
Amadeus Project

Synchronisation Variables

Ciaran McHale, Se�an Baker, Bridget Walsh, Alexis Donnelly

Distributed Systems Group

Department of Computer Science

University of Dublin

Trinity College, Dublin 2, Ireland.

Fax: +353-1-772204

Tel: +353-1-7021539

Email: f�rstname.lastnameg@cs.tcd.ie, bwalsh@iona.ie

Abstract

It is commonly believed that access to the instance variables of an object

by its synchronisation code is needed in order to implement many synchro-

nisation policies. This introduces an obvious di�culty. The synchronisation

code must not read an instance variable while that variable is being updated

by an operation, otherwise the synchronisation code might see the variable

in an inconsistent state.

In this paper, we study this problem in depth and solve it by de�ning a

framework to guide the design of synchronisation mechanisms. In solving the

problem, our framework illustrates that, contrary to popular belief, access

to instance variables by synchronisation mechanisms is not required in order

to implement synchronisation policies that apparently rely on the state of

the object|such state can be maintained by the synchronisation code itself.

Our framework o�ers additional bene�ts. Synchronisation mechanisms

designed within the guidelines of the framework can possess considerable ex-

pressive power. (The example synchronisation mechanism we present sub-

sumes the power of numerous other synchronisation mechanisms.) Also,

we show that most of the concepts of our framework can be implemented

in terms of existing language constructs, thus minimising complexity that

needs to be added to a sequential language in order to support concurrency.

Document Status Final version

Distribution Public

Document # Technical Report TCD-CS-94-01

This version January 19, 1994
c
 1994 University of Dublin

Permission to copy without fee all or part of this material is granted provided that the copyright notice, and

the title and authors of the document appear. To otherwise copy or republish requires explicit permission

in writing from the University of Dublin.

Contents

1 Introduction 1

1.1 Structure of the Paper : 2

1.2 Terminology and Concepts : 2

2 Previous Attempts to Solve the Problem 4

2.1 Reduction of Concurrency : 4

2.1.1 Discussion : 5

2.2 The Guide Proposal : 6

2.2.1 Discussion : 8

3 A New Approach 9

3.1 Synchronisation Variables : 9

3.2 Synchronisation as Event-based Programming : : : : : : : : : : : : : : : : 10

3.3 Starting Invocations : 11

3.4 Access to Information about Invocations : : : : : : : : : : : : : : : : : : : 11

3.4.1 Parameters : 13

3.4.2 Local Variables : 13

4 An Example Mechanism 14

4.1 Notation : 14

4.2 Examples : 14

4.2.1 Subsumption : 15

4.2.2 Scheduling Power : 16

4.2.3 Instance Variables : 19

5 Discussion 25

5.1 Bene�ts of our Framework : 25

5.1.1 No Con
ict with Instance Variables : : : : : : : : : : : : : : : : : : 25

5.1.2 Expressive Power : 26

5.1.3 Subsumption of Other Synchronisation Constructs : : : : : : : : : : 26

5.1.4 Modularity : 27

5.1.5 Declarative and Procedural Programming Styles : : : : : : : : : : : 27

5.2 Hybrid Variables : 27

5.2.1 A Limitation of our Model : 28

6 An Implementation of Esp on top of an Object-oriented Language 29

6.1 A Brief Overview of Dee : 29

6.2 Actions and Guards : 30

6.3 Invocations as Language-level Types : 31

6.3.1 The Variant-record Approach : 32

6.3.2 The Generic Class Approach : 32

6.3.3 The Untyped List Approach : 33

6.3.4 The Inheritance Approach : 33

6.4 New Language Constructs : 36

6.5 Inheritance of Synchronisation in Desp : 37

7 Related Work 37

7.1 Synchronisation Variables : 37

7.2 Event-based Programming : 38

7.3 Starting Invocations : 38

7.3.1 Guard Re-evaluation Semantics : 38

7.3.2 A Bene�t of Syntactic Separation : : : : : : : : : : : : : : : : : : : 39

7.4 Accessibility of Invocations : 39

8 Conclusions 41

Synchronisation Variables

Ciaran McHale,� Se�an Baker, Bridget Walsh, Alexis Donnelly

Abstract

It is commonly believed that access to the instance variables of an object

by its synchronisation code is needed in order to implement many synchronisa-

tion policies. This introduces an obvious di�culty. The synchronisation code

must not read an instance variable while that variable is being updated by

an operation, otherwise the synchronisation code might see the variable in an

inconsistent state.

In this paper, we study this problem in depth and solve it by de�ning a

framework to guide the design of synchronisation mechanisms. In solving the

problem, our framework illustrates that, contrary to popular belief, access to

instance variables by synchronisation mechanisms is not required in order to

implement synchronisation policies that apparently rely on the state of the

object|such state can be maintained by the synchronisation code itself.

Our framework o�ers additional bene�ts. Synchronisation mechanisms de-

signed within the guidelines of the framework can possess considerable expres-

sive power. (The example synchronisation mechanism we present subsumes the

power of numerous other synchronisation mechanisms.) Also, we show that

most of the concepts of our framework can be implemented in terms of existing

language constructs, thus minimising complexity that needs to be added to a

sequential language in order to support concurrency.

1 Introduction

Consider an object that can be accessed concurrently by several processes. Some mech-

anism must be used to protect the object in the face of concurrent access|otherwise its

data might become inconsistent. Encapsulation requires that the code to protect an ob-

ject should be placed within the object itself rather than be spread out among its clients

[Blo79]. We refer to this code as synchronisation code.

It is believed that access to the instance variables of an object by its synchronisation

code is needed in order to implement many synchronisation policies [Blo79]. This intro-

duces an obvious di�culty. The synchronisation code must not read an instance variable

while that variable is being updated by an operation, otherwise the synchronisation code

might see the variable in an inconsistent state.

�Distributed Systems Group, Department of Computer Science, Trinity College, Dublin 2, Ireland. Tel:

+353-1-7021539. Email: f�rstname.lastnameg@cs.tcd.ie, bwalsh@iona.ie

1

Surprisingly, many recent language designs (e.g., Guide [DDR+90], Plooc [Tho92],

CEi�el [L�oh92] and Dragoon [Atk90]) allow synchronisation code to access instance vari-

ables but do not provide any means to ensure that this access is performed in a safe

manner.

In this paper, we study this problem in depth and solve it by de�ning a framework to

guide the design of synchronisation mechanisms. A central concept in our framework is that

variables required to implement the sequential functionality of an object should be classi�ed

as \(sequential) instance variables", and the variables required to implement an object's

synchronisation policy as \synchronisation variables". We will show that, in practice, there

is no overlap between these two sets of variables, i.e., the case does not arise in which a

variable is used to implement both the sequential functionality and the synchronisation

policy of an object. Thus, by providing language support for synchronisation variables,

the problems associated with synchronisation code accessing instance variables disappears.

We will show that our framework o�ers additional bene�ts. Synchronisation mecha-

nisms designed within the guidelines of our framework can possess considerable expressive

power. Also, most of the concepts of our framework can be implemented in terms of exist-

ing language constructs, thus minimising the amount of complexity that needs to be added

to a sequential language in order to support concurrency.

1.1 Structure of the Paper

The rest of this paper is structured as follows.

Section 1.2 explains some basic concepts and terminology used in this paper. Section 2

considers some previous attempts to allow instance variables to be used safely in synchro-

nisation code, and discusses their limitations. In Section 3 we take a fresh look at the

problem, and propose a framework to solve it. In Section 4 we illustrate this framework

by applying it to an existing synchronisation mechanism and use the resultant mechanism

to solve several synchronisation problems. We summarise the bene�ts of our approach in

Section 5, and then, in Section 6, outline how the core concepts of our framework can

be mapped onto existing constructs of an object-oriented language. We compare the core

concepts of our synchronisation framework with related work in Section 7. Finally, in

Section 8, we conclude the paper and suggest areas for future research.

1.2 Terminology and Concepts

In this paper, synchronisation constraints are represented as guards, i.e., conditions, asso-

ciated with operations.1 The principle of using guards is simple: whenever an invocation

is attempted on an operation, it will be blocked until that operation's guard becomes true.

Synchronisation counters [RV77] often appear in guard-based mechanisms. These (au-

tomatically maintained) variables of an object count the total number of invocations for

each operation of the object which have arrived at the object, have started execution

and have terminated execution, etc. The two counters of most interest to this paper

1Guards are simply the syntactic notation which we have chosen to use in this paper. The principles

we discuss apply to synchronisation mechanisms in general, whether they are guard-based or not.

2

are exec and wait . The counter \exec(Foo)" indicates how many invocations on oper-

ation Foo are currently executing, and \wait (Foo)" indicates how many invocations are

currently waiting to execute Foo (they are waiting because their guards have not yet eval-

uated to true). In this paper, the form \exec(A;B; : : : ; Z)" is used as a shorthand for

\exec(A) + exec(B) + � � �+ exec(Z)". As an example, the following guards can be used to

enforce a basic readers/writer policy on an object which has operations named Read and

Write:

Read: exec(Write) = 0;

Write: exec(Read, Write) = 0;

Scheduling Predicates (SP) [MWBD91] provide a way for guards to compare the pa-

rameters, and relative arrival time of invocations, thus facilitating the implementation of

more complex scheduling policies. We illustrate SP by example. The following guard is

used to impose a FCFS (�rst-come, �rst-served) policy on an operation, Foo:

Foo: exec(Foo) = 0 and

there is no(f in waiting (Foo): f.arr time < this inv .arr time);

The variable f is used to iterate over the set of invocations waiting to execute operation

Foo, and this inv refers to the invocation for which the guard is being evaluated. Arr time

is an automatically maintained variable which denotes the time an invocation arrived at

the object. The above guard says that when an invocation is made upon operation Foo, it

will be blocked until the following two conditions are met:

1. exec(Foo) = 0 (i.e., there are no current executions of Foo), and

2. there is no invocation, f , currently waiting to execute Foo, which has a smaller

arr time attribute, i.e., no pending invocation has arrived at the object before this

invocation.

If a formal parameter of operation Foo was used in place of arr time in the above guard

then scheduling would be based on the value of that parameter in invocations.

We will �nish this section by brie
y distinguishing between declarative and procedural

synchronisation mechanisms.

Many guard-based synchronisation mechanisms are declarative in nature. By this we

mean that programmers can use the mechanism simply to specify the synchronisation policy

desired. They need not worry about implementation details because, ideally, the implemen-

tation will be derived automatically from the speci�cation. As a case in point, the FCFS

example discussed previously is declarative in nature|it speci�es the desired synchro-

nisation policy without considering low-level, implementation details. While declarative

mechanisms can often give elegant, concise solutions to some synchronisation problems,

they are generally limited in power because they cannot express algorithms.

In contrast to declarative mechanisms, some mechanisms are procedural. These combine

synchronisation primitives with sequential
ow control constructs and data structures,

allowing programmers to implement synchronisation policies through algorithms. In being

able to utilise algorithms, procedural mechanisms generally have more expressive power

than declarative ones. However, the synchronisation primitives provided are usually at a

low-level and this often results in verbose and complex implementations of synchronisation

policies.

3

2 Previous Attempts to Solve the Problem

In this section, we review some existing approaches to allowing instance variables to be

used safely in guards.

2.1 Reduction of Concurrency

Consider an instance variable, V, which is read by some guards. Let G be the set of guards

which read V, and O be the set of operations which update V. One way to guarantee that
the guards in the set G will always evaluate to a consistent value, even while V is being

updated, is to ensure that the condition \exec(O) = 0" is a conjunctive of each guard in

G.
Of course, since operations in the set O all update V, O's guards will normally contain

the conjunctive \exec(O) = 0" (to prevent multiple writers concurrently updating V). If
this is so and if G is a (not necessarily strict) subset of O then it follows that the guards

in set G will already contain the required conjunctive. In this case, the problem is solved

without any intervention by the programmer.

class Bu�er[elem, Size] f
int get index, num; elem data[Size];

Bu�er() f get index := 0; num := 0; g // initialisation
Put(: : :) f : : : \update num"; : : : g
Get(: : :) f : : : \update get index & num"; : : : g

synchronisation

Put: exec(Put, Get) = 0 and num < Size;

Get: exec(Put, Get) = 0 and num > 0;

g

Figure 1: The Bounded Bu�er

Consider the bounded bu�er code in Figure 1. For V = num , we note the following:

G = fPut , Getg
O = fPut , Getg

Since G = O (and thus G is a subset of O), the problem is solved naturally.

However, one cannot rely on the problem always being solved naturally, as the following

illustrates.

Dynamic Priority Print Queue

This problem is an example where G is not a subset of O, and extra conjunctives must

be added to guards to ensure their consistent evaluation. The problem description is as

follows:

At a college, a printer is accessed by undergraduate students from �rst to fourth year,

graduate students and members of sta�. The printer queue is priority based (each

4

group has its own priority) and there is FCFS ordering within a priority level. From

time to time, the system manager may change the group priorities.

type GroupId = (one, two, three, four, grad, sta�);

class Printer f
int priority[GroupId];

Printer() f \initialise priority[] to appropriate values"; g
UpdatePriority(GroupId gid, int NewPriority) f priority[gid] := NewPriority; g
Print(GroupId gid, string FileName) f : : : g

synchronisation

UpdatePriority: exec(UpdatePriority) = 0;

Print: exec(Print) = 0 and there is no(p in waiting(Print):

priority[p.gid] > priority[this inv .gid] or

priority[p.gid] = priority[this inv .gid] and p.arr time < this inv .arr time);

g

Figure 2: First attempt at the Dynamic Priority Print Queue problem

A �rst attempt at implementing this is given in Figure 2. The error in this code becomes

apparent if we consider the guard of a Print invocation evaluating while UpdatePriority is

executing: because the variable priority[] is being updated it is potentially in an inconsis-

tent state which could result in the guard being incorrectly evaluated.

For V = priority[], we note the following:

G = fPrintg
O = fUpdatePriorityg

As discussed earlier, to �x this we must make \exec(O) = 0" a conjunctive of G. The

resultant guard for G (i.e., Print) is then:

Print: exec(Print, UpdatePriority) = 0 and there is no(: : :)

2.1.1 Discussion

This approach has the advantage that it does not require any changes to existing languages

or synchronisation mechanisms. However, it has two disadvantages:

1. It solves the problem by reducing the potential for concurrency within an object.

2. Adding conjunctives to guards to ensure that they may safely access instance variables

is error prone and tedious, and programmers may forget to check the guards whenever

a modi�cation is made to the source-code of the class.

5

2.2 The Guide Proposal

For some time, Guide [DDR+90] allowed instance variables to appear in guards and ignored

the problems which this raised. However, a more recent paper [Riv92] proposes a way to

allow instance variables to be used safely in synchronisation guards. This is achieved in

the following manner:

1. A lock is used to ensure that the evaluation of synchronisation guards and the updat-

ing of synchronisation counters takes place atomically. Let us call this lock \locksync".

2. If a variable, V, is used in a guard then an assignment to V is replaced with the

following code:

tmp := right-hand-side of the assignment;

acquire locksync;

V := tmp;

re-evaluate guards which rely on V;
release locksync;

We shall use some examples to show that this technique is inadequate. (For consistency,

the examples will be presented in the syntax used throughout this paper rather than in

the syntax of Guide.)

Dynamic Priority Print Queue

Consider the �rst attempt at the dynamic priority printer shown previously in Figure 2.

When we originally discussed this in Section 2.1, we showed the error caused by the pos-

sibility of priority[] being updated while the guard for Print was being evaluated. Under

the semantics of the Guide proposal, this error disappears without the programmer having

to alter the guards.

However, consider what would happen if the UpdatePriority operation was rewritten

so that it modi�ed the priority of all the groups rather than just a single one, as shown

below:

UpdatePriority(int NewPriority[GroupId])

local GroupId index;

f
for index in one..sta� do

priority[index] := NewPriority[index];

end

g

If the code generated by the compiler acquires and releases locksync inside the body of the

for-loop then the bug reappears since the priority[] array, as a whole, will not be consistent

while guards are being evaluated. To ensure consistency of the array, the compiler would

have to generate code which would place the acquisition and release of locksync around the

entire for-loop.

The compiler writer might be able to take into account this interaction of for-loops

and the usage of locksync, but, unfortunately, the problem is more general than that. The

6

compiler would have to be able to generate code so that the acquisition and release of

locksync would surrounded any arbitrary sequence of statements which updated an equally

arbitrary set of variables, since the synchronisation code might rely on the set of variables

as a whole being consistent.

The dynamic priority print queue is not an isolated example for which the Guide pro-

posal proves insu�cient, as the next example shows.

Dining Philosophers

This well-known problem concerns a table with �ve seats and �ve chopsticks|one at

each seat position. Because two chopsticks are required for eating, philosophers use the

chopstick at their own seat and also the chopstick at the seat to their right. Neighbouring

philosophers cannot simultaneously share the chopstick which is common to them. In

type TablePositon is int subrange(0..4);

class DiningPhilTable f
boolean chopstick avail[TablePosition];

DiningPhilTable() // constructor

f \set all chopstick avail[] to true"; g
Eat(TablePosition pos)

f chopstick avail[pos] := false;

chopstick avail[(pos+1) mod 5] := false;

: : : // \real" Eat code here

chopstick avail[pos] := true;

chopstick avail[(pos+1) mod 5] := true;

g
synchronisation

Eat: chopstick avail[this inv .pos] and chopstick avail[(this inv .pos+1) mod 5];

g

Figure 3: First attempt at Guide solution to the Dining Philosophers problem

simulating the action at the table, one must ensure against deadlock as might happen if,

say, all �ve philosophers picked up their own chopsticks simultaneously, only to discover

that the chopstick to their right was already held by their neighbour.

Figure 3 shows a �rst attempt at solving this. The guard on Eat re
ects the prob-

lem description and is quite intuitive. However, this solution is
awed because, when an

invocation starts executing Eat , there is no guarantee that it will update the status of

its two chopsticks before another invocation arrives and evaluates its own guard. If this

latter invocation is for a neighbouring seat of the �rst invocation then the two invoca-

tions will attempt to simultaneously share chopsticks|which is forbidden by the problem

description.

To �x this
aw, we factorize any code which updates chopstick avail[] out of Eat and

into the new operations PickUp and PutDown. The resultant code is shown in Figure 4.

However, this solution works, not because it makes use of Guide's proposed semantics, but

7

type TablePositon is int subrange(0..4);

class DiningPhilTable f
boolean chopstick avail[TablePosition];

DiningPhilTable() // constructor

f \set all chopstick avail[] to true"; g
Eat(TablePosition pos)

f PickUp(pos, (pos + 1) mod 5);

: : : // real \eat" code here

PutDown(pos, (pos + 1) mod 5);

g
PickUp(TablePosition i, TablePosition j)

f chopstick avail[i] := false;

chopstick avail[j] := false;

g
PutDown(TablePosition i, TablePosition j)

f chopstick avail[i] := true;

chopstick avail[j] := true;

g
synchronisation

PickUp: exec(PickUp, PutDown) = 0 and chopstick avail[this inv .i]

and chopstick avail[this inv .j];

PutDown: exec(PickUp, PutDown) = 0;

// no guard needed for \Eat"

g

Figure 4: Guide solution to the Dining Philosophers problem

rather because it falls back to using the technique discussed in Section 2.1. You can see

this by noting that, for V = chopstick avail[], we have:

G = fPickUp, PutDowng
O = fPickUp, PutDowng

2.2.1 Discussion

From these examples we can see that Guide's new proposal o�ers only a partial solution to

the problem. If a single instance variable is used in the guards then Guide's proposal may

help. However, it fails if more than one instance variable (or if a compound variable, such as

an array or record) is used in the synchronisation code. In this case, the programmer must

revert to the technique discussed in Section 2.1, i.e., reduce the potential for concurrency

within objects.

The other languages mentioned in the introduction ignore the problem entirely.

8

3 A New Approach

In this section we take a fresh look at the problem, and propose a framework to solve it.

To keep the concepts of this framework separate from the idiosyncrasies of any particular

synchronisation mechanism to which it might be applied, we present the framework in this

section and defer, until Section 4, presentation of a speci�c mechanism which utilises it.

Our complete synchronisation framework consists of the following four principles:

� The variables needed to synchronise an object are segregated from the variables

needed to implement the object's sequential functionality. (This is discussed in Sec-

tion 3.1.)

� The programming of synchronisation policies is treated as a form of event-based

programming. (This is discussed in Section 3.2.)

� Synchronisation code has a mechanism by which it can cause a pending invocation

to start executing. (This is discussed in Section 3.3.)

� Synchronisation code can access information about invocations. (This is discussed in

Section 3.4.)

3.1 Synchronisation Variables

Three types of variable are indicated in Figure 5.

synchronisation code synchronisation variables

hybrid variables

sequential variablessequential code
 (operations) read, write

read, write

read, write

read

Figure 5: Graphical description of an object's code and variables

At the top of the diagram are sequential variables of an object, more commonly re-

ferred to as instance variables. These variables are used to implement only the sequential

functionality of the object.

At the bottom are synchronisation variables of the object: variables which are used

to implement the synchronisation policy in force on the object, but are not needed to

implement the sequential functionality. (Two well-known examples are semaphores and

synchronisation counters.)

In the middle are hybrid variables of the object: variables which are used in both the

sequential code and the synchronisation code. Examples of hybrid variables in this paper

so far have included: (i) num in the Bounded Bu�er (Figure 1); (ii) priority in the Dy-

namic Priority Print Queue (Figure 2); and (iii) chopstick avail in the Dining Philosophers

(Figures 3 and 4).

9

It is these hybrid variables (rather than the purely sequential or purely synchronisation

variables) which causes problems because, as we have seen in Section 2, it is di�cult to

ensure that the synchronisation code will always see them in a consistent state.

We claim that most hybrid variables are really synchronisation variables which happen

to be implemented as instance variables. (This claimwill be supported in Section 4.2.3.) All

the example synchronisation problems, supposedly requiring access to instance variables,

that we have been able to �nd in the literature have been mis-categorised in this manner.

In fact, it is di�cult to think of a counter-example.

Thus, we propose that languages provide support for two categorisations of variables:

sequential and synchronisation.

We defer, until Section 5.2, discussion on how to handle the hypothetical case of vari-

ables which are truly hybrid.

3.2 Synchronisation as Event-based Programming

Having argued for the existence of synchronisation variables, a question now arises of how

they should be maintained. We think it would be unsuitable to maintain synchronisation

variables in the bodies of operations for two reasons:

1. To aid modularity, synchronisation code should be kept separate from sequential code

[Blo79].

2. Synchronisation code placed inside an operation's body could be executed only when

the operation is executing. This is often inappropriate for synchronisation code. For

example, sometimes it is desirable to update a synchronisation variable when an

invocation arrives but before it has been allowed to start executing.

Instead, we propose an event-based approach in which programmers may specify actions

to be executed at events. It is these actions which are used to update synchronisation

variables. The events we consider are:

� The arrival of an invocation for an operation. For example, the event arrival(Read)

indicates that an invocation upon the Read operation has arrived.

� The start of execution of an invocation. For example, the event start(Read) indicates

that an invocation for the Read operation has started execution.

� The termination (hereafter abbreviated to term) of execution of an invocation. For

example, the event term(Read) indicates that an invocation of Read has terminated

execution.

We indicate that an action is to be executed at an event with the notation:

event ! action

For example:

arrival(Bar) ! foo := foo + 1;

10

This speci�es that foo, a synchronisation variable, is to be incremented whenever the event

arrival(Bar) occurs.

Note that the execution of actions take place in mutual exclusion with respect to other

actions. This guarantees that actions will always see synchronisation variables in a consis-

tent state.

3.3 Starting Invocations

All synchronisation mechanisms need to have a way to trigger the transition from arrival

to start of execution for an invocation. There are several common ways in which synchro-

nisation mechanisms may provide this ability:

� One way is for the synchronisation mechanism to provide a statement whose pur-

pose is to initiate execution of the invocation. Examples include the \spawn" and

\exec" statements in Mediators [GC86, pg. 470], and the \serve" operations in Ei�elk

[Car90a, pg. 185].

� A variation of this occurs in synchronisation mechanisms that employ locking-type

primitives. In such mechanisms, releasing a lock causes an invocation waiting on

that lock to continue execution. Examples include condition variables in Monitors

[Hoa74] and delay queues in Hybrid [Nie87].

� A third way is to employ guards, as has been illustrated by many of the examples so

far in this paper. The guard, associated with an invocation, evaluating to true will

trigger the start event for that invocation.

Our framework requires that some mechanism be provided to cause invocations to start

executing; however, the framework does not specify that a particular mechanism should

be used.

Note that if, say, guards, are provided as the means to cause invocations to start

execution then the evaluation of guards and the execution of actions must take place in

mutual exclusion with respect to other guards and actions. This guarantees that guards

and actions always see synchronisation variables in a consistent state.

3.4 Access to Information about Invocations

A synchronisation mechanism needs to be able to access information about invocations of

operations on an object. The level of access permitted varies greatly from one synchronisa-

tion mechanism to another, but without any access at all, the power of a synchronisation

mechanism would be limited to such an extent as to make it virtually useless. For example,

if a synchronisation mechanism could not access even the name of the invoked operation (a

very basic piece of information) then the synchronisation mechanism would be incapable

of placing di�erent synchronisation constraints on di�erent operations.

Aside from the name of the invoked operation, other potentially useful information

associated with invocations includes the arrival time of the invocation (used in, e.g., a

FCFS scheduler) and parameters of the invocation (e.g., a length parameter used in the

Shortest Job Next scheduler).

Our framework makes the following accessibility requirements upon invocations:

11

� All the information about an invocation, that a synchronisation mechanismhas access

to, should be grouped together in some kind of data structure.

� A guard/action should have access to information about the current invocation, i.e.,

the invocation for which it is being evaluated/executed.

� The run-time should automatically maintain information about invocations in a

list/collection so that synchronisation code can iterate over that list/collection in

order to compare (and, if need be, update) information about invocations. In partic-

ular, information about pending invocations must be accessible. If a synchronisation

mechanism so wishes, it may also provide access to information about invocations

that are currently executing or that have terminated execution.

It is outside the scope of the framework to specify any of the following: what repre-

sentation should be used to store information about an invocation; how information about

the current invocation is to be accessed; the representation used to store lists/collections

of information about invocations; or the language construct used to iterate over such col-

lections. These details will vary from one language to another. However, we illustrate the

principles with the following example in which we use a generalised form of the \for loop"

[LSAS77] to iterate over invocations:

count := 0;

for p in waiting (Print) do

if p.arr time < this inv .arr time then count ++; endif ;

end;

Assume that count has been declared as a synchronisation variable2 of the object and

that arr time is the time at which an invocation arrived. The for loop implicitly declares

a variable, p, to range over the set of invocations which are currently waiting to execute

operation Print . In executing the above code, count records how many of these invocations

have arrived before the current invocation (denoted by this inv).

Section 4.2 provides some examples to illustrate the utility of being able to access

invocations in this manner.

Aside from the accessibility requirements already discussed, our framework makes two

other requirements upon invocations:

� Parameters of an invocation must not be accessed by synchronisation code while they

are being updated by sequential code. (This is discussed in Section 3.4.1.)

� It should be possible for programmers to declare synchronisation variables local to

invocations. (This is discussed in Section 3.4.2.)

In making these two �nal requirements, we achieve the symmetry of sequential and

synchronisation variables shown in Table 1. Thus, we argue, our introduction of \syn-

chronisation variables" has not added new concepts to language design, but rather has

generalised the existing concept of \variables".

2Our framework does not specify what syntax should be used to declare synchronisation variables as

this will vary to suit the host language. Some example syntax for declaring synchronisation variables can

be found in Section 4.2.

12

Variable Type Sequential Synchronisation

variables of an object supported supported

parameters supported supported

local variables supported supported

Table 1: Symmetry of sequential and synchronisation variables

3.4.1 Parameters

Parameters are most often used to help implement the sequential functionality of an oper-

ation. We refer to these as sequential parameters.

Sometimes a parameter is used to implement a scheduling policy. A well-known example

of this is the Shortest Job Next scheduler [BH78] in which a parameter, len (indicating the

estimated length of the job), is used to schedule invocations. In this case len is said to be

a synchronisation parameter. Other examples of synchronisation parameters include gid

(the group identi�er) used in the Dynamic Priority Print Queue (Figure 2), and the table

position, pos, passed to Eat in the Dining Philosophers problem (Figures 3 and 4).

Although hybrid variables of an object rarely, if ever, occur, hybrid parameters are

more common. An example can be found in the Disk Head Scheduler [Hoa74]: the pa-

rameter indicating the part of the disk to which data is to be transferred is used in both

the sequential code (to physically move the disk head) and the synchronisation code (to

schedule invocations in order to minimise movement of the disk head).

A technique is required to ensure that hybrid parameters are not accessed by synchro-

nisation code while they are being updated by sequential code. One way to achieve this is

to arrange for the parameters of an invocation to be copied when that invocation arrives,

i.e., at the arrival event. This copy can be accessed by the synchronisation code, safe in the

knowledge that if the body of an operation updates a parameter then this update will not

a�ect the synchronisation code's copy of that parameter, and vice versa. A simple optimi-

sation is for the runtime to copy only those parameters which are used in synchronisation

code.

3.4.2 Local Variables

The concept of local variables is well-known in sequential programming languages. The

concept also makes sense when discussing synchronisation mechanisms. We are not sug-

gesting that variables local to the sequential body of an operation should be accessible by

synchronisation code: such an arrangement would lead to problems similar to those in-

volved in permitting synchronisation code to access instance variables. Rather, we propose

that there should be two categories of local variables: sequential local variables (what are

commonly referred to as \local variables") and synchronisation local variables.

A well-known example of a synchronisation local variable is a timestamp associated

with each invocation to record its arrival time; this can be used to implement a FCFS

scheduler.

Another example appears in a variation of the Shortest Job Next scheduler. Rather

13

than have the estimated job length passed in as a parameter, it might be possible to arrange

for the synchronisation code to calculate the value itself and record this information in a

synchronisation variable local to the relevant invocation.3

4 An Example Mechanism

We now illustrate the concept of synchronisation variables, introduced in Section 3, by

adding them to the Scheduling Predicates [MWBD91] synchronisation mechanism. We

call the resultant mechanism Esp (an Extension of Scheduling Predicates).

4.1 Notation

Figure 6 shows the layout of a class in Esp; the lines are numbered for ease of refer-

ence. Note that a class is split up into a sequential part and a synchronisation part with

the synchronisation keyword (line 5) separating the two. The symmetry of the class's

components is an attractive feature (which is enhanced by the comment on line 2). The

sequential code may not invoke any operations in the synchronisation code or access any

of its variables, and vice versa.

1: class Foo f
2: // sequential

3: variables

4: operations

5: synchronisation

6: variables

7: operations

8: events ! actions

9: guards

10: g

Figure 6: Layout of a class

As mentioned in Section 3.2, the code to update synchronisation variables is placed in

actions (line 8). If the code in an action becomes large or is replicated then the programmer

may wish to place some of it into synchronisation operations (line 7) which the actions can

invoke.

4.2 Examples

In this section, we illustrate the usage of synchronisation variables through examples. These

examples are organised into three groupings. The �rst group of examples illustrate how

3There are two advantages to having the synchronisation code calculate the length of submitted jobs

rather than have clients pass the length in as a parameter: (i) it moves the inconvenience of calculating

job length from clients to the service object, thus making the service more convenient to use; and (ii) it

prevents clients from thwarting the server object's scheduling policy by under-estimating the length of

their own jobs.

14

several synchronisation mechanisms are subsumed by our framework. The second group

illustrates how our framework allows complex scheduling policies to be implemented easily.

Finally, the last group is of examples commonly found in the literature that traditionally

have been implemented with the aid of instance variables; we show how these can be

implemented with synchronisation variables.

4.2.1 Subsumption

The examples in this section show how our framework subsumes several synchronisation

mechanisms.

Synchronisation Counters

The code in Figure 7 declares three synchronisation variables|a, b and c. These are all

initialised to zero when an object is created. (In the notation of this paper, the constructor

for a class is an operation with the same name as the class itself. Thus start(Foo) is an

event associated with the start of execution of the constructor for an object of type Foo.)

Actions to increment a, b and c are executed whenever the events arrival(Bar), start(Bar)

and term(Bar), respectively, occur. Two of these variables are then used in the guard on

Bar , which implements mutual exclusion.

class Foo f
Bar(: : :) f : : : g

synchronisation

int a, b, c;

start(Foo) ! f a := 0; b := 0; c := 0; g
arrival(Bar) ! a ++;

start(Bar) ! b ++;

term(Bar) ! c ++;

Bar: b � c = 0;

g

Figure 7: Implementing synchronisation counters

In e�ect, this example uses synchronisation variables to implement synchronisation

counters. (The variable a implements the counter arrival(Bar), and so on.) Thus we see

that synchronisation variables subsume the power of synchronisation counters. Although

subsumed, Esp provides synchronisation counters as useful syntactic sugar.

An interesting point is that Scheduling Predicates, upon which Esp is based, also

subsumes the power of synchronisation counters, but in a di�erent manner [MWBD91,

pg. 187].

Relative Arrival Time of Invocations

The previous example illustrates how synchronisation variables of an object can be declared

|the syntax is similar to that used to declare sequential variables of an object (i.e., instance

15

variables).

The next example (Figure 8) shows how to declare a synchronisation variable, arr time,

local to (invocations of) an operation. Each invocation for operations, A, B and C is given

its own variable instance of arr time. Whenever an invocation arrives (denoted by an

arrival event), the arr time variable of that invocation will be assigned the current value

of the clk variable and clk will be incremented. In this way, each invocation will have a

unique value for arr time. The expression this inv.arr time can then be used in guards to

schedule invocations based on their relative arrival time.

class Foo f
A(: : :) f : : : g
B(: : :) f : : : g
C(: : :) f : : : g

synchronisation

int clk;

int arr time local to A, B, C;

start(Foo) ! clk := 0;

arrival(A, B, C) ! this inv .arr time := clk ++;
...

g

Figure 8: Implementing the relative arrival time of invocations

Several synchronisation mechanisms (e.g., Scheduling Predicates, Ei�elk [Car90a] and

CEi�el [L�oh91]) provide programmers with access to the relative arrival time of invocations.

The above example illustrates that, as for synchronisation counters, this functionality is

simply a form of syntactic sugar for synchronisation variables.

As with synchronisation counters, Esp automatically maintains arr time for the con-

venience of programmers.

Scheduling Predicates

Consider the following guard which implements a FCFS queue:

Print: exec(Print) = 0 and

there is no(p in waiting(Print): p.arr time < this inv .arr time);

The code in Figure 9 implements the same functionality using a for loop to iterate over

invocations. The if statement's condition (in the body of the loop) was derived directly

from the condition used in the there is no predicate above. Thus we see that our framework

subsumes Scheduling Predicates. As with synchronisation counters and arr time, Esp

provides scheduling predicates as a form of syntactic sugar.

4.2.2 Scheduling Power

The following examples show how Esp can implement various complex scheduling policies.

16

class FCFSPrinter f
Print(: : :) f : : : g

synchronisation

Boolean NoInvocationBeforeMe(int myTime)

f for p in waiting(Print) do

if p.arr time < myTime then

return false;

endif ;

end;

return true;

g
Print: exec(Print) = 0 and NoInvocationBeforeMe(this inv .arr time);

g

Figure 9: First-come, �rst-served Printer

Alarm Clock

In the Alarm Clock problem [Hoa74], an operation, Sleep, must be implemented which will

delay for a speci�ed period of time. An usual assumption is that it is possible to arrange

for an operation, Tick , to be invoked periodically (say, once a second) to mark the passage

of time.

class AlarmClock f
Sleep(int period) f g
Tick() f g

synchronisation

int wakeup time local to Sleep;

arrival(Sleep) ! this inv .wakeup time := term(Tick) + this inv .period;

Sleep: term(Tick) >= this inv .wakeup time;

g

Figure 10: The Alarm Clock

Our solution is shown in Figure 10. In this, the counter term(Tick) is used to indicate

the current time. We associate a variable, wakeup time, with each Sleep invocation and

calculate its value at the arrival(Sleep) event. The resultant guard on Sleep is trivial and

intuitive.

Notice that the operations Sleep and Tick have empty bodies. This is because the Alarm

Clock is purely a synchronisation problem. The operations are, in e�ect, just hooks into

the synchronisation code. Being able to view the Alarm Clock as a purely synchronisation

problem is not possible in many other languages in which synchonisation code has to be

combined with the sequential code of operations in order to implement it. The Sina [TA88,

pg. 32{33] and Monitor [Hoa74, pg. 553{554] implementations are prime examples.

17

Shortest Job Next (Starvation-free Version)

In the Shortest Job Next scheduler [BH78], jobs are serviced in reverse order of their

estimated length. Thus it is possible for a long job to be skipped over inde�nitely by a

continuous stream of shorter jobs. One way to overcome this inherent unfairness is to

adjust the priority (in this case, the estimated length) of jobs which are skipped over so

that they are less likely to be skipped over in future.

class FairSJN f
Print(string �leName) f : : : g

synchronisation

int len local to Print;

arrival(Print) ! this inv .len := : : : // use a system call to determine �le length

start(Print) !
f for p in waiting(Print) do

if p.arr time < this inv .arr time then p.len ��; endif ;
end;

g
Print: exec(Print) = 0 and there is no(p in waiting(Print): p.len < this inv .len or

p.len = this inv .len and p.arr time < this inv .arr time);

g

Figure 11: Starvation-free, Shortest Job Next scheduler

Figure 11 shows our solution to this. The guard on Print implements the basic sched-

uler, and the action associated with the start(Print) event iterates through all of the waiting

invocations to decrement the len variable of any that have been skipped over.

If it is preferred that clients pass in their job's estimated length as a paramter rather

than have it calculated locally then this can be easily accomodated by removing the dec-

laration of len as a synchronisation variable and instead declaring it as a parameter to

Print .4

It is equally trivial to obtain the basic (unfair) SJN scheduler|just delete the action

assocaited with the start(Print) event.

Dining Philosophers (Starvation-free Version)

The Guide solution to the Dining Philosophers problem shown in Figure 4 does not guar-

antee against starvation of a philosopher by conspiracy on the part of her immediate

neighbours to keep her blocked. One way to prevent such starvation is to set an upper

limit on how many times a philosopher may be skipped over.

The code in Figure 12 illustrates this. This solution makes use of two predicates in the

guard of Eat .

4This requires, as suggested in Section 3.4.1, that two copies of parameters be maintained: one for the

sequential code and the other for the synchronisation code. Thus decrementing len would only a�ect the

synchronisation code's copy of this parameter.

18

type TablePositon is int subrange(0..4);

class FairDiningPhilTablef
Eat(TablePosition pos) f : : : g

synchronisation

int skipped local to Eat;

arrival(Eat) ! this inv .skipped := 0;

start(Eat) !
f for p in waiting(Eat) do

if ShareForks(p.pos, this inv .pos) and p.arr time < this inv .arr time

then p.skipped ++; endif ;

end;

g
boolean ShareForks(TablePosition i, TablePosition j)

// we \share forks" with somebody if they are sitting at

// our position, to our immediate left or immediate right

f return (i + 1) mod 5 = j or i = j or (j + 1) mod 5 = i; g

Eat: there is no(p in executing (Eat): ShareForks(p.pos, this inv .pos)) and

// the rest of this guard is to prevent starvation

there is no(p in waiting (Eat): ShareForks(p.pos, this inv .pos) and

p.arr time < this inv .arr time and p.skipped >= 3);

g

Figure 12: Starvation-free solution to the Dining Philosophers problem

The �rst predicate examines parameters of the currently executing invocations to de-

termine if it is possible for a philosopher to start eating.

The purpose of the second predicate is to prevent a waiting philosopher being skipped

over inde�nitely (no more than three times is the threshold value used). This predicate

relies on a variable, skipped , being maintained for each pending Eat invocation. When an

Eat invocation arrives, its skipped variable is initialised to zero; whenever a philosopher is

allowed to eat|designated by a start(Eat) event|an iterator determines which invocations

were skipped over, and increments their skipped values.

4.2.3 Instance Variables

In this paper we have claimed that if a language provides support for synchronisation

variables then the synchronisation code of an object will not require access to any variables

used by the sequential code. We now back up this claim by taking several synchronisation

problems from the literature that in the past have been implemented via instance variables,

and re-implementing them using synchronisation variables instead.

Dynamic Priority Print Queue

Earlier, in Section 2.1, we introduced the Dynamic Priority Printer and discussed the

problems associated with trying to maintain the group priorities as instance variables.

19

Figure 13 shows an Esp implementation of this scheduler. The main di�erence between

this and the previous attempt (Figure 2) is that the priority[] variable, and the code to

maintain it, has been moved from the sequential part of the object to the synchronisation

part. A minor side-e�ect is that the UpdatePriority operation now has an empty body

since (like the Sleep and Tick operations in the Alarm Clock) it is, in e�ect, just a hook

into the synchronisation code.

type GroupId = (one, two, three, four, grad, sta�);

class Printer f
UpdatePriority(GroupId gid, int NewPriority) f g
Print(GroupId gid, string FileName) f : : : g

synchronisation

int priority[GroupId];

start(Printer) ! f \initialise priority[]"; g
start(UpdatePriority) ! f priority[this inv .gid] := this inv .NewPriority; g
Print: exec(Print) = 0 and there is no(p in waiting(Print):

priority[p.gid] > priority[this inv .gid] or

priority[p.gid] = priority[this inv .gid] and p.arr time < this inv .arr time);

g

Figure 13: Solution to the Dynamic Priority Print Queue

This movement of variables, and the code to maintain them, into the synchronisation

part of an object does not result in a decrease in code size; indeed the amount of code is

the same as before. Rather, the bene�ts we gain are that: (i) the code is more modular,

since all variables/code to implement the scheduling policy of the object are separated from

those which implement its functionality (in this case, the ability to print a �le); and (ii) it

is easier to ensure the synchronisation code is correct with priority[] as a synchronisation

variable rather than a sequential variable.

The Bounded Bu�er

A bounded bu�er implemented with a �xed size array needs two variables for its mainte-

nance: put index speci�es the array position at which Put should place the next item, and

get index speci�es the array position at which Get should retrieve the next item.

A third variable, num, is used to check for under
ow and over
ow. This latter vari-

able is a synchronisation variable, while put index and get index are sequential (instance)

variables.

Some implementations of bounded bu�er in the literature drop the variable put index

since, it is reasoned, its value can be calculated by the formula:

put index = (get index + num) mod \size of array"

However, this results in num being used in both the sequential code as well as the syn-

chronisation code, thus making it a hybrid variable, as previously discussed in Section 2.1.

20

Having the sequential code maintain both put index and get index and leaving num as

a synchronisation variable retains modularity. It also brings the bene�t of increased po-

tential for concurrency: since Put manipulates only put index and Get manipulates only

get index , Put and Get can execute concurrently with each other.

class Bu�er[elem, Size] f
int get index, put index; elem data[Size];

Bu�er() f get index := 0; get index := 0; g
Put(: : :) f : : : \update put index"; : : : g
Get(: : :) f : : : \update get index"; : : : g

synchronisation

#de�ne num term(Put) - term(Get)

Put: exec(Put) = 0 and num < Size;

Get: exec(Get) = 0 and num > 0;

g

Figure 14: Esp solution to the Bounded Bu�er

The implementation of the bounded bu�er shown in Figure 14 does not explicitly declare

num. Rather, this implementation relies on the fact that num is incremented for every Put

and decremented for every Get . Thus, its value is given by the formula:

num = term(Put) � term(Get)

Dining Philosophers (Revisited)

Figure 12 showed an implementation of the Dining Philosophers that made use of pred-

icates. Now we we show an alternative solution|one that makes use of synchronisation

variables of the object rather than relying on precidates.

The code in Figure 15 shows this solution. An array of booleans, chopstick avail[] ,

indicates the availability of each chopstick at the table. Initially all chopsticks are available.

When a philosopher starts to eat (indicated by the start(Eat) event), chopstick avail[] is

updated to indicate that the appropriate chopsticks are now in use. Similarly, when a

philosopher �nishes eating, the chopsticks are once again marked as being available. With

the availability of the chopsticks being maintained at events, the guard on Eat is trivial and

re
ects the problem description. This can be compared with the Guide solution (Figure 4).

The code in this example shows actions invoking synchronisation operations. We could

have written the action code \inline" but we feel that the use of synchronisation operations

improves the clarity of the code.

Disk Head Scheduler

Several di�erent algorithms exist to schedule the transfer of data to/from a disk. For

example, to minimise head movement, a \nearest job next" policy might be used [And81,

pg. 418{419]. However, this could result in starvation of invocations that are far away from

the disk head. An alternative strategy is to serve invocations in one direction until there

21

type TablePositon is int subrange(0..4);

class DiningPhilTable f
Eat(TablePositon pos) f : : : g

synchronisation

boolean chopstick avail[TablePositon];

init() f \set all chopstick avail[] to true"; g
toggle chopsticks(TablePosition pos)

f chopstick avail[pos] := not(chopstick avail[pos]);

chopstick avail[(pos + 1) mod 5] := not(chopstick avail[(pos + 1) mod 5]);

g
start(DiningPhilTable) ! init();

start(Eat), term(Eat) ! toggle chopstick(this inv .pos);

Eat: chopstick avail[this inv .pos] and chopstick avail[(this inv .pos + 1) mod 5];

g

Figure 15: Solution to the Dining Philosophers problem

are no more and then reverse direction [Hoa74]. This is sometimes called the \elevator

algorithm" because it mimics the behaviour of a lift.

The code in Figure 16 implements the elevator algorithm. The Distance function in

the synchronisation part of the class calculates the maximum distance the disk head might

have to travel to get to an invocation. The body of this function is somewhat complex as

the calculation is dependent not only on the relative positions of the disk head and the

invocation, but also on the current direction of travel of the disk head. If a \nearest job

next" policy was desired then the body of Distance would be simpler; in fact, it would

contain just a single statement:

return abs(headPos - dest);

The synchronisation code updates the position of the disk head, headPos, and its direction

of travel, goingUp, whenever a call to Transfer is permitted to start execution. With this

infrastructure in place the guard on Transfer is trivial and intuitive.

The code in Figure 16 provides a single operation, Transfer , for which invocations are

scheduled and there is no way for a client of this class to bypass the scheduler. This is in

contrast with the Monitor implementation of the Disk Head Scheduler [Hoa74, pg. 555{556]

which relies on clients to obey the following protocol:

diskhead.Request

client code to transfer the data

diskhead.Release

(The Request and Release operations are provided by the monitor but Transfer is not.) It

would be possible for clients of such a monitor to disregard the protocol and transfer data

in an unsynchronised manner.

22

const MaxCylinder = 100;

type CylinderNum is int subrange(0..MaxCylinder);

class DiskHeadSchedulerf

Transfer(CylinderNum dest, DataBlock data)

f

\move the disk head to `dest' "

\transfer the `data' to the disk"

g

synchronisation

CylinderNum headPos; boolean goingUp;

int Distance(CylinderNum dest)

f

if dest = headPos then

return 0;

elsif goingUp and dest > headPos or not(goingUp) and dest < headPos then

return abs(headPos � dest);

elsif goingUp and dest < headPos then

return 2 � MaxCylinder � headPos � dest;

elsif not(goingUp) and dest > headPos then

return headPos + dest;

endif

g

MaintainDirection(CylinderNum dest)

f

if dest < headPos then

goingUp :=false;

elsif dest > headPos then

goingUp :=true;

endif ;

g

start(DiskHeadScheduler) ! f headPos := 0; goingUp := true; g

start(Transfer) !

f

MaintainDirection(this inv .dest);

headPos := this inv .dest;

g

Transfer: exec(Transfer) = 0 and there is no(t in waiting(Transfer):

Distance(t.dest) < Distance(this inv .dest));

g

Figure 16: First solution to the Disk Head Scheduler

23

A criticism of our implementation of the Disk Head Scheduler is that repeatedly invok-

ing Distance within the guard is ine�cient. We can combat this ine�ciency as follows.

In the elevator algorithm, the distance of a pending invocation from the disk head|

as calculated by the Distance function|is highest when the invocation �rst arrives and

decreases therafter. It decreases whenever any other invocation is serviced and it is possible

to calculate how much it decreases by. Thus, one could declare and maintain a variable,

distance, local to each Transfer invocation and use this variable in the guard in place of

invoking Distance. Figure 17 illustrates the changes in code needed to achieve this.

This code is still ine�cient, albeit not as ine�cient as the �rst solution we presented.

However, further improvementsmay still be possible with the aid of an optimising compiler.

In a previous paper [MWBD91], we mention some compile-time optimisations for SP; some

of these are also suitable for Esp. One of particular relevance to the current example is

optimisation by transformation [MWBD91, pg. 190]. Brie
y, if a compiler can recognise

that a certain pattern of guards speci�es a particular synchronisation policy then it could

generate code to implement that policy in a more e�cient manner. For example, if the

compiler recognises that a guard schedules invocations based on the value of a parameter,

or a synchronisation local variable, then it could generate code to maintain an ordered list

of invocations; whenever an invocation is to be allowed to start executing, the run-time

need only choose the invocation at the head of the list.

The guard for Transfer in Figure 17 is in this optimisable form: it schedules invocations

based on the distance variable of each invocation. Thus an optimising compiler could

generate code to maintain a list of Transfer invocations that is ordered by distance. The

only complication is that the action associated with the start(Transfer) event updates the

distance variable of pending invocations. In this particular example distance is decremented

by the same amount for each invocation and hence there is no change in the relative order

of invocations. However, in general, such modi�cations might necessitate a re-sort of the

list.

insert item remove item total cost

Original code (Figure 16) O(1) O(N2) O(N2)

Optimised code (Figure 17) O(N) O(1) O(N)

Table 2: Cost of maintaining the invocation list for the Disk Head Scheduler

Table 2 compares the run-time cost of our two versions of the Disk Head Scheduler. In

our �rst solution (Figure 16), the run-time can simply append newly arrived invocations to

the end of the invocation list, taking O(1) time, but then it potentially has to make O(N2)

comparisons when evaluating the guard of Transfer in order to decide which invocation

should execute next. If a compiler optimises our second solution then newly arrived invo-

cations will require O(N) comparisons to place them into the invocation list and choosing

the next invocation to be executed is simply a matter of removing the head element of the

list, taking O(1) time. This is as fast as the Monitor's solution [Hoa74, pg. 555{556] which

also requires O(N) time for insertion into a condition queue and O(1) time for removal.

Thus we see that the high-level nature of Esp need not result in poor performance.

24

const MaxCylinder = 100;

type CylinderNum is int subrange(0..MaxCylinder);

class DiskHeadSchedulerf

Transfer(CylinderNum dest, DataBlock data) : : :

synchronisation

int distance local to Transfer;

: : : // unchanged code deleted to save space

MaintainInvocationDistance(int deltaHeadMovement)

f

for t in waiting(Transfer) do

t.distance := t.distance � deltaHeadMovement;

end;

g

arrival(Transfer) ! f this inv .distance := Distance(this inv .dest); g

start(Transfer) !

f

MaintainInvocationDistance(Distance(this inv .dest));

MaintainDirection(this inv .dest);

headPos := this inv .dest;

g

Transfer: exec(Transfer) = 0 and there is no(t in waiting(Transfer):

t.distance < this inv .distance);

g

Figure 17: Optimised solution to the Disk Head Scheduler

5 Discussion

Later in this paper we compare our work to that of others. But �rst, we summarise some

of the bene�ts that our framework o�ers and tie up some loose ends.

5.1 Bene�ts of our Framework

The framework that we presented in this paper o�ers several important bene�ts.

5.1.1 No Con
ict with Instance Variables

Searching the literature for synchronisation problems that apparently require access to

instance variables in order to be solved brings to light problems such as the Bounded

Bu�er, the Dining Philosophers and the Disk Head Scheduler. We have implemented all of

these in Section 4.2.3 and in each case the so called \instance" variables in question have

turned out to be synchronisation variables. Thus we have backed up our claim, made in

Section 3, that, in practice, there is no overlap between an object's instance variables and

its synchronisation variables.

25

5.1.2 Expressive Power

By generalising the concept of synchronisation variables to include parameters and variables

local to operations, we gain considerable expressive power. We have illustrated this through

the examples in Section 4.2.2 by implementing complex scheduling policies, e.g., the Disk

Head Scheduler and starvation-free versions of the Dining Philosophers and the Shortest

Job Next scheduler.

A better measure of power is that of Bloom's list of six types of information [Blo79] to

which, she argues, synchronisation mechanisms should have access in order to have good

expressive power. Esp provides access to all of these six types of information, with the

exception that Esp accesses synchronisation variables rather than instance variables. Very

few other synchronisation mechanisms have access to all six types of information.

5.1.3 Subsumption of Other Synchronisation Constructs

The power of our framework, as illustrated by Esp, is based on just four basic concepts:

synchronisation variables; event-based programming; a construct that can cause a pending

invocation to start executing; and information about invocations.

In fact, not one of these four concepts is new.

� Variables are ubiquitous in sequential programming languages, and automatically

maintained variables (e.g., synchronisation counters and the arrival time of invoca-

tions) are not uncommon in synchronisation mechanisms either.

� Event-based programming is utilised in sequential programming for tasks such as

writing simulations or window-based applications. Events can also be found, albeit

implicitly, in a great many synchronisation mechanisms, though few mechansisms

allow programmers to associate actions with them.

� Although di�erent synchronisation mechanisms may di�er in what construct they

employ to cause invocations to start executing, every synchronisation mechanism

employs a construct, of some kind, to ful�ll this purpose.

The concept of guards|the construct employed in Esp|is well-know in sequential

programming, e.g., Dijkstra's guarded commands [Dij75] and Ei�el's pre- and post-

conditions [Mey92]. Guards also form the basis of several synchronisation mecha-

nisms.

� Information about an invocation|notably its parameters and local variables|is ac-

cessible within the body of the invoked operation. Often such information is collec-

tively referred to as an activation record. Our framework, in e�ect, makes similar

information available to synchronisation code.

In embracing just these four concepts, Esp obtains a considerable amount of expressive

power and actually subsumes several other synchronisation constructs such as synchroni-

sation counters, SP and automatically maintained arrival times of invocations as shown in

Section 4.2.1. It has been shown elsewhere [MWBD91, pg. 187{188] that Path Expressions

and the \by" clause of SR can be implemented in terms of synchronisation counters and

SP, respectively; since Esp subsumes the latter two, it follows that it also subsumes Path

Expressions and SR's \by" clause.

26

5.1.4 Modularity

In splitting the variables of an object into sequential (\instance") variables and synchro-

nisation variables, we have removed the dependence of the synchronisation code on the

instance variables of an object. This on its own is not enough to ensure modularity since

if a synchronisation mechanism has limited expressive power then it might need to mix

synchronisation code with sequential code in order to implement some synchronisation

policies. (An example of this is \synchronisation procedures" used in Path Expressions

[Blo79, pg. 28].) However, independence of synchronisation code from instance variables

combined with a high degree of expressive power makes it possible for Esp to fully segregate

synchronisation code from sequential code without placing any apparent limits on the class

of synchronisation problems which can be implemented.

We feel that keeping sequential code and synchronisation code segregated will improve

the readability of classes. In general, readability is very subjective and so it is di�cult to

prove this claim; but, whatever about the readability of synchronisation code, it is surely

easier to understand the sequential code of an operation if it does not have synchronisation

code embedded in it.

We also feel that modularity will help with the inheritance and reuse of synchronisation

code. We discuss this brie
y in Section 6.5 but, unfortunately, space limitations prevent

us from discussing this issue at length; the reader is directed to another paper [MWBD92]

for a discussion of preliminary results in this area.

5.1.5 Declarative and Procedural Programming Styles

Espmaintains some synchronisation variables automatically (synchronisation counters and

the arr time of invocations, and it also makes copies of parameters accessed by the syn-

chronisation code). If programmers use only guards and these automatically maintained

synchronisation variables then they are using Esp in a purely declarative manner. On the

other hand, if programmers make use of events and actions to maintain extra synchroni-

sation variables, Esp appears more procedural in nature. As more and more use is made

of events and actions, the more procedural (and, hence, less declarative) Esp appears to

be. In essence, Esp o�ers programmers a spectrum of programming styles, from purely

declarative to mainly5 procedural, within a single framework.

The only other synchronisation mechanism we know of that o�ers both programming

styles is Ei�elk. In this, a declarative synchronisation mechanism has been implemented

on top of the native, procedural mechanism [Car90b]. However, a limitation of Ei�elk is

that programmers can use either the procedural mechanism or the declarative mechanism,

but not a mixture of both.

5.2 Hybrid Variables

In Section 3.1 we said that the variables of an object might be sequential, synchronisation

or hybrid, but that, in practice, hybrid variables rarely, if ever, occur. In this section we

discuss how hybrid variables, if they should occur, can be handled in our framework.

5It can be argued that Esp can not o�er a programming style that is fully procedural in nature since

a synchronised class will always contain at least one guard.

27

For a variable to be \hybrid" means that it is needed for the sequential functionality

of an object and also its synchronisation. In such cases, we propose that programmers

maintain two variables in step: one a (sequential) instance variable and the other a syn-

chronisation variable. In e�ect, we are replacing the hybrid variable with a hybrid concept

that is implemented by two separate variables.

To see how the two variables can be maintained in step, consider an object which

contains two operations: A and B. Consider also that the object has a hybrid variable, x,

which is to be initialised to zero, incremented every time A is invoked and decremented

every time B is invoked.

class Foof
int x;

Foo() f : : : x := 0; : : : g
A(: : :) f : : : x ++; : : : g
A(: : :) f : : : x ��; : : : g
...

synchronisation

int x;

start(Foo) ! x := 0;

term(A) ! x ++;

term(B) ! x ��;
...

g

Figure 18: Maintainence of sequential and synchronisation variables in step

Code to maintain the two variables in step is shown in Figure 18. The sequential vari-

able, x, is maintained inside the bodies of the operations while the synchronisation variable

is maintained by similar code at events associated with the corresponding operations.

An important point to note is that the synchronisation variable, x, is maintained inde-

pendently of its sequential counterpart, and vise versa. Thus the synchronisation code does

not need to access, either directly or indirectly, the (sequential) instance variable, and so

we retain the modularity of having sequential code and synchronisation code segregated.

Earlier, in Section 4.2.3, we argued that in the bounded bu�er the variable num is a

synchronisation variable only and is not required by the sequential code. If the reader does

not agree with this point of view and insists that num is needed by both the sequential

and synchronisation code then it is possible to accommodate this by use of the coding style

shown in Figure 18: variable x corresponds to num, and operations A and B to Put and

Get , respectively.

5.2.1 A Limitation of our Model

We have claimed that the two variables implementing a hybrid concept can be maintained

independently of each other. It is, however, possible to think of a hypothetical case in

which this does not hold true.

28

The code in Figure 18 maintains x using simple and deterministic logic. But consider

what would happen if the code to maintain x was quite complex or even non-deterministic.

For example, consider the case where the value assigned to x in operation A is dependent

on, say, a high-speed clock. Even if the synchronisation code accessed the same clock,

the time returned by the clock might di�er between successive calls and so there is no

guarantee that the synchronisation variable, x, will have the same value as its sequential

counterpart.

class Foo f
int x;

A(: : :)

f : : :

x := current time();

DummyOp(x);

: : :

g
DummyOp(int new x) f g

synchronisation

int x;

start(DummyOp)! x := this inv .new x;
...

g

Figure 19: Maintaining sequential and synchronisation variables in step under complex or

non-deterministic logic

A work-around in this case is for the sequential code to invoke an operation, say,

DummyOp, passing x as a parameter, whenever x is updated. The synchronisation code

can associate an action with the start(DummyOp) event to read the new value of x. This

technique is illustrated in Figure 19.

In this case the maintenance of the synchronisation variable, x, is dependent upon its

sequential counterpart. However, we have yet to see a need to employ such techniques and

so for the moment it is of hyphotetical curiosity rather than of practical concern.

6 An Implementation of Esp on top of an Object-

oriented Language

We have recently completed a prototype implementation of Esp on top of the Dee language

[Gro90]. In this section we brie
y discuss how we have mapped the various concepts of our

framework onto constructs of the Dee language.

6.1 A Brief Overview of Dee

Dee is a object-oriented language developed by its author partly to experiment with the

object-oriented paradigm and partly for use as a teaching tool. All data types in Dee are

29

classes, including types such as integers, and booleans and strings. Dee supports generics|

arrays, lists, sets and so on are provided as generic classes.

The Dee compiler produces pseudo-code for a hypothetical, stack-based machine, and

this pcode is then interpteted.

Dee was originally written to run on MSDOS. However, we have ported Dee to UNIX

and modi�ed the compiler to accept Esp. We have called the combination of Dee and Esp

\Desp." Like Dee, Desp produces pcode.

6.2 Actions and Guards

In merging Esp with Dee, we wanted to make as few changes to the host language as

possible so we sought ways in which the core concepts of Esp could be implemented in

terms of existing language constructs.

We recognised that actions can be considered to be operations that have the following

three unusual characteristics:

(i) They are invoked automatically (at events).

(ii) In Esp, actions do not have names. Unfortunately, this prevents programmers from

being able to explicitly invoke actions. However, this is a purely syntactic issue

and alternative syntax could provide actions with names, thus allowing them to be

invoked like other operations.

(iii) Actions implicitly take a parameter|denoted inEsp as this inv|that permits access

to information about the current invocation.

Similarly, guards can be considered to be operations that return a boolean result. Like

actions, guards have the following properties: (i) they are invoked automatically by the

run-time; (ii) they do not have names; and (iii) they implicitly take this inv as a parameter.

Thus, the issues involved in treating guards as language-level operations are similar to those

in treating actions as language-level operations.

Being able to treat actions and guards as normal operations has important rami�cations.

Added complexity in the host language is avoided because several constructs|operations,

actions and guards|are merged into one. This in turn makes it possible to inherit ac-

tions and guards just like normal operations which helps to overcome the con
ict between

inheritance and synchronisation.

However, in order to achieve this goal of treating actions and guards as normal oper-

ations, it must be possible to treat invocation as a language-level type since actions and

guards need to explicitly take an invocation as a parameter. We defer discussion on lan-

guage support for invocations until Section 6.3. For the moment, accept that invocations

are represented at the language level by a type called Invocation.

The code in Figure 20 provides an example of the declaration of an action and a

guard. In this example, the class has three operations (or \methods" in Dee terminology):

a sequential operation called Bar and two synchronisation operations called a Bar and

g Bar. The map directive informs the compiler that the operation a Bar is to be invoked

whenever the event arrival(Bar) occurs, and similarly operation g Bar is to be invoked as

the guard of Bar.

30

class Foo

public method Bar(: : :)

begin : : : end

synchronisation

: : :

private method a Bar(this inv: Invocation)

begin : : : end

private method g Bar(this inv: Invocation): Bool

begin : : : end

: : :

map arrival(Bar) ! a Bar

guard(Bar) ! g Bar

Figure 20: Declaration of actions and guards in Desp

The run-time will create and initialise an Invocation object at the arrival(Bar) event;

this object will then be passed as a parameter to a Bar and g Bar.

ADesp programming convention illustrated in this example is that if a synchronisation

operation is to be executed at an arrival event then it takes as its name that of the

corresponding sequential operation with a pre�x of \a ". Similarly pre�xes of \s " and

\t " are used to designate synchronisation operations executed at start and term events,

respectively, and the pre�x \g " is used to designate guards.

6.3 Invocations as Language-level Types

When, in the previous section, we discussed how Desp implements actions and guards

in terms of operations, we asked the reader to accept that an \invocation" language-level

type existed. In this section we discuss the issues involved in representing invocations as

language-level types.

The main obstacle to having an \invocation" data type is that there is no single type

of invocation. Rather, within a class, there are as many di�erent types of invocation as

there are operations de�ned for that class. Since the operations de�ned within a class may

all take di�erent numbers, and types, of parameters, an invocation for one operation is

unlikely to be interchangable with an invocation for a di�erent operation. This raises the

issue of how particular invocation types can be de�ned.

We discuss several possibilities:

� Represent \invocation" as a Pascal-style variant record. (This is discussed in Sec-

tion 6.3.1.)

� Represent invocation as a generic class that is instantiated upon operations. (This

is discussed in Section 6.3.2.)

31

� Have an invocation class in which parameters are stored in a untyped list. (This is

discussed in Section 6.3.3.)

� Use an inheritance hierarchy to model di�erent invocation types. (This is discussed

in Section 6.3.4.)

6.3.1 The Variant-record Approach

In a non object-oriented language, the di�erent \invocation" types of a resource could all

be combined into a single variant-record type. However, this approach is not without its

problems.

One problem is that, in many languages, variant records are not compile-time type-safe.

(However, if a variant record contains a \tag" �eld then it is possible to generate code for

run-time checking to ensure that accessed �elds are compatible with a variant record's

current \tag".)

Another problem with this approach is that an invocation would be \variant" not only

upon the operation invoked but also upon the class to which the operation belongs. For

example, several di�erent classes may have, say, a Get operation but the invocation of Get

for a bounded bu�er may not be interchangeable with an invocation of Get for an array or

a hash table. Thus, an \invocation" variant-record would require two \tag" �elds instead

of the usual one. A possible approach to reduce to one the number of tag �elds would

be to restrict access to an \invocation" type to within a class; in e�ect, each class would

have its own private \invocation" type that could not be accessed from outside that class.

However, this would then means that \invocation" would not be a �rst-class type and as

such there would almost certainly be some restrictions on its usage. For example, it might

not be possible to pass an invocation as a parameter to an operation of another object.

Another drawback of this approach is that while it might be suited to, say, Pascal or

C, it would not suit an object-oriented language since variant records themselves are not

object-oriented.6

Having considered these drawbacks of the variant record approach, we decided against

adding variant records to the Desp language as a means of supporting invocation types.

6.3.2 The Generic Class Approach

The Dee language provides support for generic classes. For example, in the following

variable declaration, the generic class List is instantiated upon the class Person.

var employees: List[Person]

One might hope that the guard and actions of operation Foo could take a parameter of

type \Invocation[Foo]". However, to do this would require the ability of a generic class to

be instantiated upon operations, while the Dee language permits instantiation only upon

classes.

6Our argument for that variant records are not object-oriented is as follows. If one considers classes to be

the object-oriented replacement of record types, then class hierarchies are the object-oriented replacement

of variant records.

32

One approach to overcome this mismatch between the generic class facilities that Dee

provides and those needed for this proposal would be to modify the semantics of the

language to allow a generic class to be instantiated upon either operations or classes.

However, this approach would possibly result in a substantial increase in the complexity

of the language and the compiler.

Another approach would be to promote operations to the status of classes in their own

right. If this were done then the existing generic class facilities would be su�cient to permit

an \invocation" class to be instantiated upon an operation. While this approach would be

feasible for languages that already confer class status upon operations, we were unwilling

to undertake the task of adding such capabilities to the Dee language, preferring instead to

�nd an alternative way that would not change the language in such a fundamental manner.

6.3.3 The Untyped List Approach

Invocations could be represented by a class such as that shown in Figure 21. This approach

deals with the issue of di�erent operations taking di�erent numbers/types of parameters

by storing parameters in a list of Any (in Desp all classes conform to the base class Any

and hence it is an untyped list).

class Invocation

inherits Any

public var arr time: Int f arrival time of invocation g
public var OpName: String f name of invoked operation g
: : : f any other useful information g
public var Parameters: List[Any]

Figure 21: Invocation class that stores parameters as a untyped list

However, such an approach would be inconvenient for programmers since access to

parameters would not be by name, but rather by position in the list. Such access would,

of course, be error-prone. It also precludes type-checking of parameter access at compile

time. Instead, programmers would have to rely on run-time type-checking.

For these reasons we decided against using this approach in Desp.

6.3.4 The Inheritance Approach

The �nal approach we consider|and the approach we have adopted in Desp|is to use a

hierarchy of classes to represent di�erent invocation types.

A base class, Invocation, is shown in Figure 22. This class includes some instance

variables that programmers may �nd useful for synchronisation.7 These instance variables

7Previous examples in this paper have already illustrated the use of arr time. The other instance

variables of the Invocation class|OpName and ClientId|are rarely of use when implementing synchro-

nisation policies per se. However, the information they contain can be printed in diagnostic messages at

events; this can be useful for debugging and also for pedagogical purposes to illustrate the event-based

nature of Esp.

33

will be initialised by the run-time when the run-time creates an Invocation object (at an

arrival event).

class Invocation

inherits Any

public var arr time: Int f arrival time of invocation g
public var OpName: String f name of invoked operation g
public var ClientId: Int f ID of invoking process g

Figure 22: Base Invocation class in Desp

The base class, Invocation, does not include any parameters because, as we said earlier,

the number and type of parameters can vary from one operation to another. Instead, pro-

grammers can subclass from Invocation and declare, within the subclass, instance variables

that correspond to parameters of an operation. Similarly, if programmers wish to have syn-

chronisation local variables for an operation then these can also be declared as instance

variables within a subclass of Invocation. We illustrate this subclassing of Invocation with

an example.

Alarm Clock (Revisited)

Consider the Esp implementation of the Alarm Clock problem previously shown in Fig-

ure 10. The synchronisation code accesses the period parameter of operation Sleep. The

synchronisation code also declares a variable, wakeup time, local to invocations on Sleep.

In translating this Esp code to Desp, we create a subclass of Invocation as shown in Fig-

ure 23. This subclass contains period and wakeup time as instance variables. The subclass

also contains an operation to permit wakeup time to be initialised.

class SleepInvocation

inherits Invocation

public var period: Int f copy of a parameter g
public var wakeup time: Int f synchronisation local variable g

public method set wakeup time(Val: Int)

begin

wakeup time := Val

end

Figure 23: The SleepInvocation class

With the SleepInvocation class written, we can now write the code for the Alarm-

Clock class. This class, shown in Figure 24, is a direct translation from the Esp version

(Figure 10). Note that the guard and arrival action of Sleep take a parameter of type

34

SleepInvocation. The compiler will note that the period parameter of Sleep has a namesake

in an instance variable of SleepInvocation and will generate code to copy this parameter

at run-time.

class AlarmBlock

inherits Any

public method Sleep(period: Int) begin end

public method Tick begin end

synchronisation

private method a Sleep(t: SleepInvocation)

begin

t.set wakeup time(t.period + term(Tick)) end

private method g Sleep(t: SleepInvocation): Bool

begin

result := term(Tick) > = t.wakeup time

end

map arrival(Sleep) ! a Sleep

guard(Sleep) ! g Sleep

Figure 24: Desp implementation of an Alarm Clock

Discussion

Unlike the variant record approach (Section 6.3.1) and the technique of accessing parame-

ters by their position in an untyped list (Section 6.3.3), using inheritance to model di�erent

invocation types provides type-safe access to parameters. This approach also has the ad-

vantage of not requiring extensive modi�cations to the host language, Dee, unlike the

generic class approach (Section 6.3.2).

However, the inheritance approach has its own disadvantage. For synchronisation code

to be able to access a parameter of an operation requires that a namesake of that parameter

be declared as an instance variable in a subclass of Invocation. In e�ect, the parameter is

declared twice: once in the signature of the operation and again as an instance variable

in an Invocation subclass. Such duplicate declarations are undesirable because of the

possibility that, through accidental error, the two declarations might not be identical. In

particular, if the name of the instance variable in the Invocation subclass is misspelt then

the compiler will assume that it is intended to be a synchronisation local variable rather

than a copy of the parameter. In such cases a program might compile but give a run-time

error due to access of the uninitialised instance variable of the Invocation subclass.

Luckily, programmers have some protection against this danger. For the compiler to

fail to detect a misspelling in the declaration of the instance variable of an Invocation

subclass but still successfully complete compilation would require that all accesses to this

35

instance variable be similarly misspelt. Such consistent misspelling is somewhat unlikely

and so the chances are that the compiler would report an error.

The problem could be corrected by introducing a language construct which would inform

the compiler that a particular instance variable of an Invocation subclass is to be a copy

of a parameter of an operation. However, at the time of writing, we have not introduced

such a construct to Desp.

The reader may be concerned that concurrent programs will contain an overwhelming

number of Invocation subclasses. While we do not yet have enough experience of writing

Desp programs to know for sure, we feel that this concern is misplaced for several reasons.

Firstly, it is likely that the majority of classes in a concurrent program will be sequential;

only a few classes will contain synchronisation code.

Secondly, of the few classes in a program that are synchronised, most are likely to im-

plement synchronisation policies that do not require synchronisation local variables (other

than arr time which is maintained automatically) or access to parameters of invocations.

For these synchronised classes, the base Invocation class will su�ce.

This leaves only a tiny minority of classes within a program that need to utilise sub-

classes of Invocation to implement their synchronisation policies. Even among these classes,

there may be potential for reusing subclasses of Invocation.

For instance, the constructor operation of a bounded bu�er might take a size parameter

that determines the capacity of the bu�er. The synchronisation code of the bu�er is likely

to need to access this size parameter and so the programmer will write a SizeInvocation

class (as shown in Figure 25) for this purpose. Once SizeInvocation has been written it

can be reused by other synchronised classes whose constructors also take a size parameter.

(Such classes might include hash and symbol tables, disk head schedulers and a dining

table whose capacity is not, as tradition has it, �xed at �ve philisophers.)

class SizeInvocation

inherits Invocation

public var size: Int f copy of a parameter g

Figure 25: The SizeInvocation class

6.4 New Language Constructs

The waiting and executing constructs of Esp were added to the language as builtin func-

tions which return \Collection[(subtype of) Invocation]". \Collection" is a generic type,

in Dee's standard library, which can be iterated over. As the existing Dee loop construct

was somewhat awkward to use, some new iterator loops were added as syntactic sugar,

including the for loop statement and the there is no predicate as illustrated in the Esp

examples of Section 4.2. The syntax of these Desp loop constructs is similar to their Esp

equivalents.

36

6.5 Inheritance of Synchronisation in Desp

Aside from being invoked automatically by the run-time, actions and guards in Desp are

the same as \normal" operations. This means that actions and guards can be inherited

in exactly the same manner as sequential operations. As the examples in Section 4.2

have shown, synchronisation policies in our framework tend to be implemented in terms of

multiple guards and actions. Thus in Desp, synchronisation code will usually consist of

several operations. Expressing synchronisation code in this fragmented form means that

if a subclass modi�es the synchronisation code inherited from its parent then it is likely

to be able to reuse at least part of the parent's synchronisation code. This is in contrast

to synchronisation mechanisms that express constraints as a single monolythic unit, e.g.,

Ei�elk [Car90a]. In such mechanisms, any change to the synchronisation code in a subclass

will require a complete rewrite of the synchonisation code.

Due to space limitations, we cannot discuss inheritance issues here any further. We

leave an indepth discussion of this topic for a future paper.

7 Related Work

As we said earlier, our framework is composed of four concepts: (i) segregation of syn-

chronisation variables from sequential variables; (ii) event-based programming; (iii) a way

to cause invocations to start execution; and (iv) access to information about invocations.

In this section we explore how well these concepts are supported in other synchronisation

mechanisms.

7.1 Synchronisation Variables

As discussed in Sections 1 and 2, of this paper, many synchronisation mechanisms do

not provide programmers with the ability to declare synchronisation variables, instead

permitting them to access instance variables. We have shown that this access is usually

either unsafe or at the expense of a reduction of the potential for concurreny within objects.

Aside from Esp, at least two other mechanisms|Mediators [GC86] and Synchronising

Actions (SA) [Neu91]|propose a complete segregation of synchronisation code and vari-

ables from sequential code and variables. However, in papers on these mechanisms, the

authors take it as read that modularity is desirable and do not mention that without it

there would be problems with synchronisation code accessing instance variables. So al-

though these mechanisms do have synchronisation variables, this is a result of modularity

proposed for reasons di�erent to our own. (Mediators is concerned with modular, con-

current programming in general while SA proposes segregation as an aid to overcome the

con
ict beteen synchronisation and inheritance.)

The SA support for synchronisation variables is only partial: while it allows synchroni-

sation variables of an object, it does not allow synchronisation local variables or parameters.

37

7.2 Event-based Programming

Some in
uences of event-based programming can be found in many synchronisation mech-

anisms. For example, in the set-based synchronisation in ACT++ [KL89] and Rosette

[TS89] state transitions (from one \enabled-set" to another) can occur when processing

operation invocations|this is a form of event-based programming. Also, as demonstrated

by the code in Figure 7, synchronisation counters are simply counts of how often particular

events have occurred. Even the concept of guards is tied to events since they are evaluated

at events.

Our framework embraces events quite explicitly, allowing progarammers to associate

actions with each of the three types of events|arrival, start and term. The examples in

Section 4.2 illustrate the utility of this. Most other synchronisation mechanisms do not

allow programmers to associate actions with these events and this limits their expressive

power.

The few synchronisation mechanisms which do permit programmers to associate actions

with events include Plooc [Tho92], Synchronising Actions (SA) [And81] and Mediators

[GC86]; however, the �rst two of these mechanisms do not allow programmers to associate

actions with all of the events and thus their expressive power is still limited.

7.3 Starting Invocations

As we said in Section 3.3, there are several ways for synchronisation mechanisms to cause

invocations to start executing, guards being just one such way.

Not all synchronisation mechanisms that use guards o�er safe re-evaluation semantics

for guards, as we discuss in Section 7.3.1. Then, in Section 7.3.2 we discuss a bene�t gained

by keeping guards|or whatever construct a synchronisation mechanism employs to cause

invocations to start executing|syntactically separate from the code of actions.

7.3.1 Guard Re-evaluation Semantics

Consider an invocation that arrives at an object and has its guard evaluated. If the guard

evaluates to false then the invocation will be blocked until its guard becomes true. This

raises the question of how often guards for blocked invocations should be re-evaluated. For

intuitive guard semantics it is necessary to re-evaluate a guard whenever something occurs

that might cause that guard to evaluate to true.

Since, in Esp, guards are expressed in terms of synchronisation variables, it follows

that a guard must potentially be re-evaluated whenever a synchronisation variable has

been updated; and since synchronisation variables can be updated only at events, it follows

that re-evaluating guards at arrival , start and term events is su�cient to provide intuitive

guard re-evaluation semantics.

A potential criticism of this scheme, however, is that frequent re-evaluation of guards

might be ine�cient, especially if guard evaluation is expensive. This is especially true in,

say, the Guide system where each guard evaluation involves a context switch. Guide ini-

tially tackled this ine�ciency by rede�ning the semantics of guard re-evaluation [DDR+90]:

rather than re-evaluate guards at all events, they were re-evaluated only at term events.

However, this was a dangerous optimisation which could lead to process starvation [McH89,

38

pg. 77{78] and deadlock [DDR+90, pg. 7]. Feedback from users of the Guide compiler has

convinced the implementors to revert back to the safer semantics of re-evaluating guards

at every event. Other systems which o�er unsafe guard re-evaluation semantics include

CEi�el [L�oh91, pg. 16] and Dragoon[Atk90, pg. 123-124]

There is actually no need to trade-o� safe guard re-evaluation semantics for run-time

e�ciency since compile-time optimisation can minimise how often guards need to be re-

evaluated [MWBD91, pg. 188{189].

7.3.2 A Bene�t of Syntactic Separation

Consider the following three actions:

arrival(Foo) ! bar := bar + 1

start(Foo) ! bar := bar + 1

term(Foo) ! bar := bar + 1

The only thing that distinguishes any one of these actions from the other two is the event

(arrival , start or term) at which the action is executed. Thus, we see that Esp denotes

actions in a consistent manner. This consistency in the denotation of actions is due to one

thing: Esp's mechanism for causing an invocation to start executing, i.e., its guard, is kept

syntactically separate from actions.

Some synchronisation mechanisms do not syntactically separate actions from the con-

struct they use to cause invocations to start executing. The result is that such synchroni-

sation mechanisms do not have a consistent notation for denoting actions.

For example, in Mediators an \exec" or \spawn" statement is used to cause an invo-

cation to start execution. (The reason two statements are provided is that \exec" services

the invocation synchronously while \spawn" forks o� a process to service the invocation

asynchronously.) The \exec" or \spawn" statement is syntactically placed inside (the Me-

diators' equivalent of) an arrival action. The result of this syntactic merging of arrival

actions with the mechanism to cause invocations to start execution is that actions at di�er-

ent events are denoted di�erently. Arrival actions are explicitly denoted by a keyword, but

start actions are denonted only by the fact that the code preceeds an \exec" or \spawn"

statement. Furthermore, a term action is denoted by its own keyword if the invocation

was serviced asynchronously (by the \spawn" statement); otherwise it is denoted only by

the fact that its code is placed immediately after the \exec" statement.

We feel that such inconsistency in notation reduces the clarity of Mediators code.

7.4 Accessibility of Invocations

While it is becoming more common for synchronisation mechanisms to be able to access

a lot of information about invocations|e.g., the name of the operation being invoked,

the arrival time of the invocation, parameters etc.|very few synchronisation mechanisms

acknowledge the concept of an invocation data-type that binds such information together

in a single structure.

Of those mechanisms that do recognise the concept of invocations, not all regard them

as �rst class objects. Indeed our own synchronisation framework (presented in Section 3)

39

requires that invocations be somehow accessible, but no requirement is made that they

be recognised as language-level data types. The omission of such a requirement from

the framework was deliberate: we wanted to present our synchronisation framework in

a language-independent manner. Our presentation of Esp also neglected to indicate a

representation for invocations (a brief look at the examples in Section 4.2 will reveal that

this inv was never explicitly declared). It was not until we discussed the implemention of

Esp on top of Dee (in Section 6) that we discussed how invocations might be treated as a

language-level data type.

In Section 6.3 we outlined four possible ways in which invocations might be treated as

language-level types.

Aside from Desp, we are not aware of any language that uses inheritance to model

di�erent invocation types.

Similarly, we do not know of any language that employs the use of a generic invocation

class.

The untyped-list approach is more popular, being used in at least two synchronisation

mechanisms built on top of Ei�el [Car90a, KB93]. As we said in Section 6.3.3, the main

drawback of this approach is that accessing parameters by their position in an untyped list

is error-prone and prevents the possibility of compile-time type-checking.

The variant record approach (Section 6.3.1) is also somewhat popular, being used in

both Mediators and CEi�el.

InMediators, the \job descriptor" (the Mediators term for what we call an \invocation")

is stated to be:

\: : : a variant record containing �elds for a key variable [a unique handle for

each invocation], the name of the service [i.e., operation] requested and the pa-

rameters for that service. The service �eld serves as a tag for variant parameter

�elds" [GC86, pg. 472].

(Annotations and emphasis added by authors.) In all the examples in the Mediators

paper, variables for accessing \job descriptors" are implicitly declared within constructs

of the synchronisation mechanism. This lack of an example of a explicit declaration of

a \job descriptor" variable suggests that it is not a �rst-class data type, but rather that

\job descriptor" is a pseudo-type type limited to appearing only within speci�c Mediator

constructs. The authors of the Mediators paper do not discuss possible adverse e�ects that

this idiosyncrasy may have on the integration of Mediators with other language concepts,

but it appears to have one benign side-e�ect: limiting job descriptors to appear only within

speci�c constructs makes it possible for the compiler to check the type-safety of access to

these variant records.

CEi�el has a \prede�ned identi�er," Request, [L�oh91, pg. 17] which is stated to be

\akin to a variant record type". Request is not a �rst-class data type since:

Request denotes the type of the requests associated with [a particular] class.

Data of a Request type cannot be passed between objects [L�oh91, pg. 17].

(Emphasis added by authors.)

40

8 Conclusions

We started this paper by illustrating how permitting instance variables to be accessed

by synchronisation mechanisms introduces a problem; one which, surprisingly, has gone

unnoticed by many researchers over the years.

Having examined some previous attempts to address the issue and found them inade-

quate, we addressed the problem ourselves by de�ning a framework to guide the design of

synhronisation mechanisms.

Our framework has several bene�ts.

Firstly, our framework solves the problem introduced at the start of the paper. In

doing so it illustrates that, contrary to popular belief, access to instance variables by

synchronisation mechanisms is not required in order to implement synchronisation policies

which apparently rely on the state of the object|such state can be maintained by the

synchronisation code itself.

Secondly, synchronisation mechanisms designed within the guidelines of the framework

can possess considerable expressive power. We illustrated this by showing how an example

mechanism, Esp, could implement many complex scheduling policies and, in fact, sub-

sume the expressive power of numerous synchronisation constructs (synchronisation coun-

ters, automatically maintained arrival times of invocations, scheduling predicates such as

there is no, the \by" clause of SR and Path Expressions).

Thirdly, most of the concepts of our framework can be implemented in terms of existing

language constructs, thus minimising the amount of complexity that needs to be added to

a language in order to support concurrency.

Also the framework's strict segregation of synchronisation code from sequential code

ensures modularity. While it is often worthwhile to strive towards program modularity, we

feel that the modularity we have obtained in Desp will be of particular help in tackling

the con
ict between synchronisation and inheritance. However, we leave discussion of this

issue for a future paper.

Acknowledgements

We would like to thank Ann Barry, Alan Judge and Antony Courtney for comments on a

previous version of this paper. This research has been partially funded by the Comandos

ESPRIT project.

References

[And81] Gregory R. Andrews. Synchronising Resources. ACM Transactions on Pro-

gramming Languages and Systems, 3(4):405{430, October 1981.

[Atk90] Colin Atkinson. An Object-Oriented Language for Software Reuse and Distri-

bution. PhD thesis, Department of Computing, Imperial College of Science,

Technology and Medicine, University of London, London SW7 2BZ, England,

February 1990.

41

[BH78] Per Brinch Hansen. Distributed Processes: A Concurrent Programming Con-

cept. Communications of the ACM, 21(11):934{941, November 1978.

[Blo79] Toby Bloom. Evaluating Synchronisation Mechanisms. In Seventh Interna-

tional ACM Symposium on Operating System Principles, pages 24{32, 1979.

[Car90a] Denis Caromel. Concurrency: An Object-Oriented Approach. In Jean B�ezivin,

Bertrand Meyer, and Jean-Marc Nerson, editors, TOOLS 2 (Technology of

Object-Oriented Languages and Systems), pages 183{197. Angkor, 1990.

[Car90b] Denis Caromel. Programming Abstractions for Concurrent Programming. In

Technology of Object-Oriented Languages and Systems, PACIFIC (TOOLS

PACIFIC '90), November 1990. Also internal report 90-R-107, Centre de

Recherche en Informatique de Nancy, Vandoeuvre-L�es-Nancy, 1990.

[DDR+90] D. Decouchant, P. Le Dot, M. Riveill, C. Roisin, and X. Rousset de Pina.

A Synchronisation Mechanism for an Object Oriented Distributed System.

In Proceedings of the 11th International Conference on Distributed Computer

Systems, Arlington, Texas, February 1990.

[Dij75] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal

Derivation of Programs. Communications of the ACM, 18(8):453{457, Au-

gust 1975.

[GC86] J. E. Grass and R. H. Campbell. Mediators: A Synchronisation Mechanism. In

Proceedings of the Conference on Distributed Computer Systems, pages 468{

477. IEEE, September 1986.

[Gro90] Peter Grogono. The Book of Dee. Technical Report OOP-90-3, Department

of Computer Science, Concordia University, 1455 deMaisonneuve Blvd. West,

Montr�eal, Qu�ebec, Canada H3G 1M8, 1990.

[Hoa74] C.A.R. Hoare. Monitors: An Operating System Structuring Concept. Com-

munications of the ACM, 17(10):549{557, October 1974.

[KB93] Murat Karaorman and John Bruno. Introducing Concurrency to a Sequential

Language. Communications of the ACM, 36(9):103{116, September 1993.

[KL89] Dennis G. Kafura and Keung Hae Lee. Inheritance in Actor Based Concurrent

Object-Orientated Languages. In Stephen Cook, editor, ECOOP 89, pages

131{145. Cambridge University Press, July 1989.

[L�oh91] Klaus-Peter L�ohr. Concurrency Annotations and Reusability. Report B-91-13,

Frachbereich Mathematik, Freie Universit�at, Berlin, November 1991. email:

lohr@inf.fu-berlin.de.

[L�oh92] Klaus-Peter L�ohr. Concurrency Annotations. In OOPSLA '92, pages 327{340,

1992.

42

[LSAS77] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Scha�ert. Ab-

straction Mechanisms in CLU. Communications of the ACM, 20(8):564{576,

August 1977.

[McH89] Ciaran McHale. Pasm: A Language for Teaching Concurrency. B.A. project

report, Department of Computer Science, Trinity College, Dublin 2, Ireland,

April 1989.

[Mey92] Bertrand Meyer. Ei�el: The Language. Prentice Hall, 1992. ISBN 0-13-

247925-7.

[MWBD91] Ciaran McHale, Bridget Walsh, Se�an Baker, and Alexis Donnelly. Scheduling

Predicates. In M. Tokoro, O. Nierstrasz, and P. Wegner, editors, Proceedings

of the ECOOP '91 Workshop on Object-Based Concurrent Computing, pages

177{193, July 1991. Published as Volume 612 of Lecture Notes in Computer

Science. Springer-Verlag. Also available as technical report TCD-CS-91-24,

Department of Computer Science, Trinity College, Dublin 2, Ireland.

[MWBD92] Ciaran McHale, Bridget Walsh, Se�an Baker, and Alexis Donnelly. Evaluat-

ing Synchronisation Mechanisms: The Inheritance Matrix. Technical Report

TCD-CS-92-18, Department of Computer Science, Trinity College, Dublin 2,

Ireland., July 1992. Presented at the ECOOP '92 Workshop on Object-based

Concurrency and Reuse.

[Neu91] Christian Neusius. Synchronising Actions. In Pierre America, editor, ECOOP

'91, pages 118{132, Geneva, Switzerland, July 1991. Springer-Verlag. Avail-

able as Volume 512 of Lecture Notes in Computer Science.

[Nie87] O. M. Nierstrasz. Active Objects in Hybrid. In Norman Meyrowitz, editor,

OOPSLA '87 Proceedings. ACM, 1987. Special issue of ACM SIGPLAN No-

tices, 22(12):243{253.

[Riv92] Michel Riveill. An Overview of the Guide Language. Presented at the OOP-

SLA '92 workshop on Objects in Large Distributed Applications, 1992. email:

riveill@imag.fr.

[RV77] Pierre Robert and Jean-Pierre Verjus. Towards Autonomous Descriptions of

Synchronisation Modules. In Bruce Gilchrist, editor, Information Process-

ing 77: Proceedings of the IFIP (International Federation of Information Pro-

cessing) Congress 77, pages 981{986. North-Holland Publishing Company, 8{

12 August 1977.

[TA88] Anand Tripathi and Mehmet Aksit. Communication, Scheduling, and Re-

source Management in SINA. JOOP (Journal of Object Oriented Program-

ming), pages 24{37, November 1988.

[Tho92] Laurent Thomas. Extensibility and Reuse of Object-oriented Synchronisation

Components. In PARLE '92 (Parallel Architectures & Languages Europe),

43

pages 261{275. Springer Verlag, 1992. Published as volume 605 in the Lecture

Notes in Computer Science series.

[TS89] Chris Tomlinson and Vineet Singh. Inheritance and Synchronisation with

Enabled-Sets. In OOPSLA '89 Proceedings, pages 103{112, October 1989.

44

