
39

A Practical Algorithm for Finding Extremal Sets up to Permutation

MARTIN MARINOV, Trinity College Dublin
DAVID GREGG, Lero, Trinity College Dublin

In this paper we address the problem of finding extremal itemsets within a dataset F over a domain D up to
any permutation of D. We present a parallel naive algorithm with novel search space pruning techniques.
We present properties that must hold for an itemset A to be a subset of B up to permutation together with
efficient method of checking if these conditions are satisfied; we also provide a method of reducing the num-
ber of permutation candidates π that need to be tested to check if π(A) ⊆ B. The experimental evaluation
of our algorithm is performed on real world input datasets derived from the domain of sorting networks.
The speedup factor achieved over the current state of the art method is in the region of one thousand for a
216KB dataset containing 1 155 itemsets. Although the worst case complexity of the presented algorithm is
exponential, we demonstrate that our method is applicable to multi-gigabyte real world datasets containing
more than ten million itemsets.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems — Computations on discrete structures

General Terms: Algorithms, Extremal Sets, Extremal Sets up to Permutation, Dataset, Itemset

ACM Reference Format:
Martin Marinov and David Gregg, 2014. A Practical Algorithm for Finding Extremal Sets up to Permutation.
ACM J. Exp. Algor. 9, 4, Article 39 (November 2014), 12 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The problem of finding extremal sets (not up to permutation) has received significant
attention in recent years [Fort et al. 2013], [Bayardo and Panda 2011], [Pritchard
1997]. In this paper we focus on a generalized version of this problem where we al-
low for any permutation of the domain to be applied to the elements of one itemset
when checking if it is a subset of another, rather than directly performing the check. A
practical application of this problem is found in the domain of sorting networks where
Bundala and Zavodny [Bundala and Zavodny 2014] describe an algorithm for finding
the minimal itemsets up to permutation within a dataset. The single-threaded im-
plementation of our algorithm executes around 1 000 times faster than Bundala’s one
when evaluated on the same 216KB input dataset whilst producing the same output.
We show that our multi-threaded program is able to solve multi-gigabyte input real-
world datasets in less than 30 hours. In order to describe our work we must first give
a precise definition of the problem together with terminology that is used throughout
this paper.

This work is supported by the Irish Research Council (IRC).
Author’s addresses: M. Marinov and D. Gregg, Department of Computer Science, Trinity College Dublin.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1084-6654/2014/11-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

39:2 M. Marinov et al.

1.1. Terminology
Throughout the paper we assume that we are working over the domain D =
{d1, d2, . . . , dn}. An item is a set of elements form D, an itemset is a set of items.
The ordered set of itemsets F = {F0, F1, . . . , Fr−1} is called a dataset iff |Fi| < |Fj |
for all 0 ≤ i < j < r. The set of all permutations of n elements is denoted as
Πn. Let π ∈ Πn be a permutation, I ⊆ D be an item and S be an itemset, then
π(I) = {dπ(i)|di ∈ I} ⊆ D and π(S) = {π(J)|J ∈ S}. Denote the number of elements
within an itemset and dataset respectively as ||S|| =

∑
I∈S |I| and ||F || =

∑
S∈F ||S||.

Let a = {a1, . . . , ak} and b = {b1, . . . , bk} be vectors over the integers domain; we
say that a < b iff the smallest index i for which ai 6= bi implies that ai < bi; the
max(a, b) = {max(a1, b1), . . . ,max(ak, bk)}.

1.2. Problem Definition
Let F = {F0, F1, . . . , Fr−1} be a dataset. We say that the itemset Fi is minimal over F
iff there does not exist a j > i such that Fi ⊆ Fj . Intuitively, we say that Fi is minimal
over F up to permutation iff for all π ∈ Πn there does not exist a j > i such that
π(Fi) ⊆ Fj . In this paper we focus on the problem of finding all itemsets Fi ∈ F which
are minimal over F up to permutation; we denote this set as Minπ(F).

1.3. Related Work
The extremal sets problem is well studied in recent years where Pritchard [Pritchard
1997] was the first person to present a sub-quadratic algorithm for the problem. Then
Bayardo and Panda developed two distinct practical algorithms that build on top of
Pritchard’s approach. Bayardo and Panda [Bayardo and Panda 2011] take advantage
of the frequency of every item by using precise ordering of the input to best suit their
proposed solution. In our method for solving the extremal sets up to permutation prob-
lem we use their public provided implementation to initially reduce the size of the in-
put dataset, and only then apply our new techniques. Fort [Fort et al. 2013] describes
an algorithm for solving the extremal sets problem that is designed to run on a GPU.
Although being quadratic, Fort’s algorithm performs much faster than Bayardo and
Panda’s one according to the experimental results presented in [Fort et al. 2013].

The problem of finding sorting networks of minimal depth and related sub-problems
are actively being researched in recent years [Bundala and Zavodny 2014], [Codish
et al. 2014]. The problem of finding the minimal itemsets over the dataset F up to
permutation is encountered by Bundala [Bundala and Zavodny 2014] when comput-
ing the representative comparator networks consisting of two layers. Bundala shows
that every n-input comparator network C can be represented by the set of its outputs,
denoted by outputs(C), which is an itemset over the domain D = {1, 2, . . . , n}. He also
shows that if A and B are both two layered n-input comparator networks and that
outputs(A) is a subset of outputs(B) up to a permutation of D then it is enough for
his algorithm to consider only the comparator network A. Hence, given the family of
outputs (referred to as itemsets in this paper) of all n-input comparator networks of a
depth 2 his algorithm needs to compute the minimal itemsets up to permutation. Bun-
dala [Bundala and Zavodny 2014] describes a naive algorithm with pruning to solve
this problem together with experimental results for his implementation. In our experi-
ments (section 6) we find that our single-threaded algorithm is about 1 000 times faster
on finding the minimal outputs of 13-input comparator networks consisting of exactly
two layers.

Codish [Codish et al. 2014] presents a regular expression for the representative min-
imal saturated n-input comparator network of depth two. Given that his work is based
on a conjecture which may or may not be true, the problem described in this paper still

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

A Practical Algorithm for Finding Extremal Sets up to Permutation 39:3

has a valid application in the domain of sorting networks; furthermore the problem
described in this paper is more general and the sorting network domain is only one
practical application of our work.

1.4. Contributions
The main contributions of this work can be summarized as follows.

— Search Space Pruning Techniques — in this paper we present new search space prun-
ing techniques that significantly reduce the search space size when compared to the
naive approach. We present a method for detecting when an itemset cannot be a sub-
set of another one without applying any permutations. We also present a method for
reducing the number of permutation candidates that are to be tested.

— Data Structure — we present a binary tree data structure that allows us to efficiently
apply the pruning techniques described in section 3.1 that test if one itemset can be
a subset of another. This data structure proves to be very useful in the experiments
conducted.

— Parallel Algorithm — we present a parallel algorithm for finding the minimal item-
sets up to permutation within a dataset which can be easily adapted to find the maxi-
mal itemsets. Experiments are performed using real world datasets from the domain
of sorting networks where substantial speedup is achieved over the existing state of
the art method.

2. A NAIVE ALGORITHM
In this section we present a naive algorithm for finding the minimal itemsets up to
permuting within a dataset. For every pair of itemsets Fi, Fj such that 0 ≤ i < j < r
we check if there exists a permutation π ∈ Πn such that π(Fi) ⊆ Fj . Note that we can
restrict i < j because it is a necessary condition that |Fi| ≤ |Fj | for Fi to be a subset
of Fj up to permutation. The worst case space complexity is O

(
||F ||

)
since we need to

store only the input and no additional memory is required for performing calculations.
The worst case runtime complexity of this algorithm is O

(
r×n!×||F ||

)
, since for every

pair Fi, Fj we need to apply all n! permutations to Fi and check if π(Fi) ⊆ Fj . Checking
if π(Fi) ⊆ Fj takes O

(
||Fj ||

)
computational steps as we can store the itemsets in F in

ascending lexicographic order.
The practical parallel algorithm presented in this paper in section 5 is an optimized

version of the naive algorithm. In the next section we present our novel search space
pruning techniques which prove vital in the experimental evaluation presented in sec-
tion 6.

3. SEARCH SPACE PRUNING
In this section we present search space pruning techniques for checking whether the
itemset A is a subset of the itemset B up to permutation of the domain D. The safety
checks can be logically grouped into two categories - the first one is aimed at checking
whether a permutation candidate π can exist that could satisfy π(A) ⊆ B, whilst the
second one is aimed at reducing the number of candidates π ∈ Πn for which we perform
the subset up to permutation check. The necessary conditions described in this section
are presented as lemmas. If a lemma can be applied to A and B then we say that A
and B meet the necessary condition described by this lemma.

3.1. Necessary conditions for the itemset A to be a subset of B up to permutation
We present necessary conditions for checking whether the itemset A can be a subset
of the itemset B up to permutation of the domain D. If any one of these conditions is
not met by A and B then we can safely deduce that A is not a subset of B up to permu-

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

39:4 M. Marinov et al.

tation. The algorithmic method of applying these conditions in practice is described in
section 4 where we present a data structure that allows us to check these conditions
in a reduced number of operations compared to the naive approach.

The first necessary condition, presented in Lemma 3.2, is based on counting the
number of items from the itemsets A and B that contain the element di ∈ D for all 1 ≤
i ≤ n. We then order these counts in ascending order to produce two non-decreasing
sequences of numbers a1, . . . , an and b1, . . . , bn for A and B respectively. We show that
it is necessary that ai ≤ bi for all 1 ≤ i ≤ n to exist a permutation π ∈ Πn such that
π(A) ⊆ B.

Definition 3.1. Let S be an itemset. Denote by counti(S) the set of items in the
itemset S that contain the element di, formally counti(S) = {I ∈ S | di ∈ I} for 1 ≤
i ≤ n. Let A = {A1, . . . , Aa} be an itemset over the domain D = {d1, . . . , dn} then
define the vector C(A) = 〈C1(A), . . . , CnA〉 to be the sorted in ascending order vector of
〈|count1(A)|, . . . , |countn(A)|〉.

LEMMA 3.2. Let A and B be itemsets over the domain D = {d1, . . . , dn}. If there
exists a j ∈ {1, . . . , n} such that Cj(A) > Cj(B) then @π ∈ Πn such π(A) ⊆ B, i.e. A
cannot be a subset of B up to permutation.

PROOF. If π(A) ⊆ B then the following inequality holds |countπ(i)(A)| < |counti(B)|
for all i ∈ {1, . . . , n}. Hence, if there exists a j ∈ {1, . . . , n} such that Cj(A) > Cj(B)
then there cannot exist a permutation π such that π(A) ⊆ B.

The next condition, presented in Lemma 3.4, is based on the observation that apply-
ing any permutation π to any item I over D preserves the size of I, since π is bijective.
Hence, the number of items from the itemset A that have a size equal to s must be
less than or equal to the number of sets from B that have a size equal to s, for all
0 ≤ s ≤ n = |D|.

Definition 3.3. Denote by Pj(S) the set of items from the itemset S that consist of
exactly j elements, formally Pj(S) = {I ∈ S | |I| = j} for 1 ≤ j ≤ n; define the vector
P (S) = 〈P0(S), . . . , PnS〉.

LEMMA 3.4. Let A and B be itemsets over the domain D = {d1, . . . , dn}. If there
exists a j ∈ {0, . . . , n} such that |Pj(A)| > |Pj(B)| then @π ∈ Πn such π(A) ⊆ B, i.e. A
cannot a subset of B up to permutation.

PROOF. Since any permutation π ∈ Πn is bijective, applying π to any item I over
D preserves the size of I; hence |Pi(A)| = |Pi(π(A))| for any i ∈ {0, . . . , n}. Hence, if ∃
j ∈ {0, . . . , n} such that |Pj(B)| > |Pj(A)| = |Pj(π(A)|, then clearly π(A) cannot be a
subset of B up to permutation.

The condition presented formally in the following lemma is a combination of the
previous two results where we first group the items from the itemsets A and B by their
cardinality and then apply Lemma 3.2. Since we know that permutations preserve the
cardinality of items, we can restrict the input to Lemma 3.2 to {Ai ∈ A | |Ai| = s} and
{Bi ∈ B | |Bi| = s} for some fixed s ∈ {0, 1, . . . , n}, and if the necessary condition is not
met then we can deduce that A can not be a subset of B up to permutation.

LEMMA 3.5. Let A and B be itemsets over the domain D = {d1, . . . , dn}. If there
exists i ∈ {1, . . . , n} and j ∈ {0, 1, . . . , n} such that Ci(Pj(A)) > Ci(Pj(B)) then @π ∈ Πn

such that π(A) ⊆ B, i.e. A cannot a subset of B up to permutation.

PROOF. Recall that applying π ∈ Πn to any item I over D preserves the size of I.
Fixing j ∈ {0, . . . , n}, we apply to Lemma 3.2 to Pj(A) and Pj(B) to show that if there

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

A Practical Algorithm for Finding Extremal Sets up to Permutation 39:5

exists an i ∈ {1, . . . , n} such that Ci(Pj(A)) > Ci(Pj(B)) π(A) cannot be a subset of B
up to permutation.

In the algorithm presented in this paper (section 5) we first pre-compute the respec-
tive counts required for checking if each of the above lemmas hold, i.e. C(Fi), P (Fi),
C(P (Fi)). We then check the necessary conditions from Lemmas 3.2 and 3.4 because
they are a factor of n computationally cheaper to check than the necessary condition
described in Lemma 3.5 as the former require the comparison of O

(
n
)

integers and the
latter requires O

(
n2
)

computational steps.

3.2. Pruning Permutation Candidates π ∈ Πn for π(A) ⊆ B
The second group of search space pruning techniques is designed to reduce the number
of permutations that need to be checked. Given that the itemset A can be a subset of
B up to permutation according to the necessary conditions then we must check if a
permutation π exists that would satisfy π(A) ⊆ B. We present novel techniques that
are used to discard permutation candidates. The necessary conditions are designed to
reject bad stubs in our recursive method for generating all feasible permutation candi-
dates, presented in Algorithm 3. In all our experiments the total number of permuta-
tions performed was less than the total number of itemset pairs tested, see Figure 1.

Necessary Condition for i 7→ π(i), for 1 ≤ i ≤ n. The first technique is based on the
observation made in Lemma 3.2 that we need to consider only permutation candidates
π that satisfy Ci(A) ≤ Cπ(i)(B) for all 1 ≤ i ≤ n, i.e. if Ci(A) > Cπ(i)(B) then we need
not consider the permutation π as it is impossible for π(A) ⊆ B. This observation gives
us a method of rejecting permutation candidates even without having to apply them to
the itemset A.

Necessary Condition for i 7→ π(i) and j 7→ π(j), for 1 ≤ i, j ≤ n. In this method for
rejecting permutation candidates we check pairs of permuted elements. By the above
observation we can safely assume that Ci(A) ≤ Cπ(i)(B) and that Cj(A) ≤ Cπ(j)(B).
We can strengthen this criteria by observing that |Cj(Ci(A))| < |Cj(Ci(B))| must hold,
which is an immediate consequence of Lemma 3.5.

Algorithm for checking if A is subset of B up to permutation. The pseudo code of the
method for checking if there exists a permutation π ∈ Πn that satisfies π(A) ⊆ B is
presented in Algorithm 3. The function Is-Subset-Up-To-Perm recursively generates
all permutation candidates π that meet the two necessary conditions presented in this
section. At line 10 we check if it is feasible for π(index) = i for A to be a subset of B
up to this π — our first search space reduction technique. The pruning technique for
checking the feasibility of every pair of permuted elements of the domain D is encoded
in our pseudo code at line 3 of Algorithm 3. For the worst case complexity analysis of
the function Is-Subset-Up-To-Perm we assume that we have precomputed the sizes of
the sets Ci(A), Ci(Cj(A)), Ci(B) and Ci(Cj(B)) for all 1 ≤ i, j ≤ n which requires a
total of O

(
n2
)

space. The worst case time and space complexity is achieved when all
candidate n! permutations meet the two necessary conditions that we have described.
In the worst case scenario the function Is-Subset-Up-To-Perm(A,B) requires space
O
(
||A||+ ||B||+n2

)
= O

(
||B||+n2

)
since ||A|| < ||B||. The worst case time complexity is

O
(
n! × ||B||

)
computational steps because after having applied a permutation we use

a trivial subset checking method that requires O
(
||A||+ ||B||

)
computational steps.

4. DATA STRUCTURE
In this section we describe a method to apply in practice the necessary conditions de-
scribed in section 3.1. We have designed a data structure to efficiently find all itemsets

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

39:6 M. Marinov et al.

Fj ∈ F which can be supersets of Fi up to permutation that meet the necessary condi-
tion Lemma 3.2. In our Algorithm 4 we then take the resulting list of candidates and
apply Lemmas 3.5 and 3.4 to efficiently produce a list of candidates which meet all the
necessary conditions described in section 3.1.

Goal. Given the dataset F = {F0, F1, . . . , Fr−1} and a fixed itemset Fi, our goal is
to efficiently find all Fj where i < j < r such that Fi can be a subset of Fj up to
permutation using the necessary condition described by Lemma 3.2. One obvious way
to achieve this goal is to apply the necessary condition check to all Fi and Fj for all
i < j < r but this is not an efficient way to solve this problem in practice.

Observation. Using the result from Lemma 3.2, we see that C(M) < C(A) is neces-
sary for M to be a subset of A up to permutation, and similarly that C(M) < C(B) for
M to be a subset of B up to permutation. We notice that C(M) < max(C(A), C(B)) is
a necessary condition for M to be a subset of A or B up to permutation; i.e. if C(M) is
not smaller than max(C(A), C(B)) then M cannot be a subset of A up to permutation
and M cannot be a subset of B up to permutation.

4.1. Initialization
Algorithm. We propose a binary tree data structure consisting of r =

|{F0, F1, . . . , Fr−1}| leaves to efficiently achieve our goal. At the i-th leaf we store
the vector C(Fi), as described in Lemma 3.2. The value stored in a node v
that is a parent of the leaves in the range [i, j] is defined as the vector vc =
max(C(Fi), C(Fi+1), . . . , C(Fj)). Noticing that taking the maximum across multiple
vectors is a commutative operation, when initializing the binary tree data structure,
for each node we need to know only the values of its immediate children. Hence, in the
pseudo code presented in Algorithm 1 we use a bottom-up approach to initialize the
data structure.

Complexity. The function Initialize has a worst case space complexity of O
(
r × n

)
because the tree has O

(
r
)

nodes and each node contains a vector of integers of length
exactly n and we require no extra space to compute the vectors stored at each tree node.
The time complexity of the Initialize(F) depends on the computation of C(Fi) for each
of the r leaves of the tree which takes O

(
||Fi||

)
computational steps per leaf (itemset).

Hence, the worst case time complexity of the Initialize(F) function is O
(
||F || + r × n

)
where ||F || = ||F0||+ ||F1||+ · · ·+ ||Fr−1||.

4.2. Query
Algorithm. The binary tree data structure is designed to be queried with a fixed

itemset Fi to efficiently find all itemsets Fj for which C(Fi) < C(Fj) and i < j. The
pseudo code presented in Algorithm 2 of the query function performs a top-down re-
cursive walk of the binary tree, starting at the root node. Let the current node in the
recursive walk be denoted as v that is a parent of the leaves in the range [l, r] and
its value vector be vc, as described in the initialization paragraph. Since we want all
j > i, we can safely terminate the search if r < i. Then, based on our observation, we
can safely say that if C(Fi) is not smaller than vc then Fi can not be a subset of Fk
up to permutation for all k ∈ [l, r], hence we do not need to recursively visit any of the
children of v. On the other hand, if C(Fi) is smaller than or equal to vc then we need
to recursively visit both children of v. If v has no children, i.e. v is a leaf, then we add
it to the collection of itemsets that can be supersets of Fi up to permutation, as per the
necessary condition described in Lemma 3.2.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

A Practical Algorithm for Finding Extremal Sets up to Permutation 39:7

Concurrency. It is important to note that the binary tree data structure T is im-
mutable after initialization. Hence, we can make parallel function calls to Query(T,A)
and Query(T,B) without having to use any locks.

Complexity Analysis. The number of nodes in the binary tree T that are initialized
with the dataset F = {F0, F1, . . . , Fr−1} is O

(
r
)
, as discussed in the complexity analysis

of the Initialize(F) method. In the worst case, the function Query-Rec visits all of the
r leaves of the tree, and hence all of the nodes in the tree. In the worst execution path
of Query-Rec we perform a comparison of two vectors of length n, hence we have a
time complexity of O

(
r × n

)
for Query-Rec. The space required by the function Query

is proportional to the size of the output as we require only O
(
1
)

extra intermediate
integer variables to perform the required calculations. Since the maximum number of
itemsets that the function Query can return is r then we can deduce that the worst-
case space complexity of the Query function is O

(
||F ||

)
, i.e. the space required by the

Query function is asymptotically equal to the space required to store the input dataset
F .

4.3. Extensions
We can easily extend our data structure to efficiently retrieve all itemsets that satisfy
the conditions from Lemmas 3.2 and 3.4. To achieve this task we need to additionally
store the vector P (Fi) as described in Lemma 3.4 in the tree leaves and nodes. Fol-
lowing the same logic in the initialization process, in every node we need to store the
maximum P -vector. And as for querying, we would only visit a node if both conditions
— from Lemmas 3.2 and 3.4 — are met. A similar argument can be constructed for in-
cluding the information required to check the necessary condition from Lemma 3.5 but
in this case it would require a two dimensional vector to be stored in every node. We
found that these extensions to the data structure are not necessary for input datasets
derived from the domain of sorting networks.; i.e. for other domains these proposed
extensions could actually prove more useful, as might the order in which they are ap-
plied.

5. PARALLEL ALGORITHM
So far we have presented necessary conditions for checking whether the itemset A
can be a subset of B up to permutation. We have described a data structure to effi-
ciently check these conditions. We have also presented a practical method for checking
if A is a subset of B up to permutation. In this section we describe a parallel algo-
rithm which identifies the minimal up to permutation itemsets within the dataset
F = {F0, F1, . . . , Fr−1}. We first describe the methodology of the entry point of the al-
gorithm, then the thread worker functor and finally we present worst case complexity
analysis. The pseudo code of the parallel algorithm described in this section is pre-
sented in Algorithm 4.

5.1. Entry Point
The function Find-Min-Rep-Perm takes as input the dataset F and the degree of paral-
lelism P as an integer. First the binary tree data structure T is initialized as described
in section 4. Then every itemset in the dataset F is marked as minimal. We then start
P parallel instances of the function Thread-Functor to process every itemset Findex ∈ F
and mark all of the supersets of Findex as non-minimal. When all threads have finished
processing, the function simply returns all sets that are still marked as minimal.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

39:8 M. Marinov et al.

5.2. Thread-Functor
The variable index is shared between all instances of the Thread-Functor; it points
to the next not processed itemset Findex ∈ F . To process Findex means to check for
every j > index if Findex is a subset of Fj up to permutation and mark Fj as non-
minimal if this is the case. We begin by atomically assigning the current value of index
to the variable i and decrementing index; ensuring that every itemset in F will be
processed exactly once. We then query the binary tree data structure T to find the
list of candidate supersets up to permutation D = {Fj ∈ F |j > i and Fi, Fj meet
necessary condition Lemma 3.2 }. Next, we filter the set of candidates D by applying
the necessary conditions from Lemmas 3.5 and 3.4 to Fi and Fj ∈ D to further reduce
the number of superset candidates. Then, we check for each candidate Fj ∈ D if Fi is a
subset of Fj up to permutation using Algorithm 3; if the result is positive we mark Fj
as non-minimal in the shared across threads is min collection. Finally, we try to take
a new unprocessed itemset from F and process it in the same manner.

Noticing that the “subset up to permutation” operation 5π is transitive; i.e. A 5π B
and B 5π C implies that A 5π C, when processing Fi we can check at any point
whether it is still marked as minimal, and if not then we can safely stop processing
it and move on to the next non processed itemset. Hence, if B = Fi is marked as non-
minimal during the processing of some other itemset A (possible in a different thread)
then any itemset that is a superset of B up to permutation is also a superset of A up
to permutation. i.e. the operation 5π induces a partial ordering of the dataset F .

5.3. Complexity
Here we give the worst case time and space complexity of the functions presented
in Algorithm 4 by first analysing the Thread-Functor function. From section 3.2 we
know that the worst case time complexity of the function Is-Subset-Up-Perm(A,B) is
O
(
n! × ||B||

)
and from section 4 we know that the worst case time complexity of the

Query function is O
(
r × n

)
. Assuming that the Thread-Functor processes p itemsets,

we know that for each one we will invoke the Query function exactly once and the Is-
Subset-Up-To-Perm function at most r times then we can deduce that the worst case
runtime complexity of Thread-Functor is O

(
p × n! × ||F ||

)
. Which means that if we

have a degree of parallelism P = 1 then p = r and the worst case time complexity of
our algorithm is equal to that of the naive algorithm described in section 2. The space
required by the function Thread-Functor is equal to the sum of the space required by
the Query and Is-Subset-Up-Perm. Since the function Is-Subset-Up-Perm requires the
sets Ci(S), Ci(Cj(S)) to be precomputed for every S ∈ F we deduce the space required
by this function is r × n2. Hence the worst case space required by Thread-Functor is
equal to O

(
||F ||

)
+ O

(
r × n2

)
= O

(
||F ||+ r × n2

)
.

Having analysed the Thread-Functor function, we now focus on the worst case
time complexity of the Find-Min-Rep-Perm function for the input dataset F =
{F0, F1, . . . , Fr−1} using exactly P threads where 1 ≤ P ≤ r. Since we already
know that the maximum time required by a Thread-Functor to process p itemsets is
O
(
p×n!× ||F ||

)
we can distribute the work load to the P threads evenly, meaning that

each one should process p = O
(
r/P

)
itemsets. Hence the worst case time complexity

for finding the minimal itemsets of F using P threads is O
(r×n!×||F ||

P

)
. The worst case

space required by the Find-Min-Rep-Perm function is equal to the sum of the space
required to initialize the binary tree data structure T and the space required by the
Thread-Functor function. That is Find-Min-Rep-Per requires O

(
||F ||+ r×n2

)
space in

the worst case.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

A Practical Algorithm for Finding Extremal Sets up to Permutation 39:9

r = |F | |Minπ(F)| SubTests TotPerms PosPerms NegPerms RunTime n d

113 78 199 74 74 0 0.2 seconds 11 2
103 168 180 190 114 111 093 111 093 0 6 seconds 13 2
570 758 104 667 13 873 784 489 828 487 278 2 550 60 seconds 11 3

10 566 574 3 450 474 12 474 224 514 7 741 099 7 597 114 143 985 29 hours 13 3

Fig. 1. Experimental evaluation summary on real world datasets obtained from the domain of sorting net-
works. The dataset F for n-input comparator network of depth d is generated by applying network levels
with maximal number of comparators to the set of minimal itemsets up to permutation of depth d − 1.
The column SubTests presents the total number of calls to the function Is-Subset-Up-To-Perm. The column
TotPerms describes the total number of permutations and the columns PosPerms and NegPerms present
the breakdown of permutations performed when the outcome of the function Is-Subset-Up-To-Perm was
positive(‘true’) and negative(‘false’) respectively.

6. EXPERIMENTAL EVALUATION
6.1. Environment Setup
In all of the conducted experiments we used a computer with four Intel Xeon CPU
E7- 4820 processors. Each CPU has 8 cores clocked at 2.00GHz, equipped with 8MB of
third level cache and 128GB of main memory. Note that our experiments investigate
the case when the entire data structure fits in main memory.

6.2. Real World: Sorting Networks
The inspiration for developing the algorithm presented in this paper is derived from
the problem of finding optimal sorting networks. Bundala’s method needs to find the
minimal representative up to permutation itemsets within a dataset. Hence, we need
to compare our method to the existing state of the art approach for solving the same
problem [Bundala and Zavodny 2014].

Comparison to Bundala’s approach, n = 13, d = 2, r = 1 155. Bundala only reports
the runtime of his implementation for finding the minimal up to permutation satu-
rated layers of a thirteen input network. In his work, it is not mentioned whether the
implementation of their program is parallel or not, so we assume that it is not parallel
and compare its reported runtime to a single threaded implementation of our algo-
rithm. We executed our program against the same input of 1 155 itemsets (refereed to
as outputs of saturated layers in [Bundala and Zavodny 2014]). Our program computes
the 212 representative up to permutation itemsets in under 2 seconds using a degree
of parallelism P = 1, whereas Bundala’s program takes 32 minutes [Bundala and
Zavodny 2014]. Hence, for this input, our non-parallel implementation is about 1 000
times faster than Bundala’s reported runtime over the same input whilst producing
the same output.

Test Data Generation. Since our algorithm outperforms the current state of the art,
we evaluate our program on much bigger datasets containing more than 1 155 itemsets
by generating real world inputs derived from n-input sorting networks, for n = 11
and 13. In order to generate the input datasets, we first compute the set of maximal
levels for an n-input comparator network, i.e. the set of levels which have exactly bn/2c
comparators. An output of a comparator network is defined as an itemset over the
domain D = {1, 2, . . . , n}. Our input datasets are generated by computing the outputs
of all n-input comparator networks with exactly d maximal levels, for some positive d.
Summary of all conducted experiments is presented in Figure 1, where every row is
uniquely identified by n and d which follows the data generation process described in
this paragraph.

Evaluation. In Figure 1 we have presented a summary of the conducted experi-
ments. Note that after generating all maximal levels for n-input comparator network

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

39:10 M. Marinov et al.

of depth d using the minimal up to permutation ones of depth d − 1, we first apply
Bayardo and Panda’s [Bayardo and Panda 2011] algorithm for identifying the mini-
mal itemsets (not up to permutation) to arrive at the dataset F . The execution time of
Bayardo and Panda’s program is insignificant in comparison to the RunTime of our al-
gorithm, as well as usage of memory and other computer resources. This step reduces
the size of the input dataset by about 17% on average in all test cases.

The counters presented in Figure 1 demonstrate the ‘goodness’ factor of the search
space pruning techniques presented in this paper. Recall, that the necessary conditions
described in section 3 are logically grouped into two categories. The first logical group
is aimed at the existence of a permutation π that could satisfy π(A) ⊆ B for some
itemsets A and B; i.e. if one of these conditions is not satisfied then A can not be a
subset of B up to permutation. Column SubTests in Figure 1 gives the total number
of itemset pairs A and B that meet all of the necessary conditions from section 3.1.
Comparing the total number of subset tests performed SubTests to that of the naive
approach is a good indicator of the speedup achieved by our approach; i.e. looking
at row n = 13, d = 2 we see that the dataset contains r = 103 168 itemsets and out
of the possible r×(r−1)

2 = 5 321 766 528 subset up to permutation tests, our algorithm
performed only 190 114, meaning that this group of search space reduction techniques
give us a speedup factor of approximately 27 992 in comparison to the naive approach.
Similarly, for row n = 13, d = 3 we can deduce that this set of necessary conditions are
expected to give our algorithm a speedup factor of around 4 475 times compared to the
naive method (described in section 2).

The second logical group of search space reduction techniques presented in sec-
tion 3.2 is aimed at reducing the number of permutation candidates π for testing
π(A) ⊆ B. The naive algorithm for checking if A is a subset of B up to permuta-
tion would check all n! permutations for every pair of itemsets A and B. Given that
our algorithm needs to check SubTests number of itemset pairs, then we deduce that
the naive approach would check a total of n! × SubTests permutations. The column
TotPerms in Figure 1 gives the total number of permutations that meet all of the nec-
essary conditions described in section 3.2, i.e. that is an execution counter at line 6 of
Algorithm 3. Note that in all conducted experiments the total number of permutations
tested TotPerms is less than SubTests, let alone n! × SubTests which is the case for
the naive approach. Hence, the expected speedup factor that this group of search space
pruning techniques gives in comparison to the naive method is approximately n!. The
columns PosPerms and NegPerms represent the breakdown of the number of permu-
tations that are tested which satisfy the subset up to permutation property and the
ones which did not satisfy the property, respectively. Another important observation
on the ‘goodness’ factor of our techniques is that the number NegPerms is negligibly
small in comparison to the total permutations performed TotPerms in all experiments
conducted. Which means that almost every permutation that we test does satisfy the
subset up to permutation property.

Since our program is multi-threaded and from two distinct threads we can find that
A is a subset of C up to permutation and that B is subset of C up permutation at the
‘same’ time, and mark it as non-minimal we note that PosPerms > r − |Minπ(F)|.
Hence, our multi-threaded algorithm performs a bit more work than the single
threaded one, but it compensates by producing the correct result much faster in terms
of wall-clock time. When executed on a machine with 32 physical cores using a degree
of parallelism of P = 32 our program is on average 23 times faster than the single
threaded version (no parallelism); not achieving a speedup factor of P is expected due
to synchronization of the executing threads (implemented using locks), the operating
system as well as other factors. We also performed a small set of experiments on a

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

A Practical Algorithm for Finding Extremal Sets up to Permutation 39:11

machine with 4 physical cores to get a speedup factor of 3 when compared to the single
threaded version. Hence, our program is about 0.7 ∗ P times faster in terms of wall-
clock time when compared to the single threaded version, where P > 1 denotes the
degree of parallelism.

Summary. To summarize the ‘goodness’ of both groups of search space pruning tech-
niques we present a detailed analysis on the dataset n = 13, d = 3 which is easily
adoptable to the any other dataset from Figure 1. The first set of search space reduc-
tion techniques has an expected speedup factor of r×(r−1)

2×SubTests ≈ 4 475 over the naive
method. The second set of techniques has an expected speedup of n!×SubTests

TotPerms ≈ 1013

over the naive algorithm. Our algorithm combines the two techniques, hence the ex-
pect speedup factor is close to 4 475 ∗ 1013 ≈ 4 × 1016 over the naive method. For this
dataset our algorithm performed PosPerms − (r − |Minπ(F)|) ≈ 481 000 more subset
up to permutation tests than necessary due to multi-threading.

7. CONCLUSION
A new parallel algorithm for identifying minimal itemsets within a dataset up to per-
mutation is presented in this paper which applies various novel search space reduction
techniques. The presented properties are aimed at detecting when an itemset cannot
be a subset of another up to permutation of the domain D and in reducing the number
of permutations of D that are tested. We present a binary tree data structure that al-
lows us to efficiently check one of the necessary conditions that is easily extendible to
capture all properties if required. A runtime speedup factor of around 1 000 is observed
in comparison to the current state of the art method for solving the same problem on
the same 216KB input dataset. The algorithm is further evaluated against real world
data from the domain of sorting networks demonstrating that our approach can solve
multi-gigabyte input datasets in less than 30 hours on a 32-core machine. The experi-
mental evaluation presents analysis of execution counters measuring the significance
of the search space reduction techniques described.

ACKNOWLEDGMENTS

The author would like to thank Andrew Anderson.

REFERENCES
Roberto J. Bayardo and Biswanath Panda. 2011. Fast Algorithms for Finding Extremal Sets. In SDM. SIAM

/ Omnipress, 25–34.
Daniel Bundala and Jakub Zavodny. 2014. Optimal Sorting Networks. In Language and Automata The-

ory and Applications - 8th International Conference, LATA 2014, Madrid, Spain, March 10-14, 2014.
Proceedings (Lecture Notes in Computer Science), Adrian Horia Dediu, Carlos Martı́n-Vide, José Luis
Sierra-Rodrı́guez, and Bianca Truthe (Eds.), Vol. 8370. Springer, 236–247.

Michael Codish, Luı́s Cruz-Filipe, and Peter Schneider-Kamp. 2014. The Quest for Optimal Sorting Net-
works: Efficient Generation of Two-Layer Prefixes. CoRR abs/1404.0948 (2014). http://arxiv.org/abs/
1404.0948

Marta Fort, J. Antoni Sellars, and Nacho Valladares. 2013. Finding extremal sets on the GPU. J. Parallel
and Distrib. Comput. 0 (2013), –.

Paul Pritchard. 1997. An Old Sub-Quadratic Algorithm for Finding Extremal Sets. Inf. Process. Lett. 62, 6
(1997), 329–334.

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

39:12 M. Marinov et al.

ALGORITHM 1: Pseudo code of the function Initialize(F) for initializing the binary tree data
structure T described in section 4.
Input: Dataset F = {F0, F1, . . . , Fr−1} over the domain D = {d1, d2, . . . , dn}.
Output: The function Initialize(F) returns a binary tree T which is used to efficiently query

the data structure and find for a fixed Fi all Fj such that j > i and Fi can be a subset
of Fj up to permutation according to the necessary condition given by Lemma 3.2.

Function Initialize(dataset F = {F0, F1, . . . , Fr−1})
1 leaves count←− Least-Power-of-Two-Not-Smaller-Then(r);
2 nodes count←− leaves count ∗ 2;

/* we represent the binary tree data structure as an array */
3 T.nodes←− Node[nodes count];

/* Node is a vector of n elements, initialized with vectors of zeros */
4 T.root←− 1;

/* The root is stored in Node[1] */
5 i←− 0;
6 repeat
7 T.nodes[leaves count+ i]←− C(Fi);
8 /* as described in Lemma 3.2 */
9 i←− i+ 1;

until i < r;
10 i = leaves count− 1;
11 repeat
12 T.Nodes[i]←− max(T.nodes[i ∗ 2], T.nodes[i ∗ 2 + 1]);
13 /* the function max is defined in section 1.1 */
14 i←− i− 1;

until T.root ≤ i;
15 return T ;

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

A Practical Algorithm for Finding Extremal Sets up to Permutation 39:13

ALGORITHM 2: Pseudo code for the function Query(T, Fi) for querying the binary tree data
structure T as described in section 4.
Input: An binary tree data structure T that is initialized using Algorithm 1 over the dataset F

and an itemset Fi ∈ F , where F = {F0, F1, . . . , Fr−1}.
Output: The function Query(T, Fi) efficiently retrieves all Fj such that i < j < r and Fi can be

a subset of Fj up to permutation of D using the necessary condition from Lemma 3.2.
1 Function Query(binary tree T , itemset Fi)
2 return Query-Rec((T, Fi, T.root, 0, r));
3 Function Query-Rec(binary tree T , itemset Fi, integer node index, integer l, integer r)
4 if r ≤ i then
5 return ∅;

end
6 if T.nodes[node index] < C(Fi) then

/* the necesarry condition from Lemma 3.2 is not met for Fi and any of the
leaves (Fl, Fl+1, . . . , Fr−1) that are children of the node
T.nodes[node index]. */

7 return ∅;
end

8 if l == r then
9 return {Fl};

end
10 left child←− node index ∗ 2;
11 right child←− node index ∗ 2 + 1;
12 mid←− b(l + r)/2c;
13 return Query-Rec((T, Fi, left child, l,mid))

⋃
Query-Rec((T, Fi, right child,mid, r));

/* recursively traverse the left and right children of the current node. */

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

39:14 M. Marinov et al.

ALGORITHM 3: Pseudo code of the function Is-Subset-Up-To-Perm(A,B) for checking if the
itemset A is subset of B up to permutation by recursively generating all permutation candidates
π that meet the necessary conditions described in section 3.2.
Input: The itemsets A and B.
Output: The function Is-Subset-Up-To-Perm-Rec(A,B) returns true iff there exists a

permutation π ∈ Πn such that π(A) ⊆ B.
Function Is-Subset-Up-To-Perm(itemset A, itemset B)

1 return Is-Subset-Up-To-Perm-Rec (A,B, 1, π);
Function Is-Subset-Up-To-Perm-Rec(itemset A, itemset B, integer index, permutation π)

2 i1 ←− index− 1;
3 if ∃i ∈ {1, . . . , i1 − 1} : |Ci(Ci1(A))| < |Ci(Ci1(B))| then

/* Section 3.2 */
4 return false;

end
5 if index == n+ 1 then
6 if π(A) ⊆ B then
7 return true;

end
8 return false;

end
for i←− 1 to n do

9 if @j ∈ {1, . . . , index− 1} : π(j) == i then
/* π must be bijective */

10 if Cindex(A) ≤ Ci(B) then
/* Section 3.2 */

11 π(index)←− i;
if Is-Subset-Up-To-Perm-Rec(A,B, index+ 1, π) then

12 return true;
end

end
end

end
13 return false;

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

A Practical Algorithm for Finding Extremal Sets up to Permutation 39:15

ALGORITHM 4: Pseudo code for finding the minimal up to permutation itemsets M of the
input dataset F = {F0, F1, . . . , Fr−1} using T threads, where every Fi ∈ F is an itemset over the
domain D = {d1, d2, . . . , dn}. We present a subroutine Find-Min-Rep-Perm which identifies the
minimal representative itemsets of F using T parallel threads. It is important to note that in
the Thread-Functor subroutine the variables index and is min are passed to the by reference,
meaning that they are shared between threads.
Input: Dataset F = {F0, F1, . . . , Fr−1} over the domain D = {d1, d2, . . . , dn} and the degree of

parallelism P
Output: The minimal itemsets within the dataset F up to permutation of D. i.e. Minπ(F)
Function Find-Min-Rep-Perm(dataset F = {F0, F1, . . . , Fr−1}, integer P)

/* note that F is ordered in non-decreasing cardinality order s.t. if i < j then
|Fi| ≤ |Fj | */

1 T ←− Initialize(F);
/* binary tree data structure, as per Algorithm 1 */

2 atomic < bool > is min[r]←− {true, true, . . . , true};
/* atomic boolean variables */

3 atomic < int > index←− 0;
/* the index that is to be processed next */

4 start T parallel instances of Thread-Functor(F, index, is min);
5 wait for all T instances to finish working;
6 return {Fi ∈ F | is min[i] == true};

Function Thread-Functor(dataset F = {F0, F1, . . . , Fr−1}, atomic < integer > index,
atomic < bool > is min[r])

7 i←− fetch-and-increment(index) /* an atomic operation */
8 repeat
9 C ←− Query(T, Fi);

/* get all candidate supersets of Fi as per Algorithm 2 */
10 C ←− {Fj ∈ C | Fi and Fj meet the necessary conditions from Lemmas 3.5 and 3.4 };
11 forall the Fj ∈ C do
12 if is min[i] then

/* atomically check if Fi is still minimal */
13 if is min[j] then

/* atomically fetching the Fj-th boolean value */
14 if Is-Subset-Up-To-Perm(Fi, Fj) then

/* Algorithm 3 */
15 is min[j]←− false;

/* atomically setting the j-th boolean value */

end
end

end
end

16 i←− fetch-and-increment(index);
until i < r;

ACM Journal of Experimental Algorithmics, Vol. 9, No. 4, Article 39, Publication date: November 2014.

