.

In this model, a sensor is de�ned as an entity that produces software events in reaction to a real-

world stimulus and is an abstraction of some physical device. To act upon their environment, sentient

objects use actuators. An actuator is any component that consumes software events and reacts by

attempting to change the state of the real-world via some physical device. To facilitate mobility

as well as loose coupling between dynamically varying collections of anonymous mobile devices, a

sentient object is both a producer and a consumer of asynchronous events. As explained above and

illustrated in Figure 6.1, a sentient object can also receive events from its infrastructure. Notice also

that sentient objects may communicate with each other both directly by means of events or indirectly

via the environment.

The behaviour of all sentient objects follows a speci�c pattern. First, a sentient object may receive

input from a variety of sources (sensors, sentient objects and infrastructure) that needs to be integrated

before being used in determining the overall context of the sentient object. As an example, some of the

robots used in the Aithne project are equipped with ultrasonic, orientation, and location sensors. The

outputs of these sensors are fused together with input from nearby tra�c lights in order to determine

105

6.1. The sentient object tool chain

the robots' context with respect to obstacles, tra�c lights, and their destinations.

Context recognition determines the current context based on fused data and past history. For

example, that someone has left their bed is inferred from historical information that someone was in

the bed and new sensor input indicating that they are no longer present.

Sentient objects are then expected to change their behaviour or act upon their environment based

on some rules. This implies some form of intelligent reasoning captured in an inference component.

Rules may be prede�ned or learnt over time.

6.1.1.2 Events, event channels and proximities

In MoCoA, sentient objects communicate using events. Proximities and event channels are used to

tackle challenges arising in large-scale and geographically dispersed applications in which large volumes

of events are raised.

MoCoA adopts the approach of the space-elastic model (presented in Chapter 3) for communication

between sentient objects: events are sent to an area rather than to speci�c consumers. Therefore,

MoCoA supports proximity �ltering in addition to typical subject- and content-based �ltering.

Event channels are de�ned to specify constraints on propagation and delivery of asynchronous

events within a proximity. An event channel is speci�c to an event type and allows a producer to

de�ne the real-time guarantees that have to be maintained within a given geographical area.

To support event-based communication with event channels and proximities, the MoCoA frame-

work uses di�erent instantiations of the steam event service (Meier & Cahill 2003): steam for use

in wireless ad hoc networks, and rt-steam for soft and hard real-time in ad hoc environments.

In steam, proximities can be circular or hull-shaped. The set of �lters available depends on the

type of event parameters. For example, if the parameter is a location, the following �lters can be

used: distanceIncreases, distanceDecreases, withinRange, and beyondRange. Parameter types

include location, time, integer, double and string.

6.1.1.3 Readings and facts

Sensor fusion is used to manage the uncertainty of data captured from the real world and to derive

higher-level context information. In MoCoA, the fusion process relies on a set of pipelines, with each

pipeline being composed of a combination of generic and sharable components (c.f. Figure 6.2). Input

events in a pipeline are processed through di�erent stages.

First, a pipeline extracts readings (i.e., raw values produced by a sensor, a sentient object, or the

local infrastructure) from events. Then, a sequence of transformations is applied to the readings by

the components present in the pipeline. The �nal result is a piece of higher-level information, in the

form of one or more observed facts.

A pipeline may be composed of di�erent components: handler, smoothing, bu�er, and fusion.

MoCoA provides a set of implementations of these components, e.g., fusion can perform a sum, an

106

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Figure 6.2: Example of two pipelines.

Figure 6.3: The mocoa architecture.

average function or might rely on a Bayesian network.

6.1.1.4 Contexts

Context is de�ned as any information currently available in the environment that can be used to

characterise the situation of an entity (Schmidt et al. 1999), such as its current location, the presence

of other sentient objects in its vicinity or the state of its underlying infrastructure. In MoCoA, the

contexts in which a sentient object can be during its lifetime are organised as a context graph, where

only a subset of contexts can be transitioned to from the current context. Not only are contexts useful

to structure complex applications, contexts are also the basic abstraction for Context-Based Reasoning

(Gonzalez & Ahlers 1998) within a sentient object allowing the set of event channels, pipelines, facts,

rules and actions that are relevant at any time to be �ltered. Only one pipeline is active in a given

context, thereby constraining the set of event channels being used. Because the number of pipelines

is restricted, only some facts may be asserted in this context. Subsequently, as depicted in Figure 6.3,

only a subset of rules needs to be evaluated and the permitted actions are limited.

6.1.1.5 Rules and actions

The knowledge of a sentient object is structured into facts. To ultimately determine the appropriate

behaviour of a sentient object in response to its environment, an inference engine is used to infer

knowledge (i.e., to assert derived facts) from previously asserted facts and to select the actions to be

107

6.1. The sentient object tool chain

taken. The di�erent types of action that an object is able to perform are as follows: fact assertion,

fact retraction, event production, and code execution. The action selection decision within a sentient

object is based on rules.

In MoCoA, a �rst order logic inference engine can be used to reason about a set of facts and

prede�ned rules in order to derive the intelligent behaviour of sentient objects. The rules take the

form of condition/actions. Conditions are expressed in terms of asserted facts and can include

operators, e.g., && , ||, ∃ and ∀.

6.1.2 Mocoa tools

This section describes the tools from the MoCoA framework that supports the development of sentient

objects.

6.1.2.1 Sogen

Sogen provides a Java api that allows sentient objects to be designed using the abstractions described

above, e.g., contexts, rules, events produced and consumed. From this design, sogen automatically

generates an implementation of the sentient object . The components used are chosen and customised

depending on application requirements (e.g., timeliness requirements). An architecture description

language based on xml is used to describe the services provided and required by a component, as well

as the dependencies between components. As each component of the library exhibits its dependencies

with a descriptor, MoCoA can build a customised middleware that �ts the application requirements

using existing components from the library.

The code generation currently provides C++ code, but as it is decoupled from the object design

process, di�erent languages may be easily incorporated without a�ecting the programming paradigm.

The generated code can be targeted either for deployment or to be run within a simulator.

6.1.2.2 Somod

To further assist the construction of sentient objects, MoCoA has been extended with a graphical

interface. This allows sentient objects to be de�ned graphically using the abstractions de�ned above.

Once a sentient object has been designed, its implementation can be automatically generated. See,

for example, Figure 6.4, that shows the contexts of an entity of type car being de�ned with somod.

Additionally, an xml descriptor of a sentient object may be generated so that sentient objects' speci-

�cations may be saved and edited or reused at a later date.

6.1.2.3 Sentient simulator

The sentient simulator is a discrete event simulator that can be used to test the behaviour of sentient

objects. Sensors and actuators are simulated, and in particular movement is emulated. The commu-

nication between sentient objects is also emulated, in accordance to the space-elastic model: sentient

108

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Figure 6.4: Somod screenshot.

objects are able to communicate in real-time within a geographical proximity that varies over time.

The simulator implements this model by delivering messages to sentient objects present, at the time

of delivery, in the actual coverage of an event channel, and varying the actual coverage over time. The

simulator and each sentient object execute as a separate process, communicating via unix sockets. At

every time step, the simulator sends all events whose delivery time it is to the sentient objects that

are in the coverage for these events, and then receives the events produced by the sentient objects and

adds then to the event queue until their delivery time.

6.1.2.4 Sentient viewer

The sentient viewer is a graphical tool that allows the visualisation of trace �les generated by the

sentient simulator. The viewer allows to see the trajectory of sentient objects over time, their state,

as well as the communication between them. Figure 6.5 shows two screenshots of a stretch of road

on which 24 car sentient objects as well as one emergency vehicle sentient object are travelling. The

emergency vehicle sends periodic messages to cars in its vicinity to warn them of its arrival, and is

therefore recognisable by the actual coverage depicted around it. The actual coverage is depicted as

a coloured area while the desired coverage is a circle. The left �gure shows a time where the actual

coverage is equal to the desired coverage, and the picture on the right shows a time where the actual

coverage is lower than the desired coverage. To ease visualisation, the colour of both desired and

actual coverage changes from green to red when the desired coverage is not covered. Notice that some

cars have moved to the left lane as they received a message that the emergency vehicle was arriving.

6.1.2.5 Summary

The work described in this thesis builds on the existing tools provided by the MoCoA middleware.

These tools, whose interaction is pictured in Figure 6.6 , allow the development of intelligent entities

109

6.1. The sentient object tool chain

Figure 6.5: Sentient viewer screenshots.

Figure 6.6: MoCoA tool chain.

110

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Figure 6.7: Comhormod architecture.

called sentient objects, that use sensors and direct communication to get information about their

environment, reason on this information and send commands to actuators and messages to other

sentient objects. Existing tools in the MoCoA tool chain support the development of sentient objects.

These tools, however, are limited to the development of a single sentient object and do not support

the decisions as to how sentient objects should interact and how their behaviour can ensure safety

constraints that span several entities. This is the goal of the work described in this thesis, and the

comhormod tool.

6.2 ComhorMod

ComhorMod (for Comhordú modelling) is a Java tool supporting the development of applications

composed of autonomous mobile entities. Comhormod encompass a graphical user interface (gui), that

guides entity developers through the process of de�ning an application using Comhordú. In addition, a

back-end automates the systematic steps of the process, i.e., mode compatibility derivation, solutions

generation and requirements derivation, and uses the results derived in Chapter 5 to automatically

translate application speci�cations into requirements on entity behaviour.

The ComhorMod gui is organised in seven steps corresponding to the development process. These

steps and their interaction with the back-end are shown in Figure 6.7, and detailed below. While the

steps must be completed in sequence, users can go back to previous steps at any time to vary the

choices that they have already made.

6.2.1 Entity de�nition

The �rst step consists of de�ning each of the entity types in the application. To de�ne an entity type,

its state variables must �rst be de�ned, by specifying a name and a type. ComhorMod supports state

111

6.2. ComhorMod

Operator Syntax Comment

>,<,≥,
≤,=, 6=

<state-variable> <operator> <value> <value> should be of the
same type as the state
variable

constant <state-variable> constant -

Table 6.1: Mode invariant syntax.

State variable type Operators

Double, Integer >,<,≥,≤,=, 6=, constant
Boolean =, 6=, constant
Position =, 6=, constant
Enum =, 6=, constant

Table 6.2: Mode invariants operators.

variables of type Integer, Double, Boolean and Position (pair of Double). In addition, users can de�ne

enumerated types whose values are represented as strings (e.g., type Colour, whose values are "green�,

�amber� and �red�). Secondly, the modes of the entity type must be de�ned, by specifying a name,

and optionally invariants on the state variables of this entity. As de�ned in Chapter 4, invariants are

predicates on state variables and their possible variations that remain true while an element is in a

given mode, and they are used to capture the semantics of the mode, thereby allowing the tool to

reason on them. For example, an invariant that the speed of an entity is null, i.e., speedVar = 0 can be

associated to the mode stopped. The supported mode invariant syntax and operators are de�ned in

Tables 6.1 and 6.2 respectively. Finally, developers are required to de�ne possible transitions between

the modes. These transitions are displayed as a mode diagram, that provides an e�cient means for

developers to visualise the behaviour of the entity that they are currently de�ning. A screenshot of

some of the main screens for the step 1 is shown in Figure 6.8. This �gure shows that an entity of

type car has already been de�ned, and an entity of type emergency vehicle is currently being de�ned.

The emergency vehicle has three state variables: mode, speed, and position, and three modes de�ned:

stopped, acceleratingToV1, and goingAtV1.

6.2.2 Safety constraint speci�cation

The second step of ComhorMod consists of de�ning the safety constraint of the application. The safety

constraint is de�ned as a combination of conditions on state variables that should never be ful�lled,

i.e., incompatibilities. The de�nition of basic incompatibilities of types sov, distance and cardinal, as

de�ned in Chapter 4 is supported. (Note that entities of type sos are not supported in this version,

but could be very similarly to the others.) An incompatibility of each of these types can be de�ned

on any state variable of any entity (except distance, that only applies to variables of type position),

and operators applying to the type of the state variable can be selected (the operators supported are

the same as for invariants, see Table 6.2). In addition, incompatibilities can be combined using ∨ (or)

112

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Figure 6.8: Screenshot of step 1: entity de�nition.

and ∧ (and) operators. All incompatibilities de�ned must be combined into a single incompatibility

before the step 2 can be completed. Figure 6.9 shows the main screens of this step and the di�erent

types of incompatibility that can be de�ned.

6.2.3 Mode compatibility

In step 3, the entity developer is presented with a mode compatibility matrix, showing the compati-

bility between the modes of di�erent types of entities for each entity type pair (the value 'true' in a

square of the matrix means that the corresponding modes of each entity types are compatible). Mode

Figure 6.9: Screenshot of step 2: safety constraint speci�cation.

113

6.2. ComhorMod

Algorithm 1 Mode compatibility evaluation.

assessCompatibility(mode1, mode2, incompatibility)

if incompatibility is of basic type (SOV, cardinal or distance)

return the result of the appropriate assessCompatibility method

else //the incompatibility is composite,

if the incompatibility is of type AND,

return the disjunction of the compatibility of its operands

if the incompatibility is of type OR,

return the conjunction of the compatibility of its operands

Algorithm 2 Mode compatibility evaluation for an incompatibility of type sov.

assessCompatibilitySOV(mode1, mode2, incompatibility)

if the incompatibility SOV refers to entities for which mode1 or mode2 is a mode

for each invariant of this mode

if it applies on the same state variable than the incompatibility

if it allows to assert that the incompatibility will not happen

return true

return false

compatibility is derived using the mode invariants de�ned in step 1, and the safety constraint de�ned

in step 2.

To assess mode compatibility, the safety constraint is decomposed into basic incompatibilities, as

shown in Algorithm 1. Then, each incompatibility is treated depending on its type. Algorithm 2 shows

the example of the assessment of the compatibility of two modes with respect to an incompatibility of

type sov: invariants of the modes are checked to see if they allow to assert that the incompatibility

will not happen. For example, if the incompatibility is speed > 30 and the invariant is speed ≤ 10,

then the modes are compatible. The compatibility of two modes is true if and only if their invariants

are su�cient to ensure that the safety constraint will not be violated.

Figure 6.10 shows a screenshot of step 3, where the compatibility of the modes of entities of types

emergency vehicle and car is displayed. Note that both the mode stopped of the emergency vehicle

and the mode outOfTheWay of the car are compatible with all the modes of the other entity type, and

are therefore fail-safe modes.

Developers can use this step to check that they have speci�ed the applications with enough detail

to ensure that the semantics of the di�erent modes in terms of safety have been captured, and therefore

that entities will be able to make progress while ensuring the safety constraint. In particular, this

requires that at least one of the entity types have at least one fail-safe mode. This is also checked

automatically in the following step.

114

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Figure 6.10: Screenshot of step 3: mode compatibility.

6.2.4 Responsibility attribution and contract choice

In step 4, the tool displays the set of solutions for the scenario. This requires the generation of

all the possible combinations for this scenario. Algorithm 3 describes how these combinations are

generated, by recursively setting the value for the contract types of the n-�rst entities (the variable

combinationBeginning contains the values that have been �xed), and exploring the possible values

for the other entities. Then, the set of all combinations is assessed using the criteria on fail-safe

modes presented in section 5.1.1, to derive the set of solutions, using the mode compatibility matrix

derived in the previous step. Algorithm 4 shows this process: if for example, the combination contains

a contract without feedback, then the algorithm checks that the (initially) responsible entity has a

fail-safe mode, otherwise the combination is discarded.

Users are required to choose a combination amongst the solutions, hence choosing the entity type

that is to be responsible, as well as the contract types to use. In the example shown in Figure 6.11,

all three contract types are available, as both emergency vehicles and cars have fail-safe modes. If no

responsible entity and contract type combination is available, the scenario as currently de�ned is not

solvable. In this case, users should go back to previous steps to change some of the data entered, or

add more data (in particular additional mode invariants allowing the tool to identify that some modes

are compatible).

6.2.5 Requirements on entities behaviour

In step 5, the requirements on entity behaviours are derived, presented to the developer and output

in �les to allow developers to save and reuse them. These requirements are derived according to the

responsible entity and contract type chosen, following the results of Chapter 5. Algorithm 5 shows

how the requirements are derived for a contract with transfer via direct communication, for example.

115

6.2. ComhorMod

Algorithm 3 Combination generation.

generateAllCombinationForAScenario

for all elements in the scenario

if it this is not a passive element // therefore this element can be responsible

generateCombinations (this element, null, all elements in the scenario)

generateCombinations (respElement, combinationBeginning, elementsToTreat)

if elementsToTreat is empty, add combinationBeginning to the list of solutions

else

elementToTreat = elementsToTreat.getElement()

if elementToTreat is a passive element // can only have a contract with transfer

generateCombinations(respElement, combinationBeginning::

(ContractWithoutTransfer(elementToTreat)), elementsToTreat)

else

generateCombinations(respElement, combinationBeginning::

(ContractWithoutTransfer(elementToTreat)), elementsToTreat)

for each transfer communication means

generateCombination(respEntity, combinationBegining::

ContractWithTransfer(elementToTreat,transferMeans),elementsToTreat);

for each transfer communication means

for each feedback communication means

generateCombinations(respElement, combinationBeginning::

(ContractWithFeedback(elementToTreat, transferMeans, feedbackMeans), elementsToTreat)

Algorithm 4 Check whether a combination is a solution.

Boolean isASolution (Combination comb)

for all contracts of the combination

if it is a contract without transfer

if the responsible entity type does not have a fail-safe mode

return false

if it is a contract with transfer without feedback

if the transfer is via direct communication

if the responsible entity type does not have a fail-safe mode

return false

if the other entity type does not have a fail-safe mode

return false

if it is a contract with feedback

if the responsible entity type does not have a fail-safe mode

return false

if both transfer and feedback are via direct communication (contract TdFd)

OR the transfer is via indirect communication (contract TiFx)

OR the transfer is via both direct and indirect communication (contract TdiFx)

if the other entity type does not have a fail-safe mode

return false

return true // all the contracts in the combination have been examined, all are feasible

116

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Figure 6.11: Screenshot of step 4: responsibility attribution and contract type choice.

Algorithm 5 Deriving the requirements for a contract with transfer via direct communication (td).

deriveRequirementsContractWithTransferViaDirectCommunication(entity)

if the entity is responsible

for each mode m of its modes

if m is not a fail-safe mode

add the condition that it can remain in that mode only if it delivers a message in

a zone of size greater or equal to -CC-m- every -period-

add the condition that to transition to m, an entity must have sent a message at

least -delta - m- ago, on a zone of size greater or equal to CC-m to all the

transitions to m

else // the entity is not responsible

for each mode m of its modes

if m is not a fail-safe mode

add the condition that an entity can remain in this mode only as long as it does not

receive a message informing it of a transfer of responsibility

Note how the requirements are expressed using parameters names for the di�erent application-speci�c

values such as period, the critical coverage CC of a mode, and the delay delta before switching to a

mode.

Requirements are then expressed in an xml-based language that allows users to check them and

also to save and reuse them. Figure 6.12 shows a portion of such a requirement, that states that

before an entity of type emergency vehicle can enter the acceleratingToV1 mode, it needs to have

sent a message less than a time called period ago, and this message needs to have been delivered on

a coverage whose size is a parameter called CC − acceleratingToV 1.

The generated requirement speci�cations contain all the conditions to ensure that the requirements

expressed in Chapter 5 are met. They do not, however, contain the scenario speci�cations such as

entity states and modes.

6.2.6 Parameter estimation

In step 6, the numerical values of the application-speci�c parameters are requested. The values

requested depend on the values needed for the requirements, and organised by modes to which they

relate. For example, as the requirements on entities of type emergency vehicle require the calculation

of the critical coverage for the mode acceleratingToV1, the parameters that are required to calculate

this critical coverage, i.e., for a contract with feedback, present, period, vmax(acceleratingToV1),

117

6.2. ComhorMod

Figure 6.12: Screenshot of step 5: requirements.

SZ, twarning, adaptNotif , and R_reaction(acceleratingToV1) (cf Equation 5.11 on page 94) are

requested, as shown on Figure 6.13.

When a user �lls in some of the values, the values of the variables that depends on them are auto-

matically calculated and updated. This allows the user to see how the value of the di�erent parameters

impact the requirements and choose the values so that the requirements will be implementable. For

example, in the example shown Figure 6.13, the values of the critical coverage for each of the modes

are automatically updated when the values of other variables are changed. This allows developers

to tune the value of period, for example, to trade-o� between the quantity of messages sent and the

size of the coverage on which this messages must be delivered, as the size of the critical coverage is

proportional to the message period.

6.2.7 Requirements with numerical values

In step 7, the requirements are updated with the numerical values provided and calculated in step 6.

Figure 6.14 shows that the values of period and CC − acceleratingToV 1 have been replaced by their

numerical values.

6.2.8 Sentient object skeleton

Step 8 outputs and displays a sentient object skeleton in xml language that can be used as input for

somod. To ensure compatibility with somod, the xml skeleton conforms to a sentient object xml

schema (which is not included here due to its length). Figure 6.15 shows an excerpt of the skeleton

generated for an entity of type emergency vehicle. This part shows the de�nition of a behaviour rule

that stipulates that entities of type emergency vehicle can only travel at v1 when messages are sent

every period and are deliverable in the coverage CC1.

The sentient object skeleton is generated by translating the mode graph into a context graph, where

118

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Figure 6.13: Screenshot of step 6: numerical application.

Figure 6.14: Screenshot of step 7: requirements with numerical values.

Figure 6.15: Screenshot of step 8: sentient object skeleton.

119

6.3. Achievements and future work

Figure 6.16: ComhorMod's integration in the MoCoA tool chain.

one major context represents each mode. The transitions between modes are replaced by transitions

between the two equivalent contexts. In addition, a mission context that encompasses all the major

contexts is created. This context captures the rules that must always apply for an entity, for example,

message sending if the entity is responsible in a contract with transfer. Conditions on being in a mode

and transitioning to a mode are translated as conditions in behaviour and transition rules. Finally,

the values provided by users for the application-speci�c parameters are inserted as facts in the sentient

object fact base. The generated skeletons encompass all the information provided in terms of entity

behaviour (state and modes), as well as behaviour to ensure that all the requirements derived in the

previous steps will be met. So for example, if a requirement states that messages must be delivered

in a zone CC(m) for an entity to be in a mode m, then a rule is added to the corresponding context

that stipulates that if a message has not been delivered to CC(m), then the entity must transition to

one of its fail-safe modes.

Skeletons, however, specify entity behaviours only in terms of safety, and therefore skeletons need

to be completed in somod. The skeleton of an entity of type car whose behaviour is speci�ed in terms

of the modes travelling, getting_out_of_the_way and out_of_the_way, for example, will encompass

conditions so that a car in the mode travelling transitions to getting_out_of_the_way when it receives

a message that an emergency vehicle is approaching. The skeleton does not, however, specify the

behaviour of the car when it is in the mode travelling for example. This behaviour, which might

be speci�ed as going to a series of way points for example, needs to be speci�ed using somod. In

addition, the speci�c sensors and actuators used must be speci�ed (they are referred to using xml

descriptors).

6.3 Achievements and future work

Comhormod extends the MoCoA tool chain to supports reasoning on the interactions between sentient

objects and system-wide safety constraints. Sentient object skeletons generated by ComhorMod can

be loaded into somod. Figure 6.16 shows the integration of ComhorMod within the MoCoA tool

chain. ComhorMod currently eases signi�cantly the development of autonomous mobile entities that

ful�l system-wide safety constraints, by automating the requirements derivation, and generating a

sentient object skeleton.

120

Chapter 6. Design and Implementation of ComhorMod, a Tool Supporting Comhordú

Figure 6.17: Alternative design for step 4.

An area that could be improved, however, is decision support for responsible entity selection and

contract choice. As explained in Chapter 5, the responsible entity and contract type combination

simultaneously in�uences the solvability of the scenario, the requirements on entities behaviours and

the e�ciency of the solution in terms of progress of entities of di�erent types both when the commu-

nication is degraded and when it is not. A screen that would present all the parameters and their

possible values, and would allow to set some of their values and see how other would vary would

help developers when making this decision. The design for such a screen is shown in Figure 6.17. A

developer could specify, for example, that the entities of type car are equipped with a transmitter and

an actuator, but have no wireless receiver. Then only the solutions that do not require that the car

receives messages via direct communication are displayed. Similarly, developers can �x the responsible

entity type for example, and only the contracts corresponding to solutions with this entity type will

be displayed.

Another possible extension of comhormod is the addition of the notions of goals and priorities;

this would enable the tool to rank the possible combinations using the criteria and results presented in

Section 5.1.2, hence potentially automating the combination choice. These extensions have not been

implemented due to time constraints, but the results supporting them have been derived in Chapter 5.

Finally, while the design of ComhorMod enables it to support both direct and indirect com-

munication between entities, the current implementation does not support contracts using indirect

communication as no implementation of the sensor model is currently available.

121

6.4. Summary

6.4 Summary

This chapter �rst presented existing tools in the MoCoA framework that support the implementation

of autonomous mobile entities. In the second section, ComhorMod, a tool that supports the use of

the Comhordú model to develop autonomous mobile entities that adapt their behaviour depending

on currently available information was presented. ComhorMod allows the translation of system-wide

safety constraint into requirements on the behaviour of individual entities. In addition, ComhorMod

generates for each entity type a sentient object skeleton in the form of an xml sentient object descriptor

that can be used as input to the MoCoA tool chain, to generate entity implementations. Finally, this

chapter outlined the achievements of ComhorMod and presented possible extensions.

122

Chapter 7

Evaluation and Results

This thesis presents Comhordú, a new coordination model supporting the development of autonomous

mobile entities, and ComhorMod, a tool supporting the development of entities using Comhordú.

This chapter �rst presents an outlook of the evaluation by presenting the aspects of the work that

are evaluated as well as the evaluation strategy. The experimental con�guration is then presented.

Comhordú has been applied to two scenarios from the its domain, which are explained in turn. Finally,

the results of the evaluation are discussed, and this chapter concludes with a summary.

7.1 Evaluation outlook

To guarantee that autonomous mobile entities ensure system-wide safety constraints while having

access only to limited information, the approach taken in Comhordú is that entities adapt their

behaviour depending on the information available. This chapter �rst demonstrates that this approach

and the Comhordú model are useable (claim 1), by applying them to several scenarios from the its

domain. In addition, this chapter shows how ComhorMod can be used to support the development of

the entities of these scenarios (claim 2), and presents the advantages of using the tool. The solutions

generated by the tool are also evaluated, in particular to show that they ensure that safety constraints

are never violated (claim 3). Finally, this chapter demonstrates that Comhordú can be used to solve

scenarios that are not solvable with existing coordination models (claim 4).

To validate these claims, two scenarios are presented: a pedestrian tra�c light application and an

emergency-vehicle warning system. These scenarios encompass entities of di�erent types, both mobile

and �xed, and exhibit strong timeliness and safety requirements. Both scenarios have been speci�ed

in terms of Comhordú's abstractions and their solutions derived using ComhorMod. The possible

solutions for each scenario are discussed to demonstrate the outcomes and the �exibility of the tool.

In addition, to validate the correctness of the solutions presented, three solutions using the three

di�erent contract types have been implemented using the tool chain and have been extensively tested

through simulations. Finally, the last section of this chapter discusses the feasibility of implementing

123

7.2. Experimental con�guration

these scenarios using existing coordination models.

7.2 Experimental con�guration

This section describes the experimental con�guration used for the evaluation. It �rst reviews how

somod and the MoCoA tool chain were used for the evaluation, and then how communication was

modelled.

7.2.1 Using somod and the mocoa tool chain

The scenarios used for the evaluation have been modelled using ComhorMod. As described in Chap-

ter 6, ComhorMod generates sentient object skeletons for each entity type of a scenario. These

skeletons can then be used as input for somod, where the behaviour of entities can be completed with

non safety-related features, i.e., actions that are motivated by the satisfaction of the goal rather than

the safety constraints.

As the sentient object skeleton loading feature of the sentient object modelling tool somod is not

fully implemented, its actions have been performed manually, i.e., the sentient object skeletons have

been translated into calls to sogen's api manually. Using sogen, a C++ implementation has been

generated from the Java speci�cation of each sentient object. The implementations of the sentient

objects of a scenario have been run in the Sentient Simulator to test the solutions generated. The

traces generated by the simulator have been used to assess the correctness of the solutions as well as

to illustrate their characteristics, as detailed in the next sections.

7.2.2 Direct communication modelling

As described in Chapter 6, the Sentient Simulator emulates the sensors and actuators of sentient

objects, hence allowing sentient objects' behaviour to be tested. The simulator simulates real-time

communication between sentient objects, with the range of communication varying randomly, as

foreseen by the space-elastic model. Changes of the actual coverage were as follows: every Tcoverage,

there is a probability pcoverage that the coverage is re-evaluated. The possible values of the coverage

were divided into set of interest, and the distribution was de�ned amongst these sets. When the

coverage is re-evaluated, there is a probability pDC that it takes the value of the desired coverage,

and a probability pvaluei
that it takes each of the other set of values. For example, for the emergency

vehicle scenario described below, three ranges of values are of interest for the size of the critical

coverage: smaller than a �rst value CC1 [0;CC1[, greater or equal to CC1 and less than the value of

the desired coverage size DC [CC1;DC[, and equal to the desired coverage size[DC]. CC1 and DC

are parameters that depend on the solution used. Except when otherwise speci�ed, the experiments

for this scenario have been conducted with the parameters described in Table 7.1. Figure 7.1 shows

the variations of the actual coverage over time in one simulation. This coverage has not been derived

124

Chapter 7. Evaluation and Results

Parameter Value

Tcoverage 1s
pcoverage 50%
p[0;CC1[20%
p[CC1;DC[20%
p[DC] 60%

Table 7.1: Communication parameters.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 c
ov

er
ag

e
si

ze
 (

m
)

Time (s)

Actual coverage size

Figure 7.1: Actual coverage variations over one simulation.

125

7.3. Pedestrian tra�c light

from realistic data; however, it approximates the changes of coverage in a realistic setting and allows

us to evaluate the safety characteristics of entity behaviours under varying condition.

7.2.3 Indirect communication modelling

The Sentient Simulator does not currently support indirect communication. To facilitate the evalu-

ation of scenarios that rely on contracts without transfer, which require responsible entities to know

about other entities to make progress, a presence sensor was implemented. This sensor allows entities

to detect other entities within a proximity. Users can specify both the proximity and the latency of

this sensor.

The next sections describe, for each scenario, how the scenario can be modelled using Comhordú,

how a solution can be designed using ComhorMod and evaluates the solutions that have been auto-

matically generated from these designs.

7.3 Pedestrian tra�c light

Autonomous cars seem a promising approach to both reducing accidents, and alleviating tra�c con-

gestion by improving road usage. This scenario (Bouroche et al. 2006) considers pedestrian tra�c

lights for autonomous cars. The goal is for each tra�c light to turn to red (when the colour of the

light is mentioned, it is always the one intended for cars and not pedestrians) as soon as possible after

the pedestrian presses its button. The safety constraint is that no car should pass through a tra�c

light while it is red, hence ensuring that no pedestrian is knocked down (provided that pedestrians

are disciplined!). The goal is that cars can continue to travel as often as possible, and in particular

when there are no pedestrians.

It is assumed that both cars and tra�c lights are �tted with wireless communication facilities. It

is not assumed, however, that cars are aware of the position of tra�c lights. The protocols for safe

driving, such as following the road and avoiding collisions with other cars, and navigation, such as

routing to a destination, are outside the scope of this scenario.

This section �rst presents how the scenario can be modelled using comhormod, hence demonstrat-

ing that comhordú is suitable for modelling applications, and eases their development. In a second

part, a solution generated by comhormod and the mocoa tool chain is evaluated.

7.3.1 Modelling the scenario in comhormod

This section demonstrates how the scenario can be modelled with the concepts of Comhordú by

specifying the input that was entered for each step of ComhorMod.

126

Chapter 7. Evaluation and Results

Figure 7.2: Mode diagram for the car entity type in the pedestrian tra�c light scenario.

Mode Invariant

travelling speed ≤ vmax

braking speed ≤ vmax

stopped speed = 0, position constant

Table 7.2: Mode invariants for entities of type car in the pedestrian tra�c light scenario.

7.3.1.1 Step 1: entities de�nition

The �rst step of ComhorMod requires developers to de�ne and specify the entity types of a scenario.

For this scenario, it is su�cient to consider the behaviour of the car as being either travelling, braking,

or stopped. This corresponds to the modes of the car: travelling, braking, and stopped. The mode

diagram of the car entity type is described in Figure 7.2. In addition to its mode, the state of the car

encompasses its speed, geographical position, direction and destination. Assuming the speed of cars

is bounded (for example by road speed limits), and the maximum bound is denoted vmax, the mode

invariants can be described as in Table 7.2. The goal of entities of type car can be expressed as:

position = destination ,

where destination di�ers for each individual car.

The tra�c light is considered to be either green or red. Switching from green to red cannot

be instantaneous, as incoming cars need to be warned, therefore one mode is required to capture

this behaviour. This mode can be seen as the equivalent of the amber light. Switching from red

to green however does not require cars to be warned (in the worst case, cars will stop or remain

stopped in front of a green tra�c light which, while not being e�cient, is safe). Therefore this can

be instantaneous and does not require a special mode. To summarise, the modes of the tra�c light

are green, switching_to_red, and red. The state of the tra�c light is de�ned as being its mode,

position, colour, and the time of the next planned change if relevant. The mode diagram and mode

invariants are described in Figure 7.3 and Table 7.3 respectively. The goal of entities of type tra�c

light is to be red when the button is pressed, or else to be green. This can can be formalised as:

(
(buttonPressed = true) ∧ (colour = red)

)
∨

(
(buttonPressed = false) ∧ (colour = green)

)
.

127

7.3. Pedestrian tra�c light

Figure 7.3: Mode diagram for the tra�c light entity type in the pedestrian tra�c light scenario.

Mode Invariant

green colour = green
switching_to_red colour = green
red colour = red

Table 7.3: Mode invariants for the tra�c light entity type in the pedestrian tra�c light scenario.

7.3.1.2 Step 2: safety constraints speci�cation

The second step of ComhorMod consists of specifying the safety constraint. For this scenario, using

the mode and state variable de�nitions, the safety constraints that no car should pass through a red

light can be formalised by stating that the states of the tra�c light and the car are compatible, except

when they are close, the light is red, and the car is not stopped; i.e., if SZ is the size of the safety

zone, which is, in this example, the pedestrian crossing:

scarCsstra�c lighti� q
(
distance(scar.position, stra�c light.position) < SZ)∧

(stra�c light.colour = red) ∧ (scar.mode 6= stopped)
)
.

To capture that cars should be travelling except when there is a pedestrian, the priority list of the

scenario can be formalised as:(
if(buttonPressed = true) red, travelling

)
.

7.3.1.3 Step 3: mode compatibility evaluation

Using the safety constraint and the mode invariants, the mode incompatibility matrix for entities of

type car and tra�c light is automatically derived by the tool and presented to the user (see Table 7.4

and corresponding screenshot on Figure 7.4). Users can see, for example, that the modes stopped of

the entity type car and green of the entity type tra�c light are both fail-safe modes.

7.3.1.4 Step 4: responsibility and contract type attribution

Deriving the solution set: Since both entity types of this scenario have a fail-safe mode, any

contract can be used a priori, and entities of either type can be made initially responsible for the

safety constraint. Therefore, the tool o�ers the choice between all the combinations, which, for this

scenario, corresponds to the choice of either cars or tra�c light entities to be responsible, as well as

a contract type.

128

Chapter 7. Evaluation and Results

Modes of entities of type car

travelling braking stopped

Modes of entities of type tra�c light
green X X X
switching_to_red X X X
red 5 5 X

Table 7.4: Mode compatibility matrix for entities of type car and tra�c light in the pedestrian tra�c
light scenario.

Figure 7.4: Screenshot of ComhorMod's step 3 for the tra�c light scenario.

129

7.3. Pedestrian tra�c light

A possible contract type and responsible combination is, for example, that tra�c lights be re-

sponsible and switch to red only when they know that there is no car around, hence using a contract

without transfer. With this contract, cars can always travel, but pedestrians might have to wait for a

long time before crossing. The possible combinations are discussed below.

Choosing a solution: Which entity type should be responsible, and which contract should be used

depends on which entity type should be able to make progress when communication is ideal, and

which entity type should be able to make progress when communication is degraded as explained in

Chapter 5. From the priority list, it can be derived that it is more important for the tra�c light

to make progress in ideal communication conditions, but that it would be better if cars also made

progress when the light is green. The contracts where tra�c lights will be able to make good progress

when the communication is optimal are: cars are responsible, using a contract without transfer, and

tra�c lights are responsible, using a contract with transfer without feedback via direct or indirect

communication (Tx) (cf Table 5.3 on page 85).

The safety constraint, however, contains a reference to the state variable �colour� of tra�c lights.

Because this variable is discreet, a car cannot foresee its variations, i.e., it is not predictable, and

therefore when cars are responsible, they cannot make progress, i.e., travel towards their destination,

except when tra�c lights inform them of the colour they intend to be in in the future (cf Section 5.1.1

on page 78). A contract without transfer where cars are responsible will therefore allow only very

limited progress and so the solution is discarded. Eventually, the optimal solutions, i.e., the solutions

that ful�l the safety constraint and respect the priority list of the scenario, are: the tra�c light is

responsible and uses a contract without feedback, either via direct or indirect communication, or both

(respectively Td, Ti or Tdi). These solutions di�er depending on the entity type that makes progress

when communication is not available.

Contract Td: A contract Td where tra�c lights are responsible, implies that tra�c lights send

messages to cars. In this case, tra�c lights are responsible to ensure that the safety constraint will

not be violated in case of degraded communication. This means that tra�c lights cannot turn to red,

unless wireless communication is guaranteed in a wide-enough zone.

Contract Ti: In a contract Ti, tra�c lights send signals to cars, signalling their current state

and planned actions. This corresponds to the traditionally chosen solution for this problem: tra�c

lights send signals to cars in the form of a colour beam, which changes colour to warn cars before

the tra�c light turns red e.g., the amber light. In this scenario, cars are responsible to ensure the

safety constraint when communication is degraded. This means that if they cannot sense far enough

to detect a tra�c light and see its colour from far enough away so that they can stop before it, for

example because there is fog, cars must either slow down or stop driving all together.

130

Chapter 7. Evaluation and Results

Figure 7.5: Requirements for the tra�c light entity type in the pedestrian tra�c light scenario.

Contract Tdi: Using a contract Tdi means that tra�c lights rely on signalling to make progress.

Cars must ensure that they will receive potential signals early enough to have time to stop, and

therefore adapt their speed to the visibility if the signal is visual. In addition, however, tra�c lights

can use direct communication when their coverage is larger than the indirect communication coverage.

This allows tra�c lights to switch to red faster after a pedestrian has pressed their button. This

example demonstrates how in a contract Tdi, entities rely on indirect communication to guarantee

safety and can exploit direct communication for optimisation.

Contract without transfer: For the evaluation, a contract without transfer where the respon-

sible entity type is the tra�c light was chosen. While this solution is not optimal for this scenario, it

is used to test solutions generated with a contract without transfer. In this solution, the tra�c light

turns to red to let pedestrian pass only when no cars are approaching the light. This requires that

tra�c lights are able to sense cars, and therefore makes use of the presence sensor.

7.3.1.5 Step 5: requirements on entity behaviours

From the responsible entity and contract type combination, ComhorMod automatically derives the

requirements on entity behaviours, in terms of conditions for transitioning to, or remaining in, a

mode. These requirements are displayed in step 5. Figure 7.5 shows (in colour) the requirements

generated for a contract without feedback for entities of type tra�c light and car respectively. Note

that ComhorMod generates requirements in xml, but a graphical view is presented here for ease of

comprehension. These requirements are that a tra�c light cannot switch to red or remain red unless

it know that there is no car in the critical coverage CC(red).

7.3.1.6 Step 6: parameters estimation

In step 6, developers are requested to enter the values of the application-speci�c parameters needed

to calculate the parameters of the requirements. So for this example, as per Equation 5.2, four

application-wide parameters are requested:

• the safety zone SZ, which in this scenario corresponds to the width of the pedestrian crossing;

• the time required for an entity to become present present;

131

7.3. Pedestrian tra�c light

Parameter Value

Application-wide parameters
SZ 2m
present 0.5 s
period 0.5 s
latency 0.1 s
Parameters speci�c to the mode red

R_reaction(red) 2 s
vmax(red) 50 km/h

Table 7.5: Numerical values of the parameters for the pedestrian tra�c light scenario.

• the sensing period period;

• and the sensing latency latency.

In addition, two parameters speci�c to the mode red (as it is the only non fail-safe mode) are requested:

• the responsible entity reaction time for the mode red R_reaction(red), i.e., the time for a tra�c

light to turn to green once it knows that a car is approaching;

• and the maximum speed at which cars can approach a tra�c light in mode red, vmax(red).

The values chosen for these parameters are presented in Table 7.5. Using these values, the tool derived

a critical coverage of size 156meters.

7.3.1.7 Step 7: requirement with numerical values

Step 7 presents the requirements derived in step 5, where the value of the critical coverage CC has

been replaced by the numerical value derived in step 6.

7.3.1.8 Step 8: sentient object skeletons

Step 8 generates a sentient object skeleton for each of the entity types. The skeleton for cars captures

only the three context of cars behaviour. The skeleton for tra�c lights captures the three modes and

the associated requirements, which have been translated into behaviour rules.

The behaviour of cars was completed in somod by adding a rule to react to events of type �way

point� and rules to navigate to a way point.

7.3.2 Evaluating the solutions

Using the entities skeletons completed in somod, the implementation of entities of the types car

and tra�c light were automatically generated. These implementations were tested in the Sentient

Simulator, which launched several entities and simulated their interactions. One pedestrian tra�c

light is set on a stretch of road, on which a number cars travel. At random times, an event simulating

132

Chapter 7. Evaluation and Results

green

amber

red

 86 88 90 92 94 96 98 100

T
ra

ffi
c

lig
ht

 c
ol

ou
r

Time (s)

Traffic light colour

Figure 7.6: Tra�c light colour changes.

that the button of the tra�c light has been pressed is generated. Upon reception of such an event,

the tra�c light switches to the mode switching_to_red, and waits until there is no car approaching

the crossing.

Figure 7.6 shows an excerpt of a simulation. At time 85 s, a pedestrian pressed the button. As

a car is approaching the tra�c light, the light only changes to amber (which corresponds to being

in the switching_to_red mode), waiting for the car to have passed it. At time 86.75 s, the car has

passed the light and there is no other car approaching so the light turns to red. At time 91.75 s a

car approaches so the tra�c lights reverts to green. At time 96.5 s, another pedestrian presses the

button, and as no cars are in the vicinity of the light it switches to red immediately, until time 98.75 s

when another car approaches. As the tra�c light needs to wait until no car is approaching, the

duration for which a pedestrian will have to wait before being able to cross depends on the tra�c

load. Experiments have been conducted with varying tra�c pattern and loads. Figure 7.7 shows how

the average pedestrian waiting time increases with the tra�c load. Each point corresponds to the

average over 25 simulations with the arrival times of cars and pedestrian generated randomly, with a

uniform distribution over the simulated time. Note that the standard variation is large as it depends

on the distribution of cars and pedestrians over time (e.g., whether a pedestrian requests to cross as

a long platoon of cars arrives).

The most important evaluation of the solution is in terms of safety. Over 250 simulations were

performed, representing over 14 hours of simulated time, involving almost 10 000 cars and over 4500

pedestrians. Over all these simulations, whose parameters are described in Table 7.6, no cars passed

through a red light, hence showing that the safety constraint of the scenario was respected.

133

7.3. Pedestrian tra�c light

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70

P
ed

es
tr

ia
n

w
ai

tin
g

tim
e

(s
)

Number of cars on the road stretch

Average pedestrian waiting time

Figure 7.7: Average pedestrian waiting time.

Number of simulations Number of pedestrians Number of cars

15 10 10
27 10 20
27 20 20
27 30 20
25 40 20
25 50 20
25 60 20
25 70 20
34 80 20

Table 7.6: Numerical values of the parameters for the pedestrian tra�c light scenario.

134

Chapter 7. Evaluation and Results

Mode Invariant

stopped speed = 0
going_at_vi speed = vi

braking_to_vi-1 speed ≤ vi

accelerating_to_vi speed ≤ vi

Table 7.7: Mode invariants for the emergency vehicle entity type in the early emergency vehicle
arrival warning scenario.

7.4 Early emergency vehicle arrival warning

The goal of the emergency-vehicle warning system (Bouroche & Cahill 2006, Senart et al. 2008)

scenario is for ordinary vehicles to be warned when emergency vehicles are approaching their location

so that they can free space for them. The earlier cars are warned, the faster emergency vehicles can

drive, which can be crucial in emergency situations. This application could be used both as an aid

for drivers, or to govern autonomous cars and emergency vehicles. In addition to the interest of this

scenario in terms of its application, it is also a compelling example to study, as it includes mobile

entities of di�erent types, that need to coordinate their behaviour in real-time in a safety-critical

application.

This section �rst presents how this scenario was speci�ed in ComhorMod, and solutions were

generated. Then, two of these solutions are evaluated.

7.4.1 Modelling the scenario in comhormod

This scenario contains two types of entities: cars and emergency vehicles. In the following, only

interactions between emergency vehicles and cars are considered (i.e., emergency vehicle to emergency

vehicle and car to car interactions are ignored). The goal of the scenario is for emergency vehicles to

travel as fast as possible, under the safety constraint that emergency vehicles should not crash into

cars.

This section presents the successive steps of the design and development of this application using

ComhorMod.

7.4.1.1 Step 1: entity de�nition

In this application, the behaviour of emergency vehicles, given its the maximum speed vmax, and two

speeds v0 = 0 and v1, is modelled as: stopped, going_at_v1, accelerating_to_v1, braking_to_v0,

going_at_vmax, accelerating_to_vmax, braking_to_v1. The state of an emergency vehicle encom-

passes its mode, position, speed, and destination. The mode diagram and mode invariants of the

emergency vehicle entity type are described in Figure 7.8 and table 7.7 respectively.

The goal of an emergency vehicle is to arrive at its destination, it can be expressed as:

position = destination .

135

7.4. Early emergency vehicle arrival warning

Figure 7.8: Mode diagram for an emergency vehicle entity type in the early emergency vehicle arrival
warning scenario.

Figure 7.9: Mode diagram for the tra�c light entity type in the early emergency vehicle arrival
warning scenario.

The behaviour of a car can be modelled with the modes travelling, getting_out_of_the_way,

and out_of_the_way. These modes are not the same as in the previous example, as they are de�ned

to capture the relevant parameters for this scenario in terms of the safety constraint; here, whether

the car is in the way of the emergency vehicle. The state of car entities encompasses their mode,

position, speed, and destination. The mode diagram is depicted in figure 7.9. Modes of the entity

type car can be de�ned without any invariant. The goal of a car is to arrive at its destination, which

can be expressed as:

position = destination .

7.4.1.2 Step 2: safety constraint speci�cation

The safety constraint that emergency vehicles should not collide into cars can be stated as that they

should not be closer than a certain distance SZ unless the emergency vehicle is stopped or the car is

out of the way of the emergency vehicle (in which cases the emergency vehicle will not collide). Using

the state and modes de�ned above, the safety constraint can be de�ned in comhormod as:

scarCsevi� q
((
distance(scar.position, sev.position) < SZ

)
∧

(sev.mode 6= stopped) ∧ (scar.mode 6= out_of_the_way)
)

.

The priority list of the scenario can be speci�ed as

(going_at_vmax, going_at_v1, travelling) .

136

Chapter 7. Evaluation and Results

Modes of entities of type car

travelling getting_out

_of_the_way

out_of_the

_way

Modes of entities of type emergency vehicle
stopped X X X
going_at_vi 5 5 X
braking_to_vi-1 5 5 X
accelerating_to_vi 5 5 X

Table 7.8: Mode compatibility matrix for entities of type car and tra�c light in the emergency
vehicle scenario.

This list captures the fact that it is more urgent for emergency vehicles to arrive at their destinations,

than cars.

7.4.1.3 Step 3: mode compatibility evaluation

In step 3, the mode compatibility matrix for entities of type emergency vehicle and cars is automatically

derived (see Table 7.8). Note that stopped for emergency vehicles and out_of_the_way for cars are

fail-safe modes.

7.4.1.4 Step 4: responsibility and contract type attribution

Step 4 �rst derives the solution set and lets users choose one of these solutions.

Deriving the solution set As the two entities have a fail-safe mode, any of the contracts can be

used.

Choosing a solution Given that the �rst item in the priority list is a mode of emergency vehicles,

the contract should favour the progress of emergency vehicles. As stated in Table 5.3, this is the case

for the following combinations: contract without transfer if cars are responsible, as well as contracts

with transfer if emergency vehicles are responsible.

Contract without transfer In the case of a contract without transfer where cars are responsi-

ble, cars can only make progress when they know that there is no emergency vehicle, and emergency

vehicles do not signal themselves. This solution implies that the progress of cars is very limited (typ-

ically, they can drive only when they have good enough visibility to ensure that they will not impact

the progress of any emergency vehicle in any way).

Contract with transfer without feedback If a contract without feedback is used, emergency

vehicles warn cars of their arrival, by sending them messages either by direct or indirect communica-

tion, and cars must ensure that they get out of the way of an emergency vehicle within a pre-agreed

time (twarning) after being warned of its arrival.

137

7.4. Early emergency vehicle arrival warning

Figure 7.10: Requirements for the emergency vehicle entity type.

Contract with transfer with feedback If a contract without feedback is used, emergency

vehicles warn cars of their arrival, like they would when using a contract without feedback, but cars

have the choice of either getting out of the way of the emergency vehicle within a pre-agreed time

(twarning) or, send feedback within another pre-agreed time (tfeedback). Since cars may not be able to

get out of the way of emergency vehicles within a given time, a contract with feedback may be more

appropriate for this scenario.

The contracts that are optimal for this scenario are contracts with transfer with feedback where

emergency vehicles are responsible. If the goal is that emergency vehicles be able to make progress

even when communication is degraded, the contract with transfer via indirect communication and

feedback via direct communication (TiFd) will be preferred. Direct communication can also be used

for the transfer as an optimisation (contract TdiFd).

For the purpose of the evaluation, as indirect communication is not available to test the contract

types with transfer and with feedback, two solutions have been implemented and tested: emergency

vehicles responsible with contract Td and with contract TdFd.

7.4.1.5 Step 5: requirement on entity behaviours

In step 5, the tool automatically generates the requirements on entities behaviour for each entity type.

The requirements generated for entities of type emergency vehicle are displayed on Figure 7.10, where

the requirements that apply only to the contract with feedback are displayed in light blue. In addition,

Figure 7.11 displays the requirements generated for entities of type car (the same colour convention

applies).

138

Chapter 7. Evaluation and Results

Figure 7.11: Requirements for the car entity type.

7.4.1.6 Step 6: parameter estimation

In step 6, developers are requested to enter the values of the application-speci�c parameters needed

to calculate the parameters of the requirements. For the solution with transfer with feedback, for

example, as per Equation 5.2, seven application-wide parameters are requested:

• the safety zone SZ, which in this scenario corresponds to the size of emergency vehicles ;

• the time required for an entity to become present present;

• the period of messages sent period;

• and the adaptation noti�cation time adaptNotif ;

• and the latency of message delivery latency;

• the contract parameters twarning and tfeedback

In addition, two parameters speci�c for each of the non fail-safe modes are requested:

• the responsible entity reaction time for the mode m, R_reaction(m), i.e., the time for an

emergency vehicle to slow down to a lower speed;

• and the maximum speed at which cars can approach an emergency vehicle when in mode m,

vmax(m).

Note that the maximum speed and therefore the reaction time, are the same for going_at_v1,

accelerating_to_v1 and braking_to_v0, on one hand and going_at_vmax, accelerating_to_vmax,

braking_to_v1on the other hand. The values chosen for these parameters are presented in Table 7.9.

The value used for the reaction time corresponds to the time it would take for a vehicle to slow down by

50 km/h, assuming a constant acceleration of the standard value a0 = 6m/s. Using these values, the

tool derived the values of the size of the critical coverage CC1 = 73.8m and DC = CCmax = 221.4m,

as well as ∆ = 2.1 s.

7.4.1.7 Step 7: requirements with numerical values

In step 7, the requirements for the di�erent entities with numerical values are generated.

139

7.4. Early emergency vehicle arrival warning

Parameter Value

Application-wide parameters
SZ 2m
present 0.5 s
period 2 s
adaptNotif 0.5 s
latency 0.1 s
twarning 2 s
tfeedback 1 s
Parameters speci�c to the mode going_at_v1

R_reaction(going_at_v1) 2.31 s
vmax(going_at_v1) 50 km/h
Parameters speci�c to the mode going_at_vmax

R_reaction(going_at_vmax) 2.31 s
vmax(going_at_vmax) 100 km/h

Table 7.9: Numerical values of the parameters for the emergency-vehicle warning scenario.

7.4.1.8 Step 8: sentient object skeletons

In step 8, a sentient object skeleton is generated for each entity type. The behaviour of both emergency

vehicles and cars were completed using somod, to add the management of way points.

7.4.2 Evaluating the solutions

Both the solutions with a contract Td and a contract TdFd were implemented and tested. The

maximum speed for cars is set to 50 km/h. To get out of the way of an emergency vehicle, cars change

lane.

7.4.2.1 Solution with contract Td

Firstly, a solution with a contract with transfer via direct communication without feedback (Td) has

been generated and evaluated. As the emergency vehicle is responsible and uses transfer via direct

communication, it adapts its speed depending on the current actual coverage. Figure 7.12 depicts

an excerpt of the traces from one simulation . Note the actual coverage taking one of three values.

The lowest one, around 30m is smaller than CC(v1); the middle one, around 130m is greater than

CC(v1) but less than CC(vmax); and the highest one, around 170m, is equal to CC(vmax). If the

small variations, that are due to measurement errors due to the limited accuracy of the trace �les,

are discarded, it can be seen that the speed of the emergency vehicle speed also varies between three

values: v0, v1 and vmax. Note that variations of this speed are not instantaneous as the acceleration and

deceleration rates are bounded to re�ect the kinematics of vehicles. The variations of the emergency

vehicle speed are coupled to the actual coverage, but with a small o�set, as it takes adaptNotif for

the emergency vehicle to be warned of the coverage variation.

The average emergency vehicle speed depends on the communication pro�le: if the communication

is consistently good, emergency vehicles will be able to travel at vmax, otherwise they will have to slow

140

Chapter 7. Evaluation and Results

 0

 20

 40

 60

 80

 100

 120

 10 15 20 25 30 35 40 45 50 55
 0

 200

 400

 600

 800

 1000

E
m

er
ge

nc
y

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

C
ov

er
ag

e
si

ze
 (

m
)

Time (s)

Emergency vehicle speed
Actual coverage size

Figure 7.12: Variations of both the actual coverage and the emergency vehicle speed over time,
during one simulation.

down to ensure that cars will have time to be warned and change lane before they arrive. Figure 7.13

shows the average speed of emergency vehicle as a function of the probability that the desired coverage

be covered (i.e., pDC c.f. Section 7.2). Each point on the graph corresponds to the average speed of

an emergency vehicle averaged over 10 simulations; the standard deviation is also depicted. Note that

when the communication is perfect the average speed is slightly lower than 100 km/h because at the

start of each simulation emergency vehicles are stopped.

Overall, over 220 simulations of the emergency vehicle travelling on a stretch of road have been

performed, totalling over 18 hours of simulated time. In these simulations, an emergency vehicle

travelled amongst over 6000 cars, and never crashed into any of them, hence demonstrating the

correctness of the solution.

7.4.2.2 Solution with contract TdFd

A solution with a contract TdFd, where cars can send feedback if they cannot get out of the way of the

emergency vehicle has also been tested. To test the behaviour of the emergency vehicle, a proportion

of cars sent feedback that they could not get out of the way of the emergency vehicle the �rst time

they received a message from an emergency vehicle. Upon receiving feedback, an emergency vehicle

starts breaking. It does not accelerate again until one of its subsequent messages has been delivered

to a critical coverage and no feedback has been received within the allocated time, i.e., within tfeedback

after the delivery time of the message. Figure 7.14 shows an excerpt of a simulation where, around

time 34s, an emergency vehicle received a feedback message from a vehicle and slowed down, even

141

7.4. Early emergency vehicle arrival warning

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

A
ve

ra
ge

 e
m

er
ge

nc
y

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

Proportion of time where the AC=DC (%)

Average emergency vehicle speed

Figure 7.13: Variations of the average emergency vehicle speed as a function of the communication
pro�le.

though the critical coverage remained constant. At time 39s, the emergency vehicle has sent another

message and received no feedback, so it accelerates again. At time 43s, it slows down again, because

it has been noti�ed of an actual coverage change. Once it is noti�ed that the actual coverage has

reverted back to DC, it accelerates again.

Every time an emergency vehicle receives a feedback message from another vehicle, it needs to slow

down. Therefore, the average speed of an emergency vehicle varies as a function of the proportion of

cars that send feedback. Figure 7.15 shows the variations of the average emergency vehicle speed as

a function of the number of vehicles that send feedback. Each point is the average of 20 simulations.

Note that the standard deviation is important as the speed of the emergency vehicle varies signi�cantly

depending on whether it meets the vehicles that send feedback, and also whether these send feedback

at the same time; hence making the emergency vehicle stop once for a number of feedback messages).

These simulations have been run with a communication pro�le with pDC = 60%, and it can be seen

that when no vehicle sends feedback to an emergency vehicle, its average speed is the same as with

the previous solution.

Overall, over 420 simulations of this solution have been run, totalising almost 24 hours of simulated

time. In these simulations, an emergency vehicle travelled amongst over 7700 cars, and never collided

into any of them, hence showing the reliability of the solution.

142

Chapter 7. Evaluation and Results

 0

 20

 40

 60

 80

 100

 120

 35 40 45 50
 0

 200

 400

 600

 800

 1000

E
m

er
ge

nc
y

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

C
ov

er
ag

e
si

ze
 (

m
)

Time (s)

Emergency vehicle speed
Actual coverage size

Figure 7.14: Variations of both the actual coverage and the emergency vehicle speed over time,
during one simulation.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

E
m

er
ge

nc
y

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

Proportion of vehicles that send feedback

Emergency vehicle speed

Figure 7.15: Variations of the average emergency vehicle speed as a function of the proportion of
vehicles that send feedback.

143

7.5. Results

7.5 Results

The previous sections have shown that Comhordú can be used to model scenarios corresponding

to realistic applications from the its domain encompassing both mobile and �xed entities, hence

validating claim 1. While only two scenarios have been presented in this chapter, many more have

been modelled, such as cars arriving at an unsignalised junction, autonomous driving on a single

lane, autonomous overtaking, and obstacle detection for example. Comhordú was suitable to capture

the system-wide safety constraints of all these scenarios, and can be used to translate them into

requirements on the behaviour of individual entities.

In addition, the two scenarios used in the evaluation were speci�ed using ComhorMod, which

generated skeleton implementations. These implementation skeletons were completed and the full

implementation generated almost automatically using the MoCoA tool chain, hence validating claim

2. The only step of the development that was not automated was the translation of sentient object

skeletons into calls to the sogen Java api because this feature is not yet implemented (c.f. Section 7.2).

This manual translation process, which is completely systematic and will therefore be fully automated,

proved particularly cumbersome; this highlights the usefulness of the tool chain.

Amongst the solutions generated, three, corresponding to each contract type, were thoroughly

tested, under varying communication and tra�c patterns. These experiments showed the reliabil-

ity of the solutions for each of the scenarios, allowing both mobile and stationary entities to make

progress when communication is su�cient, while ensuring system-wide safety constraints even when

communication is not su�cient, hence validating claim 3.

Finally, both scenarios studied require communication between entities (because, as noted above,

the solution to the pedestrian scenario that relies solely on sensing data does not allow pedestrian to

ever cross the road when there are many cars). While the existing solutions, such as use of siren and

light beam, to these scenario are based on indirect communication, the use of direct communication

could allow emergency vehicles to drive faster when direct communication is available on a wide area;

hence potentially saving lives and could allow better pedestrian protection. It is not realistic, however,

to assume that real-time communication can be guaranteed in the presence of obstacles to message

transmission such as vehicles, trucks and buildings. Therefore, existing consensus-based solutions

cannot be applied to these scenarios as they would not provide su�cient reliability. In addition,

the tcb does not guarantee timely noti�cation of timing errors, and therefore could not provide the

reliability required by these scenario either, hence claim 4 is validated.

7.6 Summary

This chapter demonstrated how Comhordú can be applied to solve scenarios with strong real-time and

reliability requirements, where safety constraints span several entities. These scenarios and their safety

constraints have been modelled using the abstractions de�ned in Comhordú. The systematic process

144

Chapter 7. Evaluation and Results

described in Chapter 5 was used to translate these system-wide safety constraints into requirements on

the behaviours of individual entities. Di�erent solutions can be selected depending on the scenario's

goals and priority list. The development process was facilitated by ComhorMod that automatically

generated the requirements and their numerical values, as well as a skeleton allowing these entities to

be implemented. The implementations of solutions corresponding to each of the contract types have

been thoroughly tested, demonstrating their correctness. Finally, this chapter demonstrated that the

scenario studied cannot be solved with existing coordination models.

145

Chapter 8

Conclusions and Future Work

This thesis presented comhordú, a coordination model for autonomous mobile entities, which sup-

ports the development of entities that can adapt their behaviour depending on currently available

information to ensure system-wide safety constraints. This chapter summarises the most signi�cant

achievements of the work described in this thesis and assess its contribution to the state of the art.

In addition, some perspectives on the model presented in the body of the thesis are given, and some

suggestions for future work are outlined.

8.1 Achievements

The motivation for the work described in this thesis arose out of the increasing presence of autonomous

mobile entities in our everyday environment. As these operate in the same environment as each

other and as humans, such entities need to coordinate their behaviour to ensure system-wide safety

constraints. As the safety of humans and possibly crucial or expensive infrastructure is at stake, the

coordination of entities is safety-critical, i.e., a violation of the safety constraints could result in a

catastrophe. In addition, because entities interact with their environment, they need to cope with its

pace, therefore their safety constraints imply stringent real-time requirements on coordination.

A review of existing work in the mas, mrs, its, coordination models, and real-time systems

communities has shown that none of the existing work is suitable for addressing the challenges of

high-reliability and timeliness posed by the coordination of such autonomous mobile entities in a

generic way. In particular, it was shown that the consensus paradigm used by most existing work is

not appropriate to the kind of mobile environments.

The coordination of autonomous mobile entities is particularly challenging because the amount of

information available to entities about the behaviour of other entities and their environment varies

considerably over time and distance, due to the limitations of communication over wireless networks

and of sensing. For this reason, this thesis builds on the space-elastic model, an existing real-time

communication model that provides real-time feedback on currently available information. A sensing

146

Chapter 8. Conclusions and Future Work

and indirect communication model that provides the same feature was de�ned, providing entities with

an alternative communication means to supplement direct communication.

Building on both the space-elastic model and the sensing and indirect communication models,

comhordú, a coordination model that allows entities to adapt their behaviour depending on available

information was de�ned. This model enables the distribution of system-wide safety constraints over

autonomous entities, via contracts between entities. In addition, a systematic development process for

applications composed of autonomous mobile entities using comhordú was presented. This process

allows application developers to translate system-wide safety constraints into requirements on the

individual behaviour of autonomous mobile entities. The design of a development tool, comhormod,

that supports the development process of autonomous mobile entities by automating the systematic

steps of comhordú was also presented.

The usefulness of the coordination model was demonstrated on two scenarios from the its domain

that cannot be solved using existing coordination models. These scenarios were implemented using

comhormod, which was shown to be suitable for such tasks and signi�cantly eased the development

e�orts required, by allowing solutions to be automatically generated. The generated solutions were

extensively tested to demonstrate that they allow entities to make progress while guaranteeing the

scenarios' safety constraints.

8.2 Perspectives

Notwithstanding the achievements presented in the previous section, the model presented in this

thesis will serve mostly as a starting point for research in coordination models for autonomous mobile

entities.

Coordinating autonomous mobile entities is a very challenging problem because it requires stringent

reliability and timeliness requirements to be met by applications deployed in unknown, dynamic

environments, where the amount of information available varies signi�cantly over time and distance.

To make matters worse, as entities are autonomous, any solution must be fully distributed, and because

entities are not necessarily aware of each other a priori, they must adopt a defencive approach where

the safety constraint could be violated at any time unless actively enforced.

This thesis investigated how this problem can be tackled assuming direct and indirect real-time

communication models that provide timely feedback on the zone in which communication is avail-

able. Instead of relying on consensus, entities make progress independently while ensuring the safety

constraints by obeying to contracts imposing requirements on their behaviour. These requirements

dictate how entities must react when the amount of available information via sensing and direct and

indirect communication is degraded. This approach was shown to allow entities to make progress

when it is safe to do so while always ensuring system-wide safety constraints.

While an implementation of the direct communication model assumed is available, the sensing and

147

8.3. Future work

indirect communication model has not yet been implemented. The guarantees of this model might

prove too strong to be provided reliably, and might need to be relaxed to be implementable. In

particular, inspiration could be drawn from existing work that deals with sensor unreliability at the

coordination level by having entities attach information about their environment that caused them

to initiate a speci�c action, to coordination messages related to that action (Farinelli et al. 2007).

This approach allows information about the environment to be shared amongst several entities, and

possibly fused. A simplistic example of such an approach would be that when a tra�c light at a

junction changes colour to allow an incoming emergency vehicle to pass through the junction, cars are

informed incidentally by the tra�c light message that an emergency vehicle is arriving and can get

out of its way.

8.3 Future work

As is always the case in research, and particularly with this work that investigated a new research

direction, many issues are worthy of a more detailed investigation.

Comhordú presents a number of results that are explained, but not formally proven. A signi�cant

extension to this work would be to provide a formal proof of comhordú, by analytically demonstrating

that the requirements derived for each contract type are su�cient to ensure the safety constraint.

In addition, while the abstractions de�ned in comhordú allow to solve numerous applications, their

scope is limited, and could be extended in the following ways:

• de�ne more invariants to capture more detailed semantics of modes, such as bounded variation

rates over time and distance;

• extend the set of basic incompatibilities to support, for example, safety constraints that impose

a condition on the sum of the values of two state variables;

• extend the set of contracts to allow more of the entities behaviour to be automatically generated.

Similarly, as detailed in chapter 6, the implementation of the mocoa tool chain needs to be completed,

and tool support can be extended to ease programming of autonomous mobile applications even more.

In addition, an interesting research area is how to program the behaviour of entities that obey several

contracts to ful�l several safety constraints. As the mode set increases exponentially with each safety

constraint, the behaviour of entities becomes more and more complicated. For this reason, dynamic

recon�guration of entity behaviour is a promising research area.

Finally, the model-driven engineering (mde) community, similarly to the work described in this

thesis, uses high-level models to specify a system and aims to automatically generate implementations

from such models. This work could be expressed using mde concepts and integrated with existing

work in this community.

148

Chapter 8. Conclusions and Future Work

8.4 Summary

This chapter summarised the motivations for, and the most signi�cant achievements of the work

described in this thesis. In particular, it outlined how this work contributes to the state of the art of

the coordination of autonomous mobile entities, by exploring an alternative to consensus. In addition,

some perspectives on the coordination model presented in the thesis were given, and some suggestions

for future work presented.

149

8.4. Summary

150

Bibliography

Alighanbari, M., Kuwata, Y. & How, J. P. (2003), Coordination and control of multiple uavs with
timing constraints and loitering, in `Proceedings of the American Control Conference', Vol. 6, IEEE,
pp. 5311�5316.

Arbab, F. (1998), What do you mean, coordination?, in `Bulletin of the Dutch Association for Theo-
retical Computer Science (NVTI)'.

Aufrere, R., Gowdy, J., Mertz, C., Thorpe, C., Wang, C.-C. & Yata, T. (2003), `Perception for collision
avoidance and autonomous driving', Mechatronics 13(10), 1149�1161.

Babaoglu, Ö., Meling, H. & Montresor, A. (2002), Anthill: A framework for the development of agent-
based peer-to-peer systems, in L. E. Rodrigues, M. Raynal &W.-S. E. Chen, eds, `Proceedings of the
International Conference on Distributed Computing Systems (ICDCS)', IEEE Computer Society,
pp. 15�22.

Baber, J., Kolodko, J., Noel, T., Parent, M. & Vlacic, L. (2005), `Cooperative autonomous driving:
Intelligent vehicles sharing city roads', IEEE Robotics & Automation Magazine 12(1), 44�49.

Beard, R. W., McLain, T. W., Goodrich, M. A. & Anderson, E. P. (2002), `Coordinated target as-
signment and intercept for unmanned air vehicles', IEEE Transactions on Robotics and Automation
18(6), 911�922.

Becker, L. B., Nett, E., Schemmer, S. & Gergeleit, M. (2005), `Robust scheduling in team-robotics',
Journal of Systems and Software 77(1), 3�16.

Beckers, R., Holland, O. E. & Deneubourg, J.-L. (1994), From local actions to global tasks: Stigmergy
and collective robotics, in R. A. Brooks & P. Maes, eds, `Proceedings of the 4th International
Workshop on the Synthesis and Simulation of Living Systems (Arti�cial Life IV)', MIT Press,
pp. 181�189.

Bickford, C., Teo, M. S., Wallace, G., Stankovic, J. A. & Ramamritham, K. (1996), A robotic assembly
application on the Spring real-time system, in `Proceedings of the 2nd IEEE Real-Time Technology
and Applications Symposium (RTAS '96)', IEEE Computer Society, pp. 19�28.

Biegel, G. & Cahill, V. (2004), A framework for developing mobile, context-aware applications, in `Pro-
ceedings of the 2nd IEEE International Conference on Pervasive Computing and Communications
(PerCom 2004)', IEEE Computer Society, pp. 361�365.

Bouraoui, L., Petti, S., Laouiti, A., Fraichard, T. & Parent, M. (2006), Cybercar cooperation for
safe intersections, in `Proceedings of the IEEE Conference on Intelligent Transportation Systems
(ITSC)', IEEE, pp. 456�461.

Bouroche, M. & Cahill, V. (2006), Coordination of autonomous mobile entities, in B. Koldehofe, ed.,
`Proceedings of the 4th MiNEMA Workshop', pp. 59�64.

Bouroche, M., Hughes, B. & Cahill, V. (2006), Building reliable mobile applications with space-
elastic adaptation, in `Proceedings of the Mobile Distributed Computing workshop (MDC)', IEEE
Computer Society, pp. 627�632.

151

BIBLIOGRAPHY

Brooks, R. R. & Iyengar, S. S. (1998), Multi-sensor fusion: fundamentals and applications with soft-
ware, Prentice-Hall, Inc.

Buckley, S. J. (1989), Fast motion planning for multiple moving robots, in `Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA)', IEEE, pp. 322�326.

Cabri, G., Ferrari, L., Leonardi, L., Mamei, M. & Zambonelli, F. (2006), Uncoupling coordination:
Tuple-based models for mobility, in P. Bellavista & A. Corradi, eds, `The Handbook of Mobile
Middleware', 1 edn, Auerbach, chapter 10, pp. 229�256.

Carlson, J. (2002), Languages and methods for specifying real-time systems, Technical report,
Mälardalen Real-Time Research Centre.

Caro, G. D. & Dorigo, M. (1998), `AntNet: Distributed stigmergetic control for communications
networks', Journal of Arti�cial Intelligence Research 9, 317�365.

Cawkwell, J. (2000), A visually guided AGV for use as passenger transport in urban areas, in `Pro-
ceedings of the Intelligent Transportation Systems Conference (ITSC)', IEEE Computer Society,
pp. 311�315.

Ciancarini, P. (1996), `Coordination models and languages as software integrators', ACM Computing
Surveys 28(2), 300�302.

Clark, C. M. (2004), Dynamic Robot Networks: A Coordination Platform for Multi-Robot Systems,
PhD thesis, Department of Aeronautics and Astronautics, Stanford University, CA, USA.

Clark, C. M., Rock, S. M. & Latombe, J.-C. (2003), Dynamic networks for motion planning in
multi-robot space systems, in `Proceedings of the International Symposium of Arti�cial Intelligence,
Robotics and Automation in Space'.

Cristian, F. (1991), `Understanding fault-tolerant distributed systems', Communications of the ACM
34(2), 56�78.

Cunningham, R. & Cahill, V. (2002), Time bounded medium access control for ad hoc networks, in
A. Schiper, R. Baldoni & R. Prakash, eds, `Proceedings of the ACM International Workshop on
Principles of Mobile Computing (POMC)', ACM Press, New York, NY, USA, pp. 1�8. Invited
paper, not peer reviewed.

Deugo, D., Weiss, M. & Kendall, E. (2001), Reusable patterns for agent coordination, in A. Omicini,
F. Zambonelli, M. Klusch & R. Tolksdorf, eds, `Coordination of Internet agents: models, technolo-
gies, and applications', Springer-Verlag, pp. 347�368.

Dorigo, M., Caro, G. D. & Gambardella, L. M. (1999), `Ant algorithms for discrete optimization',
Arti�cial Life 5(2), 137�172.

Dresner, K. & Stone, P. (2004), Multiagent tra�c management: A reservation-based intersection
control mechanism, in `Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS)', ACM, pp. 530�537.

Dresner, K. & Stone, P. (2005), Multiagent tra�c management: An improved intersection control
mechanism, in `Proceedings of the International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS)', ACM Press, pp. 471�477.

Empey, D. (2002), `PATH vehicles will roll at demo 2003', Intellimotion 10(1), 8�12.

Eugster, P. T., Garbinato, B. & Holzer, A. (2005), Location-based publish/subscribe, in `Proceedings
of the IEEE International Symposium on Network Computing and Applications (NCA)', IEEE
Computer Society, pp. 279�282.

Farinelli, A., Iocchi, L. & Nardi, D. (2004), `Multirobot systems: a classi�cation focused on coordina-
tion', IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(5), 2015�2028.

152

BIBLIOGRAPHY

Farinelli, A., Nardi, D., Scerri, P. & Ingenito, A. (2007), Dealing with perception errors in multi-robot
system coordination, in M. M. Veloso, ed., `Proceedings of the 20th International Joint Conference
on Arti�cial Intelligence (IJCAI)', pp. 2091�2096.

Fasli, M. (2001), On commitments, roles, and obligations, in B. Dunin-Keplicz & E. Nawarecki, eds,
`Revised Papers from the Second International Workshop of Central and Eastern Europe on Multi-
Agent Systems (CEEMAS)', Vol. 2296 of Lecture Notes In Computer Science, Springer-Verlag,
pp. 93�102.

Federal Communications Commission (1999), Fcc 99-305, fcc report and order, Technical report.

Ferber, J. (1999), Multi-Agent Systems: An Introduction to Distributed Arti�cal Intelligence, Addison-
Wesley.

Fitzpatrick, A., Biegel, G., Clarke, S. & Cahill, V. (2002), Towards a sentient object model, in `Pro-
ceedings of the OOPSLA 2002 Workshop on Engineering Context-Aware Object-Oriented Systems
and Environments (ECOOSE)'.

Fok, C.-L., Roman, G.-C. & Hackmann, G. (2004), A lightweight coordination middleware for mobile
computing, in R. D. Nicola, G. L. Ferrari & G. Meredith, eds, `Proceedings of the 6th International
Conference on Coordination Models and Languages (COORDINATION)', Vol. 2949 of Lecture Notes
in Computer Science, Springer, pp. 135�151.

Fong, T. & Nourbakhsh, I. (2005), `Interaction challenges in human-robot space exploration', Inter-
actions 12(2), 42�45.

Frey, D. & Roman, G.-C. (2007), Context-aware publish subscribe in mobile ad hoc networks, in A. L.
Murphy & J. Vitek, eds, `Proceedings of the International Conference on Coordination Models
and Languages (COORDINATION)', Vol. 4467 of Lecture Notes in Computer Science, Springer,
pp. 37�55.

Friedman, R. (2003), Fuzzy group membership, in A. Schiper, A. A. Shvartsman, H. Weatherspoon &
B. Y. Zhao, eds, `Proceedings of the Future Directions in Distributed Computing Workshop', Vol.
2584 of Lecture Notes in Computer Science, Springer, pp. 114�118.

Fujimura, K. (1992), Motion Planning in Dynamic Environments, Springer-Verlag.

Gaertner, G. & Cahill, V. (2004), `Understanding link quality in 802.11 mobile ad hoc networks',
IEEE Internet Computing 8(1), 55�60.

Garcia-Molina, H. (1982), `Elections in a distributed computing system', IEEE Transactions on Com-
puters 31(1), 48�59.

Gelernter, D. (1985), `Generative communication in Linda', ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 7(1), 80�112.

Gelernter, D. & Carriero, N. (1992), `Coordination languages and their signi�cance', Communications
of the ACM 35(2), 97�107.

Gellersen, H.-W., Beigl, M. & Schmidt, A. (1999), Environment-mediated mobile computing, in `Pro-
ceedings of the 1999 ACM symposium on Applied computing (SAC '99)', ACM Press, pp. 416�418.

Gerkey, B. P. & Mataric, M. J. (2003), Multi-robot task allocation: analyzing the complexity and
optimality of key architectures, in `Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA)', IEEE, pp. 3862�3868.

Gervasi, V. & Prencipe, G. (2004), `Coordination without communication: the case of the �ocking
problem', Discrete Applied Mathematics 144(3), 324�344.

Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S., Smith, T. & Stentz, A. (2002), A
distributed layered architecture for mobile robot coordination: Application to space exploration, in
`Proceedings of the International NASA Workshop on Planning and Scheduling for Space'.

153

BIBLIOGRAPHY

Gonzalez, A. J. & Ahlers, R. (1998), `Context-based representation of intelligent behavior in training
simulations', Transactions of the Society for Computer Simulation International 15(4), 153�166.

Grassé, P.-P. (1959), `La reconstruction du nid et les coordinations inter-individuelles chez bellicosi-
termes natalensis et cubitermes sp. la theorie de la stigmergie: Essai d'interpretation des termites
constructeurs', Insectes Sociaux 6, 41�83.

Gray, J. (1978), Notes on data base operating systems, in `Operating Systems, An Advanced Course',
Vol. 60 of Lecture Notes In Computer Science, Springer-Verlag, pp. 393�481.

Guo, Y. & Parker, L. E. (2002), A distributed and optimal motion planning approach for multiple
mobile robots, in `Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA)', IEEE, pp. 2612�2619.

Hallé, S., Chaib-draa, B. & Laumonier, J. (2003), Car platoons simulated as a multiagent system, in
`Proceedings of Agent Based Simulation 4'.

Hallé, S. & Chaib-draa, B. (2005), Collaborative driving system using teamwork for platoon forma-
tions, in F. Klügl, A. Bazzan & S. Ossowski, eds, `Proceedings of AAMAS-04 Workshop on Agents
in Tra�c and Transportation (ATT)', Vol. 8 of Whitestein Series in Software Agent Technologies,
Birkhäuser.

Hallé, S., Laumonier, J. & Chaib-draa, B. (2004), A decentralized approach to collaborative driving
coordination, in `Proceedings of the International IEEE Conference on Intelligent Transportation
Systems (ITSC)', IEEE, pp. 453�458.

Hartenstein, H., Bochow, B., Ebner, A., Lott, M., Radimirsch, M. & Vollmer, D. (2001), Position-
aware ad hoc wireless networks for inter-vehicle communications: the Fleetnet project, in `Proceed-
ings of the ACM international symposium on Mobile ad hoc networking and computing (MOBI-
HOC)', ACM, pp. 259�262.

Hazewinkel, M., ed. (1994), Encyclopaedia of Mathematics, Springer-Verlag.

Hirose, S. & Fukushima, E. F. (2002), `Development of mobile robots for rescue operations', Advanced
Robotics 16(6), 509�512.

Holland, O. & Melhuish, C. (1999), `Stigmergy, self-organization, and sorting in collective robotics',
Arti�cial Life 5(2), 173�202.

Hughes, B. (2006), Hard Real-Time Communication for Mobile Ad Hoc Networks, PhD thesis, Dept.
of Computer Science, Trinity College Dublin.

Hughes, B. & Cahill, V. (2003), Achieving real-time guarantees in mobile wireless ad hoc networks, in
`Proceedings if Real-Time Systems Symposium, Work-in-progress Session (RTSS)', IEEE, pp. 37�40.

Ijspeert, A. J., Martinoli, A., Billard, A. & Gambardella, L. M. (2001), `Collaboration through the
exploitation of local interactions in autonomous collective robotics: The stick pulling experiment',
Autonomous Robots 11(2), 149�171.

Ioannou, P. & Stefanovic, M. (2005), `Evaluation of ACC vehicles in mixed tra�c: Lane changes e�ects
and sensitivity analysis', IEEE Transactions on Intelligent Transportation Systems 6(1), 79�89.

Iocchi, L., Nardi, D. & Salerno, M. (2001), Reactivity and deliberation: A survey on multi-robot
systems, in `Balancing Reactivity and Social Deliberation in Multi-Agent Systems, From RoboCup
to Real-World Applications (selected papers from the ECAI 2000 Workshop and additional contri-
butions)', Vol. 2103 of Lecture Notes In Computer Science, Springer-Verlag, pp. 9�34.

ISO (1996), `Information technology - syntactic metalanguage - Extended BNF'. International Stan-
dards Organization and International Electrotechnical Commission (ISO/IEC).

154

BIBLIOGRAPHY

Jacquet, J.-M., Bosschere, K. D. & Brogi, A. (2000), On timed coordination languages, in A. Porto
& G.-C. Roman, eds, `Proceedings of the International Conference Coordination Languages and
Models (COORDINATION)', Vol. 1906 of Lecture Notes in Computer Science, Springer, pp. 81�98.

Jacquet, J.-M. & Linden, I. (2007), Towards a theory of re�nement in timed coordination languages, in
A. L. Murphy & J. Vitek, eds, `Proceedings of the International Conference on Coordination Models
and Languages (COORDINATION)', Vol. 4467 of Lecture Notes in Computer Science, Springer,
pp. 113�131.

Jennings, N. R. (1993), `Commitments and conventions: The foundation of coordination in multi-agent
systems', The Knowledge Engineering Review 8(3), 223�250.

Julien, C. & Roman, G.-C. (2002), Egocentric context-aware programming in ad hoc mobile environ-
ments, in `Proceedings of the ACM SIGSOFT symposium on Foundations of software engineering
(FSE)', ACM Press, pp. 21�30.

Julien, C. & Roman, G.-C. (2004), Active coordination in ad hoc networks, in R. D. Nicola, G. L.
Ferrari & G. Meredith, eds, `Proceedings of the 6th International Conference on Coordination
Models and Languages (COORDINATION)', Vol. 2949 of Lecture Notes in Computer Science,
Springer, pp. 199�215.

Julien, C. & Roman, G.-C. (2006), `EgoSpaces: Facilitating rapid development of context-aware mobile
applications', IEEE Transactions on Software Engineering 32(5), 281�298.

Karam, N., Chausse, F., Aufrère, R. & Chapuis, R. (2006), Collective localization of communicant ve-
hicles applied to collision avoidance, in `Proceedings of the IEEE Intelligent Transportation Systems
Conference (ITSC)', IEEE, pp. 442�449.

Kato, S., Tsugawa, S., Tokuda, K., Matsui, T. & Fujii, H. (2002), `Vehicle control algorithms for
cooperative driving with automated vehicles and intervehicle communications', IEEE Transactions
on Intelligent Transportation Systems 3(3), 155�161.

Keil, D. & Goldin, D. Q. (2003), `Indirect interaction and decentralized coordination'. extended draft.

Keil, D. & Goldin, D. Q. (2005), Indirect interaction in environments for multi-agent systems, in
D. Weyns, H. V. D. Parunak & F. Michel, eds, `Proceedings of the International Workshop on
Environments for Multi-Agent Systems (E4MA)', Vol. 3830 of Lecture Notes in Computer Science,
Springer, pp. 68�87.

Killijian, M.-O., Cunningham, R., Meier, R., Mazare, L. & Cahill, V. (2001), Towards group com-
munication for mobile participants, in `Proceedings of the ACM Workshop on Principles of Mobile
Computing (POMC)', pp. 75�82.

Kolodko, J. & Vlacic, L. (2003), `Cooperative autonomous driving at the intelligent control systems
laboratory', IEEE Intelligent Systems 18(4), 8�11.

Konolige, K., Fox, D., Ortiz, C., Agno, A., Eriksen, M., Limketkai, B., Ko, J., Morisset, B., Schulz,
D., Stewart, B. & Vincent, R. (2004), Centibots: Very large scale distributed robotic teams, in D. L.
McGuinness & G. Ferguson, eds, `Proceedings of the National Conference on Arti�cial Intelligence,
Conference on Innovative Applications of Arti�cial Intelligence', AAAI Press - The MIT Press,
pp. 1022�1023.

Kopetz, H. (1997), Real-Time Systems: Design Principles for Distributed Embedded Applications,
Kluwer Academic Publisher.

Kopetz, H. (2001), The temporal speci�cation of interfaces in distributed real-time systems, in T. A.
Henzinger & C. M. Kirsch, eds, `Proceedings of the International Workshop on Embedded Software
(EMSOFT)', Vol. 2211 of Lecture Notes in Computer Science, Springer, pp. 223�236.

Kopetz, H. & Kim, K. H. (1990), Temporal uncertainties in interactions among real-time objects, in
`Proceedings of the ninth Symposium on Reliable Distributed Systems', IEEE Computer Society
Press, pp. 165�174.

155

BIBLIOGRAPHY

Kubota, N., Nojima, Y., Baba, N., Kokima, F. & Fukuda, T. (2000), Evolving pet robot with emotional
model, in `Proceedings of the Congress on Evolutionary Computation', Vol. 2, IEEE Computer
Society, pp. 1231�1237.

Limniotes, T., Mourlas, C. & Papadopoulos, G. A. (2002), Event-driven coordination of real-time
components, in `Proceedings of the International Conference on Distributed Computing Systems
Workshops (ICDCSW)', IEEE Computer Society, pp. 589�594.

Lynch, N. A. (1996), Distributed Algorithms, Morgan Kaufmann.

Lyons, A. (1998), `UML for real-time overview'. RATIONAL Software Corporation Whitepaper.

Malone, T. W. & Crowston, K. (1994), `The interdisciplinary study of coordination', ACM Computing
Surveys 26(1), 87�119.

Mamei, M. & Zambonelli, F. (2004), Self-maintained distributed tuples for �eld-based coordination in
dynamic networks, in `Proceedings of the 2004 ACM Symposium on Applied Computing (SAC)',
ACM Press, pp. 479�486.

Mamei, M. & Zambonelli, F. (2005), Programming stigmergic coordination with the tota middleware,
in `Proceedings of the fourth international joint conference on Autonomous Agents and Multiagent
Systems (AAMAS)', ACM Press, pp. 415�422.

Martins, P., Sousa, P., Casimiro, A. & Verissimo, P. (2004), Dependable adaptive real-time applica-
tions in wormhole-based systems, in `Proceedings of the International Conference on Dependable
Systems and Networks (DSN)', IEEE Computer Society, pp. 567�572.

Martins, P., Sousa, P., Casimiro, A. & Veríssimo, P. (2005), `A new programming model for dependable
adaptive real-time applications', IEEE Distributed Systems Online 6(5).

McDonald, A. B. & Znati, T. F. (1999), `A mobility-based framework for adaptive clustering in wireless
ad hoc networks', Journal on Selected Areas in Communications 17(8), 1466�1487.

Meier, R. & Cahill, V. (2003), Exploiting proximity in event-based middleware for collaborative mo-
bile applications, in J.-B. Stefani, I. M. Demeure & D. Hagimont, eds, `Proceedings of the IFIP
International Conference on Distributed Applications and Interoperable Systems (DAIS)', Vol. 2893
of Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, Germany, pp. 285�296.

Meier, R., Cahill, V., Nedos, A. & Clarke, S. (2005), Proximity-based service discovery in mobile ad
hoc networks, in L. Kutvonen & N. Alonistioti, eds, `Proceedings of the International Conference
on Distributed Applications and Interoperable Systems (DAIS)', Vol. 3543 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 115�129.

Meier, R., Hughes, B., Cunningham, R. & Cahill, V. (2005), Towards real-time middleware for ap-
plications of vehicular ad hoc networks, in L. Kutvonen & N. Alonistioti, eds, `Proceedings of the
5th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS)',
Vol. 3543 of Lecture Notes in Computer Science, Springer-Verlag GmbH, pp. 1�13.

Meyer, B. (1992), `Applying �design by contract� ', Computer 25(10), 40�51.

Michaud, F., Lepage, P., Frenette, P., Letourneau, D. & Gaubert, N. (2006), `Coordinated maneuver-
ing of automated vehicles in platoons', IEEE Transactions on Intelligent Transportation Systems
7(4), 437�447.

Mock, M. (2004a), Expressing real-time requirements on object-interactions, in `Proceedings of the 7th
IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC)',
IEEE Computer Society, pp. 201�208.

Mock, M. (2004b), On the Real-Time Cooperation of Autonomous Systems, Fraunhofer Series in In-
formation and Communication Technology, Shaker Verlag, Aachen.

156

BIBLIOGRAPHY

Mock, M., Frings, R., Nett, E. & Trikaliotis, S. (2000), Continuous clock synchronization in wireless
real-time applications, in `19th IEEE Symposium on Reliable Distributed Systems (SRDS'00)',
IEEE Computer Society, pp. 125�132.

Mock, M., Nett, E. & Schemmer, S. (1999), E�cient reliable real-time group communication for
wireless local area networks, in J. Hlavicka, E. Maehle & A. Pataricza, eds, `Proceedings of the
Third European Dependable Computing Conference (EDCC-3)', Vol. 1667 of Lecture Notes In
Computer Science, Springer-Verlag, pp. 380�400.

Murphy, A. L. & Picco, G. P. (2004), Using coordination middleware for location-aware computing:
A Lime case study, in R. D. Nicola, G. L. Ferrari & G. Meredith, eds, `Proceedings of the 6th
International Conference on Coordination Models and Languages (COORDINATION)', Vol. 2949
of Lecture Notes in Computer Science, Springer, pp. 263�278.

Murphy, A. L. & Picco, G. P. (2006), Using Lime to support replication for availability in mobile ad
hoc networks, in P. Ciancarini & H. Wiklicky, eds, `Proceedings of the International Conference on
Coordination Models and Languages (COORDINATION)', Vol. 4038 of Lecture Notes in Computer
Science, Springer, pp. 194�211.

Murphy, A. L., Picco, G. P. & Roman, G.-C. (2001), LIME: A middleware for physical and logical
mobility, in `Proceedings of the 21st International Conference on Distributed Computing Systems
(ICDCS)', IEEE Computer Society, pp. 524�533.

Murphy, A. L., Picco, G. P. & Roman, G.-C. (2006), `LIME: A coordination model and middle-
ware supporting mobility of hosts and agents', ACM Transactions on Software Engineering and
Methodology (TOSEM) 15(3), 279�328.

Nadeem, T., Dashtinezhad, S., Liao, C. & Iftode, L. (2004), `Tra�cView: Tra�c data dissemination
using car-to-car communication', ACM Mobile Computing and Communications Review (M2CR)
8(3), 6�19.

Naranjo, J. E., González, C., de Pedro, T., García, R., Alonso, J., Sotelo, M. A. & Fernández, D.
(2006), AUTOPIA architecture for automatic driving and maneuvering, in `Proceedings of the IEEE
Intelligent Transportation Systems Conference (ITSC)', IEEE, pp. 1220�1225.

Neskovic, A., Neskovic, N. & Paunovic, G. (2000), `Modern approaches in modeling of mobile radio
systems propagation environment', IEEE Communications Surveys and Tutorials 3(3), 2�12.

Nett, E., Gergeleit, M. & Mock, M. (2001), Mechanisms for a reliable cooperation of vehicles, in `Pro-
ceedings of the IEEE International Symposium on High-Assurance Systems Engineering (HASE)',
IEEE Computer Society, pp. 75�81.

Nett, E., Gergeleit, M. & Streich, H. (1997), Flexible resource scheduling and control in an adap-
tive real-time environment, in `Proceeding of the IASTED International Conference on Arti�cial
Intelligence and Soft Computing'.

Nett, E. & Schemmer, S. (2004), An architecture to support cooperating mobile embedded systems,
in `Proceedings of the 1st conference on Computing Frontiers (CF)', ACM Press, pp. 40�50.

Object Management Group (OMG) (2005), `UML pro�le for schedulability, performance and time
v1.1'.
URL: http://www.omg.org/docs/formal/05-01-02.pdf

Østergaard, E. H., Mataric, M. J. & Sukhatme, G. S. (2001), Distributed multi-robot task allocation
for emergency handling, in `Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)', IEEE, pp. 821�826.

Oxford English Dictionary Online (1989). Accessed on the 23/08/2007.
URL: http://www.oed.com

157

BIBLIOGRAPHY

Papadopoulos, G. A. & Arbab, F. (1998), Coordination models and languages, Technical Report
SEN-R9834, CWI (Centre for Mathematics and Computer Science), Amsterdam, The Netherlands.

Parents, M. & Gallais, G. (2002), Intelligent transportation in cities with CTS, in `Proceedings of the
Conference on Intelligent Transportation Systems (ITSC)', IEEE Computer Society, pp. 826�830.

Parker, L. E. (1994), Alliance: An architecture for fault tolerant cooperative control of heterogeneous
mobile robots, in `Proceedings of the 1994 IEEE/RSJ/GI International Conference on Intelligent
Robots and Systems (IROS)', pp. 776�783.

Parker, L. E. (1998), `Alliance: An architecture for fault-tolerant multi-robot cooperation', IEEE
Transactions on Robotics and Automation 14(2), 220�240.

Parker, L. E. (1999), `Cooperative robotics for multi-target observation', Intelligent Automation and
Soft Computing 5(1), 5�19.

Parker, L. E. (2003), The e�ect of heterogeneity in teams of 100+ mobile robots, in A. C. Shultz,
L. E. Parker & F. E. Schneider, eds, `Proceedings of the NRL Workshop on Multi-Robot Systems',
Kluwer Academic Publishers.

Paromtchik, I. E. & Laugier, C. (1996), Motion generation and control for parking an autonomous
vehicle, in `Proceedings of the IEEE International Conference on Robotics and Automation', IEEE,
pp. 3117�3122.

Parunak, H. V. D. (2003), Making swarming happen, in `Proceedings of Conference on Swarming and
Network Enabled Command, Control, Communications, Computers, Intelligence, Surveillance and
Reconnaissance (C4ISR)'.

Ranjit, N. (2007), Multiagent referral systems: Maintaining and applying trust and expertise mode,
Master's thesis, North Carolina State University.

Rekleitis, I. M., Dudek, G. & Milios, E. E. (2001), `Multi-robot collaboration for robust exploration',
Annals of Mathematics and Arti�cial Intelligence 31(1-4), 7�40.

Schelfthout, K. (2006), Supporting coordination in mobile networks: a middleware approach, PhD
thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium.

Schelfthout, K. & Holvoet, T. (2005), Coordination middleware for decentralized applications in
dynamic networks, in `Proceedings of the 2nd international doctoral symposium on Middleware
(DSM)', ACM Press, pp. 1�5.

Schelfthout, K., Weyns, D. & Holvoet, T. (2005), Middleware for protocol-based coordination in
dynamic networks, in `Proceedings of the 3rd international workshop on Middleware for pervasive
and ad-hoc computing (MPAC)', ACM Press, pp. 1�8.

Schelfthout, K., Weyns, D. & Holvoet, T. (2006), `Middleware for protocol-based coordination in
mobile applications', IEEE Distributed Systems Online 7(8).

Schemmer, S. (2004), A Middleware for Cooperating Mobile Embedded Systems, PhD thesis, Fakultät
fur Informatik , Otto-von-Guericke-Universität Magdeburg.

Schemmer, S. & Nett, E. (2003), Achieving reliable and timely task execution in mobile embedded
applications, in `Proceedings of the IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS)', IEEE Computer Society, pp. 61�68.

Schemmer, S., Nett, E. & Mock, M. (2001), Reliable real-time cooperation of mobile autonomous sys-
tems, in `Proceedings of the Symposium on Reliable Distributed Systems (SRDS)', IEEE Computer
Society, pp. 238�246.

Schermerhorn, P. & Scheutz, M. (2006), Social coordination without communication in multi-agent
territory exploration tasks, in `Proceedings of the �fth international joint conference on Autonomous
agents and multiagent systems (AAMAS)', ACM Press, pp. 654�661.

158

BIBLIOGRAPHY

Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Laerhoven, K. V. & de Velde, W. V. (1999),
Advanced interaction in context, in H.-W. Gellersen, ed., `Proceedings of the First International
Symposium on Handheld and Ubiquitous Computing (HUC'99)', Vol. 1707 of Lecture Notes in
Computer Science, Springer, pp. 89�101.

Schoonderwoerd, R., Bruten, J. L., Holland, O. E. & Rothkrantz, L. J. M. (1996), `Ant-based load
balancing in telecommunications networks', Adaptive Behavior 5(2), 169�207.

Schraft, R. D. (1994), `Mechatronics and robotics for service applications', IEEE Robotics & Automa-
tion Magazine 1(4), 31�35.

Selic, B. (1998), Using UML for modeling complex real-time systems, in `Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems (LCTES '98)',
Springer-Verlag, London, UK, pp. 250�260.

Senart, A., Bouroche, M. & Cahill, V. (2008), `Modelling an emergency vehicle early-warning system
using real-time feedback', International Journal of Intelligent Information and Database Systems,
Special issue on �Information Processing in Intelligent Vehicles and Road Applications� 2(1). To
appear.

Senart, A., Cunningham, R., Bouroche, M., O'Connor, N., Reynolds, V. & Cahill, V. (2006), MoCoA:
Customisable middleware for context-aware mobile applications, in `Proceedings of the 8th Interna-
tional Symposium on Distributed Objects and Applications (DOA)', Vol. 4276 of LNCS, Springer
Verlag, pp. 1722�1738.

Sheng, W., Yang, Q. & Guo, Y. (2006), Experimental testbed and distributed algorithm for coopera-
tive driving in vii simulation, in `Proceedings of the IEEE Conference on Intelligent Transportation
Systems (ITSC)', IEEE, pp. 1627�1632.

Simmons, R. G., Singh, S., Hershberger, D., Ramos, J. & Smith, T. (2000), First results in the coor-
dination of heterogeneous robots for large-scale assembly, in D. Rus & S. Singh, eds, `Proceedings
of Experimental Robotics VII (ISER '00)', Vol. 271 of Lecture Notes in Control and Information
Sciences, Springer-Verlag, pp. 323�332.

Singh, K., Nedos, A. & Clarke, S. (2006), TransMAN: A group communication system for manets, in
S. Chaudhuri, S. Das, H. Paul & S.Tirthapura, eds, `Proceedings of the 8th International Conference
on Distributed Computing and Networking (ICDCN)', Vol. 4308 of Lecture Notes in Computer
Science, Springer, pp. 430�441.

Skeen, D. & Stonebraker, M. (1983), `A formal model of crash recovery in a distributed system',
Transactions on Software Engineering (TSE) 9(3), 219�228.

Stankovic, J. A., Ramamritham, K., Niehaus, D., Humphrey, M. & Wallace, G. (1999), `The Spring
system: Integrated support for complex real-time systems', The International Journal of Time-
Critical Computing Systems 16, 223�251.

Ueki, J., Mori, J., Nakamura, Y., Horii, Y. & Okada, H. (2004), Development of vehicular-collision
avoidance support system by inter-vehicle communications, in `Proceedings of the Vehicular Tech-
nology Conference (VTC)', Vol. 5, IEEE, pp. 2940�2945.

Varaiya, P. (1993), `Smart cars on smart roads: Problems of control', IEEE Transactions on Automatic
Control 38(2), 195�207.

Verissimo, P. & Almeida, C. (1995), `Quasi-synchronism: a step away from the traditional fault-
tolerant real-time system models', Bulletin of the Technical Committee on Operating Systems and
Application Environments (TCOS) 7(4), 35�39.

Verissimo, P., Cahill, V., Casimiro, A., Cheverst, K., Friday, A. & Kaiser, J. (2002), Cortex : Towards
supporting autonomous and cooperating sentient entities, in `Proceedings of European Wireless
2002', pp. 595�601. Invited paper, not peer reviewed.

159

BIBLIOGRAPHY

Veríssimo, P. & Casimiro, A. (2002), `The timely computing base model and architecture', IEEE
Transactions on Computers - Special Issue on Asynchronous Real-Time Systems 51(8), 916�930.

Veríssimo, P. & Casimiro, A. (2003), Event-driven support of real-time sentient objects, in `Pro-
ceedings of the IEEE International Workshop on Object-oriented Real-time Dependable Systems
(WORDS)', IEEE Computer Science, pp. 2�9.

Veríssimo, P., Casimiro, A. & Fetzer, C. (2000), The timely computing base: Timely actions in the
presence of uncertain timeliness, in `Proceedings of the International Conference on Dependable
Systems and Networks', IEEE Computer Society Press, New York City, USA, pp. 533�542.

Wang, K. & Li, B. (2002), E�cient and guaranteed service coverage in partitionable mobile ad-hoc
networks, in `Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE
INFOCOM', IEEE, pp. 1089�1098.

Warren, C. W. (1990), Multiple robot path coordination using arti�cial potential �elds, in `Proceedings
of the IEEE International Conference on Robotics and Automation', IEEE, pp. 500�505.

Weigel, T., Gutmann, J.-S., Dietl, M., Kleiner, A. & Nebel, B. (2002), `Cs freiburg: Coordinating
robots for successful soccer playing', IEEE Transactions on Robotics and Automation 18(5), 685�
699.

Weyns, D. & Holvoet, T. (2008), `Architectural design of a situated multiagent system for control-
ling automatic guided vehicles', International Journal on Agent Oriented Software Engineering
(IJAOSE), Special Issue on Multiagent Systems and Software Architecture . to appear.

Weyns, D., Schelfthout, K. & Holvoet, T. (2005), Exploiting a virtual environment in a real-world
application, in D. Weyns, H. V. Parunak & F. Michel, eds, `Proceedings of the 2nd International
Workshop on Environments for Multiagent Systems (E4MAS)', Vol. 3830 of Lecture Notes in Com-
puter Science, Springer Verlag, pp. 218�234.

Weyns, D., Schelfthout, K., Holvoet, T. & Lefever, T. (2005), Decentralized control of E'GV trans-
portation systems, in M. Pechoucek, D. Steiner & S. G. Thompson, eds, `Proceedings of the In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS)', ACM,
pp. 67�74.

Weyns, D., Steegmans, E. & Holvoet, T. (2004), Towards commitments for situated agents, in `Pro-
ceedings of the IEEE International Conference on Systems, Man & Cybernetics', Vol. 6, IEEE,
pp. 5479�5485.

Yared, R., Cartigny, J., Defago, X. & Wiesmann, M. (2007), Locality-preserving distributed path
reservation protocol for asynchronous cooperative mobile robots, in `Proceedings of the Eighth In-
ternational Symposium on Autonomous Decentralized Systems (ISADS)', IEEE Computer Society,
pp. 188�195.

Yolum, P. (2005), Towards design tools for protocol development, in F. Dignum, V. Dignum, S. Koenig,
S. Kraus, M. P. Singh & M. Wooldridge, eds, `4th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-05)', ACM, pp. 99�105.

Zhao, Y. (1997), Vehicle Location and Navigation Systems, Artech House Publishers.

160

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Motivations
	Background information
	Coordination
	Wireless communication
	Sensor information and environment-mediated communication

	Context
	Application-specific coordination mechanisms
	Consensus-based approaches
	Other approaches
	Analysis

	Challenges
	Spontaneous interactions
	Race conditions
	Reaction compatibility
	Ambiguity in the absence of messages

	Approach
	Goal and contributions
	Scope
	Road map
	Summary

	Chapter Related Work
	Multi-agent systems
	Physical vs. software agents
	Commitments
	Environment-mediated communication
	Analysis

	Multi-robot systems
	Application-specific solutions
	Generic solutions
	Analysis

	Intelligent transportation systems
	Autonomous cars
	Collaborative driving
	Analysis

	Coordination models
	Data-centric models
	Message-centric
	Analysis

	Mobile real-time systems
	Specifying real-time requirements
	A Middleware for Cooperating Mobile Embedded Systems
	Gear
	Analysis

	Comparison
	Requirements
	Systems comparison
	Analysis
	Other influential concepts

	Summary

	Chapter Problem Modelling: Communication and Sensor Models
	Environment model
	Elements and entities
	Indirect communication
	Element classification

	Direct communication model
	Rationale
	Specifications
	Guarantees
	Assumptions
	Implementation
	Conclusions

	Sensor and indirect communication model
	Rationale
	Specifications
	Guarantees
	Assumptions
	Implementation
	Conclusions

	Comparison of the communication models
	Fault model
	Summary

	Chapter Comhordú - A Real-Time Coordination Model for Autonomous Mobile Entities
	Approach
	Specifying safety constraints
	Motivations
	Concepts
	Syntax
	Expressing the safety constraints
	Solvability
	Decomposition of the safety constraints

	Safety constraint distribution
	Responsibility
	Mode compatibility
	Coordination primitives

	Translating safety constraints
	Contracts between elements
	Zones

	Summary

	Chapter Using Comhordú to Derive Requirements on Entity Behaviour
	Designing a solution
	Deriving the set of solutions
	Evaluating the set of solutions
	Conclusion

	Deriving the requirements
	General approach
	Contract without transfer
	Contracts without feedback
	Contracts with feedback

	Combining different scenarios
	Deriving requirements for a combination of safety constraints
	Deriving requirements for a combination of scenarios

	Summary

	Chapter Design and Implementation of ComhorMod, a Tool Supporting Comhordú
	The sentient object tool chain
	MoCoA
	Mocoa tools

	ComhorMod
	Entity definition
	Safety constraint specification
	Mode compatibility
	Responsibility attribution and contract choice
	Requirements on entities behaviour
	Parameter estimation
	Requirements with numerical values
	Sentient object skeleton

	Achievements and future work
	Summary

	Chapter Evaluation and Results
	Evaluation outlook
	Experimental configuration
	Using somod and the mocoa tool chain
	Direct communication modelling
	Indirect communication modelling

	Pedestrian traffic light
	Modelling the scenario in comhormod
	Evaluating the solutions

	Early emergency vehicle arrival warning
	Modelling the scenario in comhormod
	Evaluating the solutions

	Results
	Summary

	Chapter Conclusions and Future Work
	Achievements
	Perspectives
	Future work
	Summary

	Bibliography

