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Wireless communication is very popular nowadays, however a wired medium could be

ideal in those situations where the use of wireless communication is not practical due to

economical or environmental limitations. This dissertation proposes to use the two-wire

I2C bus to implement wired sensor and actuator networks. A new software layer, to run

on micro-controllers, is introduced to extend the capabilities of I2C and provide the basis

for communication in an array of sensors or actuators. This software extension is suitable

for generic embedded systems communication.

An I2C hardware controller is commonly integrated in many commercially available micro-

controllers, making it a good candidate in a wired sensor or actuator network. To make

it suitable for this use, I2C has to be expanded, overcoming some of its limitations. The

maximum number of devices supported on a single bus is 128 (or 1024 using a newer

addressing schema, not available on every MCU). Each device’s address is statically as-

signed, before to be plugged on the bus. The proposed software layer will overcome this

limitation extending the address space and introducing dynamic address assignment. The
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wire’s electrical capacity is another factor limiting the number of devices per bus. The

protocol will be compatible with I2C Multiplexers which allow to handle several channels

at time. A channel is an independent I2C bus. The software extension transparently

handles data transfer from one channel to the other and the channel access arbitration.

All channels are joint into a single virtual bus.

The I2C bus is meant for on PCB communication, where there is no need for device

hot-swapping. However to use I2C as medium for sensor array nodes, the bus has to

handle hot-swapping. To achieve this feature the proposed protocol improves the bus

access arbitration and introduces a distributed address assignment routine. The software

extension is meant only for micro-controllers, however it is backward compatible with

standard I2C devices, on which it is impossible to load any kind of software.

This dissertation describes the design and the implementation of the proposed software

extension. Such prototype is composed of a software stack and the hardware on which

to run it. The proof of concept is based on the AVR ATmega328 micro-controller. The

evaluation of the protocol, based on such prototype, has demonstrated how effective it is

to overcome the aforementioned I2C bus limitations.
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Chapter 1

Introduction

Many research project are focusing on Wireless sensor networks. The possibility to inter-

connect several small embedded devices without any physical infrastructure has a certain

appeal to many monitoring applications. Several challenges have to be addressed yet. For

example how to maintain an ad-hoc network and at the same time allow the nodes to

switch off the radio to save power [4]. Power consumption is a primary problem which

may also lead to communication reliability issues. In some context communication faults

are no option. Also the possible interference of radio waves might be a problem, particu-

larly in those environment where already few wireless networks have to coexists. Wireless

Sensors Networks (WSN) lead the designers of an hypothetical system to make a tradeoff

among computation, power efficiency and communication reliability. This dissertation

proposes a wired alternative to WSN (and maybe in future actuator networks), which

tries to maintain, where possible, the flexibility of a WSN node, but at the same time

overcome any data transfer fault or power limitations (to a certain extent).

Such software extension is based on I2C standard specification [10], a serial bus for

embedded systems, introduced in 1980 by Philips. It enables to connect a number of

devices in a serial manner, with low power requirements and small protocol processing

overhead. Each device has to have a predefined static address before to be connected to

the bus, and at most 1024 devices can be connected to the bus. As aforementioned the
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alternative will try to be as flexible as possible. One challenge is indeed to overcome the

fixed and pre-programmed address limitation of I2C to allow to plug a new devices without

an address predefined. The problem here is to arbitrate the access to the bus. Also the

medium length is a key issue. I2C wire length is limited by the maximum electrical

capacity of the whole system, which can not be over 400µF. The electrical capacitance

raises proportionally to the number of devices connected and the length of the wire. Such

problem has one electrical root that can be addressed partially, via software, by reducing

the transfer speed. The system should be able to sense the electrical capacitance of the

wire and inversely proportional adjust the communication speed. Many more technical

constraints raises in this project: are all outlined in the next few sections.

Previously were explained the motivations and the technical issues of the system.

However its use in the real world are possibly various. Few use cases have been envisioned,

without any ambition of being actually feasible. A scenario where to use such bus might

be a super market digital price labeling system. Although centrally managed wireless

options are already available a wired electronic labeling system might take advantage of

the shelf to host the wires. The electronic labels this way do not have to deal with any

power issue. Also the physical structure of the scaffoldings embeds the wire, making a

more efficient use of the available resources. Price labels are moved only when the related

product is moved. However most of the time each product stays in the same location,

making a wireless price tag an unjustified cost.

A road tunnel monitoring system may be build using the I2C Extender. Sensors

could be plugged on the bus inside a road tunnel, giving environmental data, such as

temperature, pollution and vehicular traffic levels. The reduced energy requirements

make possible to run the system on small backup batteries. Such system could give

prompt notice of an incident and precise information about where it happened. Faulty

sensor nodes can be easily replaced, due to the dynamic addressing feature. It might

be possible an active use of the bus, not only to sense environment data, but also to

light up lights placed on the road marks. This would make an active signaling system to
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inform drivers of sudden queues, incidents, water overflows or any other hazardous road

condition.

Precision farming is another context that might take advantage from the proposed I2C

Extender. Soil moisture and acidity sensors might be embedded in the water pipes along-

side with the bus wires. The data collected by these sensors could be used to remotely

control the irrigation valves, also installed on the water pipes. Such kind of system would

optimize drip irrigation, reducing water and fertilizers waste. A wired system would not

suffer any radio communication decrease during crop flourishing, as precision farming

researchers have already experienced [7]. Many more application can be envisioned, for

those context where the installation of a wireless infrastructure is not feasible or uneco-

nomical.

There are three main areas the I2C Extender should implement features for. The main

point is dynamic address assignment. Previously was explained how applications can ben-

efit by such feature. Having an automatic assignment of address slot, would make possible

the hot plugging of new nodes to the network, without any address clash. One of the nodes

on the I2C network will play the role of System Host, to coordinate the operations on the

bus. Each device will have to ask the system host to be assigned a valid (available and

not reserved) address, picked from the list it will maintain. Also the number of nodes is a

limit which has physical implications, due to the added electrical capacity of each added

node. The standard I2C allows two different addressing schema, 7 and 10 bits, allowing

at most 128 and 1024 devices connected at the same time. The actual address space is

smaller, indeed there are eight addresses reserved for bus management purposes. The I2C

Extender proposes to enlarge the address space, using 16-bit addresses. The electrical

capacity issue will be partially solved splitting the bus via commercially available I2C bus

multiplexers. The following, are the main requirements of the I2C Extender, each one is

accompanied by a short description of the problems to address.
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• Automatic addressing has to be implemented to facilitate hot-plugging of new de-

vices onto an I2C bus. The protocol is not intended to deal with the electrical

implication of hot-pluging but will only provide a set of instructions to allow a

Client to negotiate an address with the System Host. The assigned address remains

constant during the device online time. A requirement of the I2C Extender is to

avoid any pre-existing hardware address. Other protocols, such as SMBus, rely on

hardware addresses. Address retention to overcome temporary power losses is an

interesting feature that will be considered for implementation.

• The address space (using the standard 7-bit is 27, for 127 addresses) will be increased

implementing a 16-bit Client ID, allowing more than 64K addresses. This addressing

schema works parallel to the standard 7-bit I2C address. The old address space is

retained for compatibility with older devices, and will be used to subdivide the

nodes in clusters.

• To better handle the increased number of devices is introduced a Multicast feature.

The I2C Extender will support up to 64 (26) Multicast groups. Any Client device

registered in any of these groups will receive the packets the System Host sends to

the group.

• The electrical capacitance of the bus is the main limit to the number of Clients on

the bus. This problem is overcame subdividing the bus into channels using off the

shelf components such as the NXP PCA9544 bus multiplexers. Addressing devices

on different channels will happen transparently. The channels will appear as a single

virtual bus by time-sharing the System Host to each channel in Round Robin.

• All these features will be implemented on standard commercially available hardware,

with no need for extra components, excepted the I2C multiplexer. This requirement

will ease the implementation of the I2C Extender on a wider set of systems.
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I2C bus is simple and widely used either in consumer and industrial electronics. There

are a wide variety of existing devices using the I2C bus, ranging from real time clocks,

EEPROM and Flash memories, Analog to Digital or Digital to Analog converters just to

cite some. The I2C bus needs only two wires plus shared ground and two pins on each

Integrated Circuit, as shown in Picture 1.1. Its simple design and low footprint makes

it cost effective reducing complexity and wiring. Therefore is suitable to interconnect

any kind of device that needs to communicate with sensors or actuators where hardware

complexity is undesirable.

VCC

SCL
SDA

Master Slave Slave Master

Pull-up resistors

Figure 1.1: A diagram showing the devices involved in the system. A system host node,
few smart slaves and a regular slave (e.g. a real time clock).

I2C is generally used for on board communication, however it makes sense to try to

stretch the bus over the standard specifications to interconnect arrays of sensors over

long distances. Implementation of the I2C bus on long wires (up to 1 Km) is possible,

as demonstrated in [8], the goal of this dissertation is to get a reliable connection on a

100 meters long wire. The use of such a technology to build array of sensor where even

a hundred of units must share the same bus needs the introduction of a dynamic address

resolution makes possible to hot swap devices enforcing a clash free environment. Such

address assignment system will have to deal with a large number of devices all trying

to access the medium at the same time. In a scenario where all the nodes have been

placed on the bus, as soon the system is powered, all the nodes will try to contact the

master, to get an address. It is a key requirement for the bus to ensure a strong bus

access arbitration, to avoid more than one device trying to write on the bus. The current
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bus arbitration provided by the standard I2C specification will be described and all the

limitations highlighted.

1.1 Dissertation Contributions

In the previous chapter have been illustrated some constraints of the I2C bus. Also were

brought here examples of applications that could benefit from a improvement of te I2C .

Briefly these issues of the bus are:

• Poor flexibility of devices’ static addresses.

• The maximum number of elements in the bus might not always be sufficient.

• Transparent bus interconnection. Several independent busses (Multiplexer channels)

might be transparently connected to share data.

• Medium length - wire electrical capacity. The communication speed should change

in a inverse proportional manner.

Some of these features are already present in other interconnection busses. However

not all of them are available on the same technology, or that bus poses limitations of other

nature. After having analyzed how other protocols implement their services, such as the

auto address slot allocation.

In particular will be proposed a protocol that will extend the functionalities of the

bus I2C , adding auto addressing of the devices, long distance communication, channel

multiplexing. Also will be experimented a feature to locate the position of each node,

relatively to the bus master (as introduced in ”Master-Slave message propagation tim-

ing” section). The implementation of said software layer will be carried on per steps.

Starting with the auto address assignment. The work procedure will be design and test.

If something should fail then another design or approach will be tested. The next step

will be the introduction of Multicasting, useful to synchronize a group of clients, or other
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purposes. Then this software layer will be integrated with existing hardware multiplexers,

such as the PCF9544 which enables the subdivision of a bus. The System Host will poll

the clients on that segment, to receive or issue commands from or to the various Clients.

Since each channel is de facto a independent I2C bus, the electrical capacity of the whole

system can be split over 4 or more channels. Each channel is independent by the others

and has a full address space available. Therefore each channel could potentially address

all the 64K Client IDs of the new addressing schema. However this configuration is hardly

viable.

Communication over long distances is another important feature. The proposed I2C

Extender should be compatible with the hardware I2C buffers, available on the market

and designed to reduce the overall electrical capacity of the system. Also a technique to

gauge the capacity of the system should be sought. This is a necessary step to know how

much the speed has to be reduced to keep a reliable communication.

The plan is to implement the system host on a NXP ARM7 µController, while each slave

device will run on ATmega AVR328. The ARM7 implementation will use FreeRTOS,

a real-time operating system for embedded computers 1, while on the AVR328 will run

BeRTOS 2 another small real time embedded operating system.

1.1.1 Auto-address Configuration

Bus arbitration is the biggest issue the protocol has to cope with. Having so many (is

expected an address space of 65,495 Client IDs over several interconnected buses), trying

to acquire a new address from the master is a big issue. The master has no knowledge

about the nodes connected on the bus, so its duty of each single Client to ask for an

address. As soon as the bus is initiated the Master will broadcast its own address to

everyone on the bus. Afterwards the devices will try to acquire the bus to contact the

Master. This massive competition for the medium has to be coped dealing with the

1FreeRTOS, http://www.freertos.org
2BeRTOS, http://www.bertos.org
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small number of lines of the bus (there are only two lines available). A novel approach

is developed trying to keep it as simple as possible to limit the overhead. Computational

power is a serious constraint, due to the hardware characteristic of the Client devices.

1.1.2 Address Space and Multicast

The standard 7-Bit address space is increased to 16-Bit. The new address schema is not

supposed to be a complete replacement for the I2C addressing, which is kept and used

by the I2C Extender. Indeed the new address space, in the form of a 16-Bit long Client

ID, makes use of the old 7-Bit address to group the Clients into clusters. These clusters

are balanced and automatically populated by the System Host. It is a necessary feature

to make the I2C Extender possible. The new address space also introduces the concept

of multicast groups which are 64 of the new 65,536 Client IDs. These are logical groups

used to group the Clients by common characteristics. These groups can be created or

deleted at run time and Clients can be registered into them at any time. A Client can

exist without being registered in any group. This design keeps the I2C Extender backward

compatible with the standard I2C devices.
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1.2 Structure of the Dissertation

• Chapter 2 will cover the state of the current bus technologies. These will be briefly

described, showing their points of strength and also their weakness. For each bus

is explained why it can not be adopted as a base to construct the protocol hereby

proposed.

• Chapter 3 is a detailed description of the I2C bus. Is very important to show what

the bus can actually do, and what can not. In the chapter is explained how some

of its features are used by the I2C extension. However the description is brief, and

the details are left in the following chapters.

• Chapter 4 contains the full specification of the proposed software extension. Each

aspect of the protocol is carefully covered and the various design decisions justified.

The main parts are ”Auto Addressing” and ”Bus Channel Multiplexing”. The first

explains how the devices agree on each other address, without causing clashes and

allowing backward compatibility with old I2C devices. In the latter section focus on

how the protocol ”joins” tow distinct busses using an hardware multiplexer.

• Chapter 5 is about the implementation of a prototype. Either the software and

hardware parts are described.

• Chapter 6 contains the protocol evaluation based on the prototype described in

Chapter 5. It also contains the conclusion of the dissertation.
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Chapter 2

State of the Art

The State of the Art chapter covers the current situation of the bus technology. Only

the most relevant protocols are investigated in this section. The requisites for the bus

were wiring simplicity, small cpu overhead, implementation simplicity. Of the suitable

protocols have been analyzed their hot swapping, number of hosts per bus, multi master

configuration and backward compatibility features. Each selected bus is described in

detail and the points of strength outlined. To finish is explained why these busses do not

match entirely the specification of the I2C extension. Such specification includes: limited

hardware modification, no prefixed hardware IDs, software only solution, multi-master

configuration, very high number of devices per bus line/system host and transparent

interaction with a multi-plexed bus. Also this protocol should be able to reduce the

communication speed, to make it able to work in a situation were the electrical capacity

is high (for I2C this means very close to the specified maximum which is 400pF [8, 10]).

2.1 Applications of Low Power Buses

As mentioned in the introduction widely used in various contexts. Few possible scenario

for the software extension to I2C were outlined. Their main characteristic is to be very

ambitious, deployed on large scale environment, where the long distance communication
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is a key feature. Also the dynamic address allocation is essential in those scenarios,

where the wire was proposed instead of wireless network. Indeed the features brought

by this extension of the I2C bus, might make feasible the actual implementation of those

systems. However at the moment bus technologies such as I2C or SMBus are deployed

in a more orthodox manner, and far less ambitious. Following there are five examples

of how these buses are nowadays used, and how they might benefit from the features

of the hereby described extension. Fields of application ranges from modular robotics,

expandable wireless sensor nodes and large scale tactile sensors. These papers do not

specifically focus on the role of the I2C or the SMBus, but still can give an interesting

overview of their application field.

The first application is a snake robot able to crawl on the ground and swim [1], is

mechanically designed to be waterproof. It is designed for an outdoor use, in particular for

the inspection of pipes. One of the most interesting characteristic lies in its locomotion,

based on the output of a pattern generator, which makes use of stabilized rhythmic

patterns. Such approach makes the pattern very robust to external perturbations. The

snake is a modular robot. Several segments can be connected together and the current

electronic makes possible to join up to 127 modules, which communicate via I2C bus.

Each segment is completely independent to the others, having its own battery pack, a

motor controller and its own DC engine. Each motor controller is based on a PIC16F

µController. The paper has a very detailed description of the power and logical electronics,

which goes out the scope of this dissertation. However points out the fact the patter

generator is run in a µController in the head. The head works also as I2C master and

sends pattern instructions to all the segments using the aforementioned bus. On the

robot is run the standard implementation of the I2C bus [1]. Due to its ”distributed”

and modular structure the robot would benefit from the dynamic address allocation of

the nodes proposed in this dissertation. Further segments could be simply plugged into

the robot, without the need of reprogramming the head node. There would be no benefit

from the extension of the maximum number of nodes applicable to the bus, due to the
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nature of the robot.

In [6] is described an expandable robot architecture, which uses sensors and actuators,

each of them is a module managed by micro-controller. It proposes a device distributed

approach to realize an expandable robot system. The idea is to have a modular robot,

where components can be plugged and utilized with no change to the hardware and only

a minimal software update. Software update is necessary: in case a new accelerometer is

added the system still need to know how to use its data. Each device is ”smart”, having

its own µController. The key aspect of this design is to be distributed, and each device,

once receive a command, can execute it independently by the main CPU. It is interesting

to note how the amount of wiring needed to connect all the modules is dramatically

reduced, compared to a centralized design. Each module is connected to the main cpu

through the SMBus. SMBus is the chosen technology because it permits dynamic plug

of new modules (SMBus supports auto addressing) using only two pins on the module’s

micro-controller. SMBus is also good because its mostly compatible with the standard

I2C . However this design still have some flaws. As stated by the researcher, the problem

rely on SMBus itself [6]. Although it is ideal due to the dynamic address allocation, on

the other hand is limited to 127 devices because it uses the 7 bit schema. Also has much

stricter voltage and timing limitations. SMBus is a multi master bus, so it fits the design

of a device distributed robot. On the other hand it permits only one active node per

time, dramatically affecting the response time of the whole system. All this problems are

addressed by the I2C software extension proposed in this dissertation. It would be ideal

because it allows dynamic address slot assignment, and permit to split the bus in several

sub networks via the usual I2C multiplexer. These subnetworks can act as independent

buses, though being still able to communicate with the other sub networks, using the

system host as router. Using the I2C software extension it would be possible to have

independent bus lines for each limb of the robot, increasing the response time of each

section. While all the accelerometers and gyroscopes, could sit on the trunk of the robot,

on their own bus line, where the main µController can poll them as frequently as needed,
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without interfering with the movement actuators.

Tactile sensors are getting ever more important in robotics. A robot able to sense the

pressure can be programmed to hold and manipulate very fragile objects. In paper [12]

is described a conformable tactile sensor surface. Is a network of matrix of tiny pressure

sensor elements. The surface (made of urethane) is soft and flexible. The sensing area

can be adjusted by increasing or reducing the tactile elements (the small pressure sensor

matrix). The actual pressure sensor element is a photo-relector, covered by the urethane

foil, which provide mechanical protection from impactive forces. Each Photo-reflector

consumes around 50mA, which can add to 50A for a skin with 1000 sensing spots. This is

a huge amount of current. To overcome this problem the system implements a sort of time

sharing, so the whole skin is scanned per ares. This solution also reduces the number of

analog-digital converters. Such digital skin is wired with a combination of SMBus and an

ad-hoc ring LAN is used to address a tactile element which can have up to 65536 sensing

spots.

This number is very high and close to the aim of this dissertation work 1. However

the I2C extended bus, here proposed reaches similar levels using only I2C and avoiding

the need to mix heterogeneous bus technologies. The digital skin sensor is sub-netting

the bus using the said ring network. Such solution need a central node which switches

from one ”tactile master” to the other, in order to access the various sensing foil, such

tactile master has to interface itself with the LAN, therefore introducing a delay. The

software extension for the I2C bus hereby proposed, would help to reach the same number

of sensors, using one single technology.

Another application of the I2C is shown in [5] where an expandable wireless sensor

network node is proposed. Each node can be extended by piling several boards. All the

extension boards can communicate using the I2C bus. In this case there is not too much

convenience in using the I2C software extension. The SMBus alone would be flexible

enough, since it allows automatic address slot assignment.

1The devices here involved are standard slaves.
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In [16] is discussed a wearable computing experiment. This is indeed an interesting

application where the I2C bus is necessary. The garment was covered with some magnets

were sensors could be attached. The magnets also work as connectors for serial data,

clock, and power. Sensors are connected the I2C bus which was chosen due to its simplic-

ity, the low power it needs to function and the fact is implemented by a vast amount of

commercial devices. Here, as mentioned for [6], the software extension for I2C would make

possible to have a separate bus for each limb. As stated in the paper the main problem

the systems has to deal with is conflicting addresses, indeed such application is the ideal

testbed for the I2C software extension. It provides a solution to every issue, from dynamic

node swapping, to the synchronization and data routing of a sub-neted bus. The presence

of several nodes, connected with unmasked wires increases the electrical capacity of the

whole system. Such situation is ideal to test if the I2C extension can alter the clock speed

to the varying set up of the bus (more nodes implicates lower speed).

This short walkthrough of research papers has demonstrated how the I2C bus would ben-

efit of the feature hereby proposed. The possible application fields are vast and different,

but all have in common the need for more flexibility in node hot swapping and scalability.

2.2 Low power wired bus architectures

Here few words to introduce the section.

2.2.1 SMBus

The SMBus is based and compatible with I2C , is the main inspiration for the proposed

protocol. It allows hot swapping of unpowered devices on the serial bus, and overcome

any address clash by providing a system to auto allocate address slots. Each SMBus

device has a unique 128-bit long hardware address, used to request the regular 7 bit long

I2C address. SMBus is less flexible than I2C , from an electrical and timing point of

view. Indeed all the nodes have to run at the same voltage, and the clock frequency is
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strictly defined. SMBus is a multi-master bus, as well as I2C . Following are listed the

most interesting features of the bus, and some comments where these are too limited for

an extended usage.

• ARP Master: is a master node entitled of assigning addresses to the slave devices.

In many cases the ARP Master and the Bus Master are coincident. Only one ARP

Master per bus is allowed [3].

• Assigned addresses: legal values for a slave device address are between 0010 000b

and 1111 110b (only 7 bit addressing allowed). This means that no more than 110

devices can be plugged on the bus at the same time [3]. The ARP master node is a

sort of system host, to which all the node refer to, when, among the other features,

in need of an I2C address.

• Fixed Slave Address: is a device not able to get a new address by the ARP Master.

The master in this case should not assign a slave an address used by a non-ARP

capable device. This feature is necessary to keep compatibility with the I2C devices

[3]. The SMBus system host node keeps a list of all the ”non smart” nodes address,

and will never assign one of these to a new node.

• Persistent Slave Address: In case of power loss the address is retained by the device.

This feature is very interesting, and useful, since the most complex and computa-

tion intensive phase of auto addressing is the bus arbitration. Address retention is

necessary to avoid redundant requests to the master node and keep busy the bus [3]

after a power loss or a general hardware reset.

• Used Address Pool: a list of slave address known to be used by non-ARP capable

devices, assigned to slave devices, reserved (like the default address, used to broad-

cast messages from the master to all the other nodes). A smart slave should never

be assigned one of these addresses [3].
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• UDID, Unique Device Identifier: each device (ARP capable) must have one of these

id, that will be used only during the ARP phase. SMBus defines it as a 128-bit long

address [3], necessary to the ARP Master to address the right node when assigning

a new 7bit address. This requirement of the SMBus might lead to problems covered

in the next lines.

2.2.2 1-Wire Bus

It’s a one wire bus solution designed by Dallas Semiconductors. On a single wire this bus

can provide a communication channel, signaling and power.

Power is granted on the slave device, by a small capacitor, which store power when

the line is high, to release it when it goes down, see picture 2.1. As soon the stored power

in the capacitor is drained out, the device will enter a reset state and will not reply to

the queries anymore. This scenario might happen during a long sequence of transmitted

zeros, when there is little chance for the parasite powering circuit to recharge [15].

Due to the absence of a clock line, the transaction from a logical zero to a logical one

(and vice versa) is based on strict timing, to which either the master and the slave have

to comply with. Every bit is transmitted over a timeframe of 60µs. The slot always start

with a logical ’1’, the bus line is retained down for less than 15µs. To write a ’0’ the line

has to be kept down for the entire length of the time slot, 60µs. There are exception to

this rules, and a time slot can be extended to 120µs [14].

Signaling is also provided through the single wire. To send a reset line signal the bus

is kept down for 480µs.

The bus is therefore very simple, and is indicated to communicate with relatively

simple devices, such as small EEPROM memory, temperature sensors, realtime clocks.

The bus is single master based, hence only one master device is allowed, also due to the

simplicity of each device. This preclude any ”smart” behavior from the slaves. However

there are some very interesting features on this bus that will be analyzed in the next
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Figure 2.1: The wiring diagram of the 1-Wire bus. The connected devices are ”scavenging”
the power from the data line, which is high when idle or transmitting a logic 1. Each
node store power in an internal small capacitor.

chapters that might be a good source of inspiration for the implementation of the proposed

I2C extension. This feature is the SEARCH ROM command, an algorithm that allows

the master to make an inventory of any non smart device connected on the bus.

2.3 Similarities in SMBus and 1-Wire

2.3.1 SMBus

With SMBus version 2 was introduced the ARP function, which lets to auto assign ad-

dress slots to the devices on the bus. Address assignment uses the standard AND-Wired

arbitration rules of the I2C . Once assigned an address remain constant for all the time the

device is powered up. Also address retention over a power loss period is allowed. Every

assigned device address is then used as any other I2C 7 bit address, and does not require

further overhead.

The system host (ARP Master) always execute the ARP service either when it enters

a working state or when it receives a bus state change signal. The process starts by ini-

tializing the Used Address Pool, populated at the beginning only by slave fixed addresses.

Then the master will issue the command ”Prepare to ARP”, as in flow chart 5.4. The dia-

gram comes from the official SMBus specification [3]. If any acknowledgement is received

then the ARP master will send the ”Gey UDID” command. It will wait for answers by
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the slave. If it get no answer then it assumes the device is no longer active. Otherwise

takes the address sent by the slave. If it is 0xFF then select a valid not used address and

assigns it to the devices witht he command ”Assign Address”.

If the device has a valid address then the ARP master tries to figure out if the device

is a fixed address by comparing the bits 126 and 127 of the UDID, if these bits are 00 then

the device is a fixed address. This address is added to the fixes address pool if not present.

If the said address belongs to a ”dynamic device” then its address is checked against the

Master Address list. If is not used then the node can keep its address, otherwise a valid

one will be selected and assigned to that node.

2.3.2 1-Wire

The 1-Wire protocol does not define any auto addressing schema, since each device is

univocally identified by a factory programmed 64 bit long address, which guarantees an

almost infinite number of addresses, making senseless any address resolution algorithm.

However the protocol provides a very handy command, called SEARCH ROM [14], that

allows the master node to discover which devices are plugged on the bus, without having

to know their address. This feature is very useful to the purpose of keeping backward

compatibility with already existing I2C hardware. SEARCH ROM uses a binary tree

search algorithm, to discover in a relatively short period of time the devices connected.

The implementation exploits some feature of the 1-Wire bus that make this technique

very fast. The I2C bus implementation will not be as fast as on the 1-Wire, but is still

worth to be implemented. This feature is covered in deatail in section 3.3.
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Figure 2.2: The flow chart of the ARP feature of the SMBus version 2.0, this flow chart
is quoted from the official specification of the bus [3].
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Chapter 3

I2C Bus

This chapter will examine address auto allocation as done by other protocols meant to be

used in an embedded systems context. The two which shares more similarities with I2C

are SMBus and 1-Wire. Although SMBus is very similar to the hereby prosed protocol,

will be shown how SMBus is not fully satisfactory solutions for the issues the I2C extension

aim to address. 1-Wire bus, is more minimal than I2C , requiring only 1 wire for data,

signaling and power. Is not suitable as a communication medium for complex embedded

devices, due to the lack of multi-master capabilities. The most relevant features of these

protocols will be discussed and compared against the requirement of the I2C extension.

3.1 I2C Bus Features and Characteristics

I2C is an serial bus designed by Philips and released to the market in 1982. Originally

was used for IC communication inside TV, its main use is for IC communication on the

same PCB. It runs at different frequency: 100kbit/s in the Standard-mode, 400kbit/s in

Fast-mode, 1Mbit/s in Fast-modePlus up to 3.4Mbit/s in the High-speed mode. Fast IC

can reduce their frequency to work on buses mixed with low speed elements. I2C is a

multi-master bus and only needs two wire, thus reducing the size of chip and the wiring

cost. These wires are SCL (Serial Clock) and SDA (Serial Data). The two lines are
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AND-Wired, meaning that if two masters are writing at the same time, the actual value

visible on the bus is the logical and of the two values. Such idea is the base of the I2C

bus arbitration, necessary in case of multi-master system. There is only one active master

per time. Other masters will behave as slave. Each device has its own hardware address,

which is static. Most of the IC have n pins available to set the last n digits of the address,

thus enabling more devices of the same kind to coexist on the same bus.
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3.2 SDA and SCL logic levels

Due to the variety of different technology devices (CMOS, NMOS, bipolar) that can be 
connected to the I2C-bus, the levels of the logical ‘0’ (LOW) and ‘1’ (HIGH) are not fixed 
and depend on the associated level of VDD. Input reference levels are set as 30 % and 
70 % of VDD; VIL is 0.3VDD and VIH is 0.7VDD. See Figure 27, timing diagram. Some 
legacy device input levels were fixed at VIL = 1.5 V and VIH = 3.0 V, but all new devices 
require this 30 %/70 % specification. See Section 6 for electrical specifications.

3.3 Data validity

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH 
or LOW state of the data line can only change when the clock signal on the SCL line is 
LOW (see Figure 4). One clock pulse is generated for each data bit transferred.

 

3.4 START and STOP conditions

All transactions begin with a START (S) and can be terminated by a STOP (P) (see 
Figure 5). A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START 
condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP 
condition.

 

START and STOP conditions are always generated by the master. The bus is considered 
to be busy after the START condition. The bus is considered to be free again a certain 
time after the STOP condition. This bus free situation is specified in Section 6.

The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. In 
this respect, the START (S) and repeated START (Sr) conditions are functionally identical. 
For the remainder of this document, therefore, the S symbol will be used as a generic term 
to represent both the START and repeated START conditions, unless Sr is particularly 
relevant.

Fig 4. Bit transfer on the I2C-bus

mba607

data line
stable;

data valid

change
of data
allowed

SDA

SCL

Fig 5. START and STOP conditions

mba608

SDA

SCL
P

STOP condition

SDA

SCL
S

START condition

Figure 3.1: Start and Stop conditions, to acquire the bus and to release it. This timing
diagram is quoted from the I2C standard specification [10].

As shown in 3.1 to acquire the bus and start the communication cycle the SDA line

must be pulled down while the SCL is high. Similarly the STOP condition happen if

the SDA line is pulled up when the SCL line is high. These two conditions are always

triggered by the master. Once the Start condition is issued, the bus is considered busy.

The I2C bus is byte oriented. The minimum data chunk sent is indeed a byte which is

always acknowledged by the receiver.

The communication always start with a START condition which is followed by a 7

bit slave address plus the Read/Write bit. After the actual data is transferred, and
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Detection of START and STOP conditions by devices connected to the bus is easy if they 
incorporate the necessary interfacing hardware. However, microcontrollers with no such 
interface have to sample the SDA line at least twice per clock period to sense the 
transition.

3.5 Byte format

Every byte put on the SDA line must be 8 bits long. The number of bytes that can be 
transmitted per transfer is unrestricted. Each byte has to be followed by an Acknowledge 
bit. Data is transferred with the Most Significant Bit (MSB) first (see Figure 6). If a slave 
cannot receive or transmit another complete byte of data until it has performed some other 
function, for example servicing an internal interrupt, it can hold the clock line SCL LOW to 
force the master into a wait state. Data transfer then continues when the slave is ready for 
another byte of data and releases clock line SCL.

 

3.6 Acknowledge (ACK) and Not Acknowledge (NACK)

The acknowledge takes place after every byte. The acknowledge bit allows the receiver to 
signal the transmitter that the byte was successfully received and another byte may be 
sent. All clock pulses including the acknowledge 9th clock pulse are generated by the 
master.

The Acknowledge signal is defined as follows: the transmitter releases the SDA line 
during the acknowledge clock pulse so the receiver can pull the SDA line LOW and it 
remains stable LOW during the HIGH period of this clock pulse (see Figure 4). Set-up and 
hold times (specified in Section 6) must also be taken into account.

When SDA remains HIGH during this 9th clock pulse, this is defined as the Not 
Acknowledge signal. The master can then generate either a STOP condition to abort the 
transfer, or a repeated START condition to start a new transfer. There are five conditions 
that lead to the generation of a NACK:

1. No receiver is present on the bus with the transmitted address so there is no device to 
respond with an acknowledge.

2. The receiver is unable to receive or transmit because it’s performing some real-time 
function and is not ready to start communication with the master.

3. During the transfer the receiver gets data or commands that it does not understand.

4. During the transfer, the receiver cannot receive any more data bytes.

5. A master-receiver needs to signal the end of the transfer to the slave transmitter.

Fig 6. Data transfer on the I2C-bus

S or Sr Sr or P

SDA

SCL

MSB

1 2 7 8 9 1 2 3 to 8 9
ACK ACK

002aac861

START or
repeated START

condition

STOP or
repeated START

condition

acknowledgement
signal from slave

byte complete,
interrupt within slave

clock line held LOW
while interrupts are serviced

P

Sracknowledgement
signal from receiver

Figure 3.2: The Byte and ACK is minimum communication unit, and is always acknowl-
edged. This timing diagram is quoted from the I2C standard specification [10].

acknowledged every byte. The session ends when the master place a STOP condition on

the bus. At this point the bus is considered available. 10 bit addressing is also available.

This was a feature introduced after the first specification, and had to keep its compatibility

with the existing ICs. So a reserved address is used (11110XX) but the last two digits

are the first two digit of the actual 10 bit address, whose other 8 bits follows in the next

byte, as shown in 3.3. The older 7 bit ICs will ignore this call, because that address is a

reserved one.

If a master needs to issue several commands to a slave, for example first to read and

then to write, it can do a repeated start condition to avoid to loose the bus. This is a very

simple feature of the I2C bus. Once the first cycle of transfer is completed, the master

reissue another START condition, instead of the STOP. This way it keeps the right on

the bus. The full sequence of byte transfer is shown in picture 3.4

I2C allows a master to send a general call, a command that is received by all the node.

Is a sort of broadcast in the IEEE 802.3 networks. If a slave does not need the data issued
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All combinations of read/write formats previously described for 7-bit addressing are 
possible with 10-bit addressing. Two are detailed here:

• Master-transmitter transmits to slave-receiver with a 10-bit slave address. 
The transfer direction is not changed (see Figure 14). When a 10-bit address follows 
a START condition, each slave compares the first seven bits of the first byte of the 
slave address (1111 0XX) with its own address and tests if the eighth bit (R/W 
direction bit) is 0. It is possible that more than one device will find a match and 
generate an acknowledge (A1). All slaves that found a match will compare the eight 
bits of the second byte of the slave address (XXXX XXXX) with their own addresses, 
but only one slave will find a match and generate an acknowledge (A2). The matching 
slave will remain addressed by the master until it receives a STOP condition (P) or a 
repeated START condition (Sr) followed by a different slave address.

• Master-receiver reads slave-transmitter with a 10-bit slave address. 
The transfer direction is changed after the second R/W bit (Figure 15). Up to and 
including acknowledge bit A2, the procedure is the same as that described for a 
master-transmitter addressing a slave-receiver. After the repeated START condition 
(Sr), a matching slave remembers that it was addressed before. This slave then 
checks if the first seven bits of the first byte of the slave address following Sr are the 
same as they were after the START condition (S), and tests if the eighth (R/W) bit is 1. 
If there is a match, the slave considers that it has been addressed as a transmitter 
and generates acknowledge A3. The slave-transmitter remains addressed until it 
receives a STOP condition (P) or until it receives another repeated START condition 
(Sr) followed by a different slave address. After a repeated START condition (Sr), all 
the other slave devices will also compare the first seven bits of the first byte of the 
slave address (1111 0XX) with their own addresses and test the eighth (R/W) bit. 
However, none of them will be addressed because R/W = 1 (for 10-bit devices), or the 
1111 0XX slave address (for 7-bit devices) does not match.

 

 

Slave devices with 10-bit addressing will react to a ‘general call’ in the same way as slave 
devices with 7-bit addressing. Hardware masters can transmit their 10-bit address after a 
‘general call’. In this case, the ‘general call’ address byte is followed by two successive 
bytes containing the 10-bit address of the master-transmitter. The format is as shown in 
Figure 15 where the first DATA byte contains the eight least-significant bits of the master 
address.

Fig 14. A master-transmitter addresses a slave-receiver with a 10-bit address

mbc613

R/W A1

(write)

A2 A A/A

1  1  1  1  0  X  X 0
SLAVE  ADDRESS

1st  7 BITSS DATA PDATASLAVE  ADDRESS
2nd  BYTE

Fig 15. A master-receiver addresses a slave-transmitter with a 10-bit address

mbc614

R/W A1

(write)

A3 DATA DATAA2 R/W

(read)

1  1  1  1  0  X  X 0 1  1  1  1  0  X  X 1

AA PSrSLAVE  ADDRESS
1st  7 BITS

SLAVE  ADDRESS
2nd  BYTE

SLAVE  ADDRESS
1st  7 BITSS

Figure 3.3: To address a 10 bit slave is used the normal 7 bit addressing but is used a
reserved address, for the first 5 bits, while the last 2 are the first 2 bits of the actual 10
bit address. This timing diagram is quoted from the I2C standard specification [10].

can ignore the command, and not acknowledge the command. All the other slaves will

acknowledge, but the master node is not aware of how many nodes are responding. The

second and n+1 bytes will be acknowledge by all the slaves able to handle that data. The

general call address is a byte all at 0. The general call has many function, most of the

time different for each IC. In some cases it is useful for a node to identify itself on the bus

as by picture 3.5.

3.2 I2C in Multi-Master Configuration

In the earlier sections the players of the I2C bus have introduced. These are a Master

node and a Slave node. The Master is always the node which initializes the transaction.

A Master can be in transmitting and receiving mode (up to the least significant bit of

the address byte). I2C bus supports more than one Master on the same bus, therefore a

Master might happen to be a Slave. Is also possible that two or more Masters initiate a
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3.11 10-bit addressing

10-bit addressing expands the number of possible addresses. Devices with 7-bit and 
10-bit addresses can be connected to the same I2C-bus, and both 7-bit and 10-bit 
addressing can be used in all bus speed modes. Currently, 10-bit addressing is not being 
widely used.

The 10-bit slave address is formed from the first two bytes following a START condition 
(S) or a repeated START condition (Sr).

The first seven bits of the first byte are the combination 1111 0XX of which the last two bits 
(XX) are the two Most-Significant Bits (MSBs) of the 10-bit address; the eighth bit of the 
first byte is the R/W bit that determines the direction of the message.

Although there are eight possible combinations of the reserved address bits 1111 XXX, 
only the four combinations 1111 0XX are used for 10-bit addressing. The remaining four 
combinations 1111 1XX are reserved for future I2C-bus enhancements.

Fig 11. A master-transmitter addressing a slave receiver with a 7-bit address 
(the transfer direction is not changed)

Fig 12. A master reads a slave immediately after the first byte

Fig 13. Combined format
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A/A

*not shaded because
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SLAVE ADDRESSS Sr PSLAVE ADDRESS

Figure 3.4: Repeated START condition to keep the right on the bus. This timing diagram
is quoted from the I2C standard specification [10].

transaction at the same time, but the communication would result completely garbled.

Therefore I2C has a method to decide which Master is allowed to continue the transaction.

This section is about the techniques implemented by I2C to arbitrate the access on the

medium.

3.2.1 Bus Arbitration

As aforementioned in a multi-master configuration more than one master might try to

access the bus at the same time, leading to potential transmission conflicts. So a bus

arbitration process has to happen among the master initiating a transaction. Slave devices

are never involved in the process, indeed this part of the I2C protocol is not needed in a

single master configuration.

In case two masters attempt to write a START condition on the bus, is necessary

to determine which master acquire the bus and the right to carry on the transaction.

This process is called arbitration and happens bit by bit and each time the SCL is HIGH
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There are two cases to consider:

• When the least significant bit B is a ‘zero’.

• When the least significant bit B is a ‘one’.

When bit B is a ‘zero’; the second byte has the following definition:

• 0000 0110 (06h): Reset and write programmable part of slave address by 
hardware. On receiving this 2-byte sequence, all devices designed to respond to the 
general call address will reset and take in the programmable part of their address. 
Precautions have to be taken to ensure that a device is not pulling down the SDA or 
SCL line after applying the supply voltage, since these low levels would block the bus.

• 0000 0100 (04h): Write programmable part of slave address by hardware. 
Behaves as above, but the device will not reset.

• 0000 0000 (00h): This code is not allowed to be used as the second byte.

Sequences of programming procedure are published in the appropriate device data 
sheets. The remaining codes have not been fixed and devices must ignore them.

When bit B is a ‘one’; the 2-byte sequence is a ‘hardware general call’. This means that 
the sequence is transmitted by a hardware master device, such as a keyboard scanner, 
which can be programmed to transmit a desired slave address. Since a hardware master 
does not know in advance to which device the message has to be transferred, it can only 
generate this hardware general call and its own address—identifying itself to the system 
(see Figure 17).

 

The seven bits remaining in the second byte contain the address of the hardware master. 
This address is recognized by an intelligent device (e.g., a microcontroller) connected to 
the bus which will then accept the information from the hardware master. If the hardware 
master can also act as a slave, the slave address is identical to the master address.

In some systems, an alternative could be that the hardware master transmitter is set in the 
slave-receiver mode after the system reset. In this way, a system configuring master can 
tell the hardware master-transmitter (which is now in slave-receiver mode) to which 
address data must be sent (see Figure 18). After this programming procedure, the 
hardware master remains in the master-transmitter mode.

Fig 16. General call address format

Fig 17. Data transfer from a hardware master-transmitter
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S 00000000 MASTER ADDRESS 1 PDATA DATA

Figure 3.5: A general call transfer sequence, to note the least significative bit of the second
byte, also used by an hardware master to advertise itself on the bus. This timing diagram
is quoted from the I2C standard specification [10].

(therefore no changes on the SDA are allowed) each master will compare the value on the

bus with what it has wrote. Such a process can go on for several bits. It is also possible

two master are able to complete a full communication without resulting into errors, given

the data written is the same. The arbitration happens when one master reads a different

value by the one it has written. For example, if it tries to write an HIGH on the SDA, but

it reads LOW, it means some other master has pulled down the SDA line. This master

then knows it has lost the arbitration, stops writing and might turn into slave mode. The

other master instead will complete its transaction.

The arbitration is possible due to the AND-Wiring of the SDA driver of the master

and the actual SDA line. If someone tries to place an HIGH on the bus while another

places a LOW, the result will be LOW, as in the logical AND, where 1 and 0 gives 0. Also

the SDL line is AND-Wired to support other features as in subsections 3.2.3 and 3.2.2.

The primary research focus of this dissertation is to push the limits of the I2C bus. I2C

AND-Wired arbitration might not be the best option to cope with the overcrowded bus
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transmissions are identical. The first time a master tries to send a HIGH, but detects that 
the SDA level is LOW, the master knows that it has lost the arbitration and will turn off its 
SDA output driver. The other master goes on to complete its transaction.

No information is lost during the arbitration process. A master that loses the arbitration 
can generate clock pulses until the end of the byte in which it loses the arbitration and 
must restart its transaction when the bus is idle.

If a master also incorporates a slave function and it loses arbitration during the addressing 
stage, it is possible that the winning master is trying to address it. The losing master must 
therefore switch over immediately to its slave mode.

Figure 8 shows the arbitration procedure for two masters. Of course, more may be 
involved depending on how many masters are connected to the bus. The moment there is 
a difference between the internal data level of the master generating DATA1 and the 
actual level on the SDA line, the DATA1 output is switched off. This will not affect the data 
transfer initiated by the winning master.

 

Since control of the I2C-bus is decided solely on the address and data sent by competing 
masters, there is no central master, nor any order of priority on the bus.

There is an undefined condition if the arbitration procedure is still in progress at the 
moment when one master sends a repeated START or a STOP condition while the other 
master is still sending data. In other words, the following combinations result in an 
undefined condition:

• Master 1 sends a repeated START condition and master 2 sends a data bit.

• Master 1 sends a STOP condition and master 2 sends a data bit.

• Master 1 sends a repeated START condition and master 2 sends a STOP condition.

Fig 8. Arbitration procedure of two masters

msc609

DATA
1

DATA
2

SDA

SCL

S

master 1 loses arbitration
DATA 1    SDA

Figure 3.6: The arbitration process takes works by AND-Wiring the data controller of
the master with the actual SDA line. If the bit written on the data controller is different
by what actually on the bus, it means the master has lost the arbitration. This timing
diagram is quoted from the I2C standard specification [10].

envisioned in this document. The new protocol requires a fully multi master environment,

so the number of elements trying to acquire write access to the bus is very high. This

paper will first experiment the behavior of the current bus arbitration policy in presence

of 15 masters on the same bus. The recorded results will be then compared to a bus

arbitration technique very similar to a back off based access policy. When a master

looses the arbitration it will back off for a random time before to transmit again. This

should reduce the chances that after several masters have lost arbitration they try to write

altogether, leading to another conflicting situation. Another optimization is to make the

arbitration happen as soon as possible, with the lowest number of bytes transmitted.

Transmitting a random first byte might increase the chance of arbitration, since it is done

on bit by bit basis.
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3.2.2 Clock Synchronization

Arbitration can happen either at Data level as well as at clock level. Different masters

can have a different clock. I2C has a schema to synchronize the serial clocks from all

masters. Having all the same clock frequency will facilitate the arbitration process seen

in subsection 3.2.1. When a master pulls LOW the SCL line, if this stays LOW after the

LOW period has expired means that another master is keeping it LOW. The first master

keeps counting off the time the SCL line stays LOW until it reaches an HIGH state. All

the masters will start the timer for the HIGH state. The first master whose timer timeout

will pull LOW the SCL line. So the clock is synchronized among all the masters to the

longest LOW period and to the shortest HIGH period.
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3.7 Clock synchronization

Two masters can begin transmitting on an idle bus at the same time and there needs to be 
a method for deciding which will take control of the bus and complete its transmission. 
This is done by clock synchronization and arbitration. In single master systems, clock 
synchronization and arbitration are not needed.

Clock synchronization is performed using the wired-AND connection of I2C interfaces to 
the SCL line. This means that a HIGH to LOW transition on the SCL line will cause the 
masters concerned to start counting off their LOW period and, once a master clock has 
gone LOW, it will hold the SCL line in that state until the clock HIGH state is reached (see 
Figure 7). However, the LOW to HIGH transition of this clock may not change the state of 
the SCL line if another clock is still within its LOW period. The SCL line will therefore be 
held LOW by the master with the longest LOW period. Masters with shorter LOW periods 
enter a HIGH wait-state during this time.

 

When all masters concerned have counted off their LOW period, the clock line will be 
released and go HIGH. There will then be no difference between the master clocks and 
the state of the SCL line, and all the masters will start counting their HIGH periods. The 
first master to complete its HIGH period will again pull the SCL line LOW.

In this way, a synchronized SCL clock is generated with its LOW period determined by the 
master with the longest clock LOW period, and its HIGH period determined by the one 
with the shortest clock HIGH period.

3.8 Arbitration

Arbitration, like synchronization, refers to a portion of the protocol required only if more 
than one master will be used in the system. Slaves are not involved in the arbitration 
procedure. A master may start a transfer only if the bus is free. Two masters may 
generate a START condition within the minimum hold time (tHD;STA) of the START 
condition which results in a valid START condition on the bus. Arbitration is then required 
to determine which master will complete its transmission.

Arbitration proceeds bit by bit. During every bit, while SCL is HIGH, each master checks to 
see if the SDA level matches what it has sent. This process may take many bits. Two 
masters can actually complete an entire transaction without error, as long as the 

Fig 7. Clock synchronization during the arbitration procedure
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counter
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wait
state

start counting
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mbc632

Figure 3.7: This diagram shows the clock synchronization process. Each master adopts
the longest LOW period and the shortest HIGH period. All the masters will go through
the transmission with the same clock frequency. This timing diagram is quoted from the
I2C standard specification [10].
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3.2.3 Clock Stretching

The clock stretching is a feature performed by the receiving slave. It allows the slave to

hold LOW the clock line forcing the master transmitter in a wait state until the line is

driven HIGH again. Such a feature might be very useful in those cases a slave has to

process the bytes as soon it receives them. It might take longer than an I2C clock cycle,

so it can pause the master from transmitting holding the line LOW. As soon the slave

has completed its processing it turns HIGH the clock and the master transmitter can

transmit the following byte. This feature is optional, and most I2C slave devices do not

implement it. However it can be very useful in the context of the I2C Extender where all

the Clients are micro-controllers and they can take advantage from this option. However

any Client should never stretch the clock during a General Call or a multicast transaction.

The implementer of the I2C Extender protocol should take care to disable this feature

when this particular exceptions happens.

3.3 Compatibility With Existing ICs

Existing I2C hardware don’t provide any auto-discovery function. Therefore the master

has to be programmed with hard coded the addresses of these devices. This does not let

the hot swapping of new devices on the bus. The following section will explain how a

binary tree search is used to automatically discover this kind of devices connected on the

bus. I2C does not provide any command to discover what kind of service a node provides,

making impossible the use of existing hardware once it is discovered. However this is still

a very useful function, to avoid to assign an address that is already assigned to another

device, making backward compatibility possible.

This feature is implemented similarly to the 1-Wire SEARCH ROM command, picture

3.8 shows the flow chart of this auto discovery function. The Search Rom function id is

F0H, so its logical flow will start from the conditional block containing that ID. The Search

Rom function is the most complex of the ROM function of the 1-Wire Bus. However ti
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can still be executed in few milliseconds, the standard specification show how it can run in

only 13 milliseconds [14]. An approach similar to this might be implemented over the I2C

bus. Would be very helpful to the system host to auto-discover non smart devices plugged

on the bus. Therefore allowing the systems host to mark their addresses as occupied.

3.4 Conclusion

In Chapter 3 were covered the main features of the I2C bus. Its simplicity and yet ability

to support sophisticated features make it the best candidate for the hereby proposed

protocol. This chapter has covered the most intimate mechanisms of the I2C protocol,

necessary to understand how the I2C Extender will fit flawlessly on it. Features such as

the General Call and the various synchronization procedures are necessary to extend the

I2C protocol itself. Some I2C Extender features, such as the multicast addressing will

make extensive use of the General Call, trying at the same to keep the system overhead

at the lowest level.

In Chapter 4 there is an extensive description of the approaches considered in the I2C

extension to comply with the requirements. The next chapter will focus on the design of

the protocol of the I2C Extender, introducing the reader to the new mechanisms designed

to fulfill the requirements.
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Chapter 4

Protocol Design

This chapter is meant as a specification document of the protocol. It shows the communi-

cation logic, what are the differences among the Client side and the System Host side and

how they interact to each other. The aspects of the I2C Extender covered in this chapter

are built on the standard I2C specification seen in the previous chapter. Although for

every improvement brought by the I2C Extender will be revised the relative standard be-

havior, is better to read the Chapter “I2C Bus” before this one. This chapter is generic,

and does not cover any implementation detail. It explains how the addressing schema

changes to allow features like a wider address space, node clustering and multicast. Every

aspect is explained at high level, to allow to replicate the same characteristic on the most

various micro-controller typologies.

Each design choice is presented, discussed and evaluated in the chapter. Later in the

chapter, is shown why each transaction is kept atomic and why the protocol is packet

oriented. Before to close the chapter a section will introduce some improvements to the

protocol, or alternative design choice not implemented in the final specification.

The last section of the chapter, ”Improvements and Alternative Design”, describes is-

sues that might arise in particular operational states. Certain hardware configuration
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might create problems partially avoidable via software. In that section are proposed pos-

sible solutions. Along these are described alternative approaches to some features of the

I2C Extender. The section is intentionally cursory, meant as a source of suggestions for

future improvements.

4.1 Addressing

As seen in the earlier chapter 2, the SMBus protcol, based on I2C , allows hot-swapping.

However it needs a pre-defined, unique 128 bit hardware id. Which could be seen as

a sort of hardware modification and since each id also identify the producer, it reduces

the spectrum of hardware compatible with the bus. However the main point of the I2C

extension is exactly to avoid any hardware changes, keeping it as standard as possible.

Also the SMBus protocol is not implemented in many general purpose micro-controllers,

making it no option to construct sensor and actuator arrays. Another reason to not use

SMBus is the limited number of nodes attachable on the bus, capped to 128 (120 due

to some of the address space reserved for some protocol features). The I2C extension

changes completely the addressing schema of I2C , increasing dramatically the address

space available. However the protocol does not deal with the physical limit, imposed

by the electrical capacity of the cable. Each device connected to the bus increase the

electrical capacity on the wire, the length of the wire itself causes this. Increasing the

capacity the wire will behave as a battery, needing longer transition time from an high

value to low value.

4.1.1 Address Space

I2C has two addressing schemas, 7 and 10 bits, giving space for 120 and 1016 addresses

(excluding the reserved addresses). The I2C extension uses exclusively the 7 bit format,

and only to create groups or clusters of nodes. The addressing is based on a 16 bit iden-

tification number, called Client ID. How each client obtains it is explained in the ARP
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Implementation section. Therefore each device (apart the System Host) is identified by a

16 bit + 7 bit (from I2C ) pair, making up a 23 bit addressing schema.

Not all the 16 bit client IDs are available. 64 are indeed used to implement a multi-

cast address. Each client ID combination, whose 10 most significant bit are set to 1, are

considered reserved. So the I2C protocol stack will try to match any sequence like 1111

1111 11xx xxxx to its own multicast address, while the six least significant bits define the

multicast group. Each client has to have a stack of 6 bit group id. Indeed each Client can

register itself to more than one multicast group. 00 0000 is reserved and used as default

value (no group registered). A Client are registered into a multicast group by the System

Host. A multicast transaction is unidirectional, from the System Host to the Clients.

Multicast addresses are issued after an I2C general call, therefore any client grouped into

any cluster (the 7 bit I2C address), can receive it. No client can respond to a multicast,

since the answer would have no meaning to the issuer (more than one slave could try to

write on the bus at the same time). So the application protocol commands built upon a

multicast should be designed as write only. However the Clients registered to a multicast

group, can react to a multicast command, trying to start a transaction with the System

Host.

Registration to a multicast group is not compulsory: should be used only when nec-

essary, due to the high amount of traffic one multicast call can generate on the bus.

Why clustering? Clustering is meant as a way to save power and make the whole system

more energy efficient. In some micro-controller the I2C hardware is independent by the

MCU core. This allows to put the core in deep sleep, while having the I2C controller

monitors the bus traffic. The I2C Extension does not make direct use of the standard

addressing schema. Therefore the only way to send an addressing command, is to use the

general call. Anytime a general call is issued the controller raises an interrupt to wake
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up the MCU core to process the content of the packets. These might not be relevant to

some slaves, but still all the slaves on the bus had to be waken up.

The I2C bus extender heavily relies on the general call, to supply all its command and

also to address clients. So any time the System Host, or some other client tries to address

a device, all should wake up. Clustering allows the protocol to wake up only a subset of

the clients on the bus. Such behavior is made possible using the standard 7 bit schema,

which becomes part of the Client’s ID. This subdivision is performed by the System Host,

which takes care to have balanced clusters.

Also clustering allows to increase the chances the arbitration process goes to an end

in a shorter period of time. Arbitration happens only when two masters are trying to

access the bus: allows a master to win the bus and complete the transmission. From

the I2C specification [10] “This procedure (arbitration) relies on the wired-AND connec-

tion of all I2C interfaces to the I2C-bus”. Arbitration is determined bit by bit: for each

one wrote on the bus, the master checks if it matches what is on the bus. If there is

no match, then that master loses the arbitration and steps back, turning into a slave

device. Clearly if addressing a device had to happen any time by general call, the first

byte written is the same for each master. Clustering increases the chances two masters

are writing different data, making one of the two (or more) winning the arbitration earlier.

The I2C extension introduces three new concepts about addressing:

• Cluster ID - is a group of nodes made using the I2C 7 bit address. Is set to 1111

111 at start up, and reset by the System Host, to create balanced groups.

• Client ID - is the actual host identifier. Is a 16 bit value. When a Client matches

its own Cluster ID with what issued on the bus, it will wait for the transaction

master to issue a Client ID. After the match, the transaction continues with any
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other protocol command.

• Multicast address - is a 6 bit long ID, in the form of 1111 1111 11xx xxxx. Is always

issued after an I2C general call (Cluster ID 0000 000). The clients will match the

most significant 10 bits with a sequence of 1s, indicating that what follows is the

Multicast ID. If there is a match the client will keep reading the bus.

The next section describes how a client gets assigned its own Client ID and Cluster

ID. This also describes how the clients interact with the System Host.

4.1.2 Client and Cluster ID acquisition

To begin with the I2C Extension does not make use of the Read direction. All commands

are issued as Write. This is due to a technical restriction of the Read in the standard

I2C , where the transmission direction switches from ’sending master receiving slave’ to

’sending slave receiving master’ after the first data byte [10]. The I2C Extension needs

the first two data bytes to issue the Client ID, making useless the I2C read. Therefore

the protocol is asymmetric, and requests and answers happen in separate transactions.

As seen in the previous section each client is assigned a unique 16 bit ID. Alongside

this assigned the normal 7 bit I2C address, which will work as a Cluster ID.

The Client ID is self assigned by the Client (now called Address Requester) itself, and

confirmed by the System Host. Client ID acquisition is a procedure that spans on two

stages.

• The Client generates its own ID randomly.

• The Client ask the System Host to confirm its own Client ID. This to ensure is

unique.

The first stage, the generation of the ID, can happen with any reliable random number

generation approach. There are several options, such as the von Neumann’s Monte Carlo
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method, which can be combined with other hardware based generation. More about the

topic will be coved in chapter ”Prototype Implementation”.

The second stage is more delicate, and its success is necessary to ensure unique Client

IDs across the extended I2C network. This process will introduce the use of states. The

protocol is designed to act as a state machine. So each client will have one state per time,

in which is able to perform some kind of operations, in this case Client ID confirmation.

States are also necessary to keep track of replies to a command, due to the asymmetry of

the I2C Extender protocol.

It issues the Acknowledge ID command by: START condition, followed by the I2C ad-

dress of the system host (the standard address is 0001 111) and the write bit (0), then the

bus command ’Acknowledge ID’ coded into 0x41 or 0100 0001, followed by the two bytes

containing the 16 bit Client ID. If all the bytes are acknowledged, the Client enters the

Acquisition state and sets itself the temporary Cluster ID 0001 110. Note that the System

Host might decide to not acknowledge the bytes after the ’Acknowledge ID’ command,

if it is already dealing with another Address acquisition process. In this case the not

acknowledge Client has to step back and try later (10 seconds).

Table 4.1: Acknowledge ID

START SYS HOST + W A 0x41 A Rnd Cluster ID
A Client ID H A Client ID L A STOP

Table 4.2: Ping ID - Request

S GC + W A 0xC1 A Client ID H A Client ID L A P

After this command, is sent, the Client ignores any packet sent to its ID, until it

receives either a Regenerate ID or Valid ID command. These two commands are System

Host only. In the meantime the System Host tries to discover on the network other devices
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Table 4.3: Ping ID - Reply

S SYS HOST + W A 0xC2 A Client ID H A Client ID L A P

Table 4.4: Regenerate ID, note that 0001 110 is the temporary Cluster ID.

START 0001 110 + W A 0x44 A New Cluster ID
A New Client ID H A New Client ID L A STOP

with the Client ID it has just received by pinging that Client ID on the I2C bus. If it gets

any reply it means that ID was already taken by some other slave. If this happens the

System Host issues a ’Regenerate ID’ command followed by the Client ID. This command

will be ignored by any Client that is not in the ’Acquisition’ state.

The Ping command is made of two parts: a System Host ping request (see table 4.2),

coded into 0xC1 or 1100 0001, issued by Cluster ID or GC. This is up to the state of

the I2C Extender protocol. In this case (Client ID acquisition and acknowledge) the ping

request is sent by General Call. If any client should match the Client ID pinged with its

own, then it answers by ping reply. Ping reply (see table 4.3) is the second part of the

Ping command and is coded into 0xC2 or 1100 0010. It should do so by 500 ms, and all

other host step back any Start condition for that period of time (after they received any

ping request). The ping reply is sent at the System Host I2C address, which is 0001 111.

If the System Host ping timer expires (after 500 ms), then it assumes nobody on the

I2C bus has got that Client ID. Therefore it consider the Client ID valid, and it con-

firm so at the client itself, issuing the command Valid ID coded into 0x43 or 1100 0011

(see table A.2). Valid ID is sent at the client using the pair temporary Cluster ID +

Client ID + new Cluster ID. The new Cluster ID is part of the balanced groups dis-

cussed at the Chapter’s Introduction. All the bytes have to be acknowledge to consider
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Table 4.5: Valid ID, note that 0001 110 is the temporary Cluster ID.

START 0001 110 + W A 0x43 A New Cluster ID
A Client ID H A Client ID L A STOP

the Valid ID command transmission as successful. If the transmission is not successful,

then the System Host will try two more times, after which the Client ID + Cluster ID are

discarded. If everything goes right the System Host will push the pair into a Clients stack.

In case the System Host ping does not expire and a reply is received, it means some

other client has that Client ID. Therefore that Client ID should not be considered avail-

able, and the Address Requester should generate a new one. The System Host uses the

command ’Regenerate ID’ to instruct the Address Requester that its ID is already taken.

This command is coded as 0x44 or 1100 0100 (see table 4.4) and is sent at the tempo-

rary Cluster ID + Client ID pair. At this point the Address Requester client should

exit the ’Acquisition’ state, and repeat the procedure from the first step, the random ID

generation.

4.2 Multicast

Multicast is a new feature introduced by the I2C Extension. It allows the System Host to

create virtual groups of hosts, and to issue commands to them with one single transaction.

Is composed of two commands: ’Set Multicast’ and ’Unset Multicast’. These are issued to

a specific client. Each Client can be registered in more than one multicast group, the limit

is the memory of the client device. Each client device keeps a stack of multicast ids it is

registered on. Each multicast id is 6 bit long. Setting a multicast address is a quite simple

operation. The System Host writes on the bus, the Cluster ID, Set Multicast, Client ID,

and the multicast group address. This command is coded as 0x45 or 0100 0101 (see table

4.6). Of the multicast group address only the least significant 6 bit are retained, and the
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2 most significant are set 0 by default.

Table 4.6: Set Multicast group address

S Cluster ID + W A 0x45 A Client ID H + L A 00xx xxxx A P

Table 4.7: Unset Multicast group address

S Cluster ID + W A 0x47 A Client ID H + L A 00xx xxxx A P

To unset a multicast group address from a client, the System Host has to write the

Unset Multicast command on the bus. Is also quite simple, the sequence is Cluster ID +

Unset Multicast + Client ID + Multicast group address as in the Set Multicast command.

The only difference is the command Unset Multicast, coded as 0x47 or 0100 0111 (see

table 4.7).

Table 4.8: Write a command to a Multicast group address

S GC + W A 0x48 A 1111 1111 11xx xxxx A DATA A P

Writing to a multicast group is also very easy. Is a normal I2C Extender write on

bus command, the only difference is the Client ID, which uses the special Multicast ID

code, which is 1111 1111 11xx xxxx the x’ are replaced by the Multicast Group address

the System Host wants to write to. The group 00 0000 is reserved and is indeed the

standard group every host is registered to by default (it actually means no Multicast ID).

There is no Cluster ID and the Multicast write has to be issued with a General Call. The

command is coded as 0x48 or 0100 1000, In table 4.8 is shown Multicast Write.

4.3 Bus channel multiplexing

The I2C bus channel multiplexing is a feature which directly involves only the System

Host. Is also the only feature to require extra hardware other then the I2C hardware
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controller. It is based on an IC which allows to multiplex up to four separate bus, to

support mixed voltage levels, communication speed and to resolve address conflicts on

standard I2C devices. It is also very useful to increase the number of devices available,

due to the full separation of the four busses (from here channels). These channels behaves

as independent busses and are set active only one per time by a bus master. However for

some applications, such as those mentioned in the earlier chapters, is necessary to have a

more flexible allocation procedure of the channels. The proposed I2C Extension protocol

aims to transparently allocates the System Host time to each channel, in a completely

transparent fashion. The four or more channels, are therefore treated as a single virtual

bus. In Section 4.4.1 is explained how each channel is scheduled to the System Host.

The most common I2C multiplexer is the PCA9544, the I2C Extender protocol is im-

plemented on this integrated circuit. This IC has one upstream I2C interface which fans

out to 4 downstream SDA/SCL pairs also called ”channels”. The System Host is con-

nected to the upstream interface. The channels are 4 independent I2C buses which can

be selected as active by the ”master” device, in this case the System Host. The channel

selection is done by writing a byte to the control register of the multiplexer. Such control

register is as described in Table 4.9.

Table 4.9: The PCA9544 control register.

7 6 5 4 3 2 1 0

INT3 INT2 INT1 INT0 X B2 B1 B0

Bits 7 to 4 are read-only interrupt flags, these are set to 1 when an interrupt is raised

by a device on the respective I2C channel. This feature is not used by the I2C Extender.

Although using the interrupt handler would have simplified the protocol design, it needs

some extra hardware which is contrary to the design requirements.

Bit 3 is not used. Bit B2 when set to 1 enables the channel set in bits B1 and B0.

40



The channel determined in bits B1 and B0 is selected only when a STOP condition is

placed on the upstream bus, to ensure all the SDA and SCL lines are in HIGH state [13].

This precaution should avoid that any false condition is written on the bus.

The next section introduces the Channel Scheduling protocol, and how it avoids that

any false condition is generated on the downstream interfaces of the multiplexer. This is

not an unlikely event, since the whole system is multi-master from an I2C point of view.

4.4 Bus Multiplexing Commands

The I2C Extender aims to support I2C bus multiplexer in transparent way, to join all the

channels into a single virtual bus. To support this feature the System Host is scheduled

to each channel in Round Robin, allowing 250 ms to each channel, before switching to the

next one. To select a channel the System Host write a configuration byte on the control

register of the PCA9544. To do so it issues the sequence of Table 4.10;

Table 4.10: Set the PCA9544’s Control Register to activate channel 1.

Start Address + W Ack EN bit + Ch Ack Stop

START 1110XXX + W A 0000 0101 A STOP

The channel becomes available after the Stop condition. The System Host has to

notify all the Clients connected on that channel that they can communicate with the

central node. To do so the System Host issues, in general call, the channel active message

coded as 0xAA or 1010 1010, see Table 4.11. Once the Clients receive this message they

can communicate with the System Host. A window of 250 mS is available before it shifts

to the next channel. This command is received only by the Clients of the currently active

channel.

Once the time frame scheduled for that channel has expired the System Host will

notify all the Clients writing the deactivation message on the bus, see Table 4.12 for the
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Table 4.11: System Host notifies all Clients that their channel is now active by sending
the following bytes.

Start General Call Ack Enable Command Ack Stop

START 0000 0000 A 1010 1010 A STOP

message structure. The deactivation command is coded as 0x55 or 0101 0101.

Table 4.12: System Host notifies all Clients that their time frame is finished, and that the
next channel is being activated.

Start General Call Ack Disable Command Ack Stop

START 0000 0000 A 0101 0101 A STOP

The time frame can be extended to complete an ongoing transaction. If the timer

timeouts, and a transaction is not completed (e.g. has been received a command, but a

reply is not yet issued), the System Host pushes the pending message into a stack, to be

executed once the relative channel is scheduled again. When the System Host schedule a

channel for which there are pending transactions it will resume them before to send the

”Channel Enabled” message. This is essential to ensure the System Host has absolute

precedence on bus acquisition, and to avoid the Clients to resend the request due to

timeout of the previous. Such policy will reduce the overall traffic on the bus.

This is not a fair scheduler. In Section 6.2 are described few improvements to increase

the fairness of the system. The selection of the channel, happens through the standard

I2C transaction, as seen in the previous section.

4.4.1 Bus Channel Scheduling

The channels are scheduled by the System Host in a Round Robin fashion. Each channel

is set active for a certain time frame, decided by the System Host. This timer is started

as soon the System Host sends the ”Channel Enabled” message. When this timer times

out, the System Host will issue the command ”Channel Disabled” and will schedule the
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next channel regardless of any pending transaction. If any request has not been satisfied,

this will be pushed into a stack and resumed the next time that channel is selected. Such

a scheduling policy is not fair. This is also due to the bus acquisition process the Clients

have to go through. A Client might loose the bus arbitration several times, before it

can contact the System Host. This becomes even more likely when the bytes it has to

transfer contains many zeros. It might also happen that this Client get to complete a

transaction only few instant before the timeout of the time frame. The System Host will

move on, scheduling the next channel, and not satisfying that request. Also other clients

on the other channels can be eager to contact the System Host as soon possible, and

before a transaction is completed successfully can pass an undetermined time, leading to

data starvation. Such a scenario becomes more likely in over populated busses. The I2C

Extender tries to reduce the likelihood of this situation by completing all the suspended

transactions before to notify the Clients their channel is active. This is not a full solution

but is compatible with the requirement of simplicity of implementation, in section 6.2 are

discussed better solutions.

4.4.2 Commands and States

In the past sections were introduced the commands of the I2C Extender. However the

commands itself are only a part of the I2C Extender. To each command, either received

or sent, is associated a state. Indeed the whole system is a finite state machine. Such

an approach is also used by the vast majority of the I2C hardware implementation [2, 9],

revealing itself as the easiest way to keep different systems (the Clients and the System

Host) consistent to each other. Whenever a Client or the System Host send a command,

they enter a particular state, either to receive a reply or to accept incoming commands.

In the next chapter will be covered in the detail the state machines associated with each

command.
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Chapter 5

Prototype Implementation

This chapter is meant as a documentation of the prototype design. It shows what the

various components of the software are for and how they interact to each other. The I2C

extender works at a very low level, therefore each section will cover the interaction of

hardware and software. For example will be explained how a provisory client ID is gener-

ated randomly using an ADC converter, or how the System Host allocates CPU time for

the multiplexer channels. Said description is split in two separated sections, one for the

software running on the clients and the other covering the System Host software.

A similar structure is kept for the hardware sections, where is introduced the hardware

designed for the prototype. The section about the client design is more vast than the one

about the System Host. The client hardware has been designed from scratch, while the

System Host is a standard ARM7 development board. Still some custom System Host

hardware is present, mainly regarding the wiring of the I2C multiplexer.

Section 5.5, will provide an overview of I2C used over long wires (�10 Meters). Most

of the section will provide considerations about the I2C Extender implemented on a bus

setup as described in the application note about long distance communication [8].
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5.1 Software Design - Client

The next subsections go through the most important I2C Extender procedures performed

by the Client ID. These explain how the Protocol introduced in Chapter 4 have to be

implemented. Where strictly necessary is made use of finite state machines.

5.1.1 Acquire ID

The most critical phase the I2C Extender has to cope with is the Client ID and Cluster ID

acquisition. In the worst case scenario as soon the bus is powered up all the clients try to

access the the bus at the same time. The standard I2C mechanisms, bus arbitration and

clock synchronization, are not sufficient. One of the priority is to make the arbitration

happen as soon as possible. Therefore increasing the entropy writing some random data

on the bus might be of help. Before to try any bus acquisition every Client generates 3

random bytes. One is stored in the I2C address register of the micro-controller, and is the

random Cluster ID, the other two bytes are used as Client ID High and Low. So there are

24 random bits, leading to 16.777.216 possible combinations. In Table 4.1 is clear that

these bytes are sent relatively early, after the Acknowledge ID command (0x41). This

helps the arbitration.
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Figure 5.1: The Client’s Address Request procedure finite state machine.
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However this happens only after the Client has made sure the Temporary Cluster ID is

not taken and available. The Cluster ID is reserved I2C address (0001 1100) whose scope

is to create a clear ”area”, where to hold the communication with the System Host wile

waiting for it to assign it an available Client ID. The Temporary Cluster ID is reserved

for only one Client per time. Before to send the 0x41 command, the Client interested

pings the Temp Cluster ID with a standard I2C transaction. If it gets no answer (NACK)

then it issues a repeated START condition (do not release the bus), and sends the 0x41

command, writing also the random Cluster ID and the two random Client IDs. At this

point the arbitration should have happened. The transaction continues if all the bytes of

the 0x41 command are acknowledged. If not, the state machine is reset to state START.

Otherwise it goes in TEMP state, where it will set immediately its Cluster ID to 0001

1100 and waits for an reply from the System Host. If the transaction timer (500 mS)

should timeout, the state machine is reset to START. It carries on to accepted states only

if it receives the message 0x43 (Valid ID) or 0x44 (Regenerate ID). Whichever it receives

it has to set Client ID and Cluster ID to the new values. This double state is intended to

keep track of changes made at the Client ID by the System Host. It is more a debugging

feature than something necessary.

5.1.2 Ping

The Ping command (coded as 0xC1) is a powerful management feature. This Ping com-

mand pings the 16-bit Client IDs. To ping the standard 7-bit addresses (such as the

System Host or the Temporary Cluster ID) the I2C command must be used. It is mostly

used by the System Host to know the status of a Client. If this does not reply to any

Ping, it is probably off-line therefore might be removed from the System Host’s Clients

list. A state machine is involved only when transmitting a ping request. In the other

direction there is no need of a state machine. The interested Client simply sends back the

command 0xC2. In case a Client needs to know about the state of another Client it has to
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write the ping 0xC1 command (and win the arbitration), then it waits for a reply. It must

allow 500 mS for the other party to reply. The fact a the other part has acknowledged

all the bytes transmitted is already a good point, but to be sure the request was actually

processed is better to wait to receive the message 0xC2. If no reply is received after 500

mS then the ping is KO.

�������

�������

����� ������
���������

����������������

�������������

Figure 5.2: The Client’s Ping Request procedure finite state machine.

5.1.3 Multicast

The multicast procedures do not base their mechanism on any internal finite state ma-

chine. The communication is direct and considered failed if not acknowledged. When the

System Host addresses a Client to register it into a multicast group it gets a response

immediately, so it does not have to keep track of this transaction’s state while dealing

with other transactions. The Set Multicast Group command (coded as 0x45) is considered

transmitted and executed successfully whenever all the transmitted bytes are acknowl-

edged. The client on its side receives two bytes of Group ID of which stores the second

byte ( only the 6 least significant bits are relevant). When the client receives, via General

Call, the command 0x48, it will and mask the second byte with the stored byte. If there

is a match, then the client will process the following bytes, otherwise it ignores them.

The Unset Multicast Group command (coded as 0x47) works pretty much the same way
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as the Set Multicast Group. The transaction is considered successful only if each byte is

acknowledge. When a Client receives this command it keeps the second byte of the multi-

cast address, seeks it in its list of multicast groups. If any it deletes the entry. If no group

is found then it ignores the request. Clearly such approach is not failure proof: the Sys-

tem Host has no certainty that either the ”Set Multicast Group” or the ”Unset Multicast

Group” once received are actually processed. However, due to the constrained bandwidth

of the I2C bus, it is worst to flood the bus with control packets, so this uncertainty is the

least worst problem.

5.2 Hardware Design - Client

The Client hardware passed through several different stages. The first steps of the Client

software development was made on the common Arduino Duemilanove AVR development

platform. It is programmed in plain C. Contrary to what originally planned no operating

system is used. The Arduino platform is very convenient to prototype, it offers a micro-

controller with all the extra hardware needed to program and power it up. It has an LED

on one of the output lines, and a power regulator circuit, it can be programmed through

the serial port. The low price is another good reason to choose it. The micro-controller

installed is an ATmega328 running at 16MHz through an external oscillator, it has 2

KBytes of ram, 1 KByte of EEPROM and 32 KBytes of in-circuit programmable flash

memory. The board comes with a very handy ICSP (In-Circuit Serial Programming).

Through this 6 pin interface is possible to flash new software on the micro-controller.

It is also possible to debug the program, this family of MCU supports the debugWIRE

protocol, to support program flow control using one single wire and one pin of the micro-

controller (specifically the RESET pin). To use this feature is necessary to have an

hardware programmer that supports it, such as the AVR Dragon. To enable the various

features the ATmega328 supports it necessary to ”burn” the correct fuses, which are flags

of a configuration register. This is done through the ISP interface. This operation is
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delicate, because if mistakenly the ISP is disabled, it is not be possible to re-enable it

unless through high voltage programming [2]. The software development was delayed due

to errors programming these fuses.

The first phase was to use the Arduino Duemilanove as a way to learn the ATmega328

programming. The second step was to create a custom hardware where to run the I2C

Extender client software. As stressed in Chapter 1 one of the requisite is to run the

software on commercially available hardware and possibly very simple and low cost. The

final design, is indeed very simple and is made of the bare minimum components needed

to make the ATmega328 run. From the schema, in Figure 5.3, is possible to appreciate

the low complexity of the hardware needed to run the I2C Extender.

The most notable parts are few decoupling capacitors, C1 is needed to stabilize the

current flow that powers the system. While capacitors C2 and C3 are necessary to separate

the crystal Q2 from the ground, and make it less sensible to sudden variation of current.

The crystal is a normal tin encapsulated component which provides a clock of 16 MHz.

On the top part of the schema is possible to see the ISCP connector, to program the

flash and EEPROM memory. As mentioned earlier is possible to debug the software from

this interface. On the bottom right side of the schema there are a yellow and a green

LED, originally intended to signal the status of the client. Currently the software does

not make any use of them. Above the LEDs there are 4 pins. The two labelled SDA and

SCL go to the I2C bus. No pull up resistors are needed, these should be installed nearby

the PCA9544, the most logical location. If each client carried its own pull up resistors

the two I2C line would always have a voltage too low to be recognized as HIGH.

The schema in Figure 5.3 was derived from the Arduino Duemilanove itself, stripping

away all the non necessary components. The ATmega328 data-sheet [2] gave further hints

about what is strictly necessary to run this micro-controller. These parts were the USB

to RS232 converter and the circuitry to program the flash through the boot-loader (each

Arduino has a boot-loader, which is absent on these clients). Also the power regulator

was unnecessary, at least for the scope of the prototype, since all the devices are the same
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Figure 5.3: The client schema is very minimal, there are just the bare minimum compo-
nents to run the ATmega328. This simple design has been chosen to stress the idea that
the I2C Extender is intended for extremely low power and low cost hardware.

and they take power from a common VCC line. The VCC line is stable at 5 Volts by

design.

However this prototype did not function as expected. This is due to the not very precise

assembly of the prototypes. After several attempts to make it working the best option

seemed to revert to the standard Arduino. Lack of time and experience on hardware

design and assembly were key to make this decision. Nevertheless the proposed hardware

design should fit the purpose here described.
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Figure 5.4: The Figure shows a photo of one of the earlier phisical prototypes of the
custom hardware client. This simple attempt to build a custom hardware from scratch
did not work as planned.

5.3 Software Design - System Host

This section is the equivalent of section 5.1 for the System Host. The ping command

is not covered, since what is valid for the Client is valid for the System Host. However

the subsection 5.3.1 goes through the System Host side mechanism of Client ID assign-

ment.The System Host has been implemented as a FreeRTOS task which shift channels

whenever a time interrupt is raised. This task also reacts at the interrupts coming from

the I2C0 controller of the LPC2468 board. The software prototype can assign Client IDs,

but makes no use of the Multicast feature. The prototype is very simple, but can use the

I2C Extender features without problems.
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5.3.1 Address Assignment

Once the System Host has issued the ”Channel Enabled” message it waits for incoming

messages or commands. Very likely the most common message is ”Acknowledge ID” coded

as 0x41. On receiving it processes it by selecting the two bytes composing the Client ID

(most significant and least significant bytes). If this Client ID is not already assigned or

reserved (a stack of IDs is kept by the System Host) it will go on by allocating this Client

ID into a Cluster ID, being careful this is not overcrowded. Each Cluster ID should be

well balanced. A this stage the System Host prepares a message ”Valid ID” 0x43 and

sends it back to Client. If the Client ID was already taken or part of a set of reserved

Client ID (such as a multicast group) it generates ex-novo a Client ID and Cluster ID

pair, then it sends back a ”Regenerate ID” 0x44 message.

Figure 5.5: This finite state machine diagram shows the Client ID assignment from the
System Host’s point of view.

If any byte is not acknowledge the transaction is interrupted, and the System Host

sets ready to accept new incoming requests. Should this happen it is duty of the Client

to re-issue the command ”Acknowledge ID” 0x41. The assignment procedure is fairly

simple, also due to the fact that the System Host has no knowledge about the nodes on

the network, and the fact it is not the initiator of the transaction (so it does not have to

go through the bus arbitration).
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5.3.2 Multicast Groups

Also here the Multicast management is very simple. There is no certainty that a Client

actually processes a Multicast Set Group or Unset Group command. The only safe proce-

dure the System Host has is to reissue a command if any of its Bytes is not acknowledge.

The other commands do not expect any reply, due to the reasons explained in Section

5.1.3.

5.4 Hardware Design - System Host

The System Host hardware was a standard LPC2468 board. It has three I2C controllers,

one of them supports the whole I2C specification [9]. This controller was chosen to play

the role of System Host. From an hardware point of view it means that two trailing wires

have had to be soldered to pin P0.27 (SDA 0) and pin P0.28 (SCL 0). These two trailing

wire are connected to a the SDA and SCL pins of the PCA9544, also are connected to

VCC with pull-up resistors.

Figure 5.4 helps to understand how to wire the PCA9544 I2C multiplexer. The master

in the diagram is the I2C Extender System Host, which enables the downstream channels,

where the I2C Extender Clients are connected. The interrupt lines are not used to keep the

I2C Extender as close as possible to the requirement about standard hardware. However

in Section 6.2 is proposed an approach which makes use of the Interrupt lines to improve

the fairness of the channel scheduler, and therefore avoid data starvation.

5.5 Long Distance Communication

One of the most challenging requirements of the I2C Extender is to support its function

also over long wires, over 10 Metes. As mentioned in Chapter 1 the main problem of

long wires is the fact they tend to increase the electrical capacitance of the system. The

capacitance is also increased by each device connected to the bus. The overall amount
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should not be grater than 400µF, practically limiting the length of the wire to few meters.

However there some solutions to this problem. All of these are pure hardware approaches,

so they go beyond the scope of this dissertation, which is mostly focused on software. The

first approach is to use an I2C buffer such as the P82B715. This is a bipolar integrated

circuit which reduce the electrical capacitance by a factor of 10 and allows the whole

system to be around 3000µF [11]. This is the simplest solution. The second solution is

much more complex and makes use of twisted pair of wires for the SCL and SDA lines.

To this wires are connected two P82B96 buffers, one for each end. This approach ensures

high speed, and a good link quality over very long distances (also over 100 meters [8]),

but it limit the number of nodes to only two. So this second solution is not good for

the I2C Extender, the first is the only viable. However having abandoned the option of

custom hardware, as mentioned in Section 5.2, the P82B715 buffer was not tested.
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Philips Semiconductors Product data

PCA95444-channel I2C multiplexer with interrupt logic

2002 Jul 26 9

TYPICAL APPLICATION

PCA9544

V = 2.7 – 5.5 V

SD0

SC0

V = 2.7 – 5.5 V

SD1

SC1

A1

A0

VSS

SDA

SCL

VDD = 3.3 V

VDD = 2.7 – 5.5 V

I2C/SMBus MASTER

SW00864

SDA

SCL

A2

INT

INT1

INT0

CHANNEL 0

CHANNEL 1

V = 2.7 – 5.5 V

SD1

SC1

INT2

CHANNEL 2

V = 2.7 – 5.5 V

SD1

SC1

INT3

CHANNEL 3

NOTE:
1. If the device generating the Interrupt has an open-drain output

structure or can be tri-stated, a pull-up resistor is required.

If the device generating the Interrupt has a totem-pole output
structure and cannot be tri-stated, a pull-up resistor is not
required.

The Interrupt inputs should not be left floating.

SEE NOTE (1)

SEE NOTE (1)

SEE NOTE (1)

SEE NOTE (1)

Figure 13.  Typical application

Figure 5.6: The Figure shows the PCA9544 wiring diagram. This makes clear how this
I2C multiplexer plays the role of hardware connector among the System Host and the
Clients. In the System Host is the Master, while the Clients should be connected to the
downstream I2C channels. This schema is quoted from the PCA9544 technical data-sheet
[13].
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Chapter 6

Results and Conclusion

In this final chapter are commented the achievements of the dissertation. There are notes

about the issues encountered during the development of the prototype, either hardware

and software. In addition each I2C Extender requirement, presented in Chapter 1 is

evaluated against the results obtained by this dissertation project. For each point that

did not succeed as planned is explained what went wrong, or why such part or requirement

became irrelevant. This final analysis goes towards the last section of this Chapter, Section

6.2, where are proposed some improvements to the I2C Extender.

6.1 Prototype Efficiency

6.1.1 Dynamic Addressing

This is most important and challenging feature of the I2C Extender. What made it more

complex was the fact that no ARP techniques could be used. To do ARP the Client device

should have a fixed address, to contact it at. This fixed address makes it unique on the bus,

and simplify the process of bus arbitration and synchronization. This had to be worked

around using a random generated sequence of bytes. Specifically are random generated

the Cluster ID and the two bytes of the Client ID. The random numbers are generated

reading from an analog digital converter and using that number as seed for a semi random

56



number generator. It takes 24 reads to complete the whole three bytes. The new use of

the old I2C 7-bit address as Cluster ID is also quite smart. The I2C Extender relies on the

General Call for several command or messages. The original design intended to use the

General Call for each command, independently by the direction. This was necessary, to

not use the old address space and create one completely new. However further thoughts

gave the idea to use the existing address schema to make more efficient the new one. The

original plan was to carry on the test with 10 Client devices, but unfortunately this was

not possible. The test was carried on with only 1 Client, an Arduino Duemilanove. An

attempt to use also an Arduino Mini Pro did not do well, due probably to the different

operating voltage (one runs at 5 Volts while the other at 3.3 Volts). The description of

this portion of the protocol is clear and detailed enough to reproduce the protocol on

different hardware or software.

6.1.2 Multicast

While the Cluster schema is fixed by the System Host, and is heavily connected to the I2C

Extender mechanisms, the multicast follows a different grouping approach. It is intended

to work exactly as the Ethernet multicasting, where clients can register to a multicast

group. So the I2C Extender Multicast groups the Clients by logical differences, such as

technical characteristics or sensing capacity. This feature can be used to synchronize a set

of nodes, or to set a certain parameter equal to all them all. The multicast registration

procedure is not fail safe, and although the command’s bytes are all acknowledged the

Client might fail without anyone noticing it. However this lack of flow control is the best

trade off, in terms of bandwidth occupied and performance. The test of this feature were

not extensive, mainly due to the lack of nodes to use as testbed.
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6.1.3 Protocol Fairness

As already mentioned in other Chapters of the dissertation the I2C Extender is not a fair

protocol. This is mainly due to the fact that I2C is not a fair protocol either. Is very hard

to build a fair mechanism with such this constrained resources. A Client, particularly

on an overcrowded bus, might starve for data. It is possible a Client keeps loosing the

arbitration, making it impossible to gain access to the bus. This might happen when a

Client tries to write a byte with a long sequence of zeros, it is very hard for it to win the

arbitration. Also the multiplexer scheduler is not very fair. It does not implement any

priority system, and the round robin scheduler, although might sound fair enough, does

not help. This is due to the lack of priority queues, so a Client or group of Clients might

have to wait also a very long period of time before get to initiate a transaction with the

System Host. Sadly all these issues could not be experimented in detail, due to the small

number of physical devices available.

6.1.4 Long Distance Communication

Stretching the limits of I2C also in terms of communication range was the most intriguing

challenge. It is about reducing the electrical capacitance of the wire to allow longer wires

or more devices connected. This is a fully physical issue. There is no way to intervene on

it via software. Some possible approaches are analyzed, so it is possible to integrate the

I2C Extender with some hardware buffer.

6.2 Future Works and Improvements

At the light of the previous considerations is possible to think at several future develop-

ments for the I2C Extender.
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6.2.1 Channel Proxy

A proxy could help to increase the fairness of the channel scheduler. Such an improvement

needs some extra hardware, but the benefits might be very important. The idea is to

have a fixed device (pretty much like the one proposed in 5.3) connected directly to

the downstream I2C busses of the PCA9544. This fixed client is also connected to the

interrupt lines of the I2C multiplexer. This device is alway active, also when the System

Host is busy serving other channels. The Clients in need to communicate with the System

Host will not try to contact it directly, as it is done currently, but will send the message

at the Channel Proxy. The Channel Proxy queues up all the messages, in order of arrival.

As soon it receives a message it triggers the interrupt line associated with its Channel. So

the System Host knows that in that channel is happening something it should be aware

of. The Channel Proxy will take care of forwarding all the requests at the System Host.

This would turn the channel scheduler from Round Robin to interrupt based. Such a

scheduler might be good also for real time applications. Clearly the introduction of a

Proxy steers the I2C Extender a bit off the original requirement to not use any extra

hardware. However for specific application, this system might be the difference among

using this bus technology or try something else. The Channel Proxy can be the the

solution to data starvation, it would make also a better scheduling policy being more

reactive to the needs of the system.

6.3 Conclusion

Concluding the I2C Extender is an nice elegant solution to an old problem of the I2C

users. The prototype here proposed needs more testing, possibly with an high number

of nodes. However it proved to be functional, and serves the scope of auto-addressing

devices quite well. Few other features such as the Multicast and the integration of the

hardware I2C multiplexer increase the flexibility of the systems. The I2C Extender scales

up well, with 16-bit address space there is enough room for even more nodes than what
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are electrically compatible.

The future work section gives a good introduction to the concept of Channel Proxy, which

would improve the fairness of the system although built on a protocol traditionally not

fair. This part is the most interesting to develop in future because it needs some extra

protocol, and the challenge is to keep it as simple as possible as it is now.
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Appendix A

I2C Extender Commands

Table A.1: Command Codification

Command Name Hexadecimal Binary Reference

Ping Request 0xC1 1100 0001 Table 4.2
Ping Reply 0xC2 1100 0010 Table 4.3

Acknowledge ID 0x41 0100 0001 Table 4.1
Regenerate ID 0x44 0100 0100 Table 4.4

Valid ID 0x43 1100 0011 Table A.2
Set Multicast 0x45 0100 0101 Table 4.6

Unset Multicast 0x47 0100 0111 Table 4.7
Write Multicast 0x48 0100 1000 Table 4.8
Channel Active 0xAA 1010 1010 Table 4.11

Channel Disabled 0x55 0101 0101 Table 4.12
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Table A.2: Reserved Addresses

Host Name Use Address Reference

System Host Default System Host’s
address

0001 1110 Section 4.1.2

Temporary Cluster ID A Client in Acquire ID
state has its own Clus-
ter ID set to this ad-
dress

0001 1100 Section 4.1.2

Multicast ID The 6 LSB explicit the
multicast group

1111 1111 11xx xxxx Section 4.2

No Multicast ID This 2 byte ID is re-
served and stand for
no multicast

1111 1111 1100 0000 Section 4.2

General Call General Call address
to send a transmission
to all nodes

0000 0000 See [10]

10-Bit addressing To address a device
using a 10 bit address,
not used by I2C Ex-
tender reserved by I2C

1111 0xx See [10]
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Appendix A

Glossary

Short Term Explanation

System Host A permanent central node, whose role is to coordinate

the I2C Extender bus operations.

Client Any I2C Extender compliant device, being plugged into

the bus. They are subordinated to the System Host

commands.

Client ID Is a 16 Bit long ID used to extend the standard I2C 7

Bit addressing schema.

Cluster These are groups of Clients populated by the System

Host, which uses the old I2C 7bit addressing schema to

improve energy efficiency and reduce the network over-

head.

Cluster ID This is the standard I2C 7 Bit address, used by the I2C

Extender in the clustering mechanism.
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