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Abstract—A platform-independent communication mecha-
nism is essential for the seamless integration of embedded
devices into the Web of Things. Web services provide for
such communication, though there remains an open question
as to whether they are suitable for hardware-constrained
devices. While there is a general perception that they are too
resource-intensive, there are few scientific studies dedicated to
answering this question. As a result, researchers or developers
investigating applications for the Web of Things have little
evidence to support a decision on the best technical solution.
This paper presents the results of a study designed to as-
sess the performance of Web services on embedded devices.
For our investigation, we deployed Web services on Sun
SPOTs, representing medium-sized wireless sensor platforms,
and analysed disk space, message size, response time and
energy consumption. Our study quantifies the overhead of
Web services and provides empirical data on whether this Web
technology is a suitable approach for embedded devices. 1

Keywords-Web service; SOAP; performance; embedded de-
vice; wireless sensor;

I. INTRODUCTION

Embedded devices are installed into real-world objects
to provide information about, or control over, their hosts.
Traditionally, they are dedicated to a single application and
commonly-used custom interfaces. With the emergence of
the Web of Things, embedded devices become part of an
open environment in which they serve multiple different
applications and interact with peer devices that may differ
in hardware and software features. Device heterogeneity
and application diversity make communication via custom
interfaces inflexible and impractical. A platform-independent
communication mechanism would improve interoperability
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and constraints invoked by each author’s copyright. In most cases, these
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among embedded devices and enable their seamless integra-
tion into the Web of Things.

Web services are designed for interoperable machine-
to-machine communication, allowing different parties to
invoke remote methods or to exchange documents without
mutual knowledge of internal implementation details. A Web
service client communicates with a Web service provider
through platform- and programming language-independent
messages. SOAP-based Web services2 encode these mes-
sages into a structured and typed data format that is based
on XML.

However, a question remains as to whether Web services
are suitable for hardware-constrained devices. Web services
require additional payload information and use a verbose
data encoding format. This leads to an increase in size and
processing complexity of Web service messages. Therefore,
as embedded devices are constrained in terms of memory,
bandwidth, and energy supply, there is the general percep-
tion that Web services are too resource-intensive for this
domain. However, there are few scientific studies dedicated
to investigate this issue for tightly constrained hardware
platforms. As a result, researchers or developers exploring
new applications for the Web of Things have little evidence
to support a decision on the best technical solution.

This paper presents the results of a study designed to
assess the performance of Web services on embedded de-
vices. For our investigation, we deployed Web services
on Sun SPOTs, representing medium-sized wireless sensor
platforms, and analysed disk space, message size, response
time and energy consumption. The contribution of this
paper is empirical data that quantifies the overhead of Web
services and therefore supports a decision on whether this
Web technology is a suitable programming approach for
embedded devices.

The remainder of this paper is organised as follows:
Section II summarises work related to the deployment of
Web services on embedded devices. Section III describes
the methodology applied to conduct the experiments and

2For the remaining of this paper our references to Web services assume
SOAP-based Web services



to collect performance data. Section IV presents the result
of the study and analyses the effect of Web service on disk
space, message size, response time, and energy consumption.
Section V discusses the implications of using Web services
in a resource-constrained environment and highlights how
emerging research addresses them.

II. RELATED WORK

Web services are a key enabler for a new generation of
applications. Mobile devices, which not only consume but
also provide information services, can be directly integrated
into computer-supported collaborative work or supply chain
management [1]. Web service-enabled sensors and factory
equipment share the same communication architecture as
applications on the business level and can, therefore, be inte-
grated into the process flow of enterprise planning software
[2].

A key question is, how to offer Web services for resource-
constrained devices without compromising on standard com-
pliance or limiting the device core functionality. Regarding
these design requirements, light-weight tool support has
been proposed for Java CDC [3] and CLDC [4] as well as
C/C++ [5]. In addition, the device profile for Web services
(DPWS) [6] specifies a minimal set of implementation
constraints to enable Web service messaging, discovery, and
eventing based on existing Web service specifications.

Wireless sensor platforms exhibit even stricter resource-
limitations than mobile devices and gateway concepts have
been used to integrate them with a Web service-based com-
munication system. Emerging research, however, suggests
enhancements for DPWS [7] and optimisations for Web
services [8] to apply Web services directly on sensor nodes
and to eliminate gateway solutions.

Although a performance evaluation is included in most
of the above related work, its intention is to validate the
proposed solution itself. Our work is dedicated to assess the
performance of Web services on embedded devices using
two existing open-source libraries. We provide empirical
data on time and energy consumption that characterises Web
service behaviour before any optimisations or enhancements
are applied.

III. METHODOLOGY

Our experiments were conducted in a controlled test
environment. We used two free-range Sun SPOTs that are
representative for medium-sized wireless sensor platforms
(see Table I). The SPOTs communicated over the air in a
single hop keeping the network delay to a minimum.

The application scenario involved the exchange of temper-
ature readings between the service provider, hosted on one
SPOT, and the service client, hosted on the other SPOT. The
service provider offered to send a list of the last n readings
upon request. The service client specified the number of
readings in his request and invoked the provider through a

Table I
EXAMPLES OF WIRELESS SENSOR PLATFORMS

TelosB Mote Sun SPOT IMote2

Processor MSP430 ARM-7 PXA271
(bit/Mhz) 16/8 32/180 32/13..416

ROM/Flash (kB) 48 + 1024 4096 32768

RAM (kB) 10 512 256 + 32768

Radio (IEEE) 802.15.4 802.15.4 802.15.4

System TinyOS Squawk VM TinyOS, Linux

synchronous remote procedure call. A reading is a complex
data type that consists of a value (double), time stamp (long),
and sampler id (string).

We implemented the application scenario in three ap-
proaches: First, the light-weight conventional approach en-
coded the list of readings as a semicolon and hash separated
string not using Web service technology (Listing 1). Second,
the ksoap approach, based on ksoap2 [9], created and
exchanged SOAP messages encoding the list of readings in
XML (Listing 2). Third, the ws4d approach, based on the
DPWS implementation ws4d Java ME [10], used the same
XML structure as the ksoap approach to encode the list of
readings. In addition to SOAP the ws4d approach included
HTTP information into the message. The transfer of SOAP
messages is not bound to a specific protocol; however, the
advantage of embedding a SOAP message into HTTP is that
firewalls usually do not block the required port.

As performance metrics we evaluated disk space, message
size, average response time, and average energy consump-
tion. Each average was calculated based on 30 samples
and indicated only marginal statistical spread. For energy
consumption we measured the available battery capacity
with a method provided by the Sun SPOT engine and
calculated the difference. In our investigation we focused
on the service invocation phase. The time and energy spent
on the acquisition of the service description and endpoint
address was not included in our measurements.

Listing 1. Conventional format for list of sensor readings
v a l u e # t imes t amp # s a m p l e r i d ; . . # . . # . . ;

Listing 2. XML format for list of sensor readings
<r e a d i n g s>

<r e a d i n g>
<v a l u e> . . . < / v a l u e>
<t imes t amp> . . . < / t imes t amp>
<s a m p l e r I d> . . . < / s a m p l e r I d>

< / r e a d i n g>
<r e a d i n g> . . . < / r e a d i n g>

< / r e a d i n g s>

IV. RESULTS

In the following we present the results of the performance
study that show the effect of Web services on the disk space,
message size, response time, and energy consumption.
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Figure 1. Structure of response message containing one reading
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Figure 2. Effect on response message size (a) absolute and (b) relative to
conventional approach

A. Effect on disk space

Apart from the application code, we used two open-source
libraries to enable Web services on the wireless sensor plat-
form directly. Ksoap2 including the kxml2 parser requires
61 Kbytes of disk space. For the ws4d stack 478 Kbytes
of disk space are allocated, after unnecessary modules have
been removed.

B. Effect on message structure and size

Figure 1 depicts the structure of the response message that
contains one reading. The Web service based messages are
25 (ws4d) and 16 (ksoap) times larger than a conventional
message. In particular, the actual payload in the Web service
based responses is nine times larger than the payload of
the conventional approach. This illustrates the overhead
that is associated with using a structured versus a custom
data format. In addition, the size of the required header
information equals (ksoap) or is twice (ws4d) the size
of the actual payload in the Web service based response.
This shows the overhead of SOAP as an application layer

protocol. For transmission over the air, IEEE 802.15.4 allows
120-102 Bytes for packet data depending on how long the
address information on MAC layer is. If 120 Bytes per radio
packet are available, seven (ksoap) and ten (ws4d) radio
packets are required to transmit a single reading while a
conventionally encoded reading fits in a single radio packet.

Figure 2a shows the development of the response message
size as the number of readings, enclosed in the single
response, increases. With each additional reading in the
response, the message grows by about 40 (conventional),
189 (ksoap), and 197 (ws4d) bytes. The increase for the
ws4d approach is slightly higher than for ksoap because
ws4d formats the payload differently.

Figure 2b illustrates the overhead of Web service based
messages relatively to conventional messages. The ratio ap-
proaches a limit of about 5 for both Web service approaches
as the readings included in a single response increase. The
decrease of the Web service overhead on the message size
has two reasons: First, the internal XML structure of the list
of readings plays off its efficiency if multiple readings are
enclosed. Second, independent from how many readings a
response contains, the header remains constant (apart from
occasionally one byte difference in the HTTP header for
encoding the content length).

C. Effect on response time

The response time, captured on the client device, is
the time from serialising a request to the completion of
deserialising its response.

Figure 3a presents the development of the average re-
sponse time as the number of readings per response in-
creases. The average response time for the ws4d approach
does not increase as fast as for the ksoap approach because
ws4d starts to process a message with the arrival of the first
bytes. The ksoap approach, instead, blocks processing until
the entire message is received.

Figure 3b depicts the overhead of Web service on the
response time relatively to the conventional approach. The
ratio approaches a limit of 2.5 (ksoap/conventional) and 2
(ws4d/conventional) with increasing readings per response.

Regarding the structure of the response time, Figure 4
shows the proportional share, a task has on the average re-
sponse time. On the client device, in Figure 4a, a substantial
part of the time is required for receiving the response. For the
ws4d approach, reception and deserialisation interleave and
cannot be measured individually. For ws4d we assume that
reception takes a greater share than deserialisation. Another
interesting observation is the following: In the conventional
approach, the share of the receive task decreases in favour
of the share of the idle task. In contrast, in the Web service
approaches the share of the receive task increases with the
increase of readings in a single response. The reason for
this reveals the time structure on the service device (Figure
4b). In the conventional approach, the amount of time for
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Figure 3. Effect on average response time (a) absolute and (b) relative to conventional approach
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Figure 4. Time structure on client device (a) and service device (b)

serialisation grows faster than for sending because up to
three readings can be transmitted with a single radio packet.
While the amount of time for serialising is the same for each
reading, the amount of time for sending a reading depends
on whether the reading has to be send in a new radio packet
or not. The increasing share of serialisation on the server side
has a direct effect on the client device whose share for being
idle increases. The advantage of this is that sensor platforms
can be configured to consume fewer or no resources when
being idle. For the Web service approaches, the time for
serialisation and transmission grows almost proportionally
because no two readings can be transmitted in a single radio
packet and the time for sending a reading is the same for
all readings.

D. Effect on energy consumption

Figure 5 presents the overhead on energy consumption
of Web service based messages relatively to convention-
ally encoded messages. On the client device the ratio ap-
proaches a limit of about 3 (ksoap/conventional) and 2.5
(ws4d/conventional) as the numbers of readings per response
increases. On the service device the ratio approaches the
limit of about 2 for both Web service approaches. This
means the client consumes marginally more energy than the
service device.

Figure 6 shows the proportional share a task has on the
average energy consumption and gives an indication on
which task is most energy-intensive. For the Web service
approaches most energy is consumed by sending and re-
ceiving a response over the network. For the conventional

approach the case seems less apparent. On the client device,
in Figure 6a, the share for serialising a request and being
idle increases. As the time structure reveals, being idle is the
major driver since its time share increases. The energy struc-
ture of the conventional approach suggests that energy is
consumed while being idle. This is caused by the transceiver
unit which was active the entire time ready to receive radio
packets. For the Web service approaches the influence of
the transceiver unit is overshadowed by the faster growing
energy consumption for actually receiving a response. On
the service device in the conventional approach (Figure
6b), the share for processing and serialising a response
increases while the share for sending a response decreases.
The conventional approach benefits from the fact that up to
three readings fit into a radio packet. Therefore, the amount
of energy for sending readings does not increase as fast as
the amount of energy to serialise each reading. The message
size of Web service approaches exceeds the possible data
volume of one radio packet. With the increasing size of
response messages, the amount of energy for serialisation
increases almost as fast as the amount of energy for sending
the message.

V. DISCUSSION

The result of our performance study is empirical data
that quantifies the overhead of Web services on embedded
devices. In line with the general perception, the study
demonstrates that a Web service-based approach is more
resource-intensive than a conventional approach. The study
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Figure 5. Effect on average energy consumption on (a) client device and (b) service device relatively to conventional approach
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Figure 6. Structure of energy consumption on client device (a) and service device (b)

focused on the Web service overhead relative to a conven-
tional approach and its main results can be summarised as
follows:

• The required disk space for Web service enabling
libraries varies between 61 KByte (ksoap) and 478
KByte (ws4d).

• The ratio for message size approaches a limit of about
5, i.e., Web service messages were at least 5 times
larger than conventional messages.

• The ratio for response time approaches a limit of about
2.5 to 2, i.e., Web service messages took at least 2.5 to
2 times longer than conventional messages.

• The ratio for energy consumption on the client device
approaches a limit of 3 to 2.5, i.e., on the client device
Web service message consumed at least 3 to 2.5 times
more energy than conventional messages.

• The ratio for energy consumption on the service device
approaches a limit of about 2, i.e., on the service device
Web services consumed at least 2 times more energy
than conventional messages.

In the scenario two sensors exchanged SOAP-based Web
service messages that included a list of temperature readings.
The results are partly application-specific because the mes-
sage size depends on the choice of parameter encoding and
on the length of the chosen tags, namespaces, and service
endpoint names. On the other hand, as the study builds on
two main state-of-the art Web service libraries for resource-
constraint systems and IEEE 802.15.4 as a standard protocol
for radio communication, it is likely that the trend of the

results are similar for different applications in resource-
constraint settings.

It depends on the individual application requirements
whether the outlined overhead of Web services is acceptable.
In wireless sensor networks, for example, the strict hardware
constraints of small-size sensor platforms would prevent the
use of ksoap2 and ws4d Java ME because the required
disk space is not available. However, alternative libraries,
such as gSOAP [5] and ws4d-gSOAP [10], allow compile
optimisations for a specific target platform and thus may
provide smaller binaries. Researchers also explore restricting
the message parser to fit the requirements of low-cost and
deeply embedded devices [11], [12]. As a result, the overall
code size is reduced and less disk space has to be allocated.

Although the overhead can be quantified by the limit it
approaches, the study shows that such a limit may only be
reached if multiple pieces of structured data are included
in a message. For example, in Figure 2b, if a Web service
message includes a single sensor reading, it is 25 (ws4d)
times larger than a conventional message. However, as soon
as ten readings are included, the overhead drops rapidly and
the Web service message is only seven times larger. Notice a
similar behaviour for response time and energy consumption
where the overhead for a one reading is significantly higher
than the calculated lower limit. For embedded systems
that periodically exchange small pieces of data (e.g., a
single reading) the overhead will outperform the benefit of
exchanging structured data with SOAP.



Most expensive, in terms of time and energy, is the trans-
mission and reception of Web service messages. These two
tasks incur the most proportional cost irrespective of whether
one or multiple pieces of structured data are exchanged. This
is different for the conventional approach: The more data is
exchanged, the more resources will be spent on processing
data rather than transmitting it. For Web services to achieve
the same behaviour, the overhead causing the expensive data
transmission and reception has to be reduced. Empirical
data, presented in this paper, provides scientific evidence
that the size of Web service messages has a negative effect
on the response time and energy consumption of hardware-
constrained embedded devices. For a single piece of Web
service encoded structured data, several packets have to
be allocated on the physical link layer. Data transmission
and reception take longer and more battery is discharged.
For wireless sensor platforms, higher energy consumption
is critical because it reduces the platform’s lifetime. Once a
sensor node is deployed in the field, it rarely has the means
to recharge and energy conservation is a main concern.

Emerging research investigates different possibilities to
reduce the size of Web service messages. One approach
is to minimise the XML overhead by applying suitable
compression and tag compacting techniques [13]. Another
approach focuses on omitting SOAP and solely using HTTP
[14]. A message is then either encoded into the URL or, if
more structured, encoded into XML and carried in the HTTP
body. In our own work, we are looking at streamlining the
overhead of using Web service specifications.
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