
Tigger Project

Raising the Cub

Distributed Real-Time Support in Tigger

C. Zimmermann V. Cahill

Distributed Systems Group

Department of Computer Science

University of Dublin

Distributed Systems Group

Department of Computer Science

University of Dublin

Trinity College, Dublin 2, Ireland.

Fax: +353-1-6772204

Document Status Final version

Distribution Public

Document # TCD-CS-94-44

Publication To appear in Proceedings of the Annual German Unix User Conference,

1994

c
 1994 University of Dublin

Permission to copy without fee all or part of this material is granted provided that the copyright notice,

and the title and authors of the document appear. To otherwise copy or republish requires explicit

permission in writing from the University of Dublin.

Raising the Cub

Distributed Real-Time Support in Tigger

C. Zimmermann� V. Cahilly

Distributed Systems Group

Department of Computer Science

University of Dublin

Abstract

We present a proposal for an architecture supporting distributed objects exhibiting soft real-time be-

haviour. This support is aimed directly at the �eld of distributed multimedia applications. Since the

architecture is designed in a modular fashion, we expect that this architecture can be easily extended to

other application areas with similar demands such as distributed video games, a major future market.

The design consists of a metalevel approach with four individual levels o�ering a clean separation between

baselevel objects implementing application functionality, on one side and metalevel objects, responsible

for control of behaviour of baselevel objects, on the other side.

1 Introduction

Object-oriented systems already represent a well-known and well-accepted environment for application

development when applications are restricted to run on a single node of a network. With the advent of

distributed systems there is now a growing demand for distributed, object-oriented systems allowing an

application which uses objects to span several nodes.

In this paper we present a proposal for an architecture for the support of distributed objects suitable for

applications with soft real-time demands like multimedia. This architecture will be implemented as an

extension of the Tigger distributed object support platform.

The remainder of this paper is organized as follows: in section 2 we introduce the Tigger platform. In

section 3 we discuss the design of our architecture based on this platform while in section 4 we describe

the application of a metalevel approach to soft real-time object support within the overall architecture.

The paper concludes with a section on the current status and future research issues.

�Email: Chris.Zimmermann@dsg.cs.tcd.ie
yEmail: Vinny.Cahill@dsg.cs.tcd.ie

2 Tigger

The experience gained during the design and implementation of Amadeus which was part of the Comandos

project [4] has had a great in
uence on its successor named Tigger . In this design iteration of our e�ort

to support distribution of objects we aim at supporting a variety of di�erent application needs including

objects exhibiting soft real-time1 behaviour. Tigger is designed to be modular, so that building customized

versions of Tigger matching speci�c application needs is possible. A minimal subset known as the Tigger

Cub [5] is the common denominator providing the basic services for higher Tigger layers.

This Cub represents the kernel of the Tigger system, supports distributed and persistent objects, and

contains services for thread management and network-transparent interprocess communication (IPC). In

order to support di�erent operating system and network environments and to enhance portability, the

Cub is subdivided into separate modules each responsible for encapsulating environment speci�cs such

as the operating system interface and network access.

OS-Kernel

 Network
(to other nodes)

Multimedia HardwareGraphics

Higher Application-Oriented Layers
 (Distributed Multimedia Support)

Environment
Abstractions

Toolbox Interface

Active Objects

Layer 1

Layer 2

Layer 3

Figure 1: Software Architecture

3 Architecture Design

Our proposal for a suitable architecture for supporting distributed multimediaapplications as an extension

of the Tigger Cub is structured into three layers (see Fig. 1). In the following sections each layer is

described in turn.

1Soft real-time in this context is de�ned in the usual way [9]: a failure to meet deadlines causes

tolerable harm compared to the overall utility of the system.

3.1 Layer One: Environment Abstractions

This layer provides an abstraction from the underlying environment: operating system, network and mul-

timedia hardware devices. Since the advent of new hardware is a frequent event in the �eld of multimedia

computing and since Tigger is targeted to be ported to multiple operating system platforms such as Unix2

[2] or Mach [13] [17] and network architectures, all changes that have to be made when introducing new

system components should be restricted to this layer. Abstractions such as streams for high speed data

transport, links to support multiple network architectures and stream handlers abstracting devices can

be employed in this layer [16]. Where the underlying operating system and network environment fails to

provide the necessary services, this layer uses the hardware directly as depicted in Fig. 1.

Since multimedia systems represent a kind of soft real-time environment, the Cub, which is responsible

for thread management, has to be extended to support a suitable scheduling mechanism as discussed in

section 4. This scheduling support must also be accessible to higher layers of the architecture, so that

they have maximum control over the management of available CPU time. This soft real-time behaviour

also applies to for the IPC part of the Cub which has to be modi�ed accordingly.

3.2 Layer Two: Soft Real-Time Objects

Based on the services supplied by the bottom layer described above, the main task of this intermediate

layer is to provide the notion of active objects supporting soft real-time behaviour. In this context the

term active object denotes the fact that each object has at least one attached thread of control running

inside of the object [1] [11]. The major advantage of this approach is that a change in the object's state

can happen without any external triggering like a method call.

Furthermore, active objects allow a much �ner scheduling granularity than passive objects, since each

object has its own thread(s)3 which can be scheduled independently from calling objects. Calling a

method of an active object means delivering the parameters of the call, together with a selector for the

method to be called, to the object. Threads running inside the object then accept the call and process

the parameters inside of the method. This has the further advantage that calls without return values

(so-called asynchronous calls) return much faster, since the calling thread need not wait for the callee

to �nish but can return immediately after delivering the parameters. Giving each object at least one

thread of control also allows the independent scheduling of this object according to di�erent (real-time)

scheduling policies. This is important when objects deal with data which exhibits time-based behaviour

as is the case with multimedia data.

In order to achieve soft-real time behaviour, this layer must interact closely with the bottom layer by using

an appropriate scheduling interface, so that each thread of an active object is scheduled appropriately.

Taking the realm of multimedia as an example, di�erent multimedia data types like low-quality audio

on one side and high-de�nition video on the other side have di�erent throughput, and therefore di�erent

scheduling, demands.

This layer also has to extend the support for object distribution provided by Tigger since distribution has

in
uence on both the local and the remote scheduling of objects. For example a local object interacting

with a remote object must forward its timing characteristics to the remote one, otherwise deadlines may

be missed (because the remote object may fail to react in a timely manner) and the real-time behaviour

will break down.

These requirements are achieved through a toolbox interface which allows exact tailoring of the timing

behaviour of objects at run-time by the higher layers discussed in the next section. This interface also

2Since we cannot guarantee real real-time behaviour when using Unix, it can only be provided on a

best-e�ort basis.
3In case when there is more than one thread assigned to an object.

takes care of distribution aspects, since it allows the speci�cation of the other objects on di�erent nodes

involved in the computational process.

3.3 Layer Three: Application Speci�c Support

In contrast to the two lower layers, which supply the basic mechanisms for distributed, active objects

exhibiting soft real-time behaviour, this more application-oriented layer provides the support for dis-

tributed multimedia applications. Typical tasks of this layer include mixing of several multimedia data

streams and synchronization of several data streams. The former is motivated by the requirement to

support
oor-passing mechanisms, where several multimedia data streams on the input side of the mixer

are taken to form a single output data stream on the output side. This can be done on a percentage-basis

(so that background noise can still be heard) or an individual stream can be chosen to be the output

stream (in this case no background noise can be heard). Synchronization of multimedia data streams is

used to provide the illusion of lip-sync, where the time gap between audio and video information must

be kept to a minimum.

Other features not discussed above include, for example, sharing of multimedia devices by multiple

applications or sophisticated naming schemes for locating multimedia hardware on remote nodes. In

conclusion, this layer provides the basic facilities for application support. There are two possibilities for

exploiting this functionality: either applications use it directly or some toolbox providing more abstract

levels of functionality is placed between this layer and the actual application.

4 Design Issues

This section discusses the design of the toolbox character of Layer 2 taking scheduling and soft real-time

behaviour of objects as an example. Due to the advantages of clean separation between application

level functionality and the run-time characteristics of the objects (in this case scheduling), we chose a

metalevel approach for the implementation of the toolbox interface. Since it cannot be assumed that the

reader is familiar with the notion of metaobjects and metalevels, these are introduced before discussing

our approach exploiting these techniques.

4.1 Metalevel Architectures

The design is based on the use of metaobjects which are members of a metalevel. Following the usual

de�nition [7], a metaobject controls the behaviour of its corresponding baselevel (application) object.

Metaobjects are grouped|at least conceptually|on a higher level, called a metalevel. Because metalevel

objects directly control baselevel objects, one can think about this as the metalevel reasoning or re
ecting

upon the behaviour of the baselevel. Therefore systems implementingmetalevel approaches are also called

re
ective systems [12].

Since metaobjects are also objects in their own right, they also have metaobjects on a corresponding

metalevel. Since this could lead to a theoretically in�nite tower of metalevels and metaobjects, real

implementations of metaobjects like [15] typically restrict this tower to two or three levels in order to

keep it manageable.

EDF RM

LM DM

Scheduler

to other nodes

Layer 3 and above

Layer 2

Baselevel Objects

Metalevel

Final Level

AO2AO1

M2

Layer 1Roo

Figure 2: Metalevel Structure and Corresponding Layers

4.2 Scheduler Metaobjects

The proposed architecture will consist of a collection of metalevels4 as depicted in Fig. 2: a baselevel,

where application objects reside, a metalevel comprising di�erent scheduling policies and controlling the

scheduling of the baselevel-objects and a metametalevel (M2) controlling the metalevel and implementing

the notion of distributed real-time scheduling. The �nal level is a minimal real-time kernel, a real-time

extension of the Cub providing scheduling support for threads.

� Baselevel objects: these are application-oriented objects (AOs), typically de�ned in Layer 3 or

above, implementing multimedia functionality like MPEG video stream handling [6] or audio /

video synchronization as described previously. Because they handle time-critical data (multimedia

data with a demand for soft real-time), they must be scheduled accordingly.

� Metalevel scheduler objects: members of the �rst metalevel are metaobjects implementing di�erent

soft real-time scheduling policies like Earliest Deadline First (EDF) or Rate Monotonic (RM) [8].

They are directly responsible for the scheduling of methods (member functions in C++ [14]) of

baselevel objects. If this rather �ne scheduling granularity is not needed, a default policy for a

whole object can be speci�ed separately5.

4In order to avoid confusion: levels in the following context denote the conceptual metalevel subdivision

related solely to objects whereas layers re
ect the structuring of the overall architecture as discussed in

section 3.
5In fact, one speci�c scheduling policy (the default policy) is assigned to an object at creation time;

this can be overridden at a later time by specifying a di�erent scheduling policy for individual methods

� M2 manager objects: since the metalevel objects are only concerned with the scheduling of baselevel

objects and methods, a higher level has to take care of interaction with the real-time kernel

scheduler (which is thread-based and knows nothing about active objects or object methods),

distribution aspects and assignment of threads to objects and methods. This is done by manager

objects on level M2. Currently, M2 has two members: a local manager (LM) metaobject which

controls the di�erent scheduler objects on the metalevel and|closely interacting with this local

manager|a distribution manager (DM) responsible for interacting with other DMs running on

di�erent nodes. Since the scheduling of distributed objects must be coordinated in order to allow

these objects to meet their timing requirements, this interaction is necessary. The local manager

also provides the binding between the threads o�ered by the real-time kernel and the objects /

methods supported by the metalevel.

� Final level: this �nal level consists of a minimal kernel o�ering the notion of soft real-time threads.

This kernel is either part of the underlying operating system or is provided otherwise, i.e. as part

of the environment abstractions. It is important to stress the fact that this kernel is a local one

o�ering a thread-based interface and therefore does not know about distribution aspects or active

objects. As discussed above, this mapping is left to the manager objects which are part of M2.

Taking Fig. 2 as an example of the interaction between the di�erent metalevels, here two application

objects (AO1 and AO2) are scheduled by two scheduler objects on the metalevel: one implementing an

earliest deadline �rst (EDF) scheduling algorithm, the other one responsible for rate monotonic (RM)

scheduling. All methods of AO1 are scheduled according to EDF6; whereas AO2 is shared between the

two scheduling metaobjects: the default policy is rate monotonic scheduling (the default policies assigned

to each application object are denoted by a solid line); however, some of AO2's methods are scheduled via

EDF (as indicated by the dashed line). Both scheduling metaobjects are controlled by the local manager

on M2, which in turn interacts with the soft real-time kernel and the distribution manager.

5 Conclusion

This section serves two purposes: it discusses the status of the project and future research issues.

5.1 Status

Having laid out the road-map for the design of the above architecture we are now beginning to implement

the proposal as an extension of the Tigger platform. Currently we are looking at the minimal real-time

kernel as a basis for M2. Since Tigger as a whole is aimed at supporting multiple platforms, the hardware

dependencies in this real-time kernel have to be kept to a minimum. The �rst step in implementing this

real-time kernel is the design and implementation of a generic threads package which supports multiple

scheduling policies by o�ering a suitable scheduling interface to the local manager residing on M2 on one

side and which implements the necessary mechanisms for dealing with the notion of real-time7 on the

other side.

Following this, detailed evaluation of di�erent application areas for distributed soft real-time objects

including distributed multimedia systems will yield the requirements for the metalevel and M2. More

speci�cally, we expect for instance to gain knowledge about which exact scheduling policies to include on

of an object via an interface supplied by the scheduler metaobjects.
6This is the default policy for AO1 as discussed above.
7These mechanisms include for example di�erent locking protocols for mutual exclusion in real-time

environments such as priority inheritance and priority ceiling [3].

the metalevel and how to model the interaction between the distributed managers on di�erent nodes by

looking at existing distributed multimedia systems such as [10]. However, it is already clear that we have

to o�er multiple, di�erent policies like Rate Monotonic or Earliest Deadline First scheduling in order to

cope with di�erent demands that distributed, soft real-time applications may place on the architecture.

5.2 Outlook

Apart from the use of this architecture for distributed real-ime application support, other application

areas with soft real time demands will also bene�t from this approach. One example are simulations

like pilot-training applications where the simulation must respond within a certain time so that the same

real-time constrains are present as in the real system|the aircraft. Other examples include (distributed)

video games: applications which are spread over several nodes with soft real-time requirements. This �eld

is subject to major growth over the next years according to independent market surveys and forecasts.

Since these games may also include multimedia aspects, a competitive application support environment

must cater for both domains.

Since the lower two layers are intended to be generic enough, only the topmost layer has to be replaced

in order to respond to the di�erent needs of these applications. Since each of the layers has a well-de�ned

interface, this replacement can be done quickly and without much e�ort. This leads to a chameleon-like

approach: the application support policy (multimedia / games) and the corresponding interface (the

colour of the beast) may change but underneath the skin the creature still remains the same|distributed

soft real-time objects.

The scheduling architecture discussed above is only one speci�c aspect of customizing object behaviour

at run-time. If our approach proves to be valid in this particular case, there is no reason why the toolbox

interface should be restricted to distributed scheduling aspects only. One can imagine extending the

tailoring process supported by the toolbox interface to notions including persistence and fault tolerance.

One good example in this context is the notion of persistence: since there are several degrees of persistence

ranging from non-persistent (the object's lifetime is bound to the lifetime of the application which created

this object) to persistent (the object's lifetime is not bound the the application's lifetime) to durable

(where an object even survives a disk crash because it has been backed up to a reliable archive system),

it can be useful to allow an object to migrate from one domain to another dynamically.

6 Summary

We presented an application-support architecture for the use in distributed multimedia systems. Based

on our experience with Amadeus and Tigger we proposed an approach consisting of three layers: one

layer encapsulating all platform speci�cs like operating system, network and hardware; an intermediate

layer providing the notion of distributed objects exhibiting soft real-time behaviour and, on top of that,

an application-oriented layer providing application support like synchronization and mixing.

We argued that this topmost layer is subject to change in order to meet di�erent applications demands

like distributed games. Thus the lower two layers represent a kind of toolbox o�ering mechanisms for the

management of distributed objects, from which one or more higher layers of the architecture can build

customized objects which exactly suit their needs.

The design employsmetalevel approach consisting of four levels altogether: a baselevel hosting application

objects handled by applications themselves or application-oriented layers, a metalevel o�ering di�erent

soft real-time scheduling policies like RM or EDF. This metalevel is controlled by a M2 implementing the

interface to the local real-time kernel and coordinating scheduling activities with other nodes. Finally, a

soft real-time kernel o�ers a thread-based interface, which is used by M2 to assign threads to objects and

individual methods resulting in the notion of active objects.

References

[1] P. America. POOL-T: A Parallel Object-Oriented Language. In A. Yonezawa and M. Tokoro,

editors, Object-Oriented Concurrent Programming, pages 199{220. MIT Press, 1987.

[2] M. J. Bach. The Design of the Unix Operating System. Prentice Hall International, 1987.

[3] T. P. Baker. Stack-Based Scheduling of Realtime Processes. Real-Time Systems, 3(1):67{99, 1991.

[4] V. Cahill et al., editors. The COMMANDOS Distributed Application Platform. Springer-Verlag,

1993.

[5] V. Cahill et al. Tigger family values. 1994. Talk at the CaberNet Workshop, Trinity College Dublin.

[6] D. L. Gall. MPEG: A Video Compression Standard for Multimedia Applications. Communications

of the ACM, 34(4):46{58, 1991.

[7] G. Kiczales et al. The Art of the Metaobject Protocol. MIT Press, 1991.

[8] H. Kopetz. Scheduling. In S. J. Mullender, editor, Distributed Systems, pages 491{509. ACM Press,

second edition, 1993.

[9] H. Kopetz and P. Veriss��mo. Real Time and Dependability Concepts. In S. J. Mullender, editor,

Distributed Systems, pages 411{446. ACM Press, second edition, 1993.

[10] B. Lamparter and W. E�elsberg. X-Movie: Digitale Film�ubertragung und Darstellung imX-Window

System. In Proceedings of the GI-Jahrestagung, pages 343{353. Springer-Verlag, 1991.

[11] K.-P. L�ohr. Concurrency annotations. In Proceedings of the 7th Conference on Object-Oriented

Programming Systems, Languages and Applications, pages 327{340, 1992.

[12] P. Maes. Concepts and Experiments in Computational Re
ection. In Proceedings of the 2nd Confer-

ence on Object-Oriented Programming Systems, Languages and Applications, pages 147{155, 1987.

[13] R. Rashid. Threads of a New System. Unix Review, 4(8):37{49, 1986.

[14] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Second edition, 1992.

[15] Y. Yokote. The Apertos Re
ective Operating System: The Concept and Its Implementation. In

Proceedings of the 7th Conference on Object-Oriented Programming Systems, Languages and Appli-

cations, pages 414{434, 1992.

[16] C. Zimmermann. Das Switchboard: Ein Modell zur Multimedia-Programmierung in verteilten Sys-

temen. O�ene Systeme, 2(3):128{134, 1993.

[17] C. Zimmermann and A. W. Kraas. Mach: Konzepte und Programmierung. Springer-Verlag, 1993.

