
On-Path Caching: The Benefits of Popularity

Andriana Ioannou & Stefan Weber

School of Computer Science and Statistics

Trinity College

Dublin 2, Ireland

{ioannoa,sweber}@scss.tcd.ie

ABSTRACT
Information-Centric Networking (ICN), an alternative to the
current Internet architecture, focuses on the distribution and
retrieval of content instead of the transfer of information be-
tween specific endpoints. Approaches to ICN employ caches
in the network to eliminate the transfer of information over
lengthy communication paths from a source to consumers.

The contribution of this paper lies in the placement of
copies in on-path in-network caching. Our goal is to in-
vestigate the suitability of a probabilistic algorithm, Prob-
PD, based on two variables, the content’s popularity rates P
and the distance ratio of each node from the source D, with
regard to the cache hit rates, cache replacement rates, con-
tent delivery times and hop count rates. Towards this goal,
we present a detailed comparison of simulation results of
the proposed caching mechanism and published alternatives
based on the YouTube traffic. Our results suggest that the
performance of the algorithms is affected by the catalog size
|O|. In particular, our approach may provide significant gains
if certain conditions are met, such as |O|  10.000.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Net-
work Architecture and Design, Internetworking; H.3.2
[Information Storage and Retrieval]: Information
Storage

General Terms
Design,Performance

Keywords
Distributed networks; Future Internet Architectures;
Information-Centric Networks; Caching technologies;
Content replication; On-path caching

1. INTRODUCTION
Information-Centric Networking (ICN) is an alterna-

tive to the end-to-end communication paradigm based
on the publish-subscribe model [10]. In ICN, content
sources make their content available by publishing it
to a content notification service, i.e. a name resolution

service or a name-based routing service, while clients re-
quest content from a content notification service by sub-
scribing to it. In contrast to existing content distribu-
tion technologies, Content Delivery Networks (CDNs)
and Peer-to-Peer (P2P) networks, ICN networks are
free of the application restrictions and the commercial
boundaries [31] that the previous ones apply.
ICN architectures identify content resources, such as

web pages, files or parts of a content resource, chunks
or packets, using a content identifier; object, chunk or
packet naming granularity. Ideally, content identifiers
should involve no information that would bind the con-
tent to a specific location [3, 32]. If this constraint is
met, content can be freely replicated, therefore, pro-
vided by more than one source. Approaches to caching
can be categorized into o↵-path caching and on-path
caching with regard to the location of caches [1, 33].
O↵-path caching, also referred as content replication

or content storing, aims to replicate content within a
network, regardless of the forwarding path. O↵-path
caching is usually centralized and involves a great amount
of information collected as well as advertised into a
content notification service. The ICN o↵-path caching
problem is equivalent to the CDN content replication
and the web cache placement problems [28, 33]. As
such, existing algorithms can be used [14, 16].
On-path caching on the other hand, is integrated

to the architecture itself, i.e. the caching decision is
limited to the content propagated along the delivery
path(s) and to the nodes lying on the delivery path(s),
caching is accomplished at the network layer, on a chunk
level or a packet level, thus, being independent of the
application used, caching mechanisms are bounded by
the on-line speed requirements of the delivery process
where the overhead of monitoring, collection of statisti-
cal information or advertisement of the cached content
into a content notification service may not be acceptable
or feasible. Finally, on-path caching does not follow any
structural model; the topology is considered arbitrary.
In this paper, we focus on the e�ciency of caching

mechanisms for the on-path caching problem identified
in the area of ICN. Towards this goal we propose a prob-

1

abilistic algorithm, Prob-PD, based on two variables,
the content’s popularity ratio P, and the distance ra-
tio of each node from the source D, which we compare
against the alternatives via simulations.

The remainder of this paper is structured as follows.
In section 2, we describe the related work in the area
of on-path caching and conclude to the most e�cient
algorithms. In Section 3, we identify the gaps of the
literature review and describe the Prob-PD algorithm.
In Section 4, we provide the details of the simulation
system model. In section 5, we present the evaluation
results of the algorithm against the most e�cient alter-
natives concluded in Section 2, as well as indications
for future work. We close the paper with Section 6,
dedicated to the conclusions.

2. RELATED WORK
A variety of probabilistic on-path caching algorithms

have been proposed, according to which a node n on
the delivery path, decides to cache a content based on
a probability p, [2, 17]. Probabilistic algorithms can
be categorized depending on the way that the caching
probability is calculated; based on a fixed value [2, 9],
FIX(p) or based on a mathematical formula [23]. In
a FIX(p) approach, p may be decided arbitrary or de-
termined based on the number of nodes of the delivery
path [7, 9]. The last category of algorithms is called
UniCache. The CE2 algorithm proposed by Jacobson
et al. [13], is a form of FIX(p) algorithm with p=1.
FIX(p) algorithms introduce no overhead between the
nodes, but they are unable to exploit any knowledge re-
garding the content or the network topology, resulting
into low performance gains and high redundancy rates.

FIX(p) algorithms have been also tested against the
LCD algorithm [25]. The LCD algorithm, caches a
copy of the requested content one hop closer to the
client each time a content request arrives. According
to the results provided by Rossi et al., the LCD algo-
rithm results into lower gains compared to the FIX(p)
and CE2 approaches with regard to the cache hit rates.
Recent studies have used the LCD algorithm in combi-
nation with an exponentially inceasing content caching
approach [9]. The examination, though, of such an algo-
rithm is out of the scope of this paper as every on-path
caching algorithm is able to be combined with it.

Psarras et al. [23] have suggested a probabilistic
caching algorithm called ProbCache, composed by two
factors, the TimesIn factor and the CacheWeight fac-
tor. The goal of the algorithm is to provide fairness
regarding the capacity of the delivery path. In order
to achieve that, TimesIn factor indicates the number of
replicas expected to be cached along the delivery path,
where values x and y correspond to the number of hops
travelled from the requestor to the content source and
from the source to the requestor, respectively. The x

value remains stable during the delivery of the content.
Therefore, ProbCache is calculated based on the capac-
ity of the remaining nodes at the delivery path. Ac-
cording to the authors, TimesIn factor favors contents
that travel from further away while CacheWeight factor
acts as a counter-balance. Psarras et al. have evaluated
their algorithm against the FIX(p), CE2 and LCD al-
gorithms, indicating significant gains in terms of server
hit rates, hop count rates and eviction rates.
Sourlas et al. [29] have proposed an on-path caching

algorithm called LeafNode. According to this approach,
content is cached at the last node of the delivery path.
Sourlas et al. have evaluate the LeafNode algorithm
against the CE2, resulting into higher hop count rates
and lower absorption times than its alternative.
As caching is performed at the network layer, graph-

based metrics may be used for deciding the node to
which caching should take place. Chai et al. [7] have
proposed an on-path caching algorithm based on the
metric of Betweeness Centrality (BC); BC metric rep-
resents the number of times that each node n lies at the
sets of shortest paths, between all pairs of nodes in the
graph, besides n. According to the proposed algorithm,
caching should be performed only at the nodes holding
the highest BC value. Chai et al. have proven that the
BC algorithm provides better server hit rates and hop
count rates than the CE2 and UniCache algorithms.
Rossi et al. [26] have examined the suitability of a

number of graph-based algorithms, Degree Centrality
(DC), Betweenness Centrality (BC), Closeness Central-
ity (CC), Graph Centrality (GC), Eccentricity Central-
ity (EC) and Stress Centrality(SC), for determining the
size of the caches, e.g. proportional to the centrality
value of each node rather than determing the nodes for
caching the content. Based on their evaluation results,
Rossi et al. have conclude that DC, which indicates
the number of edges of each node n, is the most e↵ec-
tive graph-related metric compared to the alternatives
in terms of server hit rates and hop count rates.
On-path caching approaches may be further catego-

rized based on the information used for the caching deci-
sion, i.e. autonomous caching ; using local information,
centralized caching ; using centralized information and
dependent caching ; using information regarding other
nodes in a non-centralized manner. To ease comparison,
Table 1 summarizes the proposed on-path caching ap-
proaches, the approaches against which they have been
compared, the metrics and topologies under which they
have been evaluated and the evaluation results. In this
table, symbol ”-” indicates that no further information
has been provided regarding this category while symbol
”a > b” indicates that approach a results in a better
performance than approach b.
Based on Table 1, three approaches, the FIX(0.90),

DC and ProbCache, seem to outperform the rest of the

2

Table 1: Taxonomy of the proposed on-path caching algorithms.

Proposed
Technique

Comparison
Technique

Caching
model

Evaluation Metrics Comparison Results Topology
type

BC [7] UniCache,
CE2

central-
ized

server hit rates, hop count
rates

BC > CE2> UniCache CAIDA
(6804 nodes)

CE2[13] - autono-
mous

- - -

DC, BC, CC,
GC, EC, SC
[26]

DC, BC,
CC, GC,
EC, SC

central-
ized

cache hit rates, hop count
rates

DC > SC, BC, CC, GC,
EC

Rocketfuel
(up to 68
nodes)

FIX(p) [2] CE2 autono-
mous

cache hit rates, latency CE2> FIX(0.5) >
FIX(0.3) > FIX(0.25) >
FIX(0.125)

8-nodes
string

LCD [25] CE2,
FIX(p)

autono-
mous

cache hit rates, hop count
rates, load fairness, cache
diversity

FIX(0.90) > FIX(0.75) >
CE2> LCD

Rocketfuel
(up to 68
nodes)

LeafNode [29] CE2 autono-
mous

hop count rates, absorption
time

CE2>LeafNode up to 4-level
binary tree

ProbCache
[23]

CE2, LCD,
FIX(p)

depen-
dent

server hit rates, hop count
rates, eviction rates

ProbCache>LCD,
FIX(0.70) & FIX(0.30) >
CE2

6-level
binary tree

caching mechanisms. Each of these approaches follows
a di↵erent caching model, autonomous, centralized and
dependent, respectively. One of the main contributions
of this work is the evaluation of these algorithms against
each other. Based on this comparison and the previous
ones performed by the research community, we expect
to conclude to the nature of the caching system that
would be more beneficial for an ICN architecture.

3. PROBABILISTIC-PD ALGORITHM
Based, on the information summarized in section 2,

one can observe the absence of the content popularity as
a criterion to the caching decision. Content popularity
is an important factor, able to a↵ect the performance
of a caching algorithm and the network as a whole [5,
25]. Therefore, it should be taken into account. Con-
tent popularity has been applied on a number of cache
replacement policies and replication algorithms defined
in the areas of web proxies and CDNs, e.g. [14, 16, 22].

Measurement studies in web caching have highlighted
the problem of cache pollution due to one-timer ob-
jects [22]. One-timer objects is a term used to identify
objects that are requested only once while cache pol-
lution is a term used to identify the case where one-
timer objects are cached. Cache pollution prevents the
caching of popular objects, resulting into higher cache
miss rates and higher network tra�c rates. According
to the same studies, one-timer objects correspond into
approximately 45-75% of the total amount of requests.
As on-path caching is expected to serve a much higher
catalog size than object replication mechanisms, under

more severe restrictions, such as the cache capacity re-
strictions [2, 19], the prevention of the cache pollution
problem becomes an even more important prerequisity.
Towards this direction we propose a probabilistic on-

path caching algorithm that takes into account the pop-
ularity of the content. Inspired by the Local Greedy
algorithm, proposed by Kangasharju et al. [16] for con-
tent replication on CDNs, we propose a probabilistic al-
gorithm, called Prob-PD. The Prob-PD algorithm con-
sists of two factors, the content’s popularity ratio P,
observed on a node and the distance ratio between the
same node and the source serving the content, D.
The idea behind popularity-based caching is that more

popular contents will satisfy a higher portion of the total
requests. Therefore, caching popular contents should be
preferred. At this point one should make a decision re-
garding the way that content popularity is caclulated
and define the behavior set against both popular and
unpopular contents. Based on this criterion, content
popularity may be divided into static-content popular-
ity and dynamic-content popularity, respectively.
In a static-content popularity approach, contents are

distinguished from each other using a threshold h. Con-
tents with a number of requests higher than h are con-
sidered to be popular while contents with a number of
requests lower than h are considered to be unpopular [8,
15, 21, 24]. Unpopular contents are excluded from the
caching decision. Static-content popularity approaches
require the definition of a proper threshold. Due to the
volatile nature of ICN architectures, we expect such
a definition to be quite challenging. As such, static-

3

Table 2: Parameters of the system model used for evaluation.

Parameter Symbol Value Definition

No. of nodes |N| 97 Total No. of nodes
No. of backbones |B| 39 Total No. of backbone nodes
No. of gateways |G| 58 Total No. of gateway nodes
Capacity of links BW 40GB Available bandwidth

Catalog Size |O| 1000,10000 Total No. of objects
Object Size oi 8oi, i✏|O| ⇠ N(10000KB, 9800KB) Size of object oi in KB
Chunk Size Ch 10KB Chunk size in KB

Contents Size |C|
P|O|

i=1 oi/Ch Total No. of chunks
Cache Size csi 8csi, i✏|N |, csi✏{1, 10, 100, 1000} Cache capacity of node i in chunks
Consumers Size ui 8ui, i✏|G| ⇠ U(100, 300) No. of users on gateway i

Rank Parameter q q✏{0.5, 5} Rank parameter of the Z-M object pop-
ularity distribution

Zipf Exponent ↵ ↵✏{0.8, 1.0, 1.5, 2.0, 2.5} Exponent of the Z-M object popularity
distribution

Arrival rate � 1.0 Exponential request arrival rate
Control window W 1 No. of requests able to sent with no reply

content popularity approaches usually result into out of
date calculations and unutilized cache capacity [15].

Dynamic-content popularity on the other hand is de-
fined as the number of requests observed during a time
interval �t [18, 27]. Consequently, the popularity of
a content is concluded by comparing its request rates
against each other’s. A common technique to provide
an up to date content popularity pattern is to sort the
contents in a decreasing order [4, 16], similarly to a LFU
replacement policy. Therefore, we believe that apply-
ing a dynamic-content popularity approach on an ICN
architecture instead of a static one would be more ben-
eficial. However, one should not neglect the disadvan-
tage deriving from the same feature, i.e. the constant
comparison of the request rates. Towards this direction,
we propose a dynamic-content popularity approach that
reduces the number of comparisons to a minimum.

We have already stated the reasons why we chose
popularity to be one of the factors that construct our
caching algorithm. We now attempt to explain the rea-
sons why we chose distance to be the combined fac-
tor. Similarly to any other caching technique, on-path
caching is requested to answer the question of where to
cache a content. We slightly change this question into
whether a content should be cached on a node based
on a network-related criterion. Latency reduction is
one of the most preferable goals with regard to network
performance, therefore one of the most known network
metrics. The number of hops has been defined as a good
estimation of the latency metric, being used in routing
protocols and CDN replication algorithms [16, 20].

In order to explain the caching algorithm further, we
first define some notations that we summarize in Ta-

ble 2. For the rest of the section, let i denote the node
performing the caching decision and j denote the con-
tent on which the caching decision is applied. Let ri,j
denote the number of requests recorded on node i for
content j, with

PJ6Ch
j=1 ri,j being the total number of

requests seen and d(i, i0) denote the distance between
nodes i and i0, using the number of hops as a metric.
We then define the Prob� PDi,j algorithm as follows:

Prob� PD =
ri,j/�t

PJ6|C|
j=1 ri,j/�t

| {z }
P

⇥ d(i, src)

d(dst, src)| {z }
D

(1)

where, P represents the dynamic popularity calculation
of a content j, constructed by the number of requests
recorded for content j, during a time interval �t, di-
vided by the total number of requests recorded during
the same time interval, on a node i. In order not to in-
troduce any additional overhead to the infrastructure of
a node, we define �t to be the time between the arrival
of the first request regarding content j and the satis-
faction of it. That way, each content is limited to one
comparison only against the rest of the contents, mini-
mizing the complexity and overhead that dynamic pop-
ularity calculations apply. The D factor, is constructed
based on the distance between node n and the source
src serving the request, normalized by the distance be-
tween src and the node requesting the content dst. The
D factor represents the benefit of caching the content
on the current node against the cost of retrieving the
content from the original source. Our goal is to exam-
ine how beneficial may be the combination of these two
factors regarding the ICN on-path caching problem.

4

4. SYSTEM MODEL
In this section we provide a thorough analysis of the

evaluation system model. The evaluation is based on
the ndnSIM simulator, an ns-3 module that adopts the
Named Data Networking (NDN) communication model
[13]. A summary of the model can be found in Table 2.

In order to ease readers to relate the results with those
presented in other publications, a real network topol-
ogy, Exodus AS-3967 is used, based on the Rocketfuel
traces [30]. The topology, shown in Fig.1, consists of 94
nodes, i.e. 39 backbones and 58 gateways. Each node is
equipped with a NDN stack. Consumer and producer
applications can only be installed on a gateway node. In
particular, one producer is assumed for each evaluation
scenario. The selection of a gateway for the producer in-
stallation is based on the metric of connectivity degree;
a node with connectivity degree equal to 5 is chosen,
where 1 is the minimum and 14 is the maximum.

As an attempt to provide realistic evaluation scenar-
ios, a simulation scenario based on the YouTube tra�c
is determined. However, as the exact simulation of such
a scenario is computationally expensive [25], the nor-
malization of some characteristics is necessary so as to
adopt the model; we decrease the catalog size |O| from
108 [6, 35] to 104 and the content store (CS) size, csi
from 10GB [2] to 1MB. It is worth mentioning that the
ratio between the initial values and the ones concluded
remains the same. Object sizes follow a normal distri-
bution of mean 10MB and standard deviation 9.8MB
[11]. In order to be able to study the e↵ect of the pop-
ularity factor on the performance of the algorithms, a
Zipf-Mandelbrot (Z-M) object popularity distribution
of ↵✏{0.8, 1.0, 1.5, 2.0, 2.5} and q✏{0.5, 5} [6, 34, 12] is
defined. Contents in CS are replaced using the Least
Recently Used (LRU) policy [13, 25].

Finallizing the system model, a mean number of 200
consumers is installed on each gateway, following a uni-
form distribution. A consumer generates object requests.
Each object request corresponds to a sequence of chunk
requests, equal to the size of the object divided by the
chunk size, 10KB [11, 35]. Request arrivals follow an
exponential distribution of � equal to 1.0.

5. EVALUATION RESULTS
Using the system model desrcibed in section 4 and the

evaluation metrics of cache hit rates, cache replacement
rates, delivery times and hop count rates, a report of the
evaluation results of the CE2,DC,FIX(0.90),ProbCache
and Prob-PD algorithms is provided. Each evaluation
result corresponds to the mean value of 10 simulation
runs under a set of parameters ↵, q and csi; due to space
limitations and in order to ease readability, only the
mean values of the evaluation results are displayed. In
order to be able to compare the caching mechanisms be-
tween each other an average value derived from the sum-

Figure 1: Exodus Topology (AS-3967)

mation of each evaluation result with respect to each
parameter is used. Again, due to space restrictions, a
modification of the names of four of the algorithms is ap-
plied, i.e. CE,P90,PC and PD for the CE2, FIX(0.90),
ProbCache and Prob-PD algorithms, respectively.
Fig.2 illustrates the performance of the caching mech-

anisms with regard to the cache hit rates for a range of
parameters, i.e. ↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q✏{0.5, 5} and
csi✏{10, 100, 1000}. According to Fig.2, the cache hit
rates can be highly a↵ected by the parameter ↵; the
number of cache hits decreases as ↵ increases from 0.8 to
1.0 and increases again when ↵ � 1.0. An exception to
this behavior constitute the CE and P90 algorithms for
which the cache hit rates decrease when 0.8  ↵  1.5.
In a Zipf-Mandelbrot distribution, the parameters ↵

and q determine the probability of an object to be re-
quested. As ↵ and q increase, the requests get limited to
a more strict subset of objects. The behavior of the al-
gorithms suggests that when 0.8  ↵  1.0 the pattern
of requests is neither too scarce nor too concentrated
to cause a cache hit; a scarce pattern of object requests
may as well correspond to an increase on the cache hits
given the number of consumers ui on each gateway.
Towards analyzing Fig.2, two approaches, the PC and

PD seem to outperform the rest of the alternatives, with
the PC approach performing slightly better than the
PD; approximately 1.7 cache hits on average. As ex-
pected, the CE and P90 approaches result in an almost
identical performance of 0.6 cache hits di↵erence in fa-
vor of the P90. The DC approach provides the lowest
rates on cache hits, i.e. about 31.5 less than the PC.
An important point that we owe to highlight is the

lack of the PD algorithm to provide a comparable per-
formance with regard to the alternatives. The expla-
nation for this outcome lies on the calculation of the
popularity factor P . As a content competes against the
sum of the contents requested during the time interval
�t, only contents with high popularity rates are cached.
Consequently, the algorithm misses the cache hits de-
rived from the less popular contents. Of course, the
behavior of the algorithm is also related to the tra�c

5

●

●

●

25

50

75

100

125

0 250 500 750 1000
Cache Size

Ca
ch

e
Hi

ts

Name
● CE

DC
P90
PC
PD

●
●

●

●
●

50

75

100

125

150

1.0 1.5 2.0 2.5
Alpha

Ca
ch

e
Hi

ts

Name
● CE

DC
P90
PC
PD ●

●
●

●

●

40

60

80

100

120

1.0 1.5 2.0 2.5
Alpha

Ca
ch

e
Hi

ts

Name
● CE

DC
P90
PC
PD

Figure 2: Average cache hit rates for |O|=10.000: (a.) a = 1.0, q = 0.5, csi✏{10, 100, 1000} (left),
(b.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 0.5, csi = 100 (middle), (c.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 5, csi = 100 (right).

●

●

●

0

200

400

0 250 500 750 1000
Cache Size

Ca
ch

e
Re

pla
ce

m
en

ts Name
● CE

DC
P90
PC
PD

● ●

●

●

●

0

100

200

300

400

1.0 1.5 2.0 2.5
Alpha

Ca
ch

e
Re

pla
ce

m
en

ts Name
● CE

DC
P90
PC
PD

●

●

●

●

●

0

100

200

300

400

500

1.0 1.5 2.0 2.5
Alpha

Ca
ch

e
Re

pla
ce

m
en

ts Name
● CE

DC
P90
PC
PD

Figure 3: Average replacement rates for |O|=10.000: (a.) a = 1.0, q = 0.5, csi✏{10, 100, 1000} (left),
(b.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 0.5, csi = 100 (middle), (c.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 5, csi = 100 (right).

model adopted. To this end, a second system model,
explained later in this section is also evaluated.

In order to verify our claims we plot the replacement
rates, Fig.3, of each approach with regard to the same
parameters. If our assumption about the PD algorithm
is true, the cache replacement rates should be relatively
low. Indeed, Fig.3 indicates that the PD algorithm cor-
responds to the lowest cache replacement rates while
the PC and DC approaches correspond to an average
increase of 15.5 and 63, respectively. As expected, the
CE and P90 approaches produce the highest cache re-
placement rates, i.e. 300 more than the PD algorithm.

Finalizing the presentation of the evaluation results
for the specific system model we also plot the deliv-
ery times and hop count rates of each approach, Fig.4
and Fig.5. As the number of hops is assumed to be
a good estimation of the latency metric, both figures
conclude to a similar outcome. Somewhat suprisingly
to Fig.2, the DC algorithm seems to correspond to a
lower evaluation metric compared to the PC and PD
alternatives. The di↵erence between the approaches is
estimated at 0.002 and 0.003 for the delivery times and
0.021 and 0.18 for the hop count rates. The result sug-

gests that caching and network evaluation metrics do
not strictly align with each other. As the final goal of
a caching algorithm is the reduction of the latency and
the reduction of the network tra�c, both of which can
be estimated based on the delivery times and the hop
count rates, the outcome suggests that a DC approach
may as well correspond to high benefits. Moreover, the
outcome comes in contrast to previous works where CE
has been identified as a fast delivery algorithm [7].
In order to explore whether the performance of our

proposal is indeed a↵ected by the tra�c model, the al-
teration of two main system parameters is introduced,
mainly, the reduction of the catalog size |O| from 10.000
to 1.000 and the reduction of the CS size from 100 to
10. Similar to the system model described in section 4,
the ratio of the two parameters remains the same.
Fig.6 presents the cache hit rates of the new system

model with respect to the parameters ↵, q and csi. Ac-
cording to Fig.6, our proposal, PD corresponds to the
highest cache hit rates with a minimum di↵erence of
5.5, against the PC approach and a maximum di↵er-
ence of 18.2, against the DC approach. Similar to Fig.2,
the variance of cache hits between the CE and P90 ap-

6

●

● ●

0.0525

0.0550

0.0575

0.0600

0 250 500 750 1000
Cache Size

De
lay

 [s
]

Name
● CE

DC
P90
PC
PD

●

●

●

●

●

0.04

0.05

0.06

1.0 1.5 2.0 2.5
Alpha

De
lay

 [s
]

Name
● CE

DC
P90
PC
PD

● ●

●

●

●

0.050

0.055

0.060

1.0 1.5 2.0 2.5
Alpha

De
lay

 [s
]

Name
● CE

DC
P90
PC
PD

Figure 4: Average delay times for |O|=10.000: (a.) a = 1.0, q = 0.5, csi✏{10, 100, 1000} (left),
(b.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 0.5, csi = 100 (middle), (c.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 5, csi = 100 (right).

●

●

●

3.3

3.6

3.9

4.2

0 250 500 750 1000
Cache Size

Ho
ps

 C
ou

nt

Name
● CE

DC
P90
PC
PD

●

●

●

●

●

2.0

2.5

3.0

3.5

4.0

1.0 1.5 2.0 2.5
Alpha

Ho
ps

 C
ou

nt

Name
● CE

DC
P90
PC
PD

●
●

●

●

●

3.2

3.6

4.0

1.0 1.5 2.0 2.5
Alpha

Ho
ps

 C
ou

nt

Name
● CE

DC
P90
PC
PD

Figure 5: Average hop count rates for |O|=10.000: (a.) a = 1.0, q = 0.5, csi✏{10, 100, 1000} (left),
(b.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 0.5, csi = 100 (middle), (c.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 5, csi = 100 (right).

proaches is negligible. It is worth noting that in contrast
to the previous evaluation model, the cache hit rates are
no longer decreased as the parameter ↵ increases. The
main reason for this is a more clear pattern of requests.

Fig.7 presents the cache replacement rates with re-
gard to the same parameters. Based on the aforemen-
tioned results and the ones reported in Fig.3, one can
easily observe that the alteration of the system model
has no significant impact on the trend of the algorithms.

In contrast to the cache replacement rates, the plots
of both the delivery times, Fig.8 and the hop count
rates, Fig.9 are no similar to the ones recorded in the
previous evaluation. More precisely, Fig.8 suggests that
the variation of the delivery times of the algorithms is
as low as 0.0001, i.e. with the lowest value being 0.0571
for the PD algorithm and the highest value being 0.0581
for the CE algorithm. The reported variation is lower
than the one recorded in Fig. 4. Fig.9 concludes to
an average value of 3.85 and 4.05 hop counts for the
PD and CE approaches, respectively. The di↵erence
between the PD algorithm and the best alternative, PC
is as low as 0.06, which is higher than the one recorded
in Fig. 5 between the DC and the PC algorithms.

Based on the aforementioned results, one can con-
clude that the performance of an on-path caching al-
gorithm can be a↵ected from a range of parameters,
the most important of which is perhaps the catalog size
|O|. The catalog size is able to significantly a↵ect the
tra�c model of the system and define a more scarse
or a more frequent pattern of requests. Analyzing the
impact of the parameter |O| a bit further, we shortly
recall the dependence of the DC and PC approaches
with regard to the delivery times and the hop count
rates. More precisely, for |O|=10.000, the PC approach
outperforms the DC approach while for |O|=1.000, the
PC approach outperforms the DC approach. The pat-
tern of requests is even more critical to the performance
of our algorithm due to the calculation of the popular-
ity factor P, explained earlier in this section. Towards
this direction, alternative options for the calculation of
the popularity factor are concidered. A potential alter-
native is the modification of the time interval �t to a
potentially larger fixed time interval. The main reason
for this is that a larger time interval would probably re-
sult into a better categorization of the popularity of the
contents. We attempt to fulfill this as a future work.

7

●

●

●

0

20

40

60

0 25 50 75 100
Cache Size

Ca
ch

e
Hi

ts

Name
● CE

DC
P90
PC
PD

●

●

●

●

●

0

25

50

75

100

1.0 1.5 2.0 2.5
Alpha

Ca
ch

e
Hi

ts

Name
● CE

DC
P90
PC
PD

●
●

●

●

●

0

10

20

30

1.0 1.5 2.0 2.5
Alpha

Ca
ch

e
Hi

ts

Name
● CE

DC
P90
PC
PD

Figure 6: Average cache hit rates for |O|=1.000: (a.) a = 1.0, q = 0.5, csi✏{1, 10, 100} (left),
(b.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 0.5, csi = 10 (middle), (c.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 5, csi = 10 (right).

●
●

●

200

400

600

0 25 50 75 100
Cache Size

Ca
ch

e
Re

pla
ce

m
en

ts Name
● CE

DC
P90
PC
PD

●

●

●

●

●

0

200

400

600

1.0 1.5 2.0 2.5
Alpha

Ca
ch

e
Re

pla
ce

m
en

ts Name
● CE

DC
P90
PC
PD

●

●

●

●

●

200

400

600

1.0 1.5 2.0 2.5
Alpha

Ca
ch

e
Re

pla
ce

m
en

ts Name
● CE

DC
P90
PC
PD

Figure 7: Average replacement rates for |O|=1.000: (a.) a = 1.0, q = 0.5, csi✏{1, 10, 100} (left),
(b.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 0.5, csi = 10 (middle), (c.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 5, csi = 10 (right).

6. CONCLUSIONS
In this paper, we have described the existing on-path

caching algorithms for the ICN architectural model and
categorized them against their properties. We have fur-
ther proposed a probabilistic caching algorithm, Prob-
PD, to enhance performance which we evaluated against
the alternatives via simulations. Our results indicate
that the performance of an on-path caching algorithm
may be considerably a↵ected by the catalog size |O|.
More precisely, our approach may provide significant
gains if certain conditions are met, such as |O|  10.000.
The explanation for this outcome lies on the calculation
of the popularity factor P. Towards solving this depen-
dency we intend to explore alternatives that would allow
the algorithm to perform in a wider scale.

7. REFERENCES
[1] B. Ahlgren, C. Dannewitz, C. Imbrenda,

D. Kutscher, and B. Ohlman. A survey of
information-centric networking. IEEE
Communications Magazine, 50(7):26–36, 2012.

[2] S. Arianfar, P. Nikander, and J. Ott. On
content-centric router design and implications. In

Proceedings of the Re-Architecting the Internet
Workshop of the ACM CoNEXT Conference,
number 5, 2010.

[3] H. Balakrishnan, K. Lakshminarayanan,
S. Ratnasamy, S. Shenker, I. Stoica, and
M. Walfish. A layered naming architecture for the
internet. In Proceedings of the ACM Conference
on Applications, Technologies, Architectures and
Protocols for Computer Communications
(SIGCOMM ’04), Portland, OR, USA, August
2004, pages 343–352.

[4] S. Borst, V. Gupta, and A. Walid. Distributed
caching algorithms for content distribution
networks. In Proceedings of the 29th IEEE
Conference on Computer Communication
(INFOCOM ’10), San Diego, CA, USA, March
2010, pages 1–9.

[5] G. Carofiglio, M. Gallo, L. Muscariello, and
D. Perino. Modeling data transfer in
content-centric networking. In Proceedings of the
23rd International Teletra�c Congress (ITC’11),
San Francisco, CA, USA, September, pages
111–118, 2011.

8

●
●

●

0.059

0.060

0.061

0.062

0 25 50 75 100
Cache Size

De
lay

 [s
]

Name
● CE

DC
P90
PC
PD

●

●

●

●

●

0.04

0.05

0.06

1.0 1.5 2.0 2.5
Alpha

De
lay

 [s
]

Name
● CE

DC
P90
PC
PD

●

●

●

●

●

0.0550

0.0575

0.0600

0.0625

0.0650

1.0 1.5 2.0 2.5
Alpha

De
lay

 [s
]

Name
● CE

DC
P90
PC
PD

Figure 8: Average delivery times for |O|=1.000: (a.) a = 1.0, q = 0.5, csi✏{1, 10, 100} (left),
(b.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 0.5, csi = 10 (middle), (c.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 5, csi = 10 (right).

●

●

●

3.8

3.9

4.0

4.1

4.2

4.3

0 25 50 75 100
Cache Size

Ho
ps

 C
ou

nt

Name
● CE

DC
P90
PC
PD

●

●

●

●

●

2.8

3.2

3.6

4.0

1.0 1.5 2.0 2.5
Alpha

Ho
ps

 C
ou

nt

Name
● CE

DC
P90
PC
PD

●

●

●

●

●

3.9

4.0

4.1

4.2

1.0 1.5 2.0 2.5
Alpha

Ho
ps

 C
ou

nt

Name
● CE

DC
P90
PC
PD

Figure 9: Average hop count rates for |O|=1.000: (a.) a = 1.0, q = 0.5, csi✏{1, 10, 100} (left),
(b.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 0.5, csi = 10 (middle), (c.)↵✏{0.8, 1.0, 1.5, 2.0, 2.5}, q = 5, csi = 10 (right).

[6] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and
S. Moon. I tube, you tube, everybody tubes:
analyzing the world’s largest user generated
content video system. In Proceedings of the 7th
ACM SIGCOMM Conference on Internet
Measurement (IMC ’07), San Diego, CA, USA,
October 2007, pages 1–14, 2007.

[7] W. Chai, D. He, I. Psaras, and G. Pavlou. Cache
”less for more” in information-centric networks. In
Proceedings of the 11th International IFIP TC 6
Conference on Networking, Brooklyn, NY, USA,
May 2012, pages 27–40.

[8] H. Che, Y. Tung, and Z. Wang. Hierarchical web
caching systems: Modeling, design and
experimental results. IEEE Journal on Selected
Areas in Communications, 20(7):1305–1314, 2002.

[9] K. Cho, M. Lee, K. Park, T. Kwon, Y. Choi, and
S. Pack. Wave: Popularity-based and
collaborative in-network caching for
content-oriented networks. In Proceedings of the
1st Workshop on Emerging Design Choices in
Name-Oriented Networking (NOMEN ’12),
Orlando, FL, USA, March 2012, pages 316–321.

[10] P. Eugster, P. Felber, R. Guerraoui, and
A. Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys,
35(2):114–131, 2003.

[11] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube
tra�c characterization: a view from the edge. In
Proceedings of the 7th ACM Conference on
Internet Measurement (IMC ’07), San Diego, CA,
USA, October 2007, pages 15–28.

[12] M. Hefeeda and O. Saleh. Tra�c modeling and
proportional partial caching for peer-to-peer
systems. IEEE/ACM Transactions on Networking
(TON), 16(6):1447–1460, 2008.

[13] V. Jacobson, D. Smetters, J. Thornton, M. Plass,
N. Briggs, and R. Braynard. Networking named
content. In Proceedings of the 5th International
Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’09), Rome, Italy,
December 2009, pages 1–12.

[14] S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt.
Constrained mirror placement on the internet. In
Proceedings of the 20th IEEE Conference on
Computer Communication (INFOCOM ’01),

9

Anchorage, AK, USA, April 2001, pages 31–40.
[15] T. Janaszka, D. Bursztynowski, and M. Dzida. On

popularity-based load balancing in content
networks. In Proceedings of the 24th International
Teletra�c Congress (ITC’12), Krakow, Poland,
September 2012, pages 1–8.

[16] J. Kangasharju, J. Roberts, and K. Ross. Object
replication strategies in content distribution
networks. Elsevier Journal on Computer
Communications, 25(4):376–383, 2002.

[17] N. Laoutaris, H. Che, and I. Stavrakakis. The lcd
interconnection of lru caches and its analysis.
Elsevier Journal on Performance Evaluation,
63(7):609–634, 2006.

[18] N. Laoutaris, O. Telelis, V. Zissimopoulos, and
I. Stavrakakis. Distributed selfish replication.
IEEE Transactions on Parallel and Distributed
Systems, 17(12):1401–1413, 2006.

[19] U. Lee, I. Rimac, and V. Hilt. Greening the
internet with content-centric networking. In
Proceedings of the 1st International Conference on
Energy-E�cient Computing and Networking
(e-Energy ’10), Passau, Germany, April 2010,
pages 179–182.

[20] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and
K. Sohraby. On the optimal placement of web
proxies in the internet. In Proceedings of the 8th
IEEE Conference on Computer Communication
(INFOCOM ’99), New York, NY, USA, March
1999, pages 1282–1290.

[21] J. Li, H. Wu, B. Liu, J. Lu, Y. Wang, X. Wang,
Y. Zhang, and L. Dong. Popularity-driven
coordinated caching in named data networking. In
Proceedings of the 8th ACM/IEEE Symposium on
Architectures for Networking and
Communications Systems (ANCS ’12), Austin,
TX, USA, October 2012, pages 15–26.

[22] A. Mahanti, D. Eager, and C. Williamson.
Temporal locality and its impact on web proxy
cache performance. Elsevier Journal on
Performance Evaluation, 42(2):187–203, 2000.

[23] I. Psaras, W. Chai, and G. Pavlou. Probabilistic
in-network caching for information-centric
networks. In Proceedings of the 2nd Workshop on
Information-Centric Networking, Orlando, FL,
USA, March 2012, pages 55–60.

[24] M. Rabinovich, I. Rabinovich, R. Rajaraman, and
A. Aggarwal. A dynamic object replication and
migration protocol for an internet hosting service.
In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems
(ICDCS ’99), Austin, TX, USA, May 1999, pages
101–113.

[25] D. Rossi and G. Rossini. Caching performance of
content centric networks under multi-path routing

(and more). Technical report, Telecom ParisTech
Ecole, November 2011.

[26] G. Rossini and D. Rossi. On sizing ccn content
stores by exploiting topological information. In
Proceedings of the 1st Workshop on Emerging
Design Choices in Name-Oriented Networking
(NOMEN ’12), Orlando, FL, USA, March 2012,
pages 280–285.

[27] V. Sourlas, P. Flegkas, L. Gkatzikis, and
L. Tassiulas. Autonomic cache management in
information-centric networks. In Proceedings of
the IEEE Network Operations and Management
Symposium (NOMS ’12), Maui, HI, USA, April
2012, pages 121–129.

[28] V. Sourlas, P. Flegkas, G. Paschos, D. Katsaros,
and L. Tassiulas. Storage planning and replica
assignment in content-centric publish/subscribe
networks. Elsevier Journal on Computer
Networks, 55(18):4021–4032, 2011.

[29] V. Sourlas, G. Paschos, P. Flegkas, and
L. Tassiulas. Caching in content-based
publish/subscribe systems. In Proceedings of the
IEEE Global Telecommunications Conference
(GLOBECOM ’09), Honolulu, HI, USA,
November 2009, pages 1–6.

[30] N. Spring, R. Mahajan, and D. Wetherall.
Measuring isp topologies with rocketfuel.
IEEE/ACM Transactions on Networking (TON),
32(4):133–145, 2002.

[31] A. Vakali and G. Pallis. Content delivery
networks: Status and trends. IEEE Journal on
Internet Computing, 7(6):68–74, 2003.

[32] M. Walfisha, H. Balakrishnana, and S. Shenkerb.
Untangling the web from dns. In Proceedings of
the 1st Symposium on Networked Systems Design
and Implementation (NSDI ’04), San Francisco,
CA, USA, March 2004.

[33] G. Xylomenos, C. Ververidis, V. Siris, N. Fotiou,
C. Tsilopoulos, X. Vasilakos, K. Katsaros, and
G. Polyzos. A survey of information-centric
networking research. IEEE Communications
Surveys and Tutorials, (1–26), 2013.

[34] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng.
Understanding user behavior in large-scale
video-on-demand systems. In Proceedings of the
1st ACM European Conference on Computer
Systems (EUROSYS ’06), Leuven, Belgium, April
2006, volume 40, pages 333–344.

[35] J. Zhou, Y. Li, V. K. Adhikari, and Z.-L. Zhang.
Counting youtube videos via random prefix
sampling. In Proceedings of the 7th ACM
Conference on Internet Measurement (IMC ’07),
Berlin, Germany, November 2011, pages 371–380.

10

