TRINITY COLLEGE DUBLIN

OLAISTE NA TRIONOIDE, BAILE ATHA CLIATH

®!

Process behaviour: Formulae versus tests

Andrea Cerone and Matthew Hennessy

Computer Science Department Technical Report TCS-CS-2010-12
Foundations and Methods Research Group 20th September 2010

Abstract

Process behaviour is often defined either in terms of the tests they satisfy, or in terms
of the logical properties they enjoy. Here we compare these two approaches, using
extensional testing in the style of DeNicola, Hennessy, and a recursive version of the
property logic HML.

We first characterise subsets of the property logic which can be captured by tests. Then
we show that those subsets adequately represent the power of tests.

Chapter 1

Introduction

It is very natural to use properties to determine process behaviour; two processes are
deemed to be behaviourally equivalent, p ~pp ¢ unless there is a property enjoyed
by one and not the other. Indeed this is often used as a justification for the use of the
well-known bisimulation equivalence between processes, [Mil89]. As a property lan-
guage one can use the modal language commonly referred to as Hennessy Milner Logic
(HML), which describes the ability of processes to repeatedly interact with each other
by performing actions. Then, in an appropriate setting, it can be shown that two pro-
cesses are bisimulation equivalent unless there is some property ¢ such that p enjoys
¢ and g does not, or conversely g enjoys ¢ and not p, [Mil89]; that is the bisimulation
equivalence coincides with ~prop.

An alternative approach to process behaviour is based on tests, [DH84]. Intuitively two
processes are testing equivalent, p =~ ¢, relative to a set of tests 7 if p and g pass
exactly the same set of tests from 7. Much here depends of course on details, such
as the nature of tests, how they are applied and how they succeed. Indeed it has been
shown, [Abr87], that if one is sufficiently general with this detail then one can design
a scenario in which the property based view p =, g coincides with the testing view

P test 4-

A much more restricted view of testing was proposed in [DH84], where observers have
very limited ability to manipulate the processes under test; informally processes are
conceived as completely independent entities which may or may not react to testing
requests; more importantly the application of a test to a process simply consists of a
run to completion of the process in a fest harness. Because processes are in general
nondeterministic, formally this leads to two testing based equivalences, p ~may ¢ and
P ~must ¢; the latter is determined by the set of tests a process guarantees to pass, writ-
ten p must satisfy t, while the former by those it is possible to pass, p may satisfy t.
The may equivalence provides a basis for the so-called trace theory of

processes [Hoa85] , while the must equivalence can be used to justify the various fail-
ures denotational models used in the theory of CSP, [Hoa85, O1d87, DN83].

We take these two different approaches to process behaviour, properties versus tests,
for granted. Intuitively the first leads to a branching theory while the latter, in both
its variations, leads to a linear theory; see [NVO07] for a modern discussion of this di-
chotomy. Instead the purpose of this paper is to understand more fully the difference

in approach; we investigate the difference in power between the use of properties as
expressed in the modal language HML, and the use of tests.

The relationship between properties and tests was first investigated in [AI99] for a re-
cursive version of HML, which we will refer to as recHML, for a non-standard notion
of testing. Here we revisit this question but this time for the more standard notions of
may and must testing mentioned above.

To explain our results, at least intuitively, let us introduce some informal notation;
formal definitions will be given later in the paper. Suppose we have a property ¢ and a
test ¢ such that

for every process p, p satisfies ¢ if and only if p may satisfy the test ¢.

Then we say the formula ¢ may-represents the test . We use similar notation with
respect to must testing. Our first result shows that the power of tests can be captured
by properties; for every test t:

(i) there is a formula ¢,y (f) which may-represents ¢; see Theorem 3.2.12,
(ii) there is a formula ¢y, (#) which must-represents ¢; see Theorem 3.1.13.

Properties, or at least those expressed in recHML, are more discriminating than tests,
and so one would not expect the converse to hold. But we can give simple descriptions
of subsets of recHML, called mayHML and mustHML respectively, with the following
properties:

(a) every ¢ € mayHML may-represents some test i,y (¢); see Theorem 3.2.9
(b) every ¢ € mustHML must-represents some test ,ys¢(¢); see Theorem 3.1.10

Moreover because the formulae ¢ay (1), Pmusi(?) givenin (1), (ii) above are in mayHML,
mustHML respectively, these sub-languages of recHML have a pleasing completeness
property. For example let ¢ be any formula from recHML which can be represented by
some must test t; that is p satisfies ¢ if and only if p must satisfy t. Then up to logical
equivalence the formula ¢ is guaranteed to be already in the sub-language mustHML;
that is there is a formula € mustHML which is logically equivalent to ¢. The lan-
guage mayHML has a similar completeness property for may testing.

We now give a brief overview of the remainder of the paper. In Section 2.1 we recall
some basic definitions from concurrency theory. These are required to state our results
precisely. In Section 2.2 we present the modal logics that will be used to express
properties of concurrent systems. In Section 2.3 we develop two testing frameworks
testing frameworks, which are exactly those described in [DH84].

We then set up the formal definition of the question being addressed in the paper in
Section 3. In Section 3.1 we analyse such a question when dealing with the must
testing relation, while in Section 3.2 we deal with the may case.

Finally, we state our Conclusions in Section 4.

We assume the reader has no previous knowledge in the field; that is, basic definitions
are explained in detail, often providing illuminating examples.

Chapter 2

Background

2.1 Modeling Concurrent Systems

The first step that has to be accomplished in order to reason formally about concurrent
systems is to provide a mathematical model which allows to give a formal description
of their behaviour.

At a descriptive level, we can think of systems as devices which can access different
states; for example, if we consider a personal computer the set of states it can access
coincides with the set of all its memory configurations. Further, concurrent systems
can usually interact with the environment that surrounds them, by performing some
kind of activity which can be detected by a component which is external to the system,
or by receiving inputs from such a component. In general we can assume there is a set
of actions that allows the system to interact with the external environment. We expect
that the execution of one of those actions will result in an evolution of the state of the
system. If we consider again the personal computer example, then the external envi-
ronment can be a user typing the name of a program to be executed on the keyboard;
when the enter key is pressed, the command will be sent to the computer. On the other
hand, the computer will receive the name of the program to be executed and will load
the instructions of such a program in its memory, thereby causing an evolution of the
system state.

Finally, it is also the case that the state of a system evolves even when there is no in-
teraction with the external environment; in other words, we must take into account the
possibility for unobservable activities to be performed by a system. In the computer ex-
ample above, once the program code has been loaded into the memory, instructions will
start to be executed. Each time an instruction is executed, the content of the computer’s
memory is updated. However, this activity is the result of an internal computation
which cannot be directly detected by any user which is interacting with the computer.

This discussion suggests that a possible mathematical description of a concurrent sys-

tem should include

e its set of states,

o the set of actions it can perform to interact with a component external to the
system,

e a special action which denotes unobservable ability

e a description of the evolution of the system states when some action (either ob-
servable or unobservable) is performed.

The mathematical model used to represent such information takes the name of labeled
transition system (LTS).

Definition 2.1.1 (Labeled transition System). A LTS over a set of actions Act is a triple
L =(S, Act,, —) where:

e § is a countable set of states
e Act; = Act U {1} is a countable set of actions, where T does not occur in Act
e —C S X Act; XS is a transition relation.

The special action T denotes unobservable or internal activity.
We use a, b, - - - to range over the set of external actions Act, and a, 3, - - - to range over

Act;. The standard notation s N s" will be used in lieu of (s,a, s’) e—. States of a
LTS L will also be referred to as (term) processes and ranged over by s, s',p, q. O

First we look at an example of LTS which is standard in all concurrency theory.

do coffee

Table 2.1: LTS for the vending machine: graphical representation

Example 2.1.2. Suppose we want to model a vending machine which can provide a
customer either coffee or tea. The vending machine is initially waiting for a customer

to insert a coin. When this event occurs, the vending machine enables two selection
buttons, respectively for coffee and tea, and waits for the customer to choose one of
them. Once the selection button has been pressed, the vending machine will start pro-
ducing the selected beverage; when this process has finished, the vending machine will
perform an unobservable action to return in the initial state.

The set of states of the vending machine can then be defined as {wait, select, do coffee, do tea},
while the set of external actions it can perform can be defined as

{coin, coffee, tea}.

0—©0

@

Table 2.2: a very simple LTS

Finally, we can model the behaviour of the vending machine by building the transi-
tion relation for the above sets of states and actions. The relation — for the vending
machine is then given by

. coin
wait — select
coffee
select — do coffee
tea

select —> dotea

do coffee — wait

dotea — wait

]

Often it is useful to give a graphical representation of a LTS; states are represented by
balls labeled with the name of the corresponding state. Whenever p N q for some
state p, ¢ and action @, we draw a directed arrow labeled with the name of the action «
from the ball representing p to the ball representing g. The graphical representation of
the LTS for the coffee vending machine illustrated in Example 2.1 is given in Table 2.1.

. . . . a . .
Let us recall some star&dard notation associated with LTSs. We write s—> if there CX(llStS
some s’ such that s — §’, s — if there exists @ € Act,; such that s—>, and 5 >,

s —~ for their respective negations. We use Succ(a, s) to denote the set {s'|s N s},
and Succ(s) for (Jyearr, Succ(a, s). If Succ(s) is finite for every state s € S the LTS is
said to be finite branching. Finally, a state s diverges, denoted s T, if there is an infinite
path of internal moves

T T T T T
S—> 8] —> =8, —> Sy —
while it converges, denoted s |}, otherwise.

Example 2.1.3. Consider the LTS depicted in Table 2.2. In this case we have S()i),

since So = s1. Moreover it holds S()i), as so l) sp. It is also the case that sy—
for there exists an action « (either a or b) such that s—s. For state so we find that
Succ(a, so) = {s1}, Succ(b, so) = {52}, and thereby Succ(sy) = {s1, s»}. Finally, notice
that it is possible to produce an infinite path rooted in sy whose form is

T T T T
So—>Sg—>-"-—> 85— -

a

a

In

[e77am |

Table 2.3: LTS with a non finite branching state

so that sg .

If we repeat this procedure for state s, we now find that it is also the case that szin as
52 N 53, further we can compute Succ(a, s,) to find out that such a set is exactly {s3}.
However, for state s, there exists no state s such that s, i) s. Indeed, Succ(b, s) = 0;

b a
in this case we infer that s, —~ . Finally, since s,— we obtain that s,—. It is trivial

. T
to notice that s, ||, as it cannot perform any internal transition —.
Finally, let us look at state s3. It is easy to notice that both for actions a and b we have

s —L,l’—> and s —Z;’—> . Therefore, since there is no action that such a state can perform, we
conclude that s3 — . For such a state we have in fact Succ(s3) = 0. Again, it is the
case that s3 ||. All the states in the LTS of Table 2.2 have a finite number of derivatives,
so that they are all finite branching. O

Example 2.1.4. Look at state s in picture 2.3. The set of successors of such a state
is {S1,82, , Sp» Sps1,- - - }, which is countable. Therefore, we have that such a state is
not branching finite. O

When analysing the behaviour of a system by giving its description as a LTS, it is often
the case that we are interested in those activities which can be detected by the external
Y
environment. This give rise to the standard notation for weak actions = Intuitively
speaking, if a system performs an unobservable activity which causes it to evolve from

a state s to a state s’, and then it performs another unobservable ability which makes
it evolve from s’ to s/, then the result of these two activities can still be considered
as some activity that cannot be detected by the environment. Formally, we say that

T
s = s”’. This procedure applies to arbitrary long sequences of unobservable activities,
T .. T
so that we say that s = s” whenever it is the case that s —* s’, where we recall that

T T
—* is the reflexive transitive closure of —.

Further, consider the case when a system performs an arbitrary sequence of unobserv-
able activities; then it performs another activity, represented in a LTS by action a,
which can be detected by the external environment, and finally it performs another ar-
bitrary sequence of unobservable activities. Again, this can be considered as an unique
activity of the system where the only visible action that has been performed is a. For-

mally, for a glven LTS we say that s = ' if and only if there exist sy, s, such that
S :> S1 —> 52 :> s’

0—0—-0—-0-0

Table 2.4: Another simple LTS

Example 2.1.5. Look at the LTS depicted i m Table 2.4. Smce S0 N s1, we have that
S0 :> 1. Analogously, we obtain that $2 = S4, for s, N $3 N sq. Finally, smce

S - S N K = s4 we obtain sy N s4. A similar procedure shows that s = 53
also.]

a a

When s = s’ we say that s” is an a-derivative of 5. The associated notation s =,
(o4 . o,

s =, s = and s = have the obvious definitions.

As we are dealing with systems which can communicate with the external environment,
it is often the case that we want to analyse the behaviour of a system when it is put
in composition with another one. If both of them are represented as LTSs, then we
expect to model their composition as a LTS as well. Formally we can define a parallel
composition operator as follows:

Definition 2.1.6 (Parallel composition). Let £; = (S, Actl, —),
= (S,, Act%, —) be LTSs. The parallel composition of Ly and L, is a LTS
Li1Ly = (S1 X S,, {1}, —>), where — is defined by the following SOS rules:

T 7 T ’ a ’ a ’
§s— s t—t s— s t—t
T 7 T / T 114
slt— S|t s|t — st slt — s'|t
s|t is used as a conventional notation for (s, t).]

The first two rules models the possibility for each component of a LTS to perform their
internal actions independently from the other one. This is needed, as internal activities
of a component cannot be detected by the other one. The third rule corresponds to a
synchronization between the two components upon performing the same action; such
a synchronization will result in an internal activity which cannot be detected by an ex-
ternal environment.

Notice that the parallel composition operator we introduced does not allow any exter-
nal action for the composition of two LTSs. This is non standard with respect to other
definitions of parallel composition that can be found in Concurrency Theory literature;
however, this choice will allow a simple presentation of extensional testing, which is
covered in Section 2.3.

Example 2.1.7. Consider again the vending machine whose LTS is depicted in Table
2.1. Suppose a customer wants to interact with the vending machine to obtain a coffee.
The customer will then insert a coin into the vending machine, then he will press the
coffee button. The LTS that models a customer is straightforward and is depicted in
Table 2.5. We can then apply Definition 2.1.6 to obtain the LTS which models the inter-
action between the vending machine and the customer. The LTS for the new composed
system is given in Table 2.6; there w, s and c are used as abbreviations for states wait,
select and do coffee respectively. O

O coin O coffee <>_> w

Table 2.5: LTS for a customer of the vending machine

o000

Table 2.6: composition between the vending machine and the customer

2.2 Formalising Properties: Recursive HML

The next topic we address concerns how to express properties of interest for an LTS.
To this end, we need to define both a formal language for the formulae which will be
used to express properties, and an interpretation function that defines the set of states
of a LTS that satisfies a given formula.

The Hennessy Milner Logic (HML) [HMS85] has proven to be a very expressive prop-
erty language based on a minimal set of modalities to capture the actions a process can
perform, and what the effects of performing such actions are. Here we use a variant in
which the interpretation depends on the weak actions of a LTS.

Definition 2.2.1 (Syntax of recHML). Let Var be a countable set of variables. The
language recHML is defined as the set of closed formulae generated by the following
grammar:

¢ u= tt | fF |l X | Acc(A) | @) | [alg |
| ¢V | ¢ Apy | min(X,¢) | max(X,¢)

Here X is chosen from the countable set of variables Var. The operators min(X, ¢),
max(X, ¢) act as binders for variables and we have the standard notions of free and
bound variables, and associated binding sensitive substitution of formulae for vari-
ables. O

Let us recall the informal meaning of recHML operators. A formula of the form (a)¢
expresses the need for a process to have an a-derivative which satisfies formula ¢, while
formula [a]¢ expresses the need for all a-derivatives (if any) of a converging process
to satisfy formula ¢.

Formula Acc(A) is defined when A is a finite subset of Act, and is satisfied exactly by
those converging processes for which each 7 derivative has at least an a-derivative for
some a € Act. The formulae min(X, ¢) and max(X, ¢) allow the description of recursive
properties, respectively being the least and largest solution of the equation X = ¢ over
the powerset domain of the state space.

Formally, given a LTS (S, Act., —), we interpret each (closed) formula as a subset of
25 The set 2 is a complete lattice and the semantics is determined by interpreting each
operator in the language as a monotonic operator over this complete lattice. The binary
operators V, A are interpreted as set theoretic union and intersection respectively while
the unary operators are interpreted as follows:

(~a-)P={slsés’forsomes'eP}
[@]P={s]|s|, and s=> s implies s’ € P}

where P ranges over subsets of 25.

Open formulae in recHML can be interpreted by specifying, for each variable X, the
set of states for which the atomic formula X is satisfied. Such a mapping from Var to
25 is called environment. Let Env be the set of environments, mappings p : Var — 25.
A formula ¢ of recHML will be interpreted as a function [¢] : Env — 25. We will use
the standard notation p[X +— P] to refer to the environment o’ such that p’(X) = P and
o' (Y) = p(Y) for all variables Y such that X # Y.

The definition of the interpretation [[- || is given in Table 2.7.

The interpretation of a formula min(X, ¢) in the environment p is defined as the smallest
pre fixpoint of a monotonic functional 7—'; : 25 — 25 such that

T; (P) = [¢ 1p[X — P]. When dealing with closed formulae, Tarski’s fixed point The-
orem [Win93] ensures that such a set coincides with the least solution of the equation
X = ¢, as described in our informal explanation of the meaning of recHML formulae.
A similar argument applies to formulae of the form max(X, ¢), whose interpretation in
an environment p is defined as the greatest post fixpoint of the monotonic functional
considered above. We defer the proof of Tarski’s fixed point Theorem until the end
of the section, for it is first necessary to prove some simple properties enjoyed by lan-
guage recHML.

When referring to the interpretation of a closed formula ¢ € recHML, we will omit the
environment application, and sometimes use the standard notation p = ¢ for p € [¢].
Example 2.2.2. Consider a LTS with a single state p and a unique transition p i> p.
Let us analyse whether or not state s satisfies the properties min(X, [a] ff A [b]1X) and
max(X, [al ff A [b]X).

To do this, we apply directly the interpretation of recHML formulae given in Table 2.7.
For the first formula, consider the empty set 0. It is simple to show that

[l = S
[Tl = 0
[XTe = pX)
[Acc(A)Tp = {slsl,s = implies da € A.s'=a>}
[yl = (aXl¢lp)
[lelplp = [ell¢lp)
[Verlp = LoiloUllglp
[Agalp = Lodilonlealp
[min(X,)Ip = (P 11¢TplX = Pl C P}

>

[max(X,9)lp = | JIPIPCIelplX - Pl)

Table 2.7: Interpretation of recHML

[[alf A [BIX X +— 0] C 0. The calculation is carried out below:

[lalff APIXTIX = 01 = [[alff IIX = 01N [[LIX X — 0]
= [alllFIX - oD XX — 0]
= [a]0n[b-]0

= (seSlsls=bin{seSlsls=b)
= {pind =10

Therefore O € {P | [¢ Jo[X — P] C P}, or equivalently [min(X, [a] [f A[b]X)] C 0. As
0 is the least element of the complete lattice {0, {p}} we have that the inclusion above
is actually an equality. Thus p ¥ min(X, [a] [f A [D]X).

Next consider formula max(X, [a] [f A [D]X). In this case we show that {p} C [[alff A
[IX 1[X — {p}], and therefore (being {p} the greatest element in the complete lattice
{0, {p}}) we have that [max(X,[alff A [P1X)] = {p}, i.e. p E max(X,[alff A [D]X).
Again, the whole calculation is carried out below.

[lalf A LIXTIX = {p}] = [a]l0n[b]{p}
= {s€S|sU,s:a#}ﬁ{s€S|sU,\7’s’:s=h>s'.s’e{p}}

= {p}n{p}
= {p}

]

Our version of HML is non-standard, as we have added a convergence requirement for
the interpretation of the box operator [@]. The intuition here is that, as in the failures
model of CSP [Hoa85], divergence represents underdefinedness. So if a process does
not converge all of its capabilities have not yet been determined; therefore one can not
quantify over all of its « derivatives, as the totality of this set has not yet been deter-
mined.

10

Further, the operator Acc(-) is also non-standard. It has been introduced for the sake of
simplicity, as it will be useful later; in fact it does not add any expressive power to the
logic, since for each finite set A C Act the formula Acc(A) is logically equivalent to

[710\/ (@).

acA

As usual, we will write ¢{i// X} to denote the formula ¢ where all the free occurrences
of the variable X are replaced with . We will use the congruence symbol = for syn-
tactic equivalence.

Next, we show some useful properties which relate syntactic substitution in recHML
formulae with environments. These lemmas are particularly useful when dealing with
recursive formula of the form min(X, ¢) and max(X, ¢).

Proposition 2.2.1.

(i) Let ¢,y be formulae such that Y does not occur free in s, let p be an environment
and P C 25. Then

[¢lplX = [¥1pllY = Pl =[¢lplY = PIIX = [y lolY = P]]

(ii) Let ¢, € recHML, and p be an environment: then

[l /X e = [¢ TplX - [¥ 10l

Proof. Both proofs can be performed by induction on the structure of the formula ¢.
For (i) three different sub cases should be handled when dealing with the case ¢ = Z
(mamelyZ=X; Z=YandZ £ X, Z£Y).

For (ii) we will only outline the details for the case ¢ = min(Y, ¢): in this case we need
to prove

[min(Y, iy /X} Do = [min(Y, ¢1) Jp[X = [¢ lpl.

By a-renaming we can choose Y to be a fresh variable, that is ¥ # X and Y does not
appear free in i.

Since Y # X we have that min(Y, ¢1){¢/ X} = min(Y, ¢1{¢// X}). By inductive hypothesis
we have

Loty /X} o = [¢1 1plX = [y 1p]

and, therefore,

[min(Y, ¢ {y/ XD 1p = ﬂ{Pi [¢:1{y/X} TplY = P] C P}

= ()P lolY o PIX = [y TplY = Pl C P}
2 (P11 1plX o [y TpllY = P C P)
= [min(Y, 1) IplX = [1pl,
where i can be applied as Y does not appear free in . O

11

The language recHML can be extended conservatively by adding simultaneous fix-
points, leading to the language recHML*. Given a sequence of variables (X) of length
n > 0, and a sequence of formulae ¢ of the same length, we allow the formula
miny(X, ¢) for 1 < i < n, where the only variables allowed to occur in each ¢; are

those in (X). This formula will be interpreted as the i-th projection of the simultaneous
fixpoint formula.

Definition 2.2.3 (Interpretation of simultaneous fixpoints). Let X and ¢ respectively be
sequences of variables and formulae of length n.

[minX.$)lp = [[PII¢:TIpIX > PICPVI<i<n)
Lmin(X.$)1p = m(Lmin(X.)lp)

where m; is the i-th projection operator, and intersection over vectors of sets is defined
to be the point wise intersection:

(P, Py (01, -+, Q) =(P1 N Q1+, PN Q)
O

Intuitively, an interpretation [[min(Y, 5) 1, where X = Xy, ,X,)and Z ={d1, ", Pu),
is the least solution (over the set of vectors of length n over 25) of the equation system
whose form is

X1 = ¢

Xy = ¢

If the formula min(y, 5) is open, then its interpretation in environment p, [min(i, 5) lp,
can be thought as the least solution of the system of equations above extended, for every
variable Y which appears free in the formula, with an equation of the form ¥ = p(Y).
The interpretation of a formula of the form min,'(?, 5) in environment p is the i-th
projection of the vector obtained as the least solution of the system of equations above;
that is

[mini(X, $) Tp = ([min(X,) Ip).

Let P = (Py,---,P,) be the least solution for a system of equations as above. The
following theorem states that, for each index i, there exists an equation X = i such that
its least solution coincides with P;.

Theorem 2.2.2 (Bekic).

(i) Let X = (X1, X2) anda = (@1, ¢2). Then, for any environment p,

[mini (X, ¢)Tp [min(X1, ¢1{min(Xa, $2)/ X2}) Iip
[mino(X, §)To = [min(Xa, p2tmin(Xy, ¢1)/X1)) Ip

(ii) For each formula ¢ € recHML" there is a formula € recHML such that [¢] =
[

12

Proof. (i) By straightforward calculations: we will show only the case for mini(X,),
as the other one is obtained by symmetry:

[min(Xy, ¢1{min(Xa, ¢2)/Xo}) lp

(P : [$1{min(Xa, ¢2)/Xo} IplX — P] C P}
(NP : [¢1 IplX1 — PI[X2 > [min(Xa, ¢2) IplX1 +— Pl] € P}
(P :[¢11plX1 = PIIXa > NQ:[d2]plX1 = Pl[Xo > QlC OIS P} =
m(NKP, Q) : [¢2 TplXy - PlIX2 = Q] € O, [1 IplXy = PI[X2 = Q] € P}

T
1o
=

(i) Let n > 2, and let ¢ = mini (X, $) be a (possibly open) simultaneous fixpoint
formula with X = Xy, ,X,)and 5 ={¢1, -, Pn).
Without loss of generality, assume i < n, as if i = n it is possible to order the
vectors of variables and formulae in a consistent way.
Consider the formula

110 = mini(<X1, Y Xn—1>’ <¢1 {min(¢ann)/Xn}’ Y ¢n—1{min(¢ann)/Xn}>)»

which is a simultaneous fixpoint formula defined over a vector of variables of
length n — 1. In the same style of i it is possible to show that, for any environment
p, itholds [¢Jlp = [y lp. Further, it is straightforward to notice that the free
variables of ¢ are the same of . We can therefore iterate this procedure until
obtaining a fixpoint formula of the form min(X, ¢); if the original formula ¢ is
closed, and therefore included in recHML™, then min(X, ¢) will also be closed, so
that it will belong to recHML.

[m]

The properties of these simultaneous least fixpoints which we will require are sum-
marised in the following theorem:

Theorem 2.2.3 (Fixpoint properties).

(i) Let (P) be a vector of sets from 25 satisfying [¢; Ip[X — Pl C P; for every
1 <i < n Then [min;(X,¢)]p C P;

(ii) Givenan enviroizment P, let pyin be the environment satisfying ppmin(X;) = I[mini(i, 5) Tp.
Then [miny(X, ¢) o = [¢ Jomin-

Proof.

(i) This follows from the definition of [[min(Y, 5) J. Let P be a vector of sets from
25 such _that _
[¢: 1o[X — P] C P;. Then

[min(X, $) Tp

(QII#1pX > 0lc 0. 1<isn)
PO[JQILeilplX - Q1 C O I <i<n

we have therefore that

[miniX,#) 1 = Pinm((Q1T IplX = Q1€ Q; 1<i<nh S

13

(i) Let 1 <i < n. By the definition of [min;(X, ¢) 1 it holds

[6ilomn = [&ilolX = [min(X,¢)lpl
C [minyX,$)lp

N

The inclusion shows that [¢; |omin € [[min,-(f, 5) Ilp. Moreover, since [¢; 10min ©
Pmin, the converse inclusion follows from (i).

]

Theorem 2.2.3 and Proposition 2.2.1 lead to this useful Corollary which enables us to
reason about recursive properties using syntactic substitutions.

Corollary 2.2.4. Let ¢ = min(X,y) be a formula in recHML. Then ¢ is logically
equivalent to y{min(X,)/ X}, that is [¢]| = [y{min(X, ¥)/ X} 1.

Proof. Given a closed formula ¢ = min(X,) and an arbitrary environment p, we have
[min(X,)] = [¢IplX — [min(X,¢¥)]] by an application of Theorem 2.2.3(ii).
Further, [¢ Jo[X — [min(X,y¥) 1] = [¢{min(X,¥)/X}] by Proposition 2.2.1(ii). O

We conclude this section by giving a proof of Tarski’s Fixpoint Theorem for recHML;
we consider only formulae of the form min(X, ¢), since we will not deal with greatest
fixpoints in what follows. The proof can be easily extended to prove that, given a
vector of variables X of length n, and a vector of formulae of length @ of the same
length, then formula min(X, @) is the least solution of the system of equations X; = ¢;
forall 1 <i<n.

Theorem 2.2.5 ([Win93]). Let ¢ = min(X,) a formula in recHML. Then [¢] is the
least solution of the equation
X=y

Proof. Corollary 2.2.4 ensures that [¢] is a solution of the equation X = . Moreover,
let P be a solution to such an equation; we have

[y X~ P]=P

therefore P € {P | [y][X +— P] C P}. Now it is trivial to notice [min(X,y)]] C P. O

2.3 Testing Concurrent Systems

Another way to analyse the behaviour of a process is given by testing. Testing a pro-
cess can be thought as an experiment in which another process, called a test, detects
the actions performed by such a process, reacting to them by allowing or forbidding
the execution of a subset of observables. After observing the behaviour of the pro-
cess, the test could decree that it satisfied some property for which it was designed for,
thus reporting the success of the experiment through the execution of a special action w.

Formally speaking, a test is a state from a LTS 7 = (T, Act?, —), where Act? =
Act; U {w} and w is an action not contained in Act,.

Given a LTS of processes £ = (S,Act;,—), an experiment consists of a pair p | ¢
from the product LTS (£ | 7). We refer to a maximal path of p | ¢

T T T T
plt—pi|lti—...... — Pl ti— ...

as a computation; it may be finite or infinite. It is successful if there exists some n > 0
such that tnix It is important to notice here that a computation is successful it contains
a configuration in which the test component can perform a w action; however, it is not
required that such an action has to be actually executed.

As only 7-actions can be performed in a computation, as well as in a computation
prefixes, henceforth we will avoid to use the symbol 7 in computations.

Computations and successful computations lead to the definition of two well known
testing relations, [DH84]:

Definition 2.3.1 (May Satisfy, Must Satisfy). Assuming a LTS of processes and a LTS
of tests, let s and t be a state and a test from such LTSs, respectively. We say

(a) s may satisfy ¢ if there exists a successful computation for the experiment s | t.
(b) s must satisfy ¢ if each computation of the experiment s|t is successful. O

Processes can now be compared in terms of the set of test that they may/must pass.
Before continuing our discussion about testing, let us illustrate the ideas behind testing
relations with some useful example.

0 Of\?/\o

o000 ¢

w

Table 2.8: The tested LTS Table 2.9: The test
Example 2.3.2. Consider the process LTS in Table 2.8 and the test LTS in Table 2.9.
We can build the experiment s | t to analyse whether the statements
e s may satisfy ¢ and
e s must satisfy 7
hold. For the first one, we consider the computation

slt—o s = slt— s3> s3]t— 85483

w .
As t3—> we can conclude that this computation is successful, and hence s may satisfy
t. On the other hand, we can consider the path

slt—>s1tH =51t

Such a path is maximal, and therefore it is also a computation. As there is no config-
uration in such a computation for which the test component can perform an w action,
we can conclude that it is not the case that s must satisfy ¢. O

15

Later in the paper we will use a specific LTS of tests, whose states are all the closed
terms generated by the grammar

t =0 at | w0 | X | th+t | uXt. 2.1)

Again in this language X is bound in uX.z, and the test #{#'/X} denotes the test ¢ in
which each free occurrence of X is replaced by #'. The transition relation defined by
the following rules:!

(07 ’ a ’
n—r h—10h

a - - - T
[] []
at—t f+ b f P 1, uX.t — HuX.n/X}

The last rule states that a test of the form uX.r can always perform a 7-action before
evolving in the test H{uX.¢/X}. Further, since the transition relation is the smallest rela-
tion defined by the inference rule above, it is also the case that this is the only action
that a recursive test can perform.

This treatment of recursive processes will allow us to prove properties of paths of re-
cursive tests and experiments by performing an induction on their length.

Further, the following properties hold for a test ¢ in grammar (2.1):

Proposition 2.3.1. Let T = (T, Act;, —) be the LTS generated by a state t in grammar
(2.1): then

(i) T is finite branching.
(ii) T is finite state.
Proof. We prove the two statements separately.

. @
(i) First, notice that every time a test 7 in grammar (2.1) performs a transition t — ¢,
then ¢’ is itself a closed term of such a grammar.

Further, each closed term of grammar 2.1 can be represented as
20

iel

where [is finite and each #; is either in the form 0, .’ or uX.t’. Then foreachi € I
the number of outgoing transitions n(t;) of ¢; is at most one: we have therefore

n(t) < Z n(t;) < |

i€l
The above argument applies to all states of the generated LTS: hence 7™ is finite

branching.

(ii) A standard proof of this Proposition can be obtained by converting each test into
a Nondeterministic Finite state Tree Automata [RS].

]

I'The rules use an abuse of notation, by considering @ as an action from Act, U w rather than from Act,.

16

Henceforth we will always make the assumption that the LTS of tests we consider
is branching finite. Further, if also the LTS of processes is also assumed to contain
only branching finite states, then the induced LTS of experiments is branching finite
as well. It is also ensured that, given an experiment s | ¢ in such a LTS and such that
s must satisfy t, then the maximal length of a successful computation is well defined.
To prove this result we will need the following Lemma, which is a variation of Konig’s
Lemma [BJ89] for directed graphs.

Lemma 2.3.2 (Konig’s Lemma for directed graphs). Let G be a directed graph whose
set of vertices is countable. Let a root of G be any node with no incoming edge. Also,
assume that G satisfies the following hypothesis:

o G has finitely many roots,
e cach node of G has finite degree,
e cach node in G is reachable from some root in G.
Then there is an infinite path in G starting from some root.
Proof. See [KLSV06], Lemma 2.3. O

Theorem 2.3.3. Let S, T be finite branching LTSs of processes and tests respectively.
Let s,t be two states in such LTSs, respectively. Then if s must satisfy t the maximal
length of a successful computation |s, t| is well defined.

Proof. Let & = (E, {1}, —) be a finite branching LTS of experiments. For each e € E
we define its Computation Tree T, as the smallest tree whose nodes are (not necessarily
all the) elements of E*, and whose edges of a node e, - - - e, are defined as follows:
follows:

. . w .
e if ¢, has the form s | ¢, with 7—, then node ¢ - - - ¢,, has no children,

. T .
e otherwise, for each e, such that e, — e,.1, there is an edge from e; - - - ¢, to
e ey enyl.

Intuitively speaking, each path of T, rooted in represents a computation of the exper-
iment e. A more formal definition of 7, can be given as a function of recursive type
T : N — 7 (see [Cou83] for details).

Suppose now s, ¢ are chosen in finite branching LTSs of processes and tests, respec-
tively. Suppose also s must satisfy t. It is straightforward to prove that the LTS of
experiments generated by s | ¢ is also finite branching. Since s must satisfy ¢, it is the
case that all leaves in T’ |, represent successful computations. In order to prove that the
maximal length of a successful computation |s, f| is well defined, we distinguish two
different cases:

(i) the number of nodes in T, is finite. In this case each path between s | and a
leaf in T, has finite length, bounded by the number of nodes in the tree itself;
since every path is associated with a successful computation, it follows that |s, #|
is bounded by the number of nodes in T’ |, and therefore is well defined,

(i1) Ty, has infinite nodes. Since the LTS generated by s | ¢ is finite branching, we
have that the degree of each node in the computation tree above is finite. Thus,

17

by an application of Lemma 2.3.2, we have that 7|, contains an infinite path
starting from the unique root s | 7 of such a tree; such a path represents an infinite,
unsuccessful computation, contradicting the hypothesis s must satisfy t.

18

Chapter 3

Testing formulae

Relative to a process LTS (S, Act,, —) and a test LTS (T, Act, U {w}, — 1), we now
explore the relationship between tests from our default LTS of tests and formulae of
recHML. Specifically, given a test ¢, our goal is to infer a formula ¢ such that the set of
processes which may satisfy/must satisfy such test is completely characterised by the
interpretation [¢ . Moreover, we aim to establish exactly the subsets of recHML for
which each formula can be checked by some test, both in the may and must case.

For this purpose some definitions are necessary:

Definition 3.0.3. Let ¢ be a recHML formula and t a test. We say that:

e ¢ may-represents/must-represents the test t, if for all p € S, p may satisfy
t/p must satisfy ¢t if and only if p | ¢.

e ¢ is may-testable/must-testable whenever there exists a test which ¢
may-represents/must-represents.

e ¢ is may-representable/must-representable, if there exists some ¢ € recHML
which may-represents/must-represents it respectively. m]

First we present both formulae which are may-testable (must-testable) and formulae
which are not.

Example 3.0.4 (Testable formulae). In this example we will use tests defined from
grammar (2.1). All the examples are handled in an informal manner, as formal details
will be covered in a more general way in the remaining of the report.

(a) Formula min(X,{a) tt V{b)X) is may-testable. A state satisfies such a formula if and

. . .. b b b
only if there exists a finite index n > 0 such that s = so = 51 =+ - - = S, for some

S0, * * Sy With s,,=a>. We can therefore consider the test t = fix(X = 1.a.w.0+7.0.X)
If a state s satisfies the above property, then it can synchronise (after a sequence
of internal actions performed both by the state itself and by the process) with the
test through a b-action; that is, the experiment s | t can evolve in s; | t after
a finite sequence of internal actions. This procedure can be repeated until the
configuration s, | t is reached. In this case, s, can now synchronise with test t
(again after both of them performed some internal steps) through an a-action, thus
reaching a successful configuration.

On the other hand, consider now a state s which not satisfies such a property. That

19

(b)

(a)

is, as long as it synchronises with the test through the execution of a b action in a
computation of the induced experiment, the resulting state component will never be
able to synchronise with the test through the execution of an a action; however this
is mandatory for the experiment to reach a successful configuration. Therefore, in
this case the experiment s | t has no successful computation, and therefore s does
not may satisfy ¢.

Formula min(X, [al ff A [b]X) is must-testable. A process s satisfies this formula if
b
and only if whenever s = sg = s1-+-+ = s, for some n > 0 and states sy - - - sy
b
with s, =b , it holds that

o s;foralli:0<i<n,
° s,-qabforalli:OSiSn,

Consider the test t = fix(X = 17.(a.0 + T.w.0) + 7.(b.X + 1.w.0)), and suppose s
satisfies the property above. Consider an arbitrary computation of s | t; in this
case either the test component will perform a series of T actions, thus reaching
a successful computation, or a synchronisation with the test occurs through the

.
execution of a b actions, thus deriving s | t = s | t. This procedure can be

repeated until reaching configuration s, | t. As in this case we also have s, qbb ,
the only possibility is to make the test component of the experiment to perform
a series of internal actions, thus reaching a successful configuration. In other
words, each computation of s | t is doomed to reach a configuration where the test
component can perform a w action, and therefore s must satisfy t. Conversely,
suppose s is a process which does not satisfy the property above. That is, either
one of the following occurs:
b b b

e there exists a finite index n > 0 such that s = s) = s = - = s, with s, 0,

b b b a
o there exists a finite index n > 0 such that s = so = 51 = - = s, With 5,=—,

e s has an infinite path s = s =b> S1 =b>
In the first case we can build an unsuccessful computation by letting the state com-
ponent of the experiment synchronise with the test through the execution of a b
action until configuration s, | t is reached. Then we can obtain an unsuccessful
infinite computation by making evolve only the state component of the experiment.
In the second case, we can build a computation where the process component syn-
chronise with the test through the execution of a b action until reaching configura-
tion s, | t, then, through a series of internal steps and a synchronisation through an
a action, we obtain a configuration in which the test component can no longer pro-
ceed. This computation is also unsuccessful. Finally, in the third case we can pro-
vide an infinite computation in which the state component of the experiment always
synchronise with the test component through the execution of a b action; even this
computation is not successful. It holds therefore that s does not must satisfy t. O

Example 3.0.5 (Negative results).

¢ = [alff is not may-testable.
Let s € [[alff 1, a new process p can be built starting from s by letting p SN)2

20

whenever s —s s’ then p Ly

Processes p and s may satisfy the same set of tests. However, p ¢ [[alff 1, as p 1.
Therefore

no test may-represents [a] ff.

(b) ¢ ={a)tt is not must-testable.
We show by contradiction that there exists no test t that must-represents ¢. To this
end, we perform a case analysis on the structure of t.

w .
e —>: Consider the process O with no transitions. Then 0 must satisfy 7,
whereas 0 ¢ [¢]

ot —a/)—> : Let s € [¢] and consider the process p built up from s according
to the rules of the example above; we have p € [¢]. On the other hand,
p must satisfy ¢ is not true; indeed the experiment p | t leads to the unsuc-
cessful computationp |t > p|t—---.

Therefore there is no test t which must-represents ¢.

(c) ¢ = {aytt A{b)tt is not may-testable.
b
Let s be the process whose only transitions are s N 0, s — 0. Let also p,p’

be the processes whose only transitions are p SN 0, p’ L 0. We have s € [¢],
whereas p,p’ ¢ [¢ 1. We show that whenever s may satisty a test t, then either
p may satisfy t or p” may satisfy t. Thus there exists no test which is may-satisfied
by exactly those processes in [¢ 1|, and therefore ¢ is not may-representable. First,
notice that if s may satisfy ¢, then at least one of the following holds:

(i) 1=>,
(ii) t = 1 =,
b w
(iii) t =1 =>.
If ==, then trivially both p and p’ may satisfy t. On the other hand, if t SN

T a T w
then there exist ", t,, such that t=t" —t' =t ,—>. We can build the computation
fragment for p | t such that

plisnpl| /=01 50]1,

b w
which is successful. Hence p may satisfy t. Finally, The case t = t'= is similar.

(d) In an analogous way of (c) it can be shown that [al ff V [b] ff is not must-testable.
m]

We now investigate precisely which formulae in recHML can be represented by tests.
To this end, we define two sub-languages, namely mayHML and mustHML.

Definition 3.0.6. (Representable formulae)

o The language mayHML is defined to be the set of closed formulae generated by
the following recHML grammar fragment:

¢ =1t | F X |0 | 1V | minX,9) (3.1

21

o The language mustHML is defined to be the set of closed formulae generated by
the following recHML grammar fragment:

¢ =1t | [| Acc(A) | X | [ald | ¢1 Ay | min(X,) (3.2)

]

Note that both sub-languages use the minimal fixpoint operator only; this is not sur-
prising, as informally at least testing is an inductive rather than a co-inductive property.
The modality [-] and the conjunction operator A are not allowed in mayHML; the above
examples show in fact that there exist formulae of the form [a]¢ which are not may-
testable, and that conjunction of two formulae is not always may-testable. The same
argument applies to the modality (-) and the disjunction operator V in the must case,
which are therefore not included in mustHML.

We have now completed the set of definitions setting up our framework of properties
and tests. In the remainder of the paper we prove the results announced, informally, in
the Introduction.

3.1 The must case

We will now develop the mathematical basis needed to relate mustHML formulae and
the must testing relation; in this section we will assume that the LTS of processes is
branching finite.

First, we prove the following result:

Lemma 3.1.1. Let ¢ € mustHML, and let p € [¢]|, where p : then [¢]| is the entire
process space, i.e. [¢] = S.

Proof. Let p be a process such that p 1, let ¢ € mustHML such that p € [¢]. Then ¢
cannot be Acc(A), ff, [@]¢ nor a conjunction of formulae containing one of such terms.
We now show that ¢ cannot be a formula of the form min(X,), where ¢ contains either
free occurrences of the variable X or the operators Acc(A), [a]. To this end, we perform
a case analysis on the formula y:

(i) ¥ contains an occurrence of the operator [«]. Here we can apply Corollary 2.2.4
to obtain a formula of the form [a]¢’ A ¢” which is logically equivalent to ¢.
Thus,if pfithenp ¢ [@],

(i1) ¢ contains the operator Acc(A). We can proceed as in Case (i),

(iii) ¢ contains at least a free occurrence of variable X. If such an occurrence is
guarded by a [a] operator, then we can proceed as in Case i. Otherwise we can
obtain a formula of the form min(X, X A ") which is equivalent to ¢ = min(X,).
Again, this is done by a repeated application of Corollary 2.2.4. Now it is trivial
to notice that @ is a solution to the equation X = X Ay, and therefore it is its least
solution. Hence [¢] = 0,sothat p ¢ [¢].

The only possible case left for p ff, p € [¢] to hold is therefore given by ¢ being
generated by the Grammar below:

¢ =t | ¢ Ady | min(X,). (3.3)

It is trivial now to show [¢] = S. O

22

This Lemma has important consequences; it means formulae in mustHML either have
the trivial interpretation as the full set of states S, or they are only satisfied by conver-
gent states.

Definition 3.1.1. Let C be the collection of subsets of S determined by:

e SeC,

e X e(C,se Ximplies s |. O
Proposition 3.1.2. C ordered by set inclusion is a continuous partial order, cpo.

Proof. The empty set is obviously the least element in C. So it is sufficient to show
that if Xo € X € --- is a chain of elements in C then | J,, X, is also in C. O

We can now take advantage of the fact that mustHML actually has a continuous in-
terpretation in (C, C). The only non trivial case here is the continuity of the operator

[-a]:

Proposition 3.1.3. Suppose the LTS of processes is finite-branching: If Xo € X; C - -+
is a chain of elements in C then

1, = a1 X..
n n
Proof. 1t is trivial to show that

U[-a-]xn C [U X,.

n

Thus we only need to show that the opposite implication holds.
First, notice that it X; = S for some i, then

el =152 s 8 =Led X,

Suppose then that X; # S for all i > 0. Then we have |, X,, # S. By definition the set
[-a]UJ, X, can be written as

(s : sU,Succ(a,s)QUX,,}.

We will prove that for each state s in such a set Succ(a, s) is finite, therefore there
exists an X, such that Succ(a, s) C X,. As a direct consequence, s € [-@-]X,, which is
included in |J,[-@-]X,,.

Let s € [-a-] |, X, and let s’ be one of its a derivative. By definition we have s’ €
(U, X,,. Thus there exists n > 0 such that s € X,,. Since X, € C, X,, # §, it holds
s” |J. Since we are assuming that the LTS of processes is finite, as a consequence of
Konig’s lemma we obtain that if the set Succ(e, s) is infinite then the T-computation
tree of either s or one of its @-derivative s’ has an infinite path. The former contradicts
the statement s |}, while the latter contradicts the property s” || we just proved. Thus
Succ(a,) is finite. m]

This continuous interpretation of mustHML allows us to use chains of finite approxima-
tions for these formulae of mustHML. That is given ¢ € mustHML and k > 0, recursion
free formulae ¢* will be defined such that [[¢k] c [[q)(k”) Tand Upsg = [¢ 1. We can
therefore reason inductively on approximations in order to prove properties of recursive
formulae.

23

Definition 3.1.2 (Formulae approximations). For each formula ¢ in mustHML define

o = fF
p*h 2 g if¢p = tt, ff or Acc(A)
(1) 2 [a)(p)**D

1>

k+1 k+1
¢(1)/\¢(2)

(p{min(X, $)/ X}

(61 A go) D
(min(X, ¢))**V

13

]

It is obvious that for every ¢ € mustHML, [¢*] < [¢%**V] for every k > 0; The
fact that the union of the approximations of ¢ converges to ¢ itself depends on the
continuity of the interpretation:

Proposition 3.1.4.

e 1=1e1

k=0
Proof. This is true in the initial continuous interpretation of the language, and therefore
also in our interpretation. For details see [CN78]. O

Having established these properties of the interpretation of formulae in mustHML, we
now show that they are all must-testable. The required tests are defined by induction
on the structure of the formulae.

Definition 3.1.3. For each (possibly open) formula ¢ in Grammar (3.2) define t,5:(p)
as follows:

Laust(1t) = .0 (3.4)
tmust(ﬁ) =0 (3.5)
tun(Acc(A) = > aw (3.6)
acA
tust(X) = X 3.7
tmust([7]¢) = T tl?lust(¢) (38)
tust([ald) = a.tyus(¢) +7.0.0 (3.9)
.0, if o1 A ¢, is closed and
by A b2) = logically equivalent to tt (3.10)
T. tmust(¢1) +7T. tmust(¢2)7 otherwise
. _ tl‘)ll/t‘?t(gb)’ l.f‘¢ lS Closed
tost(min(X, ¢)) = {u X.t(@®). otherwise 3.11)
m]

For each formula ¢ in mustHML, the test fius(¢) is defined in a way such that the set
of processes which must satisfy tmu(¢) is exactly [¢]. Before supplying the details of
a formal proof of this statement, let us comment on the definition of #,,5(¢).

Cases (3.4), (3.5) and (3.7) are straightforward. In the case of Acc(A), the test allows
only those action which are in A to be performed by a process, after which it reports

24

success.
For the box operator, a distinction has to be made between [a]¢ and [7]¢. In the former
we have to take into account that a converging process which cannot perform a weak
a-action satisfies such a property; thus, synchronisation through the execution of a a-
action is allowed, but a possibility for the test to report success after the execution of
an internal action is given. In the case of [7]¢ no synchronization with any action is
required; however, since we are adding a convergence requirement to formula ¢, we
have to avoid the possibility that the test t,s([T]¢) can immediately perform a w ac-
tion. This is done by requiring the test #,s([7]¢) to perform only an internal action.
Finally, (3.10) and (3.11) are defined by distinguishing between two cases; this is be-
cause a formula of the form ¢; A¢, or min(X, ¢) can be logically equivalent to tt, whose
interpretation is the entire state space. However, the second clause in the definition of
tmust(¢) for such formulae require the test to perform a 7 action before performing any
other activity, thus at most converging processes must satisfy such a test.

In order to give a formal proof that 7, (¢) does indeed capture the formula ¢ we need
to establish some preliminary properties. The first essentially says that that no formula
of the form min(X, ¢), with ¢ not closed, will be interpreted in the whole state space.

Lemma 3.1.5. Let ¢ = min(X,), with y not closed. Then [¢] # S.

Proof. By contradiction. Suppose [min(X,y)] = S; then min(X,) is a term of the
grammar (3.3), as shown in the proof of Lemma 3.1.1. That is, formula ¢ is necessarily
closed.]

Next we state some simple properties about recursive tests.
Lemma 3.1.6.
o p must satisfy uX.t implies p must satisfy uX.f{uX.t/X}.
o p ||, p must satisfy #[uX.t/X] implies p must satisfy pX.z.
Proof.

e Suppose p must satisfy uX.t. Then all computations with prefix

pluXt— plduXt/X}
are successful; hence p must satisfy f{uX.t/X}.

e Suppose p |, p must satisfy {uX.t/X}. Then for each computation of p | uX.t
with prefix
pluXit— = p |uXt— p' | H{uX.t/X)}

there exists a computation with prefix
plHuXt/X} = - = p' | HuX.t/X}
which is successful. Hence p must satisfy uX.t.
[m]
Note that the premise p | is essential in the second part of this lemma, as uX.f cannot

perform a w action; therefore it can be must-satisfied only by processes which converge.

25

Proposition 3.1.7. Suppose the LTS of processes is finitely branching. If p must satisfy
tﬂlqu(¢) then p e [[¢]]'

Proof. Suppose p must satisfy tmus(¢); As both the LTS of processes (by assumption)
and the LTS of tests (Proposition 2.3.1) are finite branching, then the LTS generated by
p | t is finite branching as well. By Theorem 2.3.3 we have that maximal length of a
successful computation |p, tmust(¢) | is defined and finite. Thus it is possible to perform
an induction over |p, fmus(¢) | to prove that p € [¢* 1 for some k > 0. The result will
then follow from Proposition 3.1.4.

o If |p, tmust(@) | = O then z,u5() i>, and hence for each p € S p must satisfy
tmust(¢). Further, by the definition of #,,5(¢) we have that ¢ is logically equiva-
lentto tt, hence p € [¢].

o If|p, tmust(¢) | = n+1 then the validity of the Theorem follows from an application
of an inner induction on ¢. We show only the most interesting case, which is
¢ = min(X,). There are two possible cases.

(a) If X is not free in ¥ then the result follows by the inner induction, as
min(X,) is logically equivalent to ¢, and fpus(min(X, ¥)) = tmust(¥) by
definition.

(b) If Xis free in ¢ then, by Lemma 3.1.6 p must satisfy tmuse(W{uX. tmuse(Y) /X3,
which is syntactically equal to t,,,s (Y {min(X,)/ X}).

Since |p, tmust (W{min(X,)/ X}) | < |p, tmust(@) |, by inductive hypothesis we
have
p € [ylmin(X,)/ X}*] for some k, hence p € [¢%*+V .

To prove the converse of Proposition 3.1.7 we use the following concept:

Definition 3.1.4 (Satisfaction Relation). Let R C S X mustHML and for any ¢ let
(R¢)=1{s | sR @} Then R is a satisfaction relation if it satisfies

Ry = S
RH =0
(RAcc(Ad) = {s]|sl, s = implies S(s)YNA # 0 }
Rlalp) < [a]lR¢)
Ro1Ad2) S (RP)N(R¢2)
(R p{lmin(X,¢)/X}) < (R min(X, ¢))

]

Satisfaction relations are defined to agree with the interpretation [- J. Indeed, all im-
plications required for satisfaction relations are satisfied by . Further, as [min(X, ¢)]
is defined to be the least solution to the recursive equation X = ¢, we expect it to be the
smallest satisfaction relation.

Proposition 3.1.8. The relation [= is a satisfaction relation. Further, it is the smallest
satisfaction relation.

26

Proof. The definition of [-] ensures that = is a satisfaction relation; we have:

EFtw) = S
Eff) =0
(EAcc(A) = {{s|sl,s = implies S(s)NA # 0 }
(F lal¢) = [elE ¢

(E ¢imin(X,¢)/X}) (F min(X, ¢))

where the last equality follows from Corollary 2.2.4.

It remains to show that [is in fact the smallest satisfaction relation.

Let R be a satisfaction relation, and suppose that p € [¢]: we show that p R ¢.

By Proposition 3.1.4 there exists k > 0 such that p € [¢*]. We proceed by induction
on k.

The case k = 0 is vacuous. Assume the result holds for a generic k; we will perform an
inner induction on the structure of ¢. Again, only the most interesting details are given.
Suppose ¢ = min(X,¥): then min(X, y)**V = (y{¢/ X}, and by inductive hypothesis
p R y{p/X} follows, and so p R ¢ by the definition of satisfaction relation.

Finally, if ¢ has the form [a]y or ¢; A @5, it is not possible to use the inductive hypothe-
sis directly. This is because ([a]g)**D = [a](@)**D, (¢1 A ¢2)**D = gy (k + 1) A ¢S
We define therefore the height of a formula A(¢) as

Ktt) = 0
h(ff) = 0
hAcc(A)) = 0
h(min(X,y)) = 0
h(laly) = hy)+1
h(dr Ad2) = max(h(¢y), h(¢)) + 1

and we perform another induction of (¢). The case i(¢) = 0 has already been handled.
Suppose then A(¢) = n + 1; then either ¢ = [a@]y or ¢ = §; A ¢,. We will consider only
the first case.Here h(y) = n, so that by inductive hypothesis we have p’ | ¢ implies
P RY.

If p E [a]y then p |J; further, whenever p = p’, we have p’ = ¢ and therefore p” R .
Thus p € [-a-](Rg). O

This Proposition can be exploited to prove properties for couples (p, ¢) such that p = ¢,
for ¢ € mustHML.

Let 7 be a property over S X mustHML, and suppose the relation R = {(s, ¢) | 7(s, @)}
is a satisfaction relation. We obtain, by Proposition 3.1.8, that p |= ¢ implies n(p, ¢).
Next we consider the relation R, such that p R,., ¢ whenever p must satisfy
fmust(¢), and show that it is a satisfaction relation.

Proposition 3.1.9. The relation R, is a satisfaction relation.

Proof. We proceed by induction on formula ¢. Again, we only check the most inter-
esting case.

Suppose ¢ = min(X,). We have to show p must satisfy tmu(W{d/X}) implies p must satisfy
tmusl(¢)'

We distinguish two cases:

27

(a) X does not appear free in . then fy5(¢) = fmust (), and Y{p/X} = . This case is
trivial.

(b) X does appear free in ¢: in this case tyus () = puX. tnust(¥), and fous (W {d/X}) has
the form Zumus (YHX. fmust (F) / X}
By Lemma 3.1.5 [¢] # S; therefore Lemma 3.1.1 ensures that p |}, and hence by
Lemma 3.1.6 it follows p must satisfy tmusi(@).

O
Combining all these results we now obtain our result on the testability of mustHML.

Theorem 3.1.10. Suppose the LTS of processes is finite-branching. Then for every
¢ € mustHML, there exists a test ty,s (@) such that ¢ must-represents the test tys(P).

Proof. We have to show that for any process p, p must satisfy tmust(¢) if and only if
p € [¢ 1. One direction follows from Proposition 3.1.7. Conversely suppose p € [¢ .
By Proposition 3.1.8 it follows that for all satisfaction relations R it holds p R ¢; hence,
by Proposition 3.1.9, p Ryus ¢, or equivalently p must satisfy tyusi(@). O

We now turn our attention to the second result, namely that every test ¢ is must-
representable by some formula in mustHML. Let us for the moment assume a branching
finite LTS of tests in which the state space T is finite.

Definition 3.1.5. Assume we have a test-indexed set of variables {X,}. For each test
t € T define ¢, as below:

A ift — (3.12)
o = f ifr— (3.13)
g = C\ laXe) A Accllalt=—>) ift—bt—br— (B14)
o = (N XD A CN @X) it (3.15)

Take ¢, to be the extended formula min,(Xt,@r), using the simultaneous least fixed
points introduced in Section 2.2.

Notice that we have a finite set of variables {X;} and that the conjunctions in Definition
3.1.5 are finite, as the LTS of tests is finite state and finite branching. These two condi-
tions are needed therefore for ¢, to be well defined.

Formula ¢, captures the properties required by a process to must satisfy test t. The first
two clauses of the definition are straightforward. If ¢ cannot make an internal action
or cannot report a success, but can perform a visible action a to evolve in ¢, then a

a .. .
process should be able to perform a = transition and evolve in a process p’ such that

p’ must satisfy t'. The requirement Acc({a | ti>}) is needed because a synchronisa-
tion between the process p and the test ¢ is required for p must satisfy t to be true.

In the last clause, the test ¢ is able to perform at least a 7-action. In this case there is
no need for a synchronisation between a process and the test, so there is no term of the

form Acc({a | ti>}) in the definition of ¢,. However, it is possible that a process p

. T
will never synchronise with such test, instead ¢ will perform a transition r — ¢’ after

28

p has executed an arbitrary number of internal actions. Thus, we require that for each
. . T .
transition p = p’, p’ must satisfy t'.

We now supply the formal details which lead to state that formula ¢, characterises the
test £. Our immediate aim is to show that the two environments, defined by

pmin(Xt) = [[¢t]]
Prmust(Xy) {p | p must satisfy t}

are identical. This is achieved in the following two propositions.

Proposition 3.1.11. For all t € T it holds that ppmin(X:) S Pmust(Xy).

Proof. We just need to show that [¢; Iomust € Pmus:(X;): then we can apply the minimal
fixpoint property, Theorem 2.2.3 (i), to conclude

Pmin(X0) = [min Xz, ¢1) 1 S Ponust(X7)-

The proof is carried out by performing a case analysis on r. We will only consider Case
(3.14), as cases (3.12) and (3.13) are trivial and Case (3.15) is handled similarly.
Assume p € [¢; lomus:- We have

@ pl,
T . . a a
(b) whenever p = p’ there exists an action a € Act such that -— and p’=,
a a . .
(c) whenever p = p’ and t — t’, p’ € pyus(Xy), 1.6. p’ must satisfy t'.

Conditions (a) and (b) are met since p € [Acc({a | ti>)]] and 71— for some a € Act,
while (c) is true because of p € [A [alXy 1.

a
at':t—t

To prove that p € p,.(X;) we have to show that every computation of p | ¢ is suc-
cessful. To this end, consider an arbitrary computation of p | #; condition (b) ensures
that such a computation cannot have the finite form

plit—=pi |t pe|lt=pr | t=>--—>py |t (3.16)

T a
For such a computation we have that p, = p’, and there exists p’* with p’ — p”’ for

. a .
some action a and test ¢’ such that r — ¢’. Therefore we have a computation prefix of
the form

’

plt=opiltspy | tomp [top” |7,
hence the maximality of computation (3.16) does not hold.

Further, condition (a) ensures that a computation of p | ¢ cannot have the form

plt—=pilt=-=pe|lt—=>pip1 | >

Therefore all computations of p | t have the form

’

plt=p|lt=s-=p, | t=p |t

with p’ must satisfy ¢ by condition (c); then for each computation of p | ¢ there exist
p”,t” such that

17

p | [_>..._>p/ | t'_>..._>p” |t’

w . .
and t"—. Hence, every computation from p | 7 is successful. O

29

Proposition 3.1.12. Assume the LTS of processes is branching finite. For everyt € T,
pmust(Xl) c pmin(Xt)~

Proof. We have to show p must satisfy t implies p € [¢,].

Suppose p must satisfy t; since we are assuming that the set 7, as well as the set
S, contains only finite branching tests (processes), That is, the maximal length of a
successful computation fragment |p, ¢| is defined and finite by Theorem 2.3.3.

Recall that ¢, = min,(Xr,p7). We proceed by induction on k = |p, | to show that
p must satisfy t implies p € [¢; [omin; then the result p € [¢,]| is obtained by applying
the Fixpoint Property 2.2.3(ii).

e k = 0: In this case, ti>, and hence for all p € S we have p must satisfy t.
Moreover, ¢, = tt, and hence for all p € S p € [&; 1omin,

e k > 0. There are several cases to consider, according to the structure of the test 7:

1. ¢t —u/)—> ,t —7—> ,t —: we first show that p € [[Acc({alti>) Tomin-
Since p must satisfy t, we have p |. Consider a computation fragment of
the form
plit—s--=ph|i

As p |, we require that all computations rooted in p” | ¢ will eventually
contain a term of the form p* | ¢, where ¢’ # ¢. Further, as ¢ —7T’—> , such
a test should follow from a synchronisation between p*~! and r. We have
that then that, whenever p = p", there exists an action a such that ¢ N
and p" - p*, which combined with the constraint p || is equivalent to
p € [Acc(falt—)].

We also have to show that p € [[a]Xy Jomin. Let pi> p’. Then p must satisfy
t implies p’ must satisfy . Moreover, we have |p’,t'| < k. By inductive
hypothesis, we have that p’ € [¢], thatis p’ € ppiu(Xy). Then the result
p € [[alX; 1pmin holds.

w T
2. t - ,t—: A similar analysis as in the case above can be carried out.
O

Combining these two propositions we get our second result. Let us say that a test ¢
from a LTS of tests 7 = (T, Act?, —) is finitary if the derived LTS consisting of all
states in 7~ accessible from ¢ is finite state and finite branching.

Theorem 3.1.13. Assuming the LTS of processes is finite branching, every finitary test
t is must-representable.

Proof. Consider any test . We can apply Definition 3.1.5 to the finite LTS of tests
reachable from ¢ to obtain a formula ¢, which must-represents test ¢. Notice that this for-
mula is not contained in recHML, as it uses simultaneous least fixpoints. However, by
Theorem 2.2.2 there exists a formula @5 () € recHML such that [¢; | = [dmuse(®) 1,
thus ¢ is must-representable. Further, since each operator used in Definition 3.1.5 to
define ¢; belongs to mustHML, it is assured that ¢y (t) € mustHML. O

As a Corollary we are able to show that mustHML is actually the largest language (up
to logical equivalences) of must-testable formulae.

30

Corollary 3.1.14. Suppose ¢ is a formula in recHML which is must-testable. Then
there exists some ¥ in mustHML which is logically equivalent to it.

Proof. Suppose ¢ is must-testable. By Theorem 3.1.10 there exists a finite test t =
fmust(¢) which must-represents ¢. Further, by theorem 3.1.13 there exists a formula
V¥ = Pmust(t) € mustHML which must-tests for ¢. Therefore

p €l ¢l © p must satisfy tnus(@) © p e [¥]

3.2 The may case

We now turn to the characterisation of the may satisfy testing relation in terms of
recHML formulae.

Notice that the nature of the may satisfy testing relation is different from that of the
must satisfy one; here an experiment composed of a process s and a state ¢ is required
to have only one successful computation to ensure that s may satisfy t holds. As a
consequence, when considering the may satisfy testing relation, we will not need to
reason about all the computations generated by an experiment; in other words, it will
be no longer necessary to reason on the maximal length of a successful computation,
therefore the assumption that the LTS of processes to be tested contains only finitely
branching states can be dropped. However, we still need to assume that the LTS of
tests to be considered is finitely branching; informally speaking this is because a test is
may-represented by a disjunction of formulae, one for each of its branches. Therefore,
as we do not allow infinite disjunction in our version of recHML, we need to focus only
to LTS of finitely branching tests.

First we will prove that each formula in mayHML may-represents some test ¢ in gram-
mar (2.1); then we show that if the LTS generated by a test ¢ is finitely branching and
finite state, then there exists a formula ¢ which may-represents ¢. In this case we do not
require for the LTS of processes to be branching finite.

To prove that the power of tests defined in grammar 2.1 can be captured (with respect
to the may satisfy testing relation) by the language mayHML, we define the concept of
weak satisfaction relation; this is obtained as the dual version of the weak satisfaction
relation relation defined in [AI99].

Definition 3.2.1. Let R € S X mayHML. Then R is a weak satisfaction relation if, and
only if, it satisfies the following implications:

R1u)y = S
R =0
(R{x)p) 2 (a)R9)
(Rp1 V) 2 (TR ¢1) V(R ¢)]
(R min(X,$)) 2 (7)R d{min(X,$)/X})

]

Informally speaking, given a weak satisfaction relation R, it is possible to determine
whether s € (R ¢) for some s € S, ¢ € mayHML by looking at the set of the 7-
derivatives of s, rather than at the single state itself.

31

The satisfaction relation =, when restricted to mayHML, is a weak satisfaction relation.

This is because for any ¢ € mayHML we have [¢] = [(T)¢].

Lemma 3.2.1. Let p € S, ¢ € mayHML. Then p E ¢ if and only if there exists
T

pip=pandp k¢

Proof. For the only if implication notice that for all p € § it holds p = p-

For the only if implication, notice that the semantics of mayHML is defined on weak
actions, and that [(@)@]| = [(t){a)¢ .]

Proposition 3.2.2. The relation = is a weak satisfaction relation.

Proof. By Lemma 3.2.1 and the definition of [-]] we have the following implications:

Ett)y = S
(F) 0
(Flayp) = (a9
Edr1Vve) = (ESVE(42)

= (IE)V ¢2)
(EminX,¢)) = (F ¢{min(X,¢)/X})
= (T)E ¢lmin(X, $)/X})
Corollary 2.2.4 has been applied in the case of a least fixed point formula. O

Further, we have that = is the smallest weak satisfaction relation. To prove this state-
ment we will use the same techniques used in Section 3.1; that is, first we will show that
mayHML has a continuous interpretation in the complete lattice (25, C). The only non
trivial case here consists in proving the continuity of the (-7-) operator; this is a direct
consequence of the following results, which states that such an operator is distributive
over countable sets chosen in 25.

Proposition 3.2.3. Let P;,i € I be a countable set of elements in 25. Then
¢y JPi={ JCap,
i€l i€l
Proof. Ttis trivial to show that
| Jcarpi c cay| P
i€l i€l
For the opposite inclusion, suppose s € (-a-)|J;c; P;; then there exists s’ such that

¥ . . . @ R
5 —= s',5" € Uiy Pi- Thatis, s € P; for some j € I; since s = s’, by definition
s € (-a-)P;, and therefore s € | J;e/(-a-)P;. m]

Given a formula ¢ € mayHML, it is possible to define a chain of recursion free formu-
lae ¢°, ¢!, --- which converge to ¢ itself. This definition is similar in style to that of
Definition 3.1.2.

Definition 3.2.2 (Formulae approximations). For each formula ¢ in mayHML define

32

¢ = f
n®D 2y
ﬁ'(k+l) S ﬁ'

()™ = (ayp)*h

(k+1) (k+1) (k+1)
(¢l 4 ¢2) ¢1 N ¢2

(min(X, p)* = (p{min(X, ¢)/X})
O
Proposition 3.2.4.
Jie 1=1¢1
k>0
O

Chains of approximations of formulae in mayHML can be exploited to show that [= is
indeed the smallest weak satisfaction relation.

Proposition 3.2.5. Let R be a weak satisfaction relation. Then, for any s € S and
¢ € mayHML, s = ¢ implies s R ¢.

Proof. The proof is similar in style to that of Proposition 3.1.8. If s |= ¢ then by Corol-

lary 3.2.4 we have that s = ¢* for some k > 0. By performing an induction on k, we
show that s R ¢. For k = 0O the statement is vacuous; assume then that the statement

is true for a generic k, and consider the formula ¢**'; we will only check the case

¢ = min(X, y).

If s E (min(X, ¥))**! then by Definition s = (Y {min(X, W)/ XDE. By Lemma 3.2.1 s
(T)Wlmin(X,)/ X})¥, which is equivalent to s | (()ty{min(X,)/ X})*. Now, by induc-

tive hypothesis s R (Qry{min(X, ¥)/X}), or equivalently s—>s" with s’ R (ry{min(X,)/ X});
then by Definition 3.2.1 we have s R min(X,). O

We are now ready to show that each formula of mayHML may-represents some test 7.
For each formula ¢ in Grammar (3.1), the test fay () is defined as below:

(1) = .0
tmay(ﬁ) =0
tmay(X) = X

tmay((bl 4 ¢2) = T tmay(¢l) +7. tmay(¢2)
Z‘may(<a>¢) = «. tmay(¢)
Imay (min(X,¢)) = pX Imay (@)

We will need the following property for tests:

Proposition 3.2.6. Let ¢,y be two formulae in Grammar (3.1), and suppose ¥ is a
closed formula. Then

tmay(¢){tmay(w) /X} = tmay(¢{lﬁ/X})

33

Proof. By induction on the structure of ¢. O

Proposition 3.2.7. The relation Ry., = { (s,¢) | s may satisfy t,,,,(¢)} is a weak
satisfaction relation.

Proof. We prove that Ry, satisfies the constraints of Definition 3.2.1.

® Imay(tt) = w.0. It is trivial to check that each process in S may satisfy such a
test.

® Imay(fT) = 0. Again, it is straightforward to show that for no process p € § we
have p may satisfy tyay(ff).

e Suppose p = P, and p’ Ry,y ¢. Then, we have the computation prefix

Pl a. tmay(¢) e p” | a. tmay(¢) - p/ | tmay(¢) L

Since p’ may satisfy tmay(¢) by the definition of R,y , the experiment p | finay({@)d)

has a successful computation, hence p Ryay (@)@.

e Suppose p = p’, and p’ Rpay ¢1. Given an arbitrary formula ¢,, consider the
experiment
D | T.tmay(@1) +7. tinay(¢2), which has the computation fragment

plr tmay(‘pl)"“r' tmay(¢2) -p | tmay(¢1) = P/ | tmay(¢1)

As p’ may satisfy tnay (1), we have p may satisfy tmay(¢1 V ¢2).

e Suppose p = p’, with p’ Ryay Yimin(X,¥)/X}; we have ty.y(min(X,y)) =
1X. tmay (). In this case we have the computation

p | pX. tmay(l//) o P' | pX. tmay('r//) - p’ | [may(l/’){/lX-W/X}s

where iy (W{uX Y/ X} = tray(Wlimin(X,)/ X}) by Proposition 3.2.6, and hence
p Rmay mm(X, l//)

]

Proposition 3.2.8. Let p € S and let ¢ € mayHML. If p may satisfy f,q,,(¢) then
PE@.

Proof. Assume p may satisfy tmay(¢). We proceed by induction on the minimal length
of a successful prefix of a computation, denoted |p, fmay(¢) | with an abuse of notation,
to show that p = ¢.

® [P, tmay(¢) | = 0. Then we may infer #y.y(¢) —, hence ¢ = tt. In this case, for
each p € S itholds. p may satisfy tmay(¢), and Vp € S.p k tt.

® [P, tmay(#) | = k + 1. Assume the statement holds for k, and consider the prefix
Pltmay(#) — 4

of a minimal successful computation.
We distinguish several cases:

Iwhere p” = p’ inthe case @ = T

34

(a) p N P, t" = tmay(¢). Then by inductive hypothesis p’ = ¢, and by Lemma
3.2.1 we have p E ¢.

T . . . g .
(b) p =P, tmay(¢) —1": in this case there are tree possibilities.

- ¢ = min(X,y) for some . Hence t' = tiay () {tmay(¢) /X}, which is
1 = tmay(W{¢/X}). Again, by induction we have p E ¥{¢/X}, and
hence p E ¢.

— ¢ = ¢1 V ¢,. Without loss of generality we may infer ¢’ = fpay(¢). By
Inductive hypothesis we have p |= ¢, hence p = ¢ V ¢».

— ¢ = (T)¢ for some . In this case we have ' = f1,y(1)); by the inductive
hypothesis it holds p | . Therefore, by Lemma 3.2.1 p = (T)y.

© p N D’ tmay (@) 5. 1In this case we have ¢ = (@)Y, and hence t' =
tmay(¥). Then, by using the inductive hypothesis again, we have p = {(a)¢.

]

Theorem 3.2.9. Let ¢ € mayHML, p € S. Then p = ¢ if and only if p may satisfy
tmay(‘ﬁ)-

Proof. Analogous to the proof of Theorem 3.1.10 O

Next, we show that if the LTS of tests generated by a test is finite state, then each test ¢
is may-represented by a mayHML formula ¢,y (2).

First, assume to have a test indexed set of test variables {X;}. Then, for each test r define
the formula ¢, as

o = tt if £ —
o = ff ift —
o =\ @X ift—b,1—

@
at’:t—t

and take @may(7) to be the recHML* formula min, (X7, o7).
Next we define the following environments:

Pmin(X) = [Pmay(®) 1
Pmay(Xe) = Ap | p may satisfy 1}

In the same style as Section 3.1, we will prove that the two environments above coin-
cide.

Proposition 3.2.10. For each test t, pyin(X;) S Pimay(Xo).

Proof. Suppose the LTS generated by a test 7 is finite state and finite branching. We
just need to show that [¢; lomusr € Pmus:(Xy): then we can apply the minimal fixpoint
property, Theorem 2.2.3 (i), to conclude

Pmin X = “mlnt(X_T’ ¢7_T) 1c pmust(XT)-
The proof is carried out by performing a case analysis on ¢.

e -2, In this case we have Pmay(X;) = S, so the statement trivially holds.

35

e t— . Whave ¢, = ff, hence [¢; |pmay = 0. Again, the statement is trivial.

o —L7—> ,t—>. Suppose p € [¢ pmay. We have that there exists at least one

. v . @
action a such that ¢ — t'; thus there exists a process p’ such that p = p’
and p’ may satisfy ' (in the case @ = 7 choose p’ = p). Hence we have the
computation fragment

’

pliz-op’li=p |7,

so that p may satisfy t.

Proposition 3.2.11. For each test t, Piay(X:) S Pmin(Xy).

Proof. Again, assume the LTS generated by a test 7 is finite state. Let p be a process
such that p may satisfy t. We proceed by induction on the minimal length of a success-
ful computation prefix |p, #| to show that p may satisfy t implies p € [¢; [omin; then the
result p € [¢,] is obtained by applying the Fixpoint Property 2.2.3(ii).

e [p,tf| = 0. In this case we have tix By definition, ¢, = tt, so that we have
[&; Iomin = S. This case is trivial.

e [p,t| > 0. Let
p | t—’P/ | t,_)"'_>pn | y
be a successful computation prefix of length |p, #|. We distinguish several cases
according to the structure of the computation. Since p’ may satisfy ¢ and |p’,t'| <

|p, t], in each case we have p’ € [¢, Jomin by inductive hypothesis.

—p=7p.t—1; wehave p € [X,Iomin = [(D)6y Jomn. Then p €
[[\/ <T>Xt’]]pmin~

-p N p',t =1t; wehave p’ € [X; lpmin, and therefore p € [X; lomin by
Lemma 3.2.1.

— p—5 p/y 1= 5 in this case p € [(@)X Tomin, and hence p € [¢; 1omin-

a
a,t’ .t—t’

O
Propositions 3.2.10 and 3.2.11 can be combined to obtain the following result:
Theorem 3.2.12. Every finitary test t is may-representable. O

Corollary 3.2.13. Suppose ¢ is a formula in recHML which is may-testable. Then
there exists some ¥ in mayHML which is logically equivalent to it.

Proof. Suppose ¢ is may-testable. By theorem 3.2.9 there exists a finite test t =
tmay(¢) which may-represents ¢. Further, by Theorem 3.2.12 there exists a formula
¥ = Pmay(t) € mayHML which may-tests for ¢. Therefore

pEl@l & p may satisfy tmay(®) © p Y]

36

Chapter 4

Conclusions

We have investigated the relationship between properties of processes as expressed in a
recursive version of Hennessy-Milner logic, recHML, and extensional tests as defined
in [DH84]. In particular we have shown that both may and must tests can be captured in
the logic, and we have isolated logically complete sub-languages of recHML which can
be captured by may testing and must testing. One consequence of these results is that
the may and must testing preorders of [DH84] are determined by the logical properties
in these sub-languages mayHML and mustHML respectively.

However these results come at the price of modifying the satisfaction relation; to satisfy
a box formula a process is required to converge. One consequence of this change is that
the language recHML no longer characterises the standard notion of weak bisimulation
equivalence, as this equivalence is insensitive to divergence. But there are variations
on bisimulation equivalence which do take divergence into account; see for example
[Wal88, HPSO].

The research reported here was initiated after reading [AI99]; there a notion of testing
was used which is different from both may and must testing. They define s passes the
test t whenever no computation from s | ¢ can perform the success action w, and give a
sub-language which characterises this form of testing. It is easy to check that s passes
t if and only if, in our terminology, s may t is not true. So their notion of testing is dual
to may testing, and therefore, not surprisingly, our results on may testing are simply
dual versions of theirs.

We have concentrated on properties associated with essentially two behavioural theo-
ries, weak bisimulation equivalence and testing. However there are a large number of
other behavioural theories; see [Gla93] for an extensive survey, including their charac-
terisation in terms of observational properties.

37

Bibliography

[Abr87]

[AI99]

[BJ89]

[BRR8&7]

[CN78]

[Cou83]

[DH84]

[DN83]

[Gla93]

[HMS5]

[Hoa85]
[HP80]

[KLSVO06]

S. Abramsky. Observation equivalence as a testing equivalence. Theoret-
ical Computer Science, 53:225-241, 1987.

Luca Aceto and Anna Ing6lfsdéttir. Testing hennessy-milner logic with
recursion. In Thomas [Tho99], pages 41-55.

George S. Boolos and Richard C. Jeffrey. Computability and Logic. Cam-
bridge University Press, third edition, 1989.

W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets: Applica-
tions and Relationships to Other Models of Concurrency. Number 255 in
Lecture Notes in Computer Science. Springer-Verlag, 1987.

Bruno Courcelle and Maurice Nivat. The algebraic semantics of recursive
program schemes. In Winkowski [Win78], pages 16-30.

Bruno Courcelle. Fundamental properties of infinite trees. Theoretical
Computer Science, 25(2):95-169, March 1983. Fundamental study.

R. DeNicola and M. Hennessy. Testing equivalences for processes. Theo-
retical Computer Science, 24:83-113, 1984.

Rocco De Nicola. A Complete Set of Axioms for a Theory of Communi-
cating Sequential Processes. In FCT, pages 115-126, 1983.

Rob J. van Glabbeek. The linear time - branching time spectrum ii. In
CONCUR ’93: Proceedings of the 4th International Conference on Con-
currency Theory, pages 66-81, London, UK, 1993. Springer-Verlag.

Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism
and concurrency. J. ACM, 32(1):137-161, 1985.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

Matthew C. B. Hennessy and Gordon D. Plotkin. A term model for CCS.
In Mathematical Foundations of Computer Science 1980, Proceedings of
the 9th Symposium, volume 88, pages 261-274, Rydzyna, Poland, 1-
5 September 1980. Springer.

Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaan-
drager. The Theory of Timed I/O Automata. Synthesis Lectures on Com-
puter Science. Morgan & Claypool Publishers, 2006.

38

[Mil89]
[NVO7]

[NYHOO7]

[O1d87]

[RS]

[Tho99]

[Wal88]

[Win78]

[Win93]

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

Sumit Nain and Moshe Y. Vardi. Branching vs. linear time: Semantical
perspective. In Namjoshi et al. [NYHOO7], pages 19-34.

Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino, and Yoshio
Okamura, editors. Automated Technology for Verification and Analysis,
5th International Symposium, ATVA 2007, Tokyo, Japan, October 22-25,
2007, Proceedings, volume 4762 of Lecture Notes in Computer Science.
Springer, 2007.

E.-R. Olderog. Tcsp: Theory of communicating sequential processes. In
Brauer et al. [BRR87], pages 441-465.

G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages,
volume 3.

Wolfgang Thomas, editor. Foundations of Software Science and Compu-
tation Structure, Second International Conference, FoSSaCS’99, Held as
Part of the European Joint Conferences on the Theory and Practice of Soft-
ware, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Pro-
ceedings, volume 1578 of Lecture Notes in Computer Science. Springer,
1999.

David Walker. Bisimulations and divergence. In Proceedings of the Third
Annual IEEE Symposium on Logic in Computer Science (LICS 1988),
pages 186—192. IEEE Computer Society Press, July 1988.

Jozef Winkowski, editor. Mathematical Foundations of Computer Science
1978, Proceedings, 7th Symposium, Zakopane, Poland, September 4-8,
1978, volume 64 of Lecture Notes in Computer Science. Springer, 1978.

Glynn Winskel. The Formal Semantics of Programming Languages. The
MIT Press, Cambrige, Massachusetts, 1993.

39

