

Code Generation of Ontology-based abstract
Algorithms

Liang Shan

A dissertation submitted to the
University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science

Submitted September 2008

DECLARATION

I, declare that the work described in this dissertation is, except where otherwise stated,
entirely my own work and has not been submitted as an exercise for a degree at this or
any other university.

Liang Shan

7th September 2008

ii

PERMISSION TO LEND AND/OR COPY

I agree that Trinity College Library may lend or copy this dissertation upon request.

Liang Shan

7th September 2008

iii

Acknowledgements

I would like to thank many people for helping me during my M.Sc. research project.
First, and foremost, I would like to deeply thank Trinity PHD Simone Grassi for his
guidance, words of encouragement, kindness and patience. I shall never forget his
support in the past months.

I also would like to take the opportunity to thank my supervisor, Stephen Barrett, for
his guidance, unstoppable enthusiasm and support throughout the project.

I would also like to express my appreciation to all my NDS classmates who provided
me with caring and inspiration during difficult times.

Finally, I am so very grateful for the family I am blessed with. To my Mum Yan
HuiHua and Dad Shan GengBao, who put a lifetime of effort and love into my
upbringing. Thank you for everything you have done for me.

iv

Abstract

Software Development as part of software engineering is a huge and always active
field of Computer Science. The traditional waterfall software development life cycle
shows its weakness in providing user oriented service since it is hard to gather all the
requirements and changes may happened any time after deployment. Especially, with
the development of internet, there is a strong increase in the need of more dynamic,
pluggable service for better interaction between services and easy maintenance. One
of solutions is the use of Model Driven techniques. A modeling technique can be used
to express information, knowledge or systems in a structure that is defined by a
consistent set of rules. Rules are used to interpret the meaning of components in the
structure.

Trinity PHD Simone Grassi’s has carried out his research to create an abstract
specification of algorithms (based on a set of ontologies) as a Model Driven Platform
to build software. The set of ontologies (OWL) are created to host a rich set of
semantic information to the modeling algorithm and this approach decouples the
algorithm from any particular architecture, framework or programming language. The
most two important ontology files of Simone’s abstract modeling algorithm are
Algorithm Ontology (AO) and Specific System Logic Ontology (SSLO). AO is tree
structure model contains individual that constitute an algorithm and SSLO is for a
specific language include syntax rule for languages features (control flow, operators,
variable, etc) using XSLT.

This project is a collaboration that delivers a platform in support of Simone’s research.
This project report presents the design and implementation of a Code Generation
Engine that the CGE interprets AO using SSLO to generate code. The generated code
through CGE can be function, full classes, or any valid code and then the code can be
deployed on the server as online service. CGE is very generic and not dependent on
any programming language/framework and it is easy to extend to a new language by
creating a new SSLO. Code can be modified and regenerated by changing the AO at
demand, making the service dynamic and pluggable.

Test cases were designed and tested to ensure the initial requirements of CGE are met.
CGE meets Simone’s research aim that it is not to generate any possible programming
language structure or trick, but only to generate valid code starting from the ontology
that is the model of an abstract algorithm. CGE is a successful tool for the testing of
specification of abstract algorithms and it will be core part for test and evaluation part
of a paper to be submitted in the future.

v

Table of Contents

CHAPTER 1 INTRODUCTION ..1

1.1 BACKGROUND ..1
1.2 MOTIVATION ..2
1.3 OBJECTIVES ...2
1.4 PROJECT APPROACH ...3
1.5 CONTRIBUTION ..3
1.6 ROADMAP ...4

CHAPTER 2 BACKGROUND ...6

2. 1 PROBLEMS OF TRADITIONAL SOFTWARE DEVELOPMENT ..6
2.2 MODEL DRIVEN ARCHITECTURE ..9

2.2.1 Model Driven Architecture Development Life Cycle ...10
2.3 ONTOLOGY AND OWL...12

2.3.1 Ontology ..12
2.3.2 OWL ..13

CHAPTER 3 STATE OF ART..16

3.1 BENEFITS OF USING CODE GENERATOR ...16
3.2 XML BASED CODE GENERATOR ...17
3.3 ADVANTAGES OF ONTOLOGY-BASED CODE GENERATION OVER XML-BASED CODE

GENERATION..19

CHAPTER 4 ONTOLOGY-BASED ALGORITHM MODELING
APPROACH ...20

4.1 A NEW APPROACH IN ALGORITHM MODELING..20

CHAPTER 5 DESIGN..25

5.1 INTRODUCTION ..25
5.2 REQUIREMENTS ...25

5.2.1 Requirement for SSLO ...25
5.2.2 Requirements for Code Generation Engine...26

5.3 TECHNIQUES USED FOR CGE ..27
5.3.1 Protégé API...27
5.3.2 Saxon and Saxon API ..29

5.4 XSL DESIGNED FOR CLASSES IN THE LOGIC BUILDING BLOCK OF THE ALGORITHM30
5.4.1 Design XSL for Class OperatorAssignX ..30
5.4.2 Design XSL for Class OperatorLoopDowhile or OperatorLoopWhileDo...........................32

vi

5.4.3 Design XSL for Class OperatorLoopFor ...32
5.4.4 Design XSL for Class OperatorCondtionDualIfThen and Class
OperatorCondtionDualIfThenElse ...33
5.4.5 Design XSL for Class Component..34
5.4.6 Design XSL for Class OperatorLogicX ..35
5.4.7 Design XSL for Class Return ...36
5.4.8 Design XSL for Class Variable ..37

5.5 DESIGN FOR CODE GENERATION ENGINE ..37
5.5.1 Code Generation Architecture..37
5.5.2 Deeper understanding of AO tree ..38
5.5.3 Code Generation Engine Functional Design ..40

CHAPTER 6 IMPLEMENTATION ...46
6.1 SSLO Implementation ...46
6.1.1 XSL implementation for Class OperatorAssignX ..46
6.1.2 XSL implementation for Class OperatorLoopDowhile or OperatorLoopWhileDo47
6.1.3 XSL implementation for Class OperatorLoopFor ...48
6.1.4 XSL implementation for Class OperatorCondtionDualIfThen and Class
OperatorCondtionDualIfThenElse ...50
6.1.5 XSL implementation for Class Component ..51
6.1.6 XSL implementation for Class OperatorLogicX..53
6.1.7 XSL implementation for Class Return ...54
6.1.8 XSL implementation for Class ParameterVariable ...55

6.2 CODE GENERATION IMPLEMENTATION..55
6.2.1 CGE Classes Architecture ..56
6.2.2 Review Code Generation Processes Flow ..57
6.2.3 Implementation for finding Root Element...58
6.2.4 Implementation for Current Element Transformation ...59
6.2.5 Implementation for Special Pattern {@ @} Match ..61
6.2.6 Implementation for Recursive Functions for traversing the AO Tree and calling
transformation method on each element ..62
6.2.7 Implementation for Saxon XSLT Processor ..66
6.2.8 Implementation for Code Deployment ...67
6.2.9 Implementation for Graphic Interface...68

CHAPTER 7 EVALUATION ..70

7.1 EXPERIMENT SETUP...70
7.2 CHANGE AO USING PROTÉGÉ ...71
7.3 TEST CASE 1 ...72
7.3 TEST CASE 2 ...74
7.3 TEST CASE 3 ...76
7.4 TEST CASE 4 ...78
7.5 TEST CASE 5 BASED ON REAL ENTERPRISE ORIENTED CASE STUDY ..80
7.6 EVALUATION SUMMARY ..83

vii

CHAPTER 8 CONCLUSION ...84

8.1 PROJECT SUMMARY...84
8.2 INFLUENCE FROM COLLABORATION WORK ..85
8.3 CONTRIBUTION ..86
8.4 FUTURE WORK ...86

BIBLIOGRAHPHY..89
APPENDIXI Questionaire to evaluate the collaboration work...91
APPENDIX II Overall Project Schedule...93

viii

ix

LIST OF FIGURES

Figure 2-1: Traditional Software Development Life Cycle..………………….......…..7
Figure 2-2: Model Definitions ………………………..…………………….......……9
Figure 2-3: MDA Software Development Life Cycle…………….………….......…. 11
Figure 2-4: Major Steps in MDA Development Processes ………….……….......….12
Figure 2-5: OWL Sample……………………..............................……………......… 15
Figure 3-1: XML based Code Generation Processes…..…………………….............19
Figure 4-1: Ontologies-based Algorithm Modelling Architecture……..……….........21
Figure 4-2: AO in Tree Structure………………………..……………………......….23
Figure 4-3: Protégé snapshot of SSLO…………………...…………………......……24
Figure 5-1: Code Sample of traversing an ontology using Protege API......…......…..29
Figure 5-2: Saxon XSLT Processor used in CGE…………..…………………......…30
Figure 5-3: Protege SnapShot of Class OperatorAssignEqualThan……...…......……31
Figure 5-4: Protege SnapShot of Class OperatorLoopWhileDo…………...….....…..32
Figure 5-5: Protege SnapShot of Class OperatorLoopFor………...………….....…...33
Figure 5-6: Protege SnapShot of Class OperatorCondtionalDualIfThen…….....……34
Figure 5-7: Protege SnapShot of Class Component……………………....….....……35
Figure 5-8: Protege SnapShot of Class OperatorLogicEqualThen…………….....….36
Figure 5-9: Protege SnapShot of Class Return…………………………...…….....….36
Figure 5-10: Protege SnapShot of Class ParameterVariable…..……………….....…37
Figure 5-11, Code Generation Architecture……………...…………………….....….38
Figure 5-12, AO Tree Structure in detail………………………...…………….....….40
Figure 5-13, Sample AO contains rootElement…………....…………………....…...41
Figure 5-14, Current Element Transformation Processes……....................................41
Figure 5-15: Recursive Transformation Processes Flow…...43
Figure 5-16: GUI of CGE………………………………................…………….....…45
Figure 6-1: XSL implentation for Class OperatorAssignEqualThan...……….....…...47
Figure 6-2: XSL implementaiton for Class OperatorLoopWhileDo…........…....……48
Figure 6-3: XSL implementation for Class OperatorLoopFor…………………....….49
Figure 6-4: XSL implemenation for Class OperatorCondtionalDualIfThen….….......50
Figure 6-5: XSL implementation for Class Component …………………….…...….52
Figure 6-6: XSL implementation for Class OperatorLogicEqualThen ………...........53
Figure 6-7: XSL implementation for Class Return ……………….....……………....54
Figure 6-8: XSL implementation for Class ParameterVariable ………….……….....55
Figure 6-9 CGE Class Diagram ……………………..................…………………....57
Figure 6-10: Code Generation Processes Flow…………..………………………......58
Figure 6-11: Code Sample for finding Root Element in AO………......………….…59
Figure 6-12: Sequence Diagram for Current Element Transformation……..……..…60
Figure 6-13: Sample Code for Special Pattern Matching…………………...…..…....61

Figure 6-14: Pseudo Code of translateCode method……………..…………..………63
Figure 6-15: Pseudo Code of translateSubelement method……………...…………..64
Figure 6-16: Sequence Diagram for using Saxon for Transformation…………....….66
Figure 6-17: Sample Code of tryCache method………………………......……….....67
Figure 6-18: Sample Code for file deployment……………..……………………..…68
Figure 6-19: Sample Code of Action related to Menu Item……………..………..….69
Figure 7-1: Change AO using Protégé…………………………..………………..….72
Figure 7-2: AO version1…………………………………......…………………..…..73
Figure 7-3 Snapshot of Test case 1 result in web bowser…………………..……..…74
Figure 7-4: AO verion2……………………………......…………………………..…75
Figure 7-5 Snapshot of Test case 2 result in web bowser……………………..…..…76
Figure 7-6: AO verion3………………………..............…………………………......77
Figure 7-7 Snapshot of Test case 3 result in web bowser ……………..………..…...77
Figure 7-8 Snapshot of PHP code using Ao version1…………………..………..…..78
Figure 7-9 Snapshot of PHP code using Ao version2…………………......……..…..78
Figure 7-10 Tree Structure of ao_AverageValue AO……………….....………..…...79
Figure 7-11 Snapshot of PHP code using ao_AverageValue AO……….………..….79
Figure 7-12 Snapshot of Java code using ao_AverageValue AO……….....……..….79
Figure 7-13 Tree Stucture of Tax AO version 1………………….....…………..…...81
Figure 7-14 Tree Stucture of Tax AO version 2……………….....................…..…...82

x

Chapter 1 Introduction

1.1 Background

Software development is a huge and always active field of Computer Science. Many

research projects and technologies proposal continually appear in this field in order to

gain high productivity, portability, interoperability and easy maintenance. During the

years, more and more importance was given to the maintenance. Systems are

becoming larger and more complex, open to other technologies both from the use of

libraries based on code and for the interaction during execution time with other

systems.

The concept of service became an accepted word to identify a processing making

available a computation to remote processes on the internet. In particular web service

is one of the most widely used technologies, it enables remotes system to interact for

access data, request computation and communicate the result of an executed process

or ask for a process to be executed [1]. Those services on the internet make the

maintenance and update much more complicate. Traditional waterfall software

development life cycle shows its weakness in providing user oriented online service

since it is hard to gather all the requirements at first. Changes may happen at any time

after service deployed. So there is a huge growth of demands for dynamic, pluggable

service and easy maintenance.

1

1.2 Motivation

One of solutions for providing dynamic, flexible service is the use of Model Driven

techniques. A modeling technique can be used to express information, knowledge or

systems in a structure that is defined by a consistent set of rules. Rules are used to

interpret the meaning of components in the structure.

Trinity PhD student Simone Grassi has carried out his research to create an abstract

specification of algorithms as a Model Driven Platform to build software. His

approach is based on ontologies and allows decoupling the algorithm specification

from the system that will host service based on these algorithms. This project start as

a branch of overall research project to provide solution to generated code (PHP, Java)

using a language independent ontology based abstract algorithm.

1.3 Objectives

The main aim of this project is to design and implement a Code Generation Engine

that take ontology-based modeling algorithm as input and generate code for specific

language as output.

The following goals are derived

z The CGE is completely independent from any specific system or programming

language, in such a way that generation of code for different language is a matter

of changing the input of the CGE and not the CGE itself in any part of it.

z Generated code can be deployed on the web server and accessed through internet

z Code can be modified and regenerated by changing the model of the algorithm on

demanded, there is no changes should be made to CGE.

z The CGE can generate code for a new programming language by creating a new

language specific ontology algorithm, without changing the CGE itself.

2

1.4 Project Approach

I started in studying ontology-based modeling algorithm approach to derive lists of

requirements for CGE and also researched in other related topic such as Model Driven

Architecture, Semantic Web. The aims of this project are clearly derived and pointed.

The state of art in code generation was researched and key processes involved in

development of a code generator were identified and I then did a few practices for get

familiar with technologies (Protégé, Saxon API) to used in the project implementation

CGE is designed in a specific architecture so that it makes CGE to be decoupled from

any particular programming language or systems. Various functions were designed to

handle different processes involving in code generation.

CGE is then implemented in Java using various third party APIs to achieve code

generation of ontology-based abstract algorithms and code generated using CGE can

then be deployed on the web server and run as online service. Meantime, I also

worked together with Simone in fulfilling language specific ontology by writing XSL

for language features.

Test cases were designed and tested to evaluate whether CGE meets the initial

requirements.

1.5 Contribution

CGE is very generic and it is not dependent on any programming language or

framework but only depends on what modeling algorithms describe. It is very easy to

supporting a new language by creating a new language specific ontology.

Code generated by the CGE can be modified at user demand by changing the model

of the algorithm. Any change need to be done to any part of the CGE, only the input

given to the CGE change.

3

CGE project meets Simone’s research aim that it is not to generate any possible

programming structure or trick, but only to generate valid code starting from the

ontology that is the model of an abstract algorithm.

CGE is a successful tool for the testing of specification of abstract algorithms and it

will be a core part test and evaluation part of a paper to be submitted in the future.

By using of CGE, it provides ability for supporting more dynamic and pluggable web

service. User can ask for new version of web service any time by make modification

to ontology algorithm and CGE can automatically derive new version of service and

make it redeployed.

1.6 Roadmap

Chapter 2 will describe the background information on the areas of Model Driven,

Semantic Web which they are related to this dissertation. These areas were the starting

point for all research, and a presented here to familiarize the reader with concepts

upon which the project is based.

Chapter 3 will describe an overview in the current state of the art of code generation,

the benefit of using code generator and advantage of code generation use ontology

over tradition XML based code generation.

Chapter 4 will describe in detail about the ontology-based modeling algorithm

approach and key owl files construct the algorithm.

Chapter5 will describes requirements in relation to code generation engine are listed.

And the introduction of technologies to be used in implementation is also included.

Following the design for XSL style sheet used in the language specific ontology and

detail design for code generation engine.

Chapter 6 will describe implementation of language specific ontology for both PHP

4

and Java language features. And then it is concentration on explanation in detail

explanation of how CGE was implemented by developing various classes and

functions for different purposes and how they are interacted to make CGE work.

Chapter7 will evaluate the CGE based on multiple test cases. Algorithm ontology file

were created to be used as input for CGE for specific test purposes. All those AO files

are used to evaluate whether CGE implemented to meet the initial aim. In this chapter,

also include explanation in details about how to make change to AO using Protégé.

Chapter 8 will describes project summary, influence from collaboration work and lists

of contributions achieved and point out future work to be done in the further

development.

5

Chapter 2 Background

This chapter provides background information on the areas of problem of traditiona

software development, Model Driven Aritecture, Semantic Web which they are

related to this dissertation. These areas were the starting point for all research, and a

presented here to familiarize the reader with concepts upon which the project is based.

2. 1 Problems of Traditional Software Development

z Productivity Problem:

As we can see from the following classical software development cycle shown in

Figure 2-1, that it usually break down into 5 phases as Requirement Analysis, Design,

Implementation, Testing, Maintenance[2]. Normally requirement analysis and system

design phrase will consume most of development to produce large numbers of

diagrams such as system class diagrams, state diagrams and sequence diagrams and

documents related to system design. Until implementation stage is reach, it will result

in actual code producing, then those produced code will be run through set of test

cases to ensure they meet the system requirement. Finally tested system will be

deployed to available to users.

However, it is very common that changes are needed to be made during testing or

after deployment, which these changes will bring a another new round of software

development cycle that new UML will be added and some of original UML diagrams

need to modify and redraw. Design document needed to be reedited and produced

again. Then software engineer is going to make actual changes to the code and test

code again. Changes can still happen at any time if user is not happy about system and

there is no guarantee of zero bug in the system yet. The productivity is quite low if

6

changes to system happen a lot that precious time of software engineer will be cost in

rewriting design documentation and redraw UML diagram instead of programming.

Figure 2-1: Traditional Software Development Life Cycle

z Portability Problem

Software industry has its unique character which is rapid and continuous update of

technologies[4]. New generation technologies are brought to industry ever quicker

than before that makes software industry different from most other industries.

The demand for portable system grows because many company managers realized the

value of applying new technologies will bring to their companies. For example XML,

J2EE, .Net platform are widely used to develop enterprise software application, those

technologies are already proved their power in enabling business and vendors like

Microsoft, IBM, Sun are keeping promoting their new technologies.

7

People want to jump on these new technologies, but problems arise in most cases they

have to give up current system developed in old technologies or make significant

changes to original system to adapt new technologies. Lack of portability will result in

huge cost in system redevelopment and as a consequence it is not welcomed.

z Interoperability Problem

In ancient age of software industry, software systems were intended to be customer

specific and isolated from other systems[5]. However, since the internet become more

and more important, the need for interaction between software systems is growing. At

the moment, most software system can be divided into several components for

different functions. Example like web based application can be partitioned into three

layers as User Interaction Layer, Business Logic Layer and Persistent Layer and there

are a lot of small components inside each layer to perform their functions [6]. Those

small components of entire web application need to interact with to perform business

logic so that user change data in the web page can result in the update of data in the

back end database.

On the other hand, it is very common that there are more than one technology

involved in the system development. For web based application example mentioned

before that JSP and Servlet may be used for Front Tier to user and it also need use

relational databases as a storage mechanism. Building System based on components

bring a lot flexibility for interaction between systems. This also helps make it easier to

make changes to a system. System built based on set of technologies, also need to be

interacted with each other.

z Maintenance Problem

As we already mentioned that changes can cause big pain in the traditional software

development cycle. However other problems emerge in the maintenance especially

after system deployment that most of companies need to hire internal staffs or pay for

external consultants to be responsible for maintain system regularly at daily basis and

also responsible for new service deployment if necessary. One tiny change made to

8

system will result in extra workload for not only software engineer but also to system

administrator.

If changes made to system under permit of manager can automatically generate code

(new service or modification to original) which it will save a lot of time in service

redevelopment and redeployment. But authentication and security control should be

concerned at this point since no manager wants to see his system can differentiate

without control.

2.2 Model Driven Architecture

MDA is own and trademark by the Object Management Group since 2000 and MDA

is an approach to using model techniques in driving software development.

The Model-Driven Architecture prescribes certain kinds of models to be used, how

those models may be prepared and the relationship of different kind of models and

how to use sets of model to derive software applications [7].

Within Model Driven Architecture, we can use the following definition for Model
z A Model is a description of (part of) a system written in a well-defined language

as shown in Figure 2-2.
z A Well-defined language is a language with well-defined form (syntax) and

meaning (semantics), which is suitable for automated interpretation by a
computer [3]

9

Figure 2-2: Model Definitions

2.2.1 Model Driven Architecture Development Life Cycle

The MDA development life cycle which is shown in Figure 2-3, looks similar to the

traditional life cycle. The same stages are identified. Major difference form traditional

software development cycle is the use of Platform Independent Model and Platform

Specific Model in MDA development.

10

Figure 2-3: MDA Software Development Life Cycle

z Platform Independent Model (PIM)
PIM describes an abstract model for system. PIM describe a system without any

knowledge of final implementation from the platform independent viewpoint. A PIM

exhibits a specified degree of platform independence so as to be suitable for use with

a number of different platforms of similar type [8]. PIM decouple itself from the

concrete implementation and any kind of technologies to be used in the future.

11

z Platform Specific Model (PSM)
A platform specific model describes a system with full knowledge of final

implementation of final implementation platform from platform specific viewpoint.

Platform here can be specific technologies concepts such as Java, C++, C# or

different system architecture. A PSM combines the specification in the PIM with the

details that specify how that system uses a particular type of platform [2].

z PIM to PSM to Code Automatic Transformation
The PIM is able to transform into one or more PSM. For each specific technology that

one PSM is going to be generated. The abstraction of PIM makes it very flexible to

switch between the technologies by extending a PSM. And if the system covers more

than one technology, then there will be many PSMs with one PIM. One thing has to

be mention that transformation should be automatically by meaning of using

transformation tools or programs. More and more tools and programs are developed

to help either PIM to PSM or PSM to Code transformation. Finally PSM is

transformed into Code following by certain predefined rules. Because PSM is

designate to specific technology so that major concern is about code generation in the

correct order and non syntax-error style.

Figure 2-4: Major Steps in MDA Development Processes

2.3 Ontology and OWL

2.3.1 Ontology

The emergence of the Semantic web (Berners-Lee 1999) has caused a growing need

for knowledge reuse, and has strengthened its potential at the same time. Therefore,

12

ontologies and problem-solving methods (which in some cases are considered as the

precursors of Semantic Web Services) are playing an important role in this context.

Ontologies used to represent reusable and sharable pieces of domain knowledge and

how they can be used in applications[9]. In this context, ontologies are reusable and

sharable artifacts that have to be developed in a machine interpretable language.

Ontology is a formal, explicit specification of a shared conceptualization. (Studer

Benjamins, & Fensel 1998) [10].

Common Components of Ontology

z Class represents concepts which it depends on which domain it in. For instance,

in the traveling domain, concepts are: locations (cities, village, ect.), lodging

(hotel, camping, etc.) and means of transport (plain, trains, cars, ferries,

motorbikes and ships). Classes in ontology are usually organized in taxonomies

through which inheritance mechanisms can be applied.

z Relation represents a type of association between concepts of the domain. They

are formally defined as any subset of a product of n sets. [11] Ontology usually

contains binary relations. The first argument is known as the domain of the

relation, and the second argument is the range. Relations can also be instantiated

with knowledge from the domain.

z Attributes are usually distinguished from relations because their range is a

datatype, such as string, number and so forth, while the range of relations is a

concept.

z Axiom is a sentence in first order logic that is assumed to be true without proof.

In practice, we use axioms to refer to the sentences that cannot be represented

using only slots and values on a frame [12].

2.3.2 OWL

OWL stands for Web Ontology Language is a W3C standard, Developed from its

predecssors OIL (Fensel, Horrocks, van Harmelen, McGuinness, & Patel-Schneider,

13

http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/what-is-a-slot.html
http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/what-is-a-value.html
http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/what-is-a-frame.html

s2001) and DAML + OIL (Patel-Schneider, Horrocks, & van Harmelen, 2002), it is at

present the standard ontology languge on the web[13]. The data describe by an OWL

ontology is interprets as set of individuals and a set of property assertion which relate

these individuals to each other.

W3C OWL specification includes the definition of three variant of OLW, with

different levels of expressive.

OWL Lite: The least expressive of the OWL, Compared with RDFS it adds local

range restrictions, existential restriction, simple cardinality restriction, equality, and

various types of property[13].

The semantic web Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn,

Michael Stolberg, Dumitru Roman, Enabling Semantic Web Service the web

service modeling ontology Springer

OWL DL: By comparing with OWL Lite was design to provide the maximum

expressiveness possible while retaining computational completeness (all entailments

are guaranteed to be computed) and decidability (all computation will finish in finite

time) of reasoning systems [14]. It was designed to support the existing business logic

and computational properties for reasoning systems.

OWL Full: is designated for user who want maximum expressiveness and the

syntactic freedom of RDF with no computational guarantees [14].

14

Figure 2-5: OWL Sample

15

Chapter 3 State of Art

This chapter will give an overview in the current state of the art of the benefit of using

code generator, XML based code generation, and advantage of code generation use

ontology over tradition XML based code generation.

3.1 Benefits of using Code Generator

z Change tolerance

This principle describes level of system maintainability and reusability. For

handwritten programs, it depends on either designed system structure is generic or not.

It there is high coupling between components in a system which it makes change the

existing structure extreme difficult and will bring a lot of pain to redevelopment. Code

generation is designated to handle change made to abstract model.

Code Generation shows its advantage in change tolerance. Because the final output

not depends on the structure of Code Generator but depends on the abstract model.

Because the abstract model is designated for modeling the structure of system in a

flexible way, change should be easily make to the abstract model and finally

differentiate the output from Code Generator.

z Correctness

For human being to produce high quality code with less syntax errors or bugs inside,

it depends on software engineers’ experience, and other quality assurance processes

such as review, testing.

Correctness from code generator point of view is shifted to the design of system rather

than the generated code because if code generator works fine as designed which

16

output code should be correct[22]. On the other hand, code generator provides a

convenient way for people who are not familiar specific language to produce code

instead make it hand-coded.

z Performance

Software engineers try to minimize required resources, such as data, code, network

traffic, and CPU time. Improving performance usually increase efficiency of data

processing which may involve system structure refinement.

For code generator, performance depends on how efficient generator is able to process

initial source file (owl algorithm file in this project) and generate required code such

as Java or PHP. Chose appropriate API for owl file parsing is very important as I

found that processing owl algorithm file consume most of time by comparing with

output programming code generation.

z Language switched flexibility

It is very difficult for any software engineers to have knowledge for all kinds of

programming languages. The emergence of code generator show its great advantage

in providing a flexible way of modify abstract model (XML, UML) to derive concrete

implementation, so user of code generator only need to have knowledge about how to

modify the abstract model and code generator will interprets abstract model to code.

3.2 XML based Code Generator

XML is a standard representation for information. It can be used to create customize

information structure for any domain or system. In XML based code generator that it

is used as the syntax for representing programming specification form which to

generate code.

In this XML approach, once the input document is defined in XML, XSLT scripts can

be written to process XML documents and generate output documents in various

forms. A number of free XSLT processors are available on the internet such as Saxon.

17

Key feature of a XML based Code Generator are:

z Parser: XML document parsing in implemented in the XSLT processor,

otherwise with a customer parser, one need to implement the parser or understand

how to use a program generator such as lex/yacc to generate the parsing

framework [15].

z Tree processing: The XSLT processor provides access to the XML through the

XPATH expression and provides many programmatic constructions and functions

to perform the tree processing. On the other hand, XSLT users can write XSLT

scripts to perform operations on the tree. XSLT programming for code generation

is at a high level which is at the level of tree abstraction[16]. With the use of

XSLT, code generation programming is at the tree level abstraction, the

programmer never needs to worry about tree data structure implementation

details.
z Writer: The XSLT processor implements this function as well.
Figure 3-1 shows the process of document generation using XSL and XSLT. Location

of each file should be identified as part of the generation.

18

Figure 3-1: XML based Code Generation Processes

3.3 Advantages of Ontology-based Code Generation over XML-based

Code Generation

As we introduced before that XML is mainly used to store data and represent data

structure however XML structure can be defined by anyone for any purpose there is

no any knowledge of semantic information can be retrieved from XML.

Ontology describes knowledge based on logic. Standard like OWL specify semantic

information used to infer additional information using reasoning and there are an

availability of tools for OWL (Protégé). By using ontology-based modeling algorithm

approach can add a rich set of semantic information.

19

Chapter 4 Ontology-based algorithm modeling

approach

This chapter explains in detail about the ontology-based modeling algorithm approach

and key owl files construct the algorithm.

4.1 A new approach in algorithm modeling

The mechanism used to model algorithms is based on ontologies. This approach

enables the modeling of algorithms decoupling the algorithm itself from the

architecture, framework, programming language, and in general from the systems that

may host and execute it. To obtain this separation, a set of OWL ontologies has been

put in place. The use of ontologies allows modeling the algorithm adding a rich set of

semantic information that is not usually included in other modeling techniques and

not in programming languages.

In Figure 4-1, there is structure of OWL ontologies.

20

Figure 4-1: Ontologies-based Algorithm Modelling Architecture

• Abstract Common Ontology: ACO

ACO is needed for technical reason, to store all the common part of CLO. That allows

also having the Entity Class available for the CLO.

• Concrete Logic Ontology: CLO

CLO contains the concrete level of the logic ontology, it that includes all the building

blocks used to model algorithms. Despite being in the abstract side, it was called

concrete to indicate that it contains elements that can be directly mapped to code.

21

• Abstract Logic Ontology: ALO

ALO is an extension of the CLO and is more abstract. Include elements without a

direct translation to code, but that can still be used to create algorithm, adaptations or

specify aspects. The abstract structures are mapped to the more concrete elements,

part of the CLO, using translation mechanisms.

• System Logic Ontology: SLO

SSLO is the logic ontology OWL structure. This file is needed just to be extended by

specific SLO, it that will store the individuals.

Two most important owl file in algorithm modeling

• Algorithm Ontology: AO

AO contains the individuals that constitute an algorithm. Following the OWL

suggestion the individuals are stored in a specific ontology file. It extends the

CLO or the ALO, and contains individuals based on them. These individuals

constitute a syntax tree acted as a model of an algorithm. So any single AO usually

represents an algorithm in the form of a component, and the relative syntax tree. As

shown in Figure 4-2 that AO is Tree Structure model contains individual that

constitute an algorithm.

22

Figure 4-2: AO in Tree Structure

• Specific System Logic Ontology: SSLO

This is specific for different framework/systems. It extends the SLO and includes the

individuals that constitute the information needed to map the abstract logic to a

specific system. Every element of the CLO, is mapped to code, using XSLT rules, that

are stored in the SSLO. An example is Symfony SLO (SSLO), but for other

framework a different ontology would be needed (like JSP SLO for a Java JSP

framework, or a RSLO for Ruby on Rails). Some deployment rules are added to know

how to envelope the code and where to create the proper file to deploy the code for a

specific system/framework. SSLO specific for different language, include syntax rules

for language feature (control flow, operators, variable, etc) using XSLT as Figure 4-3

shows Protégé snapshot of SSLO.

23

Figure 4-3: Protégé snapshot of SSLO

24

Chapter 5 Design

In this chapter, requirements in relation to code generation engine are listed. The

introduction of technologies to be used in implementation is also included. XSL style

sheets were designed for multiple classes in the logic building block of the algorithm

to be used as syntax rule for different language features (loop, if else control flow,

variable, function) stored in SSLO. Various functions are designed to handle

processes involving in ontology-based code generation and UML diagrams were

attached for better explanation.

5.1 Introduction

The purpose of this project was to come up with a solution to generate code (PHP,

Java) using a language independent ontology-based abstract algorithm. And code

generated can then be deployed on the web server and run as an online service. Main

interests and concerns should be associated with the ontology-based algorithm

modeling approach to derive the requirements for code generation. In this approach,

Algorithm Ontology(AO) is used to represent structure of system and Specific System

Logic Ontology(SSLO) used as language specific ontology. For final generated code,

a convenient way for deployment should be considered. Decisions also need to be

made in choosing technologies that are most suitable for implementation this project.

5.2 Requirements

5.2.1 Requirement for SSLO

As we already mentioned in the last chapter, SSLO is specific for each language,

25

include syntax rules for language features (control flow, operators, variable, etc) using

XSL. Since SSLO structure is already defined, the missing part was to design and

implement XSL for each syntax rules used in Java and PHP SSLO.

5.2.2 Requirements for Code Generation Engine

1) Requirement for AO tree traversing
To have a way for AO tree traversing is very important since the AO tree nodes can be

treated in four modes as Root Element, Current Element, Sub Element, and Next

Element. First of all, the requirement for AO tree parsing is to find the Root Element

of AO tree as a starting point. Secondly, make root Element to be current element.

Thirdly, condition should be designed to check whether the current Element in the tree

has Sub Element or Next Element linked. Finally, CGE should be able to know when

to finish code generation which also means find the last element in the AO tree that it

doesn’t has either Sub Element(s) or Next Element.

2) Requirement for retrieving XSL from SSLO
Next stage is to transform each element to code. In AO, each element represents as an

individual of a certain class. Those classes are designated to represent language

features (control flow, operator, variable, etc). Requirement here is that each

individual in AO should be associated with a syntax rule in the SSLO. Finding the

matched syntax rule in SSLO will derive XSL for specific individual transformation.

3) Requirement for create a buffer to build template code and continuously added up

to final output
Because AO tree is constructed by set of elements, those elements are transformed

one by one from root to the end. So a buffer is required to continuously add generated

code to it. After the last element is transformed, buffer can then become the final

output.

4) Requirement for generated code deployment
In order to test whether generated code especially PHP code is able to work on the

26

web server. Code deployment should be concerned that it should wrap the generated

code with some necessary information to make a complete PHP file and deploy the

file to a specific server folder so that it can then be access through the web browser.

5) Requirement for designing system with user friendly interface
A user friendly interface is necessary for CGE that it should allow user to select the

AO, choose output language type, and also make it easy for user to deploy the

generated code to server.

6) Requirement for providing choice of PHP or Java code generation
Because CGE is required to support PHP and Java code generation, users should have

the right to choose kind of output language as they want. The point need to be

concerned to make sure that CGE is able to generate code for PHP and Java based on

the same AO.

7) Requirement for supporting dynamic and pluggable web service
Supporting the dynamic and pluggable web service is one of research aims. Because

of time constraint that we can not support very sophisticated web service like SOAP,

WSDL, UDDI which they are widely used in the industry but at least we can show

that CGE is able to support some level of dynamic and flexible that changes made to

AO will lead to change to the online service (based on regenrated code from modified

AO).

5.3 Techniques used for CGE

From research on the internet which meaning the in the state of Art, I found the

Protégé API and Saxon API can be very much suitable to be project implementation

and this section is to explain some details about these two APIs and what functionality

they can provide.

5.3.1 Protégé API

The Protégé-OWL API is an open-source Java library for the Web Ontology Language

27

(OWL) and RDF(S). The API provides classes and methods to load and save OWL

files, to query and manipulate OWL data models, and to perform reasoning based on

Description Logic engines. Furthermore, the API is optimized for the implementation

of graphical user interfaces [17].

Protégé-OWL API is a set of Java interfaces from the model package. Those

interfaces provide access to the OWL model and its elements like classes, properties,

and individuals [17].

Among all the interfaces in the Protégé package, the most important model interface

is OWLModel, which it provides access to the top-level container of the resources in

the ontology. OWLModel also can be used to create, query, and delete resources of

various types and then use the objects returned by the OWLModel to do specific

operations.

In Protégé API, Named classes are used to create individuals, sample code for create a

OWLNamedClass is

OWLNamedClass personClass=owlModel.createOWLNamedClass("Person");

OWLModel can also be used to query and traverse the contents of an ontology shown

in Figure 5-1. The following code detail explain how query is achieved through

iteration of all OWLClasses of an ontology.

 String uri = "http://www.owl-ontologies.com/travel.owl";

 OWLModel owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri);

 Collection classes = owlModel.getUserDefinedOWLNamedClasses();

 for (Iterator it = classes.iterator(); it.hasNext();) {

 OWLNamedClass cls = (OWLNamedClass) it.next();

 Collection instances = cls.getInstances(false);

 for (Iterator jt = instances.iterator(); jt.hasNext();) {

 OWLIndividual individual = (OWLIndividual) jt.next();

 }

28

http://protege.stanford.edu/download/prerelease_javadoc_owl/edu/stanford/smi/protegex/owl/model/OWLModel.html

 }

Figure 5-1: Code Sample of traversing an ontology using Protege API

5.3.2 Saxon and Saxon API

Saxon is Open Source XSLT processor which developed by Michael Key[18]. It is

used to translate the XML style document using XSLT stylesheet. The version I chose

for implementing this Code Generation project is Saxon 6.6.5 as it supports XSLT 1.0

and XPath.

The using of Saxon is very straightforward that once you downloaded Saxon from

website and then unzip the binary version to get a Jar file named as saxon.jar.

There are two ways to run Saxon based on the command line

1) java –jar saxon.jar source.xml stylesheet.xsl

But –jar option which make classpath ignored

2) If saxon.jar is included in the classpath, then just run Saxon using the command

java com.icl.saxon.StyleSheet source.xml styesheet.xsl

source.xml is xml file which waited to be translated

stylesheet.xsl is the XSL stylesheet describe how to translate source.xml

The output can be any kind files. One of most common used output type is html, but it

really depends on what stylesheet.xsl describes to determine the type of output[18].

Saxon also includes a Java library which it supports a similar processing model to

XSL, so that Java developers can use Saxon API as third part tool to build their own

project[18]. One of major advantages by using the Saxon API is because it includes

DOM, SAX and JAXP as standard to enable parse, transform, validate and query

XML documents which provide rich function sets to developer to use and continue

development. In this project, Saxon XSLT Processor is used to interpret AO files with

XSLT style sheet retrieved from the syntax rule part of the SSLO to generate code the

29

Saxon XSLT Process as shown in Figure 5-2

Figure 5-2: Saxon XSLT Processor used in CGE

5.4 XSL designed for classes in the logic building block of the

algorithm

XSL style sheets were designed for multiple classes in the logic building block of the

algorithm to be used as syntax rule for different language features (loop, if else

control flow, variable, function) stored in SSLO.

5.4.1 Design XSL for Class OperatorAssignX

Class OperatorAssignEqualThan, OperatorAssignEqualThanPlus,

OperatorAssignToArray, OperatorAssignFullArray are defined in the logic building

block of the algorithm Equal operator (A = B) or EqualThanPlus operator (A =+ B),

they share similar structure that they are subclasses of Class OperatorAssign. As we

can see from following Protégé snapshot (Figure 5-3) that they both have same set of

30

properties.

XSL stylesheet to transform instance (individual) of these classes should match “j.0:

leftOperand” and “j.0: rightOperand” properties in the AO to retrieve values

associated with these two properties to get code generated as pattern like

{@leftOperand@} = {@rightOperand@}

The only difference for those class here is from change “=” to “=+” for

OperatorAssingEqualThanPlus. Property “j.0:subelement” value is true or false, and

determinate whether to add “;” as closing symbol as part of the generated code.

Figure 5-3: Protege SnapShot of Class OperatorAssignEqualThan

5.4.2 Design XSL for Class OperatorLoopDowhile or

31

OperatorLoopWhileDo

Class OperatorLoopDowhile and Class OperatorLoopWhileDo defined in the logic

building block of the algorithm to model “do while” or “while do” loop. As we can

seen from the following Protégé snapshot (Figure 5-4) that any individual of Class

OperatorLoopDoWhile or OperatorLoopWhileDo share same set of properties, the

two most important properties are “j.0:body” and “j.0:whileCondition”. XSL for both

classes should match these two properties under one specific OperatorLoopDowhile

individual (passed-into XSL as a parameter to tell which OperatorLoopDowhile

individual is waiting to be transformed). The final generated code contains a pattern

like

do{@Body@} while({@condition@}) is for Class OperatorLoopDoWhile

while{@condition@} do {@body@} is for Class OperatorLoopWhileDo

Figure 5-4: Protege SnapShot of Class OperatorLoopWhileDo

5.4.3 Design XSL for Class OperatorLoopFor

Class OperatorLoopFor is defined in the logic building block of the algorithm to

model for loop. As we can seen from the following Protégé snapshot (Figure 5-5) that

any individual of Class OperatorLoopFor has six properties, the four most important

32

properties are “j.0:startingElement”, “j.0:conditionElement”,

“j.0:incrementStateElement” and “j.0:body”. XSL for this class should match these

four properties under one OperatorLoopFor individual (passed-into XSL as a

parameter to tell which OperatorLoopFor individual is waiting to be transformed).

The final generated code should has pattern like

for({@startingElement@}, {@conditionElement@},

{@incrementalElement@}){ {@body@ }”

Figure 5-5: Protege SnapShot of Class OperatorLoopFor

5.4.4 Design XSL for Class OperatorCondtionDualIfThen and Class

OperatorCondtionDualIfThenElse

Class OperatorCondtionDualIfThen and OperatorCondtionDualIfThenElse are

defined in the logic building block of the algorithm to model if else control flow. As

we can seen from the following Protégé snapshot (Figure 5-6) that any individual of

Class OperatorCondtionDualIfThen has four properties and two most important

properties are “j.0:condtion” and “j.0:fristBody”. XSL for classs

OperatorCondtionDualIfThen should match these two properties under one specific

OperatorCondtionDualIfThen individual (passed-into XSL as a parameter to tell

which OperatorCondtionDualIfThen individual is waiting to be transformed). The

final generated code should has pattern like

if({@condition@}) { {@firstBody@} }

33

Class OperatorCondtionDualIfThenElse has extra property “j.0:secondBody” so that

it support generated code in pattern like

if({@condition@}) { {@firstBody@} else {@secondBody@}}

Figure 5-6: Protege SnapShot of Class OperatorCondtionalDualIfThen

5.4.5 Design XSL for Class Component

Class Component is defined in the logic building block of the algorithm to model

function. As we can seen from the following Protégé snapshot (Figure 5-7) that any

individual of Class Component has seven properties and the two most important

properties for Class Component transformation to PHP code are “j.0:hasParameter”

and “j.0:componentBody”. XSL for Class Component should match these two

properties under one specific Component individual (passed-into XSL as a parameter

to tell which Component individual is waiting to be transformed). The final generated

code should has pattern like

function functionname ({@parameter1@},{@parameter2@})

{ {@componentBody@} }

For XSL of Class Component designed for Java code that property
“j.0:componentSignature” is also included that because each Java function needs to

34

specify signature and return type which are quite different from PHP. Code generated
for Java looks like pattern

public void function functionname ({@parameter1@},{@parameter2@})

{ {@componentBody@} }

Figure 5-7: Protege SnapShot of Class Component

5.4.6 Design XSL for Class OperatorLogicX

Class OperatorLogicEqualThen, OperatorLogicGreaterEqualThen,

OperatorLogicGreaterThen, OperatorLogicLowerEqualThen,

OperatorLogicLowerThen, OperatorLogicNotEqualThen are defined in the logic

building block of the algorithm to model logic operator such as A>B, A<B, A<=B, etc.

They share similar structure that they are subclasses of Class OperatorLogic. As we

can see from following screen cut from Protégé (Figure 5-8) that they both have same

set of properties. XSL style sheet to transform instance (individual) of these classes

should match “j.0: leftOperand” and “j.0: rightOperand” properties in the AO.owl

under one specific OperatorLogicX individual (passed-into XSL as a parameter to tell

which OperatorLogicX individual is waiting to be transformed). The final code

generated has pattern as

{@leftOperand@} > {@rightOperand@}

35

Figure 5-8: Protege SnapShot of Class OperatorLogicEqualThen

5.4.7 Design XSL for Class Return

Class Return is defined in the logic building block of the algorithm to model return of

a function. As we can seen from the following Protégé short cut(Figure 5-9) that any

individual of Class Return has three properties and the most important property for

Class Return transformation is “j.0:returnElement”. XSL for Class Return should

match this property under one specific Return individual (passed-into XSL as a

parameter to tell which Return individual is waiting to be transformed). The final

generated code should have pattern like

return {@parameter1@};

Figure 5-9: Protege SnapShot of Class Return

5.4.8 Design XSL for Class Variable

36

Class Variable is defined in the logic building block of the algorithm to model a

variable. As we can seen from the following Protégé short cut (Figure 5-10) that any

individual of Class Parameter has four properties and the most important property for

Class Parameter transformation is “j.0:datatype”. “j.0:datatype” tells what variable

type is. XSL for Class Parameter should match this property under one specific

Parameter individual (passed-into XSL as a parameter to tell which Parameter

individual is waiting to be transformed). The final generated code should have pattern

like

${@parameter1@} for PHP

{@parameter1@} for Java

Figure 5-10: Protege SnapShot of Class ParameterVariable

5.5 Design for Code Generation Engine

5.5.1 Code Generation Architecture

As we can see from the Figure 5-11 which shows the overall architecture for code

generation, this architecture can be mainly divided into three parts. In the diagram, we

can see the left two components are AO and SSLO owl as initial input for CGE to

take. In the middle of diagram, it is the CGE itself that it interprets AO using SSLO

37

and generate source code (Java or PHP). On the right side of diagram includes the

Deployment Batch Procedure that it is able to build actual PHP or Java files based on

generated code. And those PHP or Java files can then be output to the web server

folder to run as an online service. This procedure well decouples AO from final output

code and make CGE language independent.

Figure 5-11, Code Generation Architecture

5.5.2 Deeper understanding of AO tree

Before entering the detail design stage, it is necessary to review the AO tree to get

deeper understanding of it. The reason for that is to make clear the definition of

RootElement, CurrentElement, SubElement(s), NextElement in the AO.

The following diagram (Figure 5-12) visually showing the tree structure of AO,

individual component_averageValue is first Element in this tree which it is assigned to

be Root Element. Once we found the RootElement in the tree then we assign it to be

Current Element for transformation. From the RootElement, first left element links to

it is OperatorAssignEqualThan_6 can be seen as a SubElement of

component_averageValue. And in the diagram, we can see that

OperatorAssignEqualThan_6 has two leave nodes as variable_v and zero acting as its

SubElements. From Operator AssignEqualThan_6, there is arrow point to individual

38

OperatorLoopFor_8 with name nextElement which it means invidual

OperatorLoopFor_8 is the nextElement of invididual OperatorAssignEqualThan_6.

Value of property ‘nextelement’ of OperatorAssignEqualThan_6 is now set to be

OperatorLoopFor_8 making OperatorLoopFor_8 becomes

OperatorAssignEqualThan_6’s next elment. By filling nextElement property, it will

automatically assign an individual to be next element of current invididual in the AO.

At the end of tree which is on very righthand side of diagram which is individual

variable_v. variable_v is the SubElement of individual Return_7. variable_v doesn’t

have any NextElement or SubElement so that once it was transformed then we can

confirm reaching the ending the code generation for a specific AO. From Figure 5-12

we can conclude that each Element in the AO tree can either have zero to multiple

SubElement(s) but can only have zero to one NextElement and itself can be either

SubElement or NextElement of Element ahead of it except RootElement.

39

Figure 5-12, AO Tree Structure in detail

5.5.3 Code Generation Engine Functional Design

1) Function Design for finding the RootElemnt

To find the Root Element in the AO tree is starting point of code generation processes.

Since Protégé API supports iterating all the individuals in the AO one by another,

Function designed should include condition check to find the Root Element. If any

individual property j.0:rootelement value is true so that this individual is then

assigned to be Root Element of the whole AO tree.

40

Figure 5-13, Sample AO contains rootElement

2) Function for Current Element transformation

Function designed for Current Element transformation should include four processes

as depicted in Figure 5-14. The first is to find matched individual of Class SyntaxRule

for Current Element in SSLO, the matching is based on ‘transformFor’ property of

each SyntaxRule individual. If any individual’s ‘transformFor’ property is equal to

Current Element then the individual matches. The second process it to retrieve the

XSLT from found individual getting the value of its ‘XSLT’ property. The third step is

to send XSLT and AO to the Saxon XSLT processor to transform the current element.

The final process is to buffer the return string from Saxon for further transformation.

Find Matched SyntaxRule

Retrieve XSLT

Run Saxon on XSLT + OWL

Add generated code to buffer

Figure 5-14, Current Element Transformation Processes
3) Function for Pattern Search

41

As we already discussed in the previously that all of elements in the AO are

transformed one by another following the AO tree structure, Current Element can

have zero to multiple SubElement(s) and zero or one NextElement if this element is

not the last element of tree. So now it left problem that how to judge Current Element

has SubElement or NextElement. For NextElement, the solution is very straight

forward, because if each current Element (individual) has property “NextElement”

and if property value is not null which means there is another Element linked to

Current Element. However when it turns to judge whether current Element has

SubElement(s) or not, it becomes a little bit complicate. A new way of introducing

special pattern {@ @} to wrap the SubElements that are not transformed yet

We can take individual OperatorAssignEqualThan_6 as an example that variable_v

and zero are two SubElements of OpertorAssignEqualThan_6. variable_v is described

as leftOperand, zero is described as rightOperand of OperatorAssignEqualThan_6, the

XSL for Class OperatorAssignEqualThan should retrieve value of the leftOperand and

rightOperand properties. After OperatorAssignEqualThan_6 is transformed,

{@variable_v@} = {@zero@} is return and becomes buffer string, specific pattern

“{@ @}” is added to both leftOperand and rightOperand property value to

represent variable_v and zero are SubElements of OperatorAssignEqualThan_6. We

can also say that any individual which wrapped by pattern {@ @} , means it needs to

be transformed.

At this point, Regular Expression is introduction to provide solution for pattern search

that class called StringRegualr is designate to handle this task that it has

parseOrignialString(buffer String) method to detect whether {@ @} pattern exist in

the passed-in parameter buffer String. If pattern exists, then it will retrieved the name

of first individual wrapped by the special pattern and return it. Otherwise it will return

string “patternNotFound” noticing that is buffer String is fully transformed.

42

4) Functions for Recursive transformation

Because the AO individuals forms a tree structure, it is very important to have

recursive functions for travesing that tree and call the transformation on each element.

The recursive function keeps on calling itself until certain circumstances (no

subelement and no next element) are reached. I designed two recursive functions for

the CGE. One recursive function is to call transformation method on Current Element

and call second recursive function to travser all the sublement of current element and

call transformaton method on each of subelement. Once all the subelements of

Current Element are transformed, then Current Element check whether it has

NextElement or not. If Current Element has NextElement, Current Element calls the

recursive first function on the NextElement, so NextElement becomes new Current

Element. if Current Element transformed all its SubElements and there is no

NextElement linked to it, the process stop. Then it is confirmed that we are at the end

of the AO tree, and the buffer contains the final code output. The following state

diagram Figure 5-15 clearly explains the recursive transformation processes flow.

Figure 5-15: Recursive Transformation Processes Flow

43

5) Function for code deployment

Once we finished code generation, then next step is to make generated cod to be

become a runnable file and deploy it to server folder. So function for code deployment

is majorly doing two jobs. First jobs is make code generated (string type) through

CGE to be an PHP or Java file. One thing should be concerned here is that PHP file

normally starting with ‘<?php’ and ending with ‘?>’. And Java file is starting with

‘public class ClassName {‘ and ending with ‘}’. At the moment, CGE is only able to

generated code based on what AO describes. The AO doesn’t include any information

about ‘<?php’ or ‘?>’, so that the code generated from CGE is not sufficient to be

run directly on the server and need to be wrapped with “<?php” and “ ?>” to build a

complete PHP file. And AO filename is derived and becomes the php file name.

For Java, I designed and made AO filename to be ClassName. Then wrap “public

class ClassName {“ and “}” with generated code to build a complete Java file.

Second point of function is to design a function to deploy php file to server folder, A

FileOutputStream is necessary to be created to deploy php file to a specific server

folder. Then it can then be access from internet browser.

6) User interface Design

A user friendly graphic interface is also concerned very important as a part of CGE

for rich user experience. Java Swing is chose to be implementation technologies, and

GUI are created to handle basically two kind of major work. Firstly, two menu items

created to allow user to choose either PHP to Java to be final output language. Then

FileChooser is designed to pop out for user to choose the AO.owl from the file system.

Final generated code is shown in the textarea in the GUI shown in Figure 5-16. And if

user want to deploy the generated code, another menu item is designated to handle

this task that once user click this “Make File” menu item, the generated code will be

automatically deployed to server folder.

44

Figure 5-16: GUI of CGE

45

Chapter 6 Implementation

This chapter firstly explains implementation of SSLO for PHP and Java language

features. And then it is concentration on explanation in detail of how CGE was

implemented. Various classes and functions were development for different purposes

and explanation they are interacted to make CGE work.

6.1 SSLO Implementation

The section is to explain in detail how SSLO is implemented and explain some of the

used XSL. The classes in the Ontology-based Algorithm need to be associated to a

XSLT rule for each specific lanauge feature (control flow, variable, operator, etc…) in

order to be translated to proper code. The programming of XSL for each language

feature is a common work between Simone and me that to write the XSLs and test

them with different AO to make sure that these XSLs are able to transform all

individuals in an AO to be either Java or PHP code. As already mentioned in design

chapter that these XSLs will be explained one by another in details.

6.1.1 XSL implementation for Class OperatorAssignX

Class OperatorAssignEqualThan, OperatorAssignEqualThanPlus,

OperatorAssignToArray, OperatorAssignFullArray are defined in ontological

algorithm to model equal operator (A = B) or equal than plus operator (A =+ B).

46

Figure 6-1: XSL implentation for Class OperatorAssignEqualThan

As we can seen from the above XSL piece of code shown in Figure 6-1 that the XSL

template is created to search for all individuals of type

“j.0:OperatorAssignEqualThan”. And individualName is parameter passed as input by

the Saxon XSLT Processor to specify which individual is going to be transformed

among all found individuals. “j.0:leftOperand” and “j.0:rightOperand” properties are

then matched under this specific individual to derive the values of these two

properties. Finally generated code for this specific OperatorAssignEqualThan

individual looks like:

{@leftOperand@} = {@rightOperand@}

One thing has to be mentioned, there is a test of the property “j.0:subelement” in the

last line, the symbol “;” is added to the end of generated code if value is not true So

generated code looks like
{@leftOperand@} = {@rightOperand@};

Otherwise, if “j.0:subelement” value is true, there is no semicolon at the end.

6.1.2 XSL implementation for Class OperatorLoopDowhile or

OperatorLoopWhileDo

Class OperatorLoopDowhile, OperatorLoopWhileDo, are defined in ontological

algorithm to model ‘do while’ or ‘while do’ loop.

47

Figure 6-2: XSL implementaiton for Class OperatorLoopWhileDo

As we can see from the above XSL piece of code shown in Figure 6-2 that the XSL

template is created to search for all individuals of type “j.0: OperatorLoopWhileDo”.

And individualName is parameter passed as an input by the Saxon XSLT Processor to

specify which individual is going to be transformed among all found individuals.

Value of Property “j.0:whileCondition” is then derived under this specific individual.

And value of property “j.0:body” is retrieved as well. Finally generated PHP code for

this specific OperatorLoopWhileDo individual looks like

while ({@whileCondition@}) {{@ body @}}

About the Java SSLO, the XSL to transform OperatorLoopDowhile and

OperatorLoopWhileDo are different from the PHP version. We had to add the ‘do’

string in front of “j.0:body”, because Java syntax is different from PHP syntax. The

final generated Java code for a OperatorLoopWhileDo individual looks like:

 while ({@whileCondition@}) do {{@ body @}}

6.1.3 XSL implementation for Class OperatorLoopFor

Class OperatorLoopFor is defined in ontological algorithm to model ‘for loop’

48

Figure 6-3: XSL implementation for Class OperatorLoopFor

As we can see from the above XSL piece of code in Figure 6-3 that the XSL template

is created to search for all individuals of type “j.0: OperatorLoopFor”. And

49

individualName is parameter passed as input by the Saxon XSLT Processor to specify

which individual is going to be transformed among all found individuals. Value of

property “j.0: startingStatement” is then matched under this specific individual, and

values of properties “j.0:conditionStatement”, “j.0: incrementStatement”, “j.0:body”

are retrieved as well. Finally generated code for this specific OperatorLoopFor

individual looks like

for ({@startingStatement @},{@ conditionStatement @},{@ incrementStatement
@}) {{@ body @}}

6.1.4 XSL implementation for Class OperatorCondtionDualIfThen and

Class OperatorCondtionDualIfThenElse

Class OperatorCondtionDualIfThen and OperatorCondtionDualIfThenElse are

defined in algorithm to model if else control flow. The difference between the two

Classes is that OperatorCondtionDualIfThen only supports if statement.

OperatorCondtionDualIfThenElse not only supports if statement but also supports

else statement

Figure 6-4: XSL implemenation for Class OperatorCondtionalDualIfThen

50

As we can see from the above XSL piece of code in Figure 6-4 that the XSL template

is created to search for all individuals of type

“j.0:OperatorConditionalDualIfThenElse”. And individualName is parameter passed

in as input by the Saxon XSLT Processor to specify which individual is going to be

transformed among all found individuals. Property “j.0: condition” is then matched

under this specific individual and value is derived, and values of properties “j.0:

firstBody”, “j.0: secondBody” are all retrieved. Finally generated code for this

specific OperatorConditionalDualIfThenElse individual looks like
if ({@condition @}) {{@ firstBody @}} else {{@ secondBody @}

For XSL of Class OperatorCondtionDualIfThen, there is no “j.0: secondBody”

property, so that it generated code looks like
if ({@condition @}) {{@ firstBody @}}

6.1.5 XSL implementation for Class Component

Class Component is defined in algorithm to model a function. XSL used in PHP

SSLO and Java SSLO are different because of language syntax. In PHP, a function

can be expressed as “function FunctionName{FunctionBody}” but in Java, you need

to specify the function signature such as return type, public or private and you need to

declare the parameter type as well.

Function in Java express like “public void functionName(String testString, int

testInteger) { }”

51

Figure 6-5: XSL implementation for Class Component

As we can see from the above XSL piece of code in Figure 6-5 for PHP that the XSL

template is created to search for all individuals of type “j.0: Component”. And

individualName is parameter passed in as input by the Saxon XSLT Processor to

specify which individual is going to be transformed among all found individuals.

“Property j.0:ParameterComponent” is then matched under this specific individual to

derive all the parameters of one function one by another, and then property “j.0:

componentBody” is matched and its associate value is retrieved to add body part of a

function. Finally generated (PHP) code for this specific Component individual looks

like

function FunctionName ({@parametervariable1@}, {@ parametervariable2@})
{ {@body@}}

52

For Java SSLO, XSL for transform Component is quite different that there is not

“function” to be add in front of FunctionName, instead “j:0:componentSignature”

property is match to retrieve its value for function signature. Also for each of the

parameter of function, XSL is written to retrieve the parameter type for each of them.

The final generated (Java) code for a Component individual looks like

public void FunctionName (int {@parametervariable1@}, float {@
parametervariable2@}) {{@body@}}

6.1.6 XSL implementation for Class OperatorLogicX

Class OperatorLogicEqualThen, OperatorLogicGreaterEqualThen,

OperatorLogicGreaterThen, OperatorLogicLowerEqualThen,

OperatorLogicLowerThen, OperatorLogicNotEqualThen are defined in ontological

algorithm to model logic operator such as A>B, A<B, A<=B, etc.

Figure 6-6: XSL implementation for Class OperatorLogicEqualThen

As we can see from the above XSL piece of code in Figure 6-6 that the XSL template

is created to search for all individuals of type “j.0: OperatorLogicGreaterThen”. And

individualName is parameter passed as input by the Saxon XSLT Processor to specify

which individual is going to be transformed among all found individuals.

“j.0:leftOperand” and “j.0:rightOperand” properties are then matched under this

53

specific individual to derive the values of each property. Symbol “>” in the XSL

represents symbol “>” in the generated code.

Finally the generated code for this specific OperatorLogicGreaterThen individual

looks like

{@leftOperand@} > {@rightOperand@}

6.1.7 XSL implementation for Class Return

Class Return is defined in algorithm to model return of a function.

Figure 6-7: XSL implementation for Class Return

As we can see from the above XSL piece of code in Figure 6-7 that the XSL template

is created to search for all individuals of type “j.0:Return”. And individualName is

parameter passed as input by the Saxon XSLT Processor to specify which individual

is going to be transformed among all found individuals. “j.0: returnElement” property

is then matched under this specific individual to derive its value representing the

return variable.

Finally the generated code for this specific Return individual looks like return
${@return_variable@}

For Java SSLO, XSL for transform Return is different that “$” is removed because of

Java syntax not allow it.

The final generated (Java) code for a Return individual looks like
return {@return_variable@}

54

6.1.8 XSL implementation for Class ParameterVariable

Class Variable is defined in algorithm to model a variable

Figure 6-8: XSL implementation for Class ParameterVariable

As we can see from the above XSL piece of code in Figure 6-8 that the XSL template

is created to search for all individuals of type “j.0: ParameterVariable”. And

individualName is parameter passed as input by the Saxon XSLT Processor to specify

which individual is going to be transformed among all found individuals.

“rdf:resource” property is then matched under this specific individual to derive its

value representing the variable. Finally the generated code for this specific Variable

individual looks like
${@variable@}

For Java SSLO, XSL for transform Return is different that “$” is removed because of

Java syntax not allow. The final generated (Java) code for a Return individual looks

like
{@variable@}

6.2 Code Generation Implementation

This section is providing the details explanation for implementation of various

components for code generation and deployment. As defined in the requirements,

code is generated by interpreting the AO using SSLO. The generated code is then

fulfilled to be complete PHP and Java file, and deployed to Apache web server folder.

In my design that component responsible for PHP and java file deployment is

55

separated from CGE. CGE is only responsible for generate code based on AO and

SSLO.

6.2.1 CGE Classes Architecture

In CGE, six classes and one interface were created. Each of them is designed to

handle different tasks in order to make code generation work.

Class OWLTreeRecursiveParser contains various recursive functions for AO tree
parsing.

Class StringRegular is responsible for special pattern {@ @} matching using regular

expression.

Class PHPSearchMatchedIndividual and JavaSearchMatchedInvidual inheritance

from Interface SearchMatchedIndividualInterface, Here I take class

PHPSearchMatchedIndividual as an example that PHPSearchMatchedIndividual is

created for finding the matched XSL syntax rule in PHP SSLO of specific individual

in AO.owl.

Class SaxonTranslation, once we retrieved XSL for one specific individual in the AO

then SaxonTranslation is responsible for transformed this individual using retrieved

XSL to be either PHP or Java code.

Class FileChooser2 is the graphic interface with various menu items on it for user

interaction.

The Figure 6-9 is class diagram for overall system

56

Figure 6-9 CGE Class Diagram

6.2.2 Review Code Generation Processes Flow

Figure 6-10 is already explained in design chapter as code generation process flow, it

mainly can be partitioned into several stages

z Find the Root Element from AO.owl and make it be to Current Element
z Translate Current Element
z Match pattern for searching SubElement(s) of Current Element
z Call recursive translation on the SubElements
z If Current Element has NextElement, call recursive translation on NextElement

and make NextElement to be Current Element.
z If Current Element doesn’t havee SubElement(s) to be translated and no

NextElement linked to it, we reach the end of code generation.

57

Figure 6-10: Code Generation Processes Flow

6.2.3 Implementation for finding Root Element

Finding the Root Element in AO tree is the starting point for code generation. In the

OWLTreeRecursiveParser class, ParseTree() function is implemented to handle this

task. Instance of Class OWLModel is created to retrieve all the classes and individuals

(instances) of those classes in the AO.

From the following code shown in Figure 6-11 , it checked each individual by its

“j.0:rootElement” property through iteration of all individuals. Since there is only one

individual can have “j.0:rootElement” property that once we found this individual, it

becomes Root Element.

58

Figure 6-11: Code Sample for finding Root Element in AO

6.2.4 Implementation for Current Element Transformation

Once Root Element is found, then it is assigned to be Current Element for

transformation. Now reach the second stage of the code generation processes flow

that is to transform the Current Element.

The following sequence diagram (Figure 6-12) shows the how three classes interact

with each other for Current Element transformation.

59

Figure 6-12: Sequence Diagram for Current Element Transformation

Function String retrieveXSLTTranslation(translationForProperty, individualName,

owlsourcefile) is then called and three parameters are passed-in. Parameter

translationForProperty represents what OWL Class that current element is belong to.

Parameter individualName represents name of current element, Parameter

owlsourcefile represents AO file.

Inside retrieveXSLTTranslation method, it iterates through all the individuals of Class

SyntaxRule. If any SyntaxRule individual property “j.0:translationFor” has the same

value as passed-in parameter translationForProperty. Then we can retrieve XSL for

Current Element by getting “XSLT” property value of matched SyntaxRule

individual.

For example, if passed-in parameter value is “Component”, it should match

SyntaxRulesComponent (SyntaxRulesComponent is an individual of Class

SyntaxRule). Because SyntaxRulesComponent property “j.0:translationFor” has same

60

value as parameter translationForProperty which is “Component”.

Once XSL is retrieved, next step is to call applyTransformation(stylesheet,

owlsourcefile, individualName) function to get call Saxon XSLT processor to

transform Current Element using retrieved XSL. Because retrieved XSL is only able

to transform the Current Element, code generated after Saxon processor is only a

piece of code. This piece of code is then assigned to be added in buffer string for

further transformation.

6.2.5 Implementation for Special Pattern {@ @} Match

In the buffer string return from the Current Element transformation, it may include

special pattern {@ @}, representing the transformation for the buffer string is not

finished yet. For example, Current Element OperatorAssignEqualThan_6 can be

transformed to {@variable_v@} = {@zero@}, variable_v and zero wrapped by

special pattern are individuals that need to be further transformed.

Method parseOriginalString(String originalString) of Class StringRegular is

designated for checking whether buffer string contains special pattern {@ @}. In the

piece of code listed in Figure 6-13, it shows how regular expression is used to match

special pattern in the buffer string

By calling parseOriginalString method it will return name of first matched individual

wrapped by pattern {@ @}. For example, if buffer string now is “{@variable_v@} =

{@zero@}”, after parseOriginalString method is called on this buffer string then

variable_v is return telling the CGE that it need to be transformed. Otherwise, if there

is no pattern found in the buffer string, method will return “patternNotFound” means

the buffer string is complete transformed.

61

mailto:%7B@...@%7D

Figure 6-13: Sample Code for Special Pattern Matching

6.2.6 Implementation for Recursive Functions for traversing the AO

Tree and calling transformation method on each element

Because the AO is constructed as a tree, the use of recursive parsing approach is very

suitable. As already mentioned in the design chapter, the elements part of the tree can

be divided into three types as Current Element, SubElement(s) and NextElement.

Each Current Element can have zero to multiple SubElement(s) and zero to one

NextElement. A SubElement may has its own SubElment(s). There are two recursive

methods, they were developed for traversing the AO Tree and calling transformation

method on each element.

Method translateCode(String bufferString,OWLNamedClass currentElement) is

responsible for traversing AO tree and call transformation method

(retrieveXSLTTranslation) recursively on Current Element. The following pseudo

Code (Figure 6-14) clearly explain how translateCode method works

62

Figure 6-14: Pseudo Code of translateCode method

Method translateSubelement (bufferString) is developed as a recursive method to call

the transformation method on each Subelement of Current Element and return a full

translate string back to transaleCode() method.

The following pseudo code (Figure 6-15) clearly show how the translateSubElement

method works.

63

Figure 6-15: Pseudo Code of translateSubelement method

64

Example of using translationCode() and translateSubelement() to transform a

Current Element in detail

1) Call translationCode() on buffer sting “{@OperatorAssignEqualThan_6@}”

2) {@ @} pattern is found and OperatorAssignEqualThan_6 becomes Current

Element

3) Retrieve XSL for OperatorAssignEqualThan_6 and run using Saxon,

OperatorAssignEqualThan_6 is transformed to be {@variable_v@} = {@zero@}

4) Set {@variable_V@} = {@zero@} to be a temp buffer String,

Call translateSubelement(temp buffer String) on temp buffer String

6) {@ @} pattern is found, and variable_v becomes first Sub Element need to be

transformed

7) Retrieve matched XSL for variable_v and run it with Saxon, variable_v is now

transformed to be $variable_v

8) Replace {@variable_v@} with $variable_v in the temp buffer string and temp

buffer string becomes $variable_v = {@zero@}

9) Recursively call translateSubelement(temp buffer String) on temp buffer string

10) Do exact same steps from 6) to 8), temp buffer string becomes $variable_v = zero;

11) Because there is no {@ @} pattern found in the bufferString,

translateSubelement() recursion is finished, temp buffer string was sent back to

translationCode() method and replace {@OperatorAssignEqualThan_6@} with

$variable_v = zero; now buffere string is $variable_v = zero;

12) Because OperatorAssignEqualThan_6’s property “NextElement” value is

“OperatorLoopFor_8”. Add OperatorLoopFor_8 to the end of buffer String. Buffer

String become $variable_v = zero; {@ OperatorLoopFor_8 @}

13) Call translationCode(bufferString) on new bufferString which new buffer string

now is $variable_v = zero; {@OperatorLoopFor_8@}

14) OperatorLoopFor_8 becomes the new Current Element and Recursive parsing

starts again.

65

6.2.7 Implementation for Saxon XSLT Processor

As already introduced in design chapter, Saxon API was used for handling AO and

XSL transformation.

String applyTransformation(String stylesheet, File owlsourceFile, String

invidualName) is major method for handling transformation. As we can see from

the following sequence diagram (Figure 6-16) that three other methods are involved

inside applyTransformation method.

SearchMatchedInvidual SaxonTranslation

String applyTranformation(stylesheet, owlsourceFile, invidualName)

transform(sourceFile,output)

tryCache(String stylesheet)

buffer String
transformer.setParameter("individualName",individualName)

Figure 6-16: Sequence Diagram for using Saxon for Transformation

) tryCache(String styleSheet)

his method is to create a template for XSL as cache that it then can be used several

1

T

times without recreated. XSLT TransformerFactory object was instantiated for taking

XSL ready for transformation.

66

Figure 6-17: Sample Code of tryCache method

2) transformer.setParameter(“individualName”, individualName)

By call setParameter() method, the actual name of individual is set to be XSL

parameter as an input parameter used in Saxon transformation.

3) transform(sourceFile,output)
This method performed the XSLT transformation AO using XSL to derived code for

Current Element, output here represents the transformation result which is also known

as buffer string.

6.2.8 Implementation for Code Deployment

At the moment, Code Deployment Module is separate from Code Generation Module

and there are two main purposes of for implementation of this module one is making

generated code to be complete PHP or Java file and anther purpose is to deploy files

to web server for internet access.

1) Make PHP and Java File

Because CGE is only responsible for generated code about what AO describes, in

order to make generated code to be a valid PHP or Java file, there is a need for a little

additional piece of code to be added on to generated code.

For example, PHP file needs <?php as starting of file and ?> as ending of file, AO

doesn’t include those starting and ending codes at the moment. Class

67

PHPFileDeployment is responsible for add “<?php” in front of generated code and

make “?>” append to end of the generated code.

Java file needs “public class ClassName{“ as starting of file and “}”as ending of file,

AO doesn’t include this at the moment, so in Class JavaFileDeployment that it add

“public class AOName{” in front of generated code and make “}” append to end of

the generated code.

2) Deploy PHP and Java file to Web Server

A new FileOutputStream is created to writing PHP and Java code to specific web

server folder. The list code detail explain how it achieve, and inputFileNameArray[0]

represents AO filename(without“.owl”)

Figure 6-18: Sample Code for file deployment

6.2.9 Implementation for Graphic Interface

The Graphic Interface of this project used Java Swing to provide a user friendly

widget. A set of JMenuItems are created for different purposes, JTextArea is created

for showing the generated code.

JMenuItem getFileMenuItem()

The list code is event listener link to getFileMenuItem(), once this menu item is

clicked, then PHP will be set to be final output language and

OWLTreeRecursiveParser object will be create to starting transform AO tree, and

return final generated code.

68

Figure 6-19: Sample Code of Action related to Menu Item

JMenuItem getJavaFileMenuItem()

This method does similar job as getFileMenuItem() except this time Java is set to be

output language.

JMenuItem getMakeFileMenuItem()

This method also has a actionListener attached that once ‘Make File’ menu item is

clicked, specific FileDeployment object is created to deploy the file to server folder.

69

Chapter 7 Evaluation

In order to evaluate the CGE, test cases were designed and tested. Several AO files

were created to be used as input for CGE for specific test purposes. All those AO files

are to evaluate whether CGE implemented to meet the initial aim. In this chapter, it

also includes explanation in details about how to make change to AO using Protégé.

7.1 Experiment Setup

Before the actual test case starts, a few software were download and installed as

experiment setup.

z The Apache Server is downloaded and installed as a experiment environment for

final generated code to be run thought internet. All the Java files of CGE were

packaged into a jar file acted as unique access point for testing.

z Several AO files were created for different test purposes to evaluate the CGE.

CGE does only what AO describes, so the code generated from AO is valid PHP

or Java code but is not sufficient to become a complete PHP and Java file. A little

more information will be added to PHP and Java code in order to make them

access through the internet. For example, one model of a non-recursive ascending

quick sort algorithm was created for test. The code generated from this algorithm

can perform the non-recursive quick sort but it still needs some additional part to

add to generated code for displaying the result of non-recursive quick sort. The

displaying result of non-recursive quick sort is only for convenience of test which

user can see it directly on the web page.

70

z Protégé can be downloaded and installed to change AO if needed. For this project,

all the AO files were provided by Simone to evaluate whether CGE meets his

requirements.

7.2 Change AO using Protégé

This section is giving brief explain of what is Protégé and how to modify an AO using

it. Some of AOs designed for test cases need to be changed to evaluate the CGE.

Basically, Protégé-OWL editor enables users to:

z Load and save OWL and RDF ontologies.

z Edit and visualize classes, properties, and SWRL rules.

z Define logical class characteristics as OWL expressions.

z Execute reasoners such as description logic classifiers.

z Edit OWL individuals for Semantic Web markup [21] .

The changes made to the AO are very handy and straightforward in Protégé since

Protégé has a very user friendly graphic interface

As we can see from the following diagram (Figure 7-1) which showing how Protégé

change AO, once you open the AO and you can create an individual of defined Class

and assign it to property of another, so individual is linked to another through its

property. The following feature shows changes made to property ‘j.0:contion’ that

OperatorAssignEqualThan_7 replace OperatorAssignEqualThan_2 to be the new

value of property ‘j.0:contion’.

71

http://www.w3.org/Submission/SWRL/

Figure 7-1: Change AO using Protege

7.3 Test Case 1

This test case it to test whether CGE is able to generate valid code by interpret AO

using SSLO and generated code can be deployed and accessed through internet.

A model of a non-recursive ascending Quicksort algorithm was created based on an

Array of fixed integer numbers. PHP was chosen to be the target output language. The

final PHP code generated was then deployed on the server. The AO file is named as

ao_nrQuicksort_v1.owl. As we can see from Figure 7-2 sthat it shows the complicate

structure of this algorithm.

72

Figure 7-2: AO version1

At the starting of test, CGE selects ao_nrQuicksort_v1.owl from file system and

choose PHP to be the target language. Then PHP code will be generated and display

on the TextArea of CGE widget. Once the user clicks the ‘Make File’ menu item, the

generated PHP code will be automatically deployed to server folder. Next step is to

open web browser, the result displayed in the web browser as Figure 7-3 shows

generated code does ascending non-recursive Quicksort.

This success of this test proves CGE can generate valid code as AO describes.

73

Figure 7-3 Snapshot of Test case 1 result in web bowser

7.3 Test Case 2

This test case 2 is to make it little to AO used in the test case 1 in order to make the

ascending Quicksort algorithm to be descending Quicksort. Change was made using

Protégé to ao_nrQuicksort_v1.owl and new owl is ao_nrQuicksort_v2.owl. As we can

see from Figure 7-4, the tree structure of AO is not changed, only changed made to

AO is the symbol “<” highlight in the diagram, it replace “>” in AO.

74

Figure 7-4: AO verion2

Then we rerun the CGE again using ao_nrQuicksort_v2.owl as input and deployed

generated code, this time we can see from web browser (Figure 7-5) that change made

to AO can derive changes in the final code. Ascending Quicksort algorithm becomes

descending Quicksort by compare the two Figure of web browser screen cut.

75

Figure 7-5 Snapshot of Test case 2 result in web bowser

7.3 Test Case 3

This test case 3 is to make more changes to AO used in the test case 1. The

modification to AO is in order to remove all elements bigger than a specific number.

Change was made using Protégé to ao_nrQuicksort_v1.owl and new owl is

ao_nrQuicksort_v3.owl. As we can see from Figure 7-6, new highlight branches are

added to original of the AO version1 representing actual changes in the AO file. A

conditional checking is made for all the value from ascending Quicksort (AO

version1). If any value is larger than specific number, then get rid of it.

76

Figure 7-6: AO verion3

Then we rerun the CGE again using ao_nrQuicksort_v3.owl as input and deployed

generated code, this time we can see from web browser (Figure 7-7) that change made

to AO can derive changes in the final code. All value larger than 5 is eliminated from

array by comparing the two Figure of web browser screen cut.

Figure 7-7 Snapshot of Test case 3 result in web bowser

Figure 7-8 and Figure 7-9 are two screen cut of actual PHP files generated by CGE.

By comparing them, it is easy to see change to AO does make change to final output

77

code.

Figure 7-8 Snapshot of PHP code using Ao version1

Figure 7-9 Snapshot of PHP code using Ao version2

7.4 Test Case 4

This test case 4 is to using a new AO which is complete different from AO we tested

in previous test cases and the purpose for this AO is to evaluate whether CGE can

generate Java code and PHP code do the same job based on the same AO even if they

have different language syntax . The new AO structure is showing in the Figure 7-10

and new AO name is ao_AverageValue.owl.

78

Figure 7-10 Tree Structure of ao_AverageValue AO

Then we used CGE to take ao_AverageValue.owl as input and generate both PHP and

Java code, as we can see from Figure 7-11 and Figure 7-12 which are code generated

in Java and PHP version based on AO, even if the language feature is different but

they are doing the same jobs.

Figure 7-11 Snapshot of PHP code using ao_AverageValue AO

79

Figure 7-12 Snapshot of Java code using ao_AverageValue AO

7.5 Test Case 5 based on Real Enterprise oriented Case Study

This test case is an extension of the Service Oriented Architecture Case Study

presented in [19, 20], where a tax calculation system is in place and a government

provide to a set of regions a base calculation algorithm. Then regions have autonomy

to change the algorithm to match the need of local change in legislation.

In the first version of the algorithm the calculation of annual taxes to pay is provided,

based on personal details of the person. The taxes are based on a set of layer with

increasing percentage of tax to pay for each layer, than additional discounts are

granted in presence of child, or in case of young age. In version 1 [Figure 7-13]

there are all the parameters needed to do the calculation. A set of layers, and the

percentage of tax needed to pay for each layer. Then if the person has a child get a

discount, and finally the age of the person is checked, to test if it is lower than a

specific parameter, to decide to assign a second discount.

80

Figure 7-13 Tree Stucture of Tax AO version 1

The second version of the algorithm can be created by the central government or one

of the regions, to add a discount for married people in charge of the partner. This

adaptation shows how the ontological model is suitable for an adaptation than it can

be sent to different systems to be transformed to working code in different

frameworks based on different programming languages.

81

As you can see from the following graph we want now to do a change (The changes

to add this modification are the highlight ones.) to the algorithm, adding an additional

discount in case the person is married and a partner in charge.

Figure 7-14 Tree Stucture of Tax AO version 2

The first change was to add the parameter pm (in code is $percentageMarried) to the

component.

The second and last modification is to transform element 'P[i]' to element 'P[i] - pm'

82

the element P[i] in version 1 was used 4 times but was a unique single individual.

In this case was enough to change that to 'P[i] - pm' to obtain 4 changes in one single

modification. Watching the tree for version 2 (shown in Figure 7-14)is visible that the

second modification spread in few places in the tree and is an aspect oriented style of

adaptation, obtained with a single action in the tree instead of changing the code in 4

different parts.

After generated and tested with two version of code from the CGE, changes was made

to the first version of the algorithm, to move it to the version 2. An additional discount

is added in case the person is married and in charge of the partner. This complicate

test Case 5 based on real Enterprise oriented Case Study further proves the power of

CGE that by giving more complicate AO that CGE is able to generate code to be used

in the real business for enterprise purpose.

7.6 Evaluation Summary

Based on the 5 Test Case, the CGE meets the initial requirements, it is able to

generate code as what AO describes, and changes made to AO will derive changes to

final generated code, the make procedure was done to test the generated code using a

web browser. CGE is also able to generate two version of code (Java and PHP). A

very complicate AO based on Real Enterprise oriented Case Study then created for

proving CGE has its strong power in generating code to be used in the real business

for enterprise purpose.

83

Chapter 8 Conclusion

This chapter includes project summary, influence from collaboration work and lists of

contributions achieved and point out future work to be done in the further

development.

8.1 Project Summary

The initial goal of this overall research project is to use abstract specification of

ontology-based algorithm as Model Driven Platform to derive concrete

implementation. The ontology-based modeling algorithm approach also support open

set of languages by providing various language specific ontologies. The main purpose

of this project is implementation of a code generation engine using ontology-based

modeling algorithms.

From the state of art studies, knowledge was gained in key processes for developing a

Code Generator and practice were done in get familiar with technologies to be used in

the implementation. The structure of Code Generation Engine is well designed to

make it stable and decouple from any particular framework or programming language.

The code generated from CGE can be function, full classes or any valid code. And

any change made to algorithm will lead to the change in the final code generated but

no change is needed to CGE itself. Code deployment is also concerned and

implemented. The Code Deployment Module is able to deploy generated code from

CGE to a specific web server folder for internet access.

Various test cases were created and tested. Result of those test cases are very positive

that it growth confidence for CGE to be a successful code generation tool using

ontology-based modeling algorithm.

84

Overall project is a collaboration work on using abstract modeling algorithm to derive

concrete implementation. At this stage, we can say the CGE project achieve its initial

aims and becoming a successful tool for ontology-based code generation.

8.2 Influence from collaboration work

As long as this project is collaboration with another research project, it was very

important to share the same research aim and have proper plan to lead to a successful

development and tests. Starting April 2008 and during summer time, meetings on a

weekly basis has been done. I took first month in understanding the original research

project and his approach about ontology-based abstract algorithm modeling, and I did

background research on the technologies which I was going to use in the future

development of the sub-project. We then did partition the work that was then assigned

to the main or the sub project. We agreed that the original project was in charge to

refine the set of designed ontologies and to produce Algorithm Ontology, all part

needed to test the architecture of the sub-project. We did agree to do a common work

about the implementation of System Specific Logic Ontology, in particular to write

some XSL. They were needed to transform each individual that might be used by the

AO. Then it was assigned to me my major work, that was the implementation of a

generic code generation engine. Finally I was in charge of the deployment procedure

needed to property position the generated code on a web server document folder.

I keep updating my work status with Simone and refine the code generation engine

architecture if necessary in the design stage and may come up new idea such as

graphic user interface to make code generation engine more users friendly.

On August, we majorly tested different AO as input files for CGE to ensure CGE is

able to meet our initial requirements. A few mistakes were found in the alpha version

of CGE and a few changes were made and then test for another several rounds.

85

8.3 Contribution

z CGE meets Simone’s research aim that it is able to generate code using modeling

algorithm approach and it is not to generate any possible programming language

structure or trick, but only to generate valid code starting from the ontology that

is the model of an abstract algorithm. A questioned is designed for evaluating this

project from Simone’s point of view (see Appendix) and very positive feedback is

achieved.

z CGE is also successful tool to test specification of abstract algorithms and it will

be core part for test and evaluation part of a paper to be submitted in the future.

z CGE is very generic and it is not dependent on any particular language or

framework and it is easy to extend to a new language by creating a new SSLO.

And by adding new syntax rule to existing SSLO shall provide supporting more

language features to handle more complicate tasks.

z By using CGE, it provides ability for supporting more dynamic and pluggable

web service. User can ask for new version of web service any time by making

modification to ontology algorithm and CGE can automatically derive new

version of service and make it redeployed.

8.4 Future work

Possibilities of future work are discussed here:

1) Add more sophisticate parts to SSLO

At the moment, SSLO is not supporting data access, if giving more time, more

attention will be paid to add more XSL rule in SSLO in providing code generation for

access create query, update data in the database. This part is quite important since the

fact that most of service on the web is need to process user data, and normally these

data is stored in the back end data. The completion of data access rules in SSLO will

provide CGE ability to generate code from front tier to back end of overall web based

86

application.

2) Refine Java SSLO to support all Java language features

Because Java language feature is very different from PHP that is a scripting language,

while Java is object-oriented language which has its unique like inheritance,

polymorphism, etc. The refinement of Java SSLO should strength the ability for

providing more sophisticate java code to handle complicate tasks.

3) Error Checking

CGE is responsible for generate code based on what AO describes. So if AO is

structured in a wrong way that will result in the code generated with syntax error. The

future work to fix this issue is to development a new component which it checks the

syntax of the generated code and if there is an syntax appears it will automatically

alert user about which part of AO might cause the problem and even with suggestions

for solving the problem.

4) Built-in Deployment

Code Deployment module is separate from CGE at the moment. When code generated

through the CGE, there is a need for it to be processed by the Code Deployment if

user wants to deploy the generated code to the web server. However, it shows some

kinds of inconvenient by concerning of user experience. The future work for refine

the code deployment module may build it within the scope of CGE and allows user to

do the initial setting (specify location of deployment folder) before actual deployment.

Then once user generated code using CGE, the generated code will then CGE can

automatically deployed the code to the user specified folder and access through the

internet.

5) Security Issue

Security issue arises when user wants to change the service by modifying the AO.

Any evil attempt by changing service to hack the system should not be allow.

87

Authentication and authorization are necessary here in order to maintain the system in

the good form. On the other hand, there is another solution to providing a ‘sand box’

facing the user that any change user make within this sandbox only related to himself

and won’t make any changes outside the sandbox. This sandbox can also be a possible

safe test environment for CGE.

88

BIBLIOGRAHPHY

[1] http://www.patentstorm.us/patents/6260160/description.html, retrieved 18/05/2008

[2] http://www.stylusinc.com/Common/Concerns/SoftwareDevtPhilosophy.php retrieved
21/05/2008

[3] Annke Kleppe, Jos Warmer, Wim Bast, P. (2002). MDA Explained, The Model
Driven Architecture Practice and Promise, Addison Wesley, London: p6-20.

[4] DISSEMINATION OF GOOD PRACTICE RESULTS
RAPID GROWTH AND COMPETITIVENESS THROUGH TECHNOLOGY
HELSINKI Retrieve 23/05/2008, from
http://ec.europa.eu/enterprise/entrepreneurship/support_measures/docs/good-pr_helsin
ki_1999.pdf

[5] Martin Wirsing, Matthias H¨olzl (2006) Software Intensive Systems Report of the
Beyond the Horizon Thematic Group

[6] http://www.linuxjournal.com/article/3508 retrieved 25/05/2008

[7]http://www.theenterprisearchitect.eu/archive/2008/01/16/mda_model_driven_architecture_
retrieved 01/06/2008

[8] Olegas Vasilecas, Diana Bugaite (2007), APPLYING THE META-MODEL BASED
APPROACH TO THE TRANSFORMATION OF ONTOLOGY AXIOMS INTO RULE
MODEL Retrieved 13/07/2008 from http://itc.ktu.lt/itc361/Bugaite361.pdf

[9] http://ksi.cpsc.ucalgary.ca/KAW/KAW96/guarino/guarino.html retrieved 26/05/2008

[10] Rudi Studer1, Stefan Decker2, Dieter Fensel3, and Steffen Staabl, Situation and
Perspective ofKnowledge Engineering
http://infolab.stanford.edu/~stefan/paper/2000/ios_2000.pdf retrieved 28/06/2008

[11] Oscar Corcho, Mariano Fernandez-Lopez, and Asuncion Gomez-Perez (2006),
Ontological Engineering: What are ontologies and How can We build Them? Web services
theory, tool, and application, Jorge Cardoso: p. 44-71.

[12] http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/glossary-of-terms.html
retrieved 27/06/2008

[13] Martin Doerr (2006), Web Ontology Lanauge Web services theory, tool, and
application, Jorge Cardoso: p. 96-110.

89

http://www.patentstorm.us/patents/6260160/description.html,%20retrieved%2018/05/2008
http://www.stylusinc.com/Common/Concerns/SoftwareDevtPhilosophy.php%20retrieved%2021/05/2008
http://www.stylusinc.com/Common/Concerns/SoftwareDevtPhilosophy.php%20retrieved%2021/05/2008
http://ec.europa.eu/enterprise/entrepreneurship/support_measures/docs/good-pr_helsinki_1999.pdf
http://ec.europa.eu/enterprise/entrepreneurship/support_measures/docs/good-pr_helsinki_1999.pdf
http://www.linuxjournal.com/article/3508
http://www.theenterprisearchitect.eu/archive/2008/01/16/mda_model_driven_architecture_
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/guarino/guarino.html
http://infolab.stanford.edu/%7Estefan/paper/2000/ios_2000.pdf
http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/glossary-of-terms.html

[14] http://www.w3.org/TR/owl-guide/ access retrieved 22/06/2008

[15]Soumen Sarkar (2005) CODE GENERATION USING XML BASED DOCUMENT
TRANSFORMATIONhttp://www.theserverside.com/tt/articles/content/XMLCodeGen/
xmltransform.pdf retrieved 28/06/2008

[16] Soumen Sarkar (2003) Model-Driven Programming using XSLT
http://www.codegeneration.net/articles/mdpuxslt.pdf retrieved 07/07/2008

[17] http://protege.stanford.edu/plugins/owl/api/guide.html retrieved 08/08/2008

[18] http://saxon.sourceforge.net/ retrieved 06/08/2008

[19] Grassi, S., Barrett, S., and Sordillo, F. 2007. Ontology based algorithm modeling:
obtaining adaptation for SOA environment. In Proceedings of the 2nd Workshop on
Middleware For Service Oriented Computing: Held At the ACM/IFIP/USENIX
international Middleware Conference (Newport Beach, California, November 26 - 30,
2007). MW4SOC '07. ACM, New York, NY, 18-23. DOI=
http://doi.acm.org/10.1145/1388336.1388339

[20] Grassi, S.; Barrett, S., "Dynamic Architecture Adaptation in WS Environment,"
Autonomic and Autonomous Systems, 2006. ICAS '06. 2006 International Conference
on, vol., no. pp. 26--26, 19--21 July 2006.

[21] http://protege.stanford.edu/overview/protege-owl.html retrieved 07/08/2008

[22] Jack Herrington (2005), Code Genation in Action, Manning, p. 15-16.

90

http://www.w3.org/TR/owl-guide/
http://www.theserverside.com/tt/articles/content/XMLCodeGen/xmltransform.pdf
http://www.theserverside.com/tt/articles/content/XMLCodeGen/xmltransform.pdf
http://www.codegeneration.net/articles/mdpuxslt.pdf%20retrieved%2007/07/2008
http://protege.stanford.edu/plugins/owl/api/guide.html
http://saxon.sourceforge.net/
http://protege.stanford.edu/overview/protege-owl.html

APPENDIX I
This appendix is a questionaire to evaluate on the collaboration work of project.

Q: Does the Code generation engine meet your research aim?
A: The CGE fulfill the requested requirements, the architecture of the software is
object oriented, easy to understand and modify. The more important aspect is that was
respected the indipendence of the CGE code from the input ontologies, that are used
to generate the output code. Apart from relevant or major improvement is possible to
generate code for a new programming language without touching the CGE code.

Q:What do you use CGE and for what?
A: I use it on a daily basis during my test about generation of code from a model of an
algorithm. In the next months it will be used for my test and will be one of the main
element of my future research.

Q:What kind of features you concern about in term of code generation using
ontology-based modeling algorithm?
A:The main feature is to be able to generate valid code using exactly the same model
of the algorithm. All the complexity of the programming languages is stored in the
system dependent ontology, where XSL rules are stored to enable the CGE to generate
proper code. The concert is to include in the abstract algorithm model all the semantic
information needed to decide how to generate proper code, without adding
information relative to a specific language in the abstract model. This separation
allows the CGE to be itself independent from the generated code and to use a
common algorithm model for any system in use.

Q:What benefits you gain from the implementation of CGE ?
A: The CGE is a fundamental tool to run practical experiments about my research
project, and will be a core part of a publication about those experiments. Starting with
the result of Liang project will speed-up my research, having to modify and improve a
well architected and well tested software.

Q: What are possible suggestions you have for CGE as future work?
A: The CGE can be improved depending on the extension in my original research
project. The main is to include in the CGE the deployment procedure, now
implemented as a make functionality, external from the main CGE core.
A second important improvement is the ability of the CGE to send feedback to the
source of input in case of syntax errors in the generated code, associating the error
with the elements of the algorithm model.

Q:How do you feel about collaboration work with Liang Shan during the summer?
Any difficulty encounted? Are you satisfied with what you have achieved ?

91

A: The work was planned and understood in time, Liang spent a proper amount of
time reading documentation and understanding the main objective of my original
research. Then he was quick and effective in planning the architecture of his own
project, the CGE. The development was smooth, we were in constant contact with
regular meeting to be sure to understand any problem immediately and proceed
without losing time.
So I consider the collaboration very successful, in terms of the result and in terms on
how was managed during the months. Liang was quick and effective in implementing
and doing modification following the feedback from tests.

92

93

APPENDIX II
This appendix is the overall project schedule for last couple of month

March 10th -25th First meeting, introduction about Simone's research project, aim
and objectives. Read a small set of papers and did a meeting to understanding what
was the proposal project with some level of details.

March 25th - April 25th, did background research on the technologies to be used in
the development of the project. Framework and platform to be used for the code and
checked the presence of the needed libraries that was going to be used for known
technologies like XSL and OWL.

April 26th - May 26th Develop a first version test appliation for traversing ontology
tree and retrieve one by one the nodes of the Syntax Tree. The OWL libraries (from
the Protege software, version 3.4 beta) was tested and used to achieve this step.

May 26th - June 15th Develop the first verion of Code generation engines, adding the
real code generation to the visit of the Syntax Tree. Saxon 6.6.5 libraries was tested
and used. A few problems were encounted and fixed doing ad-hoc tests.

June15th - August 1st From test and evaluation of the previous version a second
version of CGE was developed including all the needed requirements. Some
automation was added and it was improved to cover all the original requirements.

August 1st - Sep Test and Evaluation continued with some bug fixing and the addition
of the Make feature and a graphical user interface to have a first degree of user
friendly interface

