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Abstract

The technological developments of the last decade, particularly in the �eld of mobile mi-
croprocessor design, have enabled the integration of information processing capabilities in
small everyday devices and appliances. This trend is leading the computing world to a
paradigm shift; the computer is no longer a personal dedicated device used for speci�c
operations, but it is woven into the surrounding environment providing its services in a
transparent manner. The pervasive computing paradigm approaches computing from a
human-centric, non-intrusive viewpoint. However, its extremely dynamic and open nature
raises security and privacy concerns that need to be addressed in a coherent manner along
with the development of the required infrastructure. Although the traditional security
requirements remain the same, this new approach to computing has introduced additional
challenges.

The main problem in addressing the security requirements of pervasive environments is
the large number of ad hoc interactions among previously unknown entities, hindering the
reliance on prede�ned trust relationships. As users roam among administrative domains
the devices they carry must be able to interact in a disconnected and decentralized man-
ner. Secure connections must be established spontaneously, without the need to access
online central entities. The problem is aggravated since data transmissions use wireless
media, such as Bluetooth and IEEE 802.11, whose integrity and con�dentiality can easily
be undermined by malicious entities. The proposed security solutions must also take into
account the ubiquitous computing vision that demands interaction interfaces that inte-
grate naturally with the goals users are trying to achieve in order to be as unobtrusive
as possible. Perceived contextual information from the environment should be utilized
in order to facilitate simpli�ed management and to minimize human intervention for the
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required administrative tasks. Existing security management approaches fail to capture
the complete set of these requirements.

In this dissertation we propose ÆTHER, a novel authorization management framework
designed speci�cally to address trust establishment and access control in pervasive com-
puting environments. ÆTHER directly extends the traditional RBAC model to support
decentralized administration, disconnected operation and context-awareness. Furthermore,
we use the well-de�ned concept of location-limited channels to specify an unobtrusive us-
age model for the required administrative tasks. Based on this general framework we have
instantiated two di�erent systems. The �rst one, ÆTHER0, has been designed to address
the authorization requirements of small pervasive environments which consist of particu-
larly constrained devices. The second, ÆTHER1, addresses the authorization requirements
of large pervasive computing domains that have multiple owners with complicated security
relationships. Our implementation and evaluation of the two instantiations demonstrates
the feasibility of deploying and using them in real-world pervasive computing environments.
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Chapter 1

Introduction

The pervasive computing paradigm predicts that in the near future we are going to be
surrounded by countless wireless devices capable of providing services transparently. Com-
puting devices are being embedded into everyday appliances and become part of our envi-
ronment. Interactions with such devices must be integrated with the purpose a user aims
to achieve in a natural, graceful way in order to feel ubiquitous. However, the open na-
ture of such environments raises security concerns that need to be addressed in a coherent
manner along with the development of the required underlying infrastructure. Although
the traditional security requirements remain the same, this new approach to computing
has introduced additional challenges.

The main problem in addressing the security requirements of pervasive computing en-
vironments is the large number of ad hoc interactions among previously unknown entities1,
hindering the reliance on prede�ned associations. Authentication mechanisms can be em-
ployed to establish the identity of a pervasive computing entity but they su�er from scala-
bility problems and have limited value in de�ning authorization decisions among strangers.
Another equally important problem is that the employed security solution should follow
the ubiquitous computing vision and be naturally integrated with the actions the users
perform in order to complete their objectives. A user that carries a multitude of devices
must be able to establish spontaneous secure communication channels with the devices
embedded into the environment or carried by other users without extensive manual recon-

1That is entities that visit the current domain for the �rst time or entities that have visited the domain
in the past but no state information about them has been saved.
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�guration tasks. Contextual information perceived by the devices from the environment
should be employed in order to enable such communication needs.

According to our vision the global pervasive computing infrastructure will be built in
a non-hierarchical manner by connecting di�erent autonomous domains via the existing
mobile and �xed communication networks. The security considerations associated with this
vision must be addressed in parallel with the development of the architecture designs that
are going to support its employment. Consider the following simple but typical scenario in
a pervasive computing environment (illustrated in Fig. 1.1). The owner wishes to control
a light switch through her wristwatch via a wireless transmission medium and also wants
to allow a trusted visitor in the house to do the same. However, in both cases she wants to
be sure that a malicious party who walks outside the house will not be able to control the
light switch and capture or modify any of the above wireless transmissions. Additionally,
the necessary administrative actions should be kept to an absolute minimum.

Figure 1.1: Typical insecure pervasive computing scenario.

In this dissertation we propose ÆTHER2, an authorization management framework
designed speci�cally to address trust establishment and access control in pervasive com-
puting environments where a priori knowledge of the complete set of participating entities

2The name was inspired by the medium that was once believed to pervade all space supporting the
propagation of electromagnetic waves.
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and global centralized trust registers cannot be assumed. The basis of our work is the
Role-Based Access Control (RBAC) model [FK92], according to which entities are as-
signed to roles and roles are associated with permissions. ÆTHER extends RBAC in order
to support decentralized administration, disconnected operation and context-awareness.
Furthermore, we use the well-de�ned concept of location-limited channels to specify an
unobtrusive usage model for the required administrative tasks.

Based on this general framework we have instantiated two di�erent systems:
1. ÆTHER0 has been designed to address the authorization needs of small pervasive

environments whose management requirements are simple. It utilizes only symmetric
key cryptography in order to provide security services. Consequently, it is appropri-
ate for devices that have particularly limited processing capabilities (such as simple
sensors).

2. ÆTHER1 addresses the authorization requirements of large pervasive computing do-
mains that have multiple owners with complicated security relationships. It relies
on asymmetric cryptography and therefore is more �tting to domains that consist of
devices that have su�cient information processing capabilities.

1.1 Requirements

In order to specify and build an authorization management framework that is able to
support pervasive computing, a number of requirements must be taken into consideration:

• Decentralized management. The dynamic nature and the great number of partic-
ipating devices in pervasive computing imply the need for frequent establishments
of communication channels between entities that belong to di�erent administrative
domains. Centralized architectures are not able to support the autonomous non-
hierarchical building of a secure pervasive computing infrastructure. Furthermore,
external centralized entities constitute a single point of attack/failure and it is not
realistic to assume that they can be universally trusted.

• Disconnected operation. This requirement is closely related to the previous one.
An authorization architecture for pervasive computing must be able to support the
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establishment of secure relationships between devices that are not able, due to phys-
ical location, network partitions, or other reasons, to connect to a third party for
mutually authenticating and authorizing each other.

• Unobtrusiveness. Human intervention for the required administrative tasks should
be naturally and gracefully integrated with the physical work�ow of users in order
to facilitate the unobtrusive nature of pervasive computing.

• Context-awareness. The use of contextual information such as physical location,
activity and others, should be utilized to allow the dynamic adaptation of the man-
agement framework to a variety of situations and applications. Moreover, context-
awareness minimizes human intervention and user distractions for con�guration pur-
poses alleviating unobtrusiveness.

1.2 Summary of Goals

Our goals for the work presented in this dissertation are summarized below:

• The identi�cation and analysis of the requirements of authorization management in
pervasive computing. Furthermore, the examination of existing security models and
systems with regard to the previously identi�ed requirements.

• The de�nition of a pervasive computing threat model that will allow us to identify
the speci�c attacks and avenues of attack that we will try to o�er protection against.

• The development of an authorization management framework for pervasive comput-
ing based on the identi�ed requirements and the formulated threat model.

• The demonstration of the developed system's feasibility through a real-world imple-
mentation and evaluation.

1.3 Key Contributions

The key contribution of this thesis is the presentation of the design and engineering of a
complete authorization management system for pervasive computing environments. We
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can identify our signi�cant contributions within this scope in the following �ve areas:

1. The theoretical ÆTHER framework that extends the traditional RBAC model to in-
clude support for decentralized management, disconnected operation, context-awareness
and unobtrusive administration.

2. Our extensions to the concept of location-limited channels to use them as part of
users' physical actions to state their intent regarding authorization while being in-
tegrated gracefully with the primary task, thus achieving unobtrusive security man-
agement.

3. Our enhancements to the KeyNote trust management system to allow its use in
realizing both the traditional RBAC authorization model and our extensions to it.
Speci�cally, we have modi�ed KeyNote's policy language, and extended its inference
engine to include support for dynamic attribute authorization decisions, dynamic
values for the utilized attributes, and integer delegation control.

4. The ÆTHER0 management model that relies exclusively on symmetric cryptography
to instantiate our general framework.

5. The ÆTHER1 instantiation and its novel RBAC delegation model based on the
concept of dynamic Authority Attribute Sets (AASs).

1.4 Dissertation Outline

The rest of this dissertation is structured as follows: This chapter brie�y introduces the
pervasive computing paradigm and the associated security challenges. It also summarizes
the requirements for a pervasive computing authorization management architecture and
presents our goals for the rest of the work.

Chapter 2 sets the scene of pervasive computing and the related enabling concepts
of context-awareness and service discovery. It also examines several existing pervasive
computing systems in order to clearly de�ne the target area. The main focus of the
chapter is the survey of traditional and pervasive computing security systems that have
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been published in the literature. The related open research problems are identi�ed by
presenting a thorough classi�cation of the examined projects.

Chapter 3 presents a comprehensive threat model for pervasive computing. A threat
model is required in order to clearly de�ne attack avenues, speci�c attacks and the related
assumptions. This analysis helps us to gain a better understanding of a pervasive comput-
ing environment from the attacker's viewpoint and directly leads to the formulation of a
security model.

Chapter 4 introduces a novel authorization management framework that has been de-
signed to address the requirements of pervasive computing environments. The general
framework is then instantiated into two distinct systems that address the security and the
user demands of di�erent pervasive authority domains. Moreover, usability and maintain-
ability aspects are analyzed focusing on the needs of the end users. The chapter ends by
o�ering a detailed comparison of the two instantiations and an examination of which one
is applicable to which pervasive computing scenario.

Chapter 5 presents the implementation of two prototypes for the two instantiations
of the ÆTHER framework and examines their feasibility using modern handheld devices
as the development hardware platform. Furthermore, the chapter demonstrates that both
implemented solutions perform more than adequately well without introducing signi�cant
computation overhead or user distractions.

The �nal chapter discusses the conclusions of the work presented in the dissertation
and summarizes the contributions. Finally, it identi�es areas that future research on the
subject should focus on.

1.5 Publication Record

Towards the completion of the work presented in this dissertation we have published subsets
of the produced research in refereed international journals, conferences and workshops:

• Patroklos Argyroudis and Donal O'Mahony, �Secure Routing for Mobile Ad hoc Net-
works�, IEEE Communications Surveys and Tutorials, IEEE Press, vol. 7, no. 3, pp
2-21, 2005.
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• Patroklos Argyroudis and Donal O'Mahony, �Towards Flexible Authorization Man-
agement�, In Proceedings of 10th IEEE International Symposium on Computers and
Communications (ISCC'05), IEEE Press, pp 421-426, 2005.

• Ioanna Stamouli, Patroklos Argyroudis and Hitesh Tewari, �Real-time Intrusion De-
tection for Ad hoc Networks�, In Proceedings of 6th IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WOWMOM'05), IEEE
Press, pp 374-380, 2005.

• Patroklos Argyroudis and Donal O'Mahony, �Towards a Context-aware Framework
for Pervasive Computing Authorization Management�, 3rd UK-UbiNet Workshop:
Designing, Evaluating and using Ubiquitous Computing Systems, 2004.

• Jean-Marc Seigneur, Patroklos Argyroudis, David O'Callaghan and Joerg Aben-
droth, �The REL Project: Mobile-based Reliable Relations�, 1st Workshop on Friend
of a Friend, Social Networking and the Semantic Web, 2004.

• Patroklos Argyroudis, Raja Verma, Hitesh Tewari and Donal O'Mahony, �Perfor-
mance Analysis of Cryptographic Protocols on Handheld Devices�, In Proceedings of
3rd IEEE International Symposium on Network Computing and Applications (NCA'04),
IEEE Press, pp 169-174, 2004.

• Patroklos Argyroudis and Donal O'Mahony, �Securing Communications in the Smart
Home�, In Proceedings of 2004 International Conference on Embedded and Ubiquitous
Computing (EUC'04), LNCS 3207, Springer-Verlag, pp 891-902, 2004.

• Patroklos Argyroudis and Donal O'Mahony, �ÆTHER: an Authorization Manage-
ment Architecture for Ubiquitous Computing�, In Proceedings of 1st European PKI
Workshop: Research and Applications (EuroPKI'04), LNCS 3093, Springer-Verlag,
pp 246-259, 2004.

We have also contributed to the following Computer Science Department Technical Report:
• Jean-Marc Seigneur, Anselm Lambert, Patroklos Argyroudis and Christian D. Jensen,
�PR3 Email Honeypot�, Technical Report TCD-CS-2003-39, Department of Com-
puter Science, University of Dublin, Trinity College, 2003.
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Chapter 2

Background and Related Work

The main goal of this chapter is to survey the existing research work in the area of pervasive
computing authorization systems, identify their strengths and shortcomings, and consider
whether they satisfy the requirements of the human-centered computing paradigm. Con-
sequently, we �rst analyze the properties of pervasive computing in general and the related
enabling technologies, such as context-awareness and service discovery. To gain a more
clear understanding of our target area, we also examine several existing ubiquitous com-
puting systems and identify possible security threats associated with the functionalities
they o�er. We then o�er a brief overview of computer security and its conventional goals
that are relevant to our research area, as well as traditional computer security systems and
the reasons they fail to address pervasive computing requirements. The main focus of the
chapter is the survey of pervasive computing security systems that have been published in
the literature. The chapter ends with a thorough classi�cation of the examined projects
and an identi�cation of the related open research problems.

2.1 Pervasive Computing

The technological developments of the last decade, particularly in the �eld of mobile mi-
croprocessor design and wireless networking, have enabled the integration of information
processing capabilities in small everyday devices and appliances. This trend is leading the
computing world to a paradigm shift; the computer is no longer a dedicated device used for

8



generic operations, but it is woven into the surrounding environment providing its services
in a transparent and unobtrusive manner. The ubiquitous, or pervasive (as it has been
known since the mid-1990s) computing paradigm envisioned by Mark Weiser [Wei91] ap-
proaches computing from a human-centric, non-intrusive viewpoint: �The most profound
technologies are those that disappear. They weave themselves into the fabric of everyday
life until they are indistinguishable from it.� According to Weiser's vision, future com-
puting environments would be composed of cheap and disposable devices interconnected
via wireless media. These devices would either be embedded into the environment itself
or worn by people. As it is clearly obvious, this part of Weiser's vision is already a real-
ity. Embedded computing has indeed become pervasive. In our homes we have countless
devices that use microprocessors for management and controlling functions. Furthermore,
the number of information processing devices that we carry with us is also increasing.
Sophisticated mobile phones, MP3 players and PDAs are quickly becoming a necessity for
supporting modern human activities. Even the interconnection requirement is a reality.
Wireless technologies such as IEEE 802.11 and Bluetooth enable the interconnection of
our mobile phones with headphones and our PDAs with nearby printers.

However, the main characteristic of Weiser's vision that concerns the usage model of
ubiquitous computing systems has yet to be engineered. Future computing environments
will not be comprised of traditional dedicated computers, but rather of everyday devices
and appliances with information processing and communication capabilities. Users will
operate these devices according to usage models that integrate naturally with the actions
they perform in order to complete their objectives. Thus, computing will become ubiqui-
tous as it will support the activities of the users without being a distraction. The design
of such computing usage models, often called calm computing [WB96], will allow a user to
change her focus from the system to another activity in a �uid and natural way. Accord-
ing to previous research e�orts [PRM99], [SAW94], [KF02], in order to allow ubiquitous
computing systems to be unobtrusive to the user and adaptive to his ongoing activities the
ability to sense, collect and process context is fundamental.

Based on the above discussion we now enumerate the following three key properties of
pervasive computing systems:
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1. Extremely open and dynamic nature. Pervasive computing environments are com-
prised of countless devices that are able to process information, interconnect with
others, o�er and consume services. These devices are not bound to a speci�c physical
area; people carry them around as they roam among administrative domains. This
suggests large number of interactions among unknown entities, that is entities that do
not belong to the same administrative domain and have not communicated before, or
have done so but the state of their relationship has not been maintained. Two related
important requirements of computing systems designed for open and dynamic envi-
ronments are disconnection and decentralization. Connectivity between devices in
pervasive computing must be established without the need to contact online central
servers for con�guration, security or other reasons.

2. Graceful and unobtrusive usage models. The interaction interfaces of the devices
speci�cally, and more generally the usage models of pervasive computing systems,
should be integrated naturally with the goals the users are trying to achieve in order
to minimize human distraction and make ubiquitous computing feel ubiquitous.

3. Context-awareness. Pervasive computing systems and applications should be able to
discover and utilize contextual information (like user location, current activity, and
time of day). This will allow them to dynamically adapt to usage scenarios and sup-
port the users' information processing requirements without becoming a distraction.

These properties in essence lead to human-centered computing. Instead of having the user
interact with a dedicated machine and focus all his attention on it, handheld or embedded
devices will perform the user's requests, and more importantly the user's will, without
requiring constant concentration and extensive manual tasks.

Although a lot of researchers include hardware constraints, such as limited processing
and memory resources, in the list of pervasive computing inherent properties, the constant
advancement of hardware technology increasingly makes this an irrelevant issue. As an
example consider that in 2005 the available high-end devices for smartcard products were
using up to 100 MHz CPU clock speeds, while a year before the typical top speed for the
same class of devices was 33 MHz [Mit04]. Furthermore, both static and volatile memory
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is constantly increasing enabling pervasive computing programmers and system designers
to worry less and less about cache sizes and storage requirements.

Another critical goal, but not necessarily a key property, of pervasive computing is pro-
grammability. Integrated smart spaces should allow application programmers to perceive
them as space-speci�c software libraries to be used from a high-level language [Hel05]. The
devices, sensors and actuators of the smart space should be represented as services that
can easily be accessed and used by developers. In this service-oriented view of pervasive
computing every available information gathering or processing resource could be composed
with every other, with which is compatible, enabling rapid prototype development. Thus,
a pervasive computing developer could create applications that for example adjust the light
level of the room when the TV is on by composing the access interfaces of the room-light
sensor service, a window-blind sensor service and the TV [Hel05]. Service discovery frame-
works can facilitate the standardization of access interfaces as well as of the protocols for
the location of these services in dynamic environments.

2.2 Context and Context-awareness

As we have seen in the previous section, the ability to discover and adapt to contextual
information is one of the key properties of ubiquitous computing systems. For humans,
context recognition and adaptation is a natural process that happens frequently during
daily activities. When we want to divulge a secret to a trusted colleague we are careful to
note the people in our vicinity and lower our voice. However, in computer science the term
�context� is usually vague and overloaded with many di�erent meanings. For the purpose
of this thesis we will ignore context as de�ned in other areas of computer science, and focus
only on context that is or can be utilized by ubiquitous computing systems.

There have been many attempts in the literature to give a formal de�nition of context.
Instead of trying to include them all here, we will focus on the most representative ones.
In [DA99] context is de�ned as:

�Any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the inter-
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action between a user and an application, including the user and applications
themselves.�

Chen and Kotz give the following de�nition [CK00]:

�Context is the set of environmental states and settings that either determines
an application's behavior or in which an application event occurs and is inter-
esting to the user.�

As it is obvious from the given de�nitions, context is di�cult to be de�ned generally since
it is highly relevant to the situation and system use case under investigation. In order to
give a de�nition of context that is more appropriate and useful for systems development,
Adelstein et al. [AGRS05] based on work by Schilit [SAW94] and Chen [CK00], divide
context into two categories. The enumeration-based category de�nes context by employing
�ve categories, as follows:

1. Computing context, which includes information regarding network connectivity, com-
munication costs, available bandwidth, and nearby accessible resources such as print-
ers, �le servers and others.

2. User context, such as pro�les with user de�ned settings, current location, and other
users within the vicinity of the user.

3. Physical context includes level of lighting and noise at the current location, temper-
ature, etc.

4. Temporal context, such as time of day, week, month, season of the year.

5. Context history, which are the data collected across a time span according to the
above four context categories.

The role-based category for de�ning context does so by explicitly labelling context data
according to how it can be used by a pervasive computing application. Consequently,
active context is the contextual information used by an application to adapt its behavior,
and passive context is the contextual information that although it is relevant to the user for
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enhancing her understanding of the environment, it is not used for application adaptation
[AGRS05]. The enumeration and role based categories are clearly not mutually exclusive;
Room temperature, being a physical context, can be used by an application as active
context in order to adapt the settings of an air conditioner.

Another important aspect of context is its ability to be aggregated in order to form more
complete representations and understanding of the current user environment. Low-level
contexts provided directly by sensors, such as location, time, temperature, and others, can
be aggregated into other higher-level sources of contextual data. For example, by aggre-
gating a user's current time and location, along with her calendar, a pervasive computing
application can derive the user's current activity, like attending a meeting, or sitting in
class [CK00]. Service-orientation, as explained in the previous section, can facilitate con-
text aggregation by composing the state of several sensors available in a smart space.

Context de�nitions are useful for knowing what types and categories of contexts are
available to pervasive computing applications. However, the problem of e�ectively utilizing
these to respond to changes in the user's environment to enhance her understanding or
to minimize con�guration tasks still presents challenging research questions. Context-
awareness includes the following four capabilities according to Pascoe [Pas98]:

1. Contextual sensing, which is the capability of detecting environmental states and
settings. This also includes the way that this information is presented to the user.

2. Contextual adaptation, the capability of an application or system to dynamically
adapt its behavior according to sensed context.

3. Contextual resource discovery, refers to the discovery of available and accessible re-
sources that can be used by the application in order to facilitate better adaptation
to the user's needs.

4. Contextual augmentation, which is the capability of associating digital data with a
user's current context.

Another de�nition of context-aware computing is given by Chen and Kotz in [CK00]. By
using the role-based context de�nition they identify two ways of using context: dynamic
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adaptation of the application's behavior according to sensed context data, and presentation
of the context data to the user (or storing for later retrieval). Thus, context-awareness can
be divided into the following two categories:

1. Active context-awareness, according to which an application dynamically adapts to
sensed context and changes its behavior.

2. Passive context-awareness, in which an application stores or presents sensed context
information to the user.

In pervasive computing active context-awareness can be used to develop adaptive appli-
cations. The optimum goal is to minimize the need of extensive manual con�guration
tasks and naturally integrate the ones that are required to the physical world actions the
users perform to achieve their objectives. In our developed architecture we only focus on
active context-awareness, as it can be directly used to develop adaptive security policies
and minimize the need for recon�guration.

2.3 Service Discovery

As the vision of pervasive computing becomes a reality the number of devices in our homes
and in the environments we visit constantly increases. Since the goal of pervasive com-
puting is to make devices and information processing capabilities disappear, these devices
need to utilize wireless media to o�er their services in a transparent manner. In the past,
workstation computers were physically connected via wires to peripheral devices such as
printers and scanners. Although wired connections provide ready access to the services of
the connected devices, they limit mobility and prevent natural integration with the sur-
roundings. Moreover, human intervention is frequently needed in order to maintain these
devices and enable them to interoperate with each other and with the central workstation
computer. In a computing environment where there are hundreds of participating devices
these limitations present serious problems. Users cannot be realistically expected to con-
stantly maintain and con�gure all of their devices. Mobile devices entering and leaving
the environment have to be able to dynamically interact with it and discover other devices
and provided services as needed.
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As a result, service discovery is an enabling technology for pervasive computing. For
example, the lights of a room may be automatically turned o� as the user leaves the room
and storage space on a �le server can be requested when a PDA cannot accommodate
its user's needs. Service discovery frameworks, such as Jini [ASW+99], Universal Plug
and Play (UPnP) [UPn03], and the Service Location Protocol (SLP) [GPVD99], aim to
standardize software interfaces and protocols for service discovery creating interoperability
and making their implementation straightforward. When a device has support for service
discovery it usually means that it is able to support a subset of the following capabilities:

• Standardization of service de�nitions. In order for a provided service to be discovered
and used dynamically it must be de�ned according to a universally agreed way. A
service de�nition includes attributes or textual messages that describe what exactly
is provided, the access interface and the operations it supports, the utilized protocols,
as well as other related information.

• Search and location protocols. A service discovery framework must provide the abil-
ity to locate required services on demand. This is usually done by allowing users to
specify in textual descriptions what are they looking for. User input may be com-
pletely free-form, such as �color printer�, or structured in attribute name-value pairs,
for example �device:printer, capability:color�.

• Advertisement of services. The capability of service advertising allows the dynamic
update of the local networking environment with insertion and deletion of available
services. When a device is turned on, or comes in the vicinity of a network, it ad-
vertises the services it provides according to its policy con�guration. The generated
advertisements contain service availability data that are either delivered directly
to other client devices, or to dedicated devices that register and maintain lists of
available services. We must note here that service advertisement and discovery is
characterized by its dynamic nature. Traditional information dissemination systems,
such as the Domain Name System (DNS) [Moc87] and the Dynamic Host Con�g-
uration Protocol (DHCP) [Dro97], are based on static con�guration �les that have
to be maintained by human administrators. Service advertisement and discovery
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in pervasive computing implement a more dynamic model according to which avail-
able information may be inserted or deleted from the network with no or minimal
intervention by regular users without special authority over the system.

• Service registration. As mentioned above, when a service advertisement is generated
it can either be broadcasted into the network where it can reach possible service con-
sumers directly, or it can be sent to a dedicated precon�gured device that catalogs
all available services. In the latter case, clients locate required services by querying
the catalogs instead of broadcasting queries in the network. Although service cata-
logs require precon�gured infrastructure, they o�er certain advantages to a pure ad
hoc service discovery approach. For example, the overhead of broadcast tra�c in
the network is signi�cantly reduced. Also, the synchronization of service availability
among di�erent networks is greatly simpli�ed by just processing the catalog of the
dedicated device responsible for each network. However, the need for con�guration
and maintenance of the service cataloging devices introduces an additional adminis-
tration burden to a user. Therefore in pervasive computing environments where the
minimization of human intervention is fundamental, ad hoc approaches to service
advertisement and location are preferred.

Since service discovery in pervasive computing is inherently dynamic and free of globally
accessible registries that are always online and reachable, the provided services must adhere
to certain properties. These properties are used to enable the identi�cation, location and
standardization of services in such volatile environments.

Identi�cation of the provided services is essential in service discovery frameworks. In
large pervasive computing environments that span across many physical spaces it is possi-
ble to have the same service provided by two di�erent devices. One method to distinguish
between services is to assign to them Universally Unique Identi�ers (UUIDs). The use
of UUIDs allows devices to search for speci�c services without using any form of tex-
tual descriptions, but just with the identi�er. Although this process is not appropriate
when users are looking for services, it simpli�es the con�guration of devices that have to
look for speci�c services when they boot. Pervasive computing environments have to sup-
port disconnected operation, hence relying on a central server to maintain and distribute
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UUIDs is not a feasible design choice. Although Media Access Control (MAC) addresses
have been suggested as a basis for self-generated UUIDs, their use may lead to security
problems [GWF+99]. One way to generate UUIDs without relying on any kind of global
infrastructure has been proposed as part of the Jini framework [ASW+99].

Service standardization is another important property of service discovery systems.
When a service consumer wishes to locate a certain service, she must be able to de�ne
in an unambiguous way either the name or the attributes of the required service. More
importantly, when the service is located the requester must be able to access its func-
tionality. In order for these problems to be addressed in the context of the inherently
heterogeneous pervasive computing paradigm, service descriptions and programming in-
terfaces have to be standardized. There are currently two approaches for standardizing
provided services. The �rst one uses textual descriptions and the second one interfaces1 of
a programming language. Textual service descriptions have to be structured according to
a clear and well-de�ned language in order to facilitate e�cient and precise discovery. As
an example, UPnP uses the eXtensible Markup Language (XML) which creates structured
descriptions, is easily parsed and, as a pure text language, is platform independent. The
other approach, adopted by Jini, is to standardize a service with a programming interface
that service instances implement. The interface is used to de�ne the high-level protocol
that a service consumer can use to access the functionality of the service. This method
provides the advantage of shielding underlying implementation details and choices, making
possible future changes transparent.

2.4 Pervasive Computing Systems

In the previous sections we have analyzed some of the fundamental properties of pervasive
computing along with the technologies that enable its deployment. In order to gain a
better understanding of this new computing paradigm and the requirements of its intended
target users, this section will focus on presenting practical implementations. Our goal is
to present the most representative existing systems, and not to do an exhaustive survey
of every pervasive computing project. This analysis is also helpful to infer the associated

1The word "interfaces� here is used in its object-oriented meaning.
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security implications that will form the foundation of the detailed threat model presented
in the next chapter.

2.4.1 Oxygen
The goal of the Oxygen project is to provide a complete pervasive human-centered com-
puting environment. As its name suggests, computation is to be available everywhere
around the user responding to natural language commands instead of requiring manual
interaction. Hence, Oxygen's two general research areas are speech and vision recognition,
for enabling users to communicate with the system as if interacting with another human
being, and automation and collaboration technologies to perform the required computation
tasks [MIT05]. A general overview of the Oxygen project can also be found in [Der99].

In more detail, the technologies involved in the Oxygen project can be divided into the
following �ve categories:

1. Device technologies. There are two kinds of devices in the Oxygen vision, embedded
devices named E21s, and handheld devices, named H21s. E21s are considered to
be powerful computation devices playing the role of servers in a smart space. They
directly interface typical household appliances, such as air conditioners, TVs, and
lighting switches, and expose them to the user through natural language recognition
and gesture capturing without o�ering any speci�c physical interaction interfaces.
H21s are PDAs, universal remote control devices, cellphones and other similar devices
that o�er mobile access points for users both in and out of the smart space controlled
by E21s [MIT05]. H21s can conserve power and computation resources by o�oading
operations onto nearly located E21s.

2. Network technologies. Networks, which are referred to as N21s by Oxygen, are
responsible to create dynamic connections between the mobile and stationary devices
of a smart space in order to enable the engineering of collaboration protocols. N21s
o�er naming, location and service discovery mechanisms.

3. Software technologies. The software support of Oxygen is designed to support change
and adaptability. In Oxygen there is no con�guration state maintained as every
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user creates a new pro�le as he interacts with the applications of the environment.
Applications remain anonymous between user sessions.

4. Perceptual technologies. The main modes of interaction between users and appli-
cations in Oxygen are speech and vision instead of keyboards and mice. Speech
recognition is enhanced by visual identi�cation of facial expressions, lip movement,
and gaze.

5. User technologies. These include automation, collaboration, and knowledge access
control. Automation allows users to create scripts and control devices according to
their needs. Collaboration is used to accommodate mobility and form links between
data collected from the environment and user input. Finally, knowledge access en-
ables users to create their own knowledge bases, customize information access and
create semantic connections between data that are meaningful to them.

An important project of Oxygen is the Cricket location-support system [PCB00]. Cricket
utilizes radio and ultrasonic signals in order to measure distance and from that to deter-
mine location. It allows mobile or static applications to learn their physical location by
listening to and analyze information from beacons installed throughout a building. In-
stead of explicitly tracking user location, Cricket allows devices to learn where they are in
a building and leaves the decision of where to advertise this information to the user. This
design approach allows a device to know its location, while everybody else including the
beaconing system does not.

Example applications developed as part of Oxygen include an answering machine that is
able to di�erentiate between calls based on the contents of incoming messages and forward
the urgent ones to the handheld the user is currently using. Also, applications that are able
to recognize and answer questions such as �Where did I put my glasses?� since cameras
are employed to record and locate physical objects.

2.4.2 EasyLiving
The EasyLiving project by Microsoft Research investigates architectures and the related
enabling technologies for supporting invisible computing. The main goal of EasyLiving is
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to develop an integrated system architecture for supporting a coherent experience for the
users as they interact with the handheld or embedded devices that exist in a smart space
[BMK+00]. The devices of the environment are divided into input and output devices.
The �rst part of the architecture consists of software components that encapsulate and
represent these devices. Another part of the architecture is the lookup service which
registers and catalogs all the software components and exposes their provided services
to other components and to applications. In order to support communication between
the components, EasyLiving employs a distributed middleware which uses asynchronous
messages. XML is used to encode these messages and achieve interoperability between
heterogeneous hardware platforms.

Another important element of the EasyLiving architecture is its physical geometry
modelling component. By achieving an as accurate as possible model of the smart space,
the system allows the physical relationships that exist between users, devices and the
environment itself to be used in developing location-aware applications. At this point we
must note that EasyLiving provides no other support for storing, interpreting or using
any other kind of context2. Some example applications of the EasyLiving project include
teleporting of active applications between displays of the environment to follow the user
as she moves and universal remote controls that locate and provide access to services that
are within the vicinity of users.

2.4.3 Cooltown
Cooltown is the pervasive computing architecture designed and implemented by Hewlett-
Packard. The core idea behind Cooltown's approach is the representation of every physical
real world entity of a smart space with a World Wide Web (WWW) page [KB01], [CD00].
An entity can be an object or device, a person, or even the entire smart place itself, and is
identi�ed by a globally unique Universal Resource Locator (URL) that is beaconed by the
entity in its vicinity. The URL leads to the page of the entity, and is dynamically updated
with context information related to the entity it represents. Therefore, Cooltown focuses
on the end user's interaction with objects and the space, accessing collected contextual

2This is a general observation, as also noted in [CK00]. Very few contexts other than location are
actually used in most current pervasive computing systems.
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data and provided services. The two main advantages of Cooltown are its usage model
and its adoption of WWW standardized protocols. As a user moves through the space she
simply points her PDA to a device she wants to access or wants to learn more about its
contextual state. The device's URL is scanned by the PDA and the corresponding WWW
page is requested, parsed and presented on the PDA's display to the user. By adopting
the web model Cooltown manages to be simple, robust and scalable. The WWW is one
of the most well-researched application areas of internetworking, therefore many existing
technologies, like web services, can be directly used. Referring back to our discussion on
context-awareness, Cooltown follows the passive context-aware computing paradigm. Al-
though each device collects context information about itself, this is only presented to an
interested user after a query. It is not used for dynamic behavior adaptation, recon�gura-
tion, or automatic task execution.

Example application scenarios of Cooltown include users that visit new environments
and by capturing the space's URL on their PDAs learn of all the services o�ered. Also, a
speaker that wishes to make a presentation to a conference receives the projector's URL
with a PDA, visits the corresponding page that implements the projector service's access
interface and uploads his presentation �les. The projector can then be controlled through
the PDA via the web-based exposed user interface [Sta02].

2.4.4 Active Systems
At the AT&T Laboratories Cambridge another, closely related to the ones we have already
examined, view of pervasive computing known as sentient computing is being researched.
The main idea of sentient computing is that systems and applications must react to the
user's changing context in order to satisfy her requirements according to the new circum-
stances [Hop99]. Context-awareness is enabled by deploying sensors, like cameras and
microphones, throughout the physical environment that collect status and location data.
Hence, the user is not required to physically, for example by using a keyboard, interact with
the system; the system is able to collect information about the user's current context and
by taking into account her preferences to dynamically recon�gure itself. Consequently,
sentient computing as described above follows the active context-awareness computing

21



paradigm. Practical applications of sentient computing include the Active Badge, Active
Floor, and Active Bat systems, referred to collectively here as active systems. These, as
well as some of their applications, are presented brie�y in the following paragraphs.

Active Badge is an indoors location system with a spatial resolution of room scale.
A building is equipped with �xed infrared sensors, one in each room. Every person in
the building wears a device, like a badge hence the name of the system, which has an
infrared transmitter that periodically beacons the device's identi�er. Since infrared signals
are not able to penetrate walls, a room's sensor is able to receive the beaconed message
and register the person that corresponds to the received identi�er as being in the same
room as itself. This basically means that sensors are con�gured at installation time with
a string that identi�es their location, i.e. room number, in the building. All the sensors of
a building report the identi�ers they receive to a central system server which then is able
to know where individual badges are. The Active Badge system has been used in many
applications, both of social, like locating colleagues, and technical nature. Examples of
the latter include the Call Forwarding [WHFG92] and the Teleporting [BRH94] systems.
Call Forwarding uses Active Badge in order to �nd the location of the recipient of an
incoming telephone call, then with a help of a Private Branch eXchange (PBX) system it
forwards the call to the destination user's nearest phone. One of the limitations of the Call
Forwarding system was that users wanted more control over when calls are forwarded to
them based on their context. For example, unexpected calls were not welcome during a
meeting [CK00]. The Teleporting system tracks the location of users as they move in the
building and maps the user interfaces of the active applications on a user's home machine
onto his nearby computer facilities.

The Active Floor system was designed to overcome the requirement of having to carry
or attach a badge to each entity that has to be tracked. By creating a pressure-sensitive
�oor that acts like a precision scale, the researchers were able to track items and people
without the need to label them in some way beforehand. The �oor is able to detect even
slight weight changes, for example like when moving a small object from one desk to
another [AJLS97]. However, the main problem of the system is that it is di�cult to reach
high-level contextual meaning from the low-level �oor sensor data. Thus, the Active Floor
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system cannot be reliably used as a location system.
Active Bat is the location tracking system that replaced Active Badge. In order to

achieve higher position granularity than the room, Active Bat uses ultrasonic signals in-
stead of infrared beaconing. Active Bat receivers are placed at known locations in the
building and transmitters are attached to objects or people. As with the badges, Active
Bat transmitters have a unique identi�er that they transmit with an ultrasonic pulse. The
pulses are picked up by the receivers in the environment and by measuring di�erent �ight
times depending on their relative location to the transmitter, the location of the transmit-
ter is calculated with respect to the known positions of the receivers [WJH97]. This way
the Active Bat system achieves an accuracy of about 3 centimeters. In order for this low-
level context information to be utilized, a spatial indexing middleware has been developed
that allows the generation and dissemination of events [SWH98]. Application developers
are able to de�ne the spatial events in which they are interested in and receive noti�cations
when they happen. Thus, the Active Bat middleware supports the development of active
context-aware computing applications. The higher resolution location information that
the system provides can be used for creating new usage interaction patterns in pervasive
computing, for example a user can activate a certain functionality simply by pointing his
transmitter to speci�c place in the smart space [Sta02]. Researchers at AT&T Laboratories
Cambridge have used this to create �virtual buttons�; an application developer is able to
register a region in the smart space and associate it with a speci�c action. A user can
then use her transmitter to select this region as if using a mouse in a three-dimensional
environment and activate the related functionality. Another application is the recording of
which user is using which devices. By placing transmitters on objects as well as on users,
the system knows which user was using which object at a speci�c time.

2.5 Computer Security Foundations

In this section we brie�y present some fundamental concepts of computer security that are
relevant to the research area of this dissertation. We �rst present secret and public key
cryptography, along with digital signatures and public key certi�cates, as the main building
blocks of secure systems. At the same time we introduce the notation that is going to be
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used. We then concentrate on the traditional requirements of computer security that are
relevant to our work, namely identi�cation, authentication, and authorization3. Although
the other three conventional requirements of computer security (con�dentiality, integrity,
availability) need to be addressed as well in a complete security solution, we do not focus
our main e�orts on them. The reason for this is that if the problems of authentication and
authorization have been addressed and some key material have been established between
two communicating parties, the protection of the con�dentiality and the integrity of the
channel with strong secret key cryptography is a trivial problem nowadays. On the other
hand we consider availability, which concerns itself with the problem of enabling systems
to perform their advertised services in a timely manner, outside the scope of our research
area. Availability is a complex requirement which aims to address denial of service attacks
from users that have already been authorized to access a service [Gli84], while our focus is
on the process of authorization itself.

2.5.1 Secret Key Cryptography
Secret key cryptography allows two parties that wish to communicate with each other (we
call them Alice and Bob according to cryptographic tradition4) to do so without the fear of
someone that is eavesdropping (Eve) on the communication channel learning the contents
of the exchanged messages. In order for Alice and Bob to protect their messages they must
have agreed beforehand on a quantity, called a secret key and denoted by S, known only to
the two of them. The agreement on the secret key must take place over a channel that is
guaranteed to be con�dential as well as authenticated. After the establishment of the key
S, Alice can encrypt a message M to Bob with it. The encryption operation is denoted as
C = ESAB

(M), where SAB is the secret key shared by Alice and Bob, E is the encryption
function, M is the message (also called plaintext), and C is the result of the operation
(also called ciphertext). Alice transmits C to Bob over the unprotected communication
channel. Bob decrypts C using a decryption function (which must be based on the same

3In this dissertation we treat the terms authorization and access control as synonymous.
4However, we will generally avoid extensively referring to entities as �Alice� or �Bob� in this dissertation

as this creates confusion regarding the exact nature of the entity, especially in pervasive computing where
human users play central roles. When an entity is a human user, a computing device, or a process this
will be explicitly de�ned when required.
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algorithm as E) and the shared key; the decryption is denoted by M = DSAB
(C). Eve,

who does not know the secret key shared by Alice and Bob (SAB), is not able to decrypt
C (see Fig. 2.1).

Figure 2.1: Secret key cryptography.

Secret key cryptography algorithms are also known as symmetric key algorithms. A lot
of them have been proposed in the literature. The American National Institute of Stan-
dards and Technology (NIST) has selected Rijndael [DR02] as the Advanced Encryption
Standard (AES) in 2000.

2.5.2 Public Key Cryptography
The main problems with secret key cryptography are key distribution and management. As
we have seen, the parties that need to communicate have to have exchanged, in the past, a
secret key. However, this cannot take place over the channel they use for their normal com-
munications as this is unprotected and an eavesdropper is able to learn any key material
exchanged over it. Therefore, they need another channel that is secure for key distribu-
tion. Furthermore, symmetric schemes su�er from complex management procedures and
increased storage requirements for the shared keys as the number of participants grows.
Speci�cally, in a network of n nodes the total number of di�erent symmetric keys needs to
be at least n(n−1)

2 , assuming that each pair of nodes shares a common key. One of the most
important contributions to the problem of establishing and managing keys is public key
cryptography, initially explained by Di�e and Hellman [DH76]. Their design addressed a
subset of the intended properties and it was focused on key agreement between two parties.
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Rivest, Shamir and Adleman soon afterwards developed the RSA scheme [RSA78] which
was the �rst full implementation of a public key system.

Public key cryptosystems rely on two di�erent keys for each entity, known as the key
pair. An entity A (possibly Alice) generates a key pair according to a speci�c algorithm,
and the result consists of the public key KA and the private key K−1

A . A then publishes
the public key and keeps the private one secret. When B (for example Bob) wants to sent
a message to A he has to �nd KA and then use it along with the encryption algorithm
E to encrypt a message M ; we denote the encryption operation by C = EKA

(M). The
resulting ciphertext C is then sent to A who uses her private key K−1

A and the decryption
algorithm D to decrypt it and get M , the decryption process is denoted by M = DK−1

A
(C),

see Fig. 2.2.

Figure 2.2: Public key cryptography.

Obviously, in public key cryptosystems, also known as asymmetric key cryptosystems,
it should not be possible to calculate the private key from the corresponding public key. An-
other property that has to be satis�ed is that for all possible messages M the following has
to hold: DK−1

A
(EKA

(M)) = M . The main advantages of asymmetric cryptosystems over
symmetric ones are that two entities are able to exchange con�dential messages securely
and verify the validity of these messages provided they know the other party's public key
in some trusted manner. Also, there is no requirement for keeping the public keys secret.
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2.5.2.1 Digital Signatures

Digital signatures are constructs of public key cryptosystems that provide non-repudiation.
When Alice sends a message to Bob she uses her private key to sign it (we denote a
signed message M with Alice's private key K−1

A as [M ]K−1
A
). Bob, or any other party

that knows Alice's public key KA, is able to verify the message and be sure that it has
been signed with Alice's private key and that it has not been modi�ed in transit. In
order to avoid creating digital signatures on arbitrarily large messages, a process which is
particularly computationally expensive, it is common practice to pass the message as input
to a cryptographic one-way hash function and sign the output message digest.

2.5.2.2 Public Key Certi�cates

Although public key cryptosystems make key management simpler in environments with
many participating principals, there is the problem of acquiring the correct public key of
the recipient principal. In our example above, when Bob wants to send a message to Alice
he needs to be sure that he is using Alice's public key to encrypt the message and not the
public key of another principal which he falsely believes is Alice. Public Key Infrastructure
(PKI) tries to prevent attacks in which a malicious user publishes the public key of a
key pair he generated (and therefore has the corresponding private key) as the public
key of another user. The main components of PKI systems are Certi�cation Authorities
(CAs) that generate and digitally sign statements known as public key certi�cates which
bind an entity's name (or another preferably unique and unambiguous identi�er) to that
entity's public key. A certi�cate also includes expiration data, along with other information.
Returning to our example, Bob can now verify Alice's public key certi�cate, assuming that
he knows and trusts the CA which issued Alice's certi�cate, and be sure of the mapping
between Alice's identity and her public key. The advantage of public key cryptosystems
over secret key cryptosystems is made clear in a PKI environment; a principal needs to know
only the CA's public key in order to verify the certi�cates of other principals. There is no
need of key exchange and storage between each pair of principals that need to communicate.
For scalability reasons there is no single CA that issues certi�cates for everybody. Instead
there is a hierarchy of CAs. The root CA issues public key certi�cates for lower level CAs

27



which in turn certify user keys.
Revocation of public key certi�cates is required when the information contained in a

certi�cate is no longer valid, possibly because of key material compromise, even though the
expiration period has not elapsed. There have been several proposals in the literature to
address the problem of revocation, like Certi�cate Revocation Lists (CRLs) [AF99], delta
CRLs [HFPS99], the Online Certi�cate Status Protocol (OCSP) [MAM+99], short term
certi�cates [Riv98] and windowed revocation [MJ98]. These methods provide di�erent
tradeo�s in terms of stored and transmitted information, window of vulnerability and
online availability requirements. Consequently, there is no single method applicable to
all scenarios; the design of a revocation mechanism should be driven by the application
environment it is supposed to support [MR00].

Although we will thoroughly analyze PKI-based solutions to security management in
following sections, it should be noted here that PKI does not solve all problems. For
example, the requirement that a CA principal must be trusted by all system participants
cannot always be satis�ed in all application scenarios. Also, the introduction of a CA
creates a single point of attack and failure in the system; if it gets compromised all secure
communication channels can be compromised as well.

2.5.3 Identity and Authentication
The term �identity� has been used with many di�erent meanings and has been overloaded in
the computer security literature, a fact that makes it controversial. According to Anderson
[And01], identity refers to a correspondence between the names of two principals signifying
that they refer to the same person or equipment. For example, Bob's identity can be de�ned
as the correspondence of Bob being the same person acting both as Alice's and Charlie's
manager [And01]. A �principal� is de�ned as an entity that participates in a security
system, such as a role, a person, a computer, or a smartcard. Of course this largely
depends on the de�nition of �security system�. For example, in security systems that are
based on public key cryptography, principals can be public keys. In this dissertation we
will generally use the term �principal� as synonymous to the term �software entity� and
we will be providing more details when they are required. As it is suggested by Ford,
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authentication can be de�ned in terms of a principal and the identity it claims to have
[For94]: �authentication relates to a scenario where some party has presented a principal's
identity and claims to be that principal�. Therefore, we can view an identity as the name of
a principal that is presented during a security process in the system, and the corresponding
principal can prove that it legitimately holds it through the process of authentication.

2.5.4 Authorization
Lampson [Lam74] de�nes authorization as the process according to which a reference mon-
itor determines whether a principal is allowed to perform a certain action it requests on
a resource. Authentication is performed before authorization in order to verify that the
requesting principal legitimately holds the identity it claims to have when it requests ac-
cess to a resource. Moreover, the process of authorization depends on an authorization
(or access control) policy which refers to the access rules enforced by the reference moni-
tor. Based on the above, we can divide the process of authorization as performed by the
reference monitor into the following three steps (summarized in Fig. 2.3):

Figure 2.3: Authorization model.

1. Determine the identity of the principal that makes an access request.
2. Authenticate the identity of the requesting principal.
3. Determine whether the access request is allowed or not based on the result of the

authentication (from step 2) and the access control policy.
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The traditional method for de�ning access control policies is Access Control Lists (ACLs).
They are used by the reference monitor to determine the appropriate access rights to a
given resource given certain aspects of the requester, principally its identity. An ACL is
usually implemented as a table containing entries that specify the rights a principal has
over speci�c system resources.

2.6 Computer Security Systems and Models

This section presents traditional computer security systems that address the problems of
authentication and authorization in networking environments. Our examination focuses
on their basic characteristics and the reasons they fail to satisfy the requirements of autho-
rization in pervasive computing. Although we examine these systems with regard to the
previously identi�ed requirements, we do not expect them to fully satisfy all the pervasive
computing requirements since they were not designed for such a purpose.

2.6.1 Role-Based Access Control
The Role-Based Access Control (RBAC) model [FK92] provides the ability to specify and
enforce domain-speci�c access control policies and simpli�es the process of authorization
management in computing environments with a great number of users. This is achieved by
associating roles with access permissions and users with roles. In essence, RBAC de�nes
all access rights through roles. A role is an entity that acts as a collection of permissions.
Users are assigned to roles, usually by an administrator on a central system, and receive
access permissions only based on the roles they have been assigned to (illustrated in Fig.
2.4).

Figure 2.4: Basic Role-Based Access Control (RBAC) model.
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Ferraiolo and Kuhn, extending a large body of previous research work, proposed the
�rst generalized RBAC model which formally described the sets, relations and mappings
required to de�ne roles [FK92]. They de�ned the terms user, subject, object, operation and
permission as follows:

• A user is a human operator of a computer system.

• A computer process that acts on behalf of a user is called a subject.

• An object is a resource available on a computer system, for example a �le, an entry
in a database, or a printer.

• An operation is de�ned as an active process invoked by a subject. It should be noted
that a subject and an operation are distinct entities; A user can invoke a subject
which can then invoke operations itself.

• A permission is an authorization to perform some action on a computer system and
is de�ned as a combination of an operation and an object.

According to their model, RBAC requires the three following rules:

1. Role assignment. A subject can perform an operation only if it has been assigned to
a role.

2. Role authorization. A role that a subject has been assigned to must be authorized
for the particular subject. The rules of role assignment and role authorization ensure
that a user can only have active roles she is authorized to have.

3. Operation authorization. An operation can be performed by a subject only if the
speci�c operation is authorized for the subject's active role (or roles).

An important feature of RBAC is that it provides a mechanism for preventing users from
assuming roles that are con�icting. Separation of duty allows two roles to share user
members, but no user is allowed to have both roles active at the same time. This is useful
when a system needs to ensure that a single user does not acquire too much authority and
therefore is able to undermine the operation of the system. For example, a system may
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allow a user to assume the roles �Treasurer� and �Payroll O�cer� at di�erent times but
not both simultaneously.

The advantages of RBAC when compared to other access control mechanisms such as
ACLs are obvious. An organization can de�ne a set of roles that can remain unmodi�ed
from that point on, and can de�ne volatile permissions for these roles according to the
functions that need to be performed as part of its ongoing operation. Users are then
assigned to roles receiving the related access permissions. These assignments do not have to
be permanent, but they follow the organization's human resources management procedures.
For example, if an employee's job changes then only two changes have to be performed;
one to remove the association between the employee and the employee's current role, and
one to add a new association between the employee and her new role. On the other
hand in the ACL model all available computing resources have a list of the users that are
authorized to access them (see Table 2.1). In environments with many users the process
of enumerating each user's identi�er along with the permissions that this user has comes
at a great administrative cost. This cost increases even more when the set of participating
users changes frequently. As we have already seen, pervasive computing environments
are inherently dynamic and therefore not compatible with the use of ACLs as a security
mechanism.

Table 2.1: Example Access Control List (ACL).
Resource User permissions

File-001 Alice: read/write, Bob: read
File-002 Alice: read/write/execute, Eve: read

Printer-001 Alice: read/write, Bob: read/write

Sandhu et al. have extended the core Ferraiolo-Kuhn RBAC model to four di�erent
conceptual models [SCFY96]. RBAC0 is their base model, which is equivalent to the core
Ferraiolo-Kuhn model, and de�nes the minimum requirements for any system that aims
to support RBAC. RBAC1 adds the concept of role hierarchies to RBAC0, which basically
allows roles to inherit permissions from other roles. RBAC2 adds constraints to RBAC0

that impose restrictions on acceptable con�gurations of the di�erent components of RBAC.
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Finally, RBAC3 includes the basic RBAC0 model as well as RBAC1 and RBAC2. The
core Ferraiolo-Kuhn RBAC model and the RBAC0 model are composed of the following
components (a graphical representation of which is shown in Fig. 2.5):

• A set of users: U

• A set of roles: R

• A set of subjects: S

• A set of objects: O

• A set of operations: OP

• A set of permissions: P = P(OP ×O)5

• User to role assignment: UA ⊆ U ×R

• Permission to role assignment: PA ⊆ P ×R

• The mapping of a role to a set of users: assigned_users(r : R) → P(U), or more
formally: assigned_users(r : R) = {u ∈ U | (u, r) ∈ UA}

• A function mapping a subject to the subject's associated user: subject_user(s :

S) → U

• A function mapping a subject to a set of roles: subject_roles(s : S) → P(R), or
more formally: subject_roles(s : S) ⊆ {r ∈ R | (subject_user(s), r) ∈ UA}

• A function mapping a role to a set of permissions: permission : R → P(P ), or more
formally: permission(r : R) = {p ∈ P | (p, r) ∈ PA}

• Access authorization: A subject s can perform an operation op on object o only
if there exists a role r that is included in the subject's active role set and there
exists a permission p that is assigned to r such that the permission authorizes the
performance of op on o: access : S × OP × O → BOOLEAN, s : S, op : OP, o :

O, access(s, op, o) ⇒ ∃ r : R, p : P, r ∈ subject_roles(s) ∧ p ∈ permission(r) ∧

(op, o) ∈ p
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Figure 2.5: The core Ferraiolo-Kuhn RBAC model.

The model has a special kind of permissions, called administrative permissions, which
allow the roles that have them to modify the sets U , R, and P as well as the relations
UA and PA. The term authorization management refers to the problem of managing
these administrative permissions and their assignment. Although there have been many
solutions proposed in the literature to address this problem in RBAC systems, all of them
rely on centralizing authorization information on a server that is always assumed to be
online and readily accessible in order to provide the needed data. Furthermore, a human
security administrator is required to manually con�gure the system and assign permissions
to roles and roles to end users. This centralized management process is supported by two
di�erent methods that facilitate access to applications and services [FKC03]. According to
the �rst one, named push, a user is authenticated by the central authorization server and
obtains some sort of credential to access applications. The user then presents (or pushes)
these credentials to the applications as proof of authorization (illustrated in Fig. 2.6).

The second method, called pull, requires applications to perform user authentication
and query the central authorization server about the user's permissions, pulling them for
local access (shown in Fig. 2.7). Thus, the functions of authentication and authorization
are performed by two di�erent conceptual entities in the pull method; authentication is
done by applications and authorization by the central server.

Of course, before users are able to access services and applications the security ad-
5P(A) denotes the power set of A, that is the set of all possible subsets of A.
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Figure 2.6: Push authorization method.

Figure 2.7: Pull authorization method.
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ministrator must con�gure the required permissions, create associations between roles and
these permissions, and �nally assign roles to users. Although RBAC is far more �exible in
management and in detail of control when compared to other access control management
mechanisms, such as Mandatory Access Control (MAC) and Discretionary Access Control
(DAC), it still requires centralized management via an online server and direct human
intervention, as proposed by the National Institute of Standards and Technology (NIST)
RBAC speci�cation [FSG+01]. According to MAC, access to resources is de�ned based on
the speci�c resource's sensitivity as it is de�ned by a central authority. Therefore, RBAC
relates to MAC in the sense that end users have no control over the permissions de�ned
by the security administrator and enforced by the central authorization server. On the
other hand, DAC permits the granting and the revocation of permissions to be left to the
discretion of the individual end users of a system. A user that controls certain resources is
able to assign and revoke rights for them without the need to contact a central server, or be
authorized to do so by an administrator. Consequently, the NIST proposed RBAC stan-
dard is a non-discretionary access control model. Role assignment remains a centralized
operation and requires the manual intervention from an administrative authority. This
requirement as well as the requirement of having an always accessible online central server
prohibit RBAC to be directly used in securing pervasive computing environments.

2.6.2 X.509 and the X.509 Attribute Certi�cate Pro�le
As we have already brie�y discussed, a Public Key Infrastructure (PKI) is a system that
allows entities to recognize and securely bind public keys to global identi�ers. The central
entity of a PKI is the Certi�cation Authority (CA) which has a private/public key pair,
as does any entity that participates in the system. One of the main assumptions of PKI is
that all participants have the CA's public key and that they trust the CA as an authority to
issue bindings between public keys and global identi�ers. In order for an entity to join the
system it must present its global identi�er (usually a Domain Name System (DNS) name)
and its public key to the CA. The CA then veri�es that the entity is really the one it claims
to be6 and that it has the corresponding private key by issuing a challenge encrypted with

6Usually with some o�ine method, like requesting a national ID card. In reality few CAs go through
this procedure and just rely on an email exchange as an alternative.
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the presented public key. If all tests pass successfully the CA signs a statement asserting
that the presented public key belongs to the presented global identi�er of the entity. Such
signed statements are called X.509 Public Key Certi�cates (PKCs) or Identity Certi�cates
(ICs) [ISO01]. When two participants wish to communicate securely they exchange PKCs
and each one veri�es the other's certi�cate with the public key of the CA they both have
and trust to issue to such signed statements. Upon veri�cation they are both sure about
the identity of the other and can then use a key establishment protocol to derive key
material for creating a secure communication channel. One of the main characteristics of
PKI is that non-CA (for example end user) keys are not allowed to issue certi�cates and
certify bindings between names and keys. This obviously leads to scalability problems. In
order to overcome this limitation and scale to an Internet-wide system, X.509 follows a
hierarchical trust model. For example, if we have a two-level structure at the top would
be the central CA that signs certi�cates for the CAs of the lower level. Each second level
CA would be responsible for a di�erent administrative domain, such as an organizational
department. Users are certi�ed by the second level CA that corresponds to the domain
they belong to. When a user of a particular domain wants to authenticate himself to a
user of another domain he must present two certi�cates. One signed by the top CA that
certi�es the CA of his domain and one signed by his domain CA that certi�es the binding
between his identi�er and his public key. The receiver must verify both certi�cates; the
�rst one with the public key of the root CA that she has by being a system participant, and
the second one with the public key contained in the �rst certi�cate she has already veri�ed.
This is called a certi�cate chain and can span an arbitrary number of CA hierarchy levels.

The X.509 authentication infrastructure o�ers little help in supporting complex access
control decisions. Although it can be used to establish the identity of an entity and
provide authentication services by employing a centralized architecture, most systems are
not interested in the name or the identity of an entity. The real requirement is to know
what operations on which resources an entity is authorized to perform. To address this
problem with the standard X.509 architecture we need to enumerate all the identi�ers of
the participating entities in a system, create ACLs for every resource in the system and
for every supported action and bind identities to permissions. Obviously when we have
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to manage authorization information in large systems with great numbers of users this
approach fails to scale. X.509 Attribute Certi�cates (ACs) were introduced to address
this problem [FH02]. They bind a user's identi�er with one or more privilege attributes,
which are de�ned as attribute type/value pairs. ACs are issued by Attribute Authorities
(AAs) that play they same role as CAs, but focus on authorization instead of authentication
certi�cations. The X.509 AC infrastructure is called a Privilege Management Infrastructure
(PMI) and it can also follow a hierarchical trust model, as a normal PKI. The root element
of a PMI is called the Source of Authority (SOA). However, PMI still relies on the existence
of a PKI, since an AC does not contain a public key. When an entity wants to perform an
operation on a resource it has to present to the reference monitor both a PKC and an AC.
The reference monitor authenticates the requester by verifying its PKC, and then checks
to see if the name included in the PKC is the same as the name on the AC. If they are
the same and the AC can be veri�ed as well it then accepts the privilege attributes of the
AC as authorization credentials. There are several ways to bind identi�ers and attributes
in X.509 [PS00], one of these is shown in Fig. 2.8.

Figure 2.8: Public key certi�cate and attribute certi�cate binding.

One of the most di�cult problems in X.509, and indeed in all certi�cate-based security
systems, is revocation. We have previously mentioned that revocation refers to the need
of withdrawing a certi�cate before it expires. Since certi�cates constitute data that are
supposed to be public it is di�cult to inform all parties that have acquired them about
their possible revoked status. The main requirement of revocation is speed; that is the
time between the revocation command and the last use of the revoked certi�cate should
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be as small as possible. The two main solutions to this problem are Certi�cate Revocation
Lists (CRLs) and short term certi�cates. CRLs are databases that contain the revoked
certi�cates and are distributed by CAs. When an entity wishes to verify a certi�cate it
must contact the CA that issued it, request the CRL and make sure that the certi�cate
it was presented with is not listed in it. Of course this approach requires constant online
access to every CA that issues certi�cates for a given system. Short term certi�cates are
simply certi�cates that are valid for short periods of time, usually between ten minutes
and a few days. When an entity wishes to use a certi�cate to authenticate or authorize
itself it checks to see if it has expired. As long as it remains valid it can be used normally.
Otherwise, the CA (or AA) that issued the certi�cate in question must be contacted and
a new one must be acquired.

X.509 PKI and PMI models are not able to address the problem of authorization in
pervasive computing environments, mainly because they were not designed for such a pur-
pose. Their main disadvantage is the requirement of a globally trusted central server that
is assumed to always be online and readily accessible. In pervasive computing we have
usage scenarios that take place in all possible locations that may or may not have access
to an Internet gateway, hence the ability to support disconnected operation is crucial. An-
other limitation of this approach lies in the use of identities as a basis for building trust
and authorizing service requests. PKI and PMI credentials bind the owner's public key to
a name. As we move to pervasive computing authority domains, naming becomes increas-
ingly locally scoped. Therefore, a name may not have meaning to a di�erent domain than
the one that it was certi�ed in. Scalability problems also exist in PKI when authorization
decisions are based on identities in dynamic environments since enumeration of all the
participating entities is nearly impossible.

2.6.3 Pretty Good Privacy
Pretty Good Privacy (PGP) was originally developed to provide security services for email
communications. It is based on public key cryptography and de�nes its own key man-
agement system and certi�cate format. The goal of PGP is to assure an email user that
a public key she has for a particular email address indeed belongs to the corresponding
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person. The PGP key management system is based on the relationships between key own-
ers, rather than on a single globally available and trusted infrastructure, as is the case
with X.509. Another important di�erence with X.509 is that every PGP user is allowed
to issue public key certi�cates for other users and certify their keys with his own acting as
a certifying authority. PGP certi�cates basically certify that a user believes to the best of
his knowledge that the subject's key and name included in the certi�cate indeed match.
To a third party that must decide on the validity of the subject's key, this signed assertion
worths only to the level that the issuer is trusted as a sincere and competent introducer
[Zim95]. In PGP each user maintains a key ring that contains the keys and the associated
identi�ers (names and email addresses in this case) of other users. When a key is entered
in the key ring the owner must decide on a trust level for the new key. The trust level is
basically a rating on how much the key ring owner trusts PGP key certi�cates issued by
this new key. The lower the trust value the more key certi�cates are necessary to validate
a given key. Table 2.2 presents the di�erent trust levels used in PGP and their meanings.

Table 2.2: PGP trust levels.
Trust level Meaning

Untrusted Public key certi�cates issued by this key are ignored.
Marginal At least two keys of this trust level have to certify a third key to make it valid.
Complete At least one key of this trust level has to certify another key to make it valid.
Ultimate This key has been created by the user herself, therefore she controls the corre-

sponding private key. All keys certi�ed with it are valid.

Based on this key management model PGP creates a �web of trust�. Certi�cate revo-
cation in PGP is handled implicitly and not with any speci�c mechanism. When a user
wishes to revoke a certi�cate issued previously she posts the revocation notice in a public
place, like a website. It is the responsibility of potential users of the certi�cate to check if
it has been revoked or not. In the X.509 PKI model only CAs have the ability to revoke
certi�cates by signing a CRL with the private key used to issue the revoked certi�cate in
the �rst place. On the other hand, in PGP the revocation notice must be signed by the
individual end user that issued the certi�cate without the need to rely on any central en-
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tity. However, this �exibility comes with an administrative cost. X.509 CRLs contain the
complete set of revoked certi�cates from a particular issuing CA. Therefore, when an X.509
PKI participant receives a CRL it becomes fully synchronized with all the valid certi�cates
of the particular CA with a single operation. In PGP every time a user wishes to verify
a single certi�cate she must check the issuer's public repository for possible revocation
notices.

PGP has not been designed for providing authorization but authentication services.
It relies on a combination of the direct and hierarchical models for managing security
relationships. Therefore, it does not have the requirement of a central globally trusted
online server in order to operate and establish secure communication channels between
users. Every participant is allowed to issue identity certi�cates for every other participant
and based on assigned trust levels these certi�cates are assumed to be valid or not. When it
comes to addressing the problem of authorization, PGP has the same limitations as X.509.
Users must be enumerated and ACLs for their identi�ers must be created and maintained
for all available resources and operations.

2.6.4 Kerberos
Kerberos is a distributed authentication service that allows a client running on behalf of
a principal to prove its identity to a veri�er (for example an application server), without
sending data across the network that might allow an eavesdropper or the veri�er to subse-
quently impersonate the principal [KN93]. Although there have been many extensions and
di�erent approaches, the original Kerberos architecture relies on symmetric cryptography
and a central online server to o�er authentication services in a networking environment.
Each valid end user is given a secret key, in the form of a password, which is shared with
the main Kerberos authentication server called Key Distribution Center (KDC). When a
client wishes to establish a secure channel with a service she contacts the KDC and re-
quests a Ticket-Granting Ticket (TGT). The TGT is sent to the user encrypted with the
secret key they both share. For each service the user wants to use she has to �rst con-
tact the Ticket Granting Server (TGS)7 and obtain a service-speci�c ticket by presenting

7Usually the KDC and the TGS are on the same physical computing device.
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her TGT [KN93]. The user can then contact the service provider and use this ticket as
an authentication credential. Both the TGT and the normal tickets have long expiration
periods, therefore the user can reuse them many times without having to go through the
whole protocol frequently. The whole dialog process is summarized in Fig. 2.9. Kerberos
can also be used to o�er cross-realm authentication services by allowing the TGS of an
administrative domain to be a normal principal in another domain [TKS01]. Hence, users
of the second domain can obtain tickets for the �rst domain.

Figure 2.9: The Kerberos authentication protocol.

One of the disadvantages of the original Kerberos architecture is that it does not sup-
port authorization. Service providers are expected to reach access control decisions based
on other mechanisms, for example using ACLs stored locally. This limitation has been
partially addressed by Westerlund and Danielsson that allow some authorization data to
be included in Kerberos tickets [WD01]. The main de�ciency of Kerberos however when
applied in pervasive computing is its reliance on the server (or servers) that host the KDC
and the TGS services. These not only have to be available constantly because without
their presence no secure connections can be established, but also represent a single point
of failure in the system. Furthermore, they require extensive human intervention for the
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registration of users and services. Therefore, Kerberos is not directly compatible with the
decentralized and unobtrusive nature of pervasive computing.

2.6.5 KeyNote
KeyNote [BFK99] is a security system speci�cally developed to address the problem of
authorization management. It was designed as a successor to an earlier system called
PolicyMaker which introduced the term trust management. Blaze et al. de�ne trust man-
agement in [BFL96] as �a uni�ed approach to specifying and interpreting security policies,
credentials, and relationships that allow direct authorization of security-critical actions�.
As we have seen in previous paragraphs, traditional security management systems, such as
X.509 and Kerberos, address only the problem of authenticating the identity of an entity.
In order to support authorization in these systems an external mechanism must be devel-
oped and exposed to service providers. Trust management avoids the use of identities and
instead binds access rights directly to public keys. Veri�cation of identities is considered
to be a distinct problem from the problem of assessing trust. This basically means that
entities are named by the public key of a key pair they have generated themselves and
therefore have access to the corresponding private key. KeyNote credentials are called
authorization or capability-based certi�cates, and are used to delegate permissions directly
from the key of the issuer (or the authorizer in KeyNote terminology) to the key of the
subject (or the licensee) enabling access control decisions between strangers without the
need for a universally Trusted Third Party (TTP). Delegation is allowed to any depth; the
subject can further delegate all or a subset of the permissions given to him by the issuer to
another key. Credentials which have the special value POLICY in the authorizer �eld are
considered to be locally trusted, are not signed, and play the role of authorization policies.
Such assertions are de�ned using an expression language that provides constructs for the
speci�cation of complex policies. An entity may grant to another entity access to a service
it provides if the provider can determine that the credentials of the requester satisfy the
local policies that protect the service. The KeyNote inference engine is called by an appli-
cation and is given as input the list of credentials the requester presented, the local access
control policies and an action environment which is basically a set of attribute-value pairs
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generated by the calling application. These pairs are used to represent the application's
security requirements. The output of the inference engine is either true or false, depend-
ing on whether the request is authorized or not. The process is illustrated in Fig. 2.10.
Revocation of credentials in KeyNote is performed through the use of short expiration
periods.

Figure 2.10: The KeyNote trust management system.

One of the main disadvantages of KeyNote is that it does not support negative au-
thorizations which are important for providing solutions to separation of duty problems.
Furthermore, KeyNote does not include the functionality of verifying that the credentials
presented by a requester actually belong to the requester. This is usually performed with
a challenge-response protocol that allows the veri�er to ensure that the requester actually
possesses the private key that corresponds to the public key used to identity the requester
in the credentials. KeyNote leaves this crucial feature to be implemented by the service
provider. Generally we believe that the decentralized approach to authorization manage-
ment that is advocated by KeyNote is compatible with pervasive computing. Users can
de�ne their own access control policies for their devices, and give credentials to other users
without the requirement of having to contact a central server. Although the concept of the
action environment could be used to provide minimal static context information from the
application to the inference engine, it is not able to support dynamic context-awareness.
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Moreover, we believe that the delegation of a speci�c set of access permissions to a key
is not appropriate for the pervasive computing paradigm in which the initiation of new
services is frequent and the number of users particularly large. According to our view, a
user that wishes to provide a new service should not be burdened with the additional ad-
ministration overhead of initiating delegation chains and distributing the credentials that
de�ne the access rights for the new service.

2.6.6 SPKI/SDSI
Other capability-based e�orts similar to KeyNote that attempt to provide solutions to
decentralized authorization through the use of public key cryptography include SPKI
[EFL+99] and SDSI [RL96]. The design of the Simple Public Key Infrastructure (SPKI) is
similar to that of KeyNote; the issuer of an SPKI credential encodes the permissions she
wishes to delegate to a subject using s-expressions, which are basically a set of constraints
for application-dependent issuer-de�ned values. As an example consider the following s-
expression from the SPKI/SDSI Request For Comments (RFC) [EFL+99] that allows all
kinds of access (read, write, delete, etc.) to the directory /pub/cme of the FTP host with
DNS name ftp.clark.net :

(ftp (host ftp.clark.net) (dir /pub/cme))

The Simple Distributed Security Infrastructure (SDSI) introduced the concept of local
namespaces that allow a principal to de�ne his own locally scoped names in order to refer
to other principals. Certain principals that are referred by others with the same name
can be used as trusted intermediaries to link multiple local namespaces and create global
names. For example, George can de�ne a name �Fred� in his own namespace [EFL+99]:

George: (name Fred)

Fred in turn can also de�ne a name in his namespace, for example:

Fred: (name Sam)

Now George can refer to this same entity as:
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George: (name Fred Sam)

This allows communities to be built in a distributed manner following a bottom-up ap-
proach. As in KeyNote, all authority comes from the issuer of a credential and can be
delegated. A requester provides to a service provider a set of credentials that form a chain
from the public key of the issuer to the public key of the requester. If the provider is
able to validate the chain, verify all the credentials, and ensure that they satisfy the local
authorization policies then the request is granted. Again, revocation is handled with short
validity periods for the issued credentials. SPKI and SDSI have merged their design e�orts
to produce SPKI/SDSI 2.0 that provides a coherent treatment of certi�cates, names and
encoding of policies [CEE+01], [RL96].

2.6.7 Trust Establishment
The Trust Establishment (TE) system developed by IBM Research aims to provide security
for e-commerce transactions by employing a public key certi�cate design based on X.509
[HMM+00]. TE allows certi�cates to be issued by various organizations certifying subjects
with certain attributes. These certi�cates are then used by service providers to map re-
questers to roles. Thus, the problem of trust establishment is de�ned as assigning roles to
subjects and then carrying out RBAC for authorization. The TE system includes a Trust
Policy Language (TPL) which is based on XML and is used to write policies that specify
what attributes, certi�ed by which issuers are required in order for a subject to be mapped
to a speci�c role. An inference trust engine interprets TPL policies and the attribute cre-
dentials of requesters assigning them to access roles. These roles are then used according
to a traditional RBAC approach to reach access control decisions. The whole procedure is
illustrated in Fig. 2.11. TPL can also used to de�ne access control policies of what a role
is permitted to do. Its basic XML tags are <GROUP> that de�nes a role/group8 in an
organization and <RULE> that is used to de�ne the requirements for membership to the
speci�c role. A requester needs to satisfy any one of the rules to become member of the
role. Each <RULE> element can include <INCLUSION> and <FUNCTION> tags that
indicate constraints for the attributes of the required credentials.

8TPL uses the terms role and group interchangeably.
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Figure 2.11: The Trust Establishment system.

Since the system allows the issuing of negative policies that specify authorization re-
strictions, i.e. it is not assertion monotone, it also provides a mechanism for collecting all
of the credentials related to a principal. This is accomplished with a component called
the certi�cate collector, which is designed for collecting missing certi�cates. The requester
speci�es along with his request to the provider the location of repositories that hold more
certi�cates issued to him. The provider then uses an automatic certi�cate repository re-
trieval agent for collecting all of the credentials. These credentials can be used to verify
whether the issuers of the requester's credentials are quali�ed to issue certi�cates for the
related attributes. However, a malicious requester may avoid to submit the repository
location of certain certi�cates to a service provider with the goal of accessing a role with
greater authority. The authors having identi�ed this shortcoming developed De�nite TPL
(DTPL) as a subset of TPL that no longer supports negative authorizations. Another
disadvantage of TE is its inability to support the passing of variables from the calling
application to the inference engine. Thus, it cannot support authorizations based on dy-
namic information such as environmental context data. The main drawback of TE when
applied to the paradigm of pervasive computing is that it has been designed for networking
environments with a complete infrastructure. It requires repositories of certi�cates instead
of allowing users to possess and carry with them their own credentials.
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2.6.8 PERMIS
The Privilege and Role Management Infrastructure Standards Validation (PERMIS) project
has been designed to address the authorization requirements of widely distributed network-
ing environments. PERMIS has two main components; the privilege allocation subsystem
and the privilege veri�cation subsystem [CO02]. The former is used to allocate privileges
to users and the latter to authenticate and authorize them. Speci�cally, an administrator
issues through the privilege allocation subsystem X.509 Attricute Certi�cates (ACs) to
end users which are stored in publicly accessible Lightweight Directory Access Protocol
(LDAP) servers. These are used by the privilege veri�cation subsystem to o�er RBAC-
based authorization services to various applications. Furthermore, a user must also be
authenticated according to an application speci�c method. PERMIS itself is authenti-
cation agnostic, therefore a user can present an X.509 identity certi�cate if a PKI is in
operation, a traditional username/password pair, or any other way an application supports
to verify her identity [CO02]. PERMIS uses XML in order to specify authorization policies
by de�ning a Data Type De�nition (DTD)9 with the following components [CO02]:

• SubjectPolicy speci�es the subject domain, i.e. the domain that user must belong to
in order to access the provided resources.

• The component RoleHierarchyPolicy speci�es roles and their hierarchical relation-
ships.

• SOAPolicy is used to specify which SOAs are trusted to allocate which roles.
• RoleAssignmentPolicy speci�es the roles that can be allocated to subjects and the
SOAs that are trusted do so. It also speci�es whether a subject is allowed to delegate
the allocated role and expiration information regarding the allocation.

• The component TargetPolicy speci�es the domains to which the current policy ap-
plies.

• ActionPolicy speci�es the actions that service providers o�er, as well as the types of
parameters that these actions accept.

9A DTD is in essence a meta-language used to de�ne the rules required to write XML documents. In
the case of PERMIS these documents are authorization policies.
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• TargetAccessPolicy speci�es which roles have permission to perform which actions
on which resources and under which conditions. These conditions can be used to
encode contextual information to PERMIS policies.

When a client makes an access request to a service provider, it has to go through an appli-
cation gateway which has access to the PERMIS system. There are two main components;
the Access Enforcement Function (AEF) and the Access Decision Function (ADF). The
AEF is responsible to authenticate the client that makes the request based on the utilized
authentication mechanism. The authenticated client identi�er is then passed to the ADF
component which uses it in order to retrieve from the LDAP repositories the relevant role
ACs. Moreover, AEF passes the access request to the ADF which also retrieves the rele-
vant policy ACs. By parsing the XML policy information encoded in the policy ACs and
the retrieved role ACs the ADF component then reaches an authorization decision for the
requested operation. The system is summarized in Fig. 2.12.

Figure 2.12: The privilege veri�cation subsystem of PERMIS.

The main assumption of PERMIS is that the set of users is known in advance and that
a security administrator has assigned these users to prede�ned roles. However, in pervasive
computing the complete set of participating users cannot be known in advance since as
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we have seen such environments are volatile and highly dynamic. Moreover, PERMIS
relies on an infrastructure of LDAP repositories for the issued role and policy certi�cates,
an assumption that is not compatible with the vision of pervasive computing. Finally,
PERMIS provides no support for passing values of dynamic variables from the service
provider to the ADF in order to facilitate context-aware authorizations. However, partial
context-awareness can be accomplished by encoding contextual information in policy ACs.

2.6.9 XACML
The eXtensible Access Control Markup Language (XACML) [OAS05] is an XML-based
generic and �exible language to model access control policies. The OASIS XACML stan-
dardization committee provides XML schemas to allow the expression of authorization
policies in XML for protecting resources that are also expressed in XML. The main com-
ponent of an XACML policy is a rule. A policy can have more than one rule and each
rule consists of three sub-components; a target, an e�ect, and a condition. The target
sub-component speci�es the set of resources, subjects and actions to which the current
rule applies. The e�ect can be either permit or deny. The condition sub-component de-
�nes a boolean expression and is used to allow the speci�cation of conditions that must be
satis�ed in order for the current rule to apply. An XACML request is an XML document
describing the subject, the attributes associated with the subject, the target resource and
the actions that the subject requests to be performed on the target resource. An XACML
response can be either permit, deny, not applicable that is returned when no matching
rule is found for the given request, or indeterminate that is returned when an error has
occurred.

Contextual information can be used to de�ne XACML conditions, however the language
provides no support to allow the de�nition of variables with dynamic values. This limits
the ability to have context-aware policies that are able to adapt to the current context of
the service provider. Another limitation of XACML, that indeed a�ects all XML-based
systems, is its poor performance when compared to binary or even plaintext alternatives
[MC04]. Finally, the delegation model supported by the 2.0 version of the XACML stan-
dard is simple and restrictive. A user is able to express that another user is trusted to
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perform a certain action on his behalf, but there is no way to create policies that allow the
dynamic creation of further policies.

2.7 Pervasive Computing Security Systems

In this section we examine several pervasive computing security systems and the way they
address the problem of authorization. Moreover, we survey security systems that have
been proposed for ad hoc networks since we feel that several of the solutions try to handle
similar problem areas. We analyze their operational requirements focusing on whether they
manage to satisfy the three previously identi�ed key properties of pervasive computing;
open and dynamic nature, graceful and unobtrusive usage models, and context-awareness.

2.7.1 Resurrecting Duckling
The Resurrecting Duckling security model was proposed to cover master-slave type of
relationships between two devices in ubiquitous computing environments [SA00]. The
relationship is established when the master device exchanges over an out-of-band secure
channel a secret piece of information with the slave device. Stajano and Anderson call
this procedure imprinting. The imprinted device can authenticate the master through the
common secret, which is a symmetric cryptographic key, and accept service requests from
it. The basic idea behind the Resurrecting Duckling is that a dual interface is used. One
interface is used to implement the out-of-band secure channel and to bootstrap the security
association between the master and the slave devices. Stajano and Anderson propose the
use of physical contact between two surfaces of the devices as an example of such a channel.
The other interface is a wireless network interface and is used to actually perform the service
access request and reply protocols between the two devices. The protocols that utilize the
wireless interface are secured using the shared secret key exchanged over the out-of-band
secure interface.

The main advantage of the Resurrecting Duckling model is that it is able to operate
and establish secure associations between devices in a disconnected manner, without the
need to contact a TTP or to have access to an online PKI. Although human intervention
is still required to establish the secure out-of-band channel, this can be naturally inte-
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grated to the physical tasks the operators of the devices perform to achieve their goals.
However, its usefulness is limited in facilitating exchanges between peer devices since the
master-slave communication model is not able to address all types of interactions used
in pervasive computing. Hence the basic model was extended to allow the imprinting of
devices with policies that de�ne the types of relationships a slave device is allowed by
its master to have with others in order to address peer-to-peer interactions [Sta01]. This
extended model basically allows a master to delegate the capability of using its slave de-
vices to other participants of the environment. The embedded policy can be arbitrarily
complex and speci�es the credentials that are required to allow the execution of a speci�c
operation. The slave device based on the credentials exhibited by the requesting peer and
the embedded policy allows or not the execution of the requested operation. However,
the authors simply proposed the use of trust management systems as a way to de�ne the
imprinted policies and the credentials without o�ering any speci�c engineering details on
how the authorization process works. For example, the model does not de�ne if credentials
issued by principals other than the master are acceptable in certain scenarios. By allowing
only masters to issue valid certi�cates even the extended Resurrecting Duckling system
de�nes a static association model between the master and the imprinted devices, limiting
its direct application in situations where associations are established in an ad hoc manner.
Furthermore, the problem of revocation of previously issued credentials or policies is not
addressed by the model. Finally, there is no support for using external information from
the environment in order to facilitate context-sensitive authorizations.

2.7.2 Talking to Strangers
The idea of bootstrapping trust relationships in adversarial environments over secure out-
of-band channels was examined further by Balfanz et al. [BS02] and their concept of
location-limited channels. These are channels that have the property that human opera-
tors can precisely control which devices are communicating with each other thus ensuring
the authenticity requirement. They propose the use of contact, infrared and audio as
a way of exchanging pre-authentication information without requiring secrecy from the
out-of-band channel. They employ the use of public key cryptography and they exchange
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digests of the public keys of the peers as the pre-authentication information over the estab-
lished location-limited channel. Therefore, each peer is sure about the authenticity of the
key the other peer presents in the following steps of the protocol. This basically removes
the requirement of a PKI with the requirement of close physical proximity between the
two devices that need to communicate securely, which is more appropriate for pervasive
computing. Another advantage of having location-limited channels that are not secret is
the ability of establishing secure group communications. Certain location-limited chan-
nels are broadcast in nature, such as audio. Consequently, non-secret pre-authentication
information can be transmitted over them and be utilized to bootstrap secure group com-
munication protocols. Although the Talking to Strangers (TTS) model provides a more
�exible de�nition of out-of-band secure channels, it generally su�ers from the same prob-
lems as the Resurrecting Duckling model. It does not address the authorization process, it
avoids to address revocation, and does not include a way to use context-awareness in the
establishment of security associations.

2.7.3 Bluetooth Security
Bluetooth is a technology used for short range wireless communications. It has been
developed to address the local connectivity needs of mainly portable and handheld devices,
like mobile phones, PDAs, digital cameras, pagers and others. In contrast to infrared,
Bluetooth does not require line-of-sight between the peer devices, which form piconets
to communicate. Each piconet comprises of up to eight active Bluetooth devices where
one is the master and the rest are slaves [Blu03]. The master device is responsible to
admit slave devices to the piconet and assign them Bluetooth addresses. Each piconet
may have only one master, but one master may be a slave device in another piconet,
creating scatternets. Since a Bluetooth signal cannot be con�ned inside a certain physical
area, it is possible for an attacker to eavesdrop on the data channel and capture the
exchanged information. Therefore, Bluetooth has a signi�cant security component that
o�ers authentication, con�dentiality and to a very limited extend authorization for the
di�erent services provided by the devices. The two main procedures of Bluetooth security
are pairing and authentication. Pairing is used to authenticate two peer devices and create a
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common link key for establishing a security association. Before the initiation of the pairing
procedure the same PIN must be entered into both devices. Furthermore, each device has a
48-bit unique address, known as the Bluetooth Device Address (BD_ADDR). The master
device generates a random 128-bit number (R0) and transmits this in plaintext to the
slave device. Then both devices use the E22 algorithm to derive Kinit, the initialization
key which is 128 bits long and is used for a single session between devices that have
not communicated before. Based on Kinit the devices create the link key Klink with the
following procedure. Each device generates a new random number (RM the master and
RS the slave), performs a bitwise XOR operation on it using Kinit and sends it to the
other device. Based on the previously agreed Kinit, both devices now have both random
numbers. These random numbers are then used as input to the E21 algorithm to derive
Klink. The whole pairing procedure is illustrated in Fig. 2.13.

Figure 2.13: Bluetooth pairing process.

The goal of the authentication procedure is to verify the identity of a remote Bluetooth
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device. It is based on a challenge-response protocol that uses a randomly generated number
by the veri�er and the previously agreed Klink link key. The veri�er generates an 128-bit
random number (RV ) and sends it in plaintext to the claimant. The claimant receives
RV and by using this and Klink as input to the E1 algorithm gets a 32-bit number (RC).
This is send to the veri�er who compares it to the result of its own E1 application and
if the comparison is successful the veri�er and the claimant change roles and perform the
same process again in order to achieve mutual authentication. Fig. 2.14 presents the
authentication procedure.

Figure 2.14: Bluetooth authentication process.

The Bluetooth security component also maintains trust levels for the di�erent devices
the current device has been associated with. These levels are de�ned based on whether an
authentication procedure has taken place between the devices, and on whether the user
has speci�ed a peer device as �trusted� (see Table 2.3).

The device trust classi�cation allows a provider to determine whether to allow a re-
quester to access a provided service. Each service is also assigned by the user to a class.
These classes are the following three:

1. Services that require both authentication and authorization.

2. Services that require only authentication.
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Table 2.3: Bluetooth trust levels.
Trust level Meaning

Trusted A device that has been previously authenticated, a link key has been es-
tablished and the user has marked it as �trusted� in the device database.
Such devices have unrestricted access to all provided services.

Untrusted A device that has been previously authenticated, a link key has been estab-
lished but the user has not marked it as �trusted� in the device database.

Unknown No information is available for this device.

3. Services that are open to all devices.

The authorization support provided by the Bluetooth security component is very limited.
If a service is classi�ed as one that requires authorization, the device requests this explicitly
from the user. The devices that are de�ned by the user as �trusted� are always allowed
access automatically. However, all the other peer devices require manual authorization.
We believe that this can become obtrusive if there are a lot of devices in an environment,
or if there is a great number of provided services. As an example of the explicit manual
Bluetooth authorization we include here the relevant dialog from a Windows XP device
providing a service; the device named �Test� is the one requesting a service and it has not
been labelled as �trusted� by the user of the Windows XP device (see Fig. 2.15).

Figure 2.15: Bluetooth explicit service authorization request.

The Bluetooth security architecture removes the requirement of having an online cen-
tralized TTP by relying on PIN codes that must be entered into the two devices that need
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to communicate. Also, incoming access requests by untrusted devices must be manually
authorized by the user of the providing device. Although these two requirements may
not seem to be particularly obtrusive in environments with few devices, as the number
of participating devices and services grows it becomes a constant nuisance to users. This
leads to most users simply labelling all devices they come across as fully trusted without
considering the security repercussions. Furthermore, the Bluetooth standard includes no
support for allowing context data to in�uence authorization decisions. Finally, Bluetooth
security has been heavily criticized and a lot of cryptanalytical [FL01], [HN99], [LV04] and
brute force [SW05] attacks have appeared in the literature during the last years.

2.7.4 Distributed Key Management
A solution to the problem of having a single TTP in a dynamic networking environment
certifying the public keys of participating entities was presented by Zhou and Haas [ZH99].
Their approach aims at addressing the problem of key management in ad hoc networks.
Instead of relying on a single CA or a replicated CA at di�erent nodes, which aggravates
the single point of failure/attack problem, the authors proposed the use of threshold cryp-
tography to divide the private key of the CA service between n arbitrarily chosen nodes of
the ad hoc network. Any t + 1 of these n nodes can jointly perform a signature generation
operation in order to produce a public key certi�cate for a new node. The system is able
to tolerate up to t compromised CA nodes since t + 1 partial signatures are required in
order to produce a full valid signature. Share refreshing techniques that periodically create
new sets of private key shares are also used. Thus, a mobile attacker has to compromise at
least t + 1 CA nodes within the time period of two consecutive share refreshing processes
in order to compromise the private key. Although this approach facilitates more �exible
key management than traditional PKI systems, it assumes that somehow certain nodes are
chosen to serve the special purpose of CA share nodes. This assumption cannot always
be realistically satis�ed in all ad hoc networking or pervasive computing applications. For
example, in application scenarios that involve everyday and not military or emergency
activities the selection of the CA share entities becomes an obstacle.

A similar solution was proposed in [KZL+01] by Kong et al. Again the private key of
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the CA service is divided into a number of shares. The main di�erence with the previous
scheme is that any participant of the ad hoc network can have a share of the private key.
A node is given a public key certi�cate binding its node identi�er to its public key by using
t + 1 partial signatures from the nodes that hold shares of the private key. Although this
scheme still requires an authority to prime the initial t + 1 nodes with private key shares,
it copes better than the previous scheme with high mobility scenarios since any node can
be a potential CA share node. The shares are rearranged whenever a new node that wants
to acquire a share of the private key obtains one by the t + 1 nodes that already have
shares. However, the scheme can be attacked by a malicious node that repeatedly changes
its identi�er and acquires all the necessary number of shares to reconstruct the private key
of the CA service.

Another problem with both systems lies in the fact that the devices that perform the
CA share node role are assumed to always be available. At anytime a partial signature
request may be addressed to them. Therefore, they have to constantly be in the vicinity
of the local networking environment in order to be able to respond. The authors do not
specify if the share nodes have the ability to delegate their role to other participants of
the network. Finally, even with the central CA entity requirement removed, identity-based
security infrastructures o�er little help in addressing the authorization requirements of the
volatile pervasive computing paradigm.

2.7.5 Self-organized Public Key Infrastructure
A PKI-based key management approach for mobile ad hoc networks has been proposed by
Capkun et al. [CBH03]. Their proposed solution avoids completely a universally trusted
third party, or a CA, by using self-signed certi�cates in a manner similar to the PGP web
of trust. Based on personal real-world trust considerations the users issue public key cer-
ti�cates to each other. All users have to maintain a personal repository of certi�cates that
they have issued to others and of certi�cates that others have issued to them. Certi�cate
revocation is handled explicitly, the user informs communicating peers about the status
of revoked certi�cates, or implicitly by using short expiration times and renewal of previ-
ously issued certi�cates. The goal of the scheme is to enable a source node that wishes to
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communicate with another node to obtain the destination's authentic public key. As an
example consider the case where source node A wishes to communicate with destination
node B. Nodes A and B merge their certi�cate repositories and A tries to �nd a public
key certi�cate chain that connects it to B. The chain has to be constructed in a way that
the �rst certi�cate can be veri�ed using A's public key, and each next certi�cate can be
veri�ed with the key included in the previous certi�cate of the chain. The last certi�cate
of the chain must include the public key of node B. The main problem with this approach
is that users are assumed to issue valid certi�cates. To deal with malicious participants
issuing false certi�cates, the authors introduce con�dence metrics to measure the extent
that a certi�cate can be trusted. Furthermore, the authors assume that trust between
participating entities is transitive, that is if A trusts B and B trusts C then necessarily
follows that A must trust C, which is not always a valid assumption [CH96].

2.7.6 Ad hoc Group Key Agreement
Another key management approach designed to address scenarios of room meetings has
been proposed by Asokan and Ginzboorg [AG00]. As users come into the meeting room
they are given, or read from a blackboard as the authors suggest, a commonly shared
password. To enhance the security of the scheme against brute force attacks, the password
is not used directly, but a strong shared key is derived from it. The shared key derived
from the password can either be the same for every participant (group key exchange) or
a di�erent one for every exchange between two participants (two-party key exchange).
Since this scheme has been designed to address a speci�c application scenario it cannot be
easily applied to di�erent situations. In pervasive computing where mobility is high and
membership changes frequent this key management approach becomes cumbersome.

2.7.7 Proxy-based Security Protocols
Based on the assumption that in pervasive computing most devices will have limited pro-
cessing and memory resources, Burnside et al. proposed the use of virtual proxies employed
to o�oad tedious calculations [BCM+02]. While personal user devices are assumed by the
authors to be computationally restricted, these infrastructure virtual proxies have high-
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bandwidth connections and copious resources available. Their proposal presents a security
architecture based on SPKI/SDSI that o�ers authentication, authorization and con�den-
tiality services to proxy-based pervasive computing solutions. Every device in the system,
like household appliances, mobile phones, handheld computers, and others, have associated
trusted software proxies that run on infrastructure computers. Two security protocols are
analyzed, one that secures the device-to-proxy communications, and one that secures the
proxy-to-proxy communications (see Fig. 2.16).

Figure 2.16: Proxy-based security protocols.

The device-to-proxy protocol is described by the authors very brie�y; every device
and its associated proxy are assumed to share 128-bit keys. These shared keys are then
used to encrypt and authenticate communications between the two components. However,
there is no explanation of the mechanism used to initialize these keys. The virtual proxy
is responsible to make access control decisions on behalf of the device it represents. The
authorization process is based on SPKI/SDSI capability certi�cates; the requester presents
the access request to the proxy which responds with the relevant ACL. Then the requester
sends the SPKI/SDSI certi�cates she holds to support the request and satisfy the ACL. If
the proxy correctly veri�es the certi�cates and discovers that the request is authorized it
forwards the requested action to the associated device over the device-to-proxy protocol.
Furthermore, the authors propose the layering of the proxy-to-proxy protocol on top of
SSL/TLS in order to provide further security services, like con�dentiality for the exchanged
certi�cates and ACLs. However, it is not clear how this is accomplished. SSL/TLS uses
the X.509 PKI to authenticate peers based on PKCs binding their identi�ers (usually DNS
names) to their public keys. We see two problems with this approach. First, if the X.509
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PKI is required then the proposed solution becomes inappropriate to address the security
concerns of pervasive computing due to its centralized nature and inability to operate in a
disconnected manner10. Second, if self-signed X.509 PKCs are used then it is possible for
an attacker to perform a man-in-the-middle attack against the authentication step of the
proxy-to-proxy protocol.

The main shortcoming of the proxy-based security protocols is that they require all
communication tra�c between pervasive devices to �ow through their associated proxies.
These proxies require �xed infrastructure and manual con�guration. In addition, the proxy
infrastructure needs to be persistent and always accessible, otherwise no secure associations
can be established. This comes in contrast to the decentralized and disconnected paradigm
advocated by pervasive computing which requires users to be able to communicate even
when they cannot access infrastructure networks.

2.7.8 Personal PKI
The term �personal PKI� describes a PKI-based security solution speci�cally designed to
support the distribution and management of public keys and PKCs in a Personal Area
Network (PAN) [Mit04]. The authors de�ne a PAN as a collection of portable or mov-
ing devices in close proximity to a physical person. The main assumptions of the system
are threefold. First, that a PAN contains at least one device performing the role of the
PAN's root CA, called the personal CA. Second, that devices of the PAN cannot rely
on either existing symmetric shared keys or connectivity to a TTP in order to establish
secure associations between themselves. Third, that the personal CA and the other par-
ticipating devices must be equipped with simple input and output devices. Based on these
assumptions a device initialization protocol is described in which the personal CA securely
transfers its public key to a device of the PAN and issues a PKC for it. The communication
between the two devices takes place over an insecure wireless interface and since all infor-
mation to be transfered is assumed to be public the protocol protects only the integrity of
the exchanged data and not their con�dentiality [Mit04]. This is accomplished by utilizing
the input/output facilities of the devices and by requiring from the user to read the digest

10For more details on why the X.509 PKI is not compatible with pervasive computing please see subsec-
tion 2.6.2.
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of a randomly generated key from one device and enter it into the other, thus ensuring
integrity (see [Mit04] for the complete protocol).

The authors also analyze the applicability of their protocol in the cases that one or
both devices lack keypads or displays. Moreover, revocation issues in the personal PKI
are examined, and the use of Current Identity Lists (CILs) is proposed. CILs are lists
that include the valid PKCs, which is basically the opposite concept of CRLs. CILs
are applicable to the personal PKI scenario since the number of participating entities is
typically small. Although the concept of the personal PKI seems to �t nicely with the
decentralized security requirements of pervasive computing, it is still an identity-based
authentication architecture; the authorization problem must be addressed separately and
all attempts to solve it present the same di�culties as with other PKI-based solutions.

2.7.9 Cerberus
The Gaia project aims to de�ne a generic computational environment that integrates phys-
ical spaces and the pervasive computing devices that exist in them into a programmable
system [RHC+02]. Cerberus is a core service in the Gaia platform that provides iden-
ti�cation, authentication, context-awareness, and reasoning [AMRCM03]. It utilizes an
infrastructure of sensors that are installed throughout the environment in order to capture
and store as much context information as possible. This information is then used to iden-
tify entities and reach decisions regarding the actions they request to perform. There are
four main components that collectively provide this functionality:

1. The security service which is responsible for identifying and authenticating entities.
Each authentication method is associated with a con�dence value that represents
how con�dent the system is about the identity of an entity. Each con�dence value
is a number in the range [0, 1]. Entities can use multiple authentication methods,
like smart badges or �ngerprint scanners, to increase their con�dence value. This
metric is then used in access control decisions. The security service also provides an
authorization API which applications can use to check if certain entities can perform
particular operations.

2. The context infrastructure that uses �rst-order predicate calculus and boolean alge-
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bra to allow the de�nition of complex access control rules involving context. This
is in essence a monolithic context database that stores all possible current context
information the sensors of the system can collect. Furthermore, context history is
also maintained in the database allowing a persistent view of events taking place in
the environment.

3. The knowledge base which contains access control policies also expressed with �rst-
order logic. Cerberus has two di�erent kinds of policies; the ones that determine the
con�dence value of an entity based on the authentication method it uses, and the
ones that de�ne authorizations. The latter use the con�dence value associated with
an entity to decide if access to a particular resource is allowed or denied.

4. The fourth component is the inference engine which is responsible for performing two
tasks. The �rst one is to assign con�dence values to entities based on the authen-
tication policies and the contextual information stored in the context infrastructure
database. The second one is to evaluate access queries from applications running in
the environment regarding whether an entity can perform a certain operation on a
resource. Decisions are reached based on the access control policies, the credentials
the entity presents, its associated con�dence value, and its current context data.

Fig. 2.17 presents the Cerberus system and its four main components. The main
disadvantage of Cerberus lies in its monolithic architecture and its reliance on a central
server to collect context information, evaluate policies and make authorization decisions on
behalf of resource providers. This implies the requirement that all the resource providers
of the environment trust the server to give them correct authorization decisions and not to
reveal their personal data, which may be private in nature. However, pervasive computing
entities (both resource providers and consumers) establish short-lived associations and
frequently roam between administrative domains and hence do not necessarily trust each
other. Additionally, the central component that reaches authorization decisions needs to
be constantly accessible and therefore forbids disconnected operation.
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Figure 2.17: The Cerberus system.

2.7.10 Environment Roles
Covington et al. proposed the concept of environment roles in order to develop an access
control system for pervasive computing that can utilize environmental and contextual in-
formation [CLS+01]. Environment roles are in essence one component of the Generalized
Role-Based Access Control (GRBAC) model [CMA00]. GRBAC is an extension of the
traditional RBAC model where object and environment roles are de�ned in addition to
subject roles. The resources provided in an environment can be assigned to object roles
and environmental (contextual) conditions are used to de�ne environment roles. GRBAC
uses a logic language similar to Prolog to express access control constraints on context vari-
ables. Authorizations are based both on traditional subject roles and environment roles.
This allows the system to be sensitive to contextual information, which is captured by
sensors and translated to speci�c environment conditions. These conditions are then used
to activate environment roles for the subjects in the smart space based on logic predicates.

GRBAC constitutes a �exible set of extensions to RBAC; the concept of object roles
greatly simpli�es the administration of resources and the de�nition of access control poli-
cies. Based on captured context, environment roles can be activated automatically for
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subjects in the smart space giving them certain access rights without the need of manual
con�guration tasks. However, GRBAC relies on a central management service. This ser-
vice has two responsibilities. The �rst is to collect context data and maintain environment
conditions. The second is to store the logic predicates that implement environment role
activation decisions and authorizations. All resource consumers and providers that partic-
ipate in the system need to have persistent access to the management service, otherwise
they cannot activate environment roles or reach authorization decisions.

2.8 Secure Service Discovery Systems

This section presents a brief examination of secure service discovery systems. Although
this is not our main research area, we believe that the problems of authorization and secure
service discovery are interrelated, especially in the domain of pervasive computing. As we
have already discussed in a previous section, service discovery is an enabling technology for
pervasive computing as it allows users to locate the services provided in an environment
without requiring tedious administrative and con�guration tasks. Services need to be
discovered before an access request can issued. However, the fact that a service can be
discovered by an entity does not necessarily imply that it can also be accessed by the same
entity. In addition, as we examine in greater detail in the following chapter, unauthorized
access to service advertisements leads to security threats.

2.8.1 Jini
The Jini [ASW+99] service discovery framework utilizes a component called the Jini
Lookup Service (JLS) to allow entities in an environment to discover provided services.
When an entity wants to provide a new service it locates the JLS of the local network and
sends to it a Java object that implements the access interface of the service. The interface
also serves as a template for client search requests. We believe that the introduction of a
central component as the JLS in a pervasive computing environment introduces additional
administrative overhead.

Jini provides very limited support for satisfying security requirements, as this has not
been one of its design goals. Authorization services are o�ered only when a client tries to
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access a service, but not during the process of discovery. Therefore, any client is able to
discover all the services of an environment, even when it is not allowed to access any of
them. Additionally, the JLS does not support any kind of authentication; unauthenticated
services may register, unauthenticated clients can attempt to access registered services,
and rogue JLSs can be set up.

2.8.2 Service Location Protocol
The Service Location Protocol (SLP) [GPVD99] has three main components; the User
Agent (UA), the Service Agent (SA) and the Directory Agent (DA). The UA runs on
client entities interacting with the user applications and sending service discovery requests.
The SA is responsible to generate and dispatch advertisements for the services that an
entity wishes to provide. The DA implements a central service information repository that
receives and caches the advertisements sent by the SAs of the local network and replies to
requests from UAs. SLP is also able to function in a fully decentralized manner without
the presence of DAs; UAs multicast their service requests and the relevant SAs unicast
their replies directly to them.

SLP provides limited authentication by allowing service request messages to carry in-
formation that protect the integrity of the message. However, it does not include any
mechanism to permit SAs or DAs to authenticate UAs. Finally, SLP does not support any
kind of access control for the provided services and leaves this to be addressed by each SA
independently.

2.8.3 Universal Plug and Play
Universal Plug and Play (UPnP) [UPn03] uses the Simple Service Discovery Protocol
(SSDP) for service discovery and is able to operate both with and without a central service
registry in the local network. The former is accomplished by having service providers
advertise their services using multicast messages, which include the services' types, names
and URLs that point to XML �les with the access interfaces. UPnP control points in
the network register the advertisements and unicast them to the appropriate requesting
clients. In the decentralized mode of SSDP clients broadcast their requests in the network
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and the matching service providers reply with unicast messages containing URLs to XML
�les describing the service's access interface.

The process of service discovery is protected in SSDP by announcing all devices as
generic devices without any details regarding the services they provide, except in response
to access requests from authorized clients. Service access control is provided by having an
ACL in each device that lists the unique IDs of client devices and the operations they are
allowed to perform on the current device.

2.8.4 Secure Ad hoc Service Discovery
Zhu et al. proposed a proxy-based secure protocol for discovering and accessing unfamiliar
services in public ad hoc networking environments [ZMN03]. Their model of establishing
secure communications utilizes channels outside the local network to aid pervasive comput-
ing entities to authenticate and authorize each other. Based on this assumption they have
de�ned two models, one that does not use third-generation mobile telephone technology
(3G) channels and one that does.

In the �rst model of accessing an unfamiliar service without a 3G connection, the
client device must access its proxy through the Internet connection the service provider is
assumed to have. The service provider authenticates itself to the client's proxy with the
help of an assumed existing PKI. Then the proxy generates a session key and sends it to
both the service provider and the client (through the provider). The service provider then
decides whether to allow access to the client based on the identity of its authenticated
proxy. In the second model, when a client wishes to access a service it sends the service
request and its certi�cates directly to its associated proxy over a 3G channel. The proxy
then contacts the service provider over the Internet and requests access. If the provider
authorizes the request it sends a generated session key to the proxy which is then forwarded
over the 3G connection to the client.

Both models rely on a centralized PKI-based trust model. Furthermore, the local
network is assumed to always have a persistent connection to the Internet in order to
contact both the PKI system and the requesting client's proxy. Finally, neither of the
proposed protocols addresses the protection of service advertisements.
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2.9 System Classi�cation

Table 2.4 classi�es the security systems, both the pervasive and the traditional ones, we
have surveyed according to the previously identi�ed requirements. Table 2.5 classi�es the
service discovery systems we have examined. Our classi�cation demonstrates that no single
existing system satis�es the complete set of requirements for authorization management in
pervasive computing environments.
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Table 2.4: System classi�cation according to requirements.
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Table 2.5: Service discovery system classi�cation.
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Chapter 3

Pervasive Computing Threat Model

The survey of the areas presented in the previous chapter directly leads to the formulation of
a comprehensive threat model that helps in identifying what we are trying to protect against
when we design a security system for pervasive computing. The de�nition of a threat
model is an essential part of the design of any security system. When a security model
is designed in order to protect a speci�c application against attackers certain assumptions
are made. These assumptions are necessary in order to make the end product usable
by legitimate users. However, a completely trusted environment cannot be realistically
expected; attackers will discover the assumptions made by the system and will try to take
advantage of them to increase their authority. Therefore, it is very important to understand
the possible threats, identify the avenues of attack and enumerate all the assumptions
made by the system we are trying to secure. Threat models do not attempt to de�ne the
constraints that a system places on the attacker to satisfy its security properties. This is
accomplished in the complete security model of the system under development. Hence,
a threat model is a subset of a system's security model, and the �rst step towards the
realization of the latter. Although the term �pervasive computing� refers to an entire
computing paradigm and not a speci�c user application, we believe that a threat model is
necessary in order to help us develop a security model than can focus on protecting against
certain threats and manage the related assumptions. One methodology to discover and
list all possible security attacks against a system is known as attack trees. To create an
attack tree we represent attacks against a system in a tree structure; the attack goals as
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root nodes and the di�erent subgoals necessary to achieve them as their leaf nodes [Sch99].
Previous e�orts to de�ne a threat model for pervasive computing have been less than

complete. Projects published in the literature on the area of secure pervasive computing
present a limited view of threats and are focused on what the proposed system aims to
address. For example, the Talking to Strangers (TTS) system [BS02] that we have already
examined in the previous chapter explores only the problem of authenticating devices in
order to avoid sending con�dential data to other devices than the one the user intended
to. The solution proposed by the TTS system is based on Stajano's Resurrecting Duck-
ling model [SA00] and uses location-limited channels to perform authentication between
devices. The presented threat model focuses only on attacks against the establishment of
such a channel. Asokan and Ginzboorg also de�ned a threat model speci�c to their group
key protocol. They generally assume a strong and a weak attacker; the strong attacker is
able to disrupt any protocol by modifying the communication channel among the legitimate
participants, and the weak attacker can only insert messages but cannot modify or delete
messages sent by others [AG00]. Burnside et al. in [BCM+02] give a very limited threat
model for their proxy-based authentication protocol. Their main focus is replay attacks
and the use of timestamps to protect against them. A more complete representation of
threats was given by Keely [Kee01]. Although he focuses on threats to wireless mobile
networking for e-business applications, several of the attacks he identi�ed are applicable
to pervasive computing environments and applications. Creese et al. [CGRZ03] focus on
formalizing the ubiquitous computing threat model examining mainly the assumption of a
dual interface; one interface for establishing location-limited channels and bootstrapping
security associations, and one for actually participating in networking protocols. Although
context-awareness is an inherent characteristic of pervasive computing and one that opens
new avenues of attack, none of the surveyed projects addresses it in their threat model.

Fig. 3.1 illustrates the pervasive computing threat model we have de�ned using the
attack trees methodology. During the development of the model we have identi�ed that
several attacks lead to other attacks which we have previously included and analyzed.
These are represented in the tree as identical nodes in di�erent locations. A node that
appears in more than one location of the tree has the same sub-tree everywhere. In order
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to avoid including the same sub-tree multiple times in the model we have used icons to
denote duplicate nodes. Therefore, a node marked with an icon means that it exists
somewhere else in the tree and if that node has a sub-tree this sub-tree is included only
once. Furthermore, the textual description of some nodes is highlighted. These nodes do
not represent attacks but reasons for why solutions based on the parent nodes are not
suitable for pervasive computing systems. We are using such an extension to the attack
trees methodology in order to have a complete overview of pervasive computing security
in our model.

We have identi�ed seven di�erent general categories of attack on a pervasive computing
system; Context-sensitivity, unauthorized actions, eavesdropping on the communication
channel, threats associated with service and device discovery, denial of service (DOS)
attacks, stolen devices, and attacks focusing on a secure transport layer protocol solution
(like for example the Transport Layer Security (TLS) protocol). Although we have not
explicitly included privacy threats in our model, a lot of the enumerated attacks result in
reducing the privacy of pervasive computing users. Moreover, our model does not include
the social aspects of pervasive computing security since we focus on technology-related
attacks. We do believe that in future computing environments social-based attacks such
as social engineering [MSW03] will be even more e�ective than in traditional computing,
but we consider these to be outside the scope of our model. In the following sections we
will analyze the attack categories in detail and discuss the possible privacy implications
they introduce.

3.1 Context-sensitivity Threats

Pervasive computing systems rely on context-awareness in order to both minimize manual
intervention from the users for possible required con�guration tasks and to enhance their
understanding of the surrounding environment. This reliance opens new avenues of attack
on pervasive computing systems and applications that do not exist in traditional comput-
ing. A close examination of the enumeration-based context de�nition given by Adelstein et
al. [AGRS05] reveals that we can sort the di�erent context categories based on the novelty
of possible attack avenues their use opens (see Fig. 3.2).
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Figure 3.1: Pervasive computing threat model.

74



Figure 3.2: Use of context categories and novelty of attack avenues.

As context-sensitive applications utilize more sophisticated context categories to bene�t
their human users the possibility of creating new attack patterns and vulnerabilities that
did not exist before increases. An example considers the computing context category,
which includes information regarding network connectivity, communication costs, available
bandwidth, nearby accessible resources and others. An attacker that has access to such
kind of data can attack the system only in ways that have been documented and are known
in conventional computing. Known security vulnerabilities of speci�c versions of network
servers, unpatched operating system services and cleartext application protocols all fall
into this category. However, as we move upwards to the use of more complex context
categories the attack avenues become more novel and undocumented thus far. This section
identi�es these new forms of attacks.

3.1.1 Context Fabrication Threats
We de�ne context fabrication threats as those in which a malicious entity creates context
information that does not correspond to any physical or digital environmental parameters.
The relevant section of the threat model is illustrated in Fig. 3.3. The fabrication of
non-existent physical parameters can directly lead to providing false data to the sensors of
a pervasive computing system. Consequently the system may deny access to a legitimate
user since it has taken into consideration the false physical context data. For example, we
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Figure 3.3: Context fabrication threats.

may have a system that tracks when a particular public workstation computer is occupied
or free for use and publish this information on a web page. An attacker can provide false
physical context to the sensors that the system uses making the workstation always appear
to be occupied. Legitimate users that periodically check the relevant web page �nd the
workstation to be constantly engaged. Context fabrication attacks can also target digital
context data collected by sensors. By providing such false information an attacker can
manipulate a system into granting her authority she was not meant to possess allowing
the execution of otherwise protected operations (we examine the rest of the unauthorized
actions' sub-tree in a later section of this chapter). As an example consider an attack in
which a malicious party generates false context information, possibly by replaying previ-
ously captured identity tokens, that a speci�c person is present in a smart room while in
reality he is not. A context-aware system will adapt to facilitate the needs of that person
exposing to the attacker services she was not meant to access. In order to address context
fabrication threats a pervasive computing security model must have a way to authenticate
the context captured by its sensors. We refer to this requirement as context authentication.

3.1.2 Context Consumption Threats
In context consumption threats an attacker captures context information transmitted in
a smart room (summarized in Fig. 3.4). This context information can either be low-
level sensor data captured as they are communicated from the environmental sensors to
the system, or high-level context data aggregated by the system and captured by the
attacker as they are transmitted to legitimate users. This leads to a threat we call smart
space reconnaissance, which basically is similar to the eavesdropping attack on conventional
networks but focuses on learning the context information associated with speci�c users and
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the smart room in general instead of system passwords. The attacker is able to enumerate
all devices and services that exist in the environment and use this list to select targets
for performing traditional attacks against them, like for example gaining unauthorized
access to a device. Smart space reconnaissance can also lead to the invasion of privacy
of legitimate users. The attacker can track the movements of a user and always know
where he is. Furthermore, personal user information is also disclosed to an attacker that
captures context. Details such as the operational parameters of pervasive medical devices
are of sensitive nature and their unauthorized possession constitutes a direct violation of
the owner's privacy.

Figure 3.4: Context consumption threats.

3.2 Unauthorized Action Threats

Threats from unauthorized actions (illustrated in Fig. 3.5) may result either from the
absence of an authorization system that controls access to the resources that exist in a smart
space, or from the successful bypassing of such mechanisms by an attacker. The latter can
be accomplished with many di�erent ways, like for example with context fabrication that
we have examined in a previous section. Consequently the attacker gains access and is able
to use the services of a smart room without the consent or the knowledge of the owner.
While this threat has generally the same results as in traditional computing when it comes
to digital services, in pervasive computing the attacker can also manipulate environmental
controls, like air conditioning settings and the degree of illumination, directly a�ecting the
people that are currently in the room. Moreover, unauthorized invasions of an entity's
personal space comprise privacy violations [And01].

In order to address the threats of unauthorized actions access control systems are
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Figure 3.5: Unauthorized action threats.

employed. As we have already discussed, both identity-based and traditional role-based
solutions to this problem are incompatible with the requirements of pervasive computing.
Moreover, the reliance on credentials to implement such access control mechanisms opens
more avenues of security vulnerabilities. Another threat that falls into this category but is
not readily apparent concerns the low level of trust that usually exists between the entities
of a pervasive computing environment. Users meet each other frequently with little or no
previous experience regarding behavior and trustworthiness. Therefore, it is di�cult for
them to correctly assess a situation and assign the proper access rights to another user
or device. This problem becomes even more important when we consider the fact that
pervasive computing targets all users and not only the ones that are technologically savvy
and can easily understand how to grant speci�c access rights for speci�c resources.

3.3 Eavesdropping Threats

Eavesdropping on the communication channel is a common threat for networking systems
and protocols that do not employ cryptographic mechanisms to protect the con�dential-
ity of the exchanged messages. An attacker exploits the assumptions of the underlying
networking technology, like for example the broadcasting nature of Ethernet, and receives
on the local interface the entire tra�c of the current subnet. If the con�dentiality of the
protocol messages is not protected the attacker has access to all the information included
in them. In pervasive computing the problem is aggravated by the fact that data transmis-
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sions use wireless media, such as Bluetooth [Blu03] and IEEE 802.11b [IEE97]. Therefore,
it is far easier for an attacker to simply be within the transmission range of the utilized
medium and capture the exchanged data tra�c. Moreover, the link layer security mecha-
nism provided as part of IEEE 802.11b, known as Wired Equivalent Privacy (WEP), has
been shown to be vulnerable to eavesdropping attacks [BGW01]. A malicious user can re-
cover the shared symmetric key used to ensure the integrity and the con�dentiality of the
tra�c exchanged between the legitimate participants of the network simply by observing
data packets.

Another avenue of attack opens when pervasive computing environments are connected
to the Internet through gateways. The main protocol to enable this functionality is the
Wireless Application Protocol (WAP). WAP allows users to access information on the
Internet instantly via handheld wireless devices such as mobile phones, pagers, smart
phones and others. This introduces new threats and vulnerabilities for the mobile users
and the corresponding service providers. The architecture that is used at the present time
is not able to address security problems since it is not based on an end-to-end model.
The Wireless Transport Layer Security (WTLS) [WAP01] protocol o�ers application layer
security services to WAP and uses a gateway-based architecture that forces all network
tra�c to pass through a dedicated system that performs the necessary protocol translations
(from WTLS to SSL/TLS, and vice versa) in order to securely connect a mobile device to
the Internet. This process breaks the end-to-end security model and allows the gateway
to monitor all tra�c exchanges. Hence, it becomes a very attractive target for attackers.

There are several threats to a pervasive computing system associated with eavesdrop-
ping; the relevant sub-tree of the threat model is shown in Fig. 3.6. One threat we have
already identi�ed and analyzed in a previous sub-tree is smart space reconnaissance. The
attacker can enumerate the provided services, the exchanged context data, and the context
producers and consumers of a smart environment. Moreover, an attacker can monitor and
record the link layer identi�ers, for example the Media Access Control (MAC) addresses,
used by the network interfaces of the users' devices. This leads to user session linking
attacks in which the movements of a user from one pervasive administrative domain to the
other can be tracked. An assumption of this attack is that link layer identi�ers are globally
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unique and therefore linkable. This information can be used to stalk an unsuspecting user,
register visited locations, and even identify the user's schedule; all of which are of course
privacy violations. Finally, by dissecting cleartext protocols an attacker can discover ac-
count registration data and other personal information details, like social security numbers
for example, that can ultimately lead to identity theft.

Figure 3.6: Eavesdropping threats.

3.4 Service and Device Discovery Threats

Service and device discovery are an essential part of the pervasive computing paradigm.
These technologies enable the on-demand utilization of processing capabilities o�ered in a
smart space without the need for extensive manual administrative tasks. However, they
are vulnerable to several attacks (summarized in Fig. 3.7).

Figure 3.7: Service and device discovery threats.

If there is no security mechanism to protect the con�dentiality and the integrity of the
service discovery protocol advertisement messages an attacker can capture and record their
contents. This leads to the smart space reconnaissance attack we have already examined
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in a previous sub-tree. Moreover, if the utilized advertisements are not authenticated
according to a security model, an attacker is free to generate and broadcast false messages
claiming that he provides a certain service. Legitimate smart space participants looking for
such a service would accept and try to access the false one advertised by the attacker. One
consequence of this is that the attacker can fully or partially disable the correct operation
of any provided service of the environment simply by claiming that he provides the same
one and ignoring the incoming access requests. The attacker can also choose to accept
the access requests and ask from the user to supply personal information, like passwords
or other con�dential data, in order to authorize the use of the service. This leads to the
disclosure of personal user data to unauthorized parties and is of course a privacy violation.

3.5 Denial of Service Threats

Denial of service threats aim at disrupting the requirement of availability, which can be
de�ned as the problem of enabling systems to perform their advertised services in a timely
manner [Gli84]. In pervasive computing denial of service threats can be divided into three
categories; battery exhaustion (also known as sleep deprivation torture [SA00]) threats,
physical layer jamming, and application layer attacks. These are shown in Fig. 3.8.

Figure 3.8: Denial of service threats.

The main goal of an attacker that performs a battery exhaustion attack is to render
the target service or device unusable. In order to achieve this she constantly tries to in-
volve the victim in expensive dialog exchanges keeping him from entering a sleep state and
thus conserving battery energy. Although this type of attack has a very limited impact on
traditional computing devices, it is particularly e�ective on the energy-constrained devices
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that are typically used in pervasive computing environments. Physical layer jamming con-
stitutes an attack of a larger scale since it aims at disrupting all the communications taking
place in a smart environment. The attacker employs the use of specialized hardware that
is able to transmit jamming signals that a�ect all the channels that the utilized physical
layer technology supports. Although the results of such attacks are devastating since they
render all communications impossible, they are easily detected. A much more subtle way
to perform denial of service attacks is to target the application layer. A motivated attacker
can cause the performance of a provided service to degrade to unusable levels by mimick-
ing heavy user tra�c. By periodically initiating new access requests from falsely generated
sources the attacker can hide from the source provider the fact that an attack is taking
place. State exhaustion attacks are also performed at the application layer. They aim
to exploit the limited memory resources of embedded and handheld devices by initiating
connections and never terminating them. If the target service is not able to handle broken
connections e�ciently then all its available memory resources are consumed in the e�ort
to maintain the sessions established by the attacker.

3.6 Stolen Device Threats

The devices that are used in pervasive computing are typically small in size, like for example
mobile phones and PDAs, and therefore they can easily be stolen. We have identi�ed
three threat categories associated with stolen devices; unauthorized actions, installation of
unauthorized software, and key material disclosure (see Fig. 3.9).

Figure 3.9: Stolen device threats.

A stolen device can be directly used by its physical owner to perform actions in a
smart space. This is possible since mobile devices do not generally have security features
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to guarantee that they are operated by their rightful owner. Mechanisms like �ngerprint
identi�cation are slowly being integrated into new generation mobile devices, however
they have been proven to be easy to break [MMYH02]. When a device is under the
physical control of a malicious entity one of the most common avenues of attack is the
installation of unauthorized software that allows the monitoring of all data communications
or provides remote access capabilities. Thus, the device falls under the full control of
the attacker. Another threat related to stolen devices is the disclosure of key material.
Security mechanisms usually rely on symmetric or asymmetric cryptographic keys; these
are stored in the participating devices with little or no protective measures. Tamper
resistance technologies that can provide some measure of assurance are very expensive and
are usually inadequate [AK96], [AK97]. Hence, it is valid to assume that if an attacker
physically controls a device he is eventually going to retrieve the cryptographic key material
stored in it. With these in his possession he can eavesdrop on protected communication
channels and issue unauthorized certi�cates to principals of his own choosing.

3.7 Secure Transport Layer Threats

One of the most common approaches to secure a networking environment is to develop a
protocol that o�ers authentication, integrity and con�dentiality services at the transport
layer. This has a number of advantages over network layer security solutions like IPsec
[KA98] which are implemented in the operating system kernel making them particularly
inconvenient to deploy. Furthermore, IPsec has been criticized for being exceptionally
complex and this fact hinders in depth security evaluations [Res00]. Protocols like the
Secure Sockets Layer (SSL), the latest version of which is also known as Transport Layer
Security (TLS), is by far the most widely deployed security protocol in the Internet [Res00].
TLS utilizes the X.509 identity-based security infrastructure in order to authenticate the
peers that want to establish a secure channel. This is achieved through the use of public
key digital signatures, the corresponding X.509 public key certi�cates (PKCs), and the
authenticated Di�e-Hellman protocol. The establishment of a secure channel can also
be accomplished with other mechanisms like the anonymous Di�e-Hellman protocol and
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symmetric shared secrets or username/password/PIN combinations1 which are vulnerable
to di�erent types of threats. In the following subsections we analyze these and other threats
to secure transport layer protocol solutions for pervasive computing environments.

3.7.1 Tra�c Analysis
Tra�c analysis can be de�ned as the process of intercepting and analyzing exchanged
protocol messages in order to derive characteristics of a channel and its participants from
patterns in communication [FGBZ03]. It can be performed even when the messages are
encrypted and the attacker does not possess the appropriate key material to decrypt them.
The characteristics that can be retrieved include the network identi�ers of the participants
(like IP or MAC addresses), their location based on the identi�ed network segments, the
frequency and the duration of the communication, the amount of data exchanged, and
others. Depending on the security requirements of a pervasive computing environment
such information leaks can be considered to be a substantial threat. Moreover, tra�c
analysis can result in the tracking of devices as their owners move from one pervasive
domain to another. The relevant sub-tree of the threat model is shown in Fig. 3.10.

Figure 3.10: Tra�c analysis threats.

3.7.2 Protocol Bugs
Another possibility of attacking a secure transport layer protocol lies in possible bugs.
These can manifest in di�erent areas of the protocol such as the design logic, the imple-
mentation, or the cryptographic algorithms that are used as security building blocks (see
Fig. 3.11).

1Of course the same mechanisms can also be employed at the network layer. Although we focus on the
transport layer as the most popular and convenient way to o�er security services, the identi�ed threats
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Figure 3.11: Protocol bug threats.

An example of a design �aw is the downgrade attack in SSLv2. The protocol does not
provide any protection for the handshake procedure, therefore it is possible for an attacker
to force the communicating peers to agree on using a weak cryptographic algorithm even
though they both support a stronger one [Res00]. The problem has been solved in SSLv3
by computing a message digest over the entire handshake.

3.7.3 Credential Threats
Credentials are used in order to authenticate and subsequently to authorize users. Based
on a successful authentication and authorization result, the utilized secure protocol estab-
lishes a protected channel between the participants for further communication. There are
di�erent types of credentials that can be used for this purpose; username/password/PIN
combinations, shared symmetric cryptographic keys, and certi�cates. Each credential type
su�ers from di�erent threats and these are examined in the following paragraphs.

3.7.3.1 Username/Password/PIN Threats

Username/password or PIN combinations can be used in order to authenticate peers to
each other and establish secure channels. To use username/password credentials the service
provider must create appropriate entries in its authentication database for every user that
is trusted and should be granted access. PINs are used by typing the same identi�cation
number or string in the two or more devices that wish to communicate. Then this com-
mon secret is used as a basis for creating a secure channel. In pervasive computing where
the complete set of participating entities is not known in advance and its membership list
apply to network layer security protocols such as IPsec as well.
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changes dynamically and frequently these processes present distribution problems. Fur-
thermore, the manual setup of the username/password pairs and PINs is highly obtrusive
for the owners of the corresponding participating devices. The main threat with these
types of credentials lies in the fact that they are easy to guess2 and therefore an attrac-
tive target for brute force attacks (see Fig. 3.12). Published results in the literature have
demonstrated that users rarely select appropriately strong passwords to secure their devices
[YBAG04]. PINs are equally vulnerable to attackers; the Bluetooth security mechanism
that is based on a PIN system to facilitate the secure pairing of two devices has been
recently shown to be vulnerable. The shared PIN can easily be retrieved through brute
forcing by a passive attacker that is able to eavesdrop on the pairing process [SW05].

Figure 3.12: Username/password and PIN threats.

3.7.3.2 Symmetric Shared Secret Threats

Another way to establish secure channels is by distributing the same symmetric crypto-
graphic secret key to all of the participants of the environment or of a speci�c communica-
tion channel. This solution is very cumbersome when it comes to managing the shared keys
and also requires manual intervention from the human users in order to give the required
key material to new participants. The main threat with this solution lies in the fact that
each device that has a copy of the shared secret quantity represents a single point of attack
for the entire system (see Fig. 3.13). The attacker usually selects the least well protected
device and attacks that one to retrieve the secret key. He is then able to attack the system
through most of the avenues with have discussed in previous paragraphs.

2Since they are chosen to be easy to remember.
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Figure 3.13: Symmetric shared secret threats.

3.7.3.3 Certi�cate Threats

The threats against the use of certi�cates to establish secure channels depend on the way
they are used towards that end. Certi�cates can be used as part of a PKI, as self-signed
certi�cates, or as signed statements carrying capabilities. Moreover, we have identi�ed two
threats common to all of these categories; public key linking and attacks against revocation
mechanisms. The identi�ed certi�cate threats are summarized in Fig. 3.14.

Figure 3.14: Certi�cate threats.

Certi�cates are usually signed statements that testify a belief of the issuer, hence they
are usually considered to be public in nature. However, this can lead to privacy intrusions.
An attacker can monitor the certi�cates used in di�erent environments, record the public
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keys of the subjects and link this information to track the movements of individual users.
In PKIs, the authority to issue public key certi�cates lies entirely with CAs, which are
globally trusted third parties and therefore represent a single point of attack for the entire
system. This creates a number of additional threats. In the case of a compromised root
CA the whole PKI system can be circumvented; unauthorized certi�cates can be issued,
message exchanges can be monitored, and the attacker can perform man-in-the-middle
attacks in all communications. Moreover, entities must register and get their public keys
certi�ed by the CA beforehand in an o�ine procedure that requires manual administrative
tasks. The bridge trust model of PKI creates another threat when applied to pervasive
computing environments. CAs are responsible for di�erent administrative domains and
the users that participate in them. When mobile users move from one domain to another
the corresponding CAs must trust each other in order for the users to be authenticated in
the foreign domain they visit. This implies that the CAs have some method to evaluate
each other and cross-certify their keys, and that there exists the required infrastructure to
check for revoked certi�cates at the CA level. The absence of such mechanisms can lead to
falsely trusted CAs and the inability to check whether the key-certifying authority of a CA
has been revoked or not. The process of revocation itself constitutes another threat avenue
related to both PKIs and all certi�cate-based security protocols. An attacker that has
compromised a CA (or any other entity that is able to generate certi�cates) can freely issue
false revocation messages, negating the authority granted to legitimate principals. Another
problem with revocation is that it has to be fast enough in order to reach all the users
of the revoked certi�cate before its holder uses it after it has been revoked. This requires
constant online access and connectivity between all participants, a requirement that is
not compatible with the disconnected nature of pervasive computing. Finally, revocation
mechanisms have not been deployed in any great extend and are usually ignored by security
engineers.

Self-signed certi�cates are generated and signed by the principal that is the subject
of the certi�cate; in other words the same principal plays the role of both the issuer
and the subject. They are used to allow a principal to testify in a certi�cate format
certain statements about itself. For example, in X.509 self-signed identity certi�cates a
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principal states the binding between its own public key and identi�er. Of course since
no trusted third party guarantees the authenticity of the information contained in self-
signed certi�cates the issuer is free to create false ones. However, they are usually used
in application environments where always online central entities such as CAs cannot be
assumed, or are too expensive to implement. If a service provider tries to establish the
identity of a requesting entity based on a self-signed certi�cate then a man-in-the-middle
attack is possible. The attacker takes advantage of the fact that the service provider
has no way of verifying the binding between the identi�er and the key of the requester.
For example, the Secure Shell (SSH) protocol [Ylo96] tries to avoid relying on a PKI by
using self-signed certi�cates and establishing the binding between the identi�er and the
key of service providers by assuming that the �rst time the connection happens no attacker
substitutes the provider's key with his own. This practice makes the protocol vulnerable
to a man-in-the-middle attack on the �rst access. Furthermore, if the service requester
does not cache the bindings between identi�ers and keys the same attack is also possible
on subsequent access attempts.

Capability-based certi�cates, like the ones used in the KeyNote and SPKI/SDSI sys-
tems, also su�er from the threats related to revocation we have already analyzed. As it
has been previously discussed, they are not compatible with the requirements of pervasive
computing since they involve the creation of a new delegation chain for each new service
provided in an environment and the distribution of the related credentials to actually im-
plement the chain. This leads to scalability problems and assumes that the human owners
of the devices will perform the necessary con�guration tasks to issue and distribute the
certi�cates of a chain.

3.7.4 Anonymous Di�e-Hellman Threats
Any security mechanism that relies on the original Di�e-Hellman protocol for establishing
protected communication channels su�ers from man-in-the-middle attacks (see Fig. 3.15).
Since there is no way for the participating principals to prove to each other their identities
an attacker can compromise the secrecy of the established key. Another possible attack is
known as the identity misbinding attack [BM03]. The attacker does not aim to compromise
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the secrecy of the established key, but the authenticity of the exchange. Any tra�c coming
from a legitimate requester appears to the service provider to have originated from the
attacker.

Figure 3.15: Anonymous Di�e-Hellman threats.
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Chapter 4

ÆTHER Architecture

ÆTHER is an authorization management framework for pervasive computing. It allows
the owners of pervasive devices to locally de�ne access control policies without the need
of contacting outside centrally managed authorities. Furthermore, ÆTHER supports dis-
connected operation, context-awareness and follows an unobtrusive usage model. The
con�guration tasks that are needed in order to establish authorizations between the users
are gracefully integrated with the performance of the primary physical tasks minimizing
distractions.

In this chapter we �rst present the part of the previously analyzed threat model that
is addressed by ÆTHER. Initially we focus on the presentation of the general ÆTHER
framework as an extension to the core RBAC model. We instantiate our authorization
management framework into two di�erent architectures, namely ÆTHER0 and ÆTHER1,
that address the security and the user demands of di�erent Pervasive Authority Domains
(PADs). A PAD is an abstraction that organizes policy and privilege within a domain
and is de�ned di�erently in our two instantiations. Although both instantiations of our
model satisfy the previously identi�ed requirements, they do so by employing di�erent
cryptographic mechanisms, design approaches and management models.

The ÆTHER framework, according to the categories de�ned by Chen and Kotz in
[CK00], follows the active context-awareness category. Therefore, it is able to dynamically
adapt its behavior based on sensed contextual information from the environment. This
ability relates to the reached authorization decisions, and the context utilized is both that
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of the requesting entity and that of the service provider. For example, ÆTHER allows
the speci�cation of context-aware policies that allow the execution of a speci�c action to
entities that are in the same physical location as the service provider. If the service provider
moves to a new location the policy does not need to be modi�ed; it adapts and operates
in the new location as well.

After presenting the ÆTHER framework, ÆTHER0 and ÆTHER1, we analyze the
usability and maintainability aspects of our architectures focusing on making them easy
to be adopted by end users. We also discuss the privacy considerations associated with
both our general model and its two instantiations. The chapter closes with a comparison
of the two instantiations and an examination of which one is applicable to which pervasive
computing scenario.

4.1 ÆTHER Threat Model

Our security model aims to address the threats associated with authorization manage-
ment both from a technical and a usability perspective. Consequently, we consider several
classes of threats identi�ed in the previous chapter to be outside the scope of our research
area. For example, denial of service threats assume that the attacker is a properly au-
thorized user of the system, or of the communication medium when the attack focuses on
the network or physical layers, while we concentrate on authorization itself. Moreover,
we do not consider the threats, although we discuss the repercussions, of stolen devices
since we believe that when an attacker has physical access to a device she can eventually
bypass all security mechanisms and recover con�dential data and key material. Another
assumption we make is that the sensors that are embedded into the environment collect
and report trustworthy contextual information, that is we are not concerned with context
authentication. However, we protect against unauthorized context consumption. Fig 4.1
shows only the threats (nodes) of the general pervasive computing threat model that the
ÆTHER security architecture aims to protect against.
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Figure 4.1: ÆTHER threat model.
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4.2 General ÆTHER Model

This section examines the general ideas behind our authorization model for pervasive
computing. We �rst present our high-level user-based management model, and we analyze
the way it expands the traditional view of establishing and managing security associations.
We then focus on de�ning the ÆTHER model, its extensions to RBAC and its context-
awareness features, presenting the associated policy statements and the utilized authority
revocation mechanism.

4.2.1 User-based Authorization Management
In pervasive computing systems users and their requirements are placed at the center of
every design choice. The ultimate goal is to develop systems that are �rst of all usable,
meaning that they ful�l the expectations of their users, and unobtrusive in the sense of not
distracting users from their primary physical tasks. We believe that a pervasive computing
system's security needs are included in the usability requirement. For example, when a
user decides to share a document stored on his PDA with a trusted colleague, he expects
that the system will ensure the con�dentiality of the exchange so that a nearby malicious
entity cannot access it. Traditional security protocols rely on digital data, like credentials
and policies, to establish secure associations and reach access control decisions. However,
in pervasive computing, human users are directly involved in the performed tasks as these
occur in the physical space. Each participating user has a mental model formulated in
her mind that represents the particular circumstance of the task at hand. This perceptive
model includes the following components: The other users and the role they play in the
occurring event, the resources provided for controlled access, and the relationships between
all of these components. The system must allow the user to express this perceptive model
of the situation to the pervasive computing devices in order to de�ne security relationships
and this must be accomplished in an unobtrusive manner. We believe that this expression
of the users' mental security model can be integrated gracefully with the performance of the
primary task at hand. Continuing the example with the shared �le, the owner can state his
intent that he trusts the person next to him by pointing his PDA to his colleague's handheld
device. The authorization data, like credentials, necessary for securing the exchange can
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be established through this physical action that states the intent of the user. Fig. 4.2
illustrates the di�erences between the traditional authorization management approach and
our own user-based authorization management model for pervasive computing. While the
traditional model is concerned only with the protocols between the devices and the static
security policies, the ÆTHER management model also includes dynamic policies inferred
from the physical actions of the users, each playing a speci�c role.

Figure 4.2: Traditional vs. user-based authorization management.

We believe that the concept of location-limited channels as �rst de�ned by Stajano
and Anderson [SA00] and later extended by Balfanz et al. [BS02] can be used to establish
policy data, like for example the issuing of credentials from one user to another, and be
integrated gracefully to the users' physical actions. These actions are part of the e�ort a
user is already undertaking in order to accomplish the primary task and they state the
intent of the user regarding authorization. Therefore, we accomplish unobtrusive user-
based authorization management that does not distract users with complicated security-
related dialogs, decisions or creation of new accounts.

4.2.2 ÆTHER Model
The general ÆTHER model extends the core Ferraiolo-Kuhn RBAC model to provide
authorization management for pervasive computing environments. While RBAC depends
on a fully centralized management model in which a system administrator is responsible
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for user and permission assignment, ÆTHER utilizes the user-based model described in
the previous section. This high-level model is instantiated into two distinct architectures,
namely ÆTHER0 and ÆTHER1. We believe that the decentralized and highly dynamic
nature of pervasive computing is compatible with authorization relationships based on
roles, given that role authority does not follow a centralized management model. This
requirement for decentralization relates both to the ability to make assertions concerning
user assignments to roles and the delegation of authority over a speci�c role.

The ÆTHER model makes the following semantic distinction between subjects and
users. A user may have multiple subjects in operation. Each subject is uniquely referenced
by an identi�er (a message digest of the hosting device's hardware addresses concatenated
with a randomly generated number in ÆTHER0 or a public key in ÆTHER1). There is
no way for the system to map subjects to the identities of physical users, as is the case
in RBAC, thus providing a layer of privacy. Moreover, ÆTHER uses attributes instead
of roles. An attribute is de�ned as a property of an entity, while a role is a type of
attribute used to de�ne the position an entity has in an organization. The ÆTHER model
is composed of the following components (a graphical representation of the components
and their relationships is shown in Fig. 4.3):

• A set of subjects: S

• A set of resources: R

• A set of operations: O

• A set of authority attributes: AA

• A set of context attributes: CA (‡)1

• A set of resource attributes: RA (‡)

• A set of permissions: P = P(O ×R)

• Authority attribute to subject assignment: SAA ⊆ AA × S

• Context attribute to subject assignment: SCA ⊆ CA × S (‡)
1The (‡) mark denotes an ÆTHER extension to the core RBAC model.
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• Resource attribute to resource assignment: RA ⊆ RA ×R (‡)

• Basic permission to authority attribute assignment: PAA ⊆ P ×AA

• Basic permission to context attribute assignment: PCA ⊆ P × CA (‡)

• Basic permission to resource attribute assignment: PRA ⊆ P ×RA (‡)

• Composite permission to authority attribute assignment: XPAA ⊆ PRA ×AA (‡)

• Composite permission to context attribute assignment: XPCA ⊆ PRA × CA (‡)

• A function mapping an authority attribute to a set of permissions: permissionA =

AA → P(P ), or more formally: permissionA(a : AA) = {p : P | (p, a) ∈ PAA}

• A function mapping a context attribute to a set of permissions: permissionC =

CA → P(P ), or more formally: permissionC(c : CA) = {p : P | (p, c) ∈ PCA} (‡)

• permissionXA = AA → P(PRA), or more formally: permissionXA(a : AA) = {p :

PRA | (p, a) ∈ XPAA} (‡)

• permissionXC = CA → P(PRA), or more formally: permissionXC(c : CA) = {p :

PRA | (p, c) ∈ XPCA} (‡)

• The mapping of a subject to a set of authority attributes: subject_authority(s :

S) → P(AA), or more formally: subject_authority(s : S) ⊆ {a ∈ AA | (a, s) ∈

SAA}

• The mapping of a subject to a set of context attributes: subject_context(s : S) →

P(CA), or more formally: subject_context(s : S) ⊆ {c ∈ CA | (c, s) ∈ SCA} (‡)

• The mapping of a resource to a set of resource attributes: resource_attributes(r :

R) → P(RA), or more formally: resource_attributes(r : R) ⊆ {ra ∈ RA | (ra, r) ∈

RA} (‡)

• Access authorization: A subject s can perform an operation o on a resource r only
if:
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1. There exists an authority attribute a that has been assigned to subject s and there
exists a permission p that is assigned to a such that the permission authorizes the
performance of o on r, or

2. There exists a context attribute c that subject s possesses and there exists a permis-
sion p that is assigned to c such that the permission authorizes the performance of o

on r, or

3. There exists an authority attribute a that has been assigned to subject s and there
exists a resource attribute ra that has been assigned to resource r and there exists
a composite permission ap that is assigned to a such that the permission authorizes
the performance of o on ra, or

4. There exists a context attribute c that has been assigned to subject s and there
exists a resource attribute ra that has been assigned to resource r and there exists
a composite permission ap that is assigned to c such that the permission authorizes
the performance of o on all resources that have the resource attribute ra.

5. Formally: access : S × O × R → BOOLEAN, s : S, o : O, r : R, access(s, o, r) ⇒

∃ a : AA, c : CA, p : P, ra : RA, ap : PRA,

((a ∈ subject_authority(s) ∧ p ∈ permissionA(a) ∧ (o, r) ∈ p)∨

(c ∈ subject_context(s) ∧ p ∈ permissionC(c) ∧ (o, r) ∈ p)∨

(a ∈ subject_authority(s)∧ap ∈ permissionXA(a)∧ra ∈ resource_attributes(r)∧

(p, ra) ∈ ap)∨

(c ∈ subject_context(s) ∧ ap ∈ permissionXC(c) ∧ ra ∈ resource_attributes(r) ∧

(p, ra) ∈ ap))

We have four di�erent kinds of attributes; authority attributes, context attributes,
aggregated context attributes, and resource attributes. An attribute is de�ned as an ordered
2-tuple of the form (name, value) where name is the identi�er of the attribute and value
is its value. Authority attributes are the traditional security attributes used to describe
the properties of subjects. These properties are relatively static, meaning that their values
are obtained during the establishment of a session. Authority attributes are similar to the
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Figure 4.3: The ÆTHER model.

concept of roles in traditional RBAC. A subject is a member of a role if and only if it has
been assigned the authority attribute that represents the corresponding role. The values
of authority attributes must be con�gured through manual human intervention and are
then obtained from a subject's credentials. In that sense, authority attributes are static
security metadata whose values can be used in order to reach authorization decisions. On
the other hand, context attributes describe the dynamic properties of subjects associated
with their current context. Although manual intervention is still required to designate the
use of context attributes in authorization decisions, their values are obtained dynamically
every time an access request is made. In contrast to authority attributes, the values of
context attributes may change during the lifetime of an active session since they re�ect a
subject's environmental context. An aggregated context attribute is a context attribute
de�ned as an aggregation of one or more context attributes. The aggregation is performed
by a Context Aggregator (CA) that is de�ned as the following function:

CA : CA1 × CA2 × ...× CAv → CA, v ≥ 1

Resource attributes are assigned to resources to simplify their administration and the
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de�nition of authorization policies. Basic permissions are assigned to resource attributes
and de�ne composite permissions. Authority or context attributes are then associated
with composite permissions in order to allow the creation of authorizations addressing a
whole set of resources. For example, the context attribute (location, o�ce_008) can be
associated with all output devices allowing anyone in o�ce 008 to access all devices that
have been de�ned as output devices.

The concept of context attributes provides a high-level interpretation of the low-level
context information collected by sensors embedded into the environment. The assignment
of context attributes to subjects is maintained dynamically based on the raw data of
context dissemination sensor service infrastructures, like for example the ones presented
in [PLF+01] and [SDA99]. Thus, whenever an access control decision is required that has
been de�ned using a context attribute, the corresponding service is queried regarding the
status of the requesting subject, pulling for context data.

In ÆTHER permissions are modeled as the rights of authority or context attributes. We
associate rights with actions, so possession of an authority or context attribute permits the
corresponding principal to perform a certain action. Authorization policies de�ne context
attribute requirements or restrictions in addition to the ones using authorization attributes
(see Fig. 4.4). This allows the speci�cation of context-adaptive policies that control
access to protected resources. For example, the owner of a printer may allow all people
physically present in the same room as the printer to use it. However, the information
regarding associations between subjects and context attributes may be considered sensitive
or private. In these cases we view the context-dissemination service as a normal resource to
be protected and accessed only by properly authorized principals. The authorization can
be handled by authorization attributes or even context attributes which are not considered
sensitive in certain situations. Furthermore, each device maintains its own current context
in what we call a Local Context Pro�le (LCP). When the value of a context attribute is
de�ned as a dynamic local context value then this value is retrieved from the corresponding
context attribute stored in the device's LCP.

ÆTHER uses this pull-based context dissemination approach since we believe that it
is much more appropriate for security applications than the push approach. In the push
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Figure 4.4: Context-sensitive permissions.

approach principals that are interested in speci�c contexts subscribe to context producers
(i.e. sensor devices) and receive updates when the state of the monitored data changes.
The main problem with this design choice is that it requires the producer and the consumer
to always be within the transmission range of each other since context data can be pushed
at any time. Otherwise, the consumer is not able to receive updates and may have an
outdated view of the context data. When these data are used to reach security-related
decisions, as is the case in ÆTHER, outdated context snapshots may lead to authorizing
requests that should have been denied.

The authorization process in ÆTHER works in a similar way as existing traditional
trust management systems. A principal makes an access request to a service provider.
The validating principal passes the requester's credentials2 along with the local policy
statements and the request to an inference engine that outputs whether the access request
is allowed or denied.

We believe that capability-based security systems, like KeyNote, are not able to ad-
dress the decentralized nature and the requirement for unobtrusive management of perva-
sive computing. In order to compare such approaches to ÆTHER consider the following
example. A home owner wants to allow visitors to her house to control the television set.
Capability-based systems lack the ability to de�ne such a policy expressing that any princi-

2The requesting principal's credentials are collected di�erently in the two instantiations of our general
model.
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pal that is a visitor is allowed to access the television's functionalities. Instead they can be
used to delegate the television access right from the public key of the owner to the public
key of a visitor's device. However, a ubiquitous computing household may provide tens, or
even hundreds, of services. For each provided service the owner wishes to allow a visitor
to access she has to issue a delegation. Therefore, capability-based approaches introduce
extra administrative overhead for the owner of devices that o�er services. In ÆTHER the
owner has to specify a single time that a principal is a visitor, and then this principal can
access all services associated with the (group, visitor) authority attribute without further
administrative actions from the owner.

4.2.3 Dual Interface and Policy Distribution
The main assumption of the ÆTHER model is that each participating pervasive infor-
mation processing device satis�es the dual interface requirement. One of the device's
communication interfaces must implement a location-limited channel, like contact or in-
frared, that guarantees authenticity and con�dentiality. This channel is used to bootstrap
or prime security relationships between devices and requires human interaction for its es-
tablishment. The human owners of devices are required to perform certain actions that are
gracefully integrated to the general task they are trying to achieve, create location-limited
channels and exchange authorization policy information over them. This exchange is by
de�nition secure since location-limited channels ensure the authenticity and con�dential-
ity requirements. Using this bootstrapping data their devices are then able to establish
secure communication channels over their primary networking interfaces, which usually
implement a wireless technology like for example Bluetooth or IEEE 802.11b, and perform
interaction protocols. As we have already discussed in a previous paragraph, the required
human actions for the establishment of a location-limited channel and the protocol over a
wireless interface between pervasive devices follow our user-based management model.

An obvious question at this point is why the location-limited interface of a device is
not used for both the exchange of bootstrapping data and the completion of interaction
protocols. Location-limited channels require human intervention in order to be established.
While we can integrate the necessary actions for their establishment in the primary task
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a user is trying to achieve to exchange bootstrapping data, this can only be accomplished
because these actions are simple. If we were to use location-limited channels for the entire
protocols then the required actions would be extensive and their integration to the primary
task impossible. Consequently, such a solution would be obtrusive to the end users.

The distribution of policy data in ÆTHER is achieved by utilizing both interfaces.
When a device is �rst purchased it is completely free of policy information. The �rst
action that needs to be performed by the owner is to bind this new device to one of his
old devices. The bind operation is similar to the imprinting of the Resurrecting Duckling
system. By establishing a location-limited channel between the two devices, the owner
speci�es that the new device is to be bound by the old device. The new device now
recognizes the old one through the binding policy information they have exchanged. The
owner can also choose to bind the new device to more than one master devices, again by
establishing a location-limited channel between the two devices and stating that he wants
to create a binding. Further policy data, like for example authorizations and authority or
context attribute de�nitions, can be embedded into the new device via the normal primary
wireless interface. Not all such policy data are accepted, but only those that are issued
by one of its masters. The device can authenticate the issuer of the new policies via
the information established during the binding procedure. The assignment of authority
attributes in ÆTHER is accomplished over the location-limited channel interface. When a
user wishes to issue an authority attribute credential to another user they use their devices
to establish such a channel and the issuer states her intent by performing the necessary
action. As we have seen, the assignments of context attributes do not require human
interaction, but are maintained dynamically by sensor devices that collect and disseminate
context. The attributes that an entity possesses are used to support access requests to
entities that provide services in the environment.

Finally, we assume that every device provides some physical way (like a switch for ex-
ample) to delete all the policy state information it holds and return to its original unbound
state. This is useful in the case an owner wants to sell, or give away to someone else, a
device. Obviously this assumption makes ÆTHER pervasive computing devices attractive
to steal. However, even without this convenient functionality a typical device can easily
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be dissected and its state information retrieved or deleted [AK96], [AK97].

4.2.4 Policy Statements
In this section we describe the policy statements of the general ÆTHER model. The policy
language we use is similar to the assertion language of the KeyNote trust management
system. However, we have extended the syntax in order to allow the use of ÆTHER-
speci�c policy data structures. We have to note at this point that this section presents the
general policy statements of our architecture. The two instantiations of the general model
that will be presented in the following paragraphs analyze these statements and their
applications in greater detail. Another important note regards the utilized namespace.
We believe that given the distributed and decentralized nature of pervasive computing
it would be di�cult to enforce a global namespace. Instead ÆTHER follows the design
approach that is advocated by SPKI/SDSI and relies on local namespaces. The vocabulary
for de�ning policies (either for the data, the operations, or the conditions) is outside the
scope of the work presented in this thesis. Existing research e�orts to create ontologies for
authorization management and pervasive computing can be used for this purpose [Don03],
[CFJ03].

According to the policy model de�ned by the Internet Engineering Task Force (IETF),
a policy is a rule that speci�es the execution of certain actions when a set of conditions
evaluates to true [MESW01]. This event-condition-action model has been primarily de�ned
for managing the Quality of Service (QoS) experienced by network entities like applications
and users. Therefore, the events that trigger policy rules are usually related to types and
volumes of tra�c �ows. The ÆTHER policy model directly relates to the IETF event-
condition-action model assuming that an implicit event such as a user request triggers a
policy rule.

The binding policy statement serves the purpose of binding the subject principal to
the issuing principal. This is similar to the imprinting functionality of the Resurrecting
Duckling system,

aether version: <The integer 0 or 1 denoting the instantiation of the general model>

type: binding

issuer: <The identi�er of the issuer encoded in hexadecimal and put in double quotes>
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subject: <The identi�er of the subject encoded in hexadecimal and put in double quotes>

The binding between the issuer and the subject principals is enforced di�erently depending
on the instantiation of the general model. The same is true for the utilized identi�ers of
the principals. Attribute assignments implement the assignment of authority attributes to
principals:

aether version: <Integer>

type: attribute assignment

issuer: <Quoted hexadecimal string>

subject: <Quoted hexadecimal string>

attribute name: <String>

attribute value: <String, integer, or �oat>

not valid before: <Year/month/day-hour:second>

not valid after: <Year/month/day-hour:second>

renewable: <The integer 1 or 0 respectively denoting whether the credential is renewable or not>

Resource attribute assignment statements are used to assign resource attributes to princi-
pals:

aether version: <Integer>

type: resource attribute assignment

issuer: <Quoted hexadecimal string>

subject: <Quoted hexadecimal string>

resource attribute name: <String>

resource attribute value: <String, integer, or �oat>

ÆTHER supports both positive and negative authorizations. Positive authorizations de�ne
the required attributes (authority and/or context) that a principal must possess in order to
be able to access the speci�ed operation on the speci�ed resource. Negative authorizations
are required to support resolving con�ict of interests and separation of duty problems
which are typical in access control systems. For example, negative authorizations allow
the expression of policies such as �a set of under aged principals (e.g.: principals that are
mapped to all children under the age of 12) do not have access rights to switch on the
television set�,

aether version: <Integer>

type: positive authorization (or negative authorization)

issuer: <Quoted hexadecimal string>
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resource: <String>

operation: <String>

requires: <Predicates that operate on authority and/or context attributes>

The following notation is used in the speci�cation of the requires �eld:

• @: An authority attribute, example: (@group, family_member).

• $: A context attribute, example: ($location, o�ce_008).

• %: An aggregated context attribute, example: (%activity, meeting).

• *: A resource attribute, example: (*device, input).

• _: A dynamic local context value, example: ($location, _location).

An ÆTHER0-speci�c negative authorization policy implementing the above example with
the television set is the following:

aether version: 0

type: negative authorization

issuer: �2525554c54f1e32b85bbf827240�3

resource: tv_set

operation: switch_on

requires: (@age < 12);

The support of negative authorizations can lead to con�icts when two or more authoriza-
tions of di�erent types have been de�ned for the same resource. The problem of resolving
such con�icts has been explored extensively in the computer security literature [LS99].
The approach that we take is to allow the end user to de�ne which authorization type
supercedes the other. The user de�nes a parameter that is global for a particular device's
inference engine and gives precedence to either positive or negative authorizations over the
other one whenever con�icts arise.

The �elds resource and operation are used to abstract the application-dependent syn-
tax and semantics of the di�erent resources that a principal may wish to protect. ÆTHER
does not interpret the semantics of these two strings, it only uses them to identify the

3The hexadecimal strings are not shown in their entirety for readability reasons.
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authorization policies that are associated with the application resource. Pervasive com-
puting developers that use ÆTHER to secure access to their applications have to agree on
the semantics of the strings utilized for referring to resources and operations. Hence, the
exact resource descriptions for a device's access interface are outside the scope of ÆTHER.
Developed standards such as the Universal Remote Console (URC) [LTZV04] can be used
for this purpose.

Another type of policy statement is the one that implements the assignment of permis-
sions to resource attributes:

aether version: <Integer>

type: permission resource attribute assignment

issuer: <Quoted hexadecimal string>

resource: <String>

operation: <String>

resource attribute name: <String>

resource attribute value: <String, integer, or �oat>

Based on these assignments we can specify composite positive and negative authorizations
that de�ne the authority or context attributes a principal must have to gain the access
rights associated with speci�c resource attributes. Composite authorizations allow us to
express policies that for example grant access to all output devices in the environment to
any principal that has been certi�ed as a visitor or is in the same location as the target
output device,

aether version: <Integer>

type: composite positive authorization (or composite negative authorization)

issuer: <Quoted hexadecimal string>

resource attribute name: <String>

resource attribute value: <String, integer, or �oat>

requires: <Predicates that operate on authority and/or context attributes>

As an example consider the case of an audio player (an output device). An ÆTHER1

composite positive authorization statement for all output devices could be the following:
aether version: 1

type: composite positive authorization

issuer: �3048024100cd462d1d7cf0aa5043�

resource attribute name: device
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resource attribute value: output

requires: (@group == visitor) || ($location == _location);

signature: �7c010f91d2240c6884e30203�

After the audio player's owner assigns to his device the resource attribute (device, out-
put) with a resource attribute assignment statement, he also has to de�ne what are the
permissions associated with the audio player as an output device,

aether version: 1

type: permission resource attribute assignment

issuer: �3048024100cd462d1d7cf0aa5043�

resource: audio_player

operation: play_track

resource attribute name: device

resource attribute value: output

signature: �d37fd9efeefb2063cdce8b�

Now any principal certi�ed with the authority attribute (group, visitor) or that is in the
same physical location as the audio player can play a track on it.

The principals that are responsible of maintaining the associations between context
attributes and principals are speci�ed in policy statements called Context Attribute Sets
(CASs). Such principals are sensor devices and through CAS statements are given author-
ity over a speci�c context attribute:

aether version: <Integer>

type: context attribute set

issuer: <Quoted hexadecimal string>

attribute name: <String>

attribute value: <String, integer, or �oat>

sources of authority: <List of comma separated and quoted hexadecimal strings>

Sensor devices maintain the assignments of context attributes to principals using dynamic
sets de�ned for speci�c context attributes. A normal non-dynamic set can be described
according to set theory as a static assortment of elements. On the other hand, a dynamic
set can be described as an assortment of elements that varies with respect to time. Hence,
a non-dynamic set can be viewed as an instance of a dynamic set in a speci�c time point.
We formally de�ne a dynamic set as follows:
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Let V be a set of principals and P(V ) the power set of V . Let T be a time
period, i.e. a set consisting of speci�c points in time. We de�ne the function
f : T → P(V ) as a dynamic set that consists of elements that belong to V in
the time period T .

For example, if we want to allow access to a provided resource only to entities that are in
the same location as the provider we could create a context attribute (de�ned as f) for this
location, e.g. the context attribute (location, o�ce_008). The elements of this dynamic
set at time t1 ∈ T would be given by f(t1). In other words, a principal v1 ∈ V would be
allowed access if and only if the statement ∃t1 ∈ T • v1 ∈ f(t1) holds.

The �nal policy statement of the general model is the one that de�nes context aggre-
gators:

aether version: <Integer>

type: context aggregator

issuer: <Quoted hexadecimal string>

input: <Predicates that operate on context attributes>

output context attribute name: <String>

output context attribute value: <String, integer, or �oat>

As an example consider the following ÆTHER0 context aggregator for the aggregated
context attribute (state, sleeping):

aether version: 0

type: context aggregator

issuer: �778f13d39be32b86be92749ca�

input: ($location == bedroom) && ($heart_rate < 60) && ($inactivity_period > 60);

output context attribute name: state

output context attribute value: sleeping

4.2.5 Authority Revocation
In certain occasions the authority given with an issued credential needs to be revoked.
Such occasions may include loss or compromise of the key used to issue a credential, loss
or compromise of the key to which a credential has been issued to, or realization on the
part of the issuer that the information contained in a previously issued credential is no
longer valid. There are four mechanisms to achieve the revocation of a credential:
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1. By using the validity period of the credential itself and setting it to a short time
period. This mechanism e�ectively limits the window of revocation to the validity
period speci�ed as part of the credential. However, its use presents several problems.
If the validity time period is too short then it can result in frequent re-issuing of
credentials involving the issuer in constant obtrusive administrative tasks, or time
periods during which access to a particular service is impossible. On the other hand,
if the validity period is set to a high value then a required revocation may not take
place until this period expires.

2. Another mechanism is the use of Certi�cate Revocation Lists (CRLs), which are
basically lists that include all credentials that have been revoked. The issuer must
create a CRL and distribute it to all participants of the system. There are two main
problems with CRLs. The �rst one has to do with the distribution of the list to
all interested parties, which can take place either with �ooding techniques or with
placing the list on a public repository from which it can be retrieved. Both approaches
require periodic access to the issuer; as the period that the issuer cannot be contacted
increases so does the associated risk of the veri�er. The second problem is scalability;
as the number of revoked credentials increases CRLs become more cumbersome to
manage.

3. Current Identity Lists (CILs) follow the opposite approach of the CRLs mechanism.
CILs are signed lists that include all the valid credentials that have been issued
by a given credential authority. Obviously, in environments with large numbers of
participating entities CILs can grow to become cumbersome to manage e�ciently.

4. The �nal revocation mechanism is the one advocated by OCSP [MAM+99] and re-
quires the credential veri�er to check the revocation status of a credential at every
veri�cation. This basically means that the veri�er must always be able to contact the
issuer of every credential that is presented to him. Furthermore, since the veri�er is
also a service provider the process of checking the status of every credential at every
access request introduces a signi�cant additional computation overhead.
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In ÆTHER we have chosen to adopt the �rst mechanism of short expiration time periods
for the issued credentials. We have rejected the use of CRLs since their correct implemen-
tation and management is particularly complex, especially in environments with a lot of
participating entities. Online credential status mechanisms require the issuer to always be
accessible by every veri�er, a requirement that is not compatible with the disconnected
nature of pervasive computing. In addition, the involvement of the credential issuer in
every access control decision makes its use very expensive from a computation point of
view. ÆTHER attribute credentials are issued with short expiration time periods over a
location-limited channel established between the issuer and the subject. The issuer is able
to specify in the renewable �eld if the credential can be renewed automatically before it
expires or not. If the �eld is set, then the subject is free to contact the issuer any time be-
fore the expiration of the credential and request a renewal. This process takes place over a
wireless transmission and requires the subject to be within the communication range of the
issuer. If the renewable �eld is not set, or if the issuer cannot be contacted the credential
expires. If the subject needs another certi�cate of the same type then a location-limited
channel with the issuer must be established again.

The main problem with the refreshing mechanism is the choice of the expiration time
period. If it is too short then the issuer becomes frequently involved in renewing procedures;
if it is too long the possibility of having credentials that have to be revoked but cannot
increases. The ideal design choice would be to let the end user decide the validity period
of the credentials she issues. However, this is an unrealistic approach as it assumes that
every user is able to analyze all the risks involved in such a decision. In our current design
the typical validity period we suggest is one hour. We believe that this choice satis�es
the above requirements, however we must note that this is just a suggestion. The optimal
validity period depends on the exact application scenario, requires extensive research and
analysis, and is therefore outside the scope of this dissertation.

4.3 ÆTHER0

In this section we present the �rst instantiation of the general ÆTHER model, namely
ÆTHER0, which has been designed to address the authorization needs of small pervasive
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computing domains whose management requirements are simple. We consider the manage-
ment requirements of a domain simple when the number of users that have owner rights on
the participating devices and the number of the devices themselves are relatively small. For
example a small household with one or two members can be such a domain, or the domain
of a Personal Area Network (PAN) consisting of all the devices that a single user carries on
himself. Furthermore, ÆTHER0 utilizes only symmetric cryptography in order to provide
security services. Consequently it is appropriate for devices that have particularly limited
processing capabilities, like for example simple sensors.

4.3.1 Management Model
In ÆTHER0 we have two classes of devices. The �rst one is comprised of normal perva-
sive computing devices that participate in the environment and o�er services that have
to be protected from unauthorized access. These devices can be simple without extensive
processing power or large amounts of available memory. Examples of such devices include
printers, switches that control various functionalities like doors and lamps, television sets,
di�erent types of sensors, and audio speakers. The second class consists of devices that
directly represent a user in the management model. These are equipped with adequate
physical interaction interfaces, such as keypads and screens, as well as more advanced pro-
cessing capabilities and memory capacities than the devices of the previous class. Suitable
devices for this purpose can be PDAs, mobile phones, or more traditional mobile comput-
ing devices such as laptops and tablet PCs. Users use these devices to store cryptographic
data that can be used for authentication purposes as well as policy data that are used for
authorization. In the ÆTHER0 instantiation we call these devices alpha-pads. Each and
every device that participates in an ÆTHER0 PAD is uniquely identi�ed by a hexadecimal
string. This is constructed by concatenating the hardware addresses of the location-limited
channel interface and the hardware address of the normal networking interface with a ran-
domly generated number. The resulting value is given as input to a hash function and
the output is encoded to hexadecimal format. This string is stored in the device itself, is
public and is used to identify the device that generated it in the utilized policy statements.

Although ÆTHER0 does not depend on any external centralized infrastructure for its

112



operation, it follows a locally centralized management model. Before a pervasive device
of the �rst class can participate in a domain and o�ers its services it must be bound by
the owner's alpha-pad. The binding takes place over a location-limited channel established
between the two devices with the help of the owner and is enforced through a shared
secret. The alpha-pad device generates a symmetric secret key (included in a binding
policy statement) and sends it to the new device over the location-limited channel. Now
the new device is bound by the owner's alpha-pad and can authenticate it through this
shared secret. A user is free to have more than one alpha-pad and a slave device can be
bound to more than one of them as well. However, a binding procedure can only take
place over a location-limited channel and only if a user has expressed her intent to do so
via some physical method (like pressing a button) on the device to be bound. The owner
must repeat the same process for all the devices of the �rst class she owns that participate
in the domain and have services to o�er. Hence, at the end of this process all devices are
bound to one or more alpha-pads and share secret keys with the alpha-pad that was used
to bind them.

Using the alpha-pad the owner can now create further policy statements for the bound
devices. These policy statements are sent to the bound devices over a wireless transmission
medium and are authenticated, as well as encrypted, using the previously established
shared secrets. The issuing alpha-pad as well as the subject device are identi�ed in the
policies with the unique hexadecimal strings. Each alpha-pad in ÆTHER0 has its own
localized namespace and is responsible to bind and de�ne authorization policies for normal
devices that o�er services. Each bound device follows the namespace and participates in
the domain de�ned by its alpha-pad. Therefore, a Pervasive Authority Domain (PAD) in
ÆTHER0 is represented by a speci�c alpha-pad that has been used to bind and con�gure
a set of ordinary devices.

When a user wishes to access a service provided by a device she owns, she can simply
use the alpha-pad that has been used to bind the target device4. The target identi�es the
alpha-pad through the binding shared secret key and performs the requested operation. If
a user wants to access a service of a device that belongs to another user, then both users

4It is also possible to use a non-alpha-pad device she owns, subsection 4.3.5 presents all the relevant
protocols in detail.

113



need to be at the same physical space. When the two users meet we assume that each one
carries his alpha-pad device on him. Following our general user-based trust model, for a
user to allow another user to use one of his devices that o�ers some services, he has to state
his intent that the other user is trusted to do so through some physical action with his
alpha-pad device. To express this trust the two users establish a location-limited channel
with their alpha-pads and agree on a symmetric secret key over it. We call this procedure
mutual binding. Furthermore, each user assigns authority attributes to the other user.
After this procedure both alpha-pads are authenticated through the established shared
secret and authorized with the assigned authority attributes.

A user can now use her alpha-pad (or another device she owns) to access a service pro-
vided by a device of the user she performed the mutual binding with. The requesting user's
device securely contacts its alpha-pad (this step is obviously not performed if the request-
ing user directly uses his alpha-pad) and states the request to access the target device. The
source device also generates and sends a new secret key. The alpha-pad �nds the mutual
binding policy statement with the target's alpha-pad and forwards the access request and
the new key to it protected with their mutual binding key. The target alpha-pad transmits
everything to the target device encrypted using their shared binding key. Additionally, the
target alpha-pad transmits to the target device the authority attributes it has assigned to
the requesting alpha-pad during their mutual binding process. The target device based
on the authorization policies it locally has and the authority attribute assignments it has
been forwarded can now reach an access control decision for the requested action. Fig. 4.5
summarizes this process (dashed lines represent wireless transmissions, while continuous
lines represent location-limited channels).

Example. Alice visits Bob's home. She carries her mobile phone which plays the
role of her alpha-pad and a pervasive computing wrist watch (which is a normal device
that has been previously bound to her mobile phone). Bob has a PDA as his alpha-
pad and a remotely controlled lamp. When the two users meet they mutually bind their
alpha-pads, establishing a shared secret key, and they assign authority attributes to each
other. We assume that Bob assigns to Alice the authority attribute (group, visitor). These
assignments stay with the issuer (Bob in this case); they are not quantities that are given
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Figure 4.5: Overview of the ÆTHER0 management model.

to the subject (Alice). Moreover, Bob has sometime ago bound his lamp to his PDA
and issued a positive authorization statement to it allowing principals with the authority
attribute (group, visitor) to control it. At some point Alice wants to switch the lamp on
using her wrist watch. The wrist watch forwards the access request and a newly generated
secret key to Alice's mobile phone encrypted with their shared key. The mobile phone
decrypts the request, �nds the mutual binding with Bob's PDA and the key they have
established, encrypts the request and the new key with it, and in turn forwards them to
Bob's PDA. The PDA decrypts the request and identi�es that the target of the request
is the lamp. It then sends the (group, visitor) attribute assignment that Bob has given
to Alice to the lamp along with the access request and the new secret key. The subject
identi�er in the attribute credential that is sent to the lamp is the one of the device that
initiated the request, in this case Alice's wrist watch. This message is protected with
the secret key that the lamp and the PDA share. All the messages are encrypted and
authenticated using the respective previously established secret keys. The lamp can now
authorize the request based on the authority attribute assignments it has been forwarded
and its local policy. The lamp transmits its authorization decision to the wrist watch. The
communication with Alice's wrist watch is protected with the new key. Further access
requests from the wrist watch can be issued directly to the lamp (and vice versa), until
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the new shared key expires and the lamp deletes it from its policy database.

4.3.2 Policy Statements
ÆTHER0 uses all the statements we have already presented in subsection 4.2.4. However,
it adds a new �eld to the binding policy statement:

aether version: 0

type: binding

issuer: <Quoted hexadecimal string>

subject: <Quoted hexadecimal string>

shared secret: <Quoted hexadecimal string>

The shared secret �eld is used in order to store the shared secret key that is generated
by an alpha-pad that binds another device. The identi�er of the alpha-pad is kept in the
issuer �eld and the identi�er of the bound device in the subject �eld. Moreover, ÆTHER0

introduces a new policy statement, the mutual binding policy statement:
aether version: 0

type: mutual binding

issuer: <Quoted hexadecimal string>

subject: <Quoted hexadecimal string>

not valid before: <Year/month/day-hour:second>

not valid after: <Year/month/day-hour:second>

shared secret: <Quoted hexadecimal string>

When two alpha-pad devices are mutually bound they agree on a shared symmetric secret
key. In addition, each one issues a mutual binding policy statement to the other. Obviously
these two statements have the same shared secret �eld that contains the agreed key and
the values of the �elds issuer and subject interchanged.

4.3.3 Policy Distribution
Binding policies are issued by alpha-pads to service providing devices over a location-
limited channel. The owner of the devices brings them together and establishes the channel
by specifying on the device to be bound his intent. The device (B) generates and sends
a binding request message (BREQ) that contains its identi�er (IDB). The alpha-pad
(device A) receives the subject's identi�er, generates a new symmetric secret key (SAB of
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256 bits size), encodes it in hexadecimal format and builds the binding policy statement
(BPAB

5). This is transmitted to the device to be bound (B). The owner also selects
on the alpha-pad the authority attributes that he wishes to assign to the bound device.
These assignments stay locally in the database of the alpha-pad. After this process the
new device is considered bound by the speci�c alpha-pad (see Fig. 4.6).

Figure 4.6: Binding of device B by alpha-pad A over a location-limited channel.

The generated binding policy BPAB of the above example could be the following (please
note that the hexadecimal strings are not presented in their entirety for readability reasons):

aether version: 0

type: binding

issuer: �ab3ddca94cef74c5fe2e4e7330bb5a1a5c14569b2eb� (Identi�er of A, i.e. IDA)

subject: �e2d53afadf7c29899510821f6499c0a4a509bab9afd� (Identi�er of B, i.e. IDB)

shared secret: �67cc50c5bec56ab895772c2ea2ed74f80d30ee9� (SAB)

Once a device is bound the owner can use the alpha-pad that bound it in order to issue
more policies for it, like for example positive authorization statements for the services it
has to o�er. These policies are sent to the new device over a normal wireless interface.
They are authenticated, encrypted and integrity protected using the 256-bit secret key
that the alpha-pad and the target device now share. The authenticity and the integrity
of the messages that contain the new policies are guaranteed with the use of a Hashed

5Subscript is <issuer, subject>.
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Message Authentication Code (HMAC)6. The con�dentiality of the messages is protected
with a symmetric encryption algorithm (we use AES in Cipher Block Chaining (CBC)
mode [DR02]).

Mutual binding policy statements are issued by two alpha-pad devices to one another
when their corresponding users bring them together and establish a location-limited chan-
nel. These statements contain the agreed shared secret between the two devices. Moreover,
each user selects the authority attributes that are assigned to the other party. This process
also takes place over the location-limited channel. Fig. 4.7 presents the protocol.

Figure 4.7: Mutual binding of alpha-pads A and B over a location-limited channel.

After both alpha-pad owners have expressed their intent to establish a location-limited
channel for creating a mutual binding, device B sends a mutual binding request message

6Our design is modular and can support di�erent HMAC algorithms, like HMAC-SHA-1, HMAC-SHA-
256 or HMAC-MD5 [KBC97].
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(MBREQ) to device A along with its identi�er IDB. Device A generates a new 256-bit
symmetric key SAB, builds the mutual binding policy statement with itself as the issuer
and device B as the subject (MBPAB), and requests from its owner to select the authority
attributes to be assigned to the owner of device B. These assignments are stored in the
policy database of A. The policy (MBPAB) is sent to B which reads the key from MBPAB

and builds its own version of the policy, MBPBA, which is the same as the one received
apart from having the values of the issuer and subject �elds interchanged. Then the owner
of B selects the authority attributes to be assigned to the owner of A and sends MBPBA

to A. A compares the shared secret �elds of MBPAB and MBPBA and if they are the
same (i.e. no corruption has occurred) the two devices are considered mutually bound.

In both the normal binding protocol between an alpha-pad and an ordinary device, and
the mutual binding protocol between two alpha-pads the authority attribute assignments
can take place after the completion of the protocols. However, we have included them as
speci�c steps in order to illustrate that they are logically associated with the respective
processes.

4.3.4 Authority Revocation
As we have already discussed, the approach of the general ÆTHER architecture is to avoid
explicit revocation mechanisms and to rely on short expiration time periods and refreshing
mechanisms for the issued authorization policies. In the ÆTHER0 instantiation of the
general model the policies that expire are the mutual bindings and the authority attribute
assignments. The normal bindings between the alpha-pads and the rest of the devices
of a user do not expire. If the user wishes to revoke a binding between an alpha-pad
and a service providing device she owns she has two alternatives. The �rst one is to use
the hardware reset switch and delete all the policy data from the bound device, in essence
returning its state to a new unbound device. The second alternative is to use the alpha-pad
device used to create a binding with a target device and issue a revoke binding operation.
Alpha-pads that have been used to bind normal devices can issue such a command to a
previously bound device. The target device deletes the binding policy of the issuing alpha-
pad, as well as all the other policy statements that have been issued by it (identi�ed by
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the alpha-pad's identi�er in the issuer �eld and authenticated through the shared secret).
If a revoke binding operation removes the �nal alpha-pad owner of a device its e�ect is
obviously the same as the use of the hardware reset switch.

Mutual binding policy statements established between alpha-pads do not contain a
renewable �eld since they can always be renewed. Before the mutual binding expires the
two devices use their shared key to create a new mutual binding. This time the protocol
takes place over the wireless channel, provided of course that both devices are within the
communication range of each other. The authenticity, con�dentiality and integrity of the
renewal protocol is protected with the secret key that the devices share. If the devices are
not able to contact each other then the mutual binding expires and is deleted along with
all the associated authority attribute assignments. In case the owners wish to o�er services
to each other again they have to establish a new mutual binding over a location-limited
channel. Attribute assignments also expire and are deleted by the issuer when the mutual
binding with the corresponding subject alpha-pad expires. Whether they can be renewed
or not depends on the value of their renewable �eld. If the �eld is set then when the mutual
binding is renewed the assignments are renewed too. Otherwise they are deleted by the
issuer device. In the case that normal devices have authority attribute assignments for
other principals that they have been given to them by their alpha-pads (see the example in
subsection 4.3.1) these are also renewed before they expire (or not based on their renewable
�eld). If the �eld is set the device contacts its alpha-pad before the assignment expires
and requests a renewal.

4.3.5 Service Discovery and Access
When a user visits a new pervasive computing environment she initially needs to �nd
what services are o�ered so that can consequently issue access requests. In ÆTHER0

alpha-pad devices are used to securely bind all service o�ering devices that belong to a
particular owner. Furthermore, owners use their alpha-pads to issue authorization policies
that control access to the services that they want their other devices to o�er. Hence,
alpha-pads are aware, and store in their local databases, what services are provided and
by which devices. Two owners that establish a mutual binding between their alpha-pads
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state with this action that they trust each other, not completely but up to the level implied
by the authority attributes they assign to each other. The services that an owner has to
o�er can be securely advertised to the other party, using the secret key the two alpha-
pads share after the performance of the mutual binding procedure. Service advertisements
include the identi�er of the provider, a service identi�er (ServiceID) which is meaningful
only to the provider and is used to locally distinguish the di�erent provided services,
and a textual description of the service. Fig. 4.8 illustrates this concept (continuous
lines represent location-limited channels while dashed lines normal wireless transmissions).
Similarly, when an alpha-pad is used to bind a normal device service advertisements and
the identi�ers of the devices that o�er them can be released from the alpha-pad to the
newly bound device. Each device maintains what we call a Current PAD View (CPV).
The CPV is a list of the services and their associated details (the service's identi�er, the
service's textual description, the identi�er of the provider, and the service's access interface
if the device managed to get access to the service in question) that gets populated with
entries when a device receives service advertisements.

Figure 4.8: Service discovery in ÆTHER0.

Services can also be provided by the alpha-pads themselves, for example a service
sharing �les that a user keeps stored on his mobile phone. Therefore, there are �ve di�erent
access protocols we need to address. The �rst one considers the case in which a normal
device wants to access a service provided by the alpha-pad that bound it (and the opposite;
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an access request from an alpha-pad to a normal device it has bound before). The second
one when both the requester and the provider are normal devices bound by the same
alpha-pad. The third one when an alpha-pad is used to access a service provided by
another alpha-pad with which it shares a mutual binding. The fourth case involves an
access request from a normal device to an alpha-pad with which the requesting device does
not share a binding, but the alpha-pad of the requester shares a mutual binding with the
target alpha-pad (and the opposite). The �nal protocol addresses an access request from
a normal device to another normal device that have been bound by di�erent alpha-pads
that share a mutual binding. The following paragraphs analyze these protocols.

4.3.5.1 Normal Device to Alpha-pad

In this case the access request and reply protocol is trivial since the normal device and the
alpha-pad share a secret key that has been previously established when the owner bound
the device using the alpha-pad over a location-limited channel. The application of the
HMAC is denoted as a = HSAB

(b), where b is the input to the HMAC algorithm H, SAB

the symmetric shared key that entities A and B share, and a the output. Fig. 4.9 presents
this protocol. The opposite protocol is exactly the same and therefore not presented.

Figure 4.9: Normal device to its alpha-pad service access request protocol.

The initiator, device B, sends an access request to alpha-pad A, the service provider.
The packet header contains a message identi�er (REQ), the sender's ID in the clear in
order to allow the receiver to locate the secret key with which the payload is protected, and
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the receiver's ID. The payload contains the service request, a service identi�er (ServiceID),
a session identi�er (SessionID), a protocol step identi�er (StepID), and the identi�ers of A

and B (IDA and IDB). Furthermore, a timestamp (T ) is also included to protect against
replay attacks. The payload is encrypted using SAB, the key both devices share from when
A bound B. Furthermore, message authentication is performed by computing an HMAC
using c1 (the ciphertext of the payload) and SAB. Authentication and con�dentiality is
guaranteed for the remaining of the messages using the same way7. The alpha-pad passes
the set of authority attributes it has previously assigned to B (i.e. when it bound it) and
the authorization policies relevant to the requested operation to its ÆTHER0 inference
engine. The result is a boolean value that is transmitted to B in step 2 (for the sake of
the example we assume that the inference engine reached a positive decision) along with
the same SessionID, an incremented StepID, and the access interface of the service. In
the �nal step B transmits a service access message (with message identi�er SAC) of the
requested service to A.

4.3.5.2 Normal Device to Normal Device (Same Alpha-pad)

This protocol addresses the case where a normal device wishes to access a service provided
by another normal device. The two devices do not share any kind of shared key or rela-
tionship, apart from the fact that both of them have been bound in the past by the same
alpha-pad. Therefore, the alpha-pad shares a di�erent secret key with each device. Any
protocol that has appeared in the security literature for authentication and key exchange
between two parties based on a mutually trusted third party can be used in this case.
The two devices use such a protocol and with the help of the alpha-pad they establish
a new shared secret. After the establishment of the new shared secret the two devices
communicate directly using the protocol we have presented in 4.3.5.1.

The only addition is that the alpha-pad forwards to the device that o�ers the requested
service the authority attribute assignments it has for the requesting device during the key
exchange protocol. Now the provider gives as input to its inference engine the authority
attribute assignments it has been forwarded, the local policy statements, the access request

7We use the encrypt-then-authenticate (ETA) mechanism of Krawczyk [Kra01].
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and gets as an output whether the request is granted or denied. The newly established
shared secret between the two devices does not remain active forever, but expires. The
typical validity time period we suggest is a few hours. During this period the requester
can directly contact the provider without going through the alpha-pad again. Fig. 4.10
presents the above process using the Wide-Mouth Frog protocol [BAN90], however note
that any similar protocol, like for example the Otway-Rees protocol [OR87], can be used
for the same purpose. We denote the set of authority attributes that A has assigned to B

as AAAB
8.

Figure 4.10: Normal device to normal device (same alpha-pad) protocol.

4.3.5.3 Alpha-pad to Alpha-pad

Since both alpha-pads share a secret key based on the mutual binding the owners have
performed over a location-limited channel, this protocol is exactly the same as the protocol
presented in 4.3.5.1.

4.3.5.4 Normal Device to Alpha-pad (Di�erent Alpha-pad)

In this situation we have an access request initiated from a normal device (C), that has
been bound in the past by alpha-pad A, targeted at a service provided by another alpha-
pad, namely B. The assumption is that alpha-pads A and B share a mutual binding.
Since C and A share a key (from when A bound C) and also A and B share a key as

8Subscript is <issuer, subject>.

124



well (from when they were mutually bound), alpha-pad A can play the role of a trusted
intermediary between C and B. The protocol is similar to the one we have examined in
4.3.5.2. However, there is no transmission of authority attribute assignments; alpha-pad B

has already assigned authority attributes to alpha-pad A when they were mutually bound,
and therefore has all the required information to pass to its inference engine in order to
get an authorization decision for C's request.

4.3.5.5 Normal Device to Normal Device (Di�erent Alpha-pad)

The protocol we present in this paragraph covers the situation where an access request is
made from a normal device (C) to another normal device (D). However, the two devices
have been bound by di�erent alpha-pads. Speci�cally, device C has been bound by alpha-
pad A and device D by alpha-pad B. The assumption here is that these two alpha-pads
share a mutual binding and that the owner of B has assigned authority attributes to the
owner of A. Fig. 4.11 illustrates the protocol.

Device C sends the request to its alpha-pad protected with their shared key SAC .
The request includes a new symmetric secret key that C generated, namely SCD, and a
timestamp T1 to protect against replay attacks. Alpha-pad A forwards the request and the
new key to alpha-pad B. This message is protected with the mutual binding key A and B

share. B identi�es that the target of the request is D and forwards to it the new key along
with the authority attributes (AABA) it has previously assigned to A. The credentials that
are sent to D by B have as their subject �eld value the identi�er of the requester, in this
case IDC . D decrypts this message with the key it shares with its alpha-pad B and passes
to its inference engine the request, the set of authority assignments it has been forwarded,
and its local policies. The result is sent directly to C protected with the new secret key
(SCD). If the result is positive the REP message also contains the access interface of
the requested service. The new key SCD can now be used for further communications
between C and D (and vice versa). However, after SCD expires the whole process has to
be performed again.
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Figure 4.11: Normal device to normal device (di�erent alpha-pad) protocol.

126



4.3.6 Inference Engine
The inference engine of ÆTHER0 is invoked by the provider of a service after the requester
has made an access request according to the protocols presented in the previous section.
The algorithm used is the following (illustrated by the �owchart presented in Fig. 4.12):

1. When a request is received from a principal the default value of the access decision
is set to false.

2. All the authorization policies relevant to the request are collected from the local
policy database of the service provider.

3. If context attributes are used in the authorization policies the engine checks to see
if any of these attributes have dynamic local context values. If there are context
attributes with dynamic values used to de�ne the authorization policies, their current
values are retrieved from the provider's LCP. If no context attributes are required
the execution jumps to step 5.

4. Based on the CAS statements the provider locally has it identi�es the principals
that are responsible for maintaining the membership of principals in the dynamic
sets that represent the context attributes used in the identi�ed policies. Then the
membership status of the requester for the speci�c context attributes is requested
from the relevant principal (e.g. a sensor device). This is a normal access request
that is accomplished using the access protocols we have already presented. If there
are negative authorizations for the requested operation and negative authorizations
have precedence over positive authorizations the value of the access decision is set
to false and returned. If the requester has the necessary context attributes and no
negative authorizations exist (or they do not have precedence over positive ones) the
decision value is set to true.

5. Then the engine checks to see if there are authority attributes required. If none are
required the decision value is returned.

6. If there are authority attributes required, the engine searches the local policy database
to �nd all the authority attributes that have been assigned to the requesting prin-
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cipal. If there are negative authorizations for the requested operation and negative
authorizations have precedence over positive authorizations the value of the access
decision is set to false and returned. Otherwise the execution continues with the
next step.

7. If the authority attributes of the requester satisfy the authorization policies the de-
cision value is set to true and returned. Otherwise it is set to false and returned.

Figure 4.12: Access control decision �owchart of the ÆTHER0 inference engine.
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4.3.7 Security Considerations
The access request protocols of ÆTHER0 we have presented in the previous sections are
all based on the Wide-Mouth Frog protocol. Its basic assumption is that it requires loosely
synchronized clocks between the participating entities in order to protect against replay
attacks by utilizing timestamps. Other similar solutions, like for example the Otway-
Rees [OR87] or the Needham-Schroeder [NS78] protocols, avoid the use of timestamps
by using nonces and therefore more message exchanges to achieve the same goals. The
only requirement of ÆTHER0 regarding access protocols is the previous establishment
of symmetric keys over location-limited channels according to the management model we
have already presented. All access request protocols can be modi�ed to be based on other
similar symmetric authentication and key exchange protocols. Furthermore, the general
ÆTHER model already makes the assumption of loosely synchronized clocks among the
participants by using expiration time periods for authority revocation purposes. The main
reason behind the selection of the Wide-Mouth Frog protocol is its simplicity and the small
number of exchanged messages that it requires.

4.4 ÆTHER1

This section analyzes the second instantiation of the general ÆTHER model, ÆTHER1.
The main goal of this instantiation is to support the authorization requirements of large
pervasive computing domains that have multiple owners with complicated security rela-
tionships. Such environments consist of large numbers of devices whose ownership rights
can be shared among many principals. Example domains include large households with
four or more members, businesses and other shared working environments, and commercial
stores with many customers. Furthermore in ÆTHER1 we address the main disadvantage
of ÆTHER0, that is the reliance on alpha-pads as the locally centralized administrating
devices. ÆTHER1 extends traditional RBAC in order to allow the sets of entities that
have authority over a speci�c authority attribute, or Authority Attribute Sets (AASs) ac-
cording to the terminology of ÆTHER1, to grow dynamically. This allows the delegation
of authority over the ability to assign authority attributes to principals, removing the ne-
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cessity of a user always having to carry a speci�c device (the alpha-pad in ÆTHER0) with
her in order to authorize other users she encounters. To achieve this ÆTHER1 utilizes
asymmetric cryptography and certi�cation of authority attributes through digital signa-
tures. Therefore, it is more �tting to PADs that consist of devices that have the required
information processing capabilities to handle asymmetric cryptography algorithms.

4.4.1 Management Model
In ÆTHER1 all participating devices have a built-in asymmetric cryptography key pair.
According to the design approach that is advocated by SPKI/SDSI [CEE+01], we also
assume that an entity is identi�ed, and therefore named, by the public key of this key
pair9. The corresponding private key is kept protected within the device. ÆTHER1 allows
every device to issue bindings and assign authority attributes to other devices by generating
authority attribute certi�cates signed with their private key. Therefore, every device has
its own local namespace and is allowed to de�ne its own names for attributes. Public
keys are encoded in hexadecimal format and are used to identify principals in the policy
statements used in ÆTHER1.

A Pervasive Authority Domain (PAD) in ÆTHER1 is de�ned as the initial set of
relationships between attributes and principals speci�ed in a security policy and is a logical
representation of a ubiquitous computing environment. The owner of several devices creates
a PAD by specifying in policies which principals are trusted to certify which authorization
and context attributes. Moreover, the owner creates policy entries for controlling what
authorization and context attributes a principal must possess in order to get speci�c access
rights to a resource provided by a device. These policies are distributed to subject principals
by issuers over wireless transmissions. In order to bootstrap security relationships and
authenticate the distribution of these policies we again rely on location-limited channels
for creating bindings between principals. Binding policies in ÆTHER1 serve the purpose
of binding the subject principal to the issuing principal. This is similar to the imprinting
functionality of the Resurrecting Duckling system, but instead of sharing a common secret
(as we do in ÆTHER0) we utilize a signed statement to achieve the same goal. The

9The same association between entities' names and public keys can easily be satis�ed with the use of
an Identity-Based Encryption (IBE) system, like for example the one presented in [BF01].
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embedding of the binding policy to the subject device must take place over a location-
limited channel in order to ensure its authenticity. After a device has been bound, it can
accept new policy entries remotely by the principal that bound it. These new policies are
fully authenticated since the subject has already been bound by the issuer and knows its
public key. As in ÆTHER0, an ÆTHER1 device can be bound to more than one devices.

When a principal wishes to issue an attribute certi�cate for another principal the two
devices establish a location-limited channel with the help of their human owners. Although
any principal is allowed to issue a certi�cate for any authority attribute, only the ones that
are issued by members of the AAS responsible for the speci�c authority attribute are
considered valid. An Authority Attribute Set (AAS) is a policy statement that identi�es
the principals that are the sources of authority for a speci�c attribute. Membership in
an AAS means that the corresponding principal is trusted to issue attribute credentials of
the speci�c type. A member of an AAS is de�ned as a principal that has been explicitly
denoted in the signed AAS statement as such, or an unknown principal that has been
given the required attribute certi�cates (ACs) by at least a threshold number of members
of the set. This threshold number is called Membership Threshold Value (MTV) and the
accepted values are integers greater or equal to 2. This is in essence a delegation of the
authority speci�ed in the policy statement. The allowed depth of delegation is controlled
by a delegation depth entry in the AAS de�nition statement that in essence implements
integer delegation control. Although there have been arguments in the literature against
integer control regarding the inability to predict the proper depth of delegation [EFL+99],
the application domain of ÆTHER1 makes its use particularly attractive. The owner of a
PAD can use representative values for integer delegation control when she de�nes the AASs
of the domain according to the importance of the attributes they authorize. Important
attributes that convey a high value of trust can have small delegation depth values while
more general attributes that authorize less important actions can have bigger values.

Example. In a domestic ubiquitous computing scenario the AAS policy statement
for the attribute (group, visitor) that authorizes visitors to the house could specify a
delegation depth and a membership threshold value of 2. This would allow a trusted
visitor to introduce another visitor in the house, and in order for a visitor to be able to
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do so she must be trusted by two existing members of the AAS. This AAS with principals
Key0 and Key1 as the initial sources of authority is illustrated in Fig. 4.13. At some
point the user of the device identi�ed by key Key0 establishes a location-limited channel
with the user of the device identi�ed by key Key2. Key0 issues an attribute certi�cate for
the attribute (group, visitor) to Key2 over this channel. Since the membership threshold
value of the corresponding AAS statement has been de�ned as 2, ACs for the attribute
(group, visitor) issued by Key2 at this point are not valid. Later on Key1 also establishes
a location-limited channel with Key2 and issues a (group, visitor) AC to it. Now Key2

has the required number of certi�cates and dynamically joins the (group, visitor) AAS. It
is now able to issue valid certi�cates for authority attributes of this type. Key2 does so by
establishing a location-limited channel with Key3. This AC is valid and Key3 can use it
to support access requests.

Figure 4.13: A dynamic Authority Attribute Set (AAS).

The ÆTHER1 management model does not have semantic categories of devices based on
their rights to issue attribute assignments or to create bindings as is the case in ÆTHER0.
As we have already explained, every device in ÆTHER1 is free to issue authority attribute
assignments and also to bind other devices to itself. However, some devices may not have

132



the required physical interaction interfaces to do so. As an example, a PDA can easily be
used to bind other devices since it has a touch screen and/or a keypad to interact with the
user who can use these facilities to express this intent. On the other hand, a small sensor
with a diameter of a few centimeters lacks the physical interface capabilities to be used for
this purpose. Such devices are bound by other devices that have the required interfaces
over location-limited channels and are then issued policies over wireless transmissions. We
assume that they have some physical way (like a small switch or a button) to allow the
owner to indicate her wish to initiate a location-limited channel and bind them to some
other device.

4.4.2 Policy Statements
ÆTHER1 uses the complete set of policy statements we have analyzed in paragraph 4.2.4.
However, in order to allow the authentication of these statements when they are transmit-
ted over wireless media and not over location-limited channels (whose authenticity is guar-
anteed from the human users responsible for establishing them) a signature �eld is added
to all of them. The signature �eld contains the digital signature, encoded in hexadecimal
format, of the principal identi�ed in the issuer �eld of the statement. It is calculated using
an asymmetric cryptography algorithm over the complete text of the statement, starting
from the �rst �eld up to but not including the signature �eld. Therefore, it is always the
last �eld of a signed ÆTHER1 statement.

A new policy statement that is introduced by the ÆTHER1 instantiation is the Au-
thority Attribute Set (AAS) statement:

aether version: 1

type: authority attribute set

issuer: <Quoted hexadecimal string>

attribute name: <String>

attribute value: <String, integer, or �oat>

membership threshold value: <Integer>

delegation depth: <Integer>

sources of authority: <List of comma separated and quoted hexadecimal strings>

AAS statements de�ne the initial sources of authority for a speci�c authority attribute
(the one identi�ed with the attribute name and attribute value �elds). These principals
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are speci�ed in the sources of authority �eld, identi�ed by their public keys encoded in
hexadecimal format. As we have seen, this set of principals can grow dynamically. A
delegation depth �eld of -1 means that delegation of the speci�ed authority is not allowed,
a value of 0 means that delegation is allowed with no restrictions on the depth and any
integer greater or equal to 1 de�nes the allowed depth. An AAS that has a delegation
depth �eld of -1 and a membership threshold value �eld of 0 is de�ned as static, meaning
that the set of principals that act as sources of authority for the corresponding attribute is
not allowed to grow dynamically. Dynamic AASs are in essence dynamic sets as we have
already described them in paragraph 4.2.4, while static AASs are traditional sets.

Another new type of policy statement in ÆTHER1 is the Attribute Mapping Certi�cate
(AMC). AMCs are used for secure interdomain communications and are fully explained in
paragraph 4.4.7,

aether version: 1

type: attribute mapping certi�cate

issuer: <Quoted hexadecimal string>

attribute name: <String>

attribute value: <String, integer, or �oat>

subject attribute name: <String>

subject attribute value: <String, integer, or �oat>

subject sources of authority: <List of comma separated and quoted hexadecimal strings>

not valid before: <Year/month/day-hour:second>

not valid after: <Year/month/day-hour:second>

4.4.3 Policy Distribution
When an owner wishes to bind one of his devices to another device he owns he establishes
a location-limited channel between them. On the device to be bound the owner selects
the �bind� operation. This can be done either through a Graphical User Interface (GUI)
or through some physical interface like a switch or a button. The target device (B) sends
a binding request message (BREQ) to device A. The message includes B's public key
encoded in hexadecimal format and signed using B's private key (K−1

B ). Device A receives
this message, veri�es the signature, builds binding policy BPAB and sends it to B. B

veri�es the signature and inserts BPAB to its policy database and A to its list of owners.
At this point device B is considered bound to device A. A speci�c device can have more
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than one owners, therefore the same process can take place again for device B. The binding
policy BPAB in this example (illustrated in Fig. 4.14) could be the following:

aether version: 1

type: binding

issuer: �3048024100cd462d1d7cf0aa50431616cb61ee55cafc83� (A's public key, i.e. KA)

subject: �3048024100d1d645e46841f0b708b75dd95851d71819� (B's public key, i.e. KB)

signature: �8314cea46400a27458b7f3eb6405dade9� (Signature with A's private key, i.e. K−1
A )

After A has bound B it can issue more policies to it over a normal wireless transmission.
This communication between them is easily protected since now both devices know the
public key of each other, and are sure about their authenticity since the exchange took
place over a location-limited channel.

Figure 4.14: Binding of device B by device A over a location-limited channel in ÆTHER1.

Authority attribute assignments (attribute certi�cates in the terminology of ÆTHER1)
are also issued over location-limited channels. We call this the ÆTHER1 Attribute Cer-
ti�cate Acquisition Protocol (ACAP). The owners of the issuer and the subject devices
establish this channel through some physical action that is integrated gracefully into their
normal work�ow. The issuer selects on her device (A) that she wishes to issue an attribute
certi�cate and speci�es its name, its value and if it is renewable. Device A generates
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a random number R and sends this to device B over the location-limited channel in an
attribute certi�cate issuing synchronization message (ACSY N). Device B receives this,
signs the random number R with its private key (K−1

B ), and sends to A an acknowledgment
message (ACACK) that also contains its public key (KB). A veri�es the signature and
if the veri�cation operation succeeds it builds the attribute certi�cate (ACAB), signs it,
and sends it to B (message ACCERT ). B veri�es the signature on ACAB and inserts the
certi�cate into its certi�cate database if the veri�cation is successful. Fig. 4.15 presents
this protocol.

Figure 4.15: Attribute certi�cate acquisition protocol in ÆTHER1.

As an example, if the owner of A has selected that the issued AC is for authority
attribute (group, visitor) and that it is allowed to be remotely renewed, ACAB would be
the following:

aether version: 1

type: attribute assignment

issuer: �3048024100cd462d1d7cf0aa50431616cb61ee55caf� (A's public key, i.e. KA)

subject: �3048024100d1d645e46841f0b708b75dd95851d71819� (B's public key, i.e. KB)

attribute name: group

attribute value: visitor
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not valid before: 2005/04/02-12:21

not valid after: 2005/04/02-13:21

renewable: 1

signature: �6f858cc2d0b548�9382fe772adda6b0d81� (Signature with A's private key, i.e. K−1
A )

This certi�cate can be used by B to support access requests. The speci�c protocols for
this purpose are presented in paragraph 4.4.5.

4.4.4 Authority Revocation
ÆTHER1 follows the general ÆTHER revocation approach and relies on short expiration
time periods and refreshing mechanisms for the issued credentials. When a user issues an
attribute certi�cate the expiration time period can be de�ned. As we have already discussed
the default period we suggest and use is one hour. Moreover, the user can specify whether
the speci�c attribute certi�cate can be renewed remotely or not. The default behavior that
ÆTHER1 follows is to allow the remote renewal of issued certi�cates. At any time before
the certi�cate expires the subject principal can contact the issuer principal over a wireless
communication medium and request a renewal of the previously issued certi�cate. The
exchanged messages towards this goal are fully secured since both principals know each
others' public keys and are sure about their authenticity since the certi�cate was issued
over a location-limited channel. If a certi�cate expires then it cannot be renewed. The
issuer and the subject principals have to again establish a location-limited channel with the
help of their human owners and go through the attribute certi�cate acquisition protocol
we have presented in the previous paragraph.

Bindings between devices do not expire. In order to revoke a binding a user either uses
the hardware reset switch on the bound device or uses a device that has issued a binding
and sends a revoke binding command to the subject device. In the �rst case all the policies
from the bound device are completely deleted. In the second case, the revoke binding
command can only be invoked by an issuer device that has previously bound the speci�c
subject device. The command is authenticated through a digital signature generated with
the private key that corresponds to the public key the issuer used to create the binding with
the subject and is transmitted over a normal wireless channel. Subsequently the subject
deletes all the policies that the revoked issuer has issued to it in the past.
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4.4.5 Service Discovery and Access
In ÆTHER1 the discovery of available services is performed according to two di�erent
methods, namely the eager and the lazy service discovery and access protocols. As in
ÆTHER0, every ÆTHER1 device maintains a list of all the available provided services it
knows about. We call this list the Current PAD View (CPV) and its maintenance strategy
depends on the utilized service discovery method. The following paragraphs present these
methods and analyze the access protocols.

A concept that we use in both strategies is that of the Reduced Access Control List
(RACL). The RACL is constructed by the service provider and is sent to a requester in or-
der to aid the latter in identifying the authority attribute credentials that must be released
to support a request. Since the general ÆTHER model supports negative authorizations,
a provider cannot simply release the normal ACL (as represented by the requires �eld of
the relevant policy statement) of a service to a requester. If this was the case, the re-
quester could simply avoid releasing to the provider its credentials that subtract privileges.
Therefore, the provider does not release the ACL itself, but a reduced ACL that is con-
structed from the ACL. In the RACL the provider includes just the names of the authority
attributes that appear in the ACL without their values or the predicates that apply on
them. As an example consider the following negative authorization:

aether version: 1

type: negative authorization

issuer: �3048024100cd462d1d7cf0aa50431616cb61ee55cafc83�

resource: television

operation: change_channel

requires: (@group == family_child) || (@age < 18);

signature: �4096816a21379e8d20d0206�061f3af6a111dc0850�

The corresponding RACL is:
@group, @age

Note that context attributes are not included in the RACL. The concept of the RACL
both helps a requester to identify the credentials it must release to support a request
and it protects the provider from making public the exact ACL of a service. Of course,
given a su�ciently simple requires �eld and a committed attacker the exact predicates can
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be discovered through successive trials. To protect against this a provider can blacklist
a requester that makes a certain number of successive failed attempts within a certain
amount of time.

4.4.5.1 Eager

The main goal of the eager service discovery and access strategy is to protect the service
providers from disclosing their advertisements to unauthorized parties. One of the main
threats to service discovery is the enumeration of all available services by attackers. This
can directly lead to the selection of vulnerable services to attack and constitutes an invasion
of privacy. In order to secure the service discovery process, the eager strategy utilizes
Public Resource Advertisements (PRAs). A PRA is a message which simply states that
a service is provided. Speci�cally, a PRA contains the public key of the service provider
(KP ) and the service identi�er (ServiceID) which is a number used only by the service
provider to distinguish between the di�erent services it provides. PRAs are periodically
broadcasted over a wireless communication channel every t seconds by providers for each
service they have to o�er10. When a device (the requester in our example with public key
KR) receives a PRA it checks to see if it already managed to get access to the service with
the corresponding ServiceID. If this is the case then the PRA is ignored. Otherwise, it
tries to access the provided service and enter it into its CPV. This is performed for every
PRA a device receives.

The requester sends an access request to the service provider. The initial request
message contains a packet identi�er (REQ), the received service identi�er (ServiceID), a
session identi�er (SessionID), a protocol step identi�er (StepID) and the service request.
Furthermore, the public key of the requester (KR), a digitally signed tuple containing the
public keys of the two entities, a generated symmetric key (SRP ) and a timestamp (T )
are also included. The entire message (except the packet identi�er) is encrypted with the
public key of the provider (KP ). Our key agreement protocol is based on [Aba02]. The
provider replies with the RACL for the requested service (assuming that such a service
is indeed provided), the same SessionID and an incremented StepID. The message is

10The exact value of t depends on the application scenario. The typical value we suggest (and use) is 60
seconds.
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encrypted using SRP , the negotiated session key. Furthermore, message authentication
is performed by computing an HMAC using c1 (the ciphertext of the message) and SRP .
Based on the received RACL, the requester builds a reply with a set of authority attribute
credentials it holds that can support its request and sends it to the provider. When the
complete set of credentials is sent the requester also sends a CERTFIN message to denote
that it has sent all the relevant credentials it holds. The service provider passes the set
of credentials and the relevant policy statements it locally has to its ÆTHER1 inference
engine. The result is a boolean value that is transmitted to the requester in step 6 (for the
sake of the example we assume that the inference engine reached a positive decision) along
with the Detailed Resource Advertisement (DRA) and the access interface of the requested
service. A DRA contains a textual description of the related service. At the end of step
6 we consider the ÆTHER1 handshake to be over. When the requester receives the DRA
it enters the information it contains into its CPV. Therefore, in the eager strategy when
an owner lists the entries of her CPV she sees all the services in the current PAD that
she is allowed to access based on her authority and current context attributes. When the
owner decides to use a particular service we have the �nal step of the protocol where the
requester constructs and sends a SAC message based on the received access interface and
the session ends. At this point the provider deletes the symmetric key SRP . An established
session also expires and the corresponding session key is deleted after a certain amount of
time has elapsed when no SAC message is sent from the requester to the provider. In our
current design we have set the session expiration time period to 120 seconds. The protocol
is illustrated in Fig. 4.16.

In order to enhance the performance of the eager access protocol we use an authorization
cache. At the end of step 5 when the provider reaches an authorization decision for a
request from a speci�c principal with a speci�c set of credentials it caches the result.
When the same requester wishes to access a service that already is in its CPV it simply
sends a new request for it. This request is the same as step 2 of the above protocol. The
requester generates a new secret key (S′

RP ), a new session identi�er (Session′
ID) and a

new timestamp (T ′). The provider checks its cache to see if the speci�c requester has been
successfully authorized in the past for the speci�c request. If it has then it replies with a
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Figure 4.16: Eager service discovery and access protocol of ÆTHER1.

REP message (like the one in step 6), in essence con�rming the new session key. Now the
requester can access the provided service with a SAC message (as in step 8) and after it
does the session ends and the provider again deletes the symmetric key associated with this
session (S′

RP ). The entries of the authorization cache expire after a certain amount of time.
This time period is directly related to the nature of the corresponding provided service. A
typical value we suggest is ten minutes, a compromise between performance and the risk of
granting access based on a previously valid AC that has expired during this time period.
Another important issue has to do with context-sensitive permissions. When a permission
requires the possession of context attributes, the service provider asks11 the principal that
is the source of authority for the speci�c context attribute12 about the membership status
of the requester. Authorization decisions that have been reached using context attributes
are never cached. We have taken this design choice since the context of an entity may
change at any time and therefore previously valid authorization decisions may no longer

11This is a normal access request performed according to the previously presented protocol.
12Identi�ed through the CAS statements it locally has in its policy database.
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be valid if the relevant context has changed.

4.4.5.2 Lazy

In the lazy access strategy pervasive devices remain passive regarding the service discovery
process. Service providers broadcast their services and the pervasive device only responds
when necessary. Hence, PRAs are not used. Instead service providers periodically broad-
cast DRAs for the services they want to o�er. As we have described in the previous
paragraph, DRAs contain a textual description of the corresponding service. Devices that
receive DRAs enter them into their CPVs. When the owner of a device wants to access a
particular service she lists the contents of the CPV maintained by the device she carries.
Based on the descriptions she selects the appropriate service and the access protocol be-
gins. This protocol is the same as the previous one with one di�erence. After the provider
returns the authorization decision and the access interface of the service (assuming that
the decision is positive) the requester directly sends a SAC message to use the service and
the session ends. As in the eager strategy, we again rely on an authorization cache in order
to improve performance. Fig. 4.17 presents the protocol.

The lazy strategy sacri�ces the protection of service advertisements in order to avoid
having devices in a PAD constantly trying to get access to all provided services. This helps
devices to conserve battery energy, however it allows attackers to enumerate all services
o�ered in a PAD. Whether a device operates in eager or lazy mode is an option that can
be directly controlled by its owner.

4.4.6 Inference Engine
The inference engine of ÆTHER1 takes as input the set of attribute credentials that a
requester has sent to a provider in order to support an access request, the request itself
and the set of local policies that a provider possesses. If there are authorizations that use
context attributes the principals responsible for maintaining the corresponding dynamic
sets are queried regarding the membership status of the requester. It provides as output
a boolean value that represents whether the request is allowed to be performed or denied.
Since the algorithm of the ÆTHER1 inference engine has a lot of similar steps with the
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Figure 4.17: Lazy service discovery and access protocol of ÆTHER1.

ÆTHER0 inference engine algorithm we have previously described in paragraph 4.3.6, we
only present here the steps that di�er (however, Fig. 4.18 presents the complete decision
�owchart of the ÆTHER1 inference engine).

1. After a request is received the engine checks the authorization cache to �nd whether
the requester has made the same access request previously. If it has it returns the
decision from the cache.

2. The engine also checks the validity of the requester's ACs, i.e. whether they have
been issued by members of the corresponding AASs or not. If they ACs are valid the
decision value is set to true and returned. Otherwise it is set to false and returned.

4.4.7 Secure Interdomain Interactions
One of the goals of our architecture is to enable secure interactions between principals of
di�erent authority domains. While a user roams administrative domains the devices he
carries must be able to interact with the devices of the environment in a secure manner
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Figure 4.18: Access control decision �owchart of the ÆTHER1 inference engine.
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without requiring recon�guration. When ACs are exchanged between di�erent domains,
attribute mapping mechanisms are needed to allow attributes from foreign domains to be
translated into corresponding attributes in the domain where an AC is validated [LN99].

Although a global attribute registry has been suggested as a possible solution to the
problem of attribute mapping [LN99], we believe that the introduction of a centralized
universally trusted principal is not applicable to the highly distributed nature of ubiquitous
computing. In ÆTHER1 we use Attribute Mapping Certi�cates (AMCs) to map AASs
of di�erent PADs. As an example, consider the case of a business agreement between
restaurants R1 and R2 that speci�es that the privileged customers of R1 are to be accepted
as normal customers in R2. This means that we want to map the authority attribute
(customer, privileged) of R1 to the authority attribute (customer, normal) of R2. If the
sources of authority for (customer, privileged) in R1 are the principals A1 and A2 and
for (customer, normal) in R2 the principals B1 and B2 then the AMC that performs the
mapping would have to be issued by B1 or B2. This AMC issued by principal B1 is shown
below:

aether version: 1

type: attribute mapping certi�cate

issuer: �3048024100d1d645e46841f0b708b75dd� (i.e. B1's public key)

attribute name: customer

attribute value: normal

subject attribute name: customer

subject attribute value: privileged

subject sources of authority: �3048024100c�, �3048024100a� (i.e. the public keys of A1 and A2)

not valid before: 2005/07/17-18:09

not valid after: 2005/07/18-17:09

signature: �4096816a21379e8d20d0206�061f3af6a11� (i.e. B1's signature)

Obviously this is a one-way mapping. If a two-way mapping is required then another AMC
must be issued, by A1 or A2, to map the authority attribute (customer, normal) of R2 to
the authority attribute (customer, privileged) of R1. Moreover, the mapping is between
the sources of authority of the two AASs, meaning that ACs issued by principals that
dynamically joined the mapped set are not accepted as valid in R2.
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4.4.8 Security Considerations
As in ÆTHER0, the key agreement protocol we use in ÆTHER1 as the basis for our access
protocol relies on loosely synchronized clocks to protect against replay attacks. However,
loosely synchronized clocks are required between the participants in any case since we use
short expiration time periods for the issued ACs. Any other key agreement protocol that
also provides secure transport services can be used instead of the one we have presented.
For example, the SSL/TLS protocol can be used. In this case the requester and the
provider generate self-signed X.509 certi�cates for their public keys. These certi�cates
ascertain veri�ers that the issuer indeed controls the private key that corresponds to the
presented public key. After the end of the SSL/TLS key agreement and the establishment
of the secure channel, the requester presents its ÆTHER1 ACs to the provider normally.
Before the provider passes these to its inference engine it makes sure that the subject �eld
of the requester's ACs is the same as the public key contained in the requester's self-signed
X.509 certi�cate used to establish the SSL/TLS channel. This is done in order to detect
and avoid man-in-the-middle attacks. Afterwards, the authorization process proceeds as
we have previously described. In fact, the application of ÆTHER1 in the domain of web
services uses this approach. For more details see paragraph 5.5.5.

Another security issue we have to address is that of checking whether a service provider
is authorized to provide a particular service or not. For example, a requester may want to
be sure that a �le to be stored in a �le server is going to reach an authorized server and not
a rogue one. The ÆTHER1 access control protocol only provides to the service provider
the guarantee that the public key of the requester is allowed or not to access the service it
o�ers. However, the requester is not able to know if the service provider is a legitimate or a
malicious entity. In case the requester has to release information of sensitive nature while
accessing a service (such as storing a personal �le or printing an important document) it
is important for the utilized protocol to be able to support server-side authorization.

This problem can addressed in ÆTHER1 by extending the previously presented access
protocols so that the requester demands the possession of certain authority or context
attributes before it releases any kind of sensitive information to the service provider. The
requester must construct authorizations for the resources it wants to protect. These au-
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thorizations are regular ÆTHER1 authorization statements. After the requester �nishes
sending its ACs to the provider and receives a positive reply for its access request, it sends
its own RACL to the provider. Then the provider sends its own ACs to satisfy this RACL
to the requester. The requester passes all these to its inference engine and if the output is
positive then it sends the sensitive information to the provider who is now fully authorized.

4.5 Usability

One of the most di�cult problems that every security solution for pervasive computing has
to address is that of usability. Since pervasive computing aims to make the information
processing capabilities of the environment integrate naturally with the work�ow of the
human users, it must not require from them to constantly answer complicated dialogs or
�ll input forms. Flaws in the human-computer interface design may result in the complete
failure of otherwise perfectly secure systems. Users prefer to ignore, or even completely
disable, security settings they do not fully understand [WT99]. For example, in early
versions of ÆTHER we were querying the user whether a given previously established
policy decision (like a binding or an authority attribute assignment) should be allowed
to be renewed or not. However, we found out that this was particularly distracting and
eventually we decided to fully integrate renewal mechanisms in our model.

Policy composition is another area of security usability that requires careful attention.
We realize that only a very small percentage of users will actually fully explore all the
functionalities of their devices and compose authorization policies for them. Users do not
want to be bothered with managing their devices, yet they also do not want to leave
their devices unprotected or let an outside, global and centralized entity to handle their
management. To address this we suggest that manufacturers should provide default sets
of policies with their devices according to the services they provide and the context in
which they are going to be used. Users can then just create simple authorization policies
(like �allow anyone in the room to use the printer�, or �all my friends can access my mobile
phone's �les�) probably with a graphical utility. Of course the ÆTHER policy language
gives the option to power users to modify the default policies and create their own much
more �exible and appropriate to speci�c situations policies.
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Although the use of hexadecimal strings as identi�ers for pervasive computing devices
provides a level of privacy, it su�ers from usability problems. It is especially di�cult (if
not impossible) for humans to memorize the identi�cation strings of their devices. Hence,
names are required in order to allow users to specify names instead of hexadecimal strings in
policy speci�cations and interactions with their devices. The general ÆTHER model does
not have an inherent understanding of principal names, ÆTHER0 uses randomly (in part)
generated values as identi�ers while ÆTHER1 uses public keys to identify participants.
Hence, to support named principals, we need a naming mechanism.

In ÆTHER0 alpha-pads can issue naming attribute assignments for the devices they
bind. As an example consider the following attribute assignment issued by alpha-pad A to
device B an MP3 player:

aether version: 0

type: attribute assignment

issuer: �3048024100cd462d1d7cf0aa50431616cb61ee� (IDA)

subject: �3048024100d1d645e46841f0b708b75dd95851d� (IDB)

attribute name: name

attribute value: my_mp3_player

not valid before: 2005/04/02-11:21

not valid after: 2005/04/02-12:21

renewable: 1

Now when alpha-pad A wants to issue a new policy or make an access request to device
B the name can be used instead of the hexadecimal string. Alpha-pad A can make the
conversion since it has the above statement that binds IDB to the name my_mp3_player.

In ÆTHER1 our AASs can be used to provide a mechanism to bind names to public
keys. A PAD can have an AAS responsible for providing naming credentials, exactly like
any other attribute. The only di�erence is that the value �eld of the attribute is not
included in the AAS policy statement but is speci�ed when the owner uses one of the
member devices of the set to issue a naming credential. All the devices that are part of the
domain and have the AAS policy statement that de�nes the naming attribute can validate
naming certi�cates and perform the mapping between public keys and user-speci�ed names.
An example of an AAS policy statement that de�nes a naming attribute is shown below;
a static AAS statement for a naming attribute, the keyword <user-de�ned> means that
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the AC issuer, in this case this can only be principal Key0, de�nes the attribute's value at
the time of issuing,

aether version: 1

type: authority attribute set

issuer: �3048024100c44004f8f643f0b572ca85bb59f� (i.e. Key0)

attribute name: name

attribute value: <user-de�ned>

membership threshold value: 0

delegation depth: 1

sources of authority: �3048024100c44004f8f643f0b572ca85bb59f� (Key0)

signature: �dc7fb38cd89cb6422f98ce850718b96718� (Key0's signature)

4.6 Maintainability

Maintainability refers to the ease with which any maintenance task can be carried out on an
information processing device. Therefore, its role is essential in pervasive computing where
human users have countless devices that have to be maintained in the most unobtrusive
manner possible.

One of the maintainability problems that we have to consider is that of lost or stolen
devices. In ÆTHER0 when a user device is stolen it can either be an alpha-pad or a normal
device. In the case it is a normal device then the problem can easily be addressed by the
user. The secret keys the device has established with other devices during initiating or
replying to service access requests will eventually expire and therefore do not present a
direct system compromise. Of course if the stolen device is within the transmission range
of other devices it has previously successfully communicated with then it can still be used
to access their services until their shared keys expire. When the legitimate owner realizes
that one of his ordinary devices has been lost or stolen, he can delete the relevant binding
policy and the authority attribute assignments from the alpha-pad he used to bind it.
However, if the stolen device is an alpha-pad then the problem becomes more complicated.
The stolen alpha-pad was probably used by the user to bind several normal devices. The
new owner (i.e. the thief) can now use the alpha-pad to have full access to every device it
was used to create a binding with. If the legitimate owner was thoughtful enough to have
bound his devices to more than one alpha-pads, then he can use one of these to revoke the
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bindings of the stolen alpha-pad with a revoke binding operation. The other alternative
is to use the hardware switch on the bound devices and completely delete all their policy
state, completely losing any custom policies he has stored on them.

In ÆTHER1 the problem of stolen devices is similar to the problem of stolen alpha-pads
in ÆTHER0. Since every device in ÆTHER1 is allowed to bind other devices, a stolen
device means that the owner must revoke all the bindings that the stolen device has been
used to create. Again, this can be accomplished either with the hardware switch that wipes
all policy state from a bound device, or with another device that has been used to create
an additional binding with the target device. We do not believe that multiple bindings are
an inconvenience to end users. When a user has a device that is of particular importance
and has a signi�cant chance to be stolen (due to its size and the fact that the user always
carries it with him) it makes sense not to bind all other devices in a PAD just with this
particular device.

Another maintenance problem that must be addressed is that of lost con�guration
information from devices due to discharged batteries. The importance of this problem
became apparent to us during the development of ÆTHER. The handheld devices we were
using for implementation and testing lacked non-volatile memory and stored all con�gura-
tion information in RAM. When their batteries were not charged for extended periods of
time the devices lost all con�guration state returning to their default factory settings and
we had to recon�gure them. Hence, a recovery process must exist in order to allow users
to save the custom ÆTHER policies they have created for their devices and reinstall them
without extensive con�guration tasks. We accomplish this by periodically (for example
once every week or more frequently depending on the importance of the device) sending all
policy data a device has to the device that bound it. This applies to both instantiations of
our model. If a device was bound by more than one devices then its policy data are sent
to all such devices. This allows the replication of the backed up policies. These transfers
are trivial to secure in both ÆTHER0 where the master and the slave device share a secret
key, and in ÆTHER1 where the devices have exchanged public keys during their binding
procedure.
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4.7 Privacy Considerations

Although the protection of privacy is not one of the primary goals of our architecture,
we have to consider possible threats to the privacy of the participating entities. Privacy
concerns are going to play a central role in the adoption of pervasive computing systems
and technologies [Lan01].

The direct use of hexadecimal identi�ers (randomly generated in ÆTHER0 and encoded
public keys in ÆTHER1) in the attribute assignments, the credentials and the access
requests of our architecture provides a level of privacy since the identity of the related
principals is not revealed. However, the structure of trust relationships in a PAD can be
disclosed by a malicious entity that observes these exchanges. Since a service provider
receives the requester's identi�er, the requester can still be tracked via the use of this
identi�er. In order to address this we propose the use of pro�les. A user can have many
pro�les on a device, each one with its own identi�er and its own set of policies. The user
can force the device she is about to use to generate a new identi�er each time she visits a
new pervasive computing environment. In ÆTHER0 this is simply a randomly generated
number, while in ÆTHER1 a new public key pair. Therefore, in ÆTHER1 each time a user
visits a new environment she can instruct the device she is about to use to generate a new
public key pair and use this one for getting certi�cates and accessing services. Since ACs
expire after an hour, it makes no sense from a privacy perspective for the user to keep a
repository with expired certi�cates on her device. In ÆTHER0 alpha-pads are the central
devices that manage the security relationships that a user establishes. An alpha-pad pro�le
includes not only the identi�er of the alpha-pad itself and its related policies, but also all
the identi�ers and the policies of all the devices it was used to bind. Consequently, changing
the pro�le of an alpha-pad results in all devices bound by this alpha-pad to change to the
new pro�le. The command to change to the new pro�le can be issued from an alpha-pad to
all the devices it has bound via a wireless transmission secured with the respective secret
shared key.
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4.8 Comparison

The main di�erence between the ÆTHER0 and the ÆTHER1 instantiations is that they
follow di�erent management models. While ÆTHER0 does not depend on any external,
globally trusted, always available and centralized servers it adopts a locally centralized
model. All security relationships must be established through the user's alpha-pad (or
alpha-pads if the user has more than one) which must always be carried around. This
locally centralized model is easy for users to understand and manage; a user is fully aware
that in order for another person to unlock the door of his o�ce that person must be au-
thorized with the user's PDA which plays the role of his alpha-pad. Since all authority
�ows to and from the alpha-pad, users can easily understand and therefore manage without
di�culties ÆTHER0 PADs and their interactions with the PADs of other users. Further-
more, the locally centralized model allows us to use symmetric cryptography which requires
signi�cantly less computational resources than asymmetric cryptography. ÆTHER0 is ap-
propriate for small PADs with no more than ten to twenty participating devices; more
than that the use of symmetric cryptography becomes cumbersome. The main disadvan-
tage of ÆTHER0 is that the alpha-pad represents a single point of attack and failure.
Since all security data are stored in alpha-pads they become particularly attractive targets
to potential digital attackers and physical world thieves. The main argument against this
is that users are used to carry around valuable physical objects, like mobile phones and
credit cards, and therefore know how to protect them from being stolen. Regarding digital
attacks, alpha-pads must be engineered as high-value software entities in order to be able
to withstand them.

ÆTHER1 follows both a globally and a locally decentralized management model. All
participating devices have their own namespace and are free to bind other devices, de�ne
policies for them, and issue attribute assignments in the form of attribute certi�cates.
Moreover, the management model of ÆTHER1 allows the sets of principals that act as
sources of authority for speci�c authority attributes to grow dynamically. This approach
overcomes the traditionally centralized nature of RBAC and enables the establishment of
trust with unknown principals authorizing their actions in the local domain. The ÆTHER1

instantiation relies on asymmetric cryptography and therefore is appropriate for devices
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that are able to support its computationally expensive algorithms. However, the constant
advancements in microprocessor design suggest that pervasive computing devices of the
(not too distant) future will not have problems with such computational or memory re-
quirements. The main advantage of ÆTHER1 over ÆTHER0 is that it does not rely on
any locally (or globally) centralized entity. A user can simply pick up any of his device and
issue certi�cates to other users he encounters, bind new devices, or use it to access provided
services. There is no single point of failure in ÆTHER1 PADs, however this makes their
visualization by users di�cult. Since authority can �ow from and to many di�erent devices,
users with small PADs and simple requirements may �nd this fully decentralized model
di�cult to understand and manage. Hence, ÆTHER1 targets large environments which
consist of many devices whose ownership rights may not be clearly de�ned. Workplaces
shared by many people, such as business o�ces for example, and commercial avenues, such
as restaurants, are the natural application environments of ÆTHER1. Table 4.1 summa-
rizes this discussion.
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Table 4.1: Comparison of ÆTHER0 and ÆTHER1.
Characteristics ÆTHER0 ÆTHER1

Management model Globally decentralized, locally

centralized.

Globally decentralized, locally

decentralized.

Disconnected operation Globally yes, locally no. Globally yes, locally yes.

Namespace Each alpha-pad has its own

namespace.

Each device has its own namespace.

Cryptography Symmetric. Both; asymmetric for ACs and key

agreement, symmetric for bulk data

transfer.

Authority attribute as-

signments

By alpha-pads, assignments stay local

to the issuer.

By any device that is a member of the

corresponding AAS, assignments are

ACs given to subjects.

Revocation Short validity periods. Short validity periods.

Context-awareness Supported. Supported.

Secure service discovery Supported. Supported in eager strategy, not

supported in lazy strategy.
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Chapter 5

ÆTHER Implementation

In the previous chapter we have presented the design of the general ÆTHER architec-
ture and the details of instantiating it into two di�erent management models, namely
ÆTHER0 and ÆTHER1. This chapter presents the implementation of two prototypes for
these instantiations and examines their feasibility using modern handheld devices as the
development hardware platform. Both of our prototypes are implemented as layers of
the Networks and Telecommunications Research Group (NTRG) ad hoc networking stack
developed at the University of Dublin, Trinity College [OD01]. In the NTRG stack compo-
nents are assembled using a layered architecture achieving abstraction borders between the
di�erent implementation elements. The reasons we selected it for implementing ÆTHER
are:

• The NTRG stack includes layers that implement several building blocks of mobile ad
hoc networks, such as routing protocols, autocon�guration addressing schemes, and
decentralized location services, that can be directly reused for setting up the com-
munications infrastructure of pervasive computing environments. This fact allows us
to focus solely on the implementation of ÆTHER.

• The NTRG stack is simple and extensible allowing us to quickly build and evaluate
the service discovery and access protocols of ÆTHER.

• It has been designed to work on modern handheld devices giving us the opportunity
to experiment with real-world pervasive computing scenarios and applications.
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The �rst section of the chapter gives a brief explanation of the NTRG stack, its layers
and the related issues. The second section presents a detailed examination of the ÆTHER
layer and how are the two instantiations of the general model implemented. These are
followed by a section in which we discuss an experimental evaluation of ÆTHER0 and
ÆTHER1. The chapter concludes with describing applications of the two instantiations,
both practical ones that we have fully developed and futuristic ones that we only discuss
theoretically to assess our models.

5.1 The NTRG Ad hoc Networking Stack

The concept of a protocol stack is well-de�ned in the computer networking literature;
instead of following a monolithic approach to the process of designing and developing
network communications, the required functionalities are divided into distinct layers that
implement a speci�c component of the whole process. An ordered collection of such layers
is called a stack. Although layers pass information directly to the layers above or below
them in the stack, each layer communicates in a logical end-to-end manner with each layer
of the same type on stacks of di�erent networked entities. The most well-known networking
stack is the ISO reference model for Open Systems Interconnection (OSI) [ISO84].

The NTRG stack follows the same approach but focuses on ad hoc networking protocols.
At the physical layer it provides implementations of the IEEE 802.11b Wireless Local Area
Network (WLAN) protocol, the Bluetooth protocol and infrared. At the routing layer the
Dynamic Source Routing (DSR) [JMB01] and the Ad hoc On-demand Distance Vector
(AODV) [PR99] protocols have been implemented as well as other less commonly used ad
hoc routing protocols. Furthermore, the NTRG stack includes a dynamic addressing layer
[TO03] and several application layers like instant messaging, voice transfer (phone), and
a web gateway layer among others. The main goal of the NTRG stack is �to produce a
general-purpose mobile node capable of running a large range of network applications that
can adapt its mode of operation to the prevailing wireless network architecture� [OD01].
As a simple example consider the stack presented in Fig. 5.1 a). The stack has been
implemented using the C++ programming language for Windows-based operating systems.
It currently supports Windows 98, Windows 2000, Windows XP and Windows CE. This
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gives us the opportunity to test our implementation in a wide variety of hardware platforms;
from ordinary desktops to laptops, handhelds and smart phones among others. We must
also note that most of the stack code is highly portable. Hence, it can easily be modi�ed to
support other platforms given that threading, �le manipulation and networking libraries
are provided by the hosting operating system.

Figure 5.1: The NTRG ad hoc networking stack.

Another facility provided by the stack is the upmux layer; a layer to do upward multi-
plexing. It allows multiple independent layers to sit below a single stack layer (see Fig. 5.1
b)). This �nds a lot of applications, for example when we want to create network entities
that bridge two distinct domains built on di�erent wireless networking technologies. Fig.
5.2 presents the ÆTHER layer as part of the NTRG stack. In the following paragraphs we
will discuss the utilized layers and the considerations associated with the implementation
of ÆTHER.

5.1.1 The Physical Layer
At the physical layer level of the stack we depend on two di�erent layers; the IEEE 802.11b
WLAN layer which we use as the ordinary wireless communication interface and the in-
frared layer which we use as the location-limited channel interface. In order to implement
the required dual interface we utilize the upmux layer for doing upward multiplexing.
ÆTHER packets that come from above and have to be transmitted over a location-limited
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Figure 5.2: The ÆTHER layer as part of the NTRG stack.

channel are labelled in order to bypass the routing layer and be directly forwarded to the in-
frared layer. Please note that the bypassing of the routing layer is done purely for semantic
reasons; even if routing was utilized it would not make any di�erence since location-limited
channels are strictly one hop, i.e. always between two entities of which one is the sender
and the other the receiver. The operation of the infrared layer is simple. It waits for data
from infrared peers and forwards them upwards the stack. When data arrive from above
layers, the infrared layer tries to discover infrared peers within range and sends to them
these data. If none are discovered the data are discarded and an error noti�cation message
is sent upwards.

5.1.2 The Network Layer
At the network layer any routing protocol can be utilized. We believe that ad hoc routing
protocols, like DSR and AODV for example, are fully compatible with the decentralized and
mobile nature of pervasive computing. Although we advocate their use, the operation of
ÆTHER does not depend on any speci�c routing protocol. In our current implementation
we use DSR as it is one of the most mature and widely deployed solutions. For routing
identi�ers (i.e. node IDs) we use quantities derived from the entity's ÆTHER identi�er.
In ÆTHER0 entity identi�ers are directly used and in ÆTHER1 we use the digital hash of
the entity's public key. These routing identi�ers have the following two properties [CM02],
[OR01]:

• They are statistically unique since they were generated with a cryptographic hash
function that is collision-resistant. In ÆTHER0 the input to this function is the
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concatenation of the hardware addresses of the device's two interfaces (WLAN and
infrared) and a randomly generated number. In ÆTHER1 the entity's public key is
used as input.

• They are securely bound to a given entity. This is accomplished di�erently in our
two instantiations. In ÆTHER0 when an entity learns another entity's identi�er
its authenticity is guaranteed since this process takes place over a location-limited
channel. After this initial establishment the two entities share a symmetric secret
key and therefore they can easily authenticate each other. In ÆTHER1 an entity
can prove the ownership of the routing identi�er it uses since this is derived from
its public key and can therefore simply sign messages with the corresponding private
key which it controls.

One possible attack against this scheme can be accomplished by utilizing recent advances
in hash collision search techniques. At the 24th Annual International Cryptology Confer-
ence a number of hash collision attacks were announced against the SHA, MD4 and MD5
algorithms (among others) [BC04], [WFLY04]. Furthermore, it has recently been shown
that SHA-1 is also not collision-free [WYY05]. There are two possible attack avenues
against our use of hashes as routing identi�ers. In ordinary collision attacks the attacker
is able to �nd two messages that produce the same hash, but has no control over what
the hash can be. Therefore, this has limited impact on our approach. On the other hand,
pre-image attacks allow the attacker to �nd an input message that causes a hash function
to produce a particular output. In this case the attacker is able to forge a routing identi�er
and impersonate the rightful owner, causing mainly denial of service attacks. The solution
is to use a hash function that does not su�er from such problems, like SHA-256.

Another aspect we have to consider at the network layer is the use of address auto-
con�guration management schemes, like for example the one that has been implemented
for the NTRG stack and presented in [TO03]. Such mechanisms are used to manage the
addressing requirements in cases where we have the merging of domains to form a larger
domain, or when a domain is split to a number of smaller domains, possibly due to net-
work partitioning. In these situations the autocon�guration mechanism needs to change
the network identi�ers of the entities in order to guarantee that they are still connected
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to the network and participating in the routing process. However, these identi�ers are not
randomly chosen in ÆTHER but are directly related to each entity (as we have described
above) and therefore cannot be arbitrarily changed. We address this problem by semanti-
cally dividing the utilized identi�ers into two parts. For example, when 160-bit identi�ers
are used the management of the leftmost 80 bits is given to the address autocon�guration
scheme that keeps this part of the identi�er routable at all times. The rightmost 80 bits
are the ÆTHER identi�er and remain constant. Our approach is equivalent to the one
used in IPv6 for similar purposes [OR01].

5.1.3 The Application Layer
This layer implements the application-level services that are o�ered in a pervasive com-
puting environment. The NTRG stack has a lot of example applications, and a number
of them have been modi�ed to be secured using ÆTHER. For speci�c examples please see
section 5.5 in this chapter. Since service discovery is handled as part of our architecture,
the �rst step in making an application ÆTHER-enabled is to compose authorization poli-
cies for the services that need to be provided. Based on these policies the ÆTHER layer
advertises the services1 and plays the role of a reference monitor for each access request
that arrives from below. After a request has been authorized the application layer of the
service provider is forwarded the request by the ÆTHER layer below it. Every message
that is sent down the stack after this point is secured using the key material that have
been negotiated by the ÆTHER layer during the authorization process. The ÆTHER
layer of the requester receives these messages, decrypts and authenticates them using the
negotiated key, and forwards them to the application layer above it.

5.2 The ÆTHER Layer

ÆTHER0 and ÆTHER1 have been implemented as two distinct layers for the NTRG stack.
However, since both of them share the same generic model a lot of software components
have been reused in their implementation. Fig. 5.3 illustrates the di�erent components of

1Service advertisement works di�erently in our two instantiations as we have already presented in the
design chapter.
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the ÆTHER layer.

Figure 5.3: The ÆTHER layer and its components.

The ÆTHER layer is situated between the application and the network layers acting
as an authorization middleware component and handles the process of transmitting and
receiving service access requests and replies. In the following paragraphs we will analyze
its components and describe the related implementation details of the two instantiations.

• Location-limited channel module. This module of the ÆTHER layer is responsible
for receiving from below and sending downwards location-limited channel messages.
These are labelled in order to bypass the routing layer. Moreover, the label is iden-
ti�ed by the upmux layer that forwards them to the infrared layer.

• Authority renewal module. This module handles the incoming requests for authority
renewals. In the ÆTHER0 layer these are requests for the renewal of previously
established mutual bindings or attribute assignments that have been sent to devices
bound by the current alpha-pad device. In the ÆTHER1 layer incoming renewal
requests concern ACs previously issued by the current device to a subject device
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over a location-limited channel.

• The CPV maintenance module keeps updated the list of services that have been dis-
covered in the local environment. The update strategy follows di�erent algorithms
in the implementations of the ÆTHER0 and ÆTHER1 layers. This module commu-
nicates directly with the service discovery and access module from which it receives
information regarding the discovered and accessed services. The data kept in the
CPV are used by the implemented interaction interface that presents to the user of
the device the services and allows her to select which ones she wants to use.

• The service discovery and access module implements the protocols we have presented
in the design chapter responsible for receiving access requests and replies. Further-
more, this module handles session establishment and maintenance, as well as the
management of key material used for protecting the transmitted messages. Relia-
bility is implemented by using a retransmission mechanism that maintains a timer
and keeps retransmitting a message until the expected reply is received. To detect
replayed datagrams we use timestamps as we have explained in the design chapter.
In the ÆTHER1 layer this component also maintains a cache of recently exchanged
authorization information in order to optimize the trust establishment procedure.
Cache maintenance depends on the decisions of the inference engine and on session
management.

• The policy language parser is implemented using Lex for lexical processing and Yacc
for de�ning the grammar of the language [LMB92]. The ÆTHER policy language is
heavily based on the KeyNote assertion grammar, however it introduces the required
constructs to implement the ÆTHER-speci�c policy data structures. This module is
instantiation-independent since it includes support for all the policy statements used
by both ÆTHER0 and ÆTHER1.

• The cryptographic module is also the same in both layers that implement the two
instantiations of our general model. Its responsibility is to provide a high-level Ap-
plication Programming Interface (API) for the required cryptographic operations
used by ÆTHER. It has been implemented using the OpenSSL [SSL05] open source
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cryptographic toolkit. ÆTHER uses the AES (Rijndael) algorithm for all symmetric
cryptographic operations with 256-bit keys. For asymmetric operations we rely on
the RSA algorithm and we use key sizes of 512 and 1,024 bits. For message digesting
we are currently using SHA-1. However, this was shown to be vulnerable to colli-
sion attacks and therefore should be replaced with SHA-2562 or any other su�ciently
strong message digesting algorithm. The modular design of the cryptographic module
allows us to easily perform such replacements of the underlying utilized algorithms.

• The Local Context Pro�le (LCP) component maintains a list of the context attributes
that apply to the current device. The values of these attributes are retrieved from
the LCP when a value of a context attribute used in a policy statement has been
de�ned as a dynamic local context value (i.e. has a preceding underscore). The LCP
is implemented as a two-way linked list that contains elements of the structure that
is shown below. Each context attribute of the LCP is associated with a Context
Retrieval Function (CRF). The CRF implements the way that the value of a speci�c
attribute is retrieved when requested from the LCP. For example, if we have a context
attribute (current_time, _value) used in a policy statement its CRF in the LCP
would simply use the hosting operating system's facilities for getting the current
time. For this attribute the source variable of the structure would have the NULL
value. On the other hand, if the attribute is maintained by another entity, like for
example a location sensor, the source variable would contain the identi�er of the
maintainer. The related CRF would send an access request to this principal in order
to get a value for the attribute. The result of the CRF is saved in the value variable.
We have implemented two example CRFs; one that simply retrieves the current time
from the local device using the localtime() function, and one that makes an access
request to a remote principal regarding the value of an attribute.
typedef struct context_attribute ctx_attr;

struct context_attribute

{

char *name; /* name of the context attribute */

char *value; /* its current value */

2Which is signi�cantly slower.
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char *source; /* source(s) of authority, comma separated */

void (*crf)(void *args); /* context retrieval function, or CRF */

void *arg; /* the first argument of the CRF */

ctx_attr *next; /* next element in the list */

ctx_attr *prev; /* previous element in the list */

};

• The policy database contains all the ÆTHER statements trusted by the current
device. For example, these include policies issued by the entity that bound the
current device, or in the ÆTHER1 layer ACs sent by another entity to support a
service request that have been veri�ed by the cryptographic module. The policy
database is also implemented as a two-way linked list.

• The inference engine module is di�erent in the ÆTHER0 and the ÆTHER1 layers.
Each implementation realizes the decision �owchart we have presented in the relevant
sections of the design chapter. A subcomponent of the inference engine of both
implementations is the context retrieval module. The responsibility of this module
is to �nd the CAS policy statement for a speci�c context attribute used in a policy
statement and query the entity that maintains the relevant dynamic set about the
membership status of the requester. This is an ordinary access request that is handled
by the service discovery and access module.

Fig. 5.4 presents a high-level example of a scenario involving two ÆTHER1 layers. Device
A is a service provider; also it issues the necessary ACs to device B over the infrared
channel. Device B then makes an access request over the 802.11b channel and receives a
reply.

5.3 Performance Analysis

In order to evaluate the two instantiations of our architecture in a quantitative manner
we have completed a detailed performance analysis based on modern handheld devices.
Speci�cally, the hardware platform we use is the HP iPAQ H6340 [IPA05] with a Texas
Instruments OMAP 1510 processor at 168 MHz and 64 MB RAM (64 MB ROM), running
the Windows CE Mobile 2003 [WCE05] operating system. As we have already mentioned,
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Figure 5.4: High-level example involving two ÆTHER1 layers.

we use the infrared interface of the handhelds to implement the required location-limited
channel and the IEEE 802.11b WLAN interface for normal communication links. We must
also note that no compiler optimizations were used during the compilation of the test
programs, and the thread priority during their execution was normal.

5.3.1 ÆTHER0

In the ÆTHER0 instantiation we have evaluated the process of mutually binding two alpha-
pad devices over an established infrared channel, the following access protocols: normal
device to alpha-pad, normal device to normal device (same alpha-pad), and normal device
to normal device (di�erent alpha-pad) as presented in paragraphs 4.3.5.1, 4.3.5.2, and
4.3.5.5 respectively, and the inference engine overhead introduced by the utilized number
of attributes in authorization policies.

5.3.1.1 Mutual Binding

The mutual binding protocol in ÆTHER0 takes place between two alpha-pad devices ac-
cording to the protocol we have described in paragraph 4.3.3. The owner of alpha-pad B

selects the �initiate mutual binding� operation on his device and the owner of alpha-pad
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A accepts it. We have measured the time required for the protocol to complete from the
perspective of alpha-pad A; from when it receives the initial MBREQ message until the
point it receives the MBACK message and checks that the established symmetric key was
not corrupted during its transfer over the infrared communication channel. An example
of an established mutual binding policy statement between the two alpha-pads is the fol-
lowing (of course the shared secret �eld is di�erent at each iteration since it is randomly
generated by A):

aether version: 0

type: mutual binding

issuer: �3048024100cd462d1d7cf0aa50431616cb61� (The complete �eld is 40 characters long)

subject: �d0d331972525554c54f1e32b85bbf827240� (The complete �eld is 40 characters long)

not valid before: 2005/09/02-12:21

not valid after: 2005/09/03-11:21

shared secret: �ab56a13a94ebdef6c8e083d721df8e� (The complete �eld is 64 characters long)

The average time required for mutually binding two alpha-pads is 0.592 seconds (592
milliseconds), without measuring the time required for the two users to initiate and accept
the process through their devices' interaction interfaces (see Fig. 5.5).

Figure 5.5: ÆTHER0 mutual binding timing measurement.

We believe that at just over half a second the infrared-based mutual binding protocol of
ÆTHER0 can easily be integrated with the actions of the human owners of the participating
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devices without introducing signi�cant distractions.

5.3.1.2 Access Protocols

We have also evaluated ÆTHER0 in respect to the time required for the completion of the
di�erent access protocols we have presented in paragraph 4.3.5. In all the experiments we
use AES with a 256-bit key (in CBC mode) as the symmetric encryption algorithm and
HMAC-SHA-1 as the HMAC algorithm. Furthermore, we assume that the authorization
policy for the requested operation speci�es only one required authority attribute. The one
we use for all the experiments is the following:

aether version: 0

type: positive authorization

issuer: �3048024100ab3ddca94cef74c5fe2e4e7330bb5a1�

resource: switch

operation: change_state

requires: (@group == family_member);

We also assume that the alpha-pad (or the alpha-pad that bound the device that o�ers the
requested service in the last two experiments) has assigned to the owner of the requesting
device the required authority attribute and therefore reaches a positive decision. In the
normal device to alpha-pad protocol (presented in paragraph 4.3.5.1) we have measured the
time required for a requester (the normal device) to construct a request (message REQ),
send it over the wireless interface to the alpha-pad that provides a service, and receive a
reply (message REP ). The average time required for the protocol to complete is 0.175
seconds (175 milliseconds). The second case examines the normal device to normal device
(same alpha-pad) access protocol that we have analyzed in paragraph 4.3.5.2. Again we
have measured the time required for the requesting device to send a REQ message to
the alpha-pad that bound it, for the alpha-pad to forward the request and the authority
attribute assignments it has for the requester to the target device, and the target device
to reach a decision and transmit it to the requester with a REP message. The required
average time for the completion of this protocol is 0.189 seconds (189 milliseconds). In
the �nal access protocol experiment for ÆTHER0 we have examined the situation where a
request is initiated from a normal device to another normal device. The assumption is that
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the alpha-pads that bound the devices share a mutual binding. This protocol has been
presented in paragraph 4.3.5.5. The average time for a requester to send a REQ message
and receive a reply in a REP message is 0.247 seconds (247 milliseconds) in this case. All
three access protocol measurements for ÆTHER0 are presented in Fig. 5.6.

Figure 5.6: Timing measurements for the ÆTHER0 access protocols.

The timing measurements of the ÆTHER0 access protocols demonstrate the feasibility
of using them on mobile constrained devices. Even the normal device to normal device
(di�erent alpha-pad) protocol which is the most complicated of the three and involves
message exchanges between four di�erent devices requires approximately only 0.25 sec-
onds in average. Based on previous work done on benchmarking cryptographic algorithms
[LDH04], like the AES cipher we use, we believe that the ÆTHER0 instantiation can easily
be deployed even in low-end sensor networks consisting of devices with 8-bit processors.

5.3.1.3 Policy Evaluation

In order to evaluate the inference engine of the ÆTHER0 instantiation we have performed
successive experiments with an increasing number of required authority attributes in the
authorization policy that applies to the requested action. In this experiment we have only
measured the time required for a service provider to reach an authorization decision, with-
out taking into consideration message exchanges over the wireless communication medium.
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The results are shown in Fig. 5.7 and are the averages of one hundred iterations for each
experiment.

Figure 5.7: Timing measurements for the ÆTHER0 inference engine.

When only one authority attribute is required the average time for the inference engine
to reach an authorization decision is 0.148 seconds (148 milliseconds). As the number of
required authority attributes increases, so does the average time needed for the inference
engine to reach a decision, by an average of 5 milliseconds. For �ve authority attributes
the required time is 0.168 seconds (168 milliseconds). Therefore, the overhead introduced
by the ÆTHER0 inference engine is not prohibitive for pervasive computing applications.

5.3.2 ÆTHER1

Our evaluation of the ÆTHER1 instantiation focused on the following processes: the bind-
ing of one device by another over the infrared channel, the authority attribute acquisition
protocol that also takes place over the infrared channel, the wireless-based access protocol
described in paragraph 4.4.5.1, and the overhead introduced by the inference engine. All
the experiments were performed with RSA keys of 512 and 1,024 bits size, with small pub-
lic exponents (e was given the value 65,537) making the public key operations signi�cantly
faster than the private key operations.
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5.3.2.1 Binding

The binding procedure of ÆTHER1 requires the establishment of an infrared channel
between two devices; the protocol has been described in detail in paragraph 4.4.3. On the
device to be bound, B, the owner selects the �bind� operation. Device B generates and
sends a BREQ message to device A with which an infrared channel has been established
with the help of the human owner of the devices. Device A generates a binding policy and
sends it to B which veri�es A's signature. In this test we have measured the time required
for such a binding from the perspective of the bound device, that is B. Fig. 5.8 shows the
timing measurements with both 512 and 1,024 bits key sizes.

Figure 5.8: Timing measurements for the ÆTHER1 binding process.

The average time required for a full binding with both devices having keys of 512 bits
is 2.565 seconds (2,565 milliseconds) and 2.987 seconds (2,987 milliseconds) with keys of
size 1,024 bits. The average required time in both cases is substantial, however the binding
of devices in ÆTHER1 is not a very frequent process and therefore this overhead does not
introduce any usability problems for the human owner of the two devices involved.
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5.3.2.2 Attribute Certi�cate Acquisition

In ÆTHER1 the Attribute Certi�cate Acquisition Protocol (ACAP) takes place over the
infrared channel established between the issuer and the subject devices; the complete
process has been discussed in paragraph 4.4.3. The owner of the issuer device selects the
�issue AC� operation for the appropriate attribute on her device which generates a random
number R and sends it to the subject device with an ACSY N message over the infrared
interface. The subject device signs R with its private key and includes the signature as
well as its public key to the ACACK reply message. The issuer veri�es the signature,
builds the AC and sends it to the subject with an ACCERT message. In our experiments
for this protocol we have measured the required time from the point that the owner of
the issuer device selects the appropriate operation, to the point that her device sends the
ACCERT message. The results are shown in Fig. 5.9.

Figure 5.9: Timing measurements for the ÆTHER1 ACAP.

According to the observed results the average time required for an issuer to complete
the protocol is 2.557 seconds (2,557 milliseconds) when keys of 512 bits are used, and 3.3
seconds (3,300 milliseconds) with 1,024-bit keys. Although the average required time in
both cases is signi�cant, our tests demonstrated that it does not lead to usability problems.
The users of the handheld devices can easily integrate the establishment of the required
infrared channel and the issuing of an attribute certi�cate in their work�ow.
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5.3.2.3 Access Protocol

Our experiments for the ÆTHER1 access protocol are based on the eager service discov-
ery and access strategy, presented in paragraph 4.4.5.1, since it does not require human
intervention for its completion as does the lazy strategy. We measured the time required
from the point a device receives a public resource advertisement (a PRA message) from a
service provider and sends a request (REQ) message for it, until the point it gets back a
REP message that contains an authorization decision plus the provided service's interface,
if the decision is positive, and enters this information into its CPV. We assume that there
is an authorization policy for the provided service that speci�es that a requester needs
a single authority attribute to access the service. Moreover, that the requester has been
issued an AC of the required type from a principal that is directly trusted by the provider
to do so; i.e. the AC's issuer is listed in the sources of authority �eld of the AAS statement
for the speci�c authority attribute that the provider has. The experiment was performed
with the service provider's authorization cache both disabled and enabled in order to have
demonstrative results (see Fig. 5.10).

Figure 5.10: Timing measurements for the ÆTHER1 access protocol.

When keys of 512 bits are used the average required time is 0.3 seconds (300 mil-
liseconds). The utilization of the authorization cache decreases this to 0.132 seconds (132
milliseconds), a performance gain of 56%. With 1,024-bit keys the average required time
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for the completion of the protocol is 0.536 seconds (536 milliseconds), and when we enable
the authorization cache of the service provider this becomes 0.366 seconds (366 millisec-
onds). The decrease of the average required time is in the order of 31.7%. We believe
that the timing results of both key sizes are realistic for a pervasive computing security
system which relies on public key cryptography. Even in the eager service discovery and
access strategy in which a device tries to access all services provided in an environment
irrespectively of whether its user is interested in them, the time required for a successful
completion of the protocol is half a second when 1,024-bit keys are used. This time is small
enough not to be prohibitive.

5.3.2.4 Policy Evaluation

The inference engine of the ÆTHER1 instantiation has been evaluated according to two
metrics; the number of authority attributes that are required to reach an authorization
decision, and the delegation depth that applies on principals that dynamically joined the
AAS responsible for a required authority attribute. Both experiments have been performed
with RSA keys of 512 and 1,024 bits. In the �rst one we have measured the time required
for the inference engine to reach a positive decision when the number of the necessary
authority attributes increases. Fig. 5.11 shows the results as averages of one hundred
iterations for each number of authority attributes.

As expected the impact is more considerable when 1,024-bit keys are utilized. Specif-
ically, with 512-bit keys the average increase of the required time when the number of
authority attributes increases is 7.25 milliseconds, while with 1,024-bits the average in-
crease is 15 milliseconds.

We have also evaluated the overhead introduced by the AAS's delegation depth param-
eter. In order to make this more clear consider the example presented in Fig. 5.12.

We have an AAS for the authority attribute (group, family_member) with a delegation
depth value of 0 (denoting no restrictions on the depth of delegation) and a membership
threshold value of 2. This AAS has as initial sources of authority the principals identi�ed
by the public keys A and B. In step 1 principal A issues an AC for the authority attribute
(group, family_member) to principal C. This AC can be used by C to support the access
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Figure 5.11: Impact of number of authority attributes on the ÆTHER1 inference engine.

Figure 5.12: Delegation depth example.
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requests it makes. When B issues an AC of the same type to C (step 2), C dynamically
joins the (group, family_member) AAS (since we have an MTV of 2) and is now able to
issue valid ACs of this type. It does so by issuing an AC to D (step 3) which makes an
access request to a service provider. This is delegation depth 1 and the service provider
must now verify three ACs, from steps 1, 2 and 3. The depth of delegation increases up to
5 where a service provider needs to perform 11 veri�cation operations. Table 5.1 presents
the required number of veri�cations at each delegation depth step.

Table 5.1: Delegation depth and required number of veri�cations for MTV 2.
Delegation depth Number of veri�cations

1 2 + 1
2 4 + 1
3 6 + 1
4 8 + 1
5 10 + 1

We have performed the experiment one hundred times for each delegation depth step
with RSA keys of 512 and 1,024 bits. In the �rst case we have found that the average
increase in the required time to reach a positive authorization decision is 16.25 milliseconds,
and in the second case 56 milliseconds. The speci�c results for each delegation depth step
are shown in Fig. 5.13.

We believe that the observed performance results of the ÆTHER1 inference engine
illustrate the feasibility of using it on mobile constrained devices. Even when the delegation
depth is 5, with an MTV of 2 and keys of 1,024 bits, the average time required to reach a
decision is less than half a second (417 milliseconds) and therefore has minimal impact on
the applications employed at a higher layer.

5.4 Memory Requirements

Table 5.2 presents the size in bytes of the compiled object code for each component of
the two ÆTHER instantiations. It must be noted that the size of the object code greatly
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Figure 5.13: Impact of delegation depth on the ÆTHER1 inference engine.

depends on the utilized compiler, the target hardware platform and possible code and
compiler optimizations. Therefore, the given code sizes should not be strictly interpreted
but only used to form a general idea of the memory requirements.

Table 5.2: Object code size for the ÆTHER components on the OMAP 1510 processor.
Component ÆTHER0 object code size (in bytes) ÆTHER1 object code size (in bytes)

Location-limited channel (infrared) 7,588 7,588

Authority renewal 3,662 4,547

Service discovery and access 9,940 16,188

Policy language parser 33,778 33,778

Cryptographic 9,304 9,304

Inference engine 6,458 7,252

Total 70, 730 78,657

The components that are common in both instantiations have, as expected, the same
object code sizes. The total required code size for ÆTHER0 is 69 KB (70,730 bytes) and
for ÆTHER1 is 77 KB (78,657 bytes). In both cases the policy language parser component,
which is common in the two instantiations, takes up most of the code space. The second
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largest component of both instantiations is the one that implements the service discovery
and access protocols, requiring 9.7 KB (9,940 bytes) in ÆTHER0 and 15.8 KB (16,188
bytes) in ÆTHER1. We believe that these code sizes are small enough to allow both
ÆTHER instantiations to be incorporated into most pervasive computing devices.

Another memory issue we have to examine is the storage space required for the ÆTHER
policy data. Table 5.3 gives the size in bytes for typical instantiations of all the policy
language statements used in ÆTHER. The largest statement used in ÆTHER0 is the
mutual binding statement, with a size of 293 bytes. Mutual bindings take place only
between alpha-pad devices, which are more powerful in terms of computational and memory
resources than low-end devices such as sensors, therefore this size is not restrictive. A sensor
device that provides a single service would require enough memory space to store a binding,
a positive authorization and an attribute assignment; a total of 688 bytes. However, this
memory space is only required temporarily from the point an access request along with an
attribute assignment arrives until the new association expires. The only policy statements
that must always remain in the memory of the sensor are the binding and the positive
authorization, which have a total size of 411 bytes.

In ÆTHER1 the size of the policy statements depends primarily on the size of the
utilized asymmetric key pairs. As an example consider that with 512-bit RSA key pairs
attribute assignments (which in essence are attribute certi�cates) have a typical size of 645
bytes, while with 1,024-bit key pairs a typical size of 1,037 bytes.

5.5 Applications

In this section we will examine several application examples of the two instantiations of
the general ÆTHER model. While some of these have been fully implemented and tested,
others are beyond the means available to us and discussed only to analyze the expressiveness
and the usefulness of our architecture.

5.5.1 Location Sensor
In this example we investigate the application of the ÆTHER0 instantiation to secure a
simple location sensor. While we refer to the sensor as a single device for practical purposes,
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Table 5.3: Storage space required for the ÆTHER policy language statements.
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it can actually be a network of sensors reporting their �ndings to a server. This server can
be an ÆTHER0 alpha-pad that has bound every location sensor that participates in the
network, collects the reported information and exposes it as a provided service to the local
pervasive computing environment. The following positive authorization statement controls
access to the location sensor service:

aether version: 0

type: positive authorization

issuer: �aabc125100cd462d1d7cf0aa50431616cb61�

resource: location_sensor

operation: get_list

requires: (@group == owner) || ($location == _location);

The principal speci�ed in the issuer �eld is the one that bound the device that o�ers the
location sensor service. The policy speci�es that the membership list of the location sensor
service (i.e. the list of people physically present in the current location) can be accessed by
any principal that is in the same physical location as the service provider (that is the sensor
itself). This is accomplished by specifying the value of the required $location attribute as
a dynamic local context value that can be retrieved from the device's LCP. On the other
hand, any principal that has been assigned the authority attribute (group, owner) can
access the same information disregarding its physical location. The sensor device must
also know that the principal responsible for maintaining the membership list of the current
location is itself. We can accomplish this with the following CAS statement:

aether version: 0

type: context attribute set

issuer: �aabc125100cd462d1d7cf0aa50431616cb61�

attribute name: location

attribute value: _location

sources of authority: �1e56f3ddda76dbca3d83b9050eef0�

The hexadecimal string listed in the sources of authority �eld is the ÆTHER0 identi�er
of the location sensor. Now the owner simply needs to change the value of the $location
attribute in the device's LCP to a locally meaningful one, like for examplemy_living_room.
When an access request is made to the location sensor, it checks to see if it has registered
the requester as being physically present in the same location as itself, and allows access
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to the service if it has. When the owner moves the location sensor from his living room
to his o�ce, he simply needs to change the value of the $location attribute in the device's
LCP to a new one, for example o�ce_008.

5.5.2 Pervasive Light Switch
We have implemented a simple pervasive light switch application in order to demonstrate
some concepts of the ÆTHER1 instantiation. The lamp is an incandescent light connected
to a Phidget interface kit [Phi05]. The kit is connected to a laptop via a Universal Serial
Bus (USB) interface and is controlled using the C++ Phidget API (see Fig. 5.14).

Figure 5.14: A pervasive light switch implemented using a phidget.

The laptop is the ÆTHER1 principal that provides the light switch service to the local
PAD. We consider this service to be an output service and we want to allow any member
of the NTRG (our research group) or any visitor to our lab to access it,

aether version: 1

type: composite positive authorization

issuer: �3048024100cd462d1d7cf0aa50431616�

resource attribute name: service

resource attribute value: output

requires: (@ntrg_status == member) || (@ntrg_status == visitor);

signature: �af6a111dc085082bb103bd1ed351ac�
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This policy has been issued to the laptop via a wireless interface by the principal that
bound it in the past (the one identi�ed in the issuer �eld). We also need to specify that
the lamp service is considered an output service:

aether version: 1

type: resource attribute assignment

issuer: �3048024100cd462d1d7cf0aa50431616�

subject: �3048024100d1d645e46841f0bf1334ac�

resource attribute name: service

resource attribute value: output

signature: �23a668ed6437ab47c1168beab5165cf5�

Furthermore, we must de�ne exactly what are the permissions associated with the lamp
as an output service,

aether version: 1

type: permission resource attribute assignment

issuer: �3048024100cd462d1d7cf0aa50431616�

resource: light_switch

operation: change_state

resource attribute name: service

resource attribute value: output

signature: �904e9a7e58667712e55a390a0cc2f78�

The last two statements are example policy statements that can be provided by the lamp
manufacturer as part of a default con�guration state. Of course, in such a case they would
be locally trusted and therefore they would not need to be signed. Finally, the lamp
requires two AAS statements, for the (ntrg_status, member) and for the (ntrg_status,
visitor) authority attributes. We just give here the second one:

aether version: 1

type: authority attribute set

issuer: �3048024100cd462d1d7cf0aa50431616�

attribute name: ntrg_status

attribute value: visitor

membership threshold value: 2

delegation depth: 1

sources of authority: �3048024100cd462d1d7cf0aa50431616�, �3048024100a9e3c6986a082d70e�

signature: �7f634b1fe3355a92d12d2bd6c10d94f�
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Now any principal that has been given an AC of the authority attribute (ntrg_status,
visitor) certi�ed by either one of the two principals listed in the above AAS statement can
change the state of the light switch. Moreover, since the AAS is dynamic with an MTV of
2, any NTRG visitor can introduce another visitor to our lab by issuing an (ntrg_status,
visitor) AC provided she has been certi�ed as a visitor by both sources of authority listed
in the AAS statement.

5.5.3 Building Access Control
Current building access control systems rely on particularly static, in�exible and centrally
managed technologies. The typical approach is to connect all door locks to a central
server where access policy is regulated and register the identi�cation numbers of speci�c
swipe cards as authorized to open speci�c locks. Using ÆTHER1 an organization or
institution will be able to control access to physical spaces such as rooms and buildings in
a dynamic manner, allowing disconnected operation while still maintaining sophisticated
access control policies.

As an example consider a university (like Trinity College Dublin, or TCD) that wants
to allow registered students to have access to particular areas. All locks controlling access
to these areas can have the following positive authorization statement:

aether version: 1

type: positive authorization

issuer: �3048024100cd462d1d7cf0aa504316�

resource: lock

operation: unlock

requires: (@tcd_status == student);

signature: �811aab694f5436d26ca015ad52d9a�

Moreover, the locks need an AAS statement for de�ning which principals are trusted to
certify the (tcd_status, student) authority attribute,

aether version: 1

type: authority attribute set

issuer: �3048024100cd462d1d7cf0aa504316�

attribute name: tcd_status

attribute value: student

membership threshold value: 3
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delegation depth: 2

sources of authority: �3048024100a9e3c6986a0�, �3048024100c12fbaec493�, �3048024100�69d2bf014�

signature: �d94f553340b62e7e58b89deb3ee�

The �rst principal in the sources of authority �eld is the university's buildings o�ce, the
second is the student records o�ce, and the third one is the Provost's o�ce. These three
principals (since the MTV of the AAS is 3) can authorize another principal, like for example
a speci�c university department, to issue valid (tcd_status, student) ACs. For example, the
computer science department can give out such ACs to summer students without the need
to contact any central management entity. This authority can be delegated even further
(since the depth of allowed delegation is set to 2); the computer science department and
two of the previous principals can authorize a speci�c research group to certify students
with the (tcd_status, student) authority attribute.

In order to address emergency situations, like for example a �re, the requires �eld of
the positive authorization statement installed at every lock can be changed to:

requires: (@tcd_status == student) || ($�re_alarm == on);

Finally, a CAS statement is needed in this case to de�ne the principal responsible for
providing the �re alarm service,

aether version: 1

type: context attribute set

issuer: �3048024100cd462d1d7cf0aa504316�

attribute name: �re_alarm

attribute value: on

sources of authority: �3048024100ab3ddca94cef74c�

signature: �95827c21bf513ad2eb09949a8�

5.5.4 Pervasive Car
Current automobiles have hundreds of embedded computers in order to provide services
such as traction control, air conditioning, seat positioning, navigation and entertainment
among others. As technology progresses with a particularly fast pace in this area, fu-
ture automobiles will be full-�edged pervasive computing environments. By employing
ÆTHER1 the owner can specify, for example, that a parking driver is allowed to drive her
car up to 20 miles per hour but not allowed to open the trunk.
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The car manufacturer can prede�ne several authority and context attributes and ship
them with every car; some of them are shown in Table 5.4.

Table 5.4: Authority and context attributes for a pervasive car.
Type of attribute Name and value

Authority (role, owner)
Authority (role, driver)
Authority (role, limited_driver)
Context (role, passenger)

The �rst three authority attributes can be assigned di�erent permissions related to the
services of the car. For example, the (role, owner) attribute can have full access to every
provided service, while the (role, driver) only allowed to start the engine, drive the car
(with no speed limit), and access the navigation system. The (role, passenger) context
attribute is used to allow access to all passenger services, such as air conditioning, seat
positioning and entertainment. Its membership list is maintained by the sensors of the
car, that are de�ned in a CAS statement to be the sources of authority for this context
attribute. All these policy statements describe the default behavior of the car and can
therefore be shipped by the manufacturer. As an example consider the following positive
authorization statement:

aether version: 1

type: positive authorization

issuer: �3048024100ab3ddca94cef74c5�

resource: air_condition

operation: operate

requires: (@role == owner) || ($role, passenger);

signature: �8a793ae3d33aa81f18e206784�

Another possible application is an anti-theft service that periodically requests from the
principal driving the car a speci�c set of credentials. This request can take place between
the car's ignition (the service provider) and the ignition key used to start the engine (the
service requester). If the ignition key does not provide the necessary credentials issued by
a principal trusted by the ignition to do so (speci�ed in an AAS statement), the car slows
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down, stops and initiates the broadcasting of a �stolen� message. Such an authorization
can be expressed as follows,

aether version: 1

type: positive authorization

issuer: �3048024100ab3ddca94cef74c5�

resource: engine

operation: keep_running

requires: (@role == owner) || (@role == driver) || (@role == limited_driver);

signature: �2d5077019a1fc2d11128df630c4�

5.5.5 Web Services
Although web services are not directly related to pervasive computing, we believe that the
two domains have some similarities. For example, in both domains a priori knowledge
of the complete set of participating entities and global centralized trust registers cannot
be assumed. The WebÆTHER project, an M.Sc. dissertation supervised by the author,
investigated the application of the ÆTHER1 instantiation to this domain [Ste05].

WebÆTHER is a security management system that focuses on access control for web
services. The approach of WebÆTHER to web services security is di�erent than the WS-
* standards series [OAS04], [WS-02], [WS-04]. It focuses on trust management and the
ability to distribute policies between previously unknown entities by using the ÆTHER1

decentralized architecture rather than the XML Key Management Speci�cation (XKMS)
[W3C05] where a traditional PKI is used. Attribute-based authorization is identical to
ÆTHER1 and authority domains are considered the servers that provide web services.
Policies and authority attribute sets are speci�c for each web service and ACs are dis-
tributed to requesters of a service.

In WebÆTHER web services are installed as Common Gateway Interface (CGI)3 scripts
on an Apache web server. In order to implement WebÆTHER, the web server is con�gured
to require X.509 identity certi�cates since HTTPS is used. CGI web services are designed
to work with HTTPS and client-side authentication. The components of the implemented
system are illustrated in Fig. 5.15.

3CGI is a standard that enables a client to request data from a program executed on a web server.
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Figure 5.15: WebÆTHER system components.

The SOAP implementation provided by the gSOAP toolkit [gSO05] and the SSL im-
plementation of the Apache web server form the proxy component that handles message
transport. The Apache web server component provides the service in the form of a CGI in
the server; the ÆTHER1 component provides the trust management functionality in the
server side and the handling of ACs in the client side. The X.509 identity certi�cates that
the clients use during the SSL client authentication process must include the same public
key as the one that is used in the subject �eld of the ÆTHER1 ACs of the client principal.

Certi�cate acquisition is also implemented as a CGI web service. The administrator of
the service �rst decides what ACs must be issued to a client. She then sends a randomly
generated temporary URL of the service to the client. After the client connects to the
service and retrieves the ACs, the speci�c URL is deleted.

For more information on WebÆTHER, as well as evaluation results, please see [Ste05].
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Chapter 6

Conclusions and Future Work

As the vision of pervasive computing becomes reality an increasing number of personal
mobile devices, �xed single function devices (like sensors) and household appliances will
become interconnected, form networks, and o�er their services to each other. The main
enabling technologies behind the formation of such local pervasive networks will be wireless
media like IEEE 802.11 WLAN and Bluetooth. Security and access control of the provided
data and services will be a major enabling factor for the adoption of these new technologies.
We, the research community, must address the fundamental security requirements that
will allow the adoption of pervasive computing by a large audience. Security mechanisms
should be incorporated from the design phase into our architectures in order to achieve
robust systems that can withstand malicious participants. Moreover, we must always
have the fundamental pervasive computing requirement in mind: unobtrusiveness. It is
not realistic to expect human users to constantly be involved in the process of answering
security con�guration dialogs and managing the hundreds of devices that will exist in their
environments. Thus, the simpli�cation of the security management process and its graceful
integration with the physical actions of the users becomes a central design issue. Context
information, such as user location and current activity, can be utilized in order to facilitate
simpli�ed management without substantial distractions.

Furthermore, pervasive computing environments are inherently open and dynamic; par-
ticipating devices are mobile, wearable, and in the near future implantable. As users roam
among administrative domains the devices they carry must be able to interact in a discon-
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nected and decentralized manner. Secure connections must be established spontaneously,
without the need to access online central entities.

A detailed analysis of the existing traditional and pervasive security management sys-
tems focused on the above requirements revealed that there is a need for an authorization
framework which is able to provide �ne-grained access control capabilities, without depend-
ing on external centralized infrastructure. Moreover, such a framework must be able to
support disconnected operation and gracefully integrate the human intervention required
for the administrative tasks with the active physical task at hand in order to minimize
distractions.

In this dissertation we have presented ÆTHER, our solution to the above problem.
ÆTHER is a framework for pervasive computing authorization management that directly
extends the traditional RBAC model for supporting decentralized administration, discon-
nected operation, context-awareness and follows an unobtrusive usage model. Based on
this general framework we have instantiated two di�erent systems. ÆTHER0 has been
designed to address the authorization requirements of small pervasive environments which
consist of particularly constrained devices. It relies only on symmetric key cryptography
by sacri�cing the local decentralization requirement. In ÆTHER0 all authority �ows from
alpha-pads, devices that directly represent particular users in the system. Our second
instantiation, ÆTHER1, is both globally and locally decentralized. However, this greater
�exibility comes at greater computational requirements from the participating devices since
we use public key cryptography and certi�cates for the required attribute assignments. In
ÆTHER1 the sets of principals that act as sources of authority for speci�c attributes are al-
lowed to grow dynamically supporting the establishment of trust with unknown principals
and authorizing their actions in the local domain. Our implementation and evaluation of
the two ÆTHER instantiations demonstrated the feasibility of deploying and using them
in pervasive computing environments. We have also investigated the expressiveness of our
framework by using it to secure di�erent applications, both futuristic and fully developed
ones.
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6.1 Summary of Contributions

The major contributions of this dissertation are the following:

• The analysis of the requirements of the problem of authorization management in
pervasive computing. A detailed examination of traditional and pervasive computing
security management systems that exist in the literature and identi�cation of the
reasons they fail to provide a complete solution to the problem.

• The formulation of a comprehensive threat model for the pervasive computing paradigm.
This included an examination of the new and previously overlooked avenues of attack
introduced by context-awareness.

• The development of an authorization management framework that satis�es the pre-
viously identi�ed requirements. Speci�cally, it provides decentralized, disconnected,
context-aware and unobtrusive security to pervasive computing environments.

• The extensions to the concept of location-limited channels to use them as part of
users' physical actions to state their intent regarding authorization while being inte-
grated gracefully with the primary task at hand.

• The enhancements to the KeyNote trust management system to facilitate its use in
implementing our general framework.

• The instantiation of the general framework into two distinct systems that address the
security, computational and user demands of di�erent pervasive authority domains by
employing di�erent cryptographic mechanisms, design approaches and management
models.

• The demonstration of the feasibility of the proposed framework and its two instan-
tiations by implementing and evaluating them in a real-world pervasive computing
environment consisting of modern handheld devices.
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6.2 Future Work

During the design, implementation and evaluation of the ÆTHER framework we have
identi�ed several directions that future research on the subject can follow. These are
brie�y summarized here:

• The area of policy speci�cation is one that requires further research. Although our
current policy speci�cation language is not overly complicated, it may still prove to
be di�cult for ordinary users to understand and use. The development of a high-
level policy language can allow ÆTHER users to specify their security requirements
in loosely structured natural language. This can then be translated by the system
into the form expected by the parser component.

• Although we have performed a quantitative evaluation of the ÆTHER framework,
we have not evaluated it from a qualitative perspective. Future work must focus
on ensuring that our user-based authorization model and the integration of the es-
tablishment of location-limited channels with the primary physical actions of users
conform to recognized usability guidelines, like the ones presented in [Nie94]. Such
an analysis should take place in the actual environments that the users of the system
perform their daily activities; o�ces, homes, restaurants, etc.

• The ÆTHER framework uses short expiration time periods for handling the problem
of authority revocation. The fundamental problem of this approach is the selection of
the expiration time period. Further research on this area can lead to a detailed risk
management analysis of particular pervasive computing applications and ultimately
to the recommendation of speci�c validity periods. These should be validated with
both formal justi�cation and practical experimentation.

• For the implementation of the ÆTHER framework we have relied on modern hand-
held devices. Future work must focus on porting ÆTHER, and particularly the
ÆTHER0 instantiation, to constrained devices like 8-bit sensors. A thorough quan-
titative evaluation should follow to prove the feasibility of deploying the system on
such platforms.
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Furthermore, we have identi�ed two general pervasive computing areas that future research
should focus on. Pervasive computing is a relatively new, multidisciplinary paradigm
for de�ning the future of the role that information processing devices will play in our
lives. As such its goals are broad and ambitious. Human users and the interactions they
have based on their social relationships must always be at the center of any pervasive
computing system; indeed this goal e�ectively summarizes the vision of pervasiveness.
However, all our current system design methodologies and guidelines fail to capture this
essential requirement. The main reason is that although humans and their interactions
are included in the design process, their behavior remains unpredictable and outside the
control of system designers. Therefore, all e�orts to design management systems, including
security management systems such as ÆTHER, are problematic.

It is our belief that considerable research is required on two �elds of pervasive com-
puting; the reexamination of traditional design approaches regarding the unpredictability
introduced by human users as system components, and the de�nition of clear and concise
metrics that will allow us to compare the di�erent proposed solutions. This work will allow
us to both build and evaluate dependable pervasive computing security systems that fully
integrate their intended users as system components.
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Appendix A

The ÆTHER Policy Language

This appendix presents the full Backus-Naur Form (BNF) [Knu64] notation of the ÆTHER
policy language.
<Statement>:: <AttributeAssignment> | <SignedAttributeAssignment> | <ResourceAttributeAssignment>

| <SignedResourceAttributeAssignment> | <BindingPolicy> | <SignedBindingPolicy>

| <MutualBinding> | <PositiveAuthorization> | <SignedPositiveAuthorization>

| <CompositePositiveAuthorization> | <SignedCompositePositiveAuthorization>

| <CompositeNegativeAuthorization> | <SignedCompositeNegativeAuthorization>

| <NegativeAuthorization> | <SignedNegativeAuthorization>

| <PermissionResourceAttributeAssignment> | <SignedPermissionResourceAttributeAssignment>

| <AuthorityAttributeSet> | <SignedAuthorityAttributeSet> | <ContextAttributeSet>

| <SignedContextAttributeSet> | <ContextAggregator> | <SignedContextAggregator>

| <AttributeMappingCerti�cate> | <SignedAttributeMappingCerti�cate> ;

<AttributeAssignment>:: <Version> <TypeAA> <Issuer> <Subject> <AttributeName> <AttributeValue>

<NotValidBefore> <NotValidAfter> <Renewable> ;

<SignedAttributeAssignment>:: <AttributeAssignment> <Signature> ;

<ResourceAttributeAssignment>:: <Version> <TypeRAA> <Issuer> <Subject>

<ResourceAttributeName> <ResourceAttributeValue> ;

<SignedResourceAttributeAssignment>:: <ResourceAttributeAssignment> <Signature> ;

<Binding>:: <Version> <TypeB> <Issuer> <Subject> ;

<BindingZero>:: <Binding> <SharedSecret> ;

<SignedBinding>:: <Binding> <Signature> ;

<MutualBinding>:: <Version> <TypeMB> <Issuer> <Subject> <NotValidBefore> <NotValidAfter>

<SharedSecret> ;
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<PositiveAuthorization>:: <Version> <TypePA> <Issuer> <Resource> <Operation>

<RequiresTag> <Requirements> ;

<SignedPositiveAuthorization>:: <PositiveAuthorization> <Signature> ;

<CompositePositiveAuthorization>:: <Version> <TypeCPA> <Issuer> <ResourceAttributeName>

<ResourceAttributeValue> <RequiresTag> <Requirements> ;

<SignedCompositePositiveAuthorization>:: <CompositePositiveAuthorization> <Signature> ;

<CompositeNegativeAuthorization>:: <Version> <TypeCNA> <Issuer> <ResourceAttributeName>

<ResourceAttributeValue> <RequiresTag> <Requirements> ;

<SignedCompositeNegativeAuthorization>:: <CompositeNegativeAuthorization> <Signature> ;

<NegativeAuthorization>:: <Version> <TypeNA> <Issuer> <Resource> <Operation>

<RequiresTag> <Requirements> ;

<SignedNegativeAuthorization>:: <NegativeAuthorization> <Signature> ;

<PermissionResourceAttributeAssignment>:: <Version> <TypePRAA> <Issuer> <Resource>

<Operation> <ResourceAttributeName> <ResourceAttributeValue> ;

<SignedPermissionResourceAttributeAssignment>:: <PermissionResourceAttributeAssignment>

<Signature> ;

<AuthorityAttributeSet>:: <Version> <TypeAAS> <Issuer> <AttributeName> <AttributeValue>

<Threshold> <Delegation> <AuthorityTag> <Authorities> ;

<SignedAuthorityAttributeSet>:: <AuthorityAttributeSet> <Signature> ;

<ContextAttributeSet>:: <Version> <TypeCAS> <Issuer> <AttributeName> <AttributeValue>

<AuthorityTag> <Authorities> ;

<SignedContextAttributeSet>:: <ContextAttributeSet> <Signature> ;

<ContextAggregator>:: <Version> <TypeCA> <Issuer> <InputTag> <Requirements>

<OutputName> <OutputValue> ;

<SignedContextAggregator>:: <ContextAggregator> <Signature> ;

<AttributeMappingCerti�cate>:: <Version> <TypeAMC> <Issuer> <AttributeName> <AttributeValue>

<SubjectAttributeName> <SubjectAttributeValue> <SubjectAuthorityTag> <SubjectAuthorities>

<NotValidBefore> <NotValidAfter> ;

<SignedAttributeMappingCerti�cate>:: <AttributeMappingCerti�cate> <Signature> ;

<AttributeName>:: �attribute� �name� �:� <String> | �attribute� �name� �:� �name� ;

<AttributeValue>:: �attribute� �value� �:� <String> | �attribute� �value� �:� <Number> | �attribute�

�value� �:� �<user-de�ned>� ;
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<Authorities>:: <Authority> | <Authorities> �,� <Authority> ;

<AuthorityTag>:: �sources� �of� �authority� �:� ;

<Delegation>:: �delegation� �depth� �:� <Number> ;

<InputTag>:: �input� �:� ;

<Issuer>:: �issuer� �:� DQUOTE <String> DQUOTE ;

<NotValidAfter>:: �not� �valid� �after� �:� <Date> ;

<NotValidBefore>:: �not� �valid� �before� �:� <Date> ;

<Operation>:: �operation� �:� <String> ;

<OutputName>:: �output� �context� �attribute� �name� �:� <String> | �output� �context� �attribute�

�name� �:� �name� ;

<OutputValue>:: �output� �context� �attribute� �value� �:� <String> | �output� �context� �attribute�

�value� �:� <Number> ;

<Renewable>:: �renewable� �:� <Number> ;

<Requirements>:: <Requirement> | <Requirements> �&&� <Requirement>

| <Requirements> �||� <Requirement> ;

<RequiresTag>:: �requires� �:� ;

<Resource>:: �resource� �:� <String> ;

<ResourceAttributeName>:: �resource� �attribute� �name� �:� <String>

| �resource� �attribute� �name� �:� �name� ;

<ResourceAttributeValue>:: �resource� �attribute� �value� �:� <String>

| �resource� �attribute� �value� �:� �output�

| �resource� �attribute� �value� �:� �input�

| �resource� �attribute� �value� �:� <Number>

| �resource� �attribute� �value� �:� �<user-de�ned>� ;

<SharedSecret>:: �shared� �secret� �:� DQUOTE <String> DQUOTE ;

<Signature>:: �signature� �:� DQUOTE <String> DQUOTE ;

<Subject>:: �subject� �:� DQUOTE <String> DQUOTE ;

<SubjectAttributeName>:: �subject� �attribute� �name� �:� <String> ;

<SubjectAttributeValue>:: �subject� �attribute� �value� �:� <String>

| �subject� �attribute� �value� �:� <Number>

| �subject� �attribute� �value� �:� �<user-de�ned>� ;
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<SubjectAuthorities>:: <SubjectAuthority> | <SubjectAuthorities> �,� <SubjectAuthority> ;

<SubjectAuthorityTag>:: �subject� �sources� �of� �authority� �:� ;

<Threshold>:: �membership� �threshold� �value� �:� <Number> ;

<TypeAAS>:: �type� �:� �authority� �attribute� �set� ;

<TypeAA>:: �type� �:� �attribute� �assignment� ;

<TypeAMC>:: �type� �:� �attribute� �mapping� �certi�cate� ;

<TypeB>:: �type� �:� �binding� ;

<TypeCA>:: �type� �:� �context� �aggregator� ;

<TypeCAS>:: �type� �:� �context� �attribute� �set� ;

<TypeCNA>:: �type� �:� �composite� �negative� �authorization� ;

<TypeCPA>:: �type� �:� �composite� �positive� �authorization� ;

<TypeMB>:: �type� �:� �mutual� �binding� ;

<TypeNA>:: �type� �:� �negative� �authorization� ;

<TypePA>:: �type� �:� �positive� �authorization� ;

<TypePRAA>:: �type� �:� �permission� �resource� �attribute� �assignment� ;

<TypeRAA>:: �type� �:� �resource� �attribute� �assignment� ;

<Version>:: �aether� �version� �:� <Number> ;

<Authority>:: DQUOTE <String> DQUOTE ;

<Requirement>:: <String> �<� <Number> | <String> �>� <Number>

| <String> �<=� <Number> | <String> �>=� <Number>

| <String> �==� <String> | <String> �==� <Number>

| <String> �!=� <String> | <String> �!=� <Number> ;

<SubjectAuthority>:: DQUOTE <String> DQUOTE ;

<Attributes>:: <Attribute> | <Attributes> �&&� <Attribute> | <Attributes> �||� <Attribute> ;

<Attribute>:: �(� <String> �,� <String> �)� | �(� <String> �,� <Number> �)� ;

<String>:: { [@$%_*]*[a-zA-Z0-9_]+ } ;

<Number>:: { [0-9]+ } ;

<Date>:: { [2]([0-9]{3})�/�[0-9]{1,2}�/�[0-9]{1,2}�-�[0-9]{1,2}�:�[0-5]([0-9]) } ;
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Appendix B

Performance Analysis of

Cryptographic Primitives

The use of mobile computing devices (e.g. handhelds, palmtops, mobile phones) has in-
creased over the years, particularly during the last decade. Personal Digital Assistants
(PDAs) started initially as devices to store personal information. As they have grown
more compact with more powerful CPUs, they have evolved to support more advanced
communications applications that have traditionally been the domain of workstations. At
the same time there have been signi�cant changes in the way business is done with the
introduction of electronic commerce endeavors through the Internet. Electronic commerce
involves the use of strong cryptographic functions and protocols in order to provide ade-
quate security services for payment transactions. These functions can be easily a�orded
by �xed workstations, but the literature [DB99], [GG01] would suggest that on mobile
devices are slow and expensive due to constrained processors, limited memory and battery
life. The latest generations of mobile devices are equipped with much faster CPUs, which
facilitate the use of strong cryptographic functions for the construction of security-related
protocols.

In this appendix we present timing measurements for low-level cryptographic primitives
such as symmetric and asymmetric cryptography operations, as well as message digests.
The hardware platform as well as the experiment parameters we use are the same as the
ones presented in paragraph 5.3. Fig. B.1 shows the time in milliseconds that is required
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to perform 100,000 operations for each investigated algorithm.

Figure B.1: Timing measurements of cryptographic primitives on an iPAQ H6340.

For all the RSA operations we use an input message of 64 bytes and the SHA-1 message
digest algorithm for hashing the input before signing it and verifying its signature. For the
symmetric algorithms (DES and AES) we again use a 64-byte message as input, with a
56-bit key for DES and a 256-bit key for AES. The examined message digests (SHA-256,
SHA-1, SHA and MD5) were also given a 64-byte input message to process. Fig. B.2
presents the number of operations that each algorithm is able to perform per second.

Our experiments show that, for example, the RSA algorithm using 1,024-bit keys can
perform 8 signature generation operations per second while the MD5 algorithm can perform
178,253 hashing operations per second; a four orders of magnitude di�erence. We have
also investigated the time required for generating new RSA key pairs (see Table B.1). On
average 2.48 seconds are required to generate a 512-bit RSA key pair, and 10.76 seconds
for the generation of a 1,024-bit key pair.

These results demonstrate that currently available handheld devices can form the foun-
dation of secure ubiquitous computing environments since they can facilitate the use of
strong cryptographic functions.

The work presented in this appendix complements previous attempts to implement
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Figure B.2: Cryptographic operations per second on an iPAQ H6340.

Table B.1: RSA key pair generation on an iPAQ H6340.
Operation Time required for 1,000 iterations

512 bits RSA key pair generation 2,471.614 seconds (2,471,614 milliseconds)
1,024 bits RSA key pair generation 10,760.783 seconds (10,760,783 milliseconds)
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and use cryptographic protocols on mobile handheld devices. Although a comprehensive
comparison between our work and previous similar attempts cannot be accomplished due
to di�erent hardware and software parameters, there are some useful comments that can
be noted regarding advances in handheld computing technology. In [GG01] the authors
examine RSA operations on a 20 MHz Palm CPU with keys of sizes 768 and 1,024 bits using
the Java 2 Micro-Edition software platform. Their results indicate that they require 0.5-
1.5 seconds. RSA operations were also investigated in the context of electronic commerce
through the use of handheld devices [DB99]. The platform in this case was a PalmPilot
Professional with a Motorola DragonBall chip at 16 MHz, running the PalmPilot port of
the SSLeay cryptographic library. The observed results for RSA operations with 512 bits
key pairs were 3.4 minutes for key generation, 7 seconds (7,028 milliseconds) for signing and
1.4 seconds (1,376 milliseconds) for veri�cation. As it is obvious the order of time required
for RSA operations has been reduced from seconds to milliseconds. However, such a
comparison is only useful to demonstrate advances in handheld computing technology since
the hardware platform we have used is more �tting to perform CPU intensive cryptographic
operations.
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