Practical Algorithms for Finding Extremal Sets

MARTIN MARINQV, Trinity College Dublin
NICHOLAS NASH, Susquehanna International Group, Ireland
DAVID GREGG, Lero, Trinity College Dublin

The minimal sets within a collection of sets are defined as the ones which do not have a proper subset within
the collection, and the maximal sets are the ones which do not have a proper superset within the collection.
Identifying extremal sets is a fundamental problem with a wide-range of applications in SAT solvers, data-
mining and social network analysis. In this paper, we present two novel improvements of the high-quality
extremal set identification algorithm, AMS-Lex, described by Bayardo and Panda. The first technique uses
memoization to improve the runtime of the single-threaded variant of the AMS-Lex, whilst our second
improvement uses parallel programming methods. In a subset of the presented experiments our memoized
algorithm executes more than 400 times faster than the highly efficient publicly available implementation
of AMS-Lex. Moreover, we show that our modified algorithm’s speedup is not bounded above by a constant
and that it increases as the length of the common prefixes in successive input itemsets increases. We provide
experimental results using both real-world and synthetic data sets, and show our multi-threaded variant
algorithm out-performing AMS-Lex by 3 to 6 times. We find that on synthetic input datasets when executed
using 16 CPU cores of a 32-core machine, our multi-threaded program executes about as fast as the state of
the art GPU-based program using 512 CUDA cores. Furthermore, in the conducted experiments using real-
world input datasets, our multi-threaded algorithm is almost always faster than the GPU-based approach.
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1. INTRODUCTION
1.1. Motivation

The problem studied in this paper is that of finding the extremal sets within a
dataset (family of sets) D. The extremal sets of D are all the sets in D that are maximal
or minimal with respect to the partial order induced on D by the subset relation.

Finding extremal sets is a fundamental problem and has many motivating appli-
cations. For example, large-scale SAT solvers use extremal set identification as an
optimization step [Eén and Biere 2005]. Extremal sets are also used for performing
itemset support queries in data mining [Mielikdinen et al. 2006], and social network
analysis [Bayardo and Panda 2011], as well as in trajectory-based query algorithms
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with applications in surveillance [Vieira et al. 2009]. Early theoretical algorithms were
motivated by problems in propositional logic [Pritchard 1991].

In this paper we present two optimization techniques that we apply to the AMS-Lex
algorithm to achieve a faster runtime — the first one uses memoization and the second
one parallel programming techniques. Using experimental evaluation we demonstrate
the speedup achieved of both of them when compared to the highly efficient implemen-
tation of the AMS-Lex! algorithm described by Bayardo and Panda [2011].

1.2. Related Work

We denote by NV the sum of the cardinalities of all the sets in the input dataset D, and
informally refer to it as the size of the input. Although the algorithms for computing
extremal sets are almost quadratic in /V in the worst case, due to the nature of datasets
in applications, practical algorithms can operate efficiently for very large N [Bayardo
and Panda 2011]; i.e, in this paper we provide experimental results for N = 7.2 x 108.

Yellin [1992] described algorithms for maintaining a dynamic family of sets, under
insertion, deletion, intersection and subset query operations. He presents an output
sensitive algorithm for identifying extremal sets after a sequence of n operations that
operates in O(mn) time, where m is the number of maximal sets. Note that n is the
sum of N and the number of sets in the dataset, and hence n > N.

Early sub-quadratic time algorithms for finding extremal sets were described
by Yellin and Jutla [1993], operating in O(N?/log N) expected time, and by
Pritchard [1997] who provided a matching worst-case time bound. Pritchard [1991]
described the first algorithms that required sub-quadratic space, providing algorithms
requiring O(N?/log N) space.

Sheni and Evans [1996] also studied algorithms for maintaining a dynamic family
of sets, operating in time O(N?/log? N) and requiring O(N2/log® N) space. We do not
study this dynamic version of the extremal set problem in this paper.

Pritchard [1997] described the first algorithm to make use of a lexicographic order-
ing of the input sets. Among the practical algorithms for computing extremal sets is the
highly efficient implementation of the AMS-Lex algorithm described by Bayardo and
Panda [2011]. AMS-Lex is the state of the art practical algorithm for finding extremal
sets that is designed to run on commodity CPUs. In this paper we give a detailed ex-
planation of AMS-Lex in section 2 as it is the basis point of our work.

Fort et al. [2013] described a GPU based algorithm that out-performs Bayardo and
Panda’s algorithm. However, these results compare Bayardo and Panda’s algorithm
that is suitable for execution on a single CPU core to a GPU based algorithm run-
ning on 512 CUDA cores. The single-threaded algorithm we described in this paper
is targeted at running on an ordinary commodity CPU and therefore we compare its
performance to the algorithm of Bayardo and Panda [2011]. In the experimental evalu-
ation section 5 we compare the runtime of our two new algorithms to Fort et al. [2013]’s
reported runtime by evaluating on synthetically generated datasets.

1Bayardo and Panda have made their implementation of the AMS-Lex algorithm publicly available at https:
/lcode.google.com/p/google-extremal-sets/
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1.3. Contributions
The main contributions of this work can be summarized as:

— A memoized version of AMS-Lex that takes advantage of common prefixes among
itemsets.

— We outline a parallel modification of the AMS-Lex extremal sets algorithm.

— We present experimental results over both real-world and synthetic data for both
the memoized and parallel modifications of the AMS-Lex extremal sets algorithms.
We find that the speedup of the memoized algorithm increases as the length of the
common prefixes of itemsets in the input dataset increases. Also that, the speedup of
the parallel algorithm increases as the number of CPU cores in the system used for
evaluating increase.

2. BACKGROUND

Practical algorithms for computing the extremal sets of a dataset D assume that the
elements of D are sets of items, called itemsets. Furthermore, these algorithms assume
that there is an ordering on the itemsets themselves. An input to an extremal set algo-
rithm is then an ordered multiset of itemsets, referred to as a dataset D.

The choice of the ordering on the itemsets gives rise to alternative algorithms for
computing extremal sets. For example, if itemsets are ordered by cardinality then the
simple observation that if itemset a is a subset of itemset b then the cardinality of a is
less than the cardinality of b can be used to prune the search space. This gives rise to
an algorithm referred to as AMS-Card by Bayardo and Panda [2011].

Pritchard [1997] exploited a lexicographic ordering of itemsets to obtain more effi-
cient algorithms for identifying extremal sets. In particular he noted the following:

THEOREM 2.1. Let a and b be itemsets such that a C b then either a is a proper
prefix of b or a is lexicographically larger then b.

The most efficient practical algorithm, AMS-Lex, for identifying extremal sets, de-
scribed by Bayardo and Panda [2011], makes use of this lexicographic ordering of the
preceding property to substantially prune the search space. In order to present our
improvements we must first describe in detail the AMS-Lex algorithm.

2.1. The AMS-Lex algorithm

In this section we reproduce the AMS-Lex algorithm, we re-use the notation [Bayardo
and Panda 2011] when referring to the input ordered dataset D:

— DJi] denotes the i itemset in D

— DJi][j] denotes the ;" item of itemset D[i].

— DJi : j] denotes the ordered multiset of itemsets {D[k] |k = i...j} in that order.
— DIi][j : k] denotes the ordered multiset of items {D[i][]] | I =j...k}.

We also re-use Bayardo and Panda’s subsumed notation: an itemset A is subsumed
by B iff A is a subset of B.

The pseudo code of the AMS-Lex algorithm itself is shown in Algorithm 2, and it
applies the result from of Theorem 2.1 directly to first identify the proper prefixes
that are subsumed, and then searching among the remaining itemsets using Contains-
Subset-Of. The function Contains-Subset-Of takes as input an itemset S and dataset
D and returns all z € D such that © C S and z is lexicographically larger than S.
Contains-Subset-Of makes use of the known common prefixes of itemsets in D as well
as the lexicographic order of D. Since the items in the itemsets themselves are ordered
lexicographically, the functions NextBeginRange, NextEndRange, and NextItem can
be implemented using binary search.
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Contains-Subset-Of Explanation. The Contains-Subset-Of function exploits the com-
mon prefixes of itemsets in D by taking advantage of the lexicographic order of D. The
function is designed to efficiently find all itemsets in the range D[b : ] that are subsets
of S (i.e., that are subsumed by S). The itemsets in D are processed in ranges which
share a common prefix of length at least d.

The first thing we check in the function is if the next item (D[b][d + 1]) is contained
in S by finding the first element of S which is greater than or equal to D[b|[d + 1].
If all elements of S smaller then DI[b][d + 1] we can safely deduce that there are no
subsumed itemsets by S in the range DIb : e]. This is because all itemsets in D[b : €]
are ordered lexicographically in ascending order. Hence if S[|S|] < D[b][d + 1] then
S[|S|] < DJi][d + 1] for all i in the range [b, ¢]. Hence we reach a state where we know
that the element S[j] > DIb][d + 1].

If S[j] = D[b][d+ 1] then we know that it is possible for D[b] to be a subset of S. Hence
we have to make a recursive call to Contains-Subset-Of. In order to do this we have to
first find a new end range e’ such that all elements in D[b : '] have a common prefix
of length at least d + 1. Then check if there are any subsumed itemsets. Next we check
if the requirements of the recursive call to Contains-Subset-Of that we want to make
are met. If this is the case then we mark subsumed items by S in the range D[b : e].
Since we have already covered the range Db : €'] we set the current start of our range
btoe.

If S[j] > DIb][d + 1] then we know that D[b] cannot be subsumed by S. Hence we
search for the first element in D[b : ¢] which has a value at index d + 1 greater then or
equal to S[j], this operation is referred to as subroutine NextBeginRange.

Lastly we check if the current begin range is smaller then the current end range
and if it is the case we mark all subsumed sets of S in the range D[b : ¢] by making a
recursive call to Contains-Subset-Of.

3. AN IMPROVED ALGORITHM FOR IDENTIFYING EXTREMAL SETS
3.1. Observations

Our improved algorithm for extremal set identification memoizes successive calls to
the function Contains-Subset-Of, defined in Algorithm 1. As we explain below, Bayardo
and Panda’s algorithm AMS-Lex presented in Algorithm 2 duplicates work in succes-
sive calls to Contains-Subset-Of where itemsets share a non-empty common prefix.
We now show more precisely how this work is duplicated, in terms of the call-graphs
resulting from successive calls to Contains-Subset-Of.

Definition 3.1. The directed call graph of an itemset S and the function Contains-
Subset-Of(D[b : ¢€],S,4,d) is defined as a graph G(S) = (V,E), where V =
{(b,e,S,j,d) | b,e,S,j and d meet the input requirements of Contains-Subset-Of}, and
(v1,v2) € E iff Contains-Subset-Of(v,.b, v1.e, v1.5, v1.j, v1.d) makes a recursive call to
Contains-Subset-Of(vs.b, vs.e, v2.5, v2.j, vo.d).

Remark 3.2. Note that since the Contains-Subset-Of function in Algorithm 1 per-
forms at most two recursive calls, hence the out-degree of any vertex in a call-graph
G(9) is at most two.

NOTATION 3.3. For a call graph G(S) = (V,E) and any v = (b,e,S,4,d) € V, we
refer to the values of v as v.b, v.e, v.j, v.d, v.t and v.m; and we refer to the children of v
as v.c; and v.cy. We denote v.t as a boolean field which is true iff there exists a subset
of S in the range [v.b;v.e) that is of size v.d + 1. We refer to v.m to be the maximum

index that is accessed from the itemset S without considering any recursive calls of
Contains-Subset-Of.
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Remark 3.4. Note that at any single call-graph node corresponding to a call to
function Contains — Subset — O f(DIb : €], S, i,d) the only indices of S that are required
are those between j and NextItem(S, j, D[b][d+1]), and we refer to the maximum value
as v.m for any v € V.

LEMMA 3.5. Let S and T be itemsets with a common prefix P. Let G(S) = (Vg, Es)
and G(T) = (Vp,Er). Suppose that vi,vy € Vs, where vi = (b,e,S,j,d), and vy =
(t',e,S,j',d') such that j/ < |P|, and that (vi,v2) € Es. Then (w1,ws) € Er where
wy = (bye, T, j,d) and we = (W', €', T, 5, d).

PROOF. Referring to Algorithm 1 note that because S and T have a common prefix
P of length greater than j’ all requirements of Contains-Subset-Of are met for the
inputs represented by w; and wy. Hence we have wi,wy € V. We now need to show
that there is an edge between w; and ws. Since (vi,v2) € Es and from Remark 3.4 the
only values required of S by Contains-Subset-Of are in the range [j, j’] and as a result
of the further assumption that ;' < |P| it follows immediately that (wq,ws) € Er. O

Remark 3.6. Note that for any itemset S, the call graph G(S) = (V, E) is acyclic
because in all recursive calls to Contains-Subset-Of the range [b, ¢] gets smaller, S is
always constant, j increases and d increases.

NOTATION 3.7. For any itemset S, we refer to the subgraph of G(S) = (V, F) identi-
fied by V' = {(b,e,S,j,d) € V | j < |P|} as G(S)|;<|p|-

COROLLARY 3.8. Let S and T be itemsets with a common prefix P. Then
G(9)|j<ipi= G(T)lj<|p)-

PRrROOF. Use induction to apply Lemma 3.5 multiple times starting from the root of
G(S) identified by the vertex (b,e,S,57=1,d=0). O

3.2. Algorithm

The pseudo code of our modified algorithm for identifying minimal sets is presented
in Algorithm 4 and we now give an informal description of its behaviour. For each call
made to Contains-Subset-Of(D[i + 1,n], D[i],1,0) we memoize the call graph G(D]i])
of the execution path. When we get to the point when we need to find if there is a
subsumed itemset by D[i + 1] we first identify the common prefix P of D[] and D[i + 1].
Then we traverse G(D]i]) using depth first search. For each vertex v we check if a
recursive call is made to Contains-Subset-Of with some j > |P|. If this is the case then
we execute the function Contains-Subset-Of with input v; otherwise we recursively
traverse the children of v. This is a direct result from Corollary 3.8. In practice we note
that, we need not memoize the full call graph G(D[i]) as we are only ever going to use
nodes w € G(D[i]) for which w.j < |P|.

Remark 3.9. It is important to note that we use a modified version of the function
Contains-Subset-Of by assuming that it returns a pair of a boolean result as per the
specification from Algorithm 1 and the call graph representing its execution path. We
use this in the pseudo code of the memoized version of the memoized version of AMS-
Lex presented in Algorithm 4.

3.3. Complexity Analysis

Worst Case Time Complexity. It is easy to see that in the worst case (when no two
itemsets have a common prefix), the complexity of our algorithm is equal to that of
AMS-Lex, that is O(N?/log(N)), where N is the sum of the cardinalities of all itemsets
in the input dataset.
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Runtime Comparison to AMS-Lex. Our algorithm’s run time is clearly bounded
above by the time required by AMS-Lex. Moreover, as the number of common pre-
fixes among the itemsets increases, the faster (comparatively) our algorithm becomes.
Essentially by executing Contains-Subset-Of fewer times, we save run time consumed
by the low level searching routines NextItem, NextEndRange, and NextBeginRange
which are the bottleneck of the AMS-Lex algorithm as per [Bayardo and Panda 2011].

Space Complexity. In addition to the memory required by AMS-Lex, Algorithm 2
stores (part of) the call graph of Contains-Subset-Of. Clearly the size of the call graph
is bounded above by the size of the input, denoted as N. Since only the required portion
of the call graph, as defined by Corollary 3.8 to be stored in practice, the extra space
required is often much less than the size of the input.

3.4. Implementation Details

We implemented our algorithm as a modification to the publicly available implemen-
tation® of the AMS-Lex algorithm, only introducing the memoization described in Al-
gorithm 4. We regard this as valuable since it allows us to directly measure the im-
provement in performance resulting from memoization.

4. A PARALLEL ALGORITHM FOR IDENTIFYING EXTREMAL SETS

We use the complexity analysis of the function AMS-Lex [Bayardo and Panda 2011] to
identify the bottleneck of the existing algorithm. In the worst case, finding all proper
prefix subsumed itemsets takes O(N ) computational steps and finding the remaining
non-minimal itemsets takes O(N?/log(N)) > O(N), where N is the size of the input.
Consequently, the novel work presented in this section is a parallel algorithm that
finds the non-proper prefix subsumed itemsets of D, i.e. we present a parallel imple-
mentation of the function Get-Minimal-Itemsets-Lex from Algorithm 2.

4.1. Observation

The first observation we make is that the pseudo code of the function Contains-Subset-
Of, presented in Algorithm 1 that is a reproduction of Contains-Subset-Of [Bayardo
and Panda 2011], does not modify the input dataset D. Hence, this makes the algo-
rithm of finding all minimal itemsets within D embarrassingly parallel. Note that,
for simplicity of explanation of this parallel algorithm we have chosen to present in
depth analysis of the method for finding minimal itemsets within a dataset in this
paper rather than maximal ones. To obtain a version of this algorithm for identifying
the maximal itemsets, we would need a small modification to the Contains-Subset-Of
method to make sure it does not alter the dataset D which is trivial.

4.2. Algorithm

The pseudo code for our parallel algorithm of finding the minimal itemsets within a
lexicographically ordered dataset is presented in Algorithm 5.

Entry Point. We first mark every itemset within the dataset D as minimal. Next,
we mark all itemsets as no minimal for which there exists a proper prefix subsumed
itemset within the dataset. We then start P parallel instances of the thread functor
whose job is to mark itemsets as non-minimal for which there exists a non-prefix (lex-
icographically larger) subsumed itemset.

Thread Functor. All of the parallel instances of the Thread-Functor function share
a common integer variable indexr which points to the next unprocessed itemset

2https://code.google.com/p/google-extremal-sets/
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Dlindex] € D within the datasets tarting at 1. To process the itemset D[index] means
to check if there exists a non-prefix subsumed within D of D[indez]. We begin by atomi-
cally assigning the current value of index to the variable i and incrementing index; en-
suring that every itemset in D will be processed exactly once by some Thread-Functor.
We then use the function Contains-Subset-Of from Algorithm 1 to check if a subset of
D[i] is found. Finally, we try to take a new unprocessed itemset from D and process it
in the same manner.

4.3. Complexity

Here we give the worst case time and space complexity of the functions presented
in Algorithm 5. From Bayardo and Panda [2011]’s complexity analysis of AMS-Lex
we know that the worst case time complexity of AMS-Lex is equal to O(N) to iden-

tify the prefix subsumed itemsets and additional O(N?/log(N)) to find the non-prefix
subsumed ones; recall that N denotes the sum of the cardinalities of all the sets in the
input dataset D. Since in this section we showed that, the function Contains-Subset-Of
requires only read-only access to the dataset D and we have P threads at our disposal
we deduce that worst case runtime of the function Get-Minimal-Itemsets-Lex-Parallel
is O(N) + O(N?/(log(N) x P)) = O(N + N?/(log(N) x P)); note that 1 < P < n. As for
the space complexity of the Get-Minimal-Itemsets-Lex-Parallel algorithm it is equal to
that of Get-Minimal-Itemsets-Lex [Bayardo and Panda 2011] which is proportional to
the size of the input, i.e. O(N).

5. EXPERIMENTS

Here we describe the experimental comparison of our algorithm with Bayardo and
Panda’s algorithm AMS-Lex for identifying the minimal itemsets within a dataset.
We measure runtime speedup as the ratio of AMS-Lex algorithm runtime divided by
our algorithm’s runtime. Hence, a speedup of 2 means that our algorithm executed in
half the time, and a value of 1 means that both algorithms have the same runtime. For
every input, we also measure the total number of calls that each algorithm made to the
subroutines NextBeginRange and NextEndRange, because as described in [Bayardo
and Panda 2011], these subroutines are the bottleneck of the AMS-Lex algorithm. In
our experimental evaluation we provide a link between the decrease in the number of
range searches performed by our algorithm in comparison to AMS-Lex and the relative
to AMS-Lex runtime speedup.

Although not presented below, we also conducted experiments with the Bayardo
and Panda’s AMS-Card Algorithm on a subset of the data and it performed slower
on all cases, compared to the AMS-Lex algorithm. That is expected as stated in [Ba-
yardo and Panda 2011] the cardinality approach is faster then the lexicographic one
mostly in very obscured cardinality distributions. Furthermore, the goal of this paper
is to present faster than AMS-Lex methods of finding extremal sets that are based on
Pritchard’s lexicographic subsumption property from Theorem 2.1.

5.1. Experimental Setup

For all of our experiments we used a machine with four Intel Xeon CPU E7- 4820
clocked at 2.00GH z, a third level cache size of 18 M B and 128G B of main memory. Note
that our experiments investigate the case when the entire input fits in main memory.
We used uniform random data as well as publicly available data as input to evaluate
our two new algorithms and AMS-Lex. All of the results presented below are averaged
over 3 different runs.
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5.2. Real-World Data

A summary of the conducted experiments using real-world input datasets is presented
in Figure 1. We have evaluated the AMS-Lex algorithm, our memoized approach and
the parallel method using different degrees of parallelism over the real-world datasets:

— PubMed dataset represents significant terms in the PubMed abstract. It consists of
8 million itemsets stored in a 2G B file.

— DBLP dataset consists of 1 million itemsets and is used in the area of similarity
joins. The file size is 50M B.

— SN_9 4 dataset consists of 2 million itemsets with an average size of 30.3 and an
alphabet size of 2°. This data is derived from the domain of 9-input sorting networks
by generating all non maximal networks of depth 4. The file size is 252M B.

—SN_9 5 dataset consists of 2 million itemsets with an average size of 30.3 and an
alphabet size of 2°. This data is derived from the domain of 9-input sorting networks
by generating all non maximal networks of depth 5 by using the minimal ones of
depth 4. The file size is 578 M B.

Memoized vs AMS-Lex. For the DPLP and PubMed datasets the memoized ap-
proach is marginally faster than the AMS-Lex algorithm because there are very few
itemset pairs that share a common prefix. On the other hand, for the SN_9_4 dataset
the memoized algorithm is 4.06 times faster than AMS-Lex; and 2.96 times faster for
the SN_9.5 dataset. The sorting network input datasets tend to share long common
prefixes as the size of the alphabet is very small compared to the size of the input
which favours our memoization technique over AMS-Lex. It is important to note that
in the sorting network datasets there are no trivially subsumed itemsets.

Parallel vs AMS-Lex. Note that our parallel algorithm is executed on a machine with
32 physical cores and all real-world experimental results are presented in Figure 1. For
the DBLP dataset we see that the speedup of the parallel algorithm over AMS-Lex is
about 3.5 for degrees of parallelism P = 4,8 and 16 whereas for P = 32 we see a
reduced speedup. For the PubMed dataset we see substantial speedup for all of the
parallelism factors with P = 16 executing 5.6 times faster than AMS-Lex. Substantial
runtime speedups are evident in the SN_9_4 and SN _9_5 datasets both of them peeking
at P = 16 with maximum speedup factors of 5.3 and 5.9 respectively. It important
to note that these real-world data runtime speedups are comparatively equal and/or
better than the ones that the GPU [Fort et al. 2013] approach achieves over the AMS-
Lex algorithm. Hence, we can conclude that our parallel version of AMS-Lex is faster
than AMS-Lex on real-world data and at least as fast as the GPU algorithm.

5.3. Synthetic Data

Input Dataset Generation. We now describe the process of generating random input
data using a random data generator program g(n,d, f;in). The input to the generator
is the number of itemsets n, the number of distinct items d in the alphabet and the
minimal item frequency f. Then for each of the d items we choose a frequency f; from
the range [f.in, 1] which indicates the number of itemsets which contain this item.
Then we insert this item to a set of randomly chosen | f; x n| itemsets. Then we use
Bayardo and Panda’s open source implementation to sort the input data in the format
required by the algorithms. Note that the higher the value of the minimal frequency
fmin the greater the probability that two itemsets will share a common prefix. We use
the value of f,,;, to evaluate our hypothesis that our algorithm is faster than AMS-Lex
on inputs consisting of itemsets sharing large common prefixes.
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Memoized vs AMS-Lex. Figure 2 shows the runtime speedup factor of our memo-
ized algorithm over AMS-Lex for datasets consisting n» = 100000, n = 500000 and
n = 1000000 itemsets with alphabet size of 40, 60, 80, 100, 120 and 140. We notice
that as the minimal item frequency increases, the speedup factor increase drastically.
The maximum runtime speedup factor of 406 is achieved by a dataset consisting of
N = 1000000 itemsets with alphabet size of D = 140 and minimal frequency of
F = 0.95. We also note that there is an approximately constant correlation between
the runtime speedup of our algorithm and the factor of reduction in range search calls.
That is an expected correlation because these low level subroutines are described as
the bottleneck of AMS-Lex [Bayardo and Panda 2011].

In Section 3 we showed that the more common prefixes that itemsets have, i.e. as
fmin increases and we keep n and d fixed, the bigger the expected speedup factor, which
is experimentally verified by this figure. We note that fixing the size of the alphabet
d and the minimal item frequency f,.i,, in Figure 2 we see that as the number of
itemsets n increases, the runtime speedup of the memoized algorithm over AMS-Lex
increases. Also, if we fix n and f,,;, we see that as d increases the runtime speedup is
non-decreasing in all of the conducted experiments.

Another interesting summary of our experiments is shown in Figure 3 which gives
the runtime speedup with respect to the cardinality of the resulting minimal itemsets
by presenting three different graphs for n = 100 000, n = 500000 and » = 1000 000. Our
first impression is that all of the graphs look very similar to each other besides the
scale of the runtime speedup access. Our second observation shows that the largest
speedups are almost always achieved at the smallest resulting minimal sets count for
every d and n. Moreover, as d increases the absolute maximum speedup increases as
well and all speedups tend to 0 when the size of the result is close to the size of the
input (0.9 to 1.0).

Parallel vs AMS-Lex. We have summarised the conducted experiments in Figure 4
which presents the runtime speedup of the parallel algorithm over AMS-Lex using
degrees of parallelism P = 4,8,16 and 32 on a machine with 32 physical cores. As
input to the algorithm we used datasets with n = 1000000 itemsets with alphabet
size of 40, 60, 80, 100, 120 and 140; note that these datasets are the same as the ones
used for experimentally comparing the memoized approach versus AMS-Lex consisting
of one million itemsets. From the figure, we see that as d increases and keeping n
and f,,;, fixed we see that the runtime speedup increases, but it does tend to reach
maximum unlike the analogous comparison of memoized over AMS-Lex. We note very
small difference in the speedups with P = 8 and P = 16, whereas as they are both
slightly larger then the speedups achieved using 4 threads.

It is very interesting and important to note that in the case of P = 32 we have a
significant decay in the speedup over AMS-Lex in comparison to P = 4,8 and 16. Also,
this is the only example we encountered that any of our algorithms is even by a very
small amount slower (speedup smaller than 1 on the graphs) than AMS-Lex. That is
explained with the fact that the AMS-Lex algorithm and all of its variations presented
here are not computationally intensive but rather memory read access bounded. In
this case when P equals the number of physical cores, we found more L3 cache misses
in comparison to smaller parallelism factors P; also there is a competition for the
memory bus and as P increases we inevitably hit the limit of the bus. The cache locality
and the memory insensitivity of the application arguments also explains the observed
maximum speedups of around 4 because the machine we used consists of 4 physical
CPU chips, each with its on L3 cache.

Comparison to GPU Approach. Fort’s algorithm for finding extremal sets on a GPU
is compared to the AMS-Lex algorithm in [Fort et al. 2013]. By carefully analysing the
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experimental comparison of Fort’s algorithm to AMS-Lex we see that when we exclude
the time to pre-process and sort the input dataset to the required format by AMS-
Lex then when evaluated on synthetic data the GPU algorithm is between 4 and 5
times faster than AMS-Lex. Moreover the runtime speedup demonstrated by the GPU
algorithm seems to be constant over AMS-Lex. As presented in Figure 4, our parallel
algorithm is between 3 and 4.5 times faster than AMS-Lex when executed with P = 16
on a 32 core machine which is similar to the speedup of the GPU algorithm over AMS-
Lex. One the other hand, the speedup of our memoized approach over AMS-Lex is not
bounded above by a constant as demonstrated. The runtime speedup of our memoized
method for datasets with 1000000 itemsets over AMS-Lex is as high as 400 which is
much bigger than the speedup achieved by the GPU approach over AMS-Lex.

6. CONCLUSION

This paper has presented two improved algorithms for identifying extremal sets within
a dataset. We have experimentally demonstrated that both techniques improve the
performance of the AMS-Lex algorithm on both real world and synthetic datasets. Our
first improved algorithm uses memoization to remove redundant work from the AMS-
Lex [Bayardo and Panda 2011] requiring at most twice the memory of AMS-Lex. In a
subset of the conducted experiments the memoized algorithm executes more than 400
times faster than AMS-Lex. We show in theory and practice, that the efficiency of this
improved algorithm increases as the common prefixes shared by itemsets increases,
hence the speedup when compared to AMS-Lex is not bounded above by a constant
which is also evident in the experiments provided. The second improved algorithm
uses parallelism to speedup the AMS-Lex algorithm. In the conducted experiments we
show that our parallel approach outperforms Bayardo and Panda’s implementation of
AMS-Lex on both real-world and synthetic datasets. This parallel approach is about
as fast as the GPU algorithm of Fort et al. [2013] on synthetic data, and faster than it
on almost all real-world datasets.
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Experimental results using real world datasets, comparing AMS-Lex with the memoized (section 3)
and parallel (section 4) approach. For these results we have used a machine with 32 physical cores and used
parallelism factors P = 4, 8, 16 and 32 for our parallel modification of AMS-Lex.
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Fig. 2. Experimental results using synthetic data for n = 100000, » = 500000 and n = 1000000 of
comparing our memoized version of AMS-Lex (section 3) over AMS-Lex. Here d is the cardinality of the
domain of the itemsets. These results show the minimal item frequency (f,,;,) described in Section 5 against
the resulting runtime speedup as well as the decrease in range search calls of our memoized algorithm
compared over AMS-Lex. Note that the y-axis in every graph uses a log, scaling for visual clarity of the
presented graphs.
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Fig. 3. Experimental results using synthetic data for n = 100000, n = 500000 and n = 1000000 of
comparing our memoized version of AMS-Lex (section 3) over AMS-Lex. Here d is the cardinality of the
alphabet. These results show the number of minimal itemsets against the resulting runtime speedup of our
memoized algorithm compared to AMS-Lex.
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Fig. 4. Experimental results for synthetic data for n = 1000 000 of comparing our parallel version of AMS-
Lex over AMS-Lex. Here D is the cardinality of the domain of the itemsets. These results show the minimal
item frequency described in Section 5 against the resulting runtime speedup of our parallel algorithm com-
pared to AMS-Lex. For these results we have used a machine with 32 physical cores and used parallelism
factors of 4, 8, 16 and 32 for our parallel modification of AMS-Lex described in section 4.
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ALGORITHM 1: Pseudo code for finding if the input dataset D = {D., Ds, ..., D,} contains a
proper subset of DJi]. A reproduction of the function MarkSubsumed, described by Bayardo and
Panda, but used for finding the minimal itemsets rather than the maximal ones, i.e. for finding
the minimal itemsets within the dataset D we do not mark the subsumed itemsets but rather
return true if a properly subsumed itemset by D[i] exists within D and false otherwise.

Function Contains-Subset-0f(D[b:e], S, j, d)
Input: The ordered multiset of itemsets Db : ¢], an itemset S and two integers j and d. The
parameter j specifies we need only consider S[j : |S|] and d is the size of the
common prefix shared by all I € D[b: e] and S.
Output: Returns true iff there exists a proper subset of D[:] within D[b: €], and false

W N =

® a9 S w;

10
11
12

13

14

15
16

17

otherwise.
if S[j] < D[b][d + 1] then
j < NexztItem(S, j, D[b][d + 1]);
if jis null then
return false;
end
end
if S[j] = D[b][d + 1] then
e’ + NextEndRange(D[b: €], S[j],d);
if |S|> d + 1 then
if b < ¢’ and |D[b)|=d + 1 then
/* DI[b] is a proper subset of S.
return true;
end
end
if j+1<|S|and b < ¢ then
if Contains-Subset-0f(D[b: €], S,j + 1,d + 1) then
return true;
end
end
b+ ¢€;
else
b + NextBeginRange(D[b : €], S[j],d);
end
if b < e then
return Contains-Subset-0f(DI[b: €], S, j, d);
end
return false;

*/
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ALGORITHM 2: Pseudo code for finding the minimal itemsets within the dataset D =
{D1,D,,...,Dy,} by using the lexicographic constraint (Theorem 2.1). A reproduction of the
AMS-Lex algorithm described by Bayardo and Panda, but used for finding the minimal itemsets
rather than the maximal ones, i.e. for finding the minimal itemsets within the dataset D we do
not mark the subsumed itemsets but rather mark an itemset as non-minimal if it is a superset
another one.
Function Get-Minimal-Itemsets-Lex (D)

Input: Dataset D = {D1, D», ..., D,} that is ordered lexicographically and every itemset

I € D is also ordered lexicographically.
Output: The minimal itemsets within the dataset D = {D1, Da, ..., Dy}.

bool is_min[n] «— {true, true, ..., true};
/* Find itemsets subsumed by proper prefix. */
S «— DI[1];

for i =2tondo
if |S| < |D[i]| & DJi[1:|S|] =S then
/* S is a proper prefix of DIJi]. */
is-man[i] «— false;
end
else
S «— DIi;
end
end
/* Find itemsets subsumed by non-proper prefix. */
fori=1ton—1do
if isomin[i] & Contains-Subset-0f(D[i+1:n], D[i],1,0) /* see Algorithm 1 */
then
is-minfi] «— false;
end
end
return {D; € D | is-minli] = true};
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ALGORITHM 3: Pseudo code for finding if the input dataset D = {D1, D>, ..., D,} contains a
proper subset of D[] by using memoization.

Function Contains-Subset-0f-Memoized (v, i, p)

Input: The ordered multiset of itemsets D[b : €], an itemset S and two integers j and d. The
parameter j specifies we need only consider S[j : |S|] and d is the size of the
common prefix shared by all I € D[b: ¢] and S.

Output: Returns ¢rue iff there exists a proper subset of D[i] within D[b : ¢], and false

otherwise.

if v.mazx_j > p then

/* The maximum index that was accessed from the method Contains-Subset-0f in
the memoized iteration represented by v is larger then the size of the
common prefix, so we must invoke the the function to find the non-proper
subsets of D[i] as no more memoized results can be used. */

b < maz(v.b,i+ 1);

if b < v.e then
/* We assume a modified version of the function Contains-Subset-0f which

returns a pair consisting of a boolean variable and a node
representing the call stack of the function. */
(res,v) «— Contains-Subset-0£f(DIb : v.e], D[i],v.j, v.d);
return res;

end

v +— null;

return false;

end

if v.c1 # null then

if Contains-Subset-0f-Memoized(v.c1,1,p) then
res <— true;

end

end

if v.co # null then

if Contains-Subset-0f-Memoized(v.c2, 1, p) then
res <— true;

end

end

/* recall that v.t equals true iff a subset was found in the execution of the

function Contains-Subset-0f without considering the recursive calls; i.e.

there exists a non-proper subset of D[i] of size smaller then the length of
the common prefix p between S and D[i]. */

return v.t;
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ALGORITHM 4: Pseudo code for finding the minimal itemsets within the dataset D =
{D1,D,,...,Dy} by using memoization and the lexicographic constraint (Theorem 2.1).

Function Get-Minimal-Itemsets-Lex-Memoized (D)
Input: Dataset D = {D1, D>, ..., D, } that is ordered lexicographically and every itemset
I € D is also ordered lexicographically.
Output: The minimal itemsets within the dataset D.

bool is_min|n] «— {true, true, ..., true};
/* Find itemsets subsumed by proper prefix. */
S «— DI[1];
fori=2tondo
if |S| < |D[i]| & DIi[1:|S]] = S then
/* S is a proper prefix of DI[i]. */
is-minfi] «— false;
end
else
S +«— DJi;
end
end
/* Find itemsets subsumed by non-proper prefix. */
S +— null;
v <— null;

fori=1ton—1do
if is_min[i] then
if v = null then
/* defined in Algorithm 1 but assuming that it returns a pair of a
boolean value res and the call stack represented by v. */
(res,v) +— Contains-Subset-0f(D[i + 1: n], D[¢],1,0);
if res then
is-manli] «— false;
end
end
else
/* largest common prefix of S and DJi]. */
p +— maz({0 < j < min(|D[],|S]) | DEI[L : 5] = S[1: 41});
/* note that the function Contains-Subset-0f-Memoized modifies the
node v. */

if Contains-Subset-0f-Memoized(v,,p) then
is_minli] «— false;
end
end
S +— DJi];
end
end

return {D; € D | is.min[i| = true};
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ALGORITHM 5: Pseudo code for finding the minimal itemsets M of the input dataset D =
{D1,Ds,...,D,} using P threads. We present a subroutine Find-Min-Lex which identifies the
minimal itemsets of D using P parallel threads. It is important to note that in the Thread-
Functor subroutine the variables index and is_min are passed by reference, meaning that they

are shared between threads.

Input: Dataset D = {D1, Ds,...,D,} and the degree of parallelism P.
Output: The minimal itemsets within the dataset D. i.e. Min(D).
Function Get-Minimal-Itemsets-Lex-Parallel (dataset D, integer P)
atomic < bool > is_min[r] «— {true,true, ..., true};
/* atomic boolean variables.
/* Find itemsets subsumed by proper prefix.
S «— DI[1];
for i =2tondo
if |S| < |D[i]| & D[i][1: S]] = S then
/* S is a proper prefix of D[i].
is_minfi] «+— false;
end
else
S +— DJiJ;
end
end
/* Find itemsets subsumed by non-proper prefix using P parallel threads.
atomic < int > indexr <— 1;
/* the index that is to be processed next.
start P parallel instances of Thread-Functor (D, indez,is-min);
wait for all P instances to finish working;
return {D; € D | is-min[i| == true};
Function Thread-Functor (dataset D, atomic < integer > indez, atomic < bool > m|r])
i «— fetch-and-increment(indezx);
/* an atomic operation
while : < n do

*/
*/

*/

*/
*/

*/

/* It is safe to invoke the function Contains-Subset-0f from multiple threads

at the same time as it requires only read-only access to the dataset D.
*/

if Contains-Subset-0f (D[i + 1 : n|, D[i],1,0) /* as per Algorithm 1

then

*/

/* mark the i-th itemset as non-minimal because the dataset D contains a

proper subset of the itemset D[i].
mli] «— false;
/* atomically setting the i-th boolean value.
end
1 «+— fetch-and-increment(index);
end

*/
*/
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