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1 Introduction

This paper discusses the functionality that should

be o�ered by an object-oriented (OO) distributed

system in order to support the programming of dis-

tributed, and parallel, applications in a hardware

environment consisting of a collection of worksta-

tions connected by a local area network. The discus-

sion is based on our experience of programming sev-

eral substantial applications on the Amadeus plat-

form, [Cahill et al 1993].

Although the description of the applications given

here is in terms of their implementation on Amadeus

we hold that the lessons learned, in terms of the func-

tionality that an OO distributed system should pro-

vide, are of general applicability.

The layout of the paper is a follows, section x2 de-

scribes the pertinent features of the Amadeus model,

section x3 describes how the application programs

were structured to run on Amadeus. The key part

of the paper is section x4, in it we discuss the main

features we think an OO distributed system should

provide. The paper concludes with a look at some

related work in the area.

2 The Programmer's View of the

Amadeus Platform

Amadeus is a distributed OO programming envi-

ronment developed at Trinity College Dublin and

is the reference implementation of the Comandos1

platform. An overview of Comandos is given in a

companion article in this issue and an in depth dis-

cussion of all aspects of the project can be found

in [Cahill, Balter et al 1993] as well as in the other

articles in this issue. This section focuses on the

those features of the Comandos Virtual Machine In-

terface and Computational Model that Amadeus im-

plements which are relevant to the current discus-

sion.

1Comandos was partially supported by the Commission of

the EuropeanCommunities as ESPRIT projects 834 and 2071.

Comandos aims to provide support for distributed

and persistent objects in a heterogeneous environ-

ment. Objects are generic and opaque and so can be

bound to di�erent language-speci�c object models.

Objects are passive - in that they do not change

their own state - and are manipulated by active pro-

cessing entities known as activities. An activity is

amulti-node lightweight thread of execution which

appears to move between nodes as it invokes vari-

ous objects. When an activity visits a node, for the

�rst time, it is said to di�use to that node. Per-

sistent objects are stored in the storage system (SS)

and are brought/mapped into (virtual object) mem-

ory (VOM) when they are used. Communication and

synchronization between activities is achieved by in-

voking on shared objects.

One of the goals of Amadeus is to support multi-

ple languages. This is done through the provision

of language-speci�c runtimes which interface to a

generic runtime layer, [Cahill et al 1993]. Two lan-

guages are currently supported C** a slightly ex-

tended version of C++, and Ei�el**, a slightly ex-

tended version of Ei�el. The applications described

in this paper were coded in C**.

The most relevant features of the Comandos com-

putational model are elaborated on in the following

paragraphs.

Jobs and Activities Class method invocations

can be \forked" as heavyweight processes (jobs)

or lightweight threads (activities).

Global Objects Member functions marked with

the C** keyword global can be accessed re-

motely. Such operations can be invoked trans-

parently from any node in the system, i.e.

Amadeus provides access transparency.

Persistence Object persistence, the ability of an

object to outlive the program that created it,

obviates the need for much of the traditional

I/O code necessary to preserve information be-

tween executions of the program. C** objects

are marked as persistent using the permclass

keyword. (Note that an interesting feature of
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Amadeus is that persistence and global access

are orthogonal to each other.)

Clusters One of the problems faced in the imple-

mentation of any OO system is to make the ac-

cessing of objects e�cient. This is particularly

problematic in a distributed system where tar-

get objects can be in local or remote memory, or

on disk. Amadeus uses the concept of a clus-

ter to group objects together. Objects within a

cluster share a lot of the overhead state informa-

tion that must be maintained to access objects

(thus making small objects feasible) and are the

unit of transfer between storage and memory.

Furthermore, a cluster is only mapped at one

node at any one time. If two activities invoke

on objects within the same cluster then one, or

both, of them will have to di�use to the node at

which the cluster is mapped. Currently clusters

are not replicated nor is migration used once a

cluster has been mapped. A single application

(or activity) may of course use more than one

cluster during execution.

Load Balancing In Amadeus load balancing is

provided by performing dynamic assignment of

activities to nodes as they are created. The nor-

mal bene�ts of load balancing in a distributed

system follow on from this.

2.1 Support for Parallelism

Clustering and load balancing are central to the sup-

port for parallelism that Amadeus provides. Exten-

sive use of both is made in the applications described

below, so they are now described in a little more de-

tail.

2.1.1 Explicit Clustering

In loosely coupled systems it is not possible to pro-

vide \performance transparency", i.e., while access-

ing a remote object may appear the same as access-

ing a local one there is a performance penalty to be

paid. This issue is crucial to the way in which paral-

lel programs are structured. This has also been rec-

ognized as an issue in shared memory systems with

non-uniform access memory, e.g., [Fleisch 1988]. A

commonlyused solution to the problem is to force the

programmer to explicitly partition the data within

the application code.

In Amadeus the solution adopted is to utilize the con-

cept of a cluster, which was introduced to diminish

the overhead of mapping objects to and from storage.

The idea is that objects within a cluster should ex-

hibit a strong locality of reference. This allows di�er-

ent clusters within a parallel application to be placed

on di�erent nodes. A good assignment of objects to

clusters will yield a good computation to communi-

cation ratio allowing for reasonable speed-up to be

obtained.

The following cluster control primitives are

provided to allow applications to explicitly control

which clusters objects reside in. (Default action is

taken by the system if they are not used.) Examples

of their use are given in the next section.

newcluster This directs the system to start a new

cluster and make it the current default clus-

ter. All subsequent newly created objects are

assigned to the current cluster.

setcluster This directs the system to change the

default cluster. The cluster id returned on

starting a new cluster is used to indicate which

cluster to change to.

unmapcluster Clusters are automatically un-

mapped when the application that was using

them terminates. This primitive is provided to

allow an application to explicitly unmap a clus-

ter before termination.

It is important to emphasise that the application is

only responsible for expressing which objects go to-

gether, it is up to the system to decide where to

place clusters. The system should ensure that with

the possible exception of performance, there is no dif-

ference between an application running with all its
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activities and clusters on a single node or on multiple

nodes.

2.1.2 Load Balancing

The traditional advantage of load balancing is to re-

distribute (monolithic) jobs so as to improve resource

utilisation etc. If however applications are structured

as a number of co-operating activities then load bal-

ancing o�ers additional bene�ts in that the various

activities may be assigned to di�erent nodes allowing

a single application to execute in parallel.

The mechanism is fair in that during periods of heavy

load the application will be con�ned to one node and

not impact on other users.

Clustering plays an important part in the e�ective

load balancing of multi-activity pro-

grams, [Tangney and O'Toole 1991]. Load balancing

assigns a (preferred) node to each activity when it

is created. When the activity faults objects (clusters)

into memory they are placed at the preferred node.

However when an activity invokes on objects that

are already mapped, these objects are not moved,

but instead the activity di�uses to the appropriate

node.

If all the objects used by the application are in the

same cluster then it will be mapped into memory at a

single node and that is where all the computationwill

take place. Therefore the onus is on the programmer

to partition the objects into clusters in such a way

that activities spend most of their time executing

within a single cluster with only occasional forays

abroad to other clusters for synchronisation.

Examples of this will be seen in the applications that

follow.

3 Applications

This section outlines how four di�erent applications

were structured to run on Amadeus. The programs

include examples of both functional and data parallel

algorithms as well as complex hybrid structures. The

demands they make on the underlying system are

also discussed.

3.1 Lehmer-Lucas

Numbers of the form (2p)�1 are known asMersenne

numbers and the Lehmer-Lucas test is used to de-

termine whether numbers of this form are prime or

not, [Knuth 1981]. The test is computationally in-

tensive taking O(p3) time to discover if (2p) � 1 is

prime. The amount of communication involved in

the solution is quite small when compared to the

amount of computation required for non-trivial val-

ues of p.

The problem is a good example of the \give me work"

scenario, which frequently crops up in parallel pro-

gramming. It can be parallelised along master/slave

lines with each slave being given a single value of p

to test for. The execution time of slaves di�ers dra-

matically so the master loops waiting for workers to

complete handing out more work as the slaves re-

quest it, i.e. slaves petition the master with \give me

work" requests.

3.1.1 Amadeus Implementation

Figure 1 shows the master/slave con�guration that

was used in the Amadeus implementation of the

Lehmer program. The master object was declared to

be global so that workers could invoke on it from any-

where in the system. The master took responsibility

for creating the workers which were automatically

distributed around the system using load balancing.
Figure 1

It is necessary to ensure that the objects used by

each worker, and by the master, are assigned to sep-

arate clusters so that load balancing can be e�ec-

tive in distributing the computation around the sys-

tem. The master object uses the newcluster() call

prior to initialising each slave's objects. The clusters

are then unmapped using unmapcluster() so that

as each slave is created the load balancer is free to
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choose the node at which to place it. The following

fragment of C** shows this in practice.

for (int i = 0; i < no slaves; i++) f
cluster id = amadeus.newcluster(SIZE);
amadeus.setcluster(cluster id);
slaves[i] = new lehmer (i, this) ;
amadeus.unmapcluster();

g
==.....

== loop checking for activities to terminate

== and starting new ones to process each number

==.....

while ( i � N ) f
for ( k2 = 0; k2 < no slaves; k2++) f
if (ended(k2)) f == has the activity terminated?

cout � "Slave " � k2 � " is donenn" ;
ii = next prime(i);
if (ii > N)
break ;

cout � "Creating slave with "�ii�"nn";
set start(k2); == mark slave as active

== launch new activity and remember id

slave fts[k2] = new activity(slaves[k2], ii));
i++ ;

g
g

The structure of this program is very common in par-

allel applications, not just in its master/slave layout

but in the initialisation phase, done at the master's

node, followed by a computation phase done by many

workers, spread around the system.

3.2 Ray Tracing

A more substantial but similarly structured prob-

lem is that of ray tracing. Ray tracing is essentially

an exercise in data parallelism with the program

again being structured along classic master/slave

lines. Output data (an image) is synthesised, by

many workers, from two sets of input data - a model

of the scene and a camera model.

The image can be broken up into a number of sub-

sections (rectangles) each of which can be processed

in parallel by a slave worker without any reference

to its neighbours. Once the rectangle is complete it

can be sent back to the master to be stored as a per-

sistent object - or as was done in our case displayed

directly on a screen.

A slave is created for each rectangular sub-image.

Each slave needs its own copy of the input models

and the number of slaves can be equal to, greater

than or less than the number of processors. Con-

ceptually, the master gives each slave an empty sub-

image object and the slave manages the computation

of that rectangle. The slaves return their completed

sub-images for collation and/or display.

Thus far the application is identical in structure to

the Lehmer program previously described. How-

ever the problem of ensuring good performance is

more di�cult to solve in this case than it was in the

Lehmer example. There are two reasons for this and

they crop up in many distributed applications.

Computation versus Communication

The speed-up obtained by the application will

be limited by the ratio of the time spent ac-

tually computing the problem to that spent in

communicating between the various activities.

This ratio is dependent on the nature of the al-

gorithm and the underlying communication cost

of the system.

In the ray tracer this manifests itself as a lower

limit on the size of a sub-image that is worth

farming out to a slave - too small an image im-

plies too frequent communication and too high

a communication to computation ratio.

Work Redistribution As the total computation

time of a parallel application is limited by the

completion time of the last task it is necessary

to distribute work as evenly as possible. In some

cases this can be done by a straightforward par-

titioning of the data but in ray tracing, as in

many applications, equal sized units of data,

i.e. sub-rectangles, can take substantially dif-

ferent amounts of time to process. Accord-

ingly it is necessary to perform dynamic work

re-distribution within the application.

When a slave completes its work it reports this

to the master. The master directs the most over-

worked (i.e. slowest) slave2 to split its remain-

ing work and hand half over to the newly freed

2Determining the slowest slave can be done by slaves pe-

riodically reporting to the master or by the master explicitly

polling the slaves when the information is needed.
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slave for completion. Thus the programmust be

able to exploit both system load balancing and

dynamic load re-distribution within the applica-

tion.

Figure 2 shows how the splitting might proceed in a

typical execution.
Figure 2

3.2.1 Amadeus Implementation

Figure 3 shows the organisation of the ray tracer on

Amadeus. As in the Lehmer example the master is

a global object which workers invoke on to return

their results and current status. As slaves need to

communicate with each other to o�-load work the

slave object must also be made global.

As previously stated each worker must have access to

the input data. As Amadeus does not currently sup-

port automatic replication, and the cost of remotely

accessing a centralised copy was too high, this neces-

sitated creating multiple copies of the input objects.

From the performance point of view this application

it is not too serious as the amount of data in question

is small and is not modi�ed during execution, but

obviously the question of supporting replication has

to be addressed.
Figure 3

3.3 ATC

The Air-Tra�c Controller, or ATC, program is a sim-

ulation of 
ying activity over Europe. The system

comprises of three programs. The �rst builds a com-

plex database in the persistent store. This database

contains objects which embody the information

about the airports and their inter-connections. The

second program uses these objects to provide a sim-

ulation of air-tra�c control. The third program is a

real-time graphical display of the system.

The display part of the system is of no relevance to

this paper, and will not be discussed further. The

other two parts are built around the same library of

class de�nitions. The two main classes are airspace

and 
ightplan.

The database is built from a textual representation

of the topology of the component parts. The result-

ing structure is a graph of interconnected objects in

the ss mirroring the physical connections between

airports.

In the simulation program airspace objects control

all 
ights in the geographical region they repre-

sent. Each 
ight is represented by a 
ightplan ob-

ject and airspace objects hand over 
ights to adjacent

airspaces as they leave their area of control. In a pro-

duction system 
ightplans would probably be owned

by airplane objects, but in this simple prototype an

airplane class is not necessary.

In simulation/testing usage there is a central source

for both new 
ights and synchronisation. In real-

world usage there would be no central synchronisa-

tion and new 
ights would be generated locally. The

classes in the model need not be changed, however.

3.3.1 Amadeus Implementation

In Amadeus the autonomy of each airspace is main-

tained through Amadeus's support for parallelism,

i.e., each airspace object has (at least one) activity

running it. The airspace class is a base class for two

derived classes: airport and air corridor , one moti-

vation for this being to facilitate a smaller granular-

ity of parallelism, by increasing the number of active

objects in the model, see �gure 4.
Figure 4

This application makes heavy use of persistence and

transparent distribution. This allows the simulation

to be stopped and re-started (possibly on di�erent

machines) transparently to the objects in the simu-

lation.

In Amadeus the simulation is run in parallel for one

time unit as follows:

� the simulation controller object invokes the

ControlAirspace member function on each
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airport and air corridor object as an activ-

ity ,

� each airport and air corridor proceed in par-

allel, communicating with one another to hand-

o� flightplans,

� eventually the activities complete the computa-

tion for the clock period, and the process re-

peats.

3.4 A Problem fromComputational Lin-

guistics

The next problem comes from the area of computa-

tional linguistics. It involves �nding a domain (D),

and values in that domain (x; y; z), such that the

following formula3 holds for the the binary relation

F :

F (x; y) , F (y; x) � F (z; x)

, :F (z; y), F (z; z), :F (x; y)

The solution to the problem involves beginning with

a domain containing the single element 1 and check-

ing to see if the formula can be satis�ed from that

domain. If it cannot then the domain size is increased

by 1 and the formula tested again. The algorithm for

testing the formula is a \little complex" and involves

using the disjunctive normal form of the original for-

mula plus a substantial amount of backtracking. Full

details of the algorithm can be found in [Burke 1993].

What is of interest to this discussion is that i) the

algorithm is horrendously expensive both in terms of

the computation time | O(n2(n� 1)) | and mem-

ory space required for large domains and ii) there

are a number of di�erent ways in which it can be

partitioned to execute in parallel.

3.4.1 Amadeus Implementation

The current Amadeus implementation is based on

a Prolog coded version of the algorithm, i.e., it im-

3Where the domain is the set of natural numbers and � can

be read as \conjunction" and, as \gives the same result as."

plements backtracking. This allowed easier develop-

ment of the classes needed for the problem as well as

veri�cation of the algorithm against the original. Be-

cause of the object-oriented approach, the classes de-

veloped provide a basis for investigating other strate-

gies. Figure 5 shows the structure of the Amadeus

implementation. Again explicit clustering and load

balancing were used. One chosen allocation of ob-

jects to nodes is shown, but this partitioning is by no

means the only possible approach having been cho-

sen to allow veri�cation of the language port rather

than maximising parallelism.
Figure 5

This (slightly parallel) C**~version is considerably

more memory e�cient than the Prolog one. It can

explore domains up to size 16 as opposed to 6 for the

Prolog program. To go beyond this however, requires

even greater exploitation of parallelism, e.g. putting

a full pipeline on each node and implementing the

kind of pruning required to work on domains large

enough to contain solutions (analytically determined

to be n > 25, which entails a search-tree of depth

15; 000).

3.5 Performance

As the hallmark of any useful parallel system is im-

proved performance, this section brie
y reports on

the results achieved for one of the applications de-

scribed above, namely the Ray Tracer.

Figure 6 shows the speed-up curve obtained for the

Ray Tracer running on a number of Sun worksta-

tions, SPARC Classics with 96MB of memory, while

�gure 7 shows the speed-up curve obtained for a

number of Digital DS2100 machines with 12MB of

memory. A number of points are worth noting about

these curves. Firstly both curves show that signif-

icant speed-up can be obtained from the system.

Furthemore applications bene�t in another way in

that the problem domain size can be increased as

more nodes, or more powerful ones, become avail-

able. This phenomena is known as scaled speed-up

[Gustafson 1988] and two examples of its e�ect can

be seen in the curves. Super-linear speed-up is ob-

tained on the early part of the DS2100 curve due

6



to the extra memory made available over the (over-

worked) single node case. On moving to the more

powerfully con�gured Sun machines the image data

size can be greatly increased, from 6002 to 11002 pix-

els. In both curves the speed-up begins to level o�

around at 6 nodes. Further scaled speed-up can be

obtained by increasing the data size so that there is

enough work to keep all the nodes busy.
Figure 6

Figure 7

4 Requirements

Using the examples just described as illustrations

this section discusses what we hold to be the more

important requirements on a distributed program-

ming platform.

4.1 Object-Orientation

The many supposed advantages of the OO ap-

proach are well documented in the literature, e.g.

[Cox 1986, Nierstrasz 1986]. In brief the principles

are that three key techniques (encapsulation, inher-

itance and polymorphism) are claimed to yield three

important bene�ts, namely:

� re-use through the use of extensible classes,

� clarity and simplicity of code as a result of poly-

morphism and inheritance,

� robustness of design in the face of changes to the

speci�cation.

In our experience these advantages are true in prac-

tice. We can see examples of the �rst two from the

Ray-Tracer, which had the advantage (from this per-

spective) of having a previous incarnation as a C

program running on hyper-cubes. The earlier pro-

gram was 4000 lines of C compared to only 2000 of

C**. Because this reduction in code-volume is due

to code re-organization and re-use, rather than re-

coding, the result is empirically simpler: it is not a

matter of terseness to the point of obfuscation. In the

case of the other programs under discussion there can

be no direct comparison, as they were written using

OO from the beginning, however the programmers

are con�dent that the principle holds for these too.

In parallel, and distributed, programming the issue

of design-robustness is crucial if the sequential and

parallel facets of the design are to be separated. (In

Amadeus this is done through the use of global ob-

jects, which isolates the global communications strat-

egy and allows it to be altered without changes prop-

agating to the non-global objects.) Parallel pro-

gram designs must be robust because, at present

at least, mapping an algorithm onto the underlying

hardware is a di�cult task and may require a num-

ber of iterations. A good example of this is in the

Ray Tracer where the initial model of the dynamic

work-reallocation involved the slaves reporting their

progress to the master at intervals. It transpired

that it was better with the current implementation

of Amadeus (i.e., less prone to bottlenecks) to poll

all the slaves whenever one �nished. The algorithmic

politics are not of interest here, what is signi�cant

is that these policy decisions could be investigated

quickly and easily because the changes required were

localised (one member function in each of the mas-

ter/slave classes).

Inheritance and polymorphism make it possible to

build a type-hierarchy which embodies various par-

allel strategies, e.g., master/slave, or ring or pipeline

computations. Programmers can specialise (i.e., de-

rive) from these classes when writing new applica-

tions, and if the chosen base class is inappropriate

they can substitute another without impacting on

the rest of the the design.

4.2 Transparency

The pros and cons of transparency, and the ap-

propriate level of transparency to provide, in dis-

tributed systems, are well documented in the liter-

ature, [Popek et al 1983]. All the applications de-

scribed previously rely heavily on the fact that access

to remote objects, be they in memory or secondary

storage, is fully transparent.

In comparison to some parallel sys-

tems, e.g. [Intel Corporation 1986], applications are
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not tied to any speci�c node address or number of

nodes. A multiple activity program will run just as

correctly with all its activities assigned to the same

node as it would if they were assigned to separate

nodes.

4.3 Global Objects

At present parallel programs are frequently custom-

made for each parallel architecture. Our approach

to parallel programming is that the parallel struc-

ture of a program can be made orthogonal to an

(OO) design, if adequate support is available from

the language and/or run-time. This has the bene�t

of separating the parallel concerns from the sequen-

tial ones.

The �rst and most important extension is to allow in-

teraction between objects in non-shared memory. In

the programs we have implemented Amadeus' global

objects are communication points between groups of

non-global objects.

In the programs discussed in this paper global classes

are a minority. In the Ray Tracer, for example, the

only global classes are the Master and Slave classes

(2 out of 33 classes), while in the Air-Tra�c Con-

troller only Airports and Air-Corridors are invokable

globally (2 out of 16 classes). While global classes

constitute a minority of the total number of classes,

global objects make up an even smaller minority of

the actual object instances: < 30 compared to sev-

eral million in the case of the Ray Tracer. Because

the Air-Tra�c Controller is a simulation the num-

bers of objects it produces is open-ended. However,

the numbers of global objects are �xed at start-up

(at around 100) while the non-global objects num-

ber more than 500 and are produced continuously.

The Computational Linguistics application is, if any-

thing, more extreme: a handful of global objects and

a virtually unbounded number of smaller objects rep-

resenting the formulae.

These applications lend support to an approach

whereby non-global is the default. In a loosely cou-

pled system the alternative strategy of making global

the default incurs far too much overhead to justify

the bene�ts to the programmer. However it is very

important to ensure that extending a class to be

global should be easy, e.g., inserting a keyword.

4.4 Persistence

As noted previously, the addition of persistence to

the programmers arsenal reduces the amount of rou-

tine I/O code that must be written. As a concrete

example, the programs discussed in this paper re-

quired no code to output to disk and very little code

to perform input. (Where input code was written it

was to allow non-Amadeus data to be brought into

the persistent store.)

4.5 Load Balancing

Altough explicit placement of activities was used to

achieve the speed-up curve shown in x3.5 similar re-

sults were obtained using automatic load balancing

in a quiescent system. In e�ect load balancing com-

bined with transparency allows< a distributed system

to be used as a cost e�ective parallel processor which

supports multiple simultaneous users.

4.6 Explicit Clustering

Application level control of clustering was used in all

of the applications described to ensure that compu-

tation could actually be spread over multiple nodes

and we hold that the programmer must be able to

exercise such control over the grouping of data.

In the applications discussed the unmap() primitive

was used extensively at the end of the initialisation

phase to allow worker's data to be faulted in at the

nodes assigned to each worker. An alternative way

to achieve the same e�ect would be to provide for mi-

gration of clusters. This would necessitate marking

the cluster as being fixed or movable, a property

that could be expected to change during the course

of execution. Migration of clusters is however prob-

lematic if an activity is actually executing within the

cluster.

A related issue is that of object migration. A case

can be made that individual objects should be able to
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move after they are created, e.g., aircraft objects in

the ATC. Our current approach is to do long term re-

clustering based on statistics gathered by the garbage

collector as we are wary of allowing too much object

movement during execution of programs.

4.7 Replication (and fragmentation)

Encapsulation, one of the primary planks of the OO

credo, encourages designers to stress the hiding of

internal data in order to limit dependencies between

conceptually unrelated pieces of code. In systems

with multiple address-spaces (i.e., most parallel and

all distributed systems) the sharing of encapsulated

objects automatically becomes an issue. Actually,

this is not a problem with encapsulation per se, but

with the physically divided address space, because

access times are markedly di�erent between local and

remote access.

In non-OO code, however, the data that needs to be

shared would probably be global4 variables in the ex-

ecutable in each address-space. So, given that (un-

compromised) OO is worth pursuing, what can be

done to bridge this gap between having each object

as an indivisible encapsulated unit and the desire to

have local access to it on several nodes?

In common with many others we believe the answer

lies in transparently replicated objects. If you have

one object and multiple nodes there are three cases:

� Normal (local to one node),

� Replicated (local to several nodes),

� Fragmented (parts of object are local to several

nodes).

To understand this in concrete terms, consider the

Ray Tracer, a simple functional computation. It has

input data and output data. This is easily modelled

as an input data object, a computational object and

4Here we mean global in its traditional sense and not as a

C** keyword.

an output data object, as seen in �gure 8. Parallelis-

ing this will usually involve placing a copy of the com-

putational object on each node but where should the

input data object go? Obviously, each node needs it

locally, yet it remains conceptually one object. The

answer is to maintain the impression of a unique in-

put object while (transparently) replicating it.
Figure 8

One can make a similar case for the output object,

parts of which are being computed on each node,

yet it too remains conceptually one object. It could

be (transparently) fragmented , though this is much

more complicated than replication, although this is

the approach favoured by [Makpangou et al 1991].

Figure 9 shows one way in which replication and frag-

mentation could be utilized in the Ray Tracer exam-

ple.
Figure 9

Our experience suggests that fragmentation can be

foregone in favour of separate objects per fragment,

with some other object collating the pieces. We sug-

gest, therefore, that while transparent replication is a

requirement for parallel programs on distributed sys-

tems, fragmentation may be useful but is not proven

to be so by our examples.

4.8 Multi-cast

If replicated objects are to be supported it follows on

automatically that some form of multi-casting must

be provided.

Furthermore, in all the applications discussed in this

paper, the situation arises where the same invocation

is applied to a group of objects of the same class. In

the Ray Tracer this occurs when the master is in-

quiring about the progress of the slaves, determining

which is the slowest. In the ATC it occurs when the

simulation controller initiates a simulation period in

all the airports and air-corridors. These situations,

too, could be better handled by some form of multi-

cast.

9



4.9 Low Overhead of Run-Time

It is important that the functionality provided by a

system such as Amadeus should not impact perfor-

mance of sequential computation. In Amadeus and

other OO paradigms this means that it should be

possible to have objects which have none of the over-

heads associated with persistent and global proper-

ties. There are two reasons why this is an important

criterion for a parallel programming platform.

Firstly, it is obviously of paramount importance to

the parallel programmer that the performance of the

serial parts of the program should not be adversely

a�ected by the use of the parallel-enabling facilities.

Secondly, it encourages one to develop in the

paradigm from the beginning in order to leave open

the possibility of incorporating distribution and per-

sistence facilities later. If it is not the case, then

programmers or designers have to justify using per-

sistence and global objects from the beginning of the

project. If such justi�cation were not forthcoming

the project would proceed in development in some

other paradigm, and build up inertia against mov-

ing from it (even if persistence and distribution were

shown to be necessary later).

4.10 Application-Level Locking

In multi-threaded programs, such as the ones we have

described here, it is important that synchronisation

be e�cient. In systems which use system-level lock-

ing the cost of obtaining or relinquishing a lock is

often two system calls. In such cases, the program-

mer will have to choose the lesser of these two evils:

� lock when necessary, and pay the performance

price,

� lock less often, resulting in unnecessary lock-out.

Performance tuning of programs with such sub-

optimal locking strategies is hard to do, and increases

with the numbers of parallel processes competing for

the locked resource, leading to sharp declines in per-

formance.

We encountered this problem in the the Ray Tracer

where the activity performing the computation in the

slave needs to synchronise with the activity request-

ing that it split its work.

4.11 Summary

Obviously the list of items just discussed is not ex-

haustive and, depending on the application domain,

other issues such as fault tolerance and security could

be very important aspects of the system. Never-

theless we hold that the functionality just discussed

should be central to an OO distributed system.

5 Related Work

Our major research goal has been to de�ne a

language-independent layer providing the necessary

support for programming parallel and distributed

applications in loosely coupled distributed systems.

This language-independent layer allows a number of

existing OO languages to be used to write such ap-

plications. To this end we have tried to identify the

key requirements on the system.

Many other researchers have focused on the prob-

lem of providing support for distributed and par-

allel programs in distributed systems. In many

cases this support has taken the form of a new

language in which applications can be written:

examples include Emerald [Black et al 1986] and

Orca [Henri Bal & Andrew Tannenbaum 1988]. In

Emerald a program consists of a collection of dis-

tributed objects and processes - where a process is

a (potentially) distributed thread of control. An im-

portant feature of Emerald is its support for object

mobility - an object may migrate at any time. Con-

trol over migration is provided by a number of lan-

guage primitives to, for example, move an object.

The parameter passing modes by-move and by-visit

are also provided to allow a parameter to a remote

invocation to be passed along with the invocation

request. More recently the Orca language has been

proposed based on the so-called shared data-object

model which hides the location of objects from the

programmer but uses object replication to maintain
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performance. The Amber system [Chase et al 1989]

is an example of a system supporting the use of an

existing language to program parallel applications in

a distributed system.

In the case of Amber the language is C++ extended

with primitives for thread management and object

mobility similar to those of Emerald. Emerald is

targeted at supporting a single language at a time

in a homogeneous distributed system. Extensions to

Amber provide support for load-balancing.

Parallel programing in distributed systems has

also been addressed in the context of distributed

shared memory systems - a good example being

Munin [Bennett and Zwaenepoel, 1990]. Munin pro-

vides a number of mechanisms to support shared

data including the delayed updates based on re-

lease consistency and type-speci�c memory coher-

ence based on the identi�cation of a number of

shared data object types including: write-only, pri-

vate, write-many, result, synchronisation, migratory,

produced-consumer, read-mostly and read-write.

6 Conclusion

This paper has given an overview of the Amadeus

system and described how a number of applications

were structured to run on it. The lessons learned

from the exercise, in terms of the general functional-

ity that a distributed object oriented system should

provide, have been discussed and related work in the

area sketched.
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