
A Taxonomy of Caching Approaches
in Information-Centric Network Architectures

Andriana Ioannou∗, Stefan Weber

School of Computer Science and Statistics, Trinity College, Dublin 2, Ireland

Abstract

The communication paradigm currently used over the Internet resembles that of a telephone communication
system where two participants establish an end-to-end connection to exchange information. This model of
interaction is being challenged by today’s use of the network which focuses on information distribution and
retrieval.

Information-Centric Networking (ICN) is an architectural approach, that provides an alternative to this
model of interaction by focusing on content distribution, using the network as an intermediate storage. In
order to support this, ICN combines a number of concepts such as naming, caching and the publish-subsribe
paradigm. The proposed approaches in this area have incorporated a variety of combinations of instances
of these concepts and laid out a large solution space including a multitude of possible solutions.

This paper focuses on the issue of caching in ICN and provides a review and a taxonomy of existing
approaches based on a number of criteria such as the relation of each approach to forwarding paths, the ar-
chitectural levels of operation and the awareness of the system regarding the content that is being cached.We
further discuss the advantages and the disadvantages of each approach regarding scalability and efficiency
and highlight open questions.

Keywords: Network Distributed Architectures; Future Internet; Information-Centric Networks; Caching
technologies; Content replication; On-path caching

1. Introduction

The original design of protocols for the Internet provided for information exchange between two par-
ticipants, following the end-to-end communication model. However, both demand and technologies, have
changed since this approach was introduced. Internet usage today is dominated by content distribution and
retrieval [1, 2], e.g. Content Delivery Networks (CDNs) for content replication [3–6], Peer-to-Peer (P2P)
networks for file sharing [5, 7, 8] as well as media aggregators and social networks [9–11]. This difference
between the original communication model and the current usage results in a number of disadvantages and
difficulties with regards to availability, mobility, multihoming, scalability and performance [12–16].

CDNs and P2P networks are considered the first steps towards a content-oriented approach. However,
these solutions operate at the application layer [5, 6, 8] and clash with underlying assumption of the tra-
ditional Internet architecture of the transfer of individual bits of information between two endpoints. This
mismatch of higher-layer abstractions and lower-layer implementations may result in reduced performance
[17, 18].

Preprint submitted to Elsevier January 19, 2015



Content Notification Service

Publish Subscribe

Name 

Resolution 

Service

Name-based 

Routing

Cache

Figure 1: A basic Publish-Subscribe model.

2. The Information-Centric Approach

The Information-Centric Networking (ICN) approach is a new architectural model that attempts to
provide an alternative to the traditional architecture of the Internet by focusing on information dissemination
and information retrieval. The ICN approach has gained the interest of both the research and the industry
community, counting a number of projects and individual works, e.g. CCN [13], COMET [19], CONET [17],
DONA [16], MultiCache [20], PSIRP-PURSUIT [21, 22], NetInf-SAIL [23] and TRIAD [24].

Proposed ICN architectures differ in a number of aspects, e.g. information granularity, information
dissemination techniques or retrieval techniques. However, all of them are based on the basic principles
of a publish-subscribe model [25–27]. Figure 1 presents the basic elements and operations of a network
following a publish-subscribe model where content sources make their content available by publishing it to a
content notification service while clients request content from the content notification service by subscribing
to it. Content publication and retrieval is accomplished by identifying the content via names. The publish-
subscribe paradigm ensures time, space and syncronization decoupling between publishers and subscribers,
facilitating mobility [13, 27].

A content notification service is responsible for matching content publications to corresponding subscrip-
tions. Examples of a content notification service are a Name Resolution service (NR) and a Name-based
Routing service [16, 26]. These approaches may be applied separately or as a combination [17, 26, 28]. A
content notification service can be applied in one or more layers of an ICN architecture. Based on this
criterion, ICN architectures can be categorized as ”shim”-layer architectures, clean-slate architectures or
hybrid architectures.

2.1. Shim-layer Architectures

In a shim-layer architecture, an additional layer acting as an IP overlay, called content layer, is inserted
between the transport layer and the network layer of the Open Systems Inteconnection (OSI) stack, [12, 14–
17, 19, 24, 26, 28–33]. In this approach, the network layer preserves its current functionality and only
the shim layer handles named content. Shim-layer architectures may support both categories of a content
notification service, a name resolution service and a name-based routing service. Figure 2 presents the
operation of an overlay architecture consists of a source, a client, the shim layer and the current IP network
layer components.

2.2. Clean-slate Architectures

In a clean-slate architecture, current network-layer fuctionality of the OSI stack is replaced by content-
layer functionality. According to this approach, the network layer is able to handle named contents and
no overlay is necessary [13, 17, 21, 22, 34–37]. In contrast to the shim-layer architectures, clean-slate

∗Corresponding author. Tel.: +353852742974
E-mail addresses: ioannoa@scss.tcd.ie (A. Ioannou)

2



Publish Subscribe

Traditional IP ArchitectureTraditional IP Architecture

Shim-

Layer

Content Notification Service

Name 

Resolution 

Service

Name-based 

Routing

Cache

Content Notification Service

Name 

Resolution 

Service

Name-based 

Routing

Cache

Figure 2: A Shim-Layer ICN architecture.

Publish Subscribe

Name-based 

Routing

Cache

Content Notification Service

Name 

Resolution 

Service

Name-based 

Routing

Cache

Content Notification Service

Name 

Resolution 

Service

Name-based 

Routing

Cache

Figure 3: A Clean-Slate ICN architecture.

architectures may only support a name-based routing service and omit any name resolution services. Figure
3 presents the operation of a clean-slate architecture consists of a source, a client and the content-based
network layer components.

2.3. Hybrid Architectures

Some ICN architectures may include more than one content layer, i.e. both a shim-layer and a content-
based network layer. We call these architectures hybrids due to the fact that they can support both [37].
A hybrid architecture may be represented by combining the Figure 2 and Figure 3, consists of a source, a
client, the shim layer and the content-based network layer components.

In general terms, when a content request is released in the network, the content notification service is
responsible for identifying the ”best” replica, based on the proximity metric(s) used, e.g. number of hops
or latency, of that content and deliver it to the requestor. Therefore, ICN can be considered incorporating
the anycast principle. In contrast to the CDN and P2P ad-hoc mechanisms that operate at the application
layer, ICN mechanisms are rather integrated in the architecture itself.

3



3. ICN Naming

An important component of each ICN architecture is the definition of naming. Naming can be considered
a key for solving the problems that arise from the current Internet architecture, e.g. content being tied to
hosts or IP addresses. Ideally, content naming should not involve any topological information that would
bind the content to a specific location [12, 16, 19, 23, 26, 38–40]. If this constraint is met, content can be
freely replicated and cached in different places and therefore provided by more than one source.

This design of naming functionality strongly influences the scalability and security of an approach and
may enable functionality such as authentication and replication. In the design of content namespaces, a
number of decisions need to be made such as naming may reveal structural information vs. naming does
not reveal structural information, flat naming vs. hierarchical naming, human-readable naming vs. not
human-readable naming and self-certified vs. not self-cetrified naming.

Names are used to identify content resources, such as services, web pages, files, songs, videos, etc; but
they may also refer to parts of a content resource e.g. chunks or smaller pieces of content such as packets.
Chunks describe parts of a content resource as defined by an application e.g. parts 1 to 7 of a movie; whereas
packets indicate a division of a content resource that is defined by an underlying network architecture. The
content to which a name refers to defines the name granularity of the corresponding architecture. Existing
ICN approaches exhibit a variety of levels of naming granularity as shown in Table 1. Currently, three levels
of naming granularity can be identified i.e. objects, chunks or packets. It is important to note that ICN
approaches may support more than one level of granularity, e.g. the SAIL project supports both object and
chunk naming.

Objects Chunks Packets
Proposal

CCN [13] x
COMET [41] x
CONET [17] x
DONA [16] x
MultiCache [20] x
PURSUIT [42] x
SAIL [43] x x
TRIAD [24] x

Table 1: Name granularity in ICN approaches.

4. ICN Content Caching

Caching is considered to be a basic architectural component of an ICN architecture. It may be used to
provide a Quality-of-Service (QoS) experience to users, reduce the overall network traffic, prevent network
congestion and Denial-of-Service (DoS) attacks and increase availability. Approaches to caching can be
categorized into off-path caching and on-path caching based on the location of caches in relation to the
forwarding path from a source to a consumer [26, 42]. Off-path caching, also referred as content replication
or content storing, aims to replicate content within a network in order to increase availability, regardless of
the relationship of the location to the forwarding path. The actual number of replicas and the specific nodes
in which replicas may be stored is a decision made by the Internet Service Provider (ISP) that supports the
specific network. In on-path caching approaches, content is replicated at nodes along the forwarding paths
from sources to consumers. The decision to cache a content resource at a specific node is strictly related to
the content that is being requested. A taxonomy of the proposed ICN caching mechanisms is provided in
Figure 4 and Figure 5.

Caching in ICN architectures can be also divided depending on if cached content is propagated into a
content notification service. We refer to a system that propagates the existence of the cached content as
a caching-aware system and to a system that does not propagate the existence of the cached content as

4



ICN caching

 

Off-path

 

On-path

 

Extended-Greedy

 

Hierarchical 

Cooperative

 

Last Node

 

Leave Copy Down

 

Probabilistic

 

Graph-based

 

Random

 

ProbCache

 

Unique Caching

 

Modified 

Extended-Greedy

 

Cache Everything-

Everywhere

 

Figure 4: Taxonomy of the ICN caching mechanisms.

an opportunistic-caching system. Caching awareness is usually preffered at the off-path caching approach.
However, a caching-aware system has also been proposed for the on-path caching approach, e.g. MultiCache
[20].

5. Off-path Caching

The optimal placement of content replicas in a distributed storage system has been proven to be a
hard task to achieve [44–48]. This conclusion follows from the fact that storage placement decisions may
be affected by contextual information, such as node availability, storage availability and the popularity
of individual items. In order to provide this information, network monitoring is essential for collecting
statistical metrics. The monitoring and collection of contextual information adds to the overhead of the
caching mechanism. In addition to this, replicas are usually advertised into a name resolution or a name-
based routing service. The distribution of replicas and the update of name resolution systems and name-
based routing systems that reference these replicas introduce an additional amount of overhead that needs
to be taken into account when deciding about the placement of replicas. The balance of this large set of
variables results in a complex system, sensitive to short-term changes which have the potential to increase
the overhead of the caching mechanism dramatically. As a result, content replication should be considered
as a long term decision [26, 42].

Three approaches, the Extended-Greedy algorithm [42], the Modified Extended-Greedy algorithm [49] and
the Hierarchical Co-operative storage system [43], have been proposed as a solution to the placement problem
in the ICN literature. The Extended-Greedy algorithm is based on the Greedy algorithm [47]. The Modified
Extended-Greedy algorithm is a modification of the Extended-Greedy algorithm based on the assumption
that no content origin server exists.

The reason why most ICN proposals have not considered the content placement problem is that content
replication in ICN is similar to the CDN content replication and the web cache placement problems [26, 42,
49]. As such, existing algorithms can be used for the ICN off-path caching. A few noticeable examples can
be found at [45, 47, 50–52] .

In the following section, we provide a description of the proposed off-path algorithms recorded in the
ICN literature. In order for the reader to be able to understand the operation of the Extended-Greedy and
the Modified Extended-Greedy algorithms proposed in [42] and [49], we first provide a description of the
Greedy algorithm.

5



Graph-based

 

Betweenness-
centrality

 

Closeness-
centrality

 

Graph-centrality
 

Degree-centrality
 

Eccentricity-
centrality

 

Figure 5: Taxonomy of the Graph-based on-path ICN caching mechanisms.

5.1. Greedy Placement

Greedy placement algorithms consitute a family of algorithms that include the Single-Greedy [51], l-
Greedy [53] and Global-Greedy placement algorithms [47, 51] as well as the Greedy-Dual replacement algo-
rithm [44, 54]. Greedy placement algorithms run for a number of times, at each of which, the node with
the lowest cost metric, e.g. latency, hop counts or an economic cost is chosen while previous choices are
excluded. After the algorithm has terminated, a set of k nodes out of N available have been selected, where
k represents the number of replicas to be made. Qui et al. [47] have shown that a metric cost based on hop
counts and request load provides a near to optimal placement solution.

5.2. Extended-Greedy Placement

Trossen et al. [42] extended the operation of the Greedy algorithm to be applied to every future replicated
item and to take into account popularity rates. In the following, we will describe the operation of the
Extended-Greedy algorithm on an example of a graph with six nodes, N=6, i.e. N1, N2, N3, N4, N5, N6

with a storage capacity of two items per node, C = 2, presented in Figure 6. We also assume a source of
three items, t=3, i.e. t1, t2, t3. The aim is to run the Extended-Greedy algorithm in order to decide the
optimal positions for creating two copies of each item, k=2. In contrast to the Greedy algorithm, M in the
Extended Greedy algorithm represents the number of nodes that need to be chosen for content replication.
This number is calculated based on the total number of copies that need to be made, to the number of items
that each storage node is able to host, plus one, i.e. M = (k × t/C) + 1 = (2 × 3/2) + 1 = 3 + 1 = 4.

1. The Greedy algorithm is applied to every future replicated object, called ti. Once the algorithm has
terminated, a vector Sti , containing the potential k storage nodes, will have been constructed. As
request metrics are necessary for this step, we chose a set of nodes to constuct the input vectors
randomly.
Table 2 presents the Sti vectors corresponding to each individual object as well as the objects’ pop-
ularity, which is set as a number between 1 and 10. Note that nodes that have not been selected as
potential storage points for an item, e.g. N6, have been marked using the 0 value. As an example,
we explain the table St1 constructed for item t1. Assuming that the indexes of the nodes that have
been selected as the preferred storage nodes, after the termination of the Greedy algorithm, equals
to 1 and the indexes of the ones that have not been selected equals to 0, vector St1 will be equal to
St1 = (0, 0, 1, 1, 0, 0).

2. Each vector Sti is multiplied by a weight wti that represents the item’s popularity, based on the traffic
demand for that item. A new vector, named S, is then calculated by summing the traffic rates for each
node. Table 3 presents the traffic rates regarding the popularity of each item as well as the summation
of it at each node, S=(0,7,12,8,2,0).

3. We select a set of M nodes that are required for storage, which are the nodes that appear to have the
highest sum in vector S. We call this vector S′. According to M , we need to choose four nodes of
vector S that hold the highest summation rates. As such, vector S’ would be S′ = (N3, N4, N2, N5).

6



N2

N3

N6N5

N1

0

7

12

082

Source

t1
t3

t2

t3
t2

t1

t1
t2
t3

N4

Figure 6: Extended-Greedy placement algorithm.

4. Starting the loop for the most popular item, choosing the first entry of vector Sti determined on step
1, we place a replica in this node, if and only if, the node is also presented in the S′ vector of the final
chosen storage nodes and if that node has still storage space available for storing the copy.
We start illustrating step 4 for each item by following their order of popularity, i.e. t1, t3, t2. Vector
Sti for item t1 is St1= (N3, N4). These nodes fulfill the prerequisities of step 4, i.e. they appear at
vector S’ and there have also enough storage space available for storing the copies. Therefore, N3 and
N4 are chosen to host item’s 1 replicas. The same procedure is executed for each item left. Figure 6
presents the cached copies of each item at each node after the completion of the algorithm.

Item ti Vector Sti Popularity wti

Item t1 N3 N4 8
Item t2 N2 N5 2
Item t3 N2 N3 5

Table 2: Calculation of the Sti vectors and popularity of each item for the Extended-Greedy algorithm.

Nodes
N1 N2 N3 N4 N5 N6

Item ti × wti

Item t1 × wt1 0 0 1× 8 1× 8 0 0
Item t2 × wt2 0 1× 2 0 0 1× 2 0
Item t3 × wt3 0 1× 5 1× 5 0 0 0

Summation S 0 7 12 8 2 0

Table 3: Calculation of the Sti × wti and S’ vectors for the Extended-Greedy algorithm.

While algorithms of the Greedy family may be suitable for replica placement in certain scenarios [47, 53],
their suitability in an ICN architecture is still under question. Greedy algorithms are calculated for each
item, which means that the cost of the algorithm is increased linearly with the number of replicated items
and the size of the network. This factor may be a significant limitation concerning the scalability of the
Greedy algorithms.

5.3. Modified Extended-Greedy Placement

The Extended-Greedy placement algorithm has been proposed based on the assumption of existence
of a content origin server. However, this assumption is not valid in a publish-subscribe network where

7



N2

N3

N6N5

N1

26

25

45

181947

Source

t1
t3

t2

t3

t1
t2
t3

N4

t1
t2

Figure 7: Modified Extended-Greedy placement algorithm.

content may be also published by dynamically joined nodes, acting as clients. In order to overcome the
calculation difficulties deriving from the fact that no specific point of reference exists, a modification of the
Extended-Greedy algorithm, to which we refer as the Modified Extended-Greedy placement algorithm has
been proposed [49].

The operation of the Modified Extended-Greedy placement algorithm is quite similar to the one of the
Extended-Greedy placement algorithm described in section 5.2. In this section we use the same example
presented in section 5.2, Figure 7, to illustrate the operation of the Modified Extended-Greedy algorithm
and to point out the differences between the two.

1. The Modified Extended-Greedy algorithm repeats the operation of the Greedy algorithm N times for
each item ti, where N is the number of nodes in the network, based on the following assumptions:

• Only k nodes out of N are selected each time, where k is the number of replicas that are required
for each content item.

• The origin server is represented by a different node each time. As such, a set of N vectors,
presenting the selected storage nodes, will have been constructed after the execution of the al-
gorithm. We name these vectors Sti,Ni

, where ti presents the item for which the algorithm has
been executed and i presents the origin server node. As request metrics are neccessary for this
step, we rather chose a set of nodes to construct our tables randomly. Table 4 summarizes the
calculations of the Sti,Ni vectors of each item ti after the execution of the Modified Extended-
Greedy algorithm. Similarly to the assumptions used in section 5.2, where the index of a chosen
storage node equals to 1 and the index of a non chosen storage node equals to 0, vector St1,N1

would be equal to St1,N1
=(0,1,1,0,0,0).

• A vector named Sti is calculated for each item ti. Vector Sti presents the summation of the times
that each node Ni has been recorded concerning each item ti, after the N times of execution of the
algorithm, i.e. Sti vectors are calculated by summing the individual Sti,Ni vectors. Accordingly,
vectors St1 , St2 and St3 of items t1, t2 and t3 will be: St1 = (2, 2, 3, 0, 3, 2), St2 = (0, 2, 3, 2, 4, 1)
and St3 = (2, 1, 3, 3, 3, 0), respectively. As an example, St1 = (2, 2, 3, 0, 3, 2) means that out of
the N=6 times of execution of the Greedy algorithm, nodes N1, N2 and N6 have been recorded
two times each, nodes N3 and N5 have been recorded three times each while node N4 has been
recorded zero times.

2. In a similar way as in step 2 of the Extended-Greedy algorithm, each vector Sti is multiplied by a
factor wti , the popularity of each item, while a new vector, named S, is calculated, consists of the
traffic rates of each node Ni. Table 5 presents the calculation of the Sti vectors multiplied by wti as
well as the summation of these values, i.e. the calculation of vector S=(26,25,45,19,47,18).

3. Starting from the nodes that hold the highest values in vector S, we select M nodes out of the N that
are required for the storage of the replicas. We call this vector S’. Following the same example as in
section 5.2, we have that M=4. Therefore, vector S’=(N5, N3, N1, N2).

8



4. Starting from the most popular item, i.e. t1, t3, t2, we store a replica of item ti in the k most appeared
nodes presented in vector Sti , if and only if, they are included in vector S’ and there is still enough
space available. In the case that not enough space is available the algorithm proceeds into checking
the next node of vector Sti based on the rates of appearance. As an example, we illustrating step 4 for
the item t1 with a vector St1 = (N1, N2, N3, N5, N6) and values of it St1 = (2, 2, 3, 0, 3, 2). As variable
k indicates we need to choose two nodes. In contrast to the Extended-Greedy algorithm where no
preference is given, in the Modified Extended-Greedy algorithm we choose the nodes that have the
highest appearance rates. In the case that more than one have the same value, a random decision is
made. Therefore, we choose the nodes N3 and N5. Both nodes fulfill both requirements, i.e. they are
included in vector S’ and have available storage place. As such, nodes N3 and N5 are chosen to store
item’s 1 replicas. The replication nodes for the rest of the items t3, t2 can be calculated by following
the same procedure. Figure 7 presents the final items stored after the completion of the Modified
Extended-Greedy algorithm.

Origin Server
N1 N2 N3 N4 N5 N6

Item ti
Item t1 N2, N3 N3, N5 N5, N6 N1, N6 N1, N2 N3, N5

Item t2 N3, N5 N2, N5 N4, N6 N3, N5 N2, N4 N3, N5

Item t3 N3, N5 N1, N4 N2, N5 N3, N4 N1, N4 N3, N5

Table 4: Calculation of the Sti,Ni
vectors for the Modified Extended-Greedy algorithm.

Nodes
N1 N2 N3 N4 N5 N6

Item ti × wti

Item t1 × wt1 2× 8 2× 8 3× 8 0 3× 8 2× 8
Item t2 × wt2 0 2× 2 3× 2 2× 2 4× 2 1× 2
Item t3 × wt3 2× 5 1× 5 3× 5 3× 5 3× 5 0

Summation S 26 25 45 19 47 18

Table 5: Calculation of the Sti × wti vectors and the S vector for the Modified Extended-Greedy algorithm.

As part of the Greedy algorithms family, the Modified Extended-Greedy algorithm holds all the disad-
vanges that derive from the nature of a greedy algorithm. In addition to this, Modified Extended-Greedy
algorithm increases the calculation time that is necessary to be accomplished due to the fact that no origin
server exists.

5.4. Hierarchical Co-operative placement

Ericsson et al. [43] have suggested the operation of a hierarchical co-operative placement system. Co-
operative caching, however, introduces a significant amount of overhead to the network due to the signaling
that is required between the co-operative caching nodes. The first attempt in solving the co-operative
placement problem is the exploitation of the Name Resolution System (NRS) that their architectural model
provides. According to this approach, the NRS is exploited for quering the location of other replicas available
as well as the popularity of each of them based on the request rates observed by the NRS; the NRS operates
as a ”common” information base, reducing the information that co-operative nodes need to exchange with
each other.

An alternative to this approach, exploits the Multiple Distributed Hash-Table (MDHT) location system
in the architectural model of their system [55]. MDHT utilises three different levels in the NRS, i.e. the

9



access-node level, the Point-of-Presence (POP) level and the Autonomous-System (AS) level. The basic
assumption of that approach is that instead of storing at every level, storing is available only in a specific
level(s).

Based on that distinction, content placement can be divided into two different approaches, the one-
level content placement approach and the multi-level content placement approach. In the former caching is
carried out in only one level of the architecture, e.g. the node-level, the POP-level or the AS-level, while
in the latter items can be stored at multiple levels according to their popularity, e.g. POP/AS, where the
most frequently requested objects are stored at the POP-level while the next most frequently requested
objects are stored at the AS-level. A key question relating to this caching approach is exactly which level(s)
provide(s) the greatest benefits. Towards trying to answer this question, Ericsson et al. [43] tested all the
above mentioned approaches in terms of hit rates and latency, concluding into three basic observations:

1. AS-level is the most beneficial approach.

2. POP/AS multi-level approach seems to follow the AS-level storing approach.

3. Node-level storing is considered to perform the worst.

According to the AS-level co-operative storing approach, each AS-node is able to store content depending
on the content’s popularity, yet all of them should co-operate in order to prevent content redundancy. The
goal is to keep the most popular contents cached by evicting the least popular ones. They name the selected
replacement algorithm Forward MetaData (FMD).

We argue that Hierarchical co-operative off-path caching proposal may not be beneficial due to the
amount of traffic that the collaborative caching model is introducing as well as the computational resources
that are neccessary in order for this communication to be achieved [54, 56, 57]. In addition to this, co-
operative caching benefits are under question as measurements on real large web traces have shown that in
large organizations or large populations, it is rather unlikely to have significant benefits [58]. Furthermore,
the proposed approach lacks of important details regarding basic features, e.g. how the collaborative caching
is accomplished while the approach has not been tested against other approaches.

6. On-path Caching

On-path caching has been suggested as an integrated ICN architectural mechanism. In contrast to off-
path caching, on-path caching decisions applies only to the requested content(s); other content is not taken
into account, while content may be cached only at the nodes lying on the delivery path. On-path caching
is strictly related to the requested content and popularity rates of each item. As a result, on-path caching
may be considered as a short-term procedure.

On-path caching is also related to the content’s name granularity. Based on this criterion, on-path
caching can be divided into three categories, i.e. object-level caching, chunk-level caching and packet-level
caching. A combination of more than one approaches can also be applied, e.g. on-path object-level and
on-path packet-level caching [59].

• Object-level on-path caching

In the object-level approach, full objects can be cached at the intermediary nodes along the delivery
path. Object-level on-path caching is typically performed at the overlay level of an ICN architecture.

• Chunk-level on-path caching

Chunk-level on-path caching is accomplished in the same way as the object-level version. The only
difference is in the granularity of the name. As in object-level caching, chunk-level caching is also
accomplished at the overlay level of an ICN architecture.

• Packet-level on-path caching

Packet-level on-path caching is performed by naming each packet individually. The naming of each
packet should be, somehow, related to the object that it corresponds to. Packet-level on-path caching
is performed at the networking layer of an ICN architecture.

10



The level based on which on-path caching may be applied is a critical design issue, having an overall
effect at the system’s performance and operation. We briefly examine two examples, the memory and the
computational requirements that an on-path caching node should fulfill. Memory requirements are expected
to be much higher for the object-level on-path caching approach while computational requirements are
expected to be much higher for the packet-level approach. Our conclusion is based on the assumption
that object-level caching requires more memory for caching just one content compared to the packet-level
approach. In the same sense, computational requirements for a lookup would be higher for the packet-level
approach compared to the object-level one, as more contents can be cached for the same amount of memory.

On-path caching schemes can be also divided based on the caching technique that is used. A few attempts
on identifying such algorithms have been recorded in the literature as part of known projects or individual
works. In this section we provide a taxonomy of the proposed approaches and discuss their advantages and
disadvantages. Table 9 summarizes the proposed on-path caching approaches as well as the ones that they
have been compared to. It also presents their level of operation as well as the nature of the system, i.e.
caching-aware system or opportunistic-caching system. In this table, ”-” is used so as to indicate that no
further information has been provided regarding that category. At this point it is important to note that
the caching approaches proposed in the COMET project represent a rather general piece of work and do
not follow the principles defined for the COMET architecture, i.e. caching has been proposed to work at
the packet-level while the COMET architecture considers only complete content objects.

Proposal Proposed
Technique

Comparison
Technique

Caching-Level Caching
System

Caching performance of content centric
networks under multi-path routing (and
more) [60]

LCD CE2, RND chunk opportunistic

On sizing CCN content stores by exploiting
topological information [61]

DC, SC, BC,
CC, GC, EC

each other chunk opportunistic

Cache “Less for More” in Information-
Centric Networks [62]

BC UniCache,
CE2

object, chunk,
packet

opportunistic

CCN [13] CE2 - packet opportunistic
COMET [63, 66] ProbCache CE2 packet opportunistic

BC CE2 packet opportunistic
CONET [17] - - chunk opportunistic
DONA [16] - - object opportunistic
MultiCache [20] LastNode - chunk caching-aware
On content-centric router design and im-
plications [64]

RND CE2 packet opportunistic

Probabilistic in-network caching for
information-centric networks [65]

ProbCache CE2, LCD,
RND

chunk opportunistic

PURSUIT [59] CE2 - object, packet opportunistic
SAIL [43] CE2 - object, chunk opportunistic
TRIAD [24] - - object opportunistic

Table 6: Taxonomy of the proposed on-path caching algorithms.

6.1. Probabilistic Caching

Probabilistic caching is a general approach, according to which each node on the delivery path decides
to cache the content based on a probability p [64, 66, 67]. The probability p may be a pre-determined
value [64, 68] or may be calculated based on a mathematical formula, composed of a number of individual
components [66].

11



6.1.1. Random Caching

In random caching (RND), probability p is set at a standardized value, e.g. p=1, 1/2, 1/3 etc. [64]. RND
caching decisions are individually taken, involving no coordination between the nodes. This model is fairly
simple and results in no additional load on the network. However, it is not able to exploit the advantage
of having knowledge of the optimal positions for caching each content, based on, for example, the content’s
popularity. In addition to this, random decisions can lead in high content redundancy or in no caching at
all.

• Unique Caching

Unique caching is a form of randomized on-path caching. For the rest of the paper we will refer to
this caching approach as the UniCache approach. In UniCache, content is cached only in one node
along the delivery path which is chosen randomly [62, 68]. Since only node is chosen, the probability
of caching at each node equals to, one to the number of intermediary nodes. Considering an example
of four intermediary nodes, the caching probability for unique caching would be p=1/4 at each node.
As a subcategory of the random caching approach, unique caching holds all the disadvantages deriving
from its parent.

• Caching Everything-Everywhere

Jacobson et al. [13] have proposed an approach called Caching everything-everywhere (CE2) as the
preferred on-path caching approach. The CE2 approach has also been adopted by other ICN proposals
[26, 37]. The CE2approach simply caches every content in every intermediate node involved in the
delivery path. The CE2 approach has been criticized in a number of works [54, 60, 62, 64, 66, 67, 69–
72] for resulting into uneccessary content redundancy and resource consumption. As an additional
drawback, CE2 does not take into account the content’s popularity, providing the same probability,
for both popular and unpopular content, to be cached. In contrast to its disadvantages, CE2 holds
the advantage of providing fast content distribution [62].

6.1.2. ProbCache

Kamel et al. [66] suggested a probabilistic caching algorithm that they name, ProbCache. ProbCache is
assumed to work at a packet-level or at a chunk-level [65]. ProbCache is based on two factors, the TimesIn
factor and the CacheWeight factor. ProbCache is calculated at each node lying on the delivery path.

ProbCache =

∑x−(y−1)
i=1 Ni

Rc︸ ︷︷ ︸
TimesIn

× y

x︸︷︷︸
CacheWeight

(1)

ProbCache =

∑x−(y−1)
i=1 Ni

Ttw ×Nx︸ ︷︷ ︸
TimesIn

× y

x︸︷︷︸
CacheWeight

(2)

The goal of the algorithm is to provide fairness regarding the available capacity of the delivery path. In
order to achieve that, values x and y correspond to the number of hops travelled from the requestor to the
content source and to the number of hops travelled from the source towards to the requestor, respectively.
The x value remains stable during the delivery of the content. As such, ProbCache is calculated based on
the capacity of the remaining nodes left at the delivery path. According to the authors, TimesIn factor
favors contents that travel from further away while CacheWeight factor acts as a counter-balance to this
unfairness.

The TimesIn factor indicates the number of replicas of the content that are expected to be cached along
the delivery path. The TimesIn factor depends on the Rc value, equation 1, which ideally indicates the
number of different content items that a given delivery path has to cache. However, in a real-time network,
this value cannot be calculated. Therefore, Rc could be considered as the number of the content items that
each node has to process per time unit. In a newest version of the algorithm, provided by the same authors

12



N2N3

N6 N5

N1

LAN1

(t1)

Source

t1
t2
t3

N4

N7

LAN3

(t3)
LAN2

(t2)

x1, x2, x3

y1, y2, y3

x1, x2

y1, y2

x1

y1

y3

x3

y2

x2

y1

x1

Figure 8: ProbCache caching algorithm.

in [65], Rc value is replaced by the combination of the Ttw and Nx variables, equation 2, where Ttw value is
the time for which any content should be kept by any cache lying on the delivery path and Nx value is the
average cache size along the same path. The Ttw value depends on the size of the caches. Assuming that
nodes have a capacity of 10GBytes DRAM [64], a value of 10 seconds is determined.

In order to evaluate the suitability of both the proposed ProbCache algorithms, equations 1 and 2, we
illustrate an example. In our example, presented in Figure 8, we assume a network of seven nodes, N1, N2,
N3, N4, N5, N6, N7, with each one having the same amount of cache memory. We also assume a source of
three objects, t1, t2 and t3 and three clients, Client1, Client2 and Client3, sending content requests for the
objects t1, t2 and t3, respectively. In order to make the figure as comprehensible as possible, we have added
arrows showing the direction of the content requests, i.e. x1, x2, x3 and the delivery of them y1, y2, y3.
Table 7 presents the values of x and y for each item at each individual node lying on the delivery path as
well as the Rc values. The size of the cache depends on the assumptions of each ProbCache algorithm that
has been proposed. Regarding the first proposed ProbCache algorithm, equation 1, Rc value corresponds
to the number of items that each node has to deliver at each time. As such, cache size should be similarly
calculated. We do assume that each node’s capacity equals to the size of two content objects. Regarding the
second proposed ProbCache algorithm, equation 2, storage capacity of each node is assumed to be 10GBytes.
As such, Ttw equals to 10. Similarly, since all nodes have the same amount of cache memory, Nx equals
to 10 as well. In order to evaluate the suitability of both the proposed ProbCache algorithms, equations 1

Nodes
N1 N2 N3 N4 N5 N6 N7

x1=5 x1=5 x1=5 x1=5 - - x1=5
x2=3 x2=3 - - - x2=3 -
x3=2 - - - x3=2 - -

y1=1 y1=2 y1=3 y1=4 - - y1=5
y2=1 y2=2 - - - y2=3 -
y3=1 - - - y3=2 - -

Rc 3 2 1 1 1 1 1

Table 7: Values of x and y at each node during delivery process.

and 2, we calculate the ProbCache values at node N2 for the items t1 and t2, i.e. equations 3, 4, 5 and 6.
Equations 3 and 4 illustrate the operation of equation 1, while equations 5 and 6 illustrate the operation of

13



equation 2, respectively. ProbCache values for the rest of the nodes may be calculated in a similar manner.

ProbCache(t1) =

∑x1−(y1−1)
i=1 Ni

Rc︸ ︷︷ ︸
TimesIn

× y1
x1︸︷︷︸

CacheWeight

=

∑5−(2−1)
i=1 2

2︸ ︷︷ ︸
TimesIn

× 2

5︸︷︷︸
CacheWeight

=
8

5
(3)

ProbCache(t2) =

∑x2−(y2−1)
i=1 Ni

Rc︸ ︷︷ ︸
TimesIn

× y2
x2︸︷︷︸

CacheWeight

=

∑3−(2−1)
i=1 2

2︸ ︷︷ ︸
TimesIn

× 2

3︸︷︷︸
CacheWeight

=
4

3
(4)

As indicated from the values calculated at equations 3 and 4, ProbCache values may be higher than the
defined range [0,1]. These kind of values are not acceptable. Therefore, it appears that the first proposal of
the ProbCache algorithm, as it is identified by equation 1, is not a proper caching management technique.

ProbCache(t1) =

∑x1−(y1−1)
i=1 Ni

Ttw ×Nx︸ ︷︷ ︸
TimesIn

× y1
x1︸︷︷︸

CacheWeight

=

∑5−(2−1)
i=1 10

10 × 10︸ ︷︷ ︸
TimesIn

× 2

5︸︷︷︸
CacheWeight

=
8

50
(5)

ProbCache(t2) =

∑x2−(y2−1)
i=1 Ni

Ttw ×Nx︸ ︷︷ ︸
TimesIn

× y2
x2︸︷︷︸

CacheWeight

=

∑3−(2−1)
i=1 10

10 × 10︸ ︷︷ ︸
TimesIn

× 2

3︸︷︷︸
CacheWeight

=
4

30
(6)

Eventhough equations 5 and 6 correspond to acceptable probabilistic values that fall into the [0,1] range,
we are concerned that ProbCache is not a beneficial approach due to the TimesIn factor, due to the Ttw

and Nx values which remain stable for every item at any node. In addition to this, the algorithm does not
consider the popularity of the content while it requires that probability should be calculated at each node
involved in the delivery path. This approach could introduce high computational cost, compared at least to
simpler ones, such as random caching.

6.2. Last-Node Caching

Last-Node caching has been proposed as an on-path caching approach operating at the overlay layer of
the proposed MultiCache ICN architecture [20]. We will refer to this approach as the LastNode caching
approach. According to this approach, content is cached at the last node participating at the overlay
architecture of the delivery path, from the source towards to the requestor, while is also advertised at the
ancestors of the last node, upwards to the source. In contrast to other proposals where only the node to
which a request arrives is being checked, downstream nodes are also checked in a Depth-First Search (DFS)
fashion, in case that the node has transmitted the requested object to its descendants in a previous time.
If multiple child nodes have cached the potential content, preference is given to the one that is at the same
AS with the overlay node initiating the request. In the case where more than one exist, a random decision
is made.

We argue that LastNode caching is a non-beneficial approach due to its additional traffic of advertising
the cached content to its predecessors. In addition to this, LastNode caching exploits only a specific group
of nodes while the approach has not been tested against other approaches.

6.3. Leave Copy Down Caching

Leave Copy Down (LCD) [67] caching was initialy proposed for the multilevel web caching problem, as
an alternative to the de facto Leave Copy Everywhere (LCE) caching approach or CE2, as we refer to it
at this paper. However, the LCD caching algorithm has recently been proposed and tested against other
proposed ICN caching algorithms [60]. The LCD algorithm simply caches a copy of the requested content
one node closer to the client each time that a content request arrives. The LCD caching approach differs
from the CE2 approach in the sense that it only copies the object further when an additional content request

14



occurs while CE2 caches a copy in all the nodes of the delivery path upon the arrival of the very first content
request.

We do consider that LCD might be a rather good approach for the on-path caching placement problem
as it does not introduce any additional computational costs, yet it takes into account the object’s popularity,
which is indicated by the number of requests concerning that object. Recent metrics based on the LCD
algorithm verify our claims [60, 68].

6.4. Graph-related Centrality-based Caching

A number of graph-related centrality-based on-path caching algorithms have been proposed for the ICN
architectures [61], including Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality
(CC), Graph Centrality (GC) and Eccentricity Centrality (EC). Each of these algorithms is applied at each
potential caching node, individually. In this section we provide a brief description of each algorithm. For
the rest of the section, we do assume the usage of the shortest path as the routing metric. However, any
kind of metric can be used instead.

In order to be able to clearly describe all the graph-related centrality-based algorithms we use the same
graph as presented in Figure 6 and Figure 7. Based on that graph, Table 8 presents the intermediary nodes
that lie on the calculated shortest paths between two nodes, where ”-” indicates that the nodes are directly
connected to each other. Providing an example, the shortest path between the nodes N3 and N5 is as follows:
(N3, N2, N4, N5). Based on the same graph, Table 9 summarizes all the calculated graph-based values for
each node.

Nodes
N1 N2 N3 N4 N5 N6

N1 - N2 - N4 N4

N2 - - - N4 N4

N3 N2 - N2 N2, N4 N2, N4

N4 - - N2 - -
N5 N4 N4 N4, N2 - N4

N6 N4 N4 N4, N2 - N4

Table 8: Shortest path calculations between two nodes.

6.4.1. Degree Centrality-based Caching

The Degree Centrality-based (DC) caching [61] algorithm is based on the number of links that correspond
to each node n. As an example the DC value of node N4 would be DCN4 = 4. Rossi et al. in [61] have
concluded that DC is the most effective graph-related metric compared to the alternatives.

6.4.2. Betweenness Centrality-based Caching

The Betweenness centrality-based (BC) caching algorithm [61, 62, 66] is based on the concept of between-
ness centrality, originated from the area of social networks. The BC metric represents the number of times
that each node n lies at the sets of shortest paths, between all the pairs of nodes in the graph, besides n.
The idea is that if a node lies in many delivery paths, it has a higher probability of experiencing a cache hit.

As an example we calculate the BC value of node N4. In order to do this we need to be aware of all
the shortest paths between all the other nodes, i.e. nodes N1, N2, N3, N5 and N6. Depending on the
calculations provided in Table 8, we count a number of seven shortest paths that pass through node N4,
therefore, BCN4=7.

15



6.4.3. Closeness Centrality-based Caching

The Closeness centrality-based (CC) algorithm calculates the reverse sum of the shortest path distances
between each node n and the rest of the nodes in the graph. The lowest this value is, the more cantralized
is the node.

Again, as an example, we calculate the CC value of node N3. The shortest path distances between
node N3 and each of the other nodes, i.e. N1, N2, N4, N5, N6 are 1,0,1,2,2, respectively. According to these
values, the CC value of node N3 is CCN3

=1/(1+0+1+2+2)=1/6.

6.4.4. Graph Centrality-based Caching

The Graph centrality-based (GC) value corresponds to the reverse maximum shortest path distance value
from node n to all the other nodes in the graph. The idea is that high-GC nodes will act as ”central” nodes,
handling more content requests, thus, increasing the cache hit rates.

As an example, based on the shortest path distances calculated for node N3 at Table 8, node N3 has
a maximum distance of 2 towards all the rest nodes of the graph. As such, the GC value of node N3 is
GCN3=1/2.

6.4.5. Eccentricity Centrality-based Caching

The Eccentricity centrality-based (EC) value reflects the maximum distance between node n and each
other node in the graph. EC equals to the reverse of the GC value, i.e. EC = 1/GC. Based on the previous
example for node N3, the EC value of it would be ECN3 = 2.

N1 N2 N3 N4 N5 N6

DC 2 3 1 4 1 1
BC 0 4 0 5 0 0
CC 1/3 1/2 1/6 1 1/5 1/5
GC 1 1 1/2 1 1/2 1/2
EC 1 1 2 1 2 2

Table 9: Calculation of each graph-based value at each node.

Graph-related caching algorithms have been proposed as representative metrics for determing the size
of the caches, e.g. proportional to the centrality value of each node rather than determing the nodes for
caching the content. However, as indicated by Kamel et al. [66], graph-related centrality-based algorithms
may be also used for solving the on-path caching placement problem. Even though the proposed packet-level
caching algorithm illustrates the operation of the BC algorithm, any other graph-related centrality-based
metric. Accordingly, we provide a generalized description of it.

In such a scenario, a topology manager calculates and assigns the centrality values at each node in an
off-line manner. Caching nodes are chosen based on their corresponding centrality value. In more detail,
the algorithm assumes that during the request path towards the content source, each node’s centrality value
is checked. The value is updated at each node and stored in the packet header. Once the request packet
reaches the content source it would have the highest or the lowest centrality value recorded. As an example,
considering the DC and SC algorithms, the nodes with the highest centrality values will be chosen, while
considering the CC algorithm, the nodes with the lowest centrality value will be chosen. This value is then
used as a caching criterion, i.e. content is cached only at the nodes involved in the delivery path who have
their centrality value equal to the one recorded. A disadvantage deriving from the proposed algorithm is
that only a specific set of nodes is chosen, leaving the capacity of all the other nodes participating at the
delivery path unexploited.

A general disadvantage deriving from the nature of the graph-related caching algorithms is their lim-
ited efficiency. We do argue that the efficiency of a centrality-based algorithm is topologically limited as
centralized information is required for its operation, e.g. a topology manager. Therefore, centrality-based
algorithms may operate properly only in an AS-scale. The reason for this is that under a realistic scenario

16



ASes do not exchange any traffic information so as to conclude to a globally unique centrality value. Even
under an optimistic scenario, the scalability issues of a global topology manager would be an open question.
The DC algorithm constitutes the exception to this rule. Although, DC approach is able to work fine in a
decentralized global network architecture we do argue that a better and more representative metric would
be the load of each node, i.e. the number of requests that a node receives regarding a specific period of time.

An important drawback, however, related to all the centrality-based algorithms, is that they do not
consider the fact that a node may become overloaded due to its highly traffic position inside the network.
Hence, centrality-based algorithms may introduce significant latency and delay. Furthermore, centrality-
based algorithms do not take into account the popularity rates of the content.

7. Discussion

Even though, caching has been extensively investigated in many fields, e.g. web proxies and CPUs, ICN
caching and on-path caching in particular can be described as a rather new area of research. The main
reason for this argument is the integration of the caching mechanisms into the network architecture. As
such, caching mechanisms should be ”friendly” enough to the rest of the architectural components. As an
example, on-path caching operational requirements should introduce as less delay as possible to the system.

As indicated in Table 6, it appears that ICN caching mechanisms have not given sufficient attention in
the ICN literature. In addition, each of these algorithms has been proposed as part of individual projects
or works. As a result, algorithms may be tied to the architectural characteristics of the different ICN archi-
tectures for which they have been proposed, e.g. LastNode approach where cached contents are advertised
to the predecessors of the cache node.

Furthermore, some of the proposed on-path caching algorithms have been compared only against the
CE2 approach, this applies to the BC and RND caching algorithms, while others have not been compared
against any of the existing ones, including the LastNode caching. As such, no conclusion can be made
regarding the efficiency of the proposed algorithms and their suitability for an ICN architecture.

8. Conclusions

In this paper we have extensively described the proposed caching algorithms for the ICN architectural
model and categorized them against their properties. We have further discussed and analyzed the advantages
and disadvantages of each of them. We argue that ICN caching is an important architectural mechanism
which has not been satisfactory investigated. Further research is necessary in order to understand the
operation and the requirements of an ICN caching system and be able to design more proper algorithms.

9. Acknowledgements

At this section we would like to thank you all the people that helped us into concluding to the statements
included in this paper. In particular, we would like to give our special thanks to our collegues Elwyn Davies
and Guoxian Yang for their valuable comments.

10. References

[1] D. Reinsel, C. Chute, W. Schlichting, J. McArthur, S. Minton, I. Xheneti, A. Toncheva, A. Manfrediz, The expanding
digital universe, White paper, IDC.

[2] C. Index, Forecast and methodology, 2009-2014, White paper, CISCO 2.
[3] R. Buyya, M. Pathan, Content delivery networks, Vol. 9, Springer, 2008.
[4] G. Pallis, A. Vakali, Insight and perspectives for content delivery networks, Communications of the ACM 49 (1) (2006)

101–106.
[5] A. Passarella, A survey on content-centric technologies for the current internet: Cdn and p2p solutions, Computer Com-

munications 35 (1) (2012) 1–32.
[6] A. Vakali, G. Pallis, Content delivery networks: Status and trends, Internet Computing, IEEE 7 (6) (2003) 68–74.

17



[7] S. Androutsellis-Theotokis, D. Spinellis, A survey of peer-to-peer content distribution technologies, ACM Computing
Surveys (CSUR) 36 (4) (2004) 335–371.

[8] E. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, A survey and comparison of peer-to-peer overlay network schemes,
IEEE Communications Surveys and Tutorials 7 (2) (2005) 72–93.

[9] A. Kaplan, M. Haenlein, Users of the world, unite! the challenges and opportunities of social media, Business horizons
53 (1) (2010) 59–68.

[10] A. Mislove, H. Koppula, K. Gummadi, P. Druschel, B. Bhattacharjee, Growth of the flickr social network, in: Proceedings
of the 1st workshop on Online social networks, ACM, 2008, pp. 25–30.

[11] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks,
in: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, ACM, 2007, pp. 29–42.

[12] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, M. Walfish, A layered naming architecture
for the internet, in: ACM SIGCOMM Computer Communication Review, Vol. 34, ACM, 2004, pp. 343–352.

[13] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, R. Braynard, Networking named content, in: Proceedings of
the 5th international conference on Emerging networking experiments and technologies, ACM, 2009, pp. 1–12.

[14] F. Al-Shraideh, Host identity protocol-extended abstract, in: Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies, ICN/ICONS/MCL 2006, IEEE, 2006, p.
203.

[15] A. Jonsson, M. Folke, B. Ahlgren, The split naming/forwarding network architecture, in: First Swedish National Computer
Networking Workshop (SNCNW 2003), 2003.

[16] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S. Shenker, I. Stoica, A data-oriented (and beyond) network
architecture, in: ACM SIGCOMM Computer Communication Review, Vol. 37, ACM, 2007, pp. 181–192.

[17] A. Detti, N. Blefari Melazzi, S. Salsano, M. Pomposini, Conet: a content centric inter-networking architecture, in: Pro-
ceedings of the ACM SIGCOMM workshop on Information-centric networking, ACM, 2011, pp. 50–55.

[18] J. Pan, Y. Hou, B. Li, An overview of dns-based server selections in content distribution networks, Computer Networks
43 (6) (2003) 695–711.

[19] G. Garcia, A. Beben, F. Ramon, A. Maeso, I. Psaras, G. Pavlou, N. Wang, J. Sliwinski, S. Spirou, S. Soursos, et al.,
Comet: Content mediator architecture for content-aware networks, in: Future Network and Mobile Summit (FutureNetw),
2011, IEEE, 2011, pp. 1–8.

[20] K. Katsaros, G. Xylomenos, G. Polyzos, Multicache: An overlay architecture for information-centric networking, Computer
Networks 55 (4) (2011) 936–947.

[21] N. Fotiou, D. Trossen, G. Polyzos, Illustrating a publish-subscribe internet architecture, Telecommunication Systems 51
(2012) 233–245.

[22] N. Fotiou, P. Nikander, D. Trossen, G. Polyzos, Developing information networking further: From psirp to pursuit,
Broadband Communications, Networks, and Systems 66 (2012) 1–13.

[23] C. Dannewitz, Netinf: An information-centric design for the future internet, in: Proceedings of the 3rd GI/ITG KuVS
Workshop on The Future Internet, 2009.

[24] D. Cheriton, M. Gritter, Triad: A new next-generation internet architecture (2000).
[25] B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz, B. Ohlman, K. Pentikousis, O. Strandberg, R. Rem-

barz, V. Vercellone, Design considerations for a network of information, in: Proceedings of the 2008 ACM CoNEXT
Conference, no. 66 in CoNEXT ’08, ACM, 2008, pp. 1–6.

[26] A. Ericsson, The network of information: Architecture and applications, Tech. rep., FP7-ICT-2009-5-257448 (2011).
[27] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrec, The many faces of publish/subscribe, ACM Computing Surveys

(CSUR) 35 (2) (2003) 114–131.
[28] D. Clark, R. Braden, A. Falk, V. Pingali, Fara: Reorganizing the addressing architecture, in: ACM SIGCOMM Computer

Communication Review, Vol. 33, ACM, 2003, pp. 313–321.
[29] K. Katsaros, G. Xylomenos, G. Polyzos, A hybrid overlay multicast and caching scheme for information-centric networking,

in: INFOCOM IEEE Conference on Computer Communications Workshops, 2010, IEEE, 2010, pp. 1–6.
[30] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, et al., Oceanstore: An architecture for global-scale persistent storage, ACM Sigplan Notices 35 (11) (2000)
190–201.

[31] R. Moskowitz, P. Jokela, P. Nikander, T. Henderson, Host identity protocol, RFC 5201 (2008).
[32] J. Rajahalme, M. Särelä, K. Visala, J. Riihijärvi, On name-based inter-domain routing, Computer Networks 55 (4) (2011)

975–986.
[33] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, S. Surana, Internet indirection infrastructure, in: ACM SIGCOMM Computer

Communication Review - Proceedings of the 2002 SIGCOMM, Vol. 32, ACM, 2002, pp. 73–86.
[34] M. D’Ambrosio, P. Fasano, M. Marchisio, V. Vercellone, M. Ullio, Providing data dissemination services in the future

internet, in: Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, IEEE, 2008, pp. 1–6.
[35] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, P. Nikander, Lipsin: line speed publish/subscribe inter-

networking, in: SIGCOMM ’09 Proceedings of the ACM, Vol. 39, ACM, 2009, pp. 195–206.
[36] M. Särelä, T. Rinta-aho, S. Tarkoma, Rtfm: Publish/subscribe internetworking architecture, in: ICT-MobileSummit 2008

Conference Proceedings, 2008, pp. 1–8.
[37] D. Trossen, Conceptual architecture: Principles, patterns and sub-components descriptions, Tech. rep., FP7-INFSO-ICT-

257217 (2011).
[38] A. Detti, N. Blefari-Melazzi, Network layer solutions for a content-centric internet, Trustworthy Internet (2011) 359–369.
[39] D. Mazieres, M. Kaminsky, M. Kaashoek, E. Witchel, Separating key management from file system security, in: Proceed-

18



ings of the 17th ACM symposium on Operating systems principles, Vol. 33, ACM, 1999, pp. 124–139.
[40] M. Walfisha, H. Balakrishnana, S. Shenkerb, Untangling the web from dns, Networked System Design and Implementation

(NSDI).
[41] W. Chai, I. Psaras, M. Charalambides, G. Pavlou, W. Chai, I. Psaras, Interim specification of mechanisms, protocols and

algorithms for the, Tech. rep., FP7-2010-ICT-248784-STREP (2000).
[42] D. Trossen, G. Parisis, Architecture definition, components, descriptions and requirements, Tech. rep., FP7-INFSO-ICT-

257217 (2011).
[43] A. Ericsson, Netinf content delivery and operations, Tech. rep., P7-ICT-2009-5-257448 (2012).
[44] P. Cao, S. Irani, Cost-aware www proxy caching algorithms, in: Proceedings of the 1997 USENIX Symposium on Internet

Technology and Systems, Vol. 193, 1997.
[45] M. Charikar, S. Guha, Improved combinatorial algorithms for the facility location and k-median problems, in: 40th Annual

Symposium on Foundations of Computer Science, 1999, IEEE, 1999, pp. 378–388.
[46] S. Khan, I. Ahmad, Comparison and analysis of ten static heuristics-based internet data replication techniques, Journal

of Parallel and Distributed Computing 68 (2) (2008) 113–136.
[47] L. Qiu, V. Padmanabhan, G. Voelker, On the placement of web server replicas, in: INFOCOM 2001. Proceedings of the

20th Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 3, IEEE, 2001, pp. 1587–1596.
[48] S. Zaman, D. Grosu, A distributed algorithm for the replica placement problem, IEEE Transactions on Parallel and

Distributed System 22 (9) (2011) 1455–1468.
[49] V. Sourlas, P. Flegkas, G. Paschos, D. Katsaros, L. Tassiulas, Storage planning and replica assignment in content-centric

publish/subscribe networks, Computer Networks 55 (18) (2011) 4021–4032.
[50] S. Borst, V. Gupta, A. Walid, Distributed caching algorithms for content distribution networks, in: INFOCOM, 2010

Proceedings IEEE, IEEE, 2010, pp. 1–9.
[51] J. Kangasharju, J. Roberts, K. Ross, Object replication strategies in content distribution networks, Computer Communi-

cations 25 (4) (2002) 376–383.
[52] B. Li, M. Golin, G. Italiano, X. Deng, K. Sohraby, On the optimal placement of web proxies in the internet, in: INFO-

COM’99 Proceedings of the 18th Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 3,
IEEE, 1999, pp. 1282–1290.

[53] S. Jamin, C. Jin, A. Kurc, D. Raz, Y. Shavitt, Constrained mirror placement on the internet, in: INFOCOM 2001.
Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 1,
IEEE, 2001, pp. 31–40.

[54] M. Korupolu, M. Dahlin, Coordinated placement and replacement for large-scale distributed caches, IEEE Transactions
on Knowledge and Data Engineering 14 (6) (2002) 1317–1329.

[55] M. D’Ambrosio, C. Dannewitz, H. Karl, V. Vercellone, Mdht: a hierarchical name resolution service for information-centric
networks, in: Proceedings of the ACM SIGCOMM workshop on Information-centric networking, ACM, 2011, pp. 7–12.

[56] J. Choi, J. Han, E. Cho, T. Kwon, Y. Choi, A survey on content-oriented networking for efficient content delivery,
Communications Magazine, IEEE 49 (3) (2011) 121–127.

[57] L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache: a scalable wide-area web cache sharing protocol, IEEE/ACM
Transactions on Networking (TON) 8 (3) (2000) 281–293.

[58] A. Wolman, M. Voelker, N. Sharma, N. Cardwell, A. Karlin, H. M. Levy, On the scale and performance of cooperative
web proxy caching, in: Proceedings of the 7th ACM symposium on Operating systems principles, SOSP ’99, ACM, New
York, NY, USA, 1999, pp. 16–31. doi:10.1145/319151.319153.

[59] J. Kjällman, N. Fotiou, Progress report of component implementations, Tech. rep., FP7-INFSO-ICT-257217 (2012).
[60] D. Rossi, G. Rossini, Caching performance of content centric networks under multi-path routing (and more), Tech. rep.,

Relatório técnico, Telecom ParisTech (2011).
[61] D. Rossi, G. Rossini, On sizing ccn content stores by exploiting topological information, in: Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2012, IEEE, 2012, pp. 280–285.
[62] W. Chai, D. He, I. Psaras, G. Pavlou, Cache “less for more” in information-centric networks, 11th International IFIP TC

6 Networking Conference, Prague, Czech Republic, May 21-25, 2012, Proceedings 7289 (2012) 27–40.
[63] G. Pavlou, N. Wang, W. Chai, I. Psaras, Internet-scale content mediation in information-centric networks, Annals of

Telecommunications (2012) 1–11.
[64] S. Arianfar, P. Nikander, J. Ott, On content-centric router design and implications, in: Proceedings of the Re-Architecting

the Internet Workshop, ACM, 2010, p. 5.
[65] I. Psaras, W. Chai, G. Pavlou, Probabilistic in-network caching for information-centric networks, in: Proceedings of the

2nd edition of the ICN workshop on Information-centric networking, ACM, 2012, pp. 55–60.
[66] G. Kamel, N. Wang, A. Beben, J. Sliwinski, J. Batalla, P. Wisniewski, W. Burakowski, W. Chai, I. Psaras, J. Araújo,

et al., Final specification of mechanisms, protocols and algorithms for enhanced, Tech. rep., FP7-2010-ICT-248784-STREP
(2007).

[67] N. Laoutaris, H. Che, I. Stavrakakis, The lcd interconnection of lru caches and its analysis, Performance Evaluation 63 (7)
(2006) 609–634.

[68] K. Cho, M. Lee, K. Park, T. Kwon, Y. Choi, S. Pack, Wave: Popularity-based and collaborative in-network caching for
content-oriented networks, in: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2012,
IEEE, 2012, pp. 316–321.

[69] A. Anand, V. Sekar, A. Akella, Smartre: an architecture for coordinated network-wide redundancy elimination, in:
Proceedings of the ACM SIGCOMM 2009 Conference on Data communication, Vol. 39, ACM, 2009, pp. 87–98.

[70] H. Che, Y. Tung, Z. Wang, Hierarchical web caching systems: Modeling, design and experimental results, IEEE Journal

19



on Selected Areas in Communications 20 (7) (2002) 1305–1314.
[71] M. Rabinovich, I. Rabinovich, R. Rajaraman, A. Aggarwal, A dynamic object replication and migration protocol for an

internet hosting service, in: Proceedings of the 19th IEEE International Conference on Distributed Computing Systems,
1999, IEEE, 1999, pp. 101–113.

[72] T. Wong, G. Ganger, J. Wilkes, C.-M. U. P. P. S. O. C. SCIENCE., My cache or yours? making storage more exclusive,
Tech. rep., School of Computer Science, Carnegie Mellon University (2000).

20


