
Profiling User Activities On Guest OSes in a

Virtual Machine Environment

by

Enrico Perla

A Dissertation submitted to the University of Dublin,

in partial fulfillment of the requirments for the degree of

Master of Science in Computer Science

2008

Declaration

I, the undersigned, declare that this work has not previously been sub-

mitted as an exercise for a degree at this, or any other university, and that

unless otherwise stated, is my own work.

Enrico Perla

September 1, 2008

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy

this thesis upon request.

Enrico Perla

September 1, 2008

”A man travels the world over in search of what he needs, and returns home

to find it.”

– George Moore

To Franco, Lallamaria and Michela

Acknowledgments

To inode, lambdawar, akira, revenge, iotun and antani...

... talking with you is always special.

Enrico Perla

University of Dublin, Trinity College

September 2008

v

Profiling User Activities On Guest OSes in a

Virtual Machine Environment

Enrico Perla

University of Dublin, Trinity College, 2008

Supervisor: Stephen Farrell

Virtual Machines (VM) are becoming the norm in large scale server

environments. Typically, it is assumed that guest operating systems (OSes)

running under the host OS cannot interfere with, or observe, one another.

Clearly however, if a process can escape the jail of the guest OS and run in

the host OS, then it could invalidate this assumption. This may not be an

easy task for the attacker. We have taken Xen, a widely used opensource

virtualization solution, and we have investigated whether a malicious guest

OS may usefully succeed in profiling activity on other guest OSes or the

host OS without having to break out of the jail. We discovered three design

flaws that allow a guest OS to identify guests running on the same host OS,

map them to their network address and, in some cases, take control over

their network activity. All the attacks have been glued into a single, highly

automated, tool, xenophobia.

vi

Contents

Acknowledgments v

Abstract vi

List of Figures ix

Chapter 1 Introduction 1

1.1 Outline . 4

Chapter 2 Background 5

2.1 Modern Computer Architecture 5

2.2 Modern Operating System Implementation 7

2.3 Design Principles of System Virtual Machines 9

2.3.1 Native VM systems 10

2.3.2 Hosted VM systems 12

2.3.3 Paravirtualization . 13

2.4 Xen . 14

Chapter 3 State of the Art 16

3.1 Systems Security Attacks . 17

3.2 The System Virtual Machines Hope 20

vii

3.3 Attacking System Virtual Miachines 22

3.4 Xen Security . 24

Chapter 4 Xen Internals and Design Issues: the Path to Pro-

filing 26

4.1 An overview of the attacks . 26

4.2 Xen building blocks: grant tables 33

4.2.1 Enumerating Guest Domains via Grant Table Opera-

tion Error Codes . 35

4.3 Split Drivers, XenStore and XenBus 39

4.3.1 The Split Driver Model 39

4.3.2 XenStore . 41

4.3.3 XenBus . 45

4.3.4 Exploiting the XenStore/watch design: the DHCP at-

tack . 48

4.4 Xen Paravirtualized Network Driver 56

4.4.1 Network Level Tricks: the Bad Checksum Story 58

Chapter 5 The Code Implementation: xenophobia 65

5.1 xenophobia architecture . 66

Chapter 6 Conclusions and Future Work 71

6.1 Conclusions . 71

6.2 Extending the tool . 73

6.3 Mitigating the attacks . 74

Bibliography 77

viii

List of Figures

1.1 System Level VMM . 2

4.1 Guest Maps Domain IDs Based on Hypervisor Replies 27

4.2 A Host Broadcasting a DHCPDISCOVER 28

4.3 An Evil Host Attempts to Win the Race with the DHCP Server 29

4.4 The DHCP-Prediction Attack 30

4.5 Only Guests On the Same VMM Reply to Bad Chksum’ed

Packets . 31

4.6 Classic Evasion Example . 32

4.7 struct grant entry . 33

4.8 HYPERVISOR grant table op 34

4.9 GNTTABOP map grant ref Operation and Related Struct . . 35

4.10 Grant Table Operations Return Codes 36

4.11 Error Checking Inside map grant ref 38

4.12 XenStore do is domain introduced 39

4.13 Extract of XenStore tree . 42

4.14 Example of XenStore permissions on entries 43

4.15 How XenStore is Mapped Thanks to start info 44

4.16 struct xenbus device . 45

ix

4.17 otherend changed Watch Callback 46

4.18 How otherend watch Callback and Related Watch is Setup . . 47

4.19 XenStore Entry Permissions Checking Code 49

4.20 Error Checking on Watch Setup 50

4.21 dhclient Transaction ID Computation 55

4.22 Extract of ’time(2)’ Manual Page 56

4.23 Linux Network Devices Checksum Related Flags 59

4.24 sk buff Members Added by Xen 61

4.25 Checksum Related Flags at Guest Sending Time 62

4.26 Checksum Handling Inside Netback When Netfront Transmits 62

5.1 xenophobia Architecture . 66

5.2 xphb Commands . 69

x

Chapter 1

Introduction

The term Virtualized environment has multiple meanings. A common dis-

tinction [1] is between process level virtual machines, aimed at containing

a single process and that permit independence from the underlying oper-

ating system (ex. Java [2], .NET Framework [3]), and system level virtual

machines, where a set of hardware resources is virtualized to allow differ-

ent guest operating systems to run on the same machine at the same time.

In this thesis we focus on system level virtual machines and, in particular,

we will analyse a range of security issues related to the Xen Hypervisor,

an OpenSource project that is more and more establishing itself as one of

the leading projects in the field. This is shown by, for example, the recent

purchase of XenSource by CitriX [4] for $500M and the choice of Sun Mi-

crosystems to base one of their own virtualization solutions [5] , xVM, on

the Xen’s project.

The general idea behind system level virtualization is to interpose a piece

of software between the hardware and the operating system that will take

control of the available physical resources (CPU, memory, I/O devices) and

1

will manage to partition or share them among different running operating

system instances. One of the reasons virtualization systems have gained

more and more interest recently is the security enhancement that they pro-

vide, especially thanks to isolation and replication (Fig. 1.1).

Figure 1.1: System Level Virtual Machine Monitor (taken from ”Virtual

Machines”, Smith and Nair)

Guests are isolated one from the other. That means that a malicious

guest should not be able to interfere with the correct behaviour of the oth-

ers. Since creating multiple guests is a cheap operation (cheaper, indeed,

than having multiple physical machines...), different services can each re-

ceive their own isolated system and a compromise of one of them should

not affect the others. Guests can also be replicated, to improve the fault-

tolerance of the system. Moreover, suspicious software can be tested on a

twin guest and the effects can be monitored before trusting it.

From the examples above (which are far from being a complete overview

2

of the security advantages that system virtual machines may introduce) it

should be clear why virtual machines are getting more and more attention

and deployment. This leads, logically, also to a growing interest in attacking

VMs. Attacks range from detecting [6] the presence of a virtual machine

monitor, exploiting or dossing (D.o.S., Denial of Service) the VMM and

backdooring1 it. Less work has so far been done so far to analyse the design

decisions that may help a guest in breaking the isolation property of the

virtual machine environment without raising its own privileges.

This ”lack” of work is particularly visible when we come to talk about the

Xen Hypervisor. Xen uses a design in which very little code is kept inside the

hypervisor itself and a lot of the work is left to a privileged domain, known

as domain zero (dom0). All the other, unprivileged, domains are known as

domain U (domU). A couple of tools and papers have been presented [7]

[8] that aim at attacking the various domU from the dom0 or that aim at

implementing hypervisor-level backdoors/rootkits2. All this work is based

on the assumption that the attacker has already managed to break into the

dom0 and has full privileges on it, which may be a hard task to accomplish

and, thus, a relatively uncommon situation. In this thesis we will focus on

what a domU can do against other domains without raising its privileges,

that is, without managing to break into dom0. We will show how, thanks

to a couple of design flaws, other domains running under the same VMM

can be identified and some attacks that can be carried out thanks to the

information discovered. These attacks may allow an attacker to get complete
1backdooring refers to the programs that an attacker installs to maintain access on a

compromised host
2a rootkit is the set of tools that an attacker uses once the box has been compromised

3

control over the outgoing network traffic of the victim and evade common

IDS (Intrusion Detection Systems) configurations.

1.1 Outline

This thesis is divided in four main chapters:

Chapter 2 provides background information about modern operating

systems and the approaches used to virtualize them. This chapter ends up

with an overview of the Xen VMM.

Chapter 3 presents a survey of the most common attacks that can be

carried out against a Modern Operating System. The discussion then moves

to evaluating how virtual machines affect these kind of attacks, showing the

security improvement that VMMs can give but also analysing the fact that

VMs can themselves become a new target for attackers and expose new vul-

nerabilities. The discussion ends with an overview of the security features

of Xen.

Chapter 4 is the heart of the thesis. Three different attacks are de-

scribed in detail, together with an in-depth description of the affected Xen

internals.

Chapter 5 describes how all the theoretical attacks discussed in the

chapter four can be efficiently implemented into a single, highly automated,

tool.

4

Chapter 2

Background

2.1 Modern Computer Architecture

Any virtualization system is built upon a real system and it is up to the

virtual machine monitor (VMM) to map virtualized resources onto physical

ones. Understanding the behaviour of the components of a real system is

thus of critical importance in understanding and attacking a virtual machine

environment. A modern computer architecture can be basically divided in

three main components: processor(s), memory and I/O devices.

The processor is responsible of fetching the instructions to be executed

from the main memory, decoding and then executing them. Modern pro-

cessors usually have a superscalar [9] design: multiple instructions can be

fetched and decoded in a single clock cycle and execution may happen out-

of-order (that is, instructions may be re-arranged for performance reasons

by the processor itself). The processor Instruction Set Architecture (ISA)

usually defines a set of registers (or other fast-memory storage) and a set of

instructions that can be executed. The processor has usually at least two

5

different modes of operation: user and supervisor. The available ISA in

user mode is generally a subset of the one available in supervisor mode. The

instructions available only in supervisor mode are referred to as privileged or

reserved. An attempt to execute a reserved instruction when in user mode

usually results in a trap; on some architectures, as the x86 [10], there are

privileged instructions that if executed in user mode do not trap and, in-

stead, get considered as no-op or have a different behaviour (ex. POPF) [11].

As we will see in the following section about the principles of virtualizabil-

ity, this is a fundamental property to be taken in account when designing a

VMM.

We said that the processor fetches the instructions from the memory.

Moreover, any given program running on the system needs to keep some data

for a given amount of time. All these tasks (and more) are accomplished

by the memory subsystem. This subsystem is composed of a hierarchical set

of components: processor registers, cache memory, main memory (RAM)

and disk storage1. Starting from the registers and going towards the disk

storage, the components become slower, more capacious and less expensive.

From the point of view of memory management, the first two components

(processor registers and cache memories) are usually managed directly by

the hardware2, while the main memory and the disk are handled by the

Operating System software.
1We consider here the disk storage as a component of the memory subsystem because

swapping is a common practise [12] [13] in any modern operating system. Strictly speaking,
at this point of the discussion, the disk should be considered an I/O device. Similar
considerations can be made for the processor register, they are part of the processor, but
they basically act as a very small and very fast cache

2TLBs (Translation Lookaside Buffers) have not been mentioned explicitly but are con-
sidered as part of the generic cache memories approaches. TLBs can be both hardware con-
trolled (as in the x86 [10] architecture) or software controlled (as in the UltraSPARC [14]
architecture)

6

Modern computers have lots of devices: disks, ethernet cards, mouse,

keyboard, video, sound cards, etc. The I/O subsystem is made of all the

buses that connect those devices to the processor and memory. There is

a set of standard buses, as the PCI or the USB ones, so that new devices

can be manufactured and integrated with less effort. The bus is used as the

channel of communication between the devices and the processor/memory:

commands to the devices are issued on the bus and the results go back

through it again. To handle multiple devices on the same bus, usually a bus

arbiter [15] is present. Modern I/O devices generally have a controller [15]

too, which stands in between the physical device and the bus, to improve

performances.

2.2 Modern Operating System Implementation

The second step towards better understanding the implementation and the

reasons behind virtualization systems is an analysis of the relevant design

principles of modern operating systems. It should be of no surprise to dis-

cover that some virtualization concepts are present in operating systems

design. A first example is the virtual memory implementation: every run-

ning process is given the illusion of having the whole memory address space

for itself. The size of the address space depends on the number of bits

that can be used to specify a given memory address (as stated by the ISA

definition [15]): since the memory is usually byte addressable, if there are

n bits available the maximum size is 2n bytes. Common sizes for modern

systems are 32 or 643 bit. Obviously, especially for the 64 bit case, there
3It is common, for performance reasons, in 64 bit architectures and operating systems

to use only a subset of the addressable space, for example 48 bits (as is the case on the
UltraSPARC architecture)

7

can not be such an amount of physical memory in the system. To achieve

this illusion, the physical memory is divided in fixed-size small units, called

page frames [12] [13]. Only the necessary pages are allocated to requesting

processes and pages can be swapped out to disk and paged back in when

necessary. This whole approach, which is by far the most common, goes

under the name of demand paging [12] [13].

Virtualization principles can be seen not only in memory management,

but also in filesystem/disk handling. In fact, virtual memory and filesys-

tem implementation are tightly linked, as is demonstrated by the page

cache [12] [13], which uses the virtual memory to keep the most commonly

used disk contents in memory and thus increase performance. Moreover,

disks are large, so it is common to partition them, creating a set of smaller

”virtual disks”. Each partition can be formatted with a different filesystem,

so that different operating system can coexist on the same physical hard

drive (even if only one can be active).

In modern operating systems there is a distinction between kernel land

(the area where the kernel resides and executes) and user land (the area

where all the normal programs run) [16] [17] [18]. The kernel is the only

piece of code running with supervisor privileges and thus is the only piece

of code that has access to the whole ISA instruction set. Interrupt and trap

service routines reside in kernel land and are generally accessed through

vectors/tables. Interrupts and traps are also the common way for a user

land process to request a kernel service or for an I/O device to signal that

an operation has been performed or a problem was encountered.

I/O devices are handled by the kernel through so called device drivers,

add-on modules that can be loaded or activated at runtime, to react to

changes such as the insertion of a USB drive. Those device drivers generally

8

run in supervisor mode.

2.3 Design Principles of System Virtual Machines

Modern operating systems give the illusion of multiple processes running

at the same time by switching the available resources from one process to

another every now and then. System virtual machines bring this idea one

step further, creating multiple isolated environments where different operat-

ing systems (or different instances of the same operating system) run at the

same time. It is the job of the VMM (Virtual Machine Monitor) to control

and manage the access to the shared physical resources on the host ma-

chine among the various guests. Access to hardware devices can be granted

in different ways: the same device can be partitioned among the different

operating systems (ex. hard disk) or the access to the device can be fully

given only to the actual running image and switched every time (e.g. key-

board). Since the VMM is a piece of software, some devices can even be

totally emulated in software, without the need of an hardware counterpart

(e.g. virtual ethernet devices). Popek and Goldberg in their paper “Formal

Requirements for Virtualizable Third Generation Architectures” [19] define

three mandatory properties for the VMM:

• Fidelity the environment for the execution of the processes has to

be “essentially identical with the original machine”, with two notable

exceptions: differences are accepted if due to timing dependencies or

due to a restricted set of available system resources.

• Performance the VMM must cause a minor performance impact for

the running processes.

9

• Safety the VMM is the only piece of software that controls and han-

dles access to the physical devices.

It is worth mentioning also that the processor’s ISA can be emulated, so

that the guest operating system will run on a different instruction set than

the host one. This kind of virtual machine, usually referred to as emulator,

will not be covered here. The interested reader should check [1] [20].

2.3.1 Native VM systems

The analogies between an operating system and its applications and the

VMM and its guests do not stop here. As was discussed before, the operating

system runs at a higher privilege level (supervisor mode) in respect to all the

userland applications. This allows the kernel to efficiently take full control

over the applications, scheduling them on and off the CPU and managing

the eventual traps and interrupts from the I/O devices and the running

processes themselves. For the same efficiency and control reasons, the first

natural approach to design a VMM is to have it run at a higher privilege

level respect to all the guests. The VMM is thus installed directly on the

hardware and is the only piece of software which runs with full privileges.

All the guest operating systems are installed on top of the VMM and run at

a lower privilege level. Since in most of the architectures (with the notable

exception of the IA-32 [10] one) there are only two privilege levels (supervisor

mode and user mode) and since the guest operating system has to run at a

higher level than theuserland applications that run on top of it, the VMM

has to emulate the supervisor mode for the guest kernel.

This kind of approach is the one taken by Popek and Goldberg in their

analysis and is usually referred to as classic virtualization or native VM

10

system. Popek and Goldberg’s paper goes on with a formal analysis of the

conditions for classic ISA virtualizability. For simplicity, the real machine

is assumed to consist of an uniformly addressable memory and a processor,

capable of running in only two modes, supervisor and user and a subset of

the instruction set is available only in supervisor mode.

An instruction is defined as privileged if executes properly in supervisor

mode and traps when issued in user mode. The instruction must trap, it

can not have a different behaviour in the two modes (for example, behave

like a noop if the processor is in user mode). An instruction is defined as

sensitive if it affects or is affected by the hardware, in particular control sen-

sitive instructions are the ones that attempt to change the configuration of a

given resource while behaviour sensitive instructions are the ones that show

a different behaviour depending on the state of a given set of resources. An

instruction which is not sensitive is defined innocuous. Innocuous instruc-

tions can be executed directly on the hardware4, while sensitive instructions

need an intervention by the VMM. With this in mind we can now report

the Popek and Goldberg theorem for classic virtualizability:

“For any conventional third generation computer, a virtual machine moni-

tor may be constructed if the set of sensitive instructions for that computer

is a subset of the set of privileged instructions”

The fundamental idea stated by this theorem is that the VMM needs a

reliable and efficient way to gain control every time a sensitive instruction is
4Since the number of innocuous instructions is usually way bigger than the number

of sensitive ones, the VMM can execute directly on the hardware a large number of
instructions, sensibly improving performances

11

executed by the guest operating systems. If the sensitive instruction is also

privileged, it will always trap when executed in user mode and the VMM will

have a way to gain control and emulate its behaviour on the guest operating

system. This is the main reason why the IA-32 architecture is not virtu-

alizable in classic sense: there are instructions which are sensitive but not

privileged. The classic example is the POPF instruction, which copies a 16-

bit value saved on the top of the stack to the EFLAGS register. When this

instruction is executed in user mode, the value of the interrupt-enable flag

(which is modifiable only in supervisor mode) saved on the stack is ignored

and not copied in, but no trap is issued. A detail analysis of the virtualiz-

ability of the IA-32 architecture (along with a list of the other POPF-like

sensitive but not privileged instructions) can be found in Robin and Irvine’s

paper “Analysis of the Intel Pentium’s Ability to Support a Secure Virtual

Machine Monitor” [11]

The fact that the IA-32 (and, actually, most of the other common ar-

chitectures) is not virtualizable in native sense does not mean that it is not

virtualizable at all. Techniques usually used in process level virtual machines

(as Java or .NET) can be employed to solve this problem: the instruction

stream can be all interpreted (very inefficient) or it can be scanned and ev-

ery critical instruction can be patched, for example inserting a trap or some

other way to bring the VMM in. A VMM behaving in this way is usually

referred to as an hybrid virtual machine system.

2.3.2 Hosted VM systems

In Native VM systems the VMM is installed on bare hardware. That means

that the VMM must be the first piece of software installed on the machine.

12

This might be an undesirable case for users that already have their operating

system running and/or that may want to run the virtualization software only

occasionally. In this scenario, hosted VM systems become quite interesting.

The VMM is installed on top of an already available operating system and

it just relies on the underlying hosting OS services to handle the physical

devices. The VMM runs just like any other application at a lower privilege

level than the hosting operating system. From the discussion so far it should

be quite straightforward to realise that pure hosted VM systems are very

inefficient. The common approach is to have at least some part of the VMM

running as part of the hosting operating system. This can be achieved in

two ways:

• the underlying kernel sources can be patched and recompiled.

• a Loadable Kernel Module (LKM) or device driver can be written and

loaded at runtime. The code inside an LKM or a device driver runs in

supervisor mode inside the kernel.

This kind of virtual machines is usually referred to as dual-mode VM systems

and is quite popular. For example, the VMWare [21] family of virtualization

software is a dual-mode VM system.

2.3.3 Paravirtualization

Paravirtualization is a virtualization approach where the guest operating

system is made aware of the presence of a VMM, to which it communicates.

This kind of approach greatly simplifies the work of the VMM code, be-

cause the running guest will cooperate with the virtualization software to

solve common virtualization problems, for example, the sensitive but not

13

privileged instructions, or the handling of the virtual memory of the guest

system. As a natural consequence, paravirtualization permits a boost in the

overall performance of the guest operating systems.

The paravirtualization approach is at the base, of the Xen project [22] [23],

that is the target of this thesis.

2.4 Xen

Xen is an open-source VMM for the x86 architecture. We can divide Xen

into two major branches: one, usually referred to as HVM, is designed to

run on virtualization-capable processors and permits running unmodified

operating systems, the other, based on paravirtualization, aims to achieve

close-to-native performance on the guest operating systems running on the

x86 platform, a traditionally complex architecture to virtualize efficiently.

Xen was originally developed by the System Research Group at the univer-

sity of Cambridge, as part of the XenoServers project, and its architecture

was first presented and described in the 2003 paper “Xen and the art of

Virtualization” [22]. The October of the same month the first public version

of Xen was released.

Since then, Xen has developed to version 3.3 [24], which has extended

the support for SMP machines [15], included the support for Intel Physical

Address Extension (PAE) [10] (to handle more than 4GB of RAM memory

on 32 bit machines) and introduced the support for hardware virtualization

technology, so that unmodified guest operating systems can be run under

Xen.

We will focus on the paravirtualization-based Xen implementation, in

which the guest operating systems are made aware of the presence of the

14

VMM (hypervisor). It is important to note that only the guest kernel has to

be made aware of the existence of the hypervisor, all the userland applica-

tions do not need any change. Xen comes with official patches for operating

systems, Linux [25] and NetBSD [26]; in this thesis we will focus on the

XenLinux project [27], which combines Xen with Linux. The central notion

in Xen is the one of domains, the guest OSes that the hypervisor main-

tains. The approach that Xen takes is to have basically two different kind

of domains, with different privileges:

• Domain 0 or dom0, this domain is started directly by Xen at startup

and is the one on top of which all the other domains are built and

executed. The key idea behind this approach is to have inside the

hypervisor only the logic to start/manage/stop domains and to leave

to a more privileged domain the responsibility of handling the physical

devices. This approach has the double advantage of simplifying the

VMM code and obtaining a wide hardware support (every device driver

written for the domain 0 guest kernel can be used).

• Domain U or domU, this kind of domain is the guest domain in

the traditional sense. These domains are created and started from the

dom0 through an userland process called xend [28] [29]. Commands

are issued to xend over an HTTP interface and an userland command-

line tool, xm, is provided for this purpose.

NetBSD and Linux are not the only two operating systems supported. Ports

of other operating systems (e.g. Solaris) are available. The Xen port for the

OpenSolaris operating system is known as xVM.

15

Chapter 3

State of the Art

The ultimate goal of an attacker is to gain control over the system and/or

steal information from it. Usually the two things are tightly linked: grab-

bing as much information as possible from the running operating system is

common way to start a successful attack and obtaining elevated rise of the

privileges is the main step towards reaching hidden and, eventually, more

sensitive information. This chapter describes a recent typology of vulnera-

bilities and attacks that have been carried out against Modern Operating

Systems and outlines where and why Virtual Machines can help towards

improving overall system security. But VMs are still another layer of code

that can be targeted and may have (even yet unknown) weaknesses and is-

sues. This is still an area that is gaining more and more interest from the

community just as VM solutions are becoming more and more widespread.

The last section focuses on Xen and the related security approaches and

issues seen so far.

16

3.1 Systems Security Attacks

Writing exploits to raise privileges has always been a fascinating art. In

the beginning it was mainly done in userland. Running daemons were au-

dited and their flaws exploited to gain remote access to a system and local

root-privileged processes were targeted to raise the local privileges. At some

point, operating system designers started to insert security patches in the

kernel, with the aim of stopping or at least making harder this kind of at-

tacks [30] [31]. Randomisation was added to memory allocation, entire por-

tions of memory were made non-executable (emulating the non-executable

bit on architectures, as the x86, which do not support it naively) and dae-

mons started to be chroot’ed and jailed, to mitigate the effects of a successful

exploit [32] [30]. The chroot/jail approach is particularly interesting for our

discussion on virtual machines system. A chroot’ed process is a process

which runs with a restricted and crafted view of the machine. The process

can not access files outside this virtual area and an attacker successfully

exploiting such a process is fundamentally jailed inside it.

Many different techniques have been developed to break a chroot envi-

ronment. The FreeBSD jail [33] implementation and the GRSecurity [34]

chroot enhancement aim to stop most (if not all) of this attacks. But even

in the most secure configuration available, there is always an entity running

outside everychroot/jail (and out of most of the other protections available):

the kernel.

Kernel attacks, exploits and shellcode1 have been (and still are) very

popular in the latest years [35] [36] [37]. In such exploits, the correctness of
1A shellcode is a sequence of assembly instructions to which the attacker redirects the

flow of the exploited software

17

the design is mandatory: a single mistake can make the whole system crash.

On the other side, the possibilities available to an attacker once it is able to

execute code at kernel level are just limited by imagination. Many reliable

exploits for different operating systems have been released and techniques

to increase the chances of success (even up to the always-dreamed one-shot,

100% reliable, exploit) have been presented in different papers [37] [38] [39].

Even if it is probably the most effective one, exploiting is just one step

inside a complete, well performed, attack to a system. As we said at the

start of this chapter, information and control are the two main goals of an

attacker. It is common for an attacker, once he has gained full privileges

over the system, to install some kind of code that will grant him a safe way

to remain on it. This code usually takes the name of backdoor and is usually

part of a larger set of codes which goes under the name of rootkit.

A common part of a good rootkit is a sniffer [40]. This kind of code

silently stays on the compromised box and steals information. Everything

can be sniffed: network communications, programs executed, I/O transfers

and so on. To see why such a program may be so powerful imagine a

classic scenario of a university system being compromised. The system may

have a couple of thousands of accounts, for students and teachers that are

immediately exposed to the attacker. Now imagine a sniffer that can read

the password inserted by each user once he logs in: many users use the

same password (or use the same SSH dsa/rsa key citeOpenSSH) to login

to different boxes, e.g. the internal lab, their home box, some account on

another university they are collaborating with, and so on. With just such

a simple sniffer the attacker can quickly (and easily) gain access to many

systems.

As systems protections become more complex and more secure, finding a

18

hole and writing a reliable exploit for it is becoming more and more difficult.

The ability to sniff or gain somehow information from leaks in the system

is, thus, of mandatory importance. While the bad actors improve their

techniques and tools, the administrators do not just sit and watch their

host getting compromised and sniffed, but work on improving their tools

too. One set of tools that we will encounter (and attack) later on goes

under the name of IDS, Intrusion Detection System [41]. Such a program,

that can be implemented in software, in hardware or with a mix of the

two, checks the accesses to a given system or the data that passes on a

local network. In this latter case, it is usually referred to as NIDS, Network

Intrusion Detection System. One of the most famous NIDS is probably

snort [42]. It is important to point out that the role of the (N)IDS is not to

stop/prevent an attack, while to just figure out if and where it is happening.

A NIDS can be combined with tools that do try to prevent the attacks,

like a firewall [43]. Such a program defines a set of rules that must be

matched by a given session that wants to pass through it. While an attacker

can usually figure out the presence of a firewall, it usually should not be able

to know if an IDS is in place or not. In some configurations, the information

gathered by an IDS is used to determine the firewall rules. [44]

Just for completeness, there are two more sets of security tools that it

is worth mentioning; one set implements MAC (Mandatory Access Con-

trol)/Policy [45] based checks to achieve a fine grained control of the priv-

ileges assigned to each running process, the other set comprises all those

patches that aim to make the life of exploit developers harder and harder,

making the stack and the heap non-executable or randomising the address

of libraries, DLLs and modules. [32]

19

3.2 The System Virtual Machines Hope

In the last section two important security issues were introduced:

• How can we protect the kernel or somehow have some control over

it? That is, how can we defend from an attacker capable of directly

targeting a kernel vulnerability ?

• how can we mitigate the effects of a successful exploit? In other

words, how can we reduce the amount of information available to an

attacker after he gains control of the system? How can we limit his

range of action?

One can see a system Virtual Machine as a chroot’ed environment for an

operating system instance. Each instance is isolated from the others and can

not affect them directly. This isolation property is one reason why system

virtual machines are gaining so much interest from the security community.

The VMM stands above the running kernel and can thus keep control

or protect it. A VMM might be instructed to stop the running image if an

attempt is made to modify a sensitive area of the kernel or if any suspicious

unexpected activity is registered. Moreover, virtual machines allow for a

separation of the services: each daemon that has to be run (webserver,

sshd, database, etc.) can be installed on a different guest. This approach

has two main advantages:

• simplicity: the configuration of the operating system can be tailored

to the service that has to be run. It is possible to have dedicated

operating system instances for every single service.

• compromise impact mitigation: the successful exploitation of one

service will give the attacker access only to the guest operating system

20

running that specific service and will not let him take control on the

other services. For example, the compromise of a webserver would not

give access to the database system.

The security advantages of virtual machines do not end here. The hypervisor

can constantly monitor the execution of a guest and can carry out fine

grained logging about its activity. This means that the history of a running

image can be recorded and, given that the logging has been sufficiently

detailed, replayed identically, greatly helping in analysing the behaviour of

a malware or in understanding attacker activity. Another interesting aspect

is the one of replication: different replicas of the same running image can

be maintained, so that if a service gets compromised it can be isolated and

stopped and a fresh image with the same configuration can be instantiated.

In environments such as distributed computing or grid environments, such

approaches to create trusted virtual machines images have been studied. [46]

A last area in which virtual machines have gained quite a lot of popularity

is in the creation of sandboxes and honeypots. [47] A sandbox is a system

where a potentially harmful piece of code (malware) can be executed and

analysed. An antivirus designer can, for example, expose a set of vulnerable

sandboxes and then monitor the effects and the behaviour of viruses in

that environment. Basically the same principle is behind honeypots too: a

vulnerable box is exposed to the Internet with the aim of registering the

activity of some attacker and eventually discover of unreleased exploits or

rootkits.

For all these reasons and potential applications, system virtual machines

are gaining increasing popularity. Despite all the advantages they give,VMM

are still another piece of code. Just as they add an extra-layer of security,

21

they introduce new potential weaknesses and give new ground to play over

to the attackers. This is the topic of the next section.

3.3 Attacking System Virtual Miachines

In the previous section, among the various examples of use (from a security

perspective) of system virtual machines, we cited the sandbox/honeypot/-

malware analysis scenario. This approach assumes that an attacker or a

malware is not able to realise that he is on a virtualized guest. The first

range of attacks that has been carried on against virtual machines go un-

der the name of detection. Many different detection approaches for a wide

range of system virtual machines and emulators have been described by Pe-

ter Ferrie in his paper “Attacks on Virtual Machines Emulators” [6]. The

idea behind this kind of attack is that the VMM must have some impact

on the behaviour of the guest operating system and that this impact might

be exposed even to the userland of the guest: examples are detectable ad-

dresses/values of hardware specific tables (ex. IDT, Interrupt Descriptor

Table or LDT, Local Descriptor Table), sequences of privileged instruction

that will have a different behaviour or more subtle execution/TLB/memory

caching time-based attacks.

Detecting a virtual machine monitor in action is indeed interesting for

malware developers and attackers: a given virus could decide to remain silent

if it realises to be on a virtualized environment. The next step in terms of

possible attacks is to target directly the VMM to grab information about

the other running guest systems (somehow breaking the isolation principle

or to exploit the VMM itself and thus raise the privileges and gain full

control over all the guests. Less work has been done so far in this direction.

22

An interesting paper on this topic was released by Tavis Ormandy [48].

Potential attacks are divided in three different categories:

• Attacks that lead to a full compromise of the VMM. The guest en-

vironment is capable of exploiting a flaw inside the VMM and raise

its own privileges up to the ones of the hypervisor. At that point the

attacker has full control over all the running guests.

• Attacks that lead to a leak of information from the VMM. The attacker

gains sensitive information about the hypervisor or the other running

guests, breaking the isolation property. This kind of information can

help to carry on a subsequent attack aiming to full compromise another

guest or the VMM.

• D.o.S. (Denial of Service) attacks. The attacker is not able to com-

promise the VMM but manages to crash it or exaust its resources,

forcing the other running guests to starvation.

Once again, many different system virtual machines are targeted, both au-

diting the source code or using a fuzzer. [49] The results range from errors

inside the interpretation code (sequence of bytes that crash or gets misin-

terpreted by the VMM) to errors in the handling of I/O devices.

A final range of attacks that can involve virtual machines is exploiting

VMM features to write high-level rootkits. Examples [50] [51] of this kind

of rootkit have been seen using the virtualization extension available on the

Intel and AMD processors.

23

3.4 Xen Security

The Xen design has a couple of interesting approaches from the security

point of view. First of all, Xen exploits the x86 characteristic of having

more than two privilege levels. In fact, the x86 architecture has four privilege

rings. Userland code usually resides at ring3, while kernel-based code stays

in ring0. Both ring1 and ring2 are separated and more privileged than ring3

and are not used by any modern operating system. Xen takes advantage of

this by putting itself in ring0 and locating all the guest operating systems in

ring1. The userland code on the guest systems executes at ring3. Thanks to

that, interference from the userland to the guest kernel land and from guest

kernel land to the hypervisor are prevented by the hardware. This approach

speeds up the overall execution of the guest system, simplifies the hypervisor

code and improves the security of the hypervisor and of the virtualization

environment.

Xen has furthermore a compact design. The code of the supervisor keeps

to a couple of thousand lines, which makes auditing it easier and spot/fix

eventual bugs. A lot of work is offloaded to the domain 0, which has to

manage the I/O resources and provide access to them. So the domain 0

environment can be considered, to full extent, critical code. This situa-

tion resembles the one that has been traditionally seen on Unix systems,

where there is one user, the root/superuser one, that has full privileges and

full control over the OS. The classic approach to mitigate this problem in

high-security environments is the decomposition [52] of the privileges. For

example, one can think to have multiple controlling domains for different

I/O resources, so that a bug in the handling of one of it would not expose

the whole hypervisor to the control of the attacker. This is one of the ideas

24

at the base of the XSM (Xen Security Modules) project [53], which aims to

create a generalised security framework for Xen. XSM has been introduced

from the 3.2 release of Xen. Is based on the approach used by the LSM

(Linux Security Modules) project: a set of hooks is distributed in critical

areas of the hypervisor code and security modules can use those hooks to

get the control and take security measures when one of those codepaths

is executed. Among the security modules available, two of them provide

Xen a policy-based Mandatory Access Control (MAC) system: the IBM

ACM/sHype project and NSA/Flask. [53] The ACM/sHype one was

formerly a standalone project that ported the sHype Hypervisor Security

Architecture developed by IBM to Xen. The second one is the porting of

the SELinux Flask [54] policy system developed by the NSA (National Se-

curity Agency) [55].

25

Chapter 4

Xen Internals and Design

Issues: the Path to Profiling

In this chapter we will cover some design issues that ”affect” Xen and how

they can be used for fun and profit. A couple of Xen internal subsystems will

be described in detail. It is important to note that the discussion and the

attacks presented here apply mostly, if not only, to a paravirtualized system.

Whenever the attack might be carried on against HVM domains, that will

be explicitly stated. These attacks allow a malicious guest to gather infor-

mation about other running guests, profile their activity, and, eventually,

take control over the network traffic that the victim guest generates.

4.1 An overview of the attacks

Before moving to a detailed description of both the design issues that make

possible the attacks and the internals of the attacks themselves, we give

here a high-level overview of the three attacks. This section aims at giving

26

a quick grasp of each technique and so most of the technical details will be

left out. The interested reader should check them in the following sections,

each one dedicated to one of the attacks.

The first attack relates to the possibility of enumerating the active do-

mains on a system and discover which domain IDs have been assigned. Do-

main IDs range from 0 to 65536 (16-bit value) and are assigned by the

Hypervisor in incremental order whenever a domain boots. We present here

a sneaky way to achieve it, evaluating the error code returned from the

Hypervisor in response to a specific hypercall (see Fig. 4.1)

Figure 4.1: Guest Maps Domain IDs Based on Hypervisor Replies

Since Xen assigns domain IDs in incremental order, by looping up to

their maximum value and issuing the grant operation hypercall it is possible

to list the assigned domain IDs (and so know how many domains exist). It

is worth mentioning that a legal way to enumerate domain IDs is available

on Xen, too, but it might get filtered by an XSM module.

27

The second attack described permits the monitoring of part of the ac-

tivity of a given remote guest (remote guests are identified by their domain

ID). It exploits a set of design decisions inside XenStore, a hierarchical

string-based namespace which is at the base of the Xen environment. The

attack that is carried on using those design decisions is an improvement of

a traditional DHCP [56] spoofing attack. [57]

In a normal situation, a given host broadcasts a DHCPDISCOVER, to

learn about how to configure its networking stack, as shown in Fig. 4.2

(what IP has been assigned to him, which is the default gateway address,

which are the nameservers addresses, etc)

Figure 4.2: A Host Broadcasting a DHCPDISCOVER

All the other hosts on the network receive it, but only the DHCP Server

replies, with a DHCPOFFER packet. The 32-bit transaction ID is randomly

chosen by the sending host and is used to identify the DHCP session (it will

28

get included in every DHCP packet exchanged). The idea behind DHCP

Spoofing is to sit on the network, wait for a broadcasted packet and try

to win the race against the DHCP Server. If the evil host manages to reply

before the DHCP Server (Fig. 4.3) it may manipulate the values that the

requesting host is going to use to configure its network environment. A

classic manipulation is, for the evil host, to send its own address as the

address of the default gateway, so that all the outgoing traffic generated

by the requesting host will pass through the evil one. Another approach is

modifying the nameservers, so that all the DNS [58] requests will go through

the evil host, which will be able, in turn, to point the victim to sites under

its control.

Figure 4.3: An Evil Host Attempts to Win the Race with the DHCP Server

The success of this attack is based, as we said, in winning the race. The

attack we present here aims at increasing the chances of success by sending

the DHCPOFFER (and DHCPACK) packets in advance, as it is shown in

29

Fig. 4.4

Figure 4.4: The DHCP-Prediction Attack

Thanks to a design issue in XenStore we are able to figure out when a

domain is booting and so we start flooding the network with DHCPOFFER

and DHCPACK packets, predicting the transaction id (whose randomness

is based on the MAC address and the local time). As soon as the domain

sends a DHCPDISCOVER packet, it will already find the answer. The legal

DHCP Server will not even have the chance to reply to the first packet.

The last attack we present is based on a classic design decision for virtu-

alized environment networks: since the packets travel only in memory, the

possibility of a corruption is very rare. This permits the virtual hosts to save

some CPU cycles by not computing at sending time and not validating at

receive time the layer four checksum. [59] Xen gives the possibility of com-

puting or not the checksum at sending time and, by default, avoids doing it

for TCP and UDP packets. Thanks to its implementation, a module loaded

in the guest can arbitrarily play with the checksum of any packet, comput-

30

ing it wrong but marking the packet as valid and so getting it accepted by

another guest. As we show in Fig. 4.5, in a mixed network, with a number

of hosts hosted on the same physical machine and a number of hosts on

other boxes, this attack can be used to figure out which IPs are associated

to local hosts.

Figure 4.5: Only Guests On the Same VMM Reply to Bad Chksum’ed
Packets

For this attack we use ICMP Echo Request packets, but any other packet

that implies an answer will do fine. A second attack that we can perform

with this feature is carried against NIDS and is based on the widely known

concept of insertion and evasion. [60] The basic idea is to send packets that a

NIDS will ignore, but that the remote host will accept (evasion) or, viceversa,

send packets that the NIDS will consider and the remote host will discard

(insertion). Since we control both the checksum and what the remote host

31

will do with the packet, we can decide to play evasion or intrusion depending

on NIDS configuration: if the NIDS is configured to not take in account bad

checksummed packets, we just hide traffic from its analysis as shown in Fig.

4.6, while if it does, we just insert bogus traffic that the remote host will

reject, thus escaping from the IDS signature analysis. This trick can be

used in conjunction with the DHCP attack to hide the DHCP traffic from

particular NIDS configurations or in any other classic way, for example to

hide the exploitation payload of a web-based attack.

Figure 4.6: Classic Evasion example: The attacker sends ”EVIL”, where
”I” is a packet with a bad checksum, and the NIDS sees ”EVL”, thus not
generating an alert

Now that we have finished with this quick overview, we move to a detailed

description of all the attacks. This overview should be enough, though, to

understand at least the basic ideas behind the design of xenophobia, our

attacking tool, in case the reader would want to skip the technical details.

32

4.2 Xen building blocks: grant tables

Despite having become a very modern and advanced VMM, Xen is still

based on a handful of simple building blocks (hypercalls, grant tables, event

channels). [29] Among those building blocks we focus now on the grant ta-

bles implementation.

Grant tables are the way Xen implements shared memory and communica-

tion between domains. A grant table is an array of grant entry, as detailed

in Fig. .

Figure 4.7: struct grant entry

<i n c lude /xen/ i n t e r f a c e / g r a n t t a b l e . h>
struct grant ent ry {

/∗ GTF xxx : var ious type and f l a g in format ion . [XEN,GST] ∗/
u i n t 1 6 t f l a g s ;
/∗ The domain be ing granted f o r e i gn p r i v i l e g e s . [GST] ∗/
domid t domid ;
/∗
∗ GTF permit access : Frame tha t @domid i s a l l owed to map

and acces s . [GST]
∗ GTF accept trans fer : Frame whose ownership t r an s f e r r e d by

@domid . [XEN]
∗/

u i n t 3 2 t frame ;
} ;
</>

Grant tables allow a domain to perform two different operations, speci-

fied by the value of the flags member:

map/share a page frame a domain exports a grant entry to another,

which in turns maps the page frame inside its address space. Both

the domains keep a reference to the page frame inside their address

space. (GTF permit access)

33

transfer a page frame the page frame is moved from one domain to an-

other, that is, only the destination domain will have, at the end, a

reference to the page inside its address space. (GTF accept transfer)

The grant table itself is only a way to expose information (usually in

conjunction with the Xenstore1): all the operations related to it (mapping,

transferring, setup) are carried on through a dedicated hypercall, shown in

Fig. 4.8

Figure 4.8: HYPERVISOR grant table op

<i n c lude /asm−i 386 /mach−xen/asm/ h y p e r c a l l s . h>
HYPERVISOR grant table op (

unsigned int cmd , void ∗uop , unsigned int count)
{

return h y p e r c a l l 3 (int , g rant tab l e op , cmd , uop , count) ;
}
</>

This single hypercall can perform a range of different operations, iden-

tified by the cmd parameter. The second parameter, uop, is an array of

structures which contains the specific data relative to the chosen operation

and the count parameter specifies how many of those are there.

A complete list of all the operations (and associated structs) available can

be quickly drawn checking include/xen/interface/grant table.h. We

will focus on one of them, GNNTABOP map grant ref, while discussing our

first attack: enumerate guest domains on the same box.
1the XenStore implementation (and its weaknesses) will be discussed in the next section

34

4.2.1 Enumerating Guest Domains via Grant Table Opera-

tion Error Codes

The first attack we present is a way to enumerate the number of domains

that are hosted on the machine and to identify which are their domain IDs.

The vector of the attack is the GNNTABOP map grant ref operation, which

is used by a domain to map a frame exposed by another domain inside its

own address space (Fig.).

Figure 4.9: GNTTABOP map grant ref Operation and Related Struct

<i n c lude /xen/ i n t e r f a c e / g r a n t t a b l e . h>
#define GNTTABOP map grant ref 0
struct gnttab map grant re f {

/∗ IN parameters . ∗/
u i n t 6 4 t host addr ;
u i n t 3 2 t f l a g s ; /∗ GNTMAP ∗ ∗/
g r a n t r e f t r e f ;
domid t dom ;
/∗ OUT parameters . ∗/
i n t 1 6 t s t a t u s ; /∗ GNTST ∗ ∗/
g ran t hand l e t handle ;
u i n t 6 4 t dev bus addr ;

} ;
typedef struct gnttab map grant re f gn t tab map grant r e f t ;
DEFINE XEN GUEST HANDLE(gnt tab map grant r e f t) ;

The struct gnttab map grant ref is used as the second parameter in

the aforementioned HYPERVISOR grant table op hypercall. As you can see,

this struct is used both to pass parameters to the specified operation and

store the return values.

The remote domain that will be contacted is specified by setting the dom

parameter to its ID, while the grant reference is identified by the ref pa-

rameters, which is basically its index inside the remote domain grant table.

35

The result of the operation is returned inside the status member, while

handle is filled with a reference to the mapped grant entry if the operation

was successful. The status value is what we are interested in. A list of the

possible status values is provided in Fig. 4.10.

Figure 4.10: Grant Table Operations Return Codes

<i n c lude /xen/ i n t e r f a c e / g r a n t t a b l e . h>
#define GNTST okay (0) /∗ Normal re turn .

∗/
#define GNTST general error (−1) /∗ General unde f ined error .

∗/
#define GNTST bad domain (−2) /∗ Unrecognsed domain id .

∗/
#define GNTST bad gntref (−3) /∗ Unrecognised or

inapprop r i a t e g n t r e f . ∗/
#define GNTST bad handle (−4) /∗ Unrecognised or

inapprop r i a t e handle . ∗/
#define GNTST bad virt addr (−5) /∗ Inappropr ia t e v i r t u a l

address to map . ∗/
#define GNTST bad dev addr (−6) /∗ Inappropr ia t e dev i c e

address to unmap . ∗/
#define GNTST no device space (−7) /∗ Out o f space in I /O MMU.

∗/
#define GNTST permission denied (−8) /∗ Not enough p r i v i l e g e f o r

opera t ion . ∗/
#define GNTST bad page (−9) /∗ Sp e c i f i e d page was

i n v a l i d f o r op . ∗/
#define GNTST bad copy arg (−10) /∗ copy arguments c ro s s page

boundary . ∗/
#define GNTST address too big (−11) /∗ t r a n s f e r page address too

l a r g e . ∗/
</>

As we can see, there is a specific error which specifies an unrecognised

domain id. To confirm that we can use this return value to precisely distin-

guish a failing operation due to the nonexistence of a domain id from one

failing (or succeeding) for another reason, we need to take a closer look at

36

the implementation of the hypercall inside the Xen code.

Once the hypercall is issued, the control is passed to the hypervisor. This is

just the same as is on modern operating systems (ex. Linux) when a syscall

is issued and the control is passed from the userland to the kernelland.

In hypervisor-land, the hypercall is identified and the correct helper function

is dispatched: in our case, the control reaches do grant table op, located

in common/grant table.c in the main Xen tree, which in turns validates

the cmd parameters of the hypercall and calls the appropriate function, that

is gnttab map grant ref.

As it is usually the case in kernel programming, this function is an error-

checking wrapper which handles the possibility of executing multiple oper-

ations with a single call. For every operation gnttab map grant ref is

called.

The two checks shown in 4.11 are the the first two that this function per-

forms on the received op parameter. The check at [1] is easy to pass, since

we do control op->flags. The second check [2] is the one that is of interest.

This check fails if the domain is not in the domains list that the hypervisor

keeps and the status is set to GNTST bad domain at [3]. The remaining code

of the function is not reported for brevity, but this kind of error is not re-

turned in any other case. By issuing a set of GNNTABOP map grant ref with

increasing domid values it is thus possible to find the other domains hosted

on the system and the associated domain ID by checking the return value.

It is important to note that this is not the only way to list domains. A legal

way to list domains also exists, using XenStore and the

IS DOMAIN INTRODUCED request shown in Fig. 4.12

37

Figure 4.11: Error Checking Inside map grant ref

<common/ g r a n t t a b l e . c>
stat ic void

gnt tab map gran t r e f (
struct gnttab map grant re f ∗op)

{
[. . .]
int rc = GNTST okay ;
[. . .]
i f (u n l i k e l y ((op−>f l a g s & (GNTMAP device map |GNTMAP host map))

== 0)) [1]
{

gdpr intk (XENLOG INFO, ”Bad f l a g s in grant map op (%x) .\n” ,
op−>f l a g s) ;

op−>s t a t u s = GNTST bad gntref ;
return ;

}
i f (u n l i k e l y ((rd = rcu lock doma in by id (op−>dom)) == NULL))

[2]
{

gdpr intk (XENLOG INFO, ”Could not f i n d domain %d\n” , op−>dom)
;

op−>s t a t u s = GNTST bad domain ; [3]
return ;

}
</>

We mentioned our way because it is more sneaky and unintended. As

we will see later, only a part of the XenStore has been fully secured against

leaking information, but that might be fixed (and is likely to be) in future

releases.

While the possibility of listing domains and relative domids may sound not

that useful at a first glance (especially because, for example, we do not

know with which domid are associated the services that we might see on the

network), we will see in the following sections how it can be used in order to

better perform other attacks. Moreover, we will show how we can manage

to map some of the service on a network to the specific domain they are

38

Figure 4.12: XenStore do is domain introduced

<t o o l s / xens tore / xenstored domain . c>
void do i s doma in in t roduced (struct connect ion ∗conn , const char

∗domid str)
{

int r e s u l t ;
unsigned int domid ;
i f (! domid str) {

s e n d e r r o r (conn , EINVAL) ;
return ;

}
domid = a t o i (domid str) ;
i f (domid == DOMID SELF)

r e s u l t = 1 ;
else

r e s u l t = (f ind domain by domid (domid) != NULL) ;
s end r ep ly (conn , XS IS DOMAIN INTRODUCED, r e s u l t ? ”T” : ”F”

, 2) ;
}
</>

hosted on.

4.3 Split Drivers, XenStore and XenBus

When we talk about user activity we end up calling in cause device drivers.

User interaction is done through peripherals (keyboard, mouse, etc.) and

usually aims at using directly or indirectly some other peripherals (hard disk,

network card, sound card, etc.). This section gives a detailed explanation

of the Xen device model and shows how we can gather information from it

that will lead to successfull attacks.

4.3.1 The Split Driver Model

As we said in the previous chapter, paravirtualization is a virtualization

approach in which the guest kernel is made aware of the existence of the

39

virtual machine monitor and cooperates with it. From a practical point of

view, this translates to a direct modification of the kernel sources to make

it VMM-aware.

While a paravirtualization based monitor might use emulation for its devices,

it makes a lot more sense to apply the paravirtualization approach to devices

too. This is exactly what happens in Xen, where a set of generic device

interfaces, one for each common category (block device, network device, ...),

is provided to guests.

Those generic devices have to be:

fast to justify their use instead of emulated ones. This is not hard to

achieve, since memory is usually a very reliable and fast way of com-

municating, compared to network or hard drives.

simple kernel developers should be able to integrate those devices quickly

and easily inside their systems to encourage porting of the operating

systems they work on.

The Xen approach is based on the split driver model [29]: every generic

device has a frontend, implemented inside the guest and to which the guest

talks, and a backend driver, which in turn communicates directly with the

hardware device. The backend driver in Xen is usually hosted on domain 0,

but projects to have separated non-dom0 driver domains are gaining more

and more popularity. The reason is mostly due to security and fault tol-

erance: since the dom0 is the most privileged and the only fundamental

domain in a Xen environment, the more we manage to take away from it,

the more we gain in isolation.2

2funny enough, one of the most interesting attacks that we can carry on against Xen-
Store, as we will see in a short, is made possible due to a design decision aimed at sup-
porting domain drivers...

40

Backend and frontend devices communicate through shared memory. A

particular data structure, the ring buffer, implemented on top of the grant

table mechanism is used. The ring buffer is basically a producer-consumer

based data-structure, which uses free running counters to avoid having to

wrap back the pointers (for producer and consumer) when the last position

of the buffer is reached. The ring buffer implementation can be found in-

side include/public/io/ring.h. Event channels are used to implement

asynchronous access to devices. They are the hypervisor software-based

equivalent of interrupts. During device setup an event channel is allocated

and bound between the driver domain and the guest, which then can decide

to use it instead of polling continuously.

Now that we roughly know how device drivers work we still need to

answer to two important questions to understand how a guest can use them:

• how does a guest discover devices?

• how do front/backend pairs get initialised, remain synchronised and

get torn down?

The answer to the first question is XenStore, the answer to the second is

Xenbus which we now describe in some detail.

4.3.2 XenStore

When a machine boots, the operating system needs to be made aware of

the physical devices that are available on the system. This is achieved on

the x86 architecture by using a set of BIOS service functions while still in

real mode and on other architectures, like the UltraSPARC, using the Open-

Firmware exported device tree. As it can be imagined, a Xen guest has no

41

way to directly access the BIOS routines, so there must be another way to

learn about the available devices. This is the XenStore.

The XenStore is a hierarchical namespace whose entries contain strings

maintained by the domain 0. We can examine its contents from inside the

domain 0 through a set of userland tools that use a local Unix domain socket,

as shown in Fig. 4.13.

Figure 4.13: Extract of XenStore tree

bender :˜# xenstore− l s
t o o l = ””

xenstored = ””
vm = ””

00000000−0000−0000−0000−000000000000 = ””
on xend stop = ” ignore ”
shadow memory = ”0”
uuid = ”00000000−0000−0000−0000−000000000000”
on reboot = ” r e s t a r t ”

[. . .]
l o c a l = ””
domain = ””

0 = ””
[. . .]
1 = ””
vm = ”/vm/4 ef6cc83−ea3c−1106−2a35−b6cda5ebd44d”
dev i ce = ””
vbd = ””

2049 = ””
v i r t u a l−dev i ce = ”2049”
device−type = ” d i sk ”
p ro to co l = ” x86 32−abi ”
backend−id = ”0”
s t a t e = ”4”
backend = ”/ l o c a l /domain/0/ backend/vbd/1/2049”
r ing−r e f = ”8”
event−channel = ”6”

[. .]

42

Each entry is identified by a path in the Unix way, for example /local/domain/1/vm

(Fig. 4.13. Each entry in the XenStore has an associated permissions set.

We can get a primer on permissions using the xenstore-ls -p command,

whose output is shown on Fig. 4.14.

Figure 4.14: Example of XenStore permissions on entries

vm = . (n0)
00000000−0000−0000−0000−000000000000 = ”” (n0)

on xend stop = ” ignore ” (n0)
shadow memory = ”0” (n0)
uuid = ”00000000−0000−0000−0000−000000000000” (r0)

Permissions are identified by a character and a domid value. The char-

acter can be n - no perm, r - read, w - write or b - both, while the domid

identifies the specific domain to which the permission refers. Permissions

are not enforced for domain 0, just as with a traditional Unix system when

it comes to the root user accessing the filesystem.

The XenStore is exposed to guest operating systems as a standard driver,

with its own ring buffers and event channel, and it is exactly through this

mechanism that it can be accessed. Nevertheless, the guest system needs

the XenStore at boot time to discover all the other devices, so it must be

advertised somehow. To achieve that, Xen communicates the address of a

page to the newly created domain which contains the information necessary

to locate the XenStore grant references and event channel. This page is

known as the start info page and is shown on Fig. 4.15.

As can be seen, a lot of boot-relevant information is exposed through the

43

Figure 4.15: How XenStore is Mapped Thanks to start info

<l i nux / inc lude /xen/ i n t e r f a c e /xen . h>
struct s t a r t i n f o {

/∗ THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON
RESUME. ∗/

char magic [3 2] ; /∗ ”xen−<vers ion>−<plat form >”.
∗/

unsigned long nr pages ; /∗ Tota l pages a l l o c a t e d to t h i s
domain . ∗/

unsigned long s h a r e d i n f o ; /∗ MACHINE address o f shared in f o
s t r u c t . ∗/

u i n t 3 2 t f l a g s ; /∗ SIF xxx f l a g s .
∗/

xen p fn t s tore mfn ; /∗ MACHINE page number o f shared
page . ∗/

u i n t 3 2 t s t o r e e v t ch n ; /∗ Event channel f o r s t o r e
communication . ∗/

[. . .]
}
</>
<l i nux / arch / i386 / ke rne l /head−xen . S>

. org VIRT ENTRY OFFSET
ENTRY(s ta r tup 32)

movl %es i , x e n s t a r t i n f o
c ld

</>
<l i nux / arch / i386 / ke rne l / setup−xen . c>
s t a r t i n f o t ∗ x e n s t a r t i n f o ;
EXPORT SYMBOL(x e n s t a r t i n f o) ;
</>

start info page. The way the kernel gets notified of the address of this page

is architecture specific, in the x86 case, the address of it is passed through

a register upon entering the kernel.

One of the most interesting features of the XenStore is the implementa-

tion of watches on paths. A domain can register a callback function that will

be called any time the watched path changes. The watch implementation

will be described in more detail in the following sections since it is at the

44

base, of both of the XenBus and the DHCP attack.

4.3.3 XenBus

The last thing we have to describe is how the setup, synchronisation and

shutdown of devices is performed. This is achieved via a pseudo-protocol

built on top of XenStore which is known as XenBus.3

To see the relationship between the watch mechanism and the XenBus

protocol we describe how a frontend and a backend device get connected.

A struct xenbus device (Fig. 4.16) is associated to each device that uses

the XenBus protocol.4

Figure 4.16: struct xenbus device

<l i nux / inc lude /xen/xenbus . h>
struct xenbus dev ice {

const char ∗ dev i ce type ;
const char ∗nodename ;
const char ∗ otherend ;
int othe rend id ;
struct xenbus watch otherend watch ;
struct dev i ce dev ;
enum xenbus s ta te s t a t e ;
struct complet ion down ;

} ;
</>

Information about the device itself (frontend or backend) and the oth-

erend (respectively, backend or frontend) is kept inside this struct. More-
3The XenBus term is used in different scenarios: on Linux it is the whole interface to

XenStore, while when talking about generic device drivers it refers to the synchronisation
protocol built on top of XenStore. While this distinction is not fundamental for the
discussion, it is worth mentioning.

4The console driver and the XenStore do not use the XenBus protocol, but instead get
initialized at boot time using the information provided by the start info page.

45

over, the state of the device is tracked, and exposed via XenStore too, and

the watch on the otherend state is also stored there. The state value and

the associated watch are the heart of the XenBus protocol. The device

can be in one of seven states, ranging from XenbusStateInitialising to

XenbusStateClosed and XenbusStateReconfigured.

During device initialization and tear down the frontend and backend pass

from state to state and use the watch mechanism to synchronize. During the

normal operation of the device, the state value will be XenbusStateConnected.

We can see how the watch is setup and what callback function is called by

looking at xenbus probe.c, reported in Fig. 4.17 and in Fig. 4.18

Figure 4.17: otherend changed Watch Callback

<l i nux / d r i v e r s /xen/xenbus/ xenbus probe . c>
stat ic void otherend changed (struct xenbus watch ∗watch ,

const char ∗∗vec , unsigned int l en)
{

struct xenbus dev ice ∗dev =
c o n t a i n e r o f (watch , struct xenbus device , otherend watch) ;

struct xenbus dr ive r ∗drv = t o x e n b u s d r i v e r (dev−>dev . d r i v e r)
;

enum xenbus s ta te s t a t e ;

/∗ Protec t us aga in s t watches f i r i n g on o ld d e t a i l s when the
otherend
d e t a i l s change , say immediate ly a f t e r a resume . ∗/

i f (! dev−>otherend | |
strncmp (dev−>otherend , vec [XS WATCH PATH] ,

s t r l e n (dev−>otherend))) {
DPRINTK(” Ignor ing watch at %s ” , vec [XS WATCH PATH]) ;
return ;

}
s t a t e = x e n b u s r e a d d r i v e r s t a t e (dev−>otherend) ;
[. . .]
i f (drv−>otherend changed)

drv−>otherend changed (dev , s t a t e) ;
}

46

Figure 4.18: How otherend watch Callback and Related Watch is Setup

stat ic int watch otherend (struct xenbus dev ice ∗dev)
{

return xenbus watch path2 (dev , dev−>otherend , ” s t a t e ” ,
&dev−>otherend watch ,

otherend changed) ;
}

<note : e r r o r check ing omitted for s i m p l i c i t y >
int xenbus dev probe (struct dev i ce ∗ dev)
{

struct xenbus dev ice ∗dev = to xenbus dev i c e (dev) ;
struct xenbus dr ive r ∗drv = t o x e n b u s d r i v e r (dev−>d r i v e r) ;
const struct xenbus dev i c e id ∗ id ;
int e r r ;
i f (! drv−>probe) {

e r r = −ENODEV;
goto f a i l ;

}
id = match device (drv−>ids , dev) ;
[. . .]
e r r = t a l k t o o t h e r e n d (dev) ;
e r r = drv−>probe (dev , id) ;
e r r = watch otherend (dev) ;

}
</>

For each device during the device discovery step, xenbus dev probe is

called. This function checks if the device is available (if there is an available

match) and tries to talk to it. If the device is available, watch otherend is

called to setup a watch on the remote state entry inside XenStore

(dev->otherend keeps the path in XenStore of the remote backend/fron-

tend). otherend changed is the callback function: a single callback func-

tion is provided for both frontend and backend case since the driver specific

otherend function will be called at the end of it by drv->otherend. During

the setup phase, the backend device moves from Initializing, then to Wait

and in the end to Initialised. Everytime it does a transition, the state value

47

inside XenStore is changed accordingly and the watch fires. The frontend

callback function will check this value and only when it is set to Initialized it

will start the connection process. It should be clear now powerful the watch

mechanism is and how synchronisation is achieved through this mechanism.

4.3.4 Exploiting the XenStore/watch design: the DHCP at-

tack

The XenStore has a central role in the whole Xen environment and is thus

a very interesting target, especially when the aim is profiling the activity

of a given guest. The first attack that one might attempt, looking at the

pseudo-filesystem design, is, once again, based on error checking. A quick

look to XenStore code shows that it can return both -EACCES (permission

denied on a given entry) and -ENOENT (the given entry does not exist).

Unfortunately, a closer look at the code reveals that this kind of attack is

prevented by the functions showed in Fig. 4.19

The comments pretty much say it all. You are allowed to read/write a

node (given that you have correct permissions on it) even if it is inside a

path you do not have permissions over. Thanks to this design, for example,

the frontend inside a domU can read the state value inside the backend entry

of a dom0 (or a driver domain).

The same permissions mechanism is used for every kind of xenstore func-

tion that aims to access a given path. The watch implementation uses it as

well, but it has a design issue, shown in Fig. 4.20.

Since EACCES is allowed, a given guest is allowed to set a watch on any

entry inside the XenStore. This is a major issue, because, as we saw before,

48

Figure 4.19: XenStore Entry Permissions Checking Code

<t o o l s / xens tore / xen s to r ed co r e . c>
stat ic enum xs perm type ask parent s (struct connect ion ∗conn ,

const char ∗name)
{

struct node ∗node ;
do {

name = get pa rent (name) ;
node = read node (conn , name) ;
i f (node)

break ;
} while (! s t r e q (name , ”/”)) ;
/∗ No permiss ion at roo t ? We’ re in t r o u b l e . ∗/
i f (! node)

corrupt (conn , ”No permi s s i ons f i l e at root ”) ;
return perm for conn (conn , node−>perms , node−>num perms) ;

}
/∗ We have a weird permiss ions system . You can a l l ow someone

in to a
∗ s p e c i f i c node wi thou t a l l ow ing i t in the parent s . I f i t ’ s

go ing to
∗ f a i l , however , we don ’ t want the errno to i n d i c a t e any

in format ion
∗ about the node . ∗/

stat ic int e r rno f r om parent s (struct connect ion ∗conn , const
char ∗node ,

int errnum , enum xs perm type perm
)

{
/∗ We always t e l l them about memory f a i l u r e s . ∗/
i f (errnum == ENOMEM)

return errnum ;
i f (a sk parent s (conn , node) & perm)

return errnum ;
return EACCES;

}
</>

the XenStore is heavily used by all guests. This approach can not be used

to bruteforce XenStore entries, though, because ENOENT is also ignored at

[1]. Setting a watch on nonexistent entry is, in fact, perfectly legal and the

callback will fire only if that entry is created or if some entry in the path

49

Figure 4.20: Error Checking on Watch Setup

stat ic void add event (struct connect ion ∗conn ,
struct watch ∗watch ,
const char ∗name)

{
/∗ Data to send (node\0 token \0) . ∗/
unsigned int l en ;
char ∗data ;
i f (! check event node (name)) {
/∗ Can t h i s conn load node , or see t ha t i t doesn ’ t e x i s t ? ∗/

struct node ∗node = get node (conn , name , XS PERM READ) ;
/∗
∗ XXX We a l l ow EACCES here because o the rw i s e a non−dom0
∗ backend d r i v e r cannot watch f o r d isappearance o f a

f rontend
∗ xens to re d i r e c t o r y . When the d i r e c t o r y d isappears , we
∗ r e v e r t to permiss ions o f the parent d i r e c t o r y f o r t ha t

path ,
∗ which w i l l t y p i c a l l y d i s a l l ow acces s f o r the backend .
∗ But t h i s breaks dev ice−channel teardown !
∗ Rea l l y we shou ld f i x t h i s b e t t e r . . .
∗/

i f (! node && errno != ENOENT && errno != EACCES) [1]
return ;

}
[. . .]

</>

that leads to it changes.

This is quite interesting, because we may set a watch on an existing

domain-id entry (some paths inside XenStore are totally predictable given

you know the domid and we know it thanks to our grant table bruteforcing

approach) and monitor part of the activity of the domain. But, which kind

of activity ?

To answer to this question we need to see what entries inside XenStore

change during the lifetime of a guest. Those are:

50

• Frontend/backend state: We can track the setup of an interface

• Memory/target: This value is used by the balloon driver to keep in

synch with memory extension and shrinking

• Any domain specific value: Setting a watch on the main domain

directory will raise a watch event when that entry is deleted, that is,

when the specific domain is destroyed.

• third party value If a third party project used the XenStore to co-

ordinate different guest domains, we can track part of its activity too.

So far, so good. There is though a hard limit on the number of watches,

specified by the quota nb watch per domain inside xenstored core.c and

set to 128. That means that no more than 128 watches can be active at the

same time. While this is a large number, one might need a larger number to

track the activity of many different domains, especially if numerous watches

on domain specific and/or nonexistent entries have to be used to track the

bootup and shutdown of specific domids.

Luckly the Xen Hypervisor provides two pseudo-watches:

@introduceDomain This watch fires every time a domain is introduced

(that is, the INTRODUCE operation is executed over the XenStore).

Practically, this translates in the callback being called right before a

domain boots.

@releaseDomain This watch fires every time a domain crashes or shuts

down. Moreover it fires on the RELEASE operation linked to domain

destruction. Practically, this translates in the callback being called

twice every time a domain reboots.

51

The good news is that the same permission (non)checking is carried out for

those two pseudo-watches and so any domainU can track precisely when any

other domain boots or shuts down. How can we use that ?

The DHCP protocol [58] is used to dynamically allocate network con-

figuration details (IP address, nameserver, gateway) to domains. A DHCP

server runs on a host in the same local network as the requesting host and

listens for requests. Typically, every time a system boots, it broadcasts a

request, the DHCP server sees that request and it just replies with a free IP

address and the other configuration details.

DHCP spoofing attacks are not a new topic at all [57]. The basic idea

behind them is to start a malicious DHCP server and just wait for broad-

cast DHCP requests. Every time one of those is seen, the malicious DHCP

server tries to win the race against the official one, by sending an answer

to the requesting host. The reason why this may work quite well is that

the malicious DHCP server does not care about checking the free list of IP

addresses (the attacker specifies manually which IP address to use) and so

can be a little quicker than the legal host.

A standard DHCP spoofing attack has two drawbacks though:

• There is no way to know when a given system will boot, so the rogue

DHCP server has to run continuously. It is therefore exposed to sysad-

min scans on the network.

• The rogue DHCP server may not win the race. Especially in a VMM

environment, where there is a time-sharing scheduling among different

guests, our malicious DHCP server might get to the CPU too late.

52

It should be straightforward to see how our XenStore/watch trick can

improve the efficiency of a DHCP spoofing attack solving the first drawback:

we keep our malicious DHCP server shut down and we setup a @introduce-

Domain watch. Every time it fires and calls our callback function, we start

the rogue DHCP server and we set an approximately 30 second timer. If

no DHCP request arrives during this time-window (which should be enough

for a system to boot and launch the dhcp client), we shut the DHCP server

down again and wait for the next time our watch will fire.

Thanks to this approach, our malicious DHCP server is almost always

down and will not be visible to an occasional scan by a sysadmin. Is that

all ? Is there anything we can do against the second drawback and cheat a

bit in the race ?

To answer to this question we need to take a closer look at the DHCP

protocol and the most common dhcp client implementations. A normal

DHCP session consists of 4 messages exchanged between the server and the

client.

• The client broadcasts a DHCPDISCOVER packet and generates a

transaction ID to identify the answer to its packet.

• The server replies with a DHCPOFFER packet, which carries the

same transaction ID and which contains the MAC address of the des-

tination client and an offered IP address. Inside this packet a list of

DHCP options for the client is availiable, e.g. the gateway address, the

netmask, the IP address of the DHCP server, the lease time (after how

much time should the client broadcast a new request), the nameserver,

etc.

53

• The client replies with a DHCPREQUEST packet, which carries

the same transaction ID, which asks for a specific IP address (usually

the one offered by the server inside the DHCPOFFER request)

• The server acknowledges the request with a DHCPACK packet (or

refuses it with a DHCPNACK). The transaction ID in the packet is

always the same as earlier.

This is the standard sequence of packets. Other sequences are possible, for

example, when renovating lease, a client simply sends a DHCPREQUEST

packet and waits for a DHCPACK from the server.

Aside from two pieces of information, the MAC address of the client and

the transaction ID, all the other contents of the packets are predictable.

That means that, if we find a way to predict the transaction ID and the

MAC, we might start flooding the network for 20 seconds or so and auto-

matically win any possible race!

Knowing the MAC address, depends on the Xen configuration. The

MAC address of the virtual network interface of a guest can be randomly

generated by Xen at runtime or can be statically specified inside the Xen

configuration file,

vif=[’mac=00:16:3e:01:01:01,bridge=mybridge’]

This second option is mandatory if we want a specific address to be assigned,

by the DHCP server, to a specific host. The MAC address is the only way

the DHCP server has to identify it the specific host.

The 32-bit transaction ID is a little more tricky, but can be predicted as

well. Its randomness depends on two things:

54

Figure 4.21: dhclient Transaction ID Computation

<dhcp3−3.1.1/ c l i e n t / d h c l i e n t . c>
/∗ Make up a seed f o r the random number genera tor from current

time p lu s the sum of the l a s t four b y t e s o f each
i n t e r f a c e ’ s hardware address i n t e r p r e t e d as an i n t e g e r .
Not much entropy , but we ’ re boot ing , so we ’ re not l i k e l y to
f i nd anyth ing b e t t e r . ∗/
seed = 0 ;
for (ip = i n t e r f a c e s ; ip ; ip = ip −> next) {
int junk ;
memcpy (&junk ,
&ip −> hw address . hbuf [ip −> hw address . h len −

s izeof seed] , s izeof seed) ;
seed += junk ;
}
srandom (seed + cur t ime) ;

</>

• The MAC address of the machine.

• The time value (the random number generator seed is initialized with

the equivalent of srandom((time(NULL))+mac based value) at exe-

cution time).

As we can see from the dhclient.c code in Fig. 4.21, one of the most common

dhcp clients available on linux and the default one on Debian and Ubuntu,

the last four bytes of the mac address associated to each interface are used.

In this attack we assume that the guest is not virtually multihomed, that is,

that only one virtual interface is created inside it.

Guessing the time value is not a hard task, in fact, by design all the

guests share the same clock value (an attempt to change the clock in a sin-

gle guest will fail). Moreover, as we can see from the man page shown in

Fig. 4.22, the time system call returns the number of seconds since the

55

Figure 4.22: Extract of ’time(2)’ Manual Page

t ime t time (t ime t ∗ t) ;

DESCRIPTION
time () r e tu rn s the time s i n c e the Epoch (0 0 : 0 0 : 0 0 UTC,

January 1 ,1970) , measured in seconds .

Epoch, which in turn means that the seed value will change monotonically

each second.

This is more than enough to attempt a (successful) bruteforce attack. If

Xen is configured with static MACs for guests, a malicious code could stay

in the background and collect all the MAC addresses associated with the

running domains. Everytime a @releaseDomain watch fires, the code could

quickly figure out which is the missing MAC address, wait for a subsequent

@introduceDomain and start the attack, looping every second, attempting

to hit the right transaction ID. The detailed implementation of the attack

will be covered in the next chapter, along with a working example.

4.4 Xen Paravirtualized Network Driver

Network communication is likely to be one of the most intensive activities

that a given guest will perfom. The Xen paravirtualized network driver is

a classic example of a split driver : on the domU side, the netfront driver

is placed at the lower level of the OS network layer code and links to the

dom05 netback part, which is the only part of the driver directly connected,
5We consider here the standard (and nowadays fairly common) architecture which sees

the physical network driver hosted on the dom0. Keep in mind that an architecture with
a Domain Driver different from the dom0 might be in place. For the rest of the discussion
and especially for the attacks presented, does not matter which configuration is in place:

56

through the OS specific network layer code, with a physical device.

This design has a couple of advantages:

• Support for a wide range of physical devices: The netback driver

maps into the hosting operating system network layer and thus indi-

rectly supports all the device drivers that the OS supports.

• In-memory communication between guests: The netback driver

does not have to move the packet down to the physical layer if the

communication is between guests, memory can be just transferred from

the sender to the receiver. This approach is:

Safer : Memory errors are way more rare than network transmission

errors

Faster : Memory passing can be optimised: by default Xen uses

today a copy mechanism in which the Hypervisor copies the data

from the sender buffer to the receiver buffer. Since the Hypervisor

has a full view of the whole memory address space this operation

involves less TLB flushing than moving a page from the address

space of the sender to the receiver space (this approach, called

flip, is also available in Xen). Some optimisation is also possible

on the network side, most notably, there is no MTU (Maximum

Transfer Unit) limit and the computation of the checksum can be

avoided (memory error can be considered sufficiently unlikely).

Concentrating on the code, we see that two ring buffers are allocated

between netfront and netback (one for sending and one for receiving packets)

and an event channel is setup to notify the other end that some data is

the attack works on both the configurations.

57

available to be parsed.6 In case of high traffic load, the event notification

can be suppressed and polling can be used instead, to improve performances.

Data is exchanged between netfront and netback in terms of sk buff [61]

structures, the basic structure of the linux networking code.

4.4.1 Network Level Tricks: the Bad Checksum Story

In a traditional network environment, packets travel from host to host to

reach their destination. On this path, packets pass through different physical

connections and get parsed and analysed by different systems. Errors, both

in software and in hardware, are possible. Such errors might corrupt the

content of the packet and so deliver wrong information. The best thing an

operating system can do in an error situation is to discard the packet and,

depending on the reliability of the transport protocol, eventually trigger

a re-transmission. To identify potential transmission errors, the protocols

involved in the communication typically add a checksum ?? to their headers.

A checksum is just some sort of hash value that is computed depending on

the contents of the packet/header. The common checksum function that is

used in the network case is the one-complements of the binary sum of all

the field-values taken in account. [61]

One of the optimisations that can be done on guest-to-guest communi-

cation is known as checksum offloading. Modern operating systems already

have code to handle this kind of situation, because some recent network cards

implement checksum computation and validation in hardware. Moreover, al-

most all operating systems also implement a local network loop device, a

virtual network device usually bound to 127.0.0.x. In such a device all the
6the event channel mimics the behaviour of a NIC (Network Interface Card), which

raises an interrupt to signal to the CPU/OS that there is some data to handle.

58

Figure 4.23: Linux Network Devices Checksum Related Flags

<l i nux / inc lude / ne tdev i c e . h>
#define NETIF F IP CSUM 2 /∗ Can checksum only TCP/UDP over

IPv4 . ∗/
#define NETIF F NO CSUM 4 /∗ Does not r e qu i r e checksum . F. e .

l oopback . ∗/
#define NETIF F HW CSUM 8 /∗ Can checksum a l l the packe t s . ∗/
</>

communications happens in memory, so errors can be considered as absent7,

and so the operating system can save cycles of CPU by simply ignoring (not

computing, not checking) the checksum.

The Linux kernel associates a checksum capability flag to every network

device, so that the other functions involved in transmitting and receiving

packets know what to do when it comes to checksum computation. The

available flags are listed in Fig. 4.23

It is important to note that these flags refer to the checksum computed

on layer four protocols (TCP, UDP, etc) and that this checksum covers

both the header and the data. Depending on the flag associated with the

network device that gets used at sending or receiving time, the kernel be-

haves differently. As we already said, the basic structure used through

all the linux networking code is the struct sk buff. Two fields of this

struct refer to the checksum value and computation: sk buff->csum and

sk buff->ip summed. The meaning of those two members varies depending

on whether the packet is being sent or received:

At receiving time , the csum member holds the layer four checksum (or
7Memory corruption is not impossible, but if it is happening the operating system is

likely to have many more problems than just wrong packets on the localhost...

59

whatever is believed to be the layer four checksum) while the ip summed

field specifies what should be done with this value. This flag can have

three possible values:

• CHECKSUM NONE: The csum value is invalid and has to

recomputed in software.

• CHECKSUM HW: The csum value has been computed by the

hardware, but the software needs to compute and add the pseudo-

header checksum to this value and then verify if it is valid.

• CHECKSUM UNNECESSARY: The software does not have

to verify the csum value, all the validation has been done in hard-

ware.8

At sending time , the csum member points to the checksum field in the

protocol header, so that the hardware device knows where to store it

if it has to compute and insert it. The ip summed value specifies what

the device has to do:

• CHECKSUM NONE: Everything has been done in software,

so the device need not be involved.

• CHECKSUM HW: The device has to compute the checksum

on the header and the payload.

The choice made by Xen network device developers is to flag the related

virtual device as NETIF F IP CSUM capable. That means that the kernel

will offload the computation and validation of the checksum of TCP/IP and

UDP/IP packets. This feature can be configured on Xen virtual network
8This is the case, also, for in-memory devices like the loopback one.

60

Figure 4.24: sk buff Members Added by Xen

<l i nux / inc lude / l i nux / skbu f f . h>
#ifndef CONFIG XEN

ipvs p rope r ty : 1 ;
#else

i pv s p rope r ty : 1 ,
p r o t o d a t a v a l i d : 1 ,
proto csum blank : 1 ;

#endif
</>

devices by setting to 1 a per-device option called feature-no-csum-offload.

By default the value of this option is one. In conjunction with that, Xen

extends the sk buff struct with a couple of members, shown in Fig. 4.24

proto data valid specifies that the protcol data was validated since ar-

riving at localhost. The proto csum blank specifies that the checksum is

left blank and, if the packet has to leave the localhost, it has to be computed.

Those two parameters, along with the two described above (ip summed and

cksum), are used by Xen to identify and optimise (via checksum offload)

guest-to-guest communication. When a guest wants to send a packet, the

kernel constructs the sk buff struct associated with the packet normally

up to the transmit moment, honouring the NETIF F IP CSUM flag. At

transmit time, the sk buff is placed inside one (or more) of the pages shared

between netfront and netback and a notification carrying the grant reference

is placed in the ring buffer with a set of flags describing the packet. Two

flags are related to checksum computation and get set depending on sk buff

members values, as shown in Fig. 4.25

An event is, eventually, generated and the netback code kicks in, copy-

61

Figure 4.25: Checksum Related Flags at Guest Sending Time

<l i nux / d r i v e r s /xen/ n e t f r o n t . c>
tx−>f l a g s = 0 ;

[. . .]
i f (skb−>ip summed == CHECKSUMHW) /∗ l o c a l packe t ? ∗/

tx−>f l a g s |= NETTXF csum blank | NETTXF data validated ;
#ifde f CONFIG XEN

i f (skb−>p r o t o d a t a v a l i d) /∗ remote but checksummed? ∗/
tx−>f l a g s |= NETTXF data validated ;

#endif
</>

Figure 4.26: Checksum Handling Inside Netback When Netfront Transmits

<l i nux / d r i v e r s /xen/ netback . c>
/∗
∗ Old f ron t ends do not a s s e r t d a t a v a l i d a t e d but we
∗ can i n f e r i t from csum blank so t e s t both f l a g s .
∗/
i f (txp−>f l a g s & (NETTXF data validated |NETTXF csum blank

)) {
skb−>ip summed = CHECKSUM UNNECESSARY;
skb−>p r o t o d a t a v a l i d = 1 ;

} else {
skb−>ip summed = CHECKSUM NONE;
skb−>p r o t o d a t a v a l i d = 0 ;

}
</>

ing in the struct and deciding what to do. If the destination is a local

guest, the sk buff is then put on the shared pages of the netfront driver of

the destination host, otherwise the struct is queued for transmission on the

dom0 network interface. It is interesting to see how the netback behaves in

respect to checksum computation in the snippet of code reported in Fig. 4.26

Two things are important to notice:

• skb is the same sk buff struct that was passed in by netfront

62

• If NETTXF data validated or NETTXF csum blank is set, the packet

checksum is not checked

Now, this is what happens when checksum offloading is used for inter-

domain communication. But since we control the guest kernel, we can arbi-

trarily decide to set as validated any given packet, just by playing with flags

and textitskb values. Why would we do so ?

There are at least two interesting attacks that we can carry on abusing

this possibility:

Host mapping : We can identify systems that are hosted on the same

virtual machine host as we are. In fact we can send bad-checksummed

packets that are supposed to generate a response from the destination

host. Systems on the same virtual machine system will ignore the bad

checksum and reply to the packet, while systems that are on the same

network but physically separated will drop the packet. Since we can

play with any kind of packet, we can use for example an ICMP Echo

Request.

NIDS evasion and insertion : Insertion and evasion attacks are well

known. They were first theorised by Ptacek and Newsham in 1998 [60].

The idea is to make a NIDS (Network Intrusion Detection System) ig-

nore packets that the remote system will accept (insertion) or evaluate

packets that the remote system will ignore (evasion). In the first case

it is possible to perform attacks (e.g. a scan of the remote system) by

simply using packets that the NIDS will ignore, in the second case it

is possible to fool NIDS recognition patterns by mixing bad packets

with good ones.

63

The second attack is particularly interesting, because it is virtually un-

stoppable with the current Xen design using a single NIDS: since we control

how the netfront will behave we can decide if the bad checksummed packet

will be accepted by the remote host. If the NIDS is configured to keep

track of bad checksummed packet and evaluate them in its pattern match-

ing functions, we can simply mark the skbuff payload as non-validated and

the remote guest host will check the checksum and drop the packet. If, in-

stead, the NIDS is configured to not consider bad checksum packets, we can

generate stealth traffic by simply marking the skb data as validated and set

a bad checksum in the header.

We have described the theory behind our attacks against other Xen

domUs. It is now time to move to the description of the tool that we

developed to perform them: xenophobia.

64

Chapter 5

The Code Implementation:

xenophobia

This chapter describes how the attacks have been implemented and glued

together in a single tool, capable of automating their execution. The tool is

divided in three parts:

• A loadable kernel module : xenophobia.ko

• A userland daemon : xenophobiad

• A userland user text interface : xphb

The libraries used to code the tool are:

• libnet Is a packet creation, manipulation and injection tool [62] orig-

inally written by Mike Shiffman.

• libpcap Is a packet-capturing framework used by the widely known

tcpdump linux application. [63]

65

• Berkeley DB is an embeddable database which does not require SQL.

It is now maintained and released by Oracle.

5.1 xenophobia architecture

Xenophobia is composed of three main parts and an helper module, which

implements the dhcp attack. Its architecture is shown on Fig. 5.1

Figure 5.1: xenophobia Architecture

xenophobia.ko is a Linux Loadable Kernel Module (LKM). Since Xen-

Store must be contacted by a guest from kernel land, a kernel module is

mandatory. xenophobia.ko implements the setup of the two watches (initDo-

main and releaseDomain) and the hook of the network transmitting function

of the netfront driver, so that the checksum games can be played. Moreover,

xenophobia.ko communicates with userland in two ways:

Signal passing: Every time a watch fires in kernel land (that is, a domain

66

boots or gets destroyed), the kernel module needs to notify the daemon

about that, so that the logic of the attacks can be implemented in

userland. This is accomplished using signals. SIGUSR1 and SIGUSR2

are, respectively, associated to the init and the release of a domain.

/proc interface: a set of proc entries is created so that information from

kernel land can be retrieved and the behaviour of the module itself

can be configured from userland. The implemented entries are all into

/proc/xenophobia and are:

• domains: Keeps a list of the assigned and alive domaind IDs

(obtained through the grant table trick)

• cksum: Configures the use of the kernel modification of the

checksum of all the packets generated from a process which has

the ”xphb” string in its name (useful to use the insertion/evasion

checksum based attack with third-party code, like nmap [64], that

has not to be recompiled or modified, but just renamed) and if

the packets must be marked as valid, that is, if the remote host

will check or not the checksum.

• pid: Keeps the pid of the running xenophobiad daemon. The

userland daemon sets this value so that the kernel module knows

where to send the signals.

xenophobiad is the userland daemon which implements most of the

logic and the automation of the attacks. It can be run in two different

modes: active, which attempts to perform the dhcp spoofing attack every

time there might be the possibility, and passive, which simply sits in and

monitors the evolution of the network, to collect information about running

67

guests. The active mode is the default one and is controlled, inside the code,

by the do dhcp variable.

Whenever the daemon is launched, it saves its pid in the /textit/proc/xeno-

phobia/pid entry and it executes a map of the local network to discover

which IP have the domains hosted on the same virtual machine. This part

is implemented sending ICMP echo request messages with a bad checksum

that will be received and parsed correctly only by local1 systems. The MAC

address and the IP address of the host (together with other information, all

kept inside the struct host entry) are stored in the DB, keyed by the IP

address.

Before starting to loop forever, the daemon sets up handlers for:

• SIGUSR1 to handle any domain init watch fired in kernel land. The

handling function is called initdomain handler. When this watch

fires, depending on the settings and the state of the network, the func-

tion starts the DHCP attack or simply executes a new mapping of the

network.

• SIGUSR2 to handle any domain release watch fired in kernel land. The

handling function is called releasedomain handler. When this watch

fires, the function starts probing the recorded domains, attempting to

quickly find the one which is missing, so that, in the future, the DHCP

attack can be performed. Probing is once again based on ICMP echo

request packets.

• SIGCHLD to handle the exit of any child process. The handling func-

tion is called sig chld. The DHCP attack is implemented in a sep-
1We use the term local here to indicate systems hosted on the same physical Virtual

Machine

68

arate module which gets executed by the daemon through the classic

fork()/exec() sequence. The handler kicks in when the children exits

and cleanly handles this situation, to avoid zombie processes. Right

after cleaning resources, it starts a new mapping of the network, since

we do not know which domain is booting, we might have started an

unsuccessful attack against a new host.

At the end of the initialisation phase, the daemon sets up a local Unix

socket that is used by the other userland tool, xphb, to communicate with

the daemon and retrieve information or configure its behaviour, as shown in

Fig. 5.2

Figure 5.2: xphb Commands

bender : / root / xenophobia# . / xphb

Usage : . / xphb <command> [param]

Commands :

he lp shows t h i s output

dhcp [on | o f f] a c t i v a t e s / d e a c t i v a t e s dhcp attack

i n f o ge t s d e t a i l e d i n f o about a c t i v e domains

c l o s e shuts down xenophobiad daemon

bender : / root / xenophobia#

The dhcp command is used to switch the daemon from passive mode to

active mode and viceversa at runtime.

The dhcp module is contained in the source code xb dhcp module.c and

is executed from inside xenophobiad with the function create dhcp, which

expects the name of the module as a parameter. By default, it is xb dhcp.

The dhcp module gets two parameters from the command line (and a bunch

69

of others compiled in from the dhcpmodule.h include file):

• The MAC Address of the target (-m switch).

• The IP Address that you want to assign to the target (-d switch).

The first thing the module does is to prepare the DHCPOFFER and

DHCPACK payload that will be used during the attack. After that, it

calculates the candidate transaction id for the DHCP session, using the

current time and the MAC as the seed for the srandom() function.

The module then starts to loop for a given amount of seconds, defined

by the ROUNDS value in dhcpmodule.h, flooding the network with DHCPOF-

FER and DHCPACK packets. If the booting guest is the expected one (that

is, the one with the correct MAC address) and performs a DHCPREQUEST,

it will find the DHCPOFFER and DHCPACK packets already there and the

DHCP spoof attack will succeed.

To increase the chances of success, the previous value of the transaction

id is sent together with the new computed one every time the time moves

forward of one second. Moreover, since, depending on the client and/or on

the fact that a leased/recorded value is already saved, the dhcp client codes

may perform one or two random() calls before setting the transaction id,

packets containing both the values are sent.

One may consider to use the checksum trick in conjunction with this

attack, to evade particular NIDS configurations. In case this is the aim, it is

just a matter of changing the name of the module from xb dhcp to xphb dhcp

and change the name passed as a parameter to the create dhcp function

(the kernel module will take care of the rest).

The xenophobia code is available upon request under GPL Licence. [65]

70

Chapter 6

Conclusions and Future

Work

6.1 Conclusions

Virtualization technology has a lot of appeal for universities, hosting providers

and, more generally, service providers, because it permits them to get rid

of a lot of large and, sometimes, cumbersome physical hardware, while still

providing multiple separate environments for students and customers. The

Xen project has been estabilishing as one of the leading projects in the vir-

tualization field. We have presented xenophobia, a tool that implements

and automates a set of attacks against Xen-based environments. These

attacks can be carried out from inside an unprivileged domain, targeting

other unprivileged domains, without requiring the attacker to raise its own

privileges. Despite being quite simple in their ideas, the attacks presented

may have significant impact. The configuration required to carry out the

DHCP attack, with each host configured to have a static MAC address, is

71

a common configuration in many environments. A successful DHCP spoof-

ing attack allows the attacker to force all the outgoing traffic or/and DNS

requests to go through his own host.

The presented issue with checksum validation should at least warn users

willing to place a NIDS on the dom0, to be able to check the internal,

in-memory, traffic of a Xen virtualized environment. As we previously de-

scribed, since there is no option that the receiving end can set to refuse bad

checksummed traffic, intrusion or evasion should nearly always be possi-

ble. Moreover, the checksum based technique allows an attacker to identify

the hosts that are physically on the same box and, by passively waiting for

(re)boots, map them to their domain ID. This might be helpful in many

attack situations: we have only discussed how it could improve the DHCP

based attack.

It is important to mention that, with the spreading of virtualization-

capable hardware architectures like AMD Pacifica [66] and Intel VT (Virtu-

alization Technology) [67], HVM (Hardware-Virtualization based) domains

are going to be more and more common than paravirtualized ones, for ex-

ample because unmodified guest OSes can be run on them (e.g. Windows).

Notwithstanding this, paravirtualization ideas still have application: par-

avirtualized drivers are faster than a fully emulated device and might still

be used, for example, for networking. An example of this, on Xen, is the

Windows GPL PV [68] drivers project.

In the following two subsections we describe a set of features that are

likely to be merged in a future version of xenophobia and a set of fix/conter-

measures that might by applied to block or mitigate the effect of the attacks.

72

The Xen security group was privately contacted before the release of this

work.

6.2 Extending the tool

The tool design is modular enough to easily add new modules, for example

to implement new attacks based on the watch mechanism.

The passive mode of the daemon could be improved by collecting (and

storing in the db) more information about the running domains, for example

adding the association of domain IDs to hosts or the result of a port scan [64]

against the victim domain. The logic to introduce the ID-domain mapping is

mostly already there and the integration should be simple. Having this part

merged in would give a little advantage at domain destroy time: instead of

checking all the IP addresses for the not-responding one, the daemon could

simply request a list of the available domains from the kernel (checking the

/proc/xenophobia/domains entry) and look for the missing domain id. If

all the hosts have the correct domID associated, the lookup of the correct

MAC/host to attack at boot time would be quicker and would not require

any more a network probing.

The logic handling the execution of the DHCP attack could also be im-

proved, allowing a user to decide to perform the attack only on some hosts

and/or to control the number of times the attack should be performed, if

unsuccessful (consider the case in which the target host shuts down, a new

one is booted and then the target boots again). This implies adding code

to check if the DHCP attack was successful in the first place: this might be

73

achieved by making the remote host generate some traffic and see if we can

see that or by grabbing the network traffic and evaluating the DHCPRE-

QUEST packet. This second case would not work if we are attempting to

completely spoof our request.1 The struct associated to each database entry

could be extended to include these parameters and the userland xphb tool

could be used to configure the behaviour of the daemon at runtime.

Considering profiling user activity, another possible set of attacks that

might look promising are ones based on timing issues. Since a Xen guest

can check the RTC (Real-Time Clock) and can figure out when and if it was

scheduled out (by looking at the values inside the shared info page) dur-

ing the execution of an operation, it could use this information to measure

response time on some Hypervisor-related operations.

Some testing code capable of mapping the used and free grant table refer-

ences of a remote guest checking the response time differences of the asso-

ciated hypercall was developed, but was not included because it was not

mature enough. Moreover, an effective, advantageous, use of this approach

has not been investigated further.

6.3 Mitigating the attacks

As we said previously, the Xen security team has been notified of the issues

reported in this work and a couple of potential solutions have been proposed.

Due to lack of time, no code patches were sent. The suggested solutions are:

• Add a Driver Domain member to the structure representing the alive
1Keep in mind that Xen Hypervisor knows the binding between a MAC address and

the host it was assigned to and so an admin could use this information to prevent the
spoofing of network traffic. This is the default configuration with a Solaris dom0.

74

domains and check against the value of this member inside the watch

related function, instead of allowing EACCES and ENOENT for any

domain.2

• Add a configuration option that a domU guest may set specifying that

its network driver should always check the checksum value. This value

should be used in conjunction with disabling the checksum offload-

ing on all the guests, in case the service provider wants to stop local

network mapping and the IDS evasion and insertion attacks.3

The domain ID exposure might be fixed using the XSM (Xen Security

Modules) project, but the XSM call should be moved first in the sequence of

checks that the grant hypercall performs. The Xen security team considers

this one as a low priority issue4 and in fact it is. It becomes useful only in

conjunction with other attacks, as the XenStore one. It is worth mention-

ing though that some service provider might be interested in not showing

to customers how many virtualized guests are active on the host and that

this piece of information might become useful in performance-based attacks,

that is, attacks that try to profile the activity of a guest based on the use of

hardware resources.

The DHCP attack might be detected by the legal DHCP Server or a traffic

analyzer by evaluating the contents of the DHCPREQUEST message that

the victim broadcasts, checking if the gateway address or the nameservers

address are different that the ones legally announced. An attacker can,
2If one is sure that he will not use Driver Domains, he might just remove the EACCES

and ENOENT check from the source code.
3A Loadable Kernel Module can be also used for this purpose, following the approach

that xenophobia uses on the sender end to play with the checksum.
4And a legal, XenStore based, way to enumerate domain IDs is available, as we said in

Chapter 3

75

though, circumvent this detection by changing slightly the DHCP module

code and sending a DHCPREQUEST with legal parameters and then send-

ing a DHCPACK with modified nameservers and/or gateway address. This

attacking option will be added in the next release of xenophobia. A traffic

analyzer on the dom0 might still detect the attack checking the attacker

DHCPOFFER and DHCPACK packets, but the attacker might manage to

evade it using the checksum-based evasion approach. An admin might stop

DHCP based attacks by filtering out DHCP packets from inside the dom0.

For example, if the DHCP server is an external server, all the internal traffic

carrying DHCPRESPONSE and DHCPOFFER should be dropped. Exter-

nal hardware/software solutions, as, for example, the Cisco DHCP Snoop-

ing [69] one, would not work, because no external device can check the

in-memory traffic between guests.

76

Bibliography

[1] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Sys-

tems and Processes. Morgan Kaufmann, June 2005.

[2] (2008) Sun java virtual machine. [Online]. Available: http:

//java.sun.com/

[3] (2008) Microsoft .net framework. [Online]. Available: http://www.

microsoft.com/NET/

[4] CitriX press office. (2007, Aug.) Citrix to enter server and desktop vir-

tualization markets with acquisition of xensource. [Online]. Available:

http://citrix.com/English/NE/news/news.asp?newsID=680808

[5] C.-H. Yen. (2007, Nov.) Solaris operating system hardware vir-

tualization product architecture. 820-3703.pdf. [Online]. Available:

http://www.sun.com/blueprints/1107/

[6] P. Ferrie. (2006) Attacks on virtual machines emulators. [Online].

Available: www.symantec.com/avcenter/reference/Virtual Machine

Threats.pdf

[7] J. Rutkowska and W. Rafal. (2008) Xen 0wning trilogy. [Online].

Available: http://invisiblethingslab.com/bh08/

77

[8] N. A. Quynh. (2007) Hijacking virtual machine execution for fun and

profit. [Online]. Available: http://video.google.com/videoplay?docid=

1854946164969106185

[9] (1997) Superscalar microprocessor architecture. [Online]. Available:

http://www.freepatentsonline.com/5603047.html

[10] (2008) Intel 64 and ia-32 architectures software developer’s man-

uals. [Online]. Available: http://www.intel.com/products/processor/

manuals/-

[11] J. Robin and C. Irvine, “Analysis of the intel pentium’s ability to

support a secure virtual machine monitor,” 2000. [Online]. Available:

http://citeseer.ist.psu.edu/robin00analysis.html

[12] A. S. Tanenbaum, Modern Operating Systems. Upper Saddle River,

NJ, USA: Prentice Hall PTR, 2001.

[13] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Con-

cepts. New York, NY, USA: John Wiley & Sons, Inc., 2001.

[14] (2005) Ultrasparc user’s manuals. [Online]. Available: http://www.

sun.com/processors/documentation.html

[15] A. S. Tanenbaum and J. R. Goodman, Structured Computer Organiza-

tion. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[16] R. McDougall and J. Mauro, Solaris(TM) Internals: Solaris 10 and

OpenSolaris Kernel Architecture (2nd Edition) (Solaris Series). Sun

Microsystems Press, 2006.

78

[17] D. Bovet and M. Cesati, Understanding The Linux Kernel. Oreilly &

Associates Inc, 2005.

[18] R. Love, Linux Kernel Development (2nd Edition) (Novell Press). Nov-

ell Press, 2005.

[19] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable

third generation architectures,” SIGOPS Oper. Syst. Rev., vol. 7, no. 4,

p. 121, 1973.

[20] (2008) Qemu internals. [Online]. Available: http://bellard.org/qemu/

qemu-tech.html

[21] (2008) Vmware: Virtualization via hypervisor, virtual machine and

server consolidation. [Online]. Available: http://www.vmware.com

[22] P. Barham, “Xen and the art of virtualization,” 2003. [Online].

Available: http://citeseer.ist.psu.edu/article/barham03xen.html

[23] (2008) Xen hypervisor. [Online]. Available: http://www.xen.org

[24] (2008) Xen 3.3. [Online]. Available: http://bits.xensource.com/

oss-xen/release/3.3.0/xen-3.3.0.tar.gz

[25] (2008) The linux kernel. [Online]. Available: http://www.kernel.org

[26] (2008) Netbsd. [Online]. Available: http://www.netbsd.org

[27] (2008) Xenlinux. [Online]. Available: http://wiki.xensource.com/

xenwiki/XenLinux

[28] (2008) Xend internals. [Online]. Available: http://wiki.xensource.com/

xenwiki/XendInternals

79

[29] D. Chisnall, The Definitive Guide to the Xen Hypervisor. Prentice

Hall Open Source Software Development Series, 2007.

[30] T. de Raadt. (2003) Openbsd: Buffer overflow solutions. [Online].

Available: http://kerneltrap.org/node/573

[31] I. Molnar. (2003) Linux: Exec shield overflow protection. [Online].

Available: http://kerneltrap.org/node/644

[32] PaxTeam. (2008) Documentation for the pax project. [Online].

Available: http://pax.grsecurity.net/docs/aslr.txt

[33] P.-H. Kamp and R. N. M. Watson. (2000) Jails: Confining

the omnipotent root. [Online]. Available: phk.freebsd.dk/pubs/

sane2000-jail.pdf

[34] GRSecurity. (2008) Grsecurity features. [Online]. Available: http:

//www.grsecurity.net/features.php

[35] iSEC. (2008) isec released vulnerabilities. [Online]. Available: http:

//www.isec.pl/vulnerabilities.html

[36] MOKB. (2007) Month of kernel bugs. [Online]. Available: http:

//projects.info-pull.com/mokb/

[37] twiz and sgrakkyu. (2007) Phrack64: Kernel exploiting notes. [On-

line]. Available: http://www.phrack.org/issues.html?issue=64&id=6#

article

[38] iSEC. (2003) Linux kernel do brk() vulnerability. [Online]. Available:

www.isec.pl/papers/linux kernel do brk.pdf

80

[39] noir. (2002) Phrack60: Smashing the kernel stack for fun and

profit. [Online]. Available: http://www.phrack.org/issues.html?issue=

60&id=6#article

[40] D. Song. (2000) Dsniff. [Online]. Available: http://monkey.org/

∼dugsong/dsniff/

[41] J. McHugh, A. Christie, and J. Allen. (2000) Defending yourself: The

role of intrusion detection systems. [Online]. Available: www.cert.org/

archive/pdf/IEEE IDS.pdf

[42] (2008) Snort - the de facto standard for intrusion detection/prevention.

[Online]. Available: www.snort.org

[43] D. W. Chadwick. (2004) Network firewall technologies. [Online].

Available: www.itsec.gov.cn/webportal/download/2004 network fw

tech.pdf

[44] (2002) Guardian active response for snort. [Online]. Available:

http://www.chaotic.org/guardian/

[45] The FreeBSD Documentation Project. (2008) Freebsd handbook,

chapter 16, mandatory access control. [Online]. Available: http:

//www.freebsd.org/doc/en/books/handbook/mac.html

[46] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra:

a virtual machine-based platform for trusted computing.” ACM Press,

2003, pp. 193–206.

[47] N. Provos. (2003) A virtual honeypot framework. [Online]. Available:

http://www.citi.umich.edu/techreports/reports/citi-tr-03-1.pdf

81

[48] T. Ormandy. (2006) An empirical study into the security exposure

to hosts of hostile virtualized enviornments. [Online]. Available:

http://taviso.decsystem.org/virtsec.pdf

[49] Ilja van Sprundel. (2005) Fuzzing. [Online]. Available: http://events.

ccc.de/congress/2005/fahrplan/attachments/683-slides fuzzing.pdf

[50] D. A. D. Zovi. (2006) Hardware virtualization rootkits. [On-

line]. Available: http://www.blackhat.com/presentations/bh-usa-06/

BH-US-06-Zovi.pdf

[51] J. Rutkowska. (2006) Subverting vista kernel for fun and profit. [On-

line]. Available: http://www.blackhat.com/presentations/bh-usa-06/

BH-US-06-Rutkowska.pdf

[52] D. Murray. (2007) Improving xen security through domain-zero

disaggregation. [Online]. Available: http://xen.org/files/xensummit

fall07/22 DerekMurray.pdf

[53] G. Cocker. (2006) Xen security modules. [Online]. Available:

http://xen.org/files/summit 3/coker-xsm-summit-090706.pdf

[54] (2008) Selinux/flask. [Online]. Available: http://www.nsa.gov/selinux/

index.cfm

[55] (2008) Nsa - national security agency. [Online]. Available: http:

//www.nsa.gov/

[56] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131 (Draft

Standard), Mar. 1997, updated by RFCs 3396, 4361. [Online].

Available: http://www.ietf.org/rfc/rfc2131.txt

82

[57] A. Ornaghi and M. Valleri. (2003) Man in the middle at-

tacks. [Online]. Available: http://www.blackhat.com/presentations/

bh-europe-03/bh-europe-03-valleri.pdf

[58] J. Postel, “Domain Name System Structure and Delegation,”

RFC 1591 (Informational), Mar. 1994. [Online]. Available: http:

//www.ietf.org/rfc/rfc1591.txt

[59] A. Menon, A. L. Cox, and W. Zwaenepoel. (2006) Optimizing network

virtualization in xen. [Online]. Available: http://www.usenix.org/

events/usenix06/tech/menon/menon html/paper.html

[60] T. H. Ptacek and T. N. Newsham, “Insertion, evasion, and denial of

service: Eluding network intrusion detection,” Tech. Rep., 1998.

[61] C. Benvenuti, Understanding Linux Network Internals. O’Reilly Me-

dia, Inc., 2005.

[62] (2007) The libnet packet construction library. [Online]. Available:

http://www.packetfactory.net/libnet/

[63] (2008) Tcpdump/libpcap public repository. [Online]. Available:

http://www.tcpdump.org/

[64] (2008) Nmap free security scanner for network exploration and

hacking. [Online]. Available: http://nmap.org/

[65] (2007) Gnu general public license (gpl). [Online]. Available: http:

//www.gnu.org/copyleft/gpl.html

[66] (2008) Industry leading virtualization platform efficiency.

83

[Online]. Available: http://www.amd.com/us-en/Processors/

ProductInformation/0,,30 118 8796 14287,00.html

[67] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig.

(2006) Intel virtualization technology: Hardware support for efficient

processor virtualization. [Online]. Available: http://download.intel.

com/technology/itj/2006/v10i3/v10-i3-art01.pdf

[68] (2008) Xenwindowsgplpv - xen wiki. [Online]. Available: wiki.

xensource.com/xenwiki/XenWindowsGplPv

[69] (2008) Understanding and configuring dhcp snooping. [Online]. Avail-

able: http://www.cisco.com/en/US/docs/switches/lan/catalyst4500/

12.1/12ew/configuration/guide/dhcp.pdf

84

