
Copyright

by

Art Ó Catháin

2008

Modelling Flash Memory Device Behaviour using CSP

by

Art Ó Catháin

A Dissertation submitted to the University of Dublin,

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

2008

Modelling Flash Memory Device Behaviour using CSP

Approved by
Dissertation Committee:

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for a

degree at this, or any other university, and that unless otherwise stated, is my own work.

Art Ó Catháin

September 5, 2008

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Art Ó Catháin

September 5, 2008

Acknowledgments

I would like to thank my supervisor Dr Andrew Butterfield and second reader Dr Arthur Hughes for

their support and encouragement. Philip Armstrong from Formal Systems Europe provided invaluable

support for the FDR2 refinement checking tool, without which the project would necessarily have been

much more limited in scope.

I would like to attribute the following illustrations used in this document and the presentation

poster:

• Yellow lightning bolt by Chris Fry from openclipart.org

• Satellite by ivak from openclipart.org

• USB stick by Gamer112 from Wikipedia

Art Ó Catháin

University of Dublin, Trinity College

September 2008

vi

Modelling Flash Memory Device Behaviour using CSP

Publication No.

Art Ó Catháin

University of Dublin, Trinity College, 2008

Supervisor: Dr Andrew Butterfield

Flash memory continues to progress in capacity, speed, and cost, now rivalling magnetic disks in many

applications. Lack of standardization prompted leading flash memory manufacturers to form the Open

NAND Flash Interface (ONFi) consortium, with the purpose of creating a standard specification.

This project examines the ONFi specification from the perspective of formal methods. Formal

verification of the specification will constitute a step towards Grand Challenge 6: Dependable Systems

Evolution, which aims to build systems and tools to increase the dependability and reliability of the

increasingly ubiquitous computer systems that surround us.

The formal language chosen for the project was Communicating Sequential Processes (CSP), a

language designed for analysing concurrency, complete with automatic model-checking tools. The

ONFi specification describes a finite state machine for the internals of a compliant device, and it is

this FSM that is modelled by the project.

Instead of writing CSP directly, the approach chosen was to convert the FSM’s specification into an

intermediate form based on State Chart XML, an XML dialect designed for specifying state machines

in a machine-readable format. This XML was then automatically converted into CSP via XML

Transforms (XSLT). Using XML allowed various other transformations of the specification such as

conversion back to HTML to aid checking for implementation errors, and the stripping out of optional

parts to leave only the mandatory specification.

Several anomalies and errors were discovered and these were communicated to ONFi. With mi-

nor adjustments to correct these, it can be argued that the specification is correct, at least for the

mandatory subset of commands.

vii

Contents

Acknowledgments vi

Abstract vii

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Flash Memory . 1

1.1.1 NAND and NOR flash . 1

1.2 ONFi . 2

1.3 Modelling the ONFi specification . 2

1.4 Project aims . 2

Chapter 2 Background 4

2.1 Formal Methods . 4

2.1.1 Refinement . 4

2.1.2 Prevalence . 5

2.2 CSP . 6

2.2.1 Notation . 6

2.2.2 Parallel Composition . 6

2.2.3 Choice . 7

2.2.4 Communications . 8

2.2.5 Variables . 9

2.2.6 Refinement . 9

viii

2.2.7 Practical implementations . 11

2.3 Grand Challenges in Computing . 12

2.3.1 Grand Challenge 6 - Dependable Systems Evolution 12

2.4 ONFi consortium . 14

2.5 ONFi specification . 15

2.5.1 Physical Interface . 15

2.5.2 Memory organisation . 16

2.5.3 Timing . 17

2.5.4 Commands . 17

2.5.5 Behavioural flows . 18

Chapter 3 Design 20

3.1 CSP model . 20

3.1.1 Host device . 20

3.1.2 Communications . 21

3.1.3 Keeping state . 23

3.1.4 Minimizing state space . 24

3.2 Analysis . 24

3.2.1 Deadlock freedom . 24

3.2.2 Livelock freedom . 25

3.2.3 Behavioural flows . 25

Chapter 4 Implementation 27

4.1 Proof of concept . 27

4.1.1 Host . 27

4.1.2 Verification . 27

4.1.3 Limits of prototype model . 28

4.2 State Chart XML . 29

4.2.1 XML languages for State Charts . 29

4.2.2 Origins of SCXML . 29

4.2.3 W3C specification . 30

4.2.4 Mapping ONFi specification to SCXML . 31

4.2.5 Apache Commons implementation . 33

4.2.6 Adherence to SCXML standard . 34

ix

4.3 XML Transformations . 34

4.3.1 SCXML to CSP . 34

4.3.2 SCXML to HTML . 35

4.3.3 Mandatory-only states . 36

4.4 Design of the host process . 36

4.4.1 Read Command . 39

4.4.2 Interleaved actions . 39

4.4.3 Controlling the host . 40

4.5 Additional processes . 41

4.5.1 Status Register bit 6 . 41

4.5.2 LUN ‘innards’ process . 44

4.6 State Transitions . 46

4.7 Testing . 47

4.7.1 Arbitrary commands . 47

4.7.2 Refinements . 48

4.7.3 Non-refinements . 50

Chapter 5 Evaluation 51

5.1 Verification of ONFi specification . 51

5.1.1 Ready / Busy . 51

5.1.2 Status Register Update . 51

5.1.3 Read Parameter Page . 52

5.1.4 Reset . 53

5.2 Suitability of CSP for project . 54

5.2.1 Tractability . 55

5.3 Success of automation . 55

5.4 Host process limits . 55

Chapter 6 Conclusions 57

6.1 Future work . 57

6.1.1 Optional commands . 57

6.1.2 ONFi version 2.0 . 57

6.1.3 Extending and streamlining the SCXML to CSP conversion 58

6.1.4 Integration with a verified filesystem . 58

x

Bibliography 59

Appendix A Example State Chart XML 61

A.1 Lift . 61

A.1.1 SCXML representation . 61

A.1.2 Direct use of Commons SCXML . 61

A.1.3 CSP representation . 61

A.2 ONFI . 65

Appendix B Correspondence with ONFi 66

B.1 SR[6] update . 66

Appendix C Technical architecture 67

Appendix D Optimizing CSP for FDR2 68

D.1 State space . 68

D.2 Stack limit . 69

D.3 Operating system and architecture . 69

Appendix E Event sequence example: Single ‘Read’ operation 70

xi

List of Tables

1.1 NAND vs. NOR flash . 2

2.1 ONFi command set. Mandatory commands are in boldface 17

4.1 SR[6] deadlock . 42

4.2 Sampling SR[6] within target: deadlock remains . 42

4.3 Expected events for a Block Erase . 48

4.4 Expected events for a Read . 49

4.5 Expected events for a Page Program . 50

5.1 Status Register Update: event sequence for setting SR[6] to 0 51

5.2 Read Parameter Page: deadlock 1 . 52

5.3 Read Parameter Page: deadlock 2 . 53

5.4 Reset: deadlock 1 . 54

5.5 Reset: deadlock 2 . 54

xii

List of Figures

1.1 USB memory stick . 1

2.1 FDR2 refinement checker . 11

2.2 Sample states from the ONFi specification . 19

3.1 ONFi specification, p77: State variables for the Target state machine 23

4.1 Host Processes for proof of concept model . 28

4.2 Verifying writes are durable using H TESTREAD . 29

4.3 Example State Chart XML . 30

4.4 Storing a date in State Chart XML . 31

4.5 Mapping ONFi specification to SCXML: state T RPP ReadParams 32

4.6 Rendered HTML for three target states. 37

4.7 XSLT transformations of the Target state machine. Files with dotted lines are generated

automatically . 38

4.8 State diagram for the host process. 39

4.9 State diagram for the host’s Read process. 40

4.10 State diagram for the host’s MultiRead process: testing simultaneous reads on two LUNs 40

4.11 Parallel CSP processes of the entire system . 43

4.12 Parallel CSP processes of the entire system, modified 44

4.13 LUN state L RD ArrayRead . 45

4.14 Target state T Idle Read . 46

4.15 CSP for Read refinement check . 49

A.1 SCXML for Lift example . 62

A.2 Using the Apache Commons SCXML library directly with the Lift example 63

xiii

A.3 Calling the Saxon XSLT processor . 63

A.4 CSP for Lift example . 64

A.5 Exploring the CSP process using Probe . 64

A.6 SCXML vs generated CSP code for state T RPP ReadParams 65

C.1 ONFI.csp and ONFI-mandatory.csp . 67

xiv

Chapter 1

Introduction

1.1 Flash Memory

Figure 1.1: USB memory stick

Flash memory devices (for example, USB memory sticks)

have become immensely popular in recent years. In em-

bedded devices, flash memory has advantages over other

forms of primary storage, including light weight, small

physical footprint, reliability, low battery consumption,

and lack of moving parts.

1.1.1 NAND and NOR flash

Flash memory is a form of non-volatile RAM: it maintains

its state even when powered down, unlike conventional

computer RAM. There are two types, NAND and NOR, depending on the internal configuration

of the memory cells. Which to choose depends on the individual application. Table 1.1 lists the

tradeoffs between the two.

NOR’s strength is its fine granularity of access: down to the level of individual bytes. NAND

flash’s minimum granularity is the block level which makes random access slower (the data must be

read out serially). NOR tends to find more specialized uses, such as code storage, whereas NAND is

popular for general storage purposes.

Inevitably, popularity entails a proliferation of standards and flash memory is no exception.

1

Metric NAND NOR
Cost per bit Low High
Capacity High Low
Active power consumption Low High
Standby power consumption High Low
Write speed High Low
Read speed Medium High
Access Serial Random

Table 1.1: NAND vs. NOR flash

1.2 ONFi

In a recent effort to bring some standardization to the area, the Open NAND Flash Interface (ONFi)

consortium created the ONFi 1.0 Specification. It lays out an interface to which flash memory devices

must comply. In future, manufacturers of other devices (MP3 players, mobile phones, and so on) can

rely on this interface during the design process, without having to explicitly examine the specification

of their chosen brand of flash memory. It is hoped that this will increase interoperability and reduce

product design times.

1.3 Modelling the ONFi specification

In [1], the authors created a formal model of the ONFi specification, using Z, that corresponds to

the external behaviour of an ONFi-compliant device. This model is at a high level, abstracting away

much of the detail of the specification. It is, as the authors acknowledge, only a start: the optional

ONFi commands are not covered.

1.4 Project aims

The specification defines a finite state machine for a device’s internal behaviour, which remains to

be verified. The project will model this FSM (abstracting certain details, where appropriate) using

Communicating Sequential Processes, a formal language for specifying and modelling concurrent pro-

grams. The model’s behaviour should correspond to the expected external behaviour. This will be

verified by checking that certain sequences of events do occur (liveness) and that other sequences are

never observed (safety).

The finite state machine’s definition is complex: the description takes more than twenty-five pages

of text. Therefore another aim of the project is to simplify and if possible, automate, the conversion

2

of the specification into CSP. If successful, future research could enable arbitrary finite state machines

to be analysed in CSP without manual encoding.

If the model is successfully verified, it will contribute to one of the Grand Challenges of Computing:

Dependable Systems Evolution. This challenge aims, over a fifteen year period, to develop a suite of

tools and reference implementations that allow developers to verify that their programs are correct,

using formal methods. One of the targets is a verified file system, which would be implemented on

top of a verified storage layer, such as flash memory.

3

Chapter 2

Background

2.1 Formal Methods

The term Formal Methods encompasses a wide range of methods within computer science, but in

general a formal system can be understood as a specification for a piece of software or software

system, written in a language that allows for automatic reasoning and proof of correctness. Formal

languages are grounded in the mathematics of set theory, and thus allow rigorous proofs.

2.1.1 Refinement

Central to formal methods is the notion of refinement : incremental implementation of the system

from the specification. The original specification should be at a suitable level of abstraction. It is not

necessary to include the minute details that will be in the final program.

It is not possible to ‘run’ a formal specification in the way that one might run a piece of code written

in a normal programming language. Instead the specification is used to constrain the implementation:

the actual program code.

It is not feasible, in general, to construct a program directly from its specification, then prove

it to be correct. Instead, the program should be constructed in small steps, each time adding more

detail. Since the changes are small, it is relatively easy to prove at each stage that the implementation

satisfies the specification.

Refinement is used in two ways:

• to prove safety : to show that the implementation will only produce the behaviours (or some

subset thereof) of the specification.

4

• to prove liveness: to show that the implementation will eventually perform the all the desired

behaviours.

Both properties are required for correct implementation. For example, a process that does nothing

would trivially satisfy the first property (safety), but would not be much use in real life.

2.1.2 Prevalence

The use of formal methods within the software industry is still quite uncommon. Possible reasons

include:

Misconceptions about formal methods In [2], the author aimed to dispel some of the myths that

had grown up around formal methods. The negative myths cited were:

• Formal methods are all about program proving1.

• Formal methods are only useful for safety-critical systems

• Formal methods require highly trained mathematicians.

• Formal methods increase the cost of development.

• Formal methods are unacceptable to users.

• Formal methods are not used on real, large-scale software.

Background of industry practitioners Many, if not most, people in the software industry do not

have a university-level computing degree, and so will not have had the opportunity to learn

about formal methods.

Lack of popular tool support The advent of Integrated Development Environments (IDEs) such

as Eclipse in recent times has made programming an easier task. These IDEs allow the pro-

grammer to write, compile, and debug their code all within a single, cohesive environment.

Debugging aids, keyword autocompletion, colour syntax highlighting, and so on, have greatly

aided the productivity of the modern programmer.

However, despite recent advances [3], an integrated experience is not possible for a formal meth-

ods developer, who must still rely on disparate tools.
1in fact they are all about specification: while proofs of correctness are included, other important parts are specifi-

cation writing, proving properties about the specification, and constructing programs by manipulating specifications

5

2.2 CSP

Communicating Sequential Processes is a formal language created by Anthony Hoare [4] for the pur-

poses of modelling concurrent, communicating processes. As a formal language, it can be used for

creating specifications for software, which can be verified as correct using the CSP model-checking

program Failures-Divergence Refinement 2 (FDR2). The software would then be implemented in

another more practical language such as Java or C++.

The basic concept in CSP is a process which performs events. An event is considered to be an

atomic, indivisible action. The set of all events that a process performs is known as its alphabet.

2.2.1 Notation

The convention is to denote events with lowercase letters and processes with uppercase letters, so for

example

a → P

is a process that performs the event a, and then proceeds to behave like the process P .

CSP can also be written in a machine readable form called CSPm , consisting only of 7-bit ASCII

characters. The above process has the following CSPm representation:

a -> P

Processes may be defined recursively, so for example P =̂ a → b → P is a process that repeatedly

performs the sequence of events a, b.

2.2.2 Parallel Composition

CSP’s usefulness stems from its ability to put processes in parallel, forcing them to synchronize on

certain of their events. A process’s environment is those events on which it must synchronise with

other processes. So the process above, if required to synchronize on the event a, will wait until its

environment is also willing to perform a, before proceeding like P . If the environment is unable to

perform the event a, the process is deadlocked. In CSP the process named STOP is the canonical

deadlocked process, unable to perform any events at all. The notation for parallel composition is as

follows:

Normal CSP CSPm

P A‖B Q P [A || B] Q

6

Here P and Q are processes; A and B are sets of events on which P and Q , respectively, are required

to synchronize. The interface of a process is the set of events in its alphabet on which it is required to

synchronize. If A is P ’s alphabet and B is Q ’s alphabet, then the above can be written more simply

as P ‖ Q .

If A and B share no common events, then P and Q are said to be interleaved. This is written

P ||| Q .

Example

Consider three processes, P ,Q , and R, as follows:

P =̂ a → b → P

Q =̂ b → a → Q

R =̂ a → R

P ‖ R will perform a, b, a, b, ... and so on.

P ‖ Q will deadlock, since P is willing to perform only a, and Q is willing to perform only b.

Q ‖ R will not deadlock, since Q can perform its b event immediately. R is not required to synchronize

on b since it is not part of R’s alphabet.

2.2.3 Choice

Any realistic formal language must be able to represent conditional branches in the program flow, and

for this CSP uses the notion of choice.

External Choice

The following process behaves like either P or Q, depending on the next event that takes place in the

process’s environment:

P 2 Q

If P and Q are defined as in the previous section, then the environment’s choosing a will cause the

process to behave like P and also perform a (then b, if the environment allows it, since that is P ’s

next event).

Internal Choice

Processes may also make internal choice, in which case the environment has no effect on which path

is taken:

7

P u Q

The choice between P and Q here is nondeterministic. This non-determinism is often exploited by

specifications in order to avoid over-constraining any implementation.

2.2.4 Communications

Thus far only events with a single label (a, b, etc.) have been introduced. CSP allows more sophis-

ticated communication to take place between processes, using channels. (In fact, a, b, above are also

channels: the simplest kind of channel, with only one type of event and no data being passed.)

Channels can carry information in the form of integers, booleans, and user-defined types (defined

by the datatype keyword). They are bidirectional: a process can choose to ‘receive’ or ‘send’ on a

particular channel.

Examples

Channel definition (in CSPM notation):

• A channel that passes integers:

channel a:Int

• A channel that passes both a boolean and an integer value at once:

channel b:Bool.Int

• A channel that sends a custom datatypes:

datatype Languages = english | french | irish

channel lang:Languages

Use of channels by processes:

• A process P, which repeatedly sends some information on the channel b, above:

P =̂ b.false.10 → P

Hiding

It is often desirable to ‘hide’ events: define a process with a certain interface, but only expose a subset

of that interface to its environment. The remaining events are now internal, and are not seen at all

by the process’s environment. This is often used during refinement checking (as described in section

2.2.6), to abstract away the irrelevant internal details of an implementation.

8

2.2.5 Variables

Variable declaration and assignment, as used in procedural languages, are not possible in CSP. Instead,

state can be maintained by passing parameters to CSP processes.

For example, a simple counter process can keep track of its count as follows:

COUNTER(count) =̂ up → COUNTER(count + 1) 2 down → COUNTER(count − 1)

In CSPM this would be written:

COUNTER(count) = up -> COUNTER(count+1)

[] down -> COUNTER(count-1)

Conditional transitions

The guard notation of CSPM is a convenient way to express transitions that are conditional on the

truth or falsehood of particular expressions. It uses the & symbol before the transition. For example,

one may wish to extend the counter, above, so that it cannot go below zero. The guard must ensure

that count is greater than zero before performing a down event:

COUNTER(count) = up -> COUNTER(count+1)

[] (count > 0) & down -> COUNTER(count-1)

2.2.6 Refinement

CSP supports refinements (as described in section 2.1.1) and the model-checker FDR2 can automati-

cally prove (or disprove) that one CSP process is a refinement of another.

Digression: Traces, Failures, and Divergences

The simplest way to characterize a CSP process is to enumerate its possible behaviours. A trace of

a process is a sequence of events that the process is capable of performing. This includes the null

sequence, since at the time of observation, the process might not yet have performed any events. Two

processes can therefore be compared by comparing their respective sets of traces.

This characterization is not sufficiently powerful however, as the following example demonstrates.

Consider the two processes P and Q :

P =̂


a → b → STOP

2

a → c → STOP

 Q =̂ a →


b → STOP

2

c → STOP


9

Are P and Q equivalent? Their sets of traces are identical, but they will not interact identically

with an environment that first performs the event a. At the first a event, P ’s future evolution is

determined by which path is taken. Since both paths start with an a event, either can be taken and

the choice is non-deterministic, i.e. made by P internally. If the top process is chosen, P can only

then perform b, and if the bottom process is chosen, P can only then perform c. This is in contrast

to Q , which remains capable of performing either b or c after the initial a.

Thus we introduce the notion of refusals: the set of events which a process will refuse at a given

point in its execution. A process’s failure is a pair, containing a trace of events, and its refusals at

that point in the trace. The set of all failures can characterize a process more fully than just its traces.

There remains one final consideration. A process may continually perform internal events, without

interacting with its environment. This is subtly different from deadlock, and is known as livelock. A

livelocked process will have trace with an infinite sequence of internal events. Such a trace is known

as a divergence.

In increasing order of power, then, are the three models of CSP:

Model Characterization

Traces Traces

Stable Failures Traces, Failures

Failures-Divergence Traces, Failures, Divergences

To say a process is a refinement of a specification means that its characterization set is a subset of

the specification’s. Proving this can be done by hand, but generally computer assistance is required

for complex implementations.

FDR2

This application performs refinement checks for all three CSP models. CSP models must be encoded

in CSPM : an appendix to the FDR2 manual provides a comprehensive description of the language’s

syntax. FDR2 runs on Linux and Solaris. Figure 2.1 shows a screenshot.

A naive implementation of a refinement checker would fully expand the state space of the two

processes, then check each pair of states. Early versions of FDR did this, but the program has

been enhanced to allow compression of the state-space, mitigating the tendency towards exponential

expansion. It also now supports ‘lazy’ exploration of the state space, only expanding those paths

necessary.

It will also check for deadlock in the Failures model and livelock in the Failures-Divergence model.

These checks are in fact themselves refinements:

10

The green tick indicates a successful refinement; the red cross indicates the opposite. The clockface
indicates a refinement check in progress, while the question marks are refinement checks that have
not yet been set in motion by the user.

Figure 2.1: FDR2 refinement checker

• a deadlock-free process will refine DF , the most non-deterministic non-deadlocking process,

defined as

DF =̂u i∈Events i → DF

where Events is the set of all possible events.

• a livelock-free process will refine CHAOS , a special process that can perform any event or refuse

any event, but never diverges.

FDR2 can also check whether a system is deterministic, useful for security analysis.

2.2.7 Practical implementations

One of the difficulties in using formal methods is ensuring not only that the implementation is a correct

refinement of the specification, but that the implementation itself is correctly described using the

formal language. This difficulty is compounded by semantic differences between modern programming

languages and formal languages.

A way around this problem is to use a language such as J-CSP [5]. This set of Java classes

11

allows a fully functioning Java program to be created, but within the CSP framework. As long as

all inter-process communication takes place using the special Channel classes, the program’s possible

behaviours are guaranteed to mirror those of the CSP process on which it is based. The programmer

does not have to deal with the complexity of Java’s wait / notify multithreading paradigm, and the

possibility of unnoticed errors is much reduced.

2.3 Grand Challenges in Computing

A Grand Challenge, according to the UK Computing Research Committee [6], is

a goal that is recognized one or two decades in advance; its achievement is a major mile-

stone in the advance of knowledge or technology, celebrated not only by the researchers

themselves but by the wider scientific community and the general public.

In 2002 this committee was formed and called for ideas for a set of such challenges, to be discussed

and then formalized. In early 2003, it published seven challenges, of which number six, Dependable

Systems Evolution, is a key motivator of this project.

2.3.1 Grand Challenge 6 - Dependable Systems Evolution

With the increasing ubiquity of computing in all aspects of life comes increased reliance on defect-free

software. Arguably, advances in the reliability and dependability of software have lagged other, more

noticeable, advances such as the relatively new object-oriented programming and software-as-a-service

paradigms. Nor have the substantial increases in hardware reliability been mirrored in software.

Applications

Safety critical systems are the obvious application of this challenge, and research has been in

progress for many years [7], in such areas as aviation, railway systems, nuclear power, and

medical systems.

Embedded systems are another area requiring high software dependability. Many of these systems

are deployed in places that makes applying patches to fix bugs difficult and expensive. For

example, the software on NASA’s space probes must function reliably for many months, and

failure may lead to loss of critical scientific data or even the entire mission.

12

The telecommunications backbone requires reliability of the order of 10−9. Though fault-tolerance

techniques such as redundancy are the primary method of achieving this, eliminating software

defects will also contribute to this goal.

Electronic commerce is now a significant sector of the economy. Though not safety-critical, failure

of a web server for even a short period can lead to large losses to a company as customers,

unsuccessful on its site, make their purchases on that of a competitor.

Current approaches to producing software free from defects vary. The ad-hoc, build-and-fix ap-

proach is still prevalent, particularly among programmers without much formal training. Software

companies tend to be more professional and employ techniques such as unit testing and acceptance

testing. These testing techniques are best employed throughout the entire software lifecycle, if possible.

While testing has, and will continue to have, an important role in reducing software errors, it suffers

from being somewhat unscientific. Its success depends on the appropriate tests being created in the

first place. Only an approach based on formal methods can provide rigorous proof of the correctness

of a given piece of code.

Software is increasingly used not on its own, but as part of a larger ecosystem of interacting

software components. This is evident on the internet, for example in Web Services. This complexity

makes extensive testing more difficult. Some systems are created on-the-fly, and may only have a

short expected lifespan. Constructing these systems will be much easier if each component has been

verified and can exhibit guaranteed behaviour.

Tools

This vision of dependable systems is at the heart of Grand Challenge 6, and the challenge, in [8],

describes the tools that will be necessary for its realization.

Today’s software specification is usually done using long form documents, designed to be read

by humans rather than computers. This specification is converted by hand into code. Model-driven

software development aims to automate much of this process, by constraining specifications into a

machine-readable framework. This allows automatic conversion into code or code templates. Non-

functional requirements (e.g. timing, resource usage) can also be included. The technology has already

moved from theory into practical deployment.

One of the key tools is the verifying compiler : a compiler that integrates code generation with

verification of the correctness of the resulting code. This is achieved using assertions at key interfaces,

inserted by the programmer during the coding stage.

13

The compiler can be supplemented by an invariant generator. This allows specifications to be

automatically extracted from pre-existing code, by discerning program invariants.

Testing will continue to play an important role, but will be enhanced by automatic generation of

test cases. Both functional and non-functional requirements will be tested.

Model-checking and theorem-proving tools will aid automated verification of software properties.

Many of these tools will build on existing formal methods tools; it is possible that FDR2, as used in

this project, will play its part in future, albeit in a different and possibly unrecognizable form.

GC6 and ONFi

All large scale software systems require a file system. In [9] the authors constructed and verified a

simplistic Unix-like file system, demonstrating the feasibility of formal methods in this context. Such

verification is clearly worthwhile: in [10] the authors applied model-checking to three common file

systems (ext3, JFS, ReiserFS) and found bugs in all of them. These bugs were non-trivial, and the

maintainers considered them serious enough to release patches within days.

However to the author’s knowledge, no similar task has been undertaken for the hardware part of

file storage. NASA’s Laboratory for Reliable Software have proposed, in [11], developing a NAND-

flash based verified file system, under the umbrella of Grand Challenge 6. The ONFi specification is an

ideal candidate for this: its state machine notation, described in the next section, makes it relatively

easy to check with formal methods.

2.4 ONFi consortium

The Open NAND Flash Interface consortium [12] exists to

develop a standardized NAND Flash interface that allows interoperability between NAND

devices

Founded in May 2006, it comprises mainly semiconductor and other hardware industry representatives.

The principal members are Hynix, Intel, Micron, Phison, Sony, and ST Microelectronics, though

Samsung, the largest manufacturer of flash memory [13] is not a member.

The specification’s aims included

• forwards compatibility: new innovations can be accommodated within the existing framework.

• backwards compatibility (partial): the design is consistent with existing NAND flash designs,

to allow ease of transition.

14

• interoperability: device behaviour will no longer be manufacturer-dependent.

• parameterization: devices will describe their features to the host using parameter pages, avoiding

the requirement for hard-coding chip ID tables within their hosts.

The first specification (ONFi version 1.0) was released in December 2006. It was partly based on

behaviours from existing NAND flash devices from Hynix, Micron, and ST.

The followup version 2.0 was released in February 2008. Enhancements are primarily related to

speed: the spec now allows for up to 133MB/second, increased from 50MB/second in ONFi v1.0.

2.5 ONFi specification

The specification document is intended to provide all information required to produce an ONFi-

compliant flash memory chip. It is divided into discrete sections, covering the physical interface,

memory addressing, timing, commands, and behavioural flows. These are summarized below.

Note: To avoid confusion, sections within this document are referred to using normal text, e.g.

section 4.5. When referring to sections within the ONFi specification, a sans-serif font will be used,

e.g. section 7.

2.5.1 Physical Interface

ONFi devices can be produced in several different chip packages. The specification defines the pinout

for these different package types. The pinout varies depending on whether the device supports 8 or 16

bit data transfer. Also specified here is the meaning of the various signal pins, and maximum voltage

ratings.

The most important signals for this project are as follows:

Ready / Busy This signals to the host whether the device is currently busy with one or more flash

data operations. This signal is used by a hardware host. A software-based host must use a

special command, Read Status, instead.

IO0 - IO7 These pins are used for input and output of 8-bit wide bytes. There are also IO8 - IO15

for devices supporting 16-bit data transfer, but this project does not consider that level of detail.

Read Enable Since the I/O pins are bidirectional, this pin signals that the host is performing a

read; i.e. the device should output data.

15

Write Enable The reverse of Read Enable; the device should prepare to receive data on the I/O

pins.

Address Latch Enable This signals that the incoming data on the I/O pins is an address byte.

Command Latch Enable This signals an incoming command byte.

Write Protect As might be expected, this disables Page Program and Erase operations on the

device.

The rest of the detail of this section is of only tangential relevance to the project.

2.5.2 Memory organisation

ONFi devices comprise one or more targets. Targets are themselves divided into one or more logical

units (LUNs). The LUNs are capable of executing commands independently of each other. With

appropriate interleaving of data, this allows greater throughput, as well as simultaneous reads and

writes to different memory locations.

All host communication takes place at the target level: there is no direct access to the LUNs,

though the host device must be aware of the division of the flash array into separate LUNs.

Page Register

The flash array is not accessed directly by a host. Instead, the page register acts as a buffer. The

page register consists of fast non-persistent RAM. To read data, the host requests the LUN to copy

the data from the flash array to the page register. This is a relatively slow operation, so the host

must wait until the LUN signals the operation is complete before attempting to read from the page

register.

Similarly, to write data, the host writes the data to the page register, then the LUN copies it to

the appropriate location in the flash array.

Blocks and Pages

Within the LUN the memory is first divided into blocks and then into pages. The page, comprising

a number of bytes or words, is the smallest addressable unit for read and write operations. Due to

the physical nature of flash memory, erase operations can take place only at the block level. The

specification places restrictions on the number of blocks and the number of pages per block, due to

the nature of binary addressing.

16

Read, Copyback Read, Change Read Column
Read Cache Enhanced, Read Cache, Read Cache End
Block Erase, Block Erase Interleaved
Read Status, Read Status Enhanced
Page Program, Page Program Interleaved, Change Write Column
Copyback Program, Copyback Program Interleaved
Read ID, Read Parameter Page, Read Unique ID, Get Features, Set Features
Reset

Table 2.1: ONFi command set. Mandatory commands are in boldface

Addressing

The address of a given byte or word within a target is thus a combination of:

• LUN address

• block address

• page address

• location within the page

Each of these address is described with one or more octets. The combination of (block + page)

address is known as the row address, and the location within the page is known as the column address.

2.5.3 Timing

ONFi devices must support certain minimum and maximum timing parameters. There are several

different timing modes (sets of these parameters), from mode 0 (slowest) to mode 5 (fastest). Only

mode 0 is mandatory. This flexibility allows the specification to support both low and high performance

devices.

Details of timing are not relevant to this particular project since asynchronous CSP has no concept

of time.

2.5.4 Commands

The commands available are divided into mandatory and optional sets, shown in Table 2.1. The

parameter page is used by the host to ascertain which of the optional commands are supported by a

given ONFI-compliant chip.

Commands must be entered via a certain sequence of signal pin activations and I/O operations;

these sequences are illustrated in graphical form.

17

Status Register

Each LUN maintains a status register byte. The value of certain of its bits indicate:

Bit Value

0 failure of the last command

1 failure of the next-to-last command

5 whether an array operation is in progress

6 whether the LUN is ready to receive another command. This bit (Status Register 6) is

ANDed together with the SR[6]1 bits from the other LUNs and the result is signalled on the

target’s Ready/Busy pin.

7 whether write-protected

Other bits are reserved.

2.5.5 Behavioural flows

This section contains a detailed description of finite state machines for both target and LUNs. It is

not in a machine readable format, requiring translation to an intermediate format before it can be

analysed by computer.

Figure 2.2 is an example of the format of each state, in this case from the Target state machine.

The first line contains the name of the state, and any actions performed on entry to that state.

Remaining [numbered] lines describe, in order of priority, possible transitions from that state. In this

example, tCopyBack, tReturnState, and tbStatus78hReq are state variables, stored within the target.

1here we follow the convention of the specification document and write SR[6]. This is not a citation mark.

18

78

T_Idle

tCopyback set to FALSE. tReturnState set to T_Idle.

1. WP# signal transitioned → T_Idle_WP_Transition

2. LUN indicates its SR[6] value transitioned → T_Idle_RB_Transition

3. Command cycle received → T_Cmd_Decode

T_Cmd_Decode
1 Decode command received. If R/B# is set to one and command

received is not 70h (Read Status), then tbStatus78hReq is set to
FALSE.

1. (Command 80h (Page Program) or command 60h
(Block Erase) decoded) and WP# is low

→ T_Idle

2. Command FFh (Reset) decoded → T_RST_Execute

3. Command 90h (Read ID) decoded → T_RID_Execute

4. Command ECh (Read Parameter Page) decoded → T_RPP_Execute

5. Command EDh (Read Unique ID) decoded → T_RU_Execute

6. Command 80h (Page Program) decoded and WP# is
high

→ T_PP_Execute

7. Command 60h (Block Erase) decoded and WP# is high → T_BE_Execute

8. Command 00h (Read) decoded → T_RD_Execute

9. Command EFh (Set Features) decoded → T_SF_Execute

10. Command EEh (Get Features) decoded → T_GF_Execute

11. Command 70h (Read Status) decoded → T_RS_Execute

12. Command 78h (Read Status Enhanced) decoded → T_RSE_Execute

NOTE:
1. The host shall ensure R/B# is set to one before issuing Target level commands (Reset,

Read ID, Read Parameter Page, Read Unique ID, Set Features, Get Features).

T_Idle_WP_Transition

Indicate WP# value to all LUN state machines.

1. State entered from T_Idle_Rd → T_Idle_Rd

2. Else → T_Idle

T_Idle_RB_Transition

R/B# is set to the AND of all LUN status register SR[6] values.
1

1. State entered from T_Idle_Rd → T_Idle_Rd

2. Else → T_Idle

NOTE:
1. R/B# may transition to a new value prior to the Target re-entering an idle condition when

LUN level commands are in the process of being issued.

Figure 2.2: Sample states from the ONFi specification

19

Chapter 3

Design

The project has two identifiable stages: creation of a CSP model, and its subsequent analysis. There

is, of course, a degree of overlap between these stages. Choices made during the design of the CSP

model are informed to some extent by the results of analysis.

Any problems identified during analysis should be classified as either:

• errors in the CSP model, and hence corrected, or

• potential inconsistencies within the ONFi specification itself. These require further discussion

with ONFi.

3.1 CSP model

The state machine notation of the ONFi specification allows for relatively direct conversion into CSP:

there is a one-to-one mapping between ONFi states and CSP processes. The separation of target from

LUNs also echoes the parallel composition features of CSP. Multiple LUN processes can be interleaved :

required to synchronize on events with the target, but not on each other’s. In CSP notation this is

written (for a single target and two LUNs):

LUNS =̂ LUN (0) ||| LUN (1)

SYSTEM =̂ TARGET ‖ LUNS

3.1.1 Host device

There are various restrictions on the allowed behaviour of a host that interacts with an ONFi target:

for example, it is not always permissible to issue a Read Status command. Therefore it is necessary

20

to introduce a third process to mimic a host that is acting in accordance with those restrictions:

HOST ‖ TARGET ‖ LUNS

Additionally, during the analysis phase, it will be used to verify, for example, that page program

and erase operations are durable, in other words that bytes that are programmed stay programmed.

Hardware vs. software host

The specification envisions two separate ways of communicating with a target: hardware or software.

A hardware host will monitor the Ready/Busy pin of the package while waiting for flash commands

to complete. For a software host, which cannot perform such monitoring, two special commands are

provided: Read Status, and Read Status Enhanced.

Read Status, when issued to the target, outputs a byte which corresponds to the Status Register of

the last LUN on which a command was issued.

Read Status Enhanced is a more sophisticated command which allows a host to query the ready

status of an arbitrary LUN. This is useful when interleaved operations are taking place on

multiple LUNs. A hardware host must also use this command when querying an arbitrary LUN:

the ready / busy signal would not be sufficient.

3.1.2 Communications

Note: the following convention is used in this project for CSP channels:

ht xxxx : host–target interactions

tl xxxx : target–LUN interactions

Host to target

Appropriate CSP events to model the communications between the host device and the target can be

gleaned from the descriptions of each state.

For example, consider the states in Figure 2.2. T Idle’s first transition, “WP# signal transitioned”

is caused by a change to the WP# pin of the target. It would be triggered by the host because of some

user action. Therefore it corresponds to a CSP channel between the host and the target, containing

a boolean (for Write Protect on or off).

21

I/O channel

The I/O pins are always used with some combination of the Address Latch Enable, Command Latch

Enable, Read Enable, and Write Enable pins. They are modelled, therefore, as separate channels for

each of these different types of event:

ht ioCmd - host command input

ht ioAddress - host address input

ht ioDataIn - host data input

ht ioDataOut - target data output

Since host and target are forced to synchronise on these channels, deadlock will occur if, for

example, the host attempts to input an address byte when the target is expecting a data byte.

Read channel

Some confusion may arise between the read command, and the read signal.

Read Command (00h) is input to the target along the I/O pins. It instructs the LUN to begin

copying data from a specified location in memory to the page register.

Read Signal is a pin that is triggered when the host desires to read data, either from a LUN’s page

register or from its Status Register byte. It is triggered at some point after a read command

has been issued.

It is this latter that is modelled as a channel, ht read.

Target to LUN

Somewhat more ambiguous are the communications between the target and the LUNs - probably

because the authors of the specification wish to leave much of this implementation detail to the

manufacturers.

For example, during a Page Program operation, the specification goes into some detail during the

input of address bytes from the host to the target. For the transfer of the same address from the

target to the appropriate LUN, it simply states “Target issues the [page] Program with associated row

address to the LUN”.

It is assumed that the target can transfer the address in one operation, rather than byte-wise. The

communications channel for the above command is thus defined as

22

77

7. Behavioral Flows

7.1. Target behavioral flows

The Target state machine describes the allowed sequences when operating with the target. If
none of the arcs are true, then the target remains in the current state.

7.1.1. Variables

This section describes variables used within the Target state machine.

tbStatusOut This variable is set to TRUE when toggling of RE# should return the status value. The
power-on value for this variable is FALSE.

tbChgCol This variable is set to TRUE when changing the column is allowed. The power-on value for
this variable is FALSE.

tCopyback This variable is set to TRUE if the Target is issuing a copyback command. The power-on
value for this variable is FALSE.

tLunSelected This variable contains the LUN that is currently selected by the host. The power-on value for
this variable is 0.

tLastCmd This variable contains the first cycle of the last command (other than 70h/78h) received by
the Target.

tReturnState This variable contains the state to return to after status operations.

tbStatus78hReq This variable is set to TRUE when the next status operation shall be a 78h command (and
not a 70h command). The power-on value for this variable is FALSE.

7.1.2. Idle states

T_PowerOn
1 The target performs the following actions:

1. R/B# is cleared to zero.

2. Each LUN shall draw less than 10 mA of power per staggered
power-up requirement.

1. Target is ready to accept Reset command
2

→ T_PowerOnReady

NOTE:
1. This state is entered asynchronously as a result of a power-on event when Vcc reaches

Vcc_min.
2. This arc shall be taken within 1 millisecond of Vcc reaching Vcc_min.

T_PowerOnReady

The target performs the following actions:
1. R/B# is set to one.
2. Each LUN shall draw less than 10mA of power per staggered

power-up requirement.

1. Command cycle FFh (Reset) received → T_RST_PowerOn

Figure 3.1: ONFi specification, p77: State variables for the Target state machine

channel tl programRequest : Lun.Bool.Bool.Bool.Bool

where each Bool is an address ‘byte’ (modelled as a bit, see section 3.1.4 below).

There are similar channels for the Erase and Read commands. Other commands that do not have

an associated address are passed on a generically defined

channel tl : Lun.LunEvent

where LunEvent is a user-defined set of all the remaining commands.

3.1.3 Keeping state

Various state variables are defined in the specification, at the start of the state machine descriptions

(section 7). Figure 3.1 shows the variables of the Target state machine. There is a similar definition

for the LUN. Each of these variables is later referred to at one point or another. A desired outcome

of the project is to ensure that there is no ambiguity in the specification, no implicit state required

that should be made explicit.

For example, the host can trigger the Write Protect pin to signal to the target to ignore any Page

Program or Erase events. The target checks the Write Protect pin before either of these operations,

and ignores them if appropriate. In CSP we must store the state of the write protect pin each time it

changes. The same principle applies to the Ready/Busy pin.

Another implicit piece of state that must be stored in addition to those already defined is the value

of each byte of data in the flash array. For a realistic flash memory device this would be very large.

The next section outlines the steps taken to minimize the amount of state required.

23

3.1.4 Minimizing state space

Certain abstractions and simplifications have to be made so that the FDR2 model-checker can perform

analysis without running out of memory.

Rather than model a full 8 bits (with a possible 28 = 256 different events), the I/O channel is

restricted to the set of known command types.

Addressing

In section 2.5.2, the address of each data byte stored within the device was presented as the combi-

nation of LUN, block, page, and column address. The host must input the address to the target in a

piecewise manner, with each of the components being a multiple of eight bits in size.

To model the specification in its full generality would imply a CSP model with around 28×4 = 4

gigabits of state, which is clearly computationally intractable. Instead each of these components is

simply modelled as one bit. The column address uses two bits so that the ‘Change Read Column’

command, which expects more than one address byte to be input, is modelled correctly.

This results in 5 address bits (1 LUN, 1 block, 1 page, 2 column), which can address 25 = 32

locations of data. The flash array is abstracted such that each location stores only a single bit rather

than a byte. This is at least theoretically tractable.

The decision to use bits instead of bytes means that the I/O channels mentioned in section 3.1.2

each carry a single bit. For example the CSPM declaration for the ‘host data input’ channel will be:

channel ht ioDataIn : Bool

Mandatory commands

As previously discussed, certain parts of the command set are optional. Initial efforts focus on mod-

elling the mandatory commands only, but within a framework that allows the model to be easily

extended to the full specification.

3.2 Analysis

3.2.1 Deadlock freedom

The Host + Target + LUNs combination of processes should be deadlock free. The Target + LUNs

combination is expected contain deadlocks, since the specification forbids certain sequences of actions

(e.g. a Read Status command when tbStatus78hReq is set to TRUE).

24

3.2.2 Livelock freedom

The Host + Target + LUNs combination of processes should be livelock-free.

When the target to LUN events are hidden, such that the only visible events are between the host

and the target, the model should still be livelock free. If this were not the case, it would imply that

there are sequences of events in which the host waits indefinitely for a response from the target, which

is undesirable.

3.2.3 Behavioural flows

Deadlock and livelock freedom are not enough, in general, to prove the system works as expected. It

is necessary also to prove that certain behaviours are possible, and that others are forbidden.

Why deadlock and livelock freedom are not enough

Consider the process P =̂ a → P 2 b → P , which is in parallel with a larger, more complex system Q ,

whose behaviour is too complex to write down in a human-comprehensible form, and includes many

hidden events. One may wish to prove that P , in this environment, sometimes performs both a and

b.

P ‖ Q may well be deadlock free. This tells us only that the system never reaches a state which

is incapable of performing any event. However, Q could, for example, perform behaviour similar to

the process Q =̂ a → Q . Then an observer of the system would see a continual sequence of a events,

without ever seeing a b event. Worse still, Q might simply livelock: P would never perform any

events.

Approach

These limitations can be surmounted in a number of ways.

Refinement Create a CSP process that shows the desired behaviour, and then prove that it is a

refinement of the model. It is not necessary for the new process to include every event: one can

hide the inner details of the model before presenting it as a specification to be refined.

An incorrect refinement should fail. This can be exploited by deliberately creating a refinement

that displays behaviour that should not be possible. FDR2’s check should fail, providing a

counter-example which can be inspected to confirm that the failure is in the expected place.

Parallelism Create a CSP process that chooses, nondeterministically, possible behaviours. This

process is placed in parallel with the model. On hiding all other events, the model should be

25

both deadlock and livelock free. This implies that whatever behaviour is chosen, the model can

always exhibit that behaviour.

26

Chapter 4

Implementation

4.1 Proof of concept

The first proof-of-concept model was hand-written in CSP, for a reduced specification with only

• basic command flows corresponding to Page Program and Read,

• a single target and a single LUN, and

• two address bits, giving four bits of flash storage.

This model was developed at the same time as a spreadsheet giving a human-readable presentation of

the sequence of events on both target and LUN. A sample of the spreadsheet is presented in Appendix

E.

4.1.1 Host

The Target and LUN are placed in parallel with a Host process, as described in section 3.1.1. The

host is modelled by a number of processes, each of which is called at the appropriate time. These

processes are described in Figure 4.1.

4.1.2 Verification

Deadlock and livelock

The simplistic model was verified to be deadlock and livelock free. Since it contained only a subset of

the available event sequences, this result was neither surprising nor particularly valuable.

27

H POWERON : Performs the required reset command on initializing an ONFi device.

H PAGEPROGRAM : Taking three parameters (two address bits and a data value), inputs the correct
sequence of commands to the target in order to program the requested address with the given
data value.

H READ : Taking two parameters (address bits), inputs the correct sequence of commands to the
target in order to read data from the requested address.

H TESTREAD : Performs the same sequence as H READ, but takes an additional parameter: the ex-
pected value of the data at the chosen address. This process will deadlock if the data returned
is different from that expected.

H ANYCOMMANDS : Repeatedly chooses to perform either a read or a page program at the address (0,0).
Each time, the decision is nondeterministic (i.e. internal choice).

Figure 4.1: Host Processes for proof of concept model

Other properties

It was possible to prove that writes to the flash array were durable using H TESTREAD, using processes

illustrated in Figure 4.2. The process H TEST PP THEN READ, when put in parallel with the Target

and LUN process, is deadlock free.

To check that H TESTREAD definitely does deadlock when an unexpected data value is returned,

H TEST PP THEN READ SHOULD DEADLOCK writes 1 to a location and then checks that H TESTREAD

deadlocks when given 0 as the expected value.

4.1.3 Limits of prototype model

CSP written by hand tends to be laborious and error prone for a substantially sized project. Adding

a state variable necessitates changes to every single CSP process and every transition within that

process, for example.

The bulk of the project consisted of converting the specification’s state machine (as described in

section 2.5.5) into CSP. To assist the automation of this process, the specification was first converted

by hand to an intermediate XML form. This XML was then converted, using XSLT, into CSP.

28

H_TEST_PP_THEN_READ =
-- after poweron, all data = 0
H_TESTREAD(data0,addr0,addr0);
H_TESTREAD(data0,addr0,addr1);
H_TESTREAD(data0,addr1,addr0);
H_TESTREAD(data0,addr1,addr1);
H_PAGEPROGRAM(data1,addr1,addr0); -- write 1 to address 10
H_TESTREAD(data0,addr0,addr0);
H_TESTREAD(data0,addr0,addr1);
H_TESTREAD(data1,addr1,addr0); -- check write correctly changed data0 to data1
H_TESTREAD(data0,addr1,addr1);
H_PAGEPROGRAM(data0,addr1,addr0); -- write 0 to address 10
H_PAGEPROGRAM(data1,addr0,addr1); -- write 1 to address 01
H_TESTREAD(data0,addr0,addr0);
H_TESTREAD(data1,addr0,addr1);
H_TESTREAD(data0,addr1,addr0);
H_TESTREAD(data0,addr1,addr1)

H_TEST_PP_THEN_READ_SHOULD_DEADLOCK =
H_PAGEPROGRAM(data1,addr1,addr0);
H_TESTREAD(data0,addr1,addr0) -- data1 is returned here, not data0

Figure 4.2: Verifying writes are durable using H TESTREAD

4.2 State Chart XML

4.2.1 XML languages for State Charts

The Unified Modelling Language (UML), a visual language for conveying system descriptions, defines

various types of diagrams, including one for state machines. Since UML may be stored in an XML

format called XSI (XML Schema for Interchange), this provides another way of writing state charts

in XML. However XSI, while theoretically human-readable, tends to be very verbose.

State Chart XML (SCXML) is the alternative chosen for the project: a reasonably compact

(considering XML’s general verbosity) and easily decipherable format for describing state machines.

4.2.2 Origins of SCXML

State Chart XML evolved from Call Control XML, a language designed to assist and standardize the

handling of voice calls during, for example, audioconferencing. It also incorporates elements of Harel

State Tables [14]. Despite its specialized roots, SCXML is a fully general way of describing finite state

machines. It has reached the status of W3C Working Draft [15].

29

<state id="thisState">
<onentry>

<!-- events can be raised and assignments to data items can take place here -->
</onentry>
<transition event="some_event" target="nextState">

<!-- this transition takes place if some_event occurs. Assignments and
events can take place here, that are unique to this transition -->

</transition>
<onexit>

<!-- again, events and assignments can be placed here. These occur
regardless of the particular transition taken -->

</onexit>
</state>

Figure 4.3: Example State Chart XML

4.2.3 W3C specification

The specification defines the XML tags found in a valid SCXML document, and their semantics. It

is modular in nature, divided into the core module, and others for external communications, data

storage, and scripting.

It also provides a reference algorithm for an implementation and some example SCXML documents.

Elements

The core module defines the valid XML elements and attributes within an SCXML document. The

most important of these is the <state> element, of which an example is presented in Figure 4.3. The

tag names should be self-explanatory.

The system transitions from state to state, depending on the events that trigger each particular

transition. Events can be raised both before and after a state is active using the <onentry> and

<onexit> elements. Conditional expressions can be used in both transitions and entry/exit procedures

using the <if> element. Parallel states are possible, and events raised by one state can trigger events

in another.

There are various enhancements such as substates, communication with external processes, and a

history function, but consideration of these is not necessary for this project.

Data storage

Data can be stored persistently between states. As might be expected in an XML language, data is

stored in a tree structure. The format of the tree is not constrained, other than to require a top-level

30

<datamodel>
<data name="date">

<year/>
<month/>
<day/>

</data>
</datamodel>

Figure 4.4: Storing a date in State Chart XML

<datamodel> and below that, <data> elements. This affords the system designer both simplicity and

flexibility.

Figure 4.4 gives an example for storing a date. It is defined at the start of the document under

a single <datamodel> tag. There is no scoping of variables: any state may modify any data item,

though for the creator’s convenience, the data declaration may in fact be distributed throughout the

document.

Assignment is simply a case of using the <assign> element, for example:

<assign location="year" expr="2008"/>

Variables may be queried before a transition using the cond attribute, e.g.:

<transition cond="yearOfBirth < 1990" target="offSales"/>

4.2.4 Mapping ONFi specification to SCXML

Each ONFi state corresponds naturally to an SCXML state. Figures 4.5 illustrates. Some SCXML

elements are not used, for example <parallel>.

Sending information with events

In theory events can include data, in a similar way to CSP channels. There are two methods of raising

an event:

<event> which raises an event internally

<send> which sends an event to an external module (which can be another running SCXML inter-

preter)

It is not possible to include data using the first of these. Presumably this is because all states executing

in parallel within the same SCXML interpreter have access to the same data structure (as mentioned

31

<state id=”T_RPP_ReadParams”>

<onentry>

<event name=”tl.tLunSelected.setSR6!0"/>

<assign location=”readyBusy” expr=”0"/>

<event name="tl.tLunSelected!retrieveParameters"/>

 <assign location="tReturnState" expr="T_RPP_ReadParams"/>

</onentry>

<transition event=”tl.readPageComplete” target=”T_RPP_Complete”/>

<transition event=”ht_Iocmd.cmd70h” target=”T_RS_Execute”/>

<transition cond=”tbStatusOut == true” event=”ht_read”

target=”T_Idle_Rd_Status”/>

</state>

SCXML states require an ID attribute: the state name at the top left of each description, being
unique, fulfils this requirement. The actions above the list of transitions take place on entry to the
state: therefore they correspond to actions within the <onentry> element.

<state id=”T_RPP_ReadParams”>

<onentry>

<event name=”tl.tLunSelected.setSR6!0"/>

<assign location=”readyBusy” expr=”0"/>

<event name="tl.tLunSelected!retrieveParameters"/>

 <assign location="tReturnState" expr="T_RPP_ReadParams"/>

</onentry>

<transition event=”tl.readPageComplete” target=”T_RPP_Complete”/>

<transition event=”ht_Iocmd.cmd70h” target=”T_RS_Execute”/>

<transition cond=”tbStatusOut == true” event=”ht_read”

target=”T_Idle_Rd_Status”/>

</state>

There is a one-to-one correspondence between ONFi transitions and SCXML <transition> elements.
Any conditions can be represented with a cond attribute.

Figure 4.5: Mapping ONFi specification to SCXML: state T RPP ReadParams

32

in section 4.2.3) and therefore data transfer is unnecessary. This poses a problem for modelling the

ONFi specification which often requires data to be included in events.

Since the SCXML is only an intermediate form, destined to be converted to CSP, we use CSP’s

channel notation directly within the SCXML, for example:

<event name="channel!data"> (for sending data with events)

and

<event name="channel?data"> (for receiving data with events)

4.2.5 Apache Commons implementation

Several implementations exist, but the most popular and full-featured - and de-facto reference -

interpreter for SCXML is that from Apache Commons [16]. The principal developer, Rahul Akolkar,

is also closely involved with the W3C specification.

SCXML only specifies a state machine: it must be used in the context of a larger application. The

Apache Commons fits this requirement by providing a Java library with external interfaces, which

can then be integrated as necessary.

Direct use

The SCXML library’s .jar file can be used directly on an SCXML document, for testing purposes.

In this mode, the user is presented with the current state, and can manipulate the state machine by

typing in events directly. The system then reacts appropriately, informing the user of state transitions

taken and current data values.

Appendix A.2 shows a sample of the program’s output, with user input in red.

Synchronization

As previously mentioned, states can react to events raised by other, parallel, states. This allows a

rudimentary synchronization. However there is no way to force synchronization on the state that

raises the event: it will not wait until the parallel state is waiting to receive an event.

This leads to unexpected deadlocks. Race conditions are not a problem however, since execution

appears to be deterministic (it executes the same interleaving each time).

33

4.2.6 Adherence to SCXML standard

Because of this problem, along with the inability to send information along with events mentioned

in section 4.2.4, it was decided not to adhere strictly to the SCXML standard for this project. This

allows some CSP notation to be ‘mixed in’ with the SCXML.

The SCXML used is still well-formed XML: this is a requirement of the Saxon XSLT parser.

However the Commons SCXML library will reject it.

This relaxation also allows the introduction of extra XML elements where required. These will be

presented in the next section.

4.3 XML Transformations

Custom XSLT scripts were developed that transformed the same base SCXML file into CSP and also

into an HTML format that was designed to be similar to the ONFi specification document. This made

it simpler to check for implementation errors, since the two could be compared side-by-side.

4.3.1 SCXML to CSP

XSLT is mainly used to transform XML into XML (or to XML-like languages such as HTML) but is

capable of producing text in almost any conceivable format.

One of the fundamental requirements of the language is that a compiler is not required to process

the script from top to bottom, but instead has the flexibility to decide its own traversal route. This

gives XSLT the flavour of a functional language. There is no variable reassignment, for example,

though variables can be created and are accessible to all nodes of the tree below their declaration.

Therefore the following list of actions during conversion should not be considered to be a sequential

‘procedure’ as such. However the text of a CSPM process definition is built up in identifiable stages.

• Channel names are derived from event names. Currently only single-event channels are sup-

ported. More complex channels must be created by hand, and therefore this stage can be

suppressed using a <csp:noGenerateChannels> tag.

• For each state, a CSP process is generated, as follows:

– The process name is generated from the state’s id attribute and capitalized, as per CSP

convention.

– Events in the <onentry> section are written sequentially, each followed by the CSPM

continuation token ->.

34

– Processes may have a single <if> statement in the <onentry> section. If present, two forks

are created, corresponding to the ‘true’ and ‘false’ outcomes of the tested expression.

– Each transition within the state is generated as follows:

∗ The guard condition is written, performing any necessary conversions (e.g. && becomes

and).

∗ If the transition is triggered by an event, that event is written followed by the CSPM

continuation token ->.

∗ The destination state (process) is written. Any state variables that were changed by

an <assign> element, either in the state’s <onentry> element or in this transition, are

changed here.

Transitions are separated by the CSPM external choice token [].

A ‘before and after’ example can be seen in Appendix A.

Whitespace

CSPM is whitespace-dependent in certain circumstances. For example, definitions (processes, func-

tions, channels, etc.) must start on a new line, though the definition itself may contain arbitrary

whitespace including line feeds. There is no end-of-line character such as C’s semicolon.

XSLT includes whitespace only from text within text nodes1. Thus to ensure a line feed occurs in

the desired location, the following XSLT snippet, which might on first glance appear superfluous, is

required:

<xsl:text>

</xsl:text>

4.3.2 SCXML to HTML

This transformation is considerably simpler than the previous one. The script starts the html doc-

ument by using the <xsl:output> tag to generate a DOCTYPE declaration. Following this, it creates

the main <html> tag and below this, the <head> and <body> tags.

Into the <head> section goes a <title> and a link to the custom stylesheet state.css. This

stylesheet formats the resulting output to match the ONFi document as closely as possible.
1In the XML Document Object Model, text that contains other XML elements is divided into nodes that contain

only character data (called text nodes) interspersed with the other XML elements.

35

Into the <body> it inserts a <div> for each state. Below this are two tables, one for the ‘header’

— the state’s id and actions on entry — and one for the transitions, with one line per transition.

Some complications arise on entry to the state, since if there is only one action, it will not be

numbered. Therefore the <xsl:choose> element decides whether or not to wrap the action(s) in a

 (ordered list) element.

If there is only one transition then the script generates the text ‘Unconditional’ to match the

document.

The resulting HTML for three states, as rendered by Firefox, is shown in Figure 4.6. (intCounter

is an internal state variable used at various places, for example when counting whether the correct

number of address bytes has been received. It is not present in the original ONFi specification which

does not descend into that level of detail.)

The HTML requires no final manual adjustments, and is valid according to the definition of

XHTML v1.0 Strict. This can be verified at the W3C’s XHTML validation service [17].

4.3.3 Mandatory-only states

To speed up FDR2’s analysis, the optional commands and states were stripped from the SCXML,

using XSLT.

An XML file was created with elements corresponding to the ID of the mandatory states. This

file, along with the SCXML, is input to an XSLT transform script, which copies the original SCXML

node-for-node. Any states, or transitions to states, without an element in this XML file are assumed

to be optional and hence discarded. This transformation is analogous to a database ‘inner join’, but

between two XML files rather than database tables.

The new SCXML file can be used as an input to the same XSLT that performs the SCXML to

CSP conversion: no modification is required. In this way, new ‘mandatory-only’ CSP and HTML files

were also generated, with a minimum of manual coding. Figure 4.7 illustrates the entire framework

for the Target state machine. The same process is applied to those of the LUN and Host. GNU’s

make utility was used to manage the resulting dependences: only dependent files are recompiled each

time a change is made to the source.

4.4 Design of the host process

Though the ONFi specification does not provide a state machine description of the required host

behaviour, the host is also implemented here using the same SCXML to CSP conversion method.

36

addr3Block set to false7.

addrReceived set to false8.

1. Unconditional -> T_PP_LUN_DataWait

T_PP_LUN_DataWait

1. ht_ioDataIn?data

dataBit set to data
-> T_PP_LUN_DataPass

2. ht_ioCmd.cmd15h (if tCopyback==false)

cmd set to cmd15h
-> T_PP_Cmd_Pass

3. ht_ioCmd?cmdReceived:{cmd10h, cmd11h}

cmd set to cmdReceived
-> T_PP_Cmd_Pass

4. ht_ioCmd.cmd85h

intCounter set to 0
-> T_PP_ColChg

T_PP_LUN_DataPass Event: tl_io.tLunSelected!dataBit

1. Unconditional -> T_PP_LUN_DataWait

T_PP_Cmd_Pass Event: tl_cmd.tLunSelected!cmd

1. (if cmd==cmd11h) -> T_PP_IlvWait

2. (if cmd==cmd10h || cmd==cmd15h) -> T_Idle

T_PP_IlvWait tReturnState set to T_PP_IlvWait

1. ht_ioCmd.cmd85h (if tCopyback==true)

intCounter set to 0
-> T_PP_AddrWait

2. ht_ioCmd.cmd80h (if tCopyback==false)

intCounter set to 0
-> T_PP_AddrWait

3. ht_ioCmd.cmd70h -> T_RS_Execute

4. ht_ioCmd.cmd78h

intCounter set to 0
-> T_RSE_Execute

5. ht_read (if tbStatusOut==true) -> T_Idle_Rd_Status

T_PP_ColChg

Target file:///home/art/dissertation/target.html#T_RPP_Re...

11 of 18 03/08/08 15:23

The original ONFi descriptions are also presented for comparison:

84�

T_PP_Addr

Store the address cycle received.

1. More address cycles required � T_PP_AddrWait

2. All address cycles received � T_PP_LUN_Execute

T_PP_LUN_Execute

tLunSelected is set to the LUN indicated by the row address received.
Target issues the Program with associated address to the LUN
tLunSelected.

1. Unconditional � T_PP_LUN_DataWait

T_PP_LUN_DataWait

Wait for data byte/word or command cycle to be received from the
host.

1. Data byte/word received from the host � T_PP_LUN_DataPass

2. Command cycle of 15h received and tCopyback set to
FALSE

� T_PP_Cmd_Pass

3. Command cycle of 10h or 11h received � T_PP_Cmd_Pass

4. Command cycle of 85h received � T_PP_ColChg

T_PP_LUN_DataPass

Pass data byte/word received from host to LUN tLunSelected

1. Unconditional � T_PP_LUN_DataWait

T_PP_Cmd_Pass

Pass command received to LUN tLunSelected

1. Command passed was 11h � T_PP_IlvWait

2. Command passed was 10h or 15h � T_Idle

T_PP_IlvWait

Wait for next Program to be issued. tReturnState set to
T_PP_IlvWait.

1. Command cycle of 85h received
1

and tCopyback set to

TRUE

� T_PP_AddrWait

2. Command cycle of 80h received
1

and tCopyback set to

FALSE

� T_PP_AddrWait

3. Command cycle of 70h received � T_RS_Execute

4. Command cycle of 78h received � T_RSE_Execute

5. Read request received and tbStatusOut set to TRUE � T_Idle_Rd_Status

NOTE:
1. Address cycles for the Program operation being issued shall have the same LUN

address and page address as the preceding Program operation. The interleaved
address shall be different than the one issued in the preceding Program operation.

T_PP_ColChg

Wait for column address cycle.

1. Address cycle received � T_PP_ColChg_Addr

Figure 4.6: Rendered HTML for three target states.

37

target.sc.xml

(State Chart XML)

X
S

L
T
 (
S

C
X

M
L
 t
o
 C

S
P

)

target-

mandatory.sc.xml

(State Chart XML)XSLT to remove optional flows

target.csp

 (CSP code)

X
S

L
T

 (
S

C
X

M
L
 t
o
 C

S
P

)

target-

mandatory.csp

 (CSP code)

X
S

L
T
 (S

C
X

M
L
 to

 H
T
M

L
)

target.html

(Human-readable HTML)

X
S

L
T
 (S

C
X

M
L
 to

 H
T
M

L
)

target-

mandatory.html

(Human readable

HTML)

Figure 4.7: XSLT transformations of the Target state machine. Files with dotted lines are generated
automatically

38

Some transitions have been omitted for clarity. Dotted lines indicate optional commands.

H_PowerOn

H_RandomOperation H_Reset

H_PageProgram

H_BlockErase

H_WaitForReady

H_GetFeatures

Read

Figure 4.8: State diagram for the host process.

As envisioned in section 3.1.1, there are two separate host implementations, the first of which uses

Read Status (the software host) and the other which uses the Ready / Busy pin (the hardware host).

The host’s behaviour is quite simple. It performs the required reset at power on, then continuously

loops, performing an arbitrary command each time. After each command, it waits until the target

has returned to the ready state. This is illustrated in Figure 4.8.

4.4.1 Read Command

The read command for a software host requires the use of Read Status. Depending on the length of

time taken for the flash array to return the data, the host might receive ‘busy’ several times. The

host’s state machine therefore remains in the H ReadWait state, continuously polling the target until

it receives a ‘ready’ result. At that point it completes the read by resending the 00h command, as

required by the ONFi specification on p57. Figure 4.9 illustrates this process.

4.4.2 Interleaved actions

To check that it is possible to read from multiple LUNs simultaneously, we create a special H MultiRead

process. This sends a Read command to LUN 0, then without waiting for it to complete, also sends

a Read to LUN 1. After this, it waits to read the results, using Read Status Enhanced to determine

each LUN’s readiness. It can read the results back in either order, i.e. first LUN 0 then LUN 1, or

39

H_Read H_ReadWait H_ReadFinish H_WaitForReady

Figure 4.9: State diagram for the host’s Read process.

H_MultiRead H_WaitForReady

H_ReadWait0 H_ReadFinish0

H_ReadWait1 H_ReadFinish1

[Both reads done]

Figure 4.10: State diagram for the host’s MultiRead process: testing simultaneous reads on two LUNs

vice versa.

The process is illustrated in Figure 4.10. The final H WaitForReady is not strictly necessary, since

by that stage the host has already been ascertained, using Read Status Enhanced, that both LUNs

are ready.

4.4.3 Controlling the host

Each of the transitions from H RandomOperation in Figure 4.8 is triggered by a custom event on the

eh channel. If this channel is unsynchronized, then the host can randomly perform any event.

To ‘direct’ the host to perform a specific sequence of actions one can simply write a small CSP

process that performs those actions and synchronizes with the host on the eh channel. For example, to

perform the sequence of commands PageProgram → Read → Reset , the process would be as follows:

eh.h PageProgram -> eh.h Read -> eh.h Reset

This method spares the labour of specifying the full host command sequence which would require

the correct sequencing of address bits, command bytes, and read/write instructions.

40

4.5 Additional processes

To model the behaviour of a flash device fully, several processes were necessary in addition to HOST ,

TARGET , and LUN . These processes are simpler than those derived directly from the ONFi state

machine, and so were written in CSP directly rather than via SCXML.

4.5.1 Status Register bit 6

This bit, present on every LUN, is linked to the value of the target’s Ready/Busy pin, as explained

in section 2.5.4. The LUN state machine generally denotes changes to this bit with text such as:

lunStatus[6] is set to one. lunStatus[6] value is indicated to the Target.

This implies a channel between target and LUN processes, which we shall call tl SR6, following

the convention in section 3.1.2. The second sentence of the above corresponds to a CSP event

tl SR6.lun0!true [where ‘one’ is modelled as true].

The specification is somewhat inconsistent, however, in its treatment of the target’s reaction to

these tl SR6 events. In some states, the target reacts to the SR[6] change with a state transition. For

example, in the T Idle Rd state presented in Figure 4.14, one of the transitions (#2) explicitly men-

tions the SR[6] change. One might be tempted to model this as an event, tl SR6?lunID?sr6value,

and force synchronization on this channel at all times.

However this leads us into deadlock problems when the target is not in such an idle state, but the

LUN still wishes to indicate a change to its SR[6] value. For example, the T PP Execute state, during

its entry sequence, requests that all LUNs clear their page registers. This request triggers each LUN

to move through the state cycle

L Idle → L Idle TargetRequest → L Idle ClearPageReg → L Idle.

On its return to L Idle, the LUN sets its SR[6] value to one and indicates this to the target.

This event, tl SR6.lun0!true, must also be performed by the target. However the target’s next

interaction with the LUN (after receiving the address bytes from the host) is the Program command

of T PP LUN Execute. The target is not expecting a SR[6] update, and has no appropriate transition.

Therefore the TARGET ‖ LUN process will deadlock at this point. This deadlock is illustrated in

Table 4.1.

Solution 1 - Sampling SR[6] channel within Target process

A footnote to the state T Idle RB Transition says:

41

Target LUN
→ 80h (Page Program) received
Requests LUN clear page register → Clears page register
→ Address bytes received

Issues Program command with associated ad-
dress to LUN

Indicates lunStatus[6] value to Target

Table 4.1: SR[6] deadlock

Target LUN
→ 70h (Read Status) received Read completes
Sets tbStatus78hReq to FALSE Sets lunStatus[6:5] to 11b
Sets tbStatusOut to TRUE

Indicates 70h command to LUN Indicates lunStatus[6] value to Target

Table 4.2: Sampling SR[6] within target: deadlock remains

R/B# may transition to a new value prior to the Target re-entering an idle condition when

LUN level commands are in the process of being issued

Therefore it seems reasonable as a solution simply to add tl SR6 events to the appropriate places

within the target state machine. This allows the required synchronization to take place and so the

processes can continue. Finding the appropriate places is a matter of trial and error, however FDR’s

deadlock checker allows this to be done without much difficulty.

There are, however, still problems in certain places. Consider when the target has finished sending

a 00h read command to the LUN, and is now waiting for the command to complete. The LUN is in

the state L Idle Rd. The target is in the state T Idle Rd. The sequence of events in Table 4.2 can

then occur, culminating in deadlock.

It cannot be resolved by adding a tl SR6 event to the target machine, because in other event

sequences, the read does not complete on the LUN and thus the LUN will not attempt to signal on

the tl SR6 channel.

Solution 2 - Separate READYBUSY process

The authors of the ONFi specification stated [18]:

. . . that R/B# is a hardware AND of all SR[6] values and that it will change when there

is a change with a particular LUN regardless of the Target state machine context.

42

HOST

TARGET

READYBUSY

LUNS

Commands, data

Data, status

Ready / Busy updates

C
o

m
m

a
n

d
s
,

d
a

ta

D
a

ta
,
s
ta

tu
s

S
R

[6
]
u

p
d

a
te

s

Figure 4.11: Parallel CSP processes of the entire system

Given that it is implemented in hardware, and therefore independent of the target’s state, the

other approach was to model the Ready/Busy pin as a separate CSP process, READYBUSY . It

synchronizes with the LUN’s tl SR6 events (the target no longer synchronizes on this channel), and

invokes a ht readyBusy event upon every change in SR[6]. The host is still synchronized on the

ht readyBusy channel, even though the target is not.

The total system now has four parallel processes:

HOST ‖ TARGET ‖ LUNS ‖ READYBUSY

Figure 4.11 illustrates.

Though the target is no longer reacting to SR[6] events, it must still be aware of the value of

Ready/Busy during certain states. For example, during a Page Program, if Ready/Busy is false (i.e.

busy), then the target sets tbStatus78hReq to true. This is because there are now multiple interleaved

operations taking place (since the host did not wait for Ready/Busy to return to ready before issuing

the Page Program). A Read Status Enhanced (78h) command must now be issued before a read can

take place.

The solution is to introduce some extra events in the target state machine. Recall that in some idle

states, the target has transitions that are triggered by SR[6] changes (in all other states, the target

does not react).

We ‘garnish’ these states with extra events at their entry and exit points, that signal to the

READYBUSY process that the target now requires notification of any SR[6] changes. These entry and

exit signals cause the READYBUSY to transition to a different process, READYBUSY PASSTHROUGH .

43

HOST

TARGET

READYBUSY

[PASSTHROUGH]

LUNS

Commands, data

Data, status

Ready / Busy updates

C
o

m
m

a
n

d
s
,

d
a

ta

D
a

ta
,
s
ta

tu
s

S
R

[6
]
u

p
d

a
te

s

Tar
ge

t i
dl
e

/

no
n-

id
le

S
R
[6

]

up
da

te
s

Figure 4.12: Parallel CSP processes of the entire system, modified

This process has extra events, tr SR6, which are synchronized with the target, and occur after SR[6]

changes.

The net effect is that the target, when in an idle state, receives notification of changes to SR[6] and

so can update its readyBusy state variable appropriately. This modified system is shown in Figure

4.12.

4.5.2 LUN ‘innards’ process

An aim of the project was to model the unpredictability of the flash array: i.e. variation in transfer

times, and arbitrary failures.

The LUN state machine, at several points, waits for flash operations to complete. During the wait,

it is still capable of responding to status requests from the host: it is not blocked. This can be seen

clearly in the state L RD ArrayRead, shown in Figure 4.13.

Transition 1 occurs upon completion of the read. This event is not seen by the target, which is

only capable of synchronizing on transition 2.

The XSLT conversion process always results in external choice between transitions. It is necessary

to introduce internal choice to the model to represent the possibility of nondeterministic outcomes

after the same sequence of external events.

The simplest way to model this nondeterminism would be a process along these lines:

FLASH =̂ read → FLASH WORKING

44

96

L_BE_Sts

The LUN performs the following actions in the order specified:
1. lunStatus[0] is set to erase status.
2. lunStatus[6] is set to one. lunStatus[6] value is indicated to

the Target.

1. Unconditional → L_Idle

L_BE_Ilv_Sts

The LUN performs the following actions in the order specified for each
interleaved operation that completed:

1. ilvComplete set to interleave address of completed operation.
2. lunFail[ilvComplete][0] is set to erase status value.

lunStatus[6:5] is set to 11b and lunStatus[6] value is indicated to the
Target.

1. Unconditional → L_Idle

7.2.7. Read command states

If caching is not supported, then all actions for status bit 5 are ignored.

L_RD_WaitForCmd

lunbInterleave set to FALSE. Wait for a command cycle.

1. Command cycle 30h or 35h received → L_RD_ArrayRead

2. Command cycle 31h received and lunLastConfirm equal
to 30h or 31h

→ L_RD_Cache_Xfer

L_RD_ArrayRead

The LUN performs the following actions:
1. lunStatus[6:5] is cleared to 00b.
2. lunStatus[6] value is indicated to the Target.
3. lunLastConfirm set to last command cycle (30h or 35h).
4. Read the requested page from the array.
5. lunReturnState set to L_RD_ArrayRead.

1. Read of requested page complete → L_RD_Complete

2. Target requests status or status command received → L_Status_Execute

L_RD_Complete

lunStatus[6:5] is set to 11b. lunStatus[6] value is indicated to the
Target.

1. Unconditional → L_Idle_Rd

L_RD_Cache_Next

Select the next row address as the sequential increasing row address
to the last page read.

1. Unconditional → L_RD_Cache_Xfer

Figure 4.13: LUN state L RD ArrayRead

FLASH WORKING =̂ busy → FLASH WORKING u done → FLASH

where the LUN process initiates the read event, then waits to synchronize on the done event.

Unfortunately, upon hiding the busy event (since it is internal to the FLASH process), livelock

results. This is because the FLASH WORKING process can perform an infinite number of busy

events, without ever choosing done.

To avoid this, on each internal choice the array makes at least some progress towards completion.

This requires the process to store some state to represent progress made so far. In this example, we

add either 1 or 2 to the progress variable, and generate a done event when progress reaches 10.

FLASH WORKING(progress) =̂

FLASH WORKING(progress + 1)

u

FLASH WORKING(progress + 2)

 if progress < 10

2

done → FLASH otherwise

This process is put in parallel with the LUN state machine process. The actual implementation

LUN INNARDS is somewhat more complicated due to the different types of flash operation (Read,

Page Program, Erase, Reset) and the possibility that an operation may be interrupted by a reset

command.

In addition, it is necessary to modify the L BE Erase Wait (and other similar commands in which

the LUN waits for internal events to complete) as follows:

The LUN must ‘poll’ the LUN INNARDS process on entry to the state. If the innards is about

perform done, the ‘read status’ branch is disallowed. Otherwise livelock can occur, when the innards

process is in fact ready, but the external choice (of the LUN) between responding to the target, and

45

79

7.1.3. Idle Read states

T_Idle_Rd

Wait for read request (data or status) or other action. tReturnState
set to T_Idle_Rd.

1. WP# signal transitioned → T_Idle_WP_Transition

2. LUN indicates its SR[6] value transitioned → T_Idle_RB_Transition

3. Read request received and tbStatusOut set to TRUE → T_Idle_Rd_Status

4. Read request received and (tLastCmd set to 90h or
EEh)

→ T_Idle_Rd_XferByte

5. Read request received and (tLastCmd set to ECh or
EDh)

→ T_Idle_Rd_LunByte

6. Read request received and tbStatus78hReq set to

FALSE
1

→ T_Idle_Rd_LunData

7. Command cycle 05h (Change Read Column) received
and tbChgCol set to TRUE

→ T_CR_Execute

8. Command cycle of 31h received and tbStatus78hReq
set to FALSE

→ T_Idle_Rd_CacheCmd

9. Command cycle of 3Fh received and tLastCmd set to
31h and tbStatus78hReq set to FALSE

→ T_Idle_Rd_CacheCmd

10. Command cycle received → T_Cmd_Decode

NOTE:
1. When tbStatus78hReq is set to TRUE, a Read Status Enhanced (78h) command

followed by a 00h command shall be issued by the host prior to reading data from a
particular LUN.

T_Idle_Rd_CacheCmd

Set tLastCmd to the command received. Pass command received to
LUN tLunSelected

1. Unconditional → T_Idle_Rd

T_Idle_Rd_XferByte

Return next byte of data.

1. Unconditional → T_Idle_Rd

T_Idle_Rd_LunByte

Request byte of data from page register of LUN tLunSelected.

1. Byte received from LUN tLunSelected → T_Idle_Rd_XferHost

T_Idle_Rd_LunData

Request byte (x8) or word (x16) of data from page register of LUN
tLunSelected.

1. Byte or word received from LUN tLunSelected → T_Idle_Rd_XferHost

Figure 4.14: Target state T Idle Read

responding to the innards, always chooses to do the Read Status (and hence always returns ‘not

ready’).

4.6 State Transitions

As described in 2.5.5, the transitions from each state are presented in order of priority. This prior-

ity ordering results in slightly different semantics from CSP’s external choice mechanism, since the

descriptions of the transitions need not be mutually exclusive. An example should make this clear.

Consider the state shown in Figure 4.14.

Here transition no. 3 will trigger if tbStatusOut is set to TRUE and a read request is received. In

CSPM this is written (using the & guard notation) as:

tbStatusOut==true & ht_read -> T_IDLE_RD_STATUS

If the text for transition no. 4 is taken literally, one might write:

(tLastCmd==cmd90h or tLastCmd==cmdEEh) & ht_read -> T_IDLE_RD_XFERBYTE

46

but this neglects the possibility that tbStatusOut might be TRUE, in which case transition 3 is in fact

the appropriate choice.

Thus it is necessary to consider every higher priority transition before writing the correct guard

expression. In this case it is sufficient to write:

(tbStatusOut==false and (tLastCmd==cmd90h or tLastCmd==cmdEEh))

& ht_read -> T_IDLE_RD_XFERBYTE}

By transition 6 the correct guard expression has become rather complicated because of this re-

quirement to exclude all the previous transition possibilities:

(tbStatusOut==false and tbStatus78hReq==false

and tLastCmd!=cmd90h and tLastCmd!=cmdEEh

and tLastCmd!=cmdECh and tLastCmd!=cmdEDh)

& ht_read -> T_IDLE_RD_LUNDATA

4.7 Testing

As well as checking the composite system for deadlock and livelock, we adopt the two other approaches

described in section 3.2.3: making the host repeatedly perform arbitrary commands; and checking that

certain [un]expected sequences of events are [in]correct refinements.

4.7.1 Arbitrary commands

The eh channel (described in section 4.4.3) supports events from a CSP datatype called HostEvent.

Since some commands are optional, we create a set host events mandatory that excludes them.

The process to ‘drive’ the host simply picks one command, nondeterministically:

ANYCMD_SW = |~| e : host_events_mandatory @ eh.e -> ANYCMD_SW

This process runs in parallel with the host / target / LUNs combination:

HOST_SW_ANYCMD = HOST_SW_TARGET_TWOLUNS [| {|eh|} |] ANYCMD_SW

It is checked for deadlock, as follows:

assert HOST_SW_TARGET_TWOLUNS :[deadlock free [F]]

Deadlock-freedom is not enough, however. The system must eventually perform the command

chosen by the ANYCMD SW process. All events are hidden, except for those chosen:

47

Channel Value Comment
ht ioCmd 60h Start of block erase command
- - . . . intervening address bits are hidden . . .
ht ioCmd D0h End of block erase command
ht ioCmd 70h Read Status
ht ioDataOut false Result of Read Status: busy
ht ioCmd 70h Read Status
ht ioDataOut true Result of Read Status: ready

Table 4.3: Expected events for a Block Erase

HOST_SW_ANYCMD_HIDDEN = HOST_SW_ANYCMD \ diff(Events,{|eh|})

and check for livelock:

assert HOST_SW_ANYCMD_HIDDEN :[livelock free [FD]]

4.7.2 Refinements

Each of the refinements follows a similar pattern. The host / target / LUN system is the specification.

It is not necessary for the refinement to include every single event; therefore they are restricted

to commands (i.e. events on the ht ioCmd channel, as described in section 3.1.2) and data input

and output (ht ioDataIn and ht ioDataOut respectively). All other events are hidden from the

specification.

Block Erase

The simplest command (page 53 of the ONFi specification), its expected events are shown in Table 4.3.

Since the address events are hidden, all we will see are the command bytes, followed by Read Status.

Note that the busy result, here shaded in grey, might happen zero, one, or more times, depending on

how long the flash erase operation takes.

Read

The read command (page 57) has two parts:

• the initial command including the address, followed by

• read(s) from the page register (once the LUN has finished transferring the data from the flash

array).

48

Channel Value Comment
ht ioCmd 00h Start of read command
- - . . . intervening address bits are hidden . . .
ht ioCmd 30h End of read command
ht ioCmd 70h Read Status
ht ioDataOut false Result of Read Status: busy
ht ioCmd 70h Read Status
ht ioDataOut true Result of Read Status: ready
ht ioCmd 00h Complete read
ht ioDataOut (data) Data read
ht ioCmd 70h Read Status
ht ioDataOut true Result of Read Status: ready

Table 4.4: Expected events for a Read
footer.csp Page 1

-- check whether Read Status can get both Ready or Busy after a read
READ_SPEC = HOST_SW_TARGET_TWOLUNS \ diff(Events,
 union({ht_ioCmd.cmds | cmds <-{cmd30h,cmd00h,cmd70h,cmdFFh}},{|ht_ioDataOut|}))
POWERON = ht_ioCmd.cmdFFh -> ht_ioCmd.cmd70h -> ht_ioDataOut.true -> SKIP
 -- poweron events
READ_IMPL0 = POWERON; ht_ioCmd.cmd00h -> ht_ioCmd.cmd30h
 -> ht_ioCmd.cmd70h -> ht_ioDataOut.true -- read status returned ready, so read
 -> ht_ioCmd.cmd00h -> ht_ioDataOut.false
 -> ht_ioCmd.cmd70h -> ht_ioDataOut.true -> STOP
assert READ_SPEC [T= READ_IMPL0
READ_IMPL1 = POWERON; ht_ioCmd.cmd00h -> ht_ioCmd.cmd30h
 -> ht_ioCmd.cmd70h -> ht_ioDataOut.false -- read status returned busy, so wait
 -> ht_ioCmd.cmd70h -> ht_ioDataOut.true -- read status returned ready, so read
 -> ht_ioCmd.cmd00h -> ht_ioDataOut.false
 -> ht_ioCmd.cmd70h -> ht_ioDataOut.true -> STOP
assert READ_SPEC [T= READ_IMPL1

Figure 4.15: CSP for Read refinement check

The second part can only proceed when the LUN has returned to the ready state. The host should

be acting according to Figure 4.9, so one expects to see the sequence of events shown in Table 4.4. The

last Read Status is not strictly necessary (the LUN is always ready by then) but is included because

all the host operations have the same basic structure illustrated in Figure 4.8, which always includes

a final Read Status.

The CSP for this check is shown in Figure 4.15. READ IMPL0 is a trace in which Read Status

immediately returns ready , while READ IMPL1 is a trace in which Read Status returns busy the first

time, followed by ready .

49

Channel Value Comment
ht ioCmd 80h Start of page program command
- - . . . intervening address bits are hidden . . .
ht ioDataIn (data) Data written
ht ioCmd 10h End of page program command
ht ioCmd 70h Read Status
ht ioDataOut false Result of Read Status: busy
ht ioCmd 70h Read Status
ht ioDataOut true Result of Read Status: ready

Table 4.5: Expected events for a Page Program

Page Program

This command is simpler, since the data can be written immediately to the page register by the target.

The events are shown in Table 4.5.

4.7.3 Non-refinements

The following sequences of events should not be seen, so are a useful check that the model is behaving

as expected.

Block Erase followed by Read Status Enhanced - the host, as programmed here, only uses

Read Status Enhanced during the MultiRead.

Read without Read Status - this refinement has the host immediately attempt a read, without

the intervening Read Status, and should be impossible.

Multiple Reads completed followed by busy - once the host has completed both reads, both

LUNs are in the ready state, so a Read Status Enhanced cannot return busy.

50

Chapter 5

Evaluation

5.1 Verification of ONFi specification

Various anomalies were discovered, and are summarised in the following sections.

5.1.1 Ready / Busy

The problems encountered with this pin were summarised in section 4.5.1. The solution was only a

partial one, since the specification calls in several places for Ready / Busy to be set by the target,

which is impossible if it is a hardware AND of the LUNs’ SR[6] bits.

5.1.2 Status Register Update

At the start of certain operations, the target requests that the LUN set its Status Register 6 bit to a

certain value. The precise event sequence is shown in Table 5.1. Clearly the update operation has no

effect, since SR[6] is reset to 1 when the LUN returns to L Idle.

In correspondence with ONFi (Appendix B), Michael Abraham of Micron suggested altering the

T RPP ReadParams state to remove the request to set SR[6], and insert a SR[6] change into the LUN’s

LUN state Event SR[6] value
L Idle Target request received 1
L Idle TargetRequest Target requests SR register update 1
L SR Update Update lunStatus as indicated by the Target 0
L Idle lunStatus[6] set to one 1

Table 5.1: Status Register Update: event sequence for setting SR[6] to 0

51

Target LUN
→ ECh (Read Parameter Page) received
Target requests LUN invalidate page register → LUN invalidates page register
→ Target receives 00h address cycle
Target requests LUN clear SR[6] to zero → LUN clears SR[6] to zero
Target requests LUN make page parameter
data available in page register

→ LUN starts reading parameter page into page
register

→ 70h received (Read Status) LUN finishes reading parameter page into
page register

Target indicates 70h received to LUN LUN indicates to target that parameter page
data is in page register

Table 5.2: Read Parameter Page: deadlock 1

L Idle RdPp state. Similar changes need to be made to the other target states which request a SR[6]

change (T RPP Complete, T RU ReadUid, T RU Complete, T SF Complete, T SF UpdateStatus,

T GF RetrieveParams, and T GF Ready).

5.1.3 Read Parameter Page

There are several problems with this command. It was possible to modify the CSP model to solve

some, but not all, of them.

Read Status

The CSP model deadlocks under the sequence of actions shown in Table 5.2.

There are analogous deadlocks in other sequences, specifically during the Target states T RST Perform,

T RU ReadUid, T SF Complete, and T GF ReadParams. In all of these states, the LUN indicates

directly to the target that a command has completed, rather than using SR[6]. In each case, this indi-

cation can take place while the Target is simultaneously attempting a Read Status, causing deadlock.

This can be solved by adding an additional tl sync event to the first (‘read complete’) transition

from the target state, and the same event to the LUN’s first transition. This forces both the target

and LUN along the correct transition paths: the target can no longer perform a Read Status while

the LUN completes the read. However it is inconsistent with the implicit requirement that a host can

perform a Read Status at any time to determine the device’s readiness.

52

Target LUN
→ ECh (Read Parameter Page) received
Target requests LUN invalidate page register → LUN invalidates page register
→ Target receives 00h address cycle
Target requests LUN clear SR[6] to zero → LUN clears SR[6] to zero
Target requests LUN make page parameter
data available in page register

→ LUN starts reading parameter page into page
register

→ 70h received (Read Status)
tbStatusOut is set to TRUE
Indicates 70h command to LUN → lunStatusCmd is set to 70h
Returns to T RPP ReadParams Returns to L Idle RdPp

Requests LUN make parameter page data
available

Table 5.3: Read Parameter Page: deadlock 2

Return to T RPP ReadParams after a Read Status

The state variable tReturnState is used in several locations. In general it is accessed after a Read

Status (or Read Status Enhanced) to return the target to the appropriate state while it waits for a

LUN operation to complete.

In the case of a Read Parameter Page operation, it is set to T RPP ReadParams. On return to

this state after a Read Status, the target once again performs the actions at the beginning of the

state.

These are to:

• request the LUN set its SR[6] to zero

• request the LUN make the parameter page data available in the page register

However, the LUN, being in the state L Idle RdPp, can respond to neither of these actions. Table

5.3 illustrates this sequence of events.

These deadlocks cannot be solved using additional synchronizing events.

5.1.4 Reset

Reset of more than one LUN

The Read Status command only returns the status of the most recently accessed LUN (tLunSelected):

for a reset, it should be the status of both.

53

Target LUN
→ FFh (Reset) received
Target sends a Reset request to each LUN. → Performs reset of the LUN

Reset of LUN complete

Target requests all LUNs invalidate page reg-
ister

LUN indicates to target that reset is complete

Table 5.4: Reset: deadlock 1

Target LUN
→ FFh (Reset) received
Target sends a Reset request to each LUN. → Performs reset of the LUN
→ 70h received (Read Status) Reset of LUN complete

Target indicates 70h received to LUN LUN indicates to target that reset is complete

Table 5.5: Reset: deadlock 2

Invalidate page register

The description of T RST Execute states that the target sends a reset request to each LUN, then

requests that each LUN invalidate its page register(s). However the LUN cannot do this until the

reset has completed and the LUN has returned to L Idle. If the target waits for this, it will be blocked

and unable to react to a Read Status as implied by the next Target state T RST Perform. In any

case, the LUN’s next interaction with the target must be either a ‘reset complete’ or a ‘read status’,

not an ‘invalidate page register’. This deadlock is illustrated in Table 5.4.

Read Status

The model can deadlock when a software host attempts a Read Status after a reset. This is funda-

mentally the same as Read Parameter Page’s first deadlock, and is shown in Table 5.5.

5.2 Suitability of CSP for project

It is safe to say that to verify a specification as complex as ONFi’s by hand would be impossible.

CSP has been used for examining state charts in the past, for example in [19]. The one-to-one

correspondence between CSP processes and state machine states allowed for direct conversion, avoiding

the need to abstract away too much detail.

54

5.2.1 Tractability

Unfortunately the full ONFi model proved too much for the FDR2 model-checker, failing to compile

(as described in Appendix D). The deadlocks described above were discovered in the mandatory-only

model. This ‘mandatory’ model was in fact extended beyond the strictly mandatory commands to

include the optional Read Status Enhanced (78h), to allow analysis of multiple simultaneous LUN

operations.

5.3 Success of automation

Using XSLT to convert the intermediate XML to CSP undoubtedly saved time and allowed a more

thorough model to be developed. The conversion is not totally automatic, requiring manual interven-

tion for the following:

• specification, in CSP, of

– channels

– datatypes

– sets to differentiate mandatory from optional commands

• minor supplementary CSP processes (LUN INNARDS , READYBUSY)

• parallel composition of host / target / LUN state machines

• specification of deadlock/livelock checks

Ideally the <send> notation for passing data with events would be used — currently the project’s

SCXML has CSP event notation ‘mixed in’ — and converted to CSP events. This would bring the

project’s SCXML closer to adherence to the standard.

5.4 Host process limits

The host process, thanks to its limited design, is guaranteed to deliver only ‘sensible’ sequences of

commands to the target. This means that deadlocks or other anomalies that occur during atypical

command sequences will not be picked up. To assert that the ONFi specification has been verified,

based on this project’s results, requires that the host process:

• is sufficiently complex to model all possible realistic interactions with the target, and

55

• is itself free of bugs and other implementation errors

While the latter can be assumed with some confidence due to the host’s simple (perhaps simplistic)

design, clearly there are realistic behaviours that have not been modelled, for example:

• reading one LUN while programming another

• interrupting a command with a reset (FFh) command

• changing the read column (05h)

In addition, the host has not been extended to use any of the optional commands (e.g. copyback

reads, interleaving at the LUN level).

56

Chapter 6

Conclusions

The vision of a fully verified file system is a step closer to realization. The software part of a persistent

storage system must be matched by equally dependable hardware: the ONFi specification, with at

most minor modifications, can credibly be put forward for this role.

The future of formal verification may well lie in the approach taken in this project; that is, au-

tomatic or semiautomatic conversion of human-readable specifications into machine-readable formats

such as CSP. One of the reasons given for resistance to widespread adoption of formal methods is the

unfamiliar notation. A base XML format that can be easily converted to a more digestible represen-

tation would help mitigate this problem.

6.1 Future work

6.1.1 Optional commands

The full model, including optional commands, remains to be verified. To succeed, some creativity

will be required, since the CSP model (as it currently stands) runs into the resource limits of the

FDR2 model-checker. FDR2 has the ability to compress the state space during refinement checking.

This was briefly explored during the project but the results were inconclusive. A more thorough

investigation of this functionality may remedy the state-space problems mentioned.

6.1.2 ONFi version 2.0

ONFi have since released version 2.0 of the specification. The state machine has not changed dramat-

ically: it could be modelled in the same framework without much difficulty.

57

6.1.3 Extending and streamlining the SCXML to CSP conversion

The conversion of SCXML to CSP would benefit from further automation, to reduce the necessary

manual interventions described in section 5.3. Ideally it would be possible to convert arbitrary SCXML

into CSP and then analyse it, without the in-depth knowledge of CSP that is currently required. This

would be a substantial undertaking. It would also require FDR2’s explanations of deadlocks and other

refinement problems to be automatically linked back to the source SCXML and presented to the user,

who would then never have to interpret the raw CSP. This could potentially make use of FDR2’s

TCL scripting mode, which allows direct use of the model-checking engine, without invoking the X11

front-end.

6.1.4 Integration with a verified filesystem

As previously mentioned, a verified flash memory store is only one part of the grander vision of

Dependable Systems Evolution. In theory a system that is composed of verified subsystems will itself

display predictable behaviour and will be easily analysed. However composing the subsystems is no

easy task, and requires that they present well-defined interfaces at their points of interaction. Verified

filesystems have been the subject of prior work, for example in [9]. A starting point for future work

could be to clarify:

• physical storage services required by the above file system

• services offered by the ONFi specification

Ideally one would mirror the other; realistically there may be enough overlap to develop a formal

model that incorporates both.

58

Bibliography

[1] A. Butterfield and J. Woodcock, “Formalising flash memory: First steps,” in 12th IEEE

International Conference on Engineering Complex Computer Systems, 2007, pp. 605–610.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1271068

[2] A. Hall, “Seven myths of formal methods,” IEEE Softw., vol. 7, no. 5, pp. 11–19, 1990.

[3] An analysis of two formal methods: Comparison of tool support. [Online]. Available:

https://www.dacs.dtic.mil/techs/2fmethods/tools.php

[4] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM, vol. 21, no. 8, pp.

666–677, 1978.

[5] P. Welch and N. Brown. Communicating Sequential Processes for Java (JCSP). [Online].

Available: http://www.cs.kent.ac.uk/projects/ofa/jcsp/

[6] T. Hoare and R. Milner, Eds., Grand Challenges in Computing Research. The British Computer

Society, 2004.

[7] J. P. Bowen, “Formal methods in safety-critical standards,” in Proc. 1993 Software

Engineering Standards Symposium (SESS’93), Brighton, UK. IEEE Computer Society

Press, 30 August – 3 September 1993, pp. 168–177. [Online]. Available: http:

//citeseer.ist.psu.edu/article/bowen93formal.html

[8] J. Woodcock. (2003, May) Dependable Systems Evolution - A Grand Challenge for Computer

Science. [Online]. Available: http://www.nesc.ac.uk/esi/events/Grand Challenges/proposals/

dse.pdf

[9] K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard, “On Verifying a File System Implementation,”

Tech. Rep., 2004.

59

http://portal.acm.org/citation.cfm?id=1271068
https://www.dacs.dtic.mil/techs/2fmethods/tools.php
http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://citeseer.ist.psu.edu/article/bowen93formal.html
http://citeseer.ist.psu.edu/article/bowen93formal.html
http://www.nesc.ac.uk/esi/events/Grand_Challenges/proposals/dse.pdf
http://www.nesc.ac.uk/esi/events/Grand_Challenges/proposals/dse.pdf

[10] J. Yang, P. Twohey, D. Engler, and M. Musuvathi, “Using model checking to find serious file sys-

tem errors,” in OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Systems

Design & Implementation. Berkeley, CA, USA: USENIX Association, 2004, pp. 19–19.

[11] R. Joshi and G. J. Holzmann, “A mini challenge: build a verifiable filesystem,” Form. Asp.

Comput., vol. 19, no. 2, pp. 269–272, 2007.

[12] ONFi website. [Online]. Available: http://www.onfi.org

[13] C. Edwards, “The Dash For Flash,” IEEE Engineering and Technology, Feb 2008.

[14] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci. Comput. Program., vol. 8,

no. 3, pp. 231–274, 1987.

[15] World Wide Web Consortium (W3C). State Chart XML (SCXML): State Machine Notation for

Control Abstraction. [Online]. Available: http://www.w3.org/TR/scxml/

[16] T. A. Project. Commons SCXML. [Online]. Available: http://commons.apache.org/scxml/

[17] W3C Markup Validation Service. [Online]. Available: http://validator.w3.org

[18] A. Huffman, personal communication.

[19] W. L. Yeung, K. R. P. H. Leung, J. Wang, and W. Dong, “Modelling and model checking

suspendible business processes via statechart diagrams and CSP,” Sci. Comput. Program., vol. 65,

no. 1, pp. 14–29, 2007.

60

http://www.onfi.org
http://www.w3.org/TR/scxml/
http://commons.apache.org/scxml/
http://validator.w3.org

Appendix A

Example State Chart XML

A.1 Lift

This example presents a model of a lift in a building with five floors1. It responds to up and down

events from the user. Doors are opened and closed with the open and close events.

Some restrictions are necessary to ensure realistic operation:

• The lift may not go above floor 5 nor below floor 1.

• When the doors are open, the lift will not move. The only possible event is close.

A.1.1 SCXML representation

Figure A.1 shows the SCXML for the above example. The Data(liftState,...) wrapper around

the data items is necessary in the Apache Commons implementation, since it uses the JEXL expression

language to process these expressions. Note that < and > must be escaped as > and < in XML.

A.1.2 Direct use of Commons SCXML

The output in Figure A.2 shows what happens when the SCXML is used directly with the Commons

SCXML library.

A.1.3 CSP representation

The SCXML to CSP converter is called from the command line as illustrated in Figure A.3.
1This example is adapted from lecture notes prepared by Dr Andrew Butterfield.

61

lift.sc.xml Page 1

<scxml xmlns="http://www.w3.org/2005/07/scxml" version="1.0"
 initialstate="lift">
 <datamodel>
 <data name="liftState">
 <floor xmlns="">1</floor>
 <doorsOpen xmlns="">false</doorsOpen>
 </data>
 </datamodel>
 <state id="lift">
 <onentry>
 <log label="lift_at_floor" expr="Data(liftState,'floor')"/>
 </onentry>
 <transition event="up" target="lift"
 cond="Data(liftState,'doorsOpen')==false &&
 Data(liftState,'floor') < 5">
 <assign location="Data(liftState,'floor')"
 expr="Data(liftState,'floor') + 1"/>
 </transition>
 <transition event="down" target="lift"
 cond="Data(liftState,'doorsOpen')==false &&
 Data(liftState,'floor') > 1">
 <assign location="Data(liftState,'floor')"
 expr="Data(liftState,'floor') - 1"/>
 </transition>
 <transition event="open" target="lift"
 cond="Data(liftState,'doorsOpen')==false">
 <assign location="Data(liftState,'doorsOpen')" expr="true"/>
 </transition>
 <transition event="close" target="lift"
 cond="Data(liftState,'doorsOpen')==true">
 <assign location="Data(liftState,'doorsOpen')" expr="false"/>
 </transition>
 </state>
</scxml>

Figure A.1: SCXML for Lift example

62

20-Jul-2008 16:43:45 org.apache.commons.scxml.model.Log execute
INFO: lift_at_floor: 1.0
20-Jul-2008 16:43:45 org.apache.commons.scxml.env.SimpleSCXMLListener onEntry
INFO: /lift

up

20-Jul-2008 16:43:51 org.apache.commons.scxml.env.SimpleSCXMLListener onExit
INFO: /lift
20-Jul-2008 16:43:51 org.apache.commons.scxml.env.SimpleSCXMLListener onTransition
INFO: transition (event = up, cond = Data(liftState,’doorsOpen’)==false

&& Data(liftState,’floor’)<5, from = /lift, to = /lift)
20-Jul-2008 16:43:51 org.apache.commons.scxml.model.Log execute
INFO: lift_at_floor: 2.0
20-Jul-2008 16:43:51 org.apache.commons.scxml.env.SimpleSCXMLListener onEntry
INFO: /lift

down

20-Jul-2008 16:43:56 org.apache.commons.scxml.env.SimpleSCXMLListener onExit
INFO: /lift
20-Jul-2008 16:43:56 org.apache.commons.scxml.env.SimpleSCXMLListener onTransition
INFO: transition (event = down, cond = Data(liftState,’doorsOpen’)==false

&& Data(liftState,’floor’)>1, from = /lift, to = /lift)
20-Jul-2008 16:43:56 org.apache.commons.scxml.model.Log execute
INFO: lift_at_floor: 1.0
20-Jul-2008 16:43:56 org.apache.commons.scxml.env.SimpleSCXMLListener onEntry
INFO: /lift

Figure A.2: Using the Apache Commons SCXML library directly with the Lift example

java -jar saxon/saxon9.jar -t scxmlTests/lift.sc.xml SCXMLtoCSP.xslt JEXL=yes

Saxon 9.0.0.6J from Saxonica
Java version 1.6.0_06
Stylesheet compilation time: 1693 milliseconds
Processing file:/home/art/dissertation/scxmlTests/lift.sc.xml
Building tree for file:/home/art/dissertation/scxmlTests/lift.sc.xml using class
net.sf.saxon.tinytree.TinyBuilder
Tree built in 14 milliseconds
Tree size: 24 nodes, 6 characters, 32 attributes

Figure A.3: Calling the Saxon XSLT processor

63

lift.csp Page 1

channel up

channel down

channel open

channel close

INITIAL_LIFT=LIFT(1,false)

LIFT(floor,doorsOpen) =

 ((doorsOpen==false and floor<5)

 & (up -> LIFT(floor + 1,doorsOpen))

 []

 (doorsOpen==false and floor>1)

 & (down -> LIFT(floor - 1,doorsOpen))

 []

 (doorsOpen==false)

 & (open -> LIFT(floor,true))

 []

 (doorsOpen==true)

 & (close -> LIFT(floor,false))

Figure A.4: CSP for Lift example

Figure A.5: Exploring the CSP process using Probe

The optional JEXL=yes command line parameter informs the XSLT script that it must remove the

Data(’...’) from around the data items before converting them to CSP.

It yields the CSP shown in Figure A.4. The channels have been generated automatically from the

set of events that exist within the SCXML. Since default values are provided for the data, the XSLT

also creates an initial state with an INITIAL prefix and fills in those defaults.

The Probe tool, available from the makers of FDR2, allows the user to explore a CSP process

directly. Figure A.5 shows the Probe tool performing the same sequence of events as in Figure A.2.

64

trpp.xml Page 1

<?xml version="1.0" encoding="UTF-8" ?>
<state id="T_RPP_ReadParams">
 <onentry>
 <event name="tl.tLunSelected!targRequest"/>
 <event name="tl_setSR6.tLunSelected!false"/>
 <assign location="isReadyBusy" expr="false"/>
 <event name="tl.tLunSelected!targRequest"/>
 <event name="tl.tLunSelected!retrieveParameters"/>
 <assign location="tReturnState" expr="T_RPP_ReadParams"/>
 </onentry>
 <transition event="tl.tLunSelected.readPageComplete" target="T_RPP_Complete"/>
 <transition event="ht_ioCmd.cmd70h" target="T_RS_Execute"/>
 <transition event="ht_read" cond="tbStatusOut==true" target="T_Idle_Rd_Status"/>
</state>
trpp.csp Page 1

T_RPP_READPARAMS(tbStatusOut,tbChgCol,tCopyback,tLunSelected,tLastCmd,tReturnState,

 tbStatus78hReq,cmd,isReadyBusy,isWriteProtected,dataBit,addrReceived,lun0ready,

 lun1ready,intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL) =

 tl.tLunSelected!targRequest -> tl_setSR6.tLunSelected!false ->

 tl.tLunSelected!targRequest -> tl.tLunSelected!retrieveParameters ->

 (tl.tLunSelected.readPageComplete -> T_RPP_COMPLETE(tbStatusOut,

 tbChgCol,tCopyback,tLunSelected,tLastCmd,T_RPP_ReadParams,

 tbStatus78hReq,cmd,false,isWriteProtected,dataBit,addrReceived,

 lun0ready,lun1ready,intCounter,addr3Block,addr2Page,addr1ColH,

 addr0ColL)

 []

 ht_ioCmd.cmd70h -> T_RS_EXECUTE(tbStatusOut,tbChgCol,tCopyback,

 tLunSelected,tLastCmd,T_RPP_ReadParams,tbStatus78hReq,cmd,false,

 isWriteProtected,dataBit,addrReceived,lun0ready,lun1ready,

 intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL)

 []

 (tbStatusOut==true)

 & (ht_read -> T_IDLE_RD_STATUS(tbStatusOut,tbChgCol,tCopyback,

 tLunSelected,tLastCmd,T_RPP_ReadParams,tbStatus78hReq,cmd,false,

 isWriteProtected,dataBit,addrReceived,lun0ready,lun1ready,

 intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL)))

Figure A.6: SCXML vs generated CSP code for state T RPP ReadParams

A.2 ONFI

The above CSP is considerably more compact than the original SCXML, and the reader will be

forgiven for questioning the efficiency of the intermediate XML step.

The advantages should become clear when one considers the increase in size of the CSP code when

a more realistic amount of state is included. The state variables for a target, as well as the extra state

detailed in section 3.1.3, must be included in every reference to a process. Figure A.6 compares the

resulting CSP code of the state T RPP READPARAMS with the SCXML from section 4.2.4. Clearly

to write this kind of code by hand would be laborious, and more importantly, prone to data entry

errors.

65

Appendix B

Correspondence with ONFi

B.1 SR[6] update

In an email dated 3 July 2008, in response to the query we raised in relation to section 5.1.2, Michael

Abraham of Micron suggested the following amendment to the specification.

I agree with your assessment for query #2. The behavioral flow has a

problem and needs to be updated. Here’s how I see that this should be

handled:

1. T_RPP_ReadParams should remove "1. Request LUN tLunSelected clear

SR[6] to zero."

2. T_RPP_ReadParams should remove "2. R/B# is cleared to zero."

3. L_Idle_RpPp should add a line that says, "1. lunStatus[6] is cleared

to zero. lunStatus[6] value is indicated to the Target."

I think that these changes would automatically cause R/B# to be set LOW.

RPP is a target-level command and no operations should be occurring on

any of the other LUNs while this command is executing. I believe that is

why we did a target-level update of R/B# in T_RPP_ReadParams.

I haven’t looked at the other flows mentioned (Set/Get Features, Read

Unique ID), but I’d think that the problem could be similarly resolved.

66

Appendix C

Technical architecture

The files ONFI.csp and ONFI-mandatory.csp draw together all the relevant code using CSP’s include

command. Figure C.1 shows their contents. Note that the referenced files are the same in both files,

apart from the auto-generated CSP files for the host, target, and LUN state machines, which vary

between the mandatory and full specification. To perform the checks one simply loads either file into

the FDR2 refinement-checking program and double-clicks the refinement of interest.

header.csp contains declarations of datatypes and CSP channels, as described in section 3.1.2.

SR6.csp contains the READYBUSY process, as described in section 4.5.1.

lun-innards.csp contains the implementation of the LUN INNARDS process described in section

4.5.2.

footer.csp is the file that actually composes the separate CSP processes into a single system, and

contains the refinements and other checks described in section 4.7.

ONFI.csp

include "header.csp"
include "host-software.csp"
include "host-hardware.csp"
include "target.csp"
include "SR6.csp"
include "lun.csp"
include "lun-innards.csp"
include "footer.csp"

ONFI-mandatory.csp

include "header.csp"
include "host-software-mandatory.csp"
include "host-hardware-mandatory.csp"
include "target-mandatory.csp"
include "SR6.csp"
include "lun-mandatory.csp"
include "lun-innards.csp"
include "footer.csp"

Figure C.1: ONFI.csp and ONFI-mandatory.csp

67

Appendix D

Optimizing CSP for FDR2

During development of the model, the boundaries of the FDR2 model-checker program were continu-

ally being tested.

Failure in FDR2 is invariably announced with the status message ‘failed to compile ISM’ and

the error icon: .

D.1 State space

Reducing the state space is the primary method of addressing this problem. This is achieved in several

ways:

• Eliminating unnecessary state variables. Is a higher level of abstraction, with fewer state vari-

ables, appropriate for the model in question?

In this project it was necessary to disregard the state of the actual flash array (i.e. the bits used

for storing data). This has no effect on the sequences of events that the device exhibits, and

hence the model remains valid for the purposes of verifying the specification.

• Resetting state variables to a known value on return to key states, so long as this does not

affect the semantics of the model. This reduces the number of state-space possibilities of the

key states.

• Setting bounds on state variables. For example, there may be a counter that is known never to

go above a certain value. On incrementing the counter, modulo arithmetic or a simple maximum

check can be used to set a bound on that counter.

68

In some cases it may be possible to replace an integer counter with a simple boolean 0 or 1.

D.2 Stack limit

Correspondence with Formal Systems, the makers of FDR2, revealed that in certain cases the stack

limit was being reached. This is easily resolved via the bash command:

ulimit -s 262144

This increases the stack space available to all commands subsequently executed by that shell. The

command can also be added to the user’s bashrc file to avoid the necessity of typing it each time.

D.3 Operating system and architecture

Since FDR2 is available on both Linux and Solaris platforms, it is worth (as a last resort) attempting

to compile the model on an alternative system. In this project the SPARC Solaris platform was found

to have fewer compilation problems, though no systematic investigation was undertaken.

69

Appendix E

Event sequence example: Single

‘Read’ operation

As noted in section 4.1, initial work on the project included a manually-created spreadsheet showing

the sequence of events during some common operations. Below is the sequence for a normal read

operation, for a hardware-based host that does not require a Read Status operation.

Light blue rows indicate communication taking place between target and LUN, while red text

indicates an action is taking place, perhaps internally.

70

tb
S

ta
tu

s
7
8
h
R

e
q

R
/B

#

T_Idle F F F 0 T_Idle F 1 L_Idle 01000000 0 L_Idle 70h 0h F ??

Command cycle received

F F F 0 T_Idle F 1

Command 00h (Read) decoded

T_RD_Execute F F F 0 T_Idle F 1

F F F 0 00h T_Idle F 1

Address cycle received

F F F 0 00h T_Idle F 1

More address cycles required

F F F 0 00h T_Idle F 1

Address cycle received

F F F 0 00h T_Idle F 1

More address cycles required

F F F 0 00h T_Idle F 1

Address cycle received

F F F 0 00h T_Idle F 1

More address cycles required

F F F 0 00h T_Idle F 1

Address cycle received

F F F 0 00h T_Idle F 1

More address cycles required

F F F 0 00h T_Idle F 1

Address cycle received

F F F 0 00h T_Idle F 1

Al address cycles received

T_RD_LUN_Execute F F F 1 00h T_Idle F 1 Target request received

Unconditional 01000000 0 L_Idle 70h 0h F ??

T_RD_LUN_Confirm F F F 1 00h T_Idle F 1 Target indicates Read Page request for this LUN

Command cycle of 30h received 01000000 0 L_Idle 70h 0h F ??

F F F 1 00h T_Idle F 1 Command Cycle 30h received

tb
S

ta
tu

s
O

u
t

tb
C

h
g
C

o
l

tC
o
p
y
b
a
c
k

tL
u
n
S

e
le

c
te

d

tL
a
s
tC

m
d

tR
e
tu

rn
S

ta
te

lu
n
S

ta
tu

s

lu
n
F

a
il[

]

lu
n
L
a
s
tC

o
n
fi
rm

lu
n
R

e
tu

rn
S

ta
te

lu
n
S

ta
tu

s
C

m
d

lu
n
S

ta
tu

s
Il
v

lu
n
b
In

te
rl
e
a
v
e

lu
n
b
Il
v
N

e
x
tC

m
d

FFh FFh

T_Cmd_Decode FFh

FFh

tbStatusOut set to FALSE

T_RD_AddrWait

T_RD_Addr

[store the address cycle

received]

T_RD_AddrWait

T_RD_Addr

[store the address cycle

received]

T_RD_AddrWait

T_RD_Addr

[store the address cycle

received]

T_RD_AddrWait

T_RD_Addr

[store the address cycle

received]

T_RD_AddrWait

T_RD_Addr

[store the address cycle

received]

Issues read Page to

tLunSelected,

requests all idle LUNs not

selected to turn off their output

buffers

L_Idle_TargetRequest FFh

L_RD_WaitForCmd FFh

T_RD_Cmd_Pass

Pass command received to

LUN 1

Standard read from
LUN 1

LUN behaviour

tb
S

ta
tu

s
7
8
h
R

e
q

R
/B

#

tb
S

ta
tu

s
O

u
t

tb
C

h
g
C

o
l

tC
o
p
y
b
a
c
k

tL
u
n
S

e
le

c
te

d

tL
a
s
tC

m
d

tR
e
tu

rn
S

ta
te

lu
n
S

ta
tu

s

lu
n
F

a
il[

]

lu
n
L
a
s
tC

o
n
fi
rm

lu
n
R

e
tu

rn
S

ta
te

lu
n
S

ta
tu

s
C

m
d

lu
n
S

ta
tu

s
Il
v

lu
n
b
In

te
rl
e
a
v
e

lu
n
b
Il
v
N

e
x
tC

m
d

Standard read from
LUN 1

LUN behaviour

Command passed was 30h

T_Idle_Rd F F F 1 00h T_Idle_Rd F 1

LUN indicates its SR[6] value transitioned 0 30h 70h 0h F ??

T_Idle_RB_Transition F F F 1 00h T_Idle_Rd F 0

State entered from T_Idle_Rd

T_Idle_Rd F F F 1 00h T_Idle_Rd F 0 Read of requested page complete

LUN indicates its SR[6] value transitioned L_RD_Complete 0 30h 70h 0h F ??

T_Idle_RB_Transition F F F 1 00h T_Idle_Rd F 1

State entered from T_Idle_Rd

T_Idle_Rd F F F 1 00h T_Idle_Rd F 1 Unconditional

LUN indicates its SR[6] value transitioned L_Idle_Rd 0 30h L_Idle_Rd 70h 0h F ??

T_Idle_RB_Transition F F F 1 00h T_Idle_Rd F 1

State entered from T_Idle_Rd

T_Idle_Rd F F F 1 00h T_Idle_Rd F 1

Read request received and tbStatus78hReq set to FALSE

F F F 1 00h T_Idle_Rd F 1 Read request received from Target

Byte received from LUN 1 01100000 0 30h L_Idle_Rd 70h 0h F ??

F F F 1 00h T_Idle_Rd F 1 Transfer byte of data to host Unconditional

(3. Else) L_Idle_Read 01100000 0 30h L_Idle_Rd 70h 0h F ??

T_Idle_Rd F F F 1 00h T_Idle_Rd F 1

L_RD_ArrayRead 00000000 L_RD_ArrayRead

lunStatus[6] indicated to

Target

01100000 L_RD_ArrayRead

lunStatus[6] indicated to

Target

01100000

lunStatus[6] indicated to

Target

T_Idle_Rd_LunData

Request byte of data from

page register of LUN 1

L_Idle_Rd_Xfer

Transfer next byte to target,

increment column address

T_Idle_Rd_XferHost

lunStatus[6] indicated to

Target

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Flash Memory
	NAND and NOR flash

	ONFi
	Modelling the ONFi specification
	Project aims

	Chapter Background
	Formal Methods
	Refinement
	Prevalence

	CSP
	Notation
	Parallel Composition
	Choice
	Communications
	Variables
	Refinement
	Practical implementations

	Grand Challenges in Computing
	Grand Challenge 6 - Dependable Systems Evolution

	ONFi consortium
	ONFi specification
	Physical Interface
	Memory organisation
	Timing
	Commands
	Behavioural flows

	Chapter Design
	CSP model
	Host device
	Communications
	Keeping state
	Minimizing state space

	Analysis
	Deadlock freedom
	Livelock freedom
	Behavioural flows

	Chapter Implementation
	Proof of concept
	Host
	Verification
	Limits of prototype model

	State Chart XML
	XML languages for State Charts
	Origins of SCXML
	W3C specification
	Mapping ONFi specification to SCXML
	Apache Commons implementation
	Adherence to SCXML standard

	XML Transformations
	SCXML to CSP
	SCXML to HTML
	Mandatory-only states

	Design of the host process
	Read Command
	Interleaved actions
	Controlling the host

	Additional processes
	Status Register bit 6
	LUN `innards' process

	State Transitions
	Testing
	Arbitrary commands
	Refinements
	Non-refinements

	Chapter Evaluation
	Verification of ONFi specification
	Ready / Busy
	Status Register Update
	Read Parameter Page
	Reset

	Suitability of CSP for project
	Tractability

	Success of automation
	Host process limits

	Chapter Conclusions
	Future work
	Optional commands
	ONFi version 2.0
	Extending and streamlining the SCXML to CSP conversion
	Integration with a verified filesystem

	Bibliography
	Appendix Example State Chart XML
	Lift
	SCXML representation
	Direct use of Commons SCXML
	CSP representation

	ONFI

	Appendix Correspondence with ONFi
	SR[6] update

	Appendix Technical architecture
	Appendix Optimizing CSP for FDR2
	State space
	Stack limit
	Operating system and architecture

	Appendix Event sequence example: Single `Read' operation

