
Retrieving Reusable Design Cases

Exploiting Adaptation Knowledge in Design Reuse

Barry Smyth1 and Mark T. Keane2

1 Hitachi Dublin Laboratory, 16 Westland Row, Dublin 2, Ireland
2 Trinity College Dublin, Dublin 2, Ireland

Abstract. Case-based reasoning has been identi�ed as a potentially fruitful candidate tech-

nology with which to investigate the development of automated design systems. Two critical
stages in case-based design are design retrieval and design adaptation. In the former, designs

that can be reused for a new design problem must be located. In the latter, retrieved designs

must be modi�ed to meet the speci�c demands of the new target situation.
In this paper we will address both of these stages in the context of a case-based software

design system called D�ej�a Vu. In particular, it will be argued that the notions of design

reusability and adaptability are intricately linked and an approach will be described which
allows the adaptation requirements of design cases to be accurately predicted during retrieval

and subsequently exploited during adaptation. We argue that this approach bene�ts from

improved retrieval accuracy,
exibility, and greater overall problem solving e�cacy.

1 Introduction

Case-Based Reasoning (CBR) is a reasoning method that exploits experiential knowledge, in the

form of past cases, to solve new problems [1]. When faced with a new problem, a CBR system will

retrieve a case that is similar, and if necessary, adapt it to provide the desired solution. To date

there has been some preliminary success in applying the CBR paradigm to complex design tasks ([2],

[3], [4], and [5]). Obviously, the success of case-based design (CBD) is critically dependent on the

retrieval of a suitable design case; that is, one that can be reused in the target situation. Moreover,

the e�ciency of case-based methods depends critically on the retrieval of a design that is the easiest,

of those available, to reuse. In this paper we view the concepts of reusability and adaptability as

closely coupled, and we claim that estimating the adaptation requirements and complexity of cases

during retrieval is an critical step in locating reusable designs.

The majority of CBR (and CBD) systems have proven successful in judging the general suitability

of cases to new problem situations. However, accurately determining the adaptability or \ease of

adaptation" of a design case has proven more di�cult because of inherent e�ciency problems; how

can adaptation be accurately predicted without actually performing the adaptation itself? This

has led most researchers to abandon deep algorithmic methods of computing case adaptability, in

favour of more e�cient, albeit less accurate, shallow heuristicmethods; the hope being that heuristic

manipulation of good predictive indices will result in the retrieval of the appropriate case. Typically,

these heuristics are designed to measure the semantic similarity between the target and a candidate

case, giving preference to those candidates with features that have been observed to yield desirable

retrieval results. Unfortunately, such approaches seldom anticipate all adaptation problems and

consequently sub-optimal cases are often retrieved.

In this paper we advance a case retrieval mechanism that can accurately determine the ease of

adaptation of a design case whilst, at the same time, overcoming the e�ciency problems that led to

the adoption of heuristic methods [6]. The technique uses adaptation knowledge during retrieval to

look ahead to the adaptation stage, allowing its complexity to be assessed, but without incurring the

full cost of adaptation. In addition, we describe a framework for design adaptation that can exploit

fully the results of the retrieval stage. Our methods are implemented in D�ej�a Vu3, a case-based

3 Not to be confused with DEJAVU an CBR shell for assisting in mechanical design [7].

reasoning system for real world software design, and we demonstrate our approach using examples

from this system.

The next section brie
y introduces D�ej�a Vu and its application domain. Section 3 highlights the

essence of retrieval in CBD and demonstrates where traditional approaches may fail to select optimal

cases. Then, in section 4, we concentrate on D�ej�a Vu's retrieval mechanism (termed adaptation guided

retrieval), which avoids such retrieval failures by using adaptation knowledge to e�ciently compute

the adaptability of cases; in describing this retrieval mechanism, the nature of adaptation in D�ej�a

Vu is also discussed. Finally, in section 5, we conclude by arguing that our methods bene�t from

improved retrieval accuracy and
exibility, as well as greater overall problem solving performance.

2 D�ej�a Vu

D�ej�a Vu is a CBD system for software design operating in the domain of Plant-Control software

[8]. Plant-Control software is concerned with controlling robotic vehicles within a factory or plant

environment. In contrast to conventional software domains, the plant-control domain can not be

completely formalised; for example, certain timing considerations must be taken into account which

can only be estimated on the basis of expert experience and lack any strong causal theory. This

weakening of the domain theory suggests case-based methods as a potentially fruitful approach.

One particular set of problems that D�ej�a Vu has been designed to deal with are those concerned

with loading and unloading tasks. For example, Figure 1 illustrates the loading or unloading of,

in this case, spools or coils of steel within a steel-mill environment. Using a hierarchical approach

AAA
AAA

Spool-/Coil

Tension-Reel

AAA
AAAAAA
AAA

Load / Unload
Sensor

Skid
Coil-Car

Raise/Lower

ForwardBackward

Fig. 1. Load/Unload Plant-Control Tasks

to design, D�ej�a Vu retrieves a number of design cases at di�erent levels of abstraction. These are

adapted to provide solutions to the various sub-tasks of the target problem, the resulting solution

segments being integrated into the overall solution on the
y.

Indeed, D�ej�a Vu's hierarchical problem solving method can be viewed as an integration of de-

compositional and case-based design techniques; software speci�cations are decomposed into simpler

sub-speci�cations which may then be solved by the retrieval and adaptation of an appropriate design

case. In fact the decomposition of speci�cations is also addressed by using case-based methods. D�ej�a

Vu's design cases represent not only speci�c design episodes, but also more abstract, high-level de-

sign plans that act as decomposition strategies. Problem solving activity is e�ciently co-ordinated

using a blackboard architecture with dedicated knowledge sources handling the various problem

solving stages of analysis, decomposition, retrieval, adaptation, and re-composition.

3 Retrieving a Reusable Design Case

The primary concern of the retrieval stage4 is to select a case that is a suitable starting point from

which to develop a design solution to the target problem. But what exactly determines whether a

given case is suitable or not? In design tasks, this question of suitability is strongly linked to the

notion of reusability. In turn, reusability is related to such criteria as adaptability, maintainability

and serviceability. In particular we view adaptability as a crucial factor in determining reusability;

certainly, to apply a design case to a new situation it must be possible to adapt it. Furthermore, the

chosen case should not only be adaptable but should also be the easiest of those available to adapt.

Many approaches to retrieval tend to avoid measuring adaptability, selecting cases on the basis

of semantic similarity instead. It will be demonstrated here that such approaches can lead to cases

that are not even adaptable, nevermind reusable. We will argue that a more perspicacious approach

is to consider directly the adaptability of cases. This is precisely the motivation behind D�ej�a Vu's

retrieval method, which uses adaptation knowledge to make e�cient and accurate predictions about

the adaptation needs of candidate design cases.

3.1 Conventional Approaches

Traditionally, researchers have side-stepped the notion of adaptability, preferring to exploit semantic

similarity as a more tractable answer to the question of reusability. Exactly how a candidate design

case will be adapted is very much ignored, retrieval e�ciency being chosen in favour of accuracy.

The rationale implicit in these methods is that the case whose speci�cation is most semantically

similar to the targets will also be the \most useful" case and will require the least adaptation ([11]

and [12]).

While such traditional retrieval techniques can produce e�cient retrieval results this rationale

on which they are based may not be fully justi�ed, and this may ultimately lead to a sub-optimal

adaptation stage. That is, the most similar case to the target problem may not be the most useful,

or indeed, the easiest to adapt. Semantic similarity does not guarantee the best results. Two cases

could be equally similar to a target problem on this measure but one could be adapted with ease

while the other may be considerably harder or even impossible to adapt.

To compensate for these problems, many researchers have argued that other factors as well as

semantic similarity need to be used in retrieval ([13], [3], and [14]), the spirit of these approaches

being that all mappings are not equal.

For example, Kolodner [13] has argued that some mappings found between a target problem and a

candidate case should be preferred over others if they exhibit certain characteristics; for instance, if a

match is more speci�c or goal-directed it should be preferred. In particular, Kolodner also argues that

the ease-of-adaptation of a match should result in it being preferred over other matches which are

indicative of more di�cult adaptations. Similarly, in KRITIK Goel [3] also favours candidate design

cases which are easier to adapt by preferring matches which satisfy the functional speci�cations of

the desired, target design. Birnbaum et al. ([14]) propose a system that learns to index cases on

the basis of their adaptability, overriding semantic similarity where appropriate. During problem

solving certain feature combinations are identi�ed as particularly problematic and cases with such

features can be avoided in future problem solving episodes.

4 Retrieval can be viewed as a two stage process. First, the �ltering stage identi�es a small number of
candidate cases that are deemed to be contextually relevant to the target. This eliminates many irrelevant

cases from the more computationally expensive selection stage. The selection stage performs a detailed

analysis between the target and each of these candidates. During this analysis, a set of correspondences or
mappings is established between the target and the candidates (see [9] and [10]). In general these mappings

are used to determine a measure of similarity between the cases and form the basis of the subsequent

adaptation process.

In all of these approaches the quality of a candidate case is based on the presence or absence of

certain features which are pre-classi�ed or weighted as important with respect to retrieval. The rela-

tionship between speci�cation features and the subsequent adaptation phase is very much ignored.

Consequently, cases are still selected on the basis of an \educated guess" rather than through any

real insight into their adaptation requirements.

3.2 Semantic Similarity vs. Adaptability

To demonstrate the type of retrieval inaccuracies that emerge from traditional similarity-based

methods consider the following very simple example from D�ej�a Vu's plant-control domain. It will

be shown that for a given target speci�cation, the case selected for retrieval di�ers depending on

whether semantic similarity or adaptability is used as a measure of suitability. In the example we will

explain how semantic similarity can mask the adaptation requirements of a candidate, forcing the

retrieval of a case that is di�cult to adapt. Measuring adaptability however results in the selection

of a case that is much easier to adapt.

A piece of software is needed to move a buggy (a vehicle) forward to a tension-reel in two speed

mode5. Two candidate cases are located as relevant. The �rst moves the buggy forward to the

tension-reel but in one speed mode6, and the second raises a lifter platform in two speed mode.

Figure 2 shows the mappings that are generated between the target and these candidates during the

mapping phase. The same mappings are established irrespective of whether semantic similarity or

adaptability is being used as the retrieval criterion, but we will se that the quality of these mappings

varies considerably. Measuring the semantic similarity between the target and candidates, the �rst

Action
 Lift

Vehicle
 Lifter

Direction
 Upward

Destination
 Spool Stand

Speed
 2-Speed

Action
 Move

Vehicle
 Buggy

Direction
 Forward

Destination
 Tension-Reel

Speed
 2-Speed

Target

Action
 Move

Vehicle
 Buggy

Direction
 Forward

Destination
 Tension-Reel

Speed
 1-Speed

Base 1 Base 2

Fig. 2. An example set of mappings.

case (Base 1) is retrieved. This case matches exactly on all features except speed and so scores very

highly. The second case (Base 2) however di�ers on all features but speed and so does not score

nearly as high. There is a problem however. The retrieved case is more di�cult to adapt than the

one rejected. This is because modifying the speed of a case is far more di�cult than modifying

attributes such as direction. The former requires that new design components be added or deleted

whereas the latter requires only parametric changes to existing design elements.

If instead of using semantic similarity adaptability is used as the retrieval criterion then a very

di�erent result is obtained. Now the second case is retrieved. The discrepancies between the direction,

5 Two speed mode indicates that �rst the vehicle moves at its higher speed setting, at a certain point it

then slows down, and �nally on reaching its destination it stops.
6 In one speed mode the vehicle will move at its slower speed until reaching its destination, where it stops.

vehicle, and destination of the target and second candidate are recognised as relatively easy to adapt

when compared to the speed changes necessary if the �rst candidate was retrieved. The crucial point

here is that to measure adaptability some form of adaptation knowledge is needed to construct and

grade the mappings, knowledge about the capabilities of the adaptation stage. Using this knowledge

the retrieval stage can then determine that, for example, changing the speed of a case is di�cult

whereas altering the direction of motion or destination or vehicle is considerably easier.

4 Adaptation Guided Retrieval

In order to guarantee the retrieval of a case that is the easiest to adapt, the retrieval mechanism

must give explicit consideration to how design cases will be adapted. To achieve this without ac-

tually performing full adaptation, D�ej�a Vu uses adaptation knowledge during retrieval to predict

the adaptation requirements of a candidate design case. During retrieval, as mappings are formed

between the target and candidate features, it is necessary to predict their adaptation requirements.

In fact, a target feature X should only be matched to a candidate feature Y if there is evidence (in

the form of adaptation knowledge, see section 4.1) that Y can be adapted to give X.

We can think of the processes of retrieval and adaptation as searching of two distinct search

spaces, the retrieval space (or design speci�cation space) and the adaptation space (or design trans-

formation space). Elements of the retrieval space are matches between target and candidate features.

Elements of the adaptation space are the adaptation operators needed to transform the candidate

design into the desired target design. To determine the adaptability of a candidate design case, a

measure of the closeness of the target and candidate in the adaptation space is needed.

Conceptually, D�ej�a Vu links the retrieval space and the adaptation space using adaptation knowl-

edge (see Figure 3). In this way it is possible to determine how elements of the retrieval space relate

to elements of the adaptation space, and so the matches formed during retrieval can be associated

with adaptation operators that will be needed during the subsequent adaptation stage. Thus, com-

plex adaptation requirements can be predicted by comparing the features of the target and candidate

cases.

Design Retrieval

Design
Adaptation

Adaptation Knowledge

Base
Filtering Selection

Adaptation SpaceRetrieval Space
(Design Specification Space) (Design Transformation Space)

Fig. 3. Adaptation knowledge links the retrieval and adaptation spaces.

4.1 D�ej�a Vu's Adaptation Knowledge

D�ej�a Vu uses an adaptation scheme that facilitates both speci�c local modi�cations, through the

action of adaptation specialists, as well as global con
ict resolution, via adaptation strategies. As

such adaptation knowledge is captured as a set of specialists and a set of general strategies.

Adaptation specialists correspond to packages of design transformation knowledge each con-

cerned with a speci�c adaptation task. Each specialist can thus make a speci�c local modi�cation

to a retrieved case. During adaptation many specialists will act on the retrieved design to transform

it into the desired target design. Thus, through specialist activity, the di�erences between the re-

trieved case and the target are reduced in a fragmentary fashion. As well as procedural knowledge

each specialist also has declarative knowledge describing its particular adaptation capability. In this

way specialists are organised in terms of the modi�cations they are designed to carry out.

For example, in the plant-control domain, one common di�erence between a retrieved case and a

target problem is that the speed of the target speci�cation may di�er from that of a retrieved case. To

cater for this situation D�ej�a Vu uses a dedicated speed specialist (see Figure 4) which can satisfy the

speed requirements of the target by modifying those of the retrieved case. In the course of adapting

Capability:
Adapt(2-Speed,1-Speed)

Action:
Insert(Before
 (Move/Lift
 (Vehicle,Direction,Slow)),
 (Move/Lift
 (Vehicle,Direction,Fast)))

Insert(...
 : :

Speed-Specialist

Fig. 4. An example adaptation specialist.

a retrieved design case it is possible that interactions will arise within the modi�ed design solution.

This is because specialists are not designed to consider the modi�cations made by other specialists

and so interactions that occur between specialists go unchecked and may ultimately lead to design

error and failure. In the past, the resolution of such interactions has been one of the stumbling

blocks of many planning and automated design systems [15]. D�ej�a Vu attempts to overcome this

problem by using an e�cient scheme of interaction representation and resolution. Using a set of

adaptation strategies, D�ej�a Vu can detect and repair many con
icts that might arise. Strategies are

organised in terms of the interactions they resolve and each is indexed by a description of the type

of failure it can repair. Of course each strategy also has an associated method of repair for resolving

the con
ict in question. As an example, one very common type of interaction occurs when the e�ect

of some event prevents the occurrence of some later event. Figure 5 depicts this situation; some goal

event (1) is prevented by the disablement of one of its preconditions (2), the precondition having

been blocked by some earlier event (3) causing a con
icting state (4). This blocked pre-condition

interaction can be repaired in a number of ways. For instance, an event could be added before the

blocking event (3) which prevents its blocking e�ect. The blocked pre-condition adaptation strategy

contains a description of this situation as well as the appropriate repair methods.

4.2 Specialist Associations

D�ej�a Vu constructs mappings between target and candidate features if and only if there is evidence

that the di�erences that they entail can be catered for during adaptation. D�ej�a Vu's approach is

GOAL

EVENT

STATE

Achieved-By Pre-Condition

STATE

EVENT
Causes

1 2

3 4

Blocks

Fig. 5. The \blocked pre-condition" con�guration.

based on the fact that the mappings established between the candidate and target are predictive

of the di�erences that exist between the retrieved design and desired target design speci�cation.

Identical mappings suggest candidate design elements which can be transferred intact to the target.

On the other hand, non-identical mappings are indicative of candidate design elements that will

need to be adapted.

In the example of section 3.2 a non-identical mapping was formed between the single speed

feature of the �rst candidate case and the two speed feature of the target. This mapping served to

point out that the candidate design solution required a speed modi�cation. To form such a mapping,

D�ej�a Vu needs evidence that the speed modi�cation is possible. We have said that this evidence is

provided by the adaptation knowledge. More precisely, this evidence exists in the form of specialist

capability information. During case retrieval, sets of mappings are matched against the capability

descriptions of specialists.

Returning to our perspective on the coupling of the retrieval and adaptation spaces we can

see that in this situation the mapping between the speed features, an element of the retrieval

space, is indeed linked to an appropriate element of the adaptation space, the speed specialist. And,

this linkage is provided by adaptation knowledge in the form of the speed specialist's capability

information (see Figure 6). To facilitate the e�cient location of the appropriate specialists, the

2-Speed:1-Speed Speed-Specialist

Insert(...
 : :

AA
AA

Capability : Adapt(2-Speed,1-Speed)

A

Adaptation SpaceRetrieval Space
(Design Specification Space) (Design Transformation Space)

Fig. 6. Linking the retrieval and adaptation spaces.

capability descriptions themselves are in the form of generalised groups of mappings.

4.3 Strategy Associations

Unfortunately, to accurately predict the adaptability of a case it is not su�cient to examine the

di�erences in isolation. As was mentioned in section 4.1 interactions can occur which will lead

to adaptation failure. These interactions arise due to the context sensitive nature of adaptation

specialists and dependencies between design elements or features. For example, the existence of a

dependency between the speed of a case and the power availability of a vehicle may lead to an

adaptation failure if the speed is modi�ed during adaptation. Increasing the speed of a case means

increasing the power consumption of the vehicle. If the vehicle has only limited power available then

obviously the adaptation may produce a design which will fail due to a lack of power. In fact this

is an example of the block-precondition failure described in section 4.1; the e�ect of increasing the

speed of the design has blocked the pre-condition of motion, the availability of power.

Adaptation strategies are used during retrieval to predict such interactions by considering the

consequences of adaptations. This is achieved by modelling the dependencies that exist between

design elements, using structures very similar to in
uence graphs ([16]), as well as the capabilities of

adaptation operators. Very brie
y, an in
uence relation is a qualitative causal relationship between

two domain elements. It speci�es that one element (the in
uencer) e�ects another (the in
uenced)

in some way. The mode of in
uence can be either positive (+) or negative (-). A positive in
uence

means that a change in the in
uencer entails a corresponding change in the in
uenced. For example,

speed and power consumption are connected by a positive in
uence relation from speed to power

consumption; an increase in speed leads to an increase in power consumption. A negative in
uence

means that a change in the in
uencer leads to a qualitatively opposite change in the in
uenced.

For example, power consumption exerts a negative in
uence on power availability; an increase in

power consumption causes less power to be available. Using graphs of these in
uence relations a

qualitative model of the dependencies between domain elements can be built up. With these graphs

it is possible to describe both the desired e�ects and side-e�ects of specialists. For example, the

speed specialist changes the speed of a case. According to the in
uences above it also e�ects the

power consumption and power availability of the case.

Strategies are indexed into the domain knowledge-base by sets of in
uence relations. During

retrieval the formation of specialist associations activates a set of in
uences that capture their

intended e�ect. In turn these in
uences activate relevant strategy descriptions, indicating possible

interaction problems. The retrieval context is used to instantiate these strategies which are then

associated with the problematic specialists and mappings. In this way, during retrieval, interactions

can be predicted and repairs scheduled.

4.4 An Example Retrieval Scenario

As an example, let us return to the problem of section 4.1 which was to design a two speed movement

case. Let us consider what happens during retrieval as the target is compared to the �rst candidate

(the one speed case).

The mappings between the speed features of the candidate and target predict the need for a

speed modifying specialist. Once a specialist has been found the mapping can be established. In

addition, a measure of the quality of the mapping is based on the computational complexity of the

specialist. But, what about predicting interactions? In particular, how can the power availability

problem be foreseen and an appropriate strategy identi�ed to e�ect its repair ? Figure 7 illustrates

the important states and events during this retrieval. The target problem is concerned with moving

a two speed buggy to a tension-reel (1). A pre-condition of movement is that power be available (2).

The speed specialist will cause the speed of the case to be upgraded from one speed mode to two

speed mode. The in
uence that this increase in speed (3) exerts on power consumption (4) leads

to the disablement or blocking of the power availability pre-condition. This con�guration (enclosed

portion of Figure 7) is the description for the blocked pre-condition strategy described in section

4.1. After instantiating the strategy in the current base and target contexts it is associated with the

speed specialist. During adaptation the action of the speed specialist is augmented with the repair

action of this adaptation strategy; in this case adaptation consists of changing the speed of the case

after upgrading the power capacity of the buggy.

IncreasePower(Buggy)

Speed-Specialist

Move(Buggy,TensionReel) HasPower(Buggy)

IncreaseSpeed(Buggy)

Blocks

PreCondition

Causes

Effect

1 2

3 4

Base 1

Action Move

Vehicle Buggy
 : :
Speed 2-Speed

Target

Blocked-Precondition-Strategy

Action Move

Vehicle Buggy
 : :
Speed 1-Speed

Fig. 7. An example failure con�guration.

Although simple, the example above does highlight the key features of our approach; the relevant

local and global adaptation knowledge (in the form of specialists and adaptation strategies) is

e�ciently assembled during retrieval facilitating an accurate estimate of the adaptation requirements

of a candidate design case7. The result is the selection of not just a suitable design (together with

some numerical quality value), but also the formation of a structured semantic representation, in

the form of adaptation specialists and strategies, that captures the precise nature of the similarities

and dissimilarities between the target and candidate design speci�cations.

5 Conclusions

The main thrust of this paper has centred on the description of an important issue in CBD, that of

case retrieval, and has also touched on the area case adaptation. In particular, it concentrated on a

critical case selection criterion, that of adaptability, which we claim is an important step in selecting

appropriate reusable designs. Overall, as well as beni�ting from improved retrieval accuracy, we can

expect to witness both improved problem solving e�ciency and competence together with greater

exibility.

Our approach favours the retrieval of a case that requires minimal adaptation. This is in contrast

to other CBD systems that do not directly couple retrieval and adaptation and, as such, can only

estimate the reusability of a given design in terms of its semantic similarity to the new target

demands { which is often not a very accurate measure of reusability. By directly predicting the

adaptation requirements of a candidate design case much of the \guess work" can be taken out of

retrieval; if a case exists that can be adapted, we can expect that our retrieval mechanism will �nd

it.

The retrieval of the most adaptable case should result in an optimal adaptation stage. In ad-

dition, retrieval now carries out the preliminary adaptation work by identifying the specialists and

strategies that will be necessary during the adaptation stage. Therefore, further e�ciency gains can

7 A full description of how this complexity estimate is computed is beyond the scope of this paper. Very

brie
y, it is a function of individual complexity estimates for each specialist and strategy used during

retrieval. The important point here is that the relevant adaptation knowledge can be assembled.

be expected during adaptation by exploiting this additional retrieval information. In general, re-

trieval complexity is reduced by structuring design adaptation knowledge in a manner that permits

the e�cient identi�cation of the appropriate specialists and strategies, and any additional retrieval

expense is o�set by improved adaptation e�ciency .

In addition, greater retrieval
exibility is also achieved. With conventional approaches, changes to

the adaptation capabilities of a system will not be immediately re
ected in the retrieval preferences

of the system. Instead changes must be made to the retrieval heuristics to capture the new adaptation

possibilities. In contrast, because the retrieval and adaptation stages are directly coupled in D�ej�a

Vu, any changes to its adaptation capabilities will be immediately available to the retrieval system;

the altered adaptation knowledge itself is used explicitly during retrieval.

Moreover, the representational requirements of the approach are domain independent and thus

facilitate the adoption of the technique across a range of CBD application domains. Already D�ej�a Vu

has been used to investigate other design tasks. As well as plant-control software, Motif graphical user

interface design has been investigated. Initial results are very encouraging with the same retrieval

and adaptation techniques being successfully transferred to this, quite di�erent, software design

domain. Finally, our current work is concerned with providing a concrete empirical demonstration

of the e�ectiveness of D�ej�a Vu's retrieval and adaptation mechanisms.

References

1. J. Kolodner: Case-Based Reasoning Morgan Kaufmann (1993)

2. E. Domeshek and J. Kolodner: A Case-Based Design Aid for Architecture. Arti�cial Intelligence in Design

'92. Kluwer Academic (1992) 479{516

3. A.K. Goel: Integration of Case-Based Reasoning and Model-Based Reasoning for Adaptive Design Prob-

lem Solving. Ph.D. Dissertation. Ohio State University (1989)

4. K. Hua, I. Smith, B. Faltings: Integrated Case-Based Building Design. Preprints of the First European

Workshop on Case-Based Reasoning (1993) 246{251

5. M. L. Maher, D. M. Zhang: CADSYN: A Case-Based Design Process Model. AI EDAM: Arti�cial Intel-

ligence for Engineering Design, Analysis and Manufacturing, 7(3). (1993) 97{110

6. B. Smyth, and M. T. Keane: Retrieving Adaptable Cases: The Role of Adaptation Knowledge in Case Re-

trieval. Proceedings of the First European Workshop on Case-Based Reasoning. Springer-Verlag (Lecture

Notes in Arti�cial Intelligence) (1994)

7. T. Bardasz and I. Zeid: DEJAVU: A Case-Based System to Aid Novice Designers. AI EDAM: Arti�cial
Intelligence for Engineering Design, Analysis and Manufacturing, 7(3). (1993) 111{124

8. B. Smyth, and P. Cunningham: Deja Vu: A Hierarchical Case-Based Reasoning System for Software

Design. Proceedings of the 10th European Conference on Arti�cial Intelligence. Wiley (1992) 587{589

9. M.T. Keane: Analogical problem solving. Chichester: Ellis Horwood (1988)

10. D. Gentner: Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7. (1983) 155{

170

11. R. Bareiss, J.A. King: Similarity Assessment in Case-based Reasoning. Proceedings of the Case-Based

Reasoning Workshop. Morgan Kaufmann. (1989) 67{71.

12. P. Thagard, K.J. Holyoak, G. Nelson, D. Gochfeld: Analog Retrieval by Constraint Satisfaction. Arti�cial

Intelligence, 46. (1990) 259{310

13. J. Kolodner: Judging Which is the \Best" Case for a Case-Based Reasoner. Proceedings of the Case-

Based Reasoning Workshop. Morgan Kaufmann. (1989) 77{84

14. L. Birnbaum, G. Collins, M. Brand, M. Freed, B. Krulwich, and L. Pryor: A Model-Based Approach to

the Construction of Adaptive Case-Based Planning Systems. Proceedings of the Case-Based Reasoning

Workshop. Morgan Kaufmann (1988) 191{198

15. J. Hendler, A. Tate, M. Drummond: AI Planning: Systems and Techniques. AI Magazine, 11. (1990)

61{77

16. K.P. Sycara, D. Navinchandra: In
uences: A Thematic Abstraction for Creative Use of Multiple Cases.

Proceedings of the Case-Based Reasoning Workshop. Morgan Kaufmann (1991) 133{144

This article was processed using the LTEX macro package with LLNCS style

