
The void Shell
A Toolkit for The Development of Distributed Video Games and Virtual Worlds

Karl O'Connell�, Vinny Cahill, Andrew Condon,

Stephen McGerty, Gradimir Starovic and Brendan Tangney

Distributed Systems Groupy,

Department of Computer Science,

Trinity College Dublin

Ireland

Abstract

This paper presents a brief overview of the void ap-

proach to the design and implementation of next-

generation (distributed) video games and other inter-

active virtual world applications. The main features of

the void Shell, a toolkit for object-oriented game and

virtual world development, are described including its

object model and associated class libraries as well as

the tools provided for the game designer and program-

mer.

1 Introduction

The void (for Virtual Objects Interacting Dynam-

ically) Shell [3, 2] is a toolkit for the development of

3D, (distributed) video games and other interactive

virtual world (vw) applications which is being devel-

oped as part of the esprit Moonlight [1] project1.

Moonlight is a collaborative research and develop-

ment project involving industrial and academic partners

from several European countries which is addressing the

development of arcade and pc video game systems. The

project as a whole is addressing both game development

and game execution environments including the devel-

opment of tools for game design and implementation,

hardware and software support for real-time 3D render-

ing, a real-time executive and the void shell. In ad-

dition to games, intended applications of Moonlight

include 3D videotext services such as teleshopping as

well as distributed interactive simulations.

The void shell supports the use of object-oriented

(oo) techniques for the design and development of

games. Central to void is its object model which de-

scribes the way in which the objects representing enti-

ties in a game interact. The void object model, known

�Karl.OConnell@dsg.cs.tcd.ie
yhttp://www.dsg.cs.tcd.ie/
1The Moonlight project is partially supported by the Com-

mission of the European Union under contract number 8676.

as eco, combines three key concepts: objects represent-

ing entities, events providing the means for entities to

interact and constraints which allow the speci�cation

of synchronisation, real-time and noti�cation require-

ments [10]. Entities in void may be de�ned in two

ways: either graphically using the void entity editor (a

statechart-based graphical tool for describing an entity's

behaviour) or programatically with the eco language,

an extension of C++ supporting events, constraints and

objects. void also provides a library of generic game

entity base classes with classes providing support for

animation, collision detection and mobility. A graphics

library supporting both gul (a graphics library devel-

oped within Moonlight which is optimised for real-

time 3D rendering [5]) and gl is also included. void

also provides a world editor, a graphical tool enabling

the game developer to construct a game by positioning

entities within the world. The void execution environ-

ment provides the runtime support for the execution

of game entities including the eco language runtime

and is layered above an instantiation of the tigger ob-

ject support operating system framework [4] providing

a real-time executive [11] as well as support for object

persistence as required.

The remainder of this paper is organised as follows:

Section two describes the architecture of void in (a lit-

tle) more detail and gives an overview of the game de-

velopment process supported. The major features of

void including the object model, class library, entity

editor and support for distribution are described in sec-

tion three while section four concludes the paper with

a brief summary of current and future work.

2 Architectural Issues

The motivation behind the void architecture is simple:

To allow game designers to produce executable games

without burdening them with excessive low level detail

while at the same time allowing them to see the overall

progression of the game. To support this, signi�cant use
1

Entity Editor

ECOlib

Class
Hierarchy

Graphics
Library

Tigger

Development Layer

Entity Execution Layer

Object Execution Layer

World Editor

Figure 1: Overview of the VOID Architecture

of prede�ned code and game structures is required, sav-

ing the designer from carrying out the work themselves.

The object oriented paradigm provides an excellent

basis for structuring a system (using frameworks) and

reusing code (class methods), and as a result void is

heavily object oriented.

Used together, tools such as the Entity Editor and

the World Builder go to make up a designer environ-

ment that ties together intuitive visual programming,

prede�ned game frameworks, and graphical tools in a

way that allows game designers to create games in a

more intuitive fashion.

As shown in Fig.1, void logically consists of three

layers. The development layer supports the production

of games and provides tools and libraries to be used by

game designers and programmers as well as by artists,

animators and musicians. Of course existing \o�-the-

shelf" tools can also be used with void. The entity

execution layer provides the necessary runtime support

for the execution of void applications and is layered

above the so-called object execution layer.

VOID Development EnvironmentStandard
Tools

UNIX/Windows

Entity
Editor

World
Editor

Object Execution
Environment

Figure 2: A VOID Development System

At runtime a void installation takes one of two

forms. A development system (see Fig.2) runs on a

standard workstation or pc and supports the void de-

velopment layer including void tools such as the entity

editor and world editor. The object execution environ-

ment may be used to connect to a target system dur-

ing game debugging and tuning. A target system (see

Fig.3) runs on a custom arcade platform, workstation or

pc. While the same unix workstation might simultane-

ously host a development system and a target system,

it is not envisaged that a single pc would simultane-

ously play both roles. The void execution environment

is tailored to include only the necessary support for the

entities making up the current application.

UNIX DOS/Windows

Hardware

Object Execution Environment

Game/VW Entities

VOID Execution Environment

Figure 3: A VOID Target System

Developing a game using void (see Fig.4) involves

the game designer (the person devising the game) using

the entity editor to specify the behaviour of each class of

entity that is to appear in the �nal game. Following this,

the speci�cation of the entity classes may be enhanced

by linking artwork and animation speci�cations to an

entities behavioural speci�cation. Similarly any sound

e�ects required are added at this stage.

The programmer then elaborates the statecharts of

each Entity by adding appropriate eco code fragments.

With the help of the entity editor, a complete eco

source code representation of the entity can then be

produced. Once the appropriate code has been com-

piled the designer and programmer use the world editor

to place instances of these entity classes within the game

world. Of course the entire process is unlikely to be car-

ried out in a single iteration!

3 The ECO Model

In the eco model, objects which are instances of classes

communicate using events. An event represents a

change to the state of the system. Each event has a

name and zero or more parameters. The parameters

of an event are typed. For the speci�c occurrence of

an event the parameters are instantiated with values.
2

Class Hierarchy
Entity

Sounds Clip Art

Designer

entity behaviour
specifies basic Artist

Musician

Entity Editor

Programmer
Completes

Entity code

C++/ECO source code

defining Entity classes

Designer & Programmer
Place various Entities
in a Game World

World Editor

Game/

Virtual World

Figure 4: Overview of Game Production

These values, together with the event name, describe

the state change that has occurred.

An object can inform other objects about a state

change, and it can react if it is informed of some state

change by other objects. The former is accomplished

by announcing an event, and the latter by binding a

method of the object to the required event. This bind-

ing can be static (at object creation time) or dynamic.

The same method can be bound to several events, and

the same event can have several methods (of the same

or of di�erent objects) bound to it. A binding can be

established only if the signatures of the event and of the

method match (if they have the same number of param-

eters, and the types of the corresponding parameters are

the same). Thus events may be considered as a form of

one-to-many anonymous communication.

In addition to events, the object model supports con-

straints. Constraints are named conditions which con-

trol the propagation and handling of events. The mo-

tivation for constraints is threefold. Firstly, synchro-

nisation constraints provide a mechanism for associ-

ating synchronisation policies with a class. Secondly,

real-time constraints provide a mechanism for associ-

ating various real-time requirements with a class and

�nally notify constraints provide a means of restricting

the propagation of events to objects which are speci�-

cally interested in particular occurrences of those events,

thus enabling a more e�cient implementation of event-

handling. An object may decide, based on its local state

when it is informed about an event of interest that the

processing of the event should be postponed or even

cancelled. If the local state is such that the processing

should go ahead, it may be the case that multiple ows

of control are allowed within the object.

3.1 Notify Constraints

A notify constraint is optionally provided by a des-

tination object when it subscribes to an event. The

only data which can be referred to by such a constraint

are the parameters of the event and the identity of the

source object. The destination object uses a notify con-

straint to express: I want to be informed about those

occurrences of this event which satisfy this condition.

For example, consider the common case of a Collision

event whose parameters might include the identities of

the objects that collided and to which many objects are

likely to be subscribed. Many of them will be inter-

ested only in collisions between themselves and another

object. Without notify constraints each collision event

would be handled by every subscribed object, each of

which would have to check whether the collision con-

cerned it or not. Notify constraints restrict the prop-

agation of events to only those objects which want to

receive them. Since notify constraints do not depend

on the local state of the destination object they can

be evaluated in the context of the source object, or of

some event manager object. In particular, in the dis-

tributed case notify constraints can be evaluated at the

raising node avoiding unnecessary transmission of event

noti�cations to remote nodes. An example of a notify

constraint is given next:

Collision((object1=Monster AND object2=Wall) OR

(object1=Wall AND object2=Monster)).

3.2 The void class hierarchy

The void class hierarchy provides the designer with a

class library containing much of the basic functionality

shared by every game entity, a graphics library and a

library of I/O classes.

When beginning a new entity de�nition the designer

can explicitly combine classes from the hierarchy to syn-

thesise a new class that has the properties necessary

for the envisaged role. These properties come in three

forms: concrete state (i.e. data); useful methods for

maintaining this state; and encapsulation of the inter-

face to standard classes (e.g., the Collision Manager, the
3

local Renderer etc). A \mixin" style of programming is

supported whereby each entity includes only the neces-

sary features via inheritance from a set of class hierar-

chies (see Fig. 5 which shows the bases classes of these

hierarchies.)

Using existing code in this manner enables the devel-

oper to have usable classes with which to build a pro-

totype system. The game-speci�c functionality of the

new class is added subsequently by the designer (using

statecharts) and the programmer (providing game logic

in the form of event-handlers).

Movement

Perception

Animation

Collision

Player
Control

Entity

Figure 5: The VOID Class Hierarchy

The Entity class is the most basic class from which

all other entities are derived. The main purpose of this

class is to encapsulate the functionality common to all

game entities.

The purpose of the Movement class is to provide en-

tity classes which are derived from it with the appropri-

ate state variables and the methods necessary to update

them (see �gure 5).

The Animation class is provided to give the design-

ers the necessary functionality to control and display

animated graphical representations of the entity, using

facilities provided by the graphics library. In a 2D game

the animations would consist of sequences of bitmaps.

In a three-dimensional game the animations will consist

of 3D graphical representations and associated matrices.

In each case it is the responsibility of the sub-classes to

ensure that the correct representation/matrix is sent to

the renderer on each frame.

The Collision Support class is provided as a

means of insulating the designer from the details of

collision detection. It also obviates the need for the

programmer to write very similar code for every entity.

This class provides a bounding box and the tools to ma-

nipulate it and to choose di�erent collision policies. It

is the responsibility of this class to interface with the

Collision Manager and to keep the Collision Manager

informed of its position2.

3.3 The Entity Editor

The Entity Editor is a tool used to specify how the enti-

ties in a game should behave. It allows game designers,

with little or no programming knowledge, to create en-

tity classes. The behaviour of an entity is de�ned by

the actions that it performs in response to events, so

the notation used by the Entity Editor must allow the

designer to specify this simply and intuitively.

As the same event may not always trigger the same

response from an entity (e.g., `once bitten, twice shy'),

a state-based notation is required for describing its be-

haviour. Rather than using ordinary State Transition

Diagrams (STDs) as the basis for the notation, it was

decided that Harel's statechart notation [6] would be a

better choice, since:

� statecharts are a relatively intuitive notation, once

a few basic concepts are understood;

� with appropriate state, event and action names,

an entity statechart can be a very legible descrip-

tion of its behaviour;

� statecharts support the concept of modularity, al-

lowing a hierarchical nesting of states. This sup-

ports the top-down design of entity behaviour;

� statecharts provide for orthogonality, allowing the

state machine to be in two independent states at

the one time;

� through modularity (or depth) and orthogonality,

statecharts are signi�cantly more e�cient in the

number of transitions and states required, when

compared with STDs. This improves the clarity

of the resulting statecharts.

The notation used by the Entity Editor is an exten-

sion of Harel's Statechart notation [8]. As well as speci-

fying the states, the Entity Editor must allow the user to

de�ne actions (methods) and attributes (data members)

of an entity class. In addition, the state transitions are

be annotated as follows:

Event(params)[condition]/Action(params)

A transition may only be taken if the appropriate

event has been delivered to the entity, and the condition

evaluates to true. If the transition is taken, then the

2As youmay guess, Collision isn't actually orthogonalto Move-

ment: it is derived from it. To the users of the system, however,

this is hidden by the tools and they don't need to concern them-

selves with it.
4

Alive

Going Left Going Right

Collision(a)[a==Wall]/SetVelocity(-1,0)

Collision(a)[a==Wall]/SetVelocity(1,0)

Dead

Collision(a)[a==Enemy]/RollOverAndDie()

Figure 6: A Statechart example.

state change occurs and the action is executed. It is

important to note that work is only done when a state

change occurs. Once in a new state, the entity does

nothing but wait for the next event to be delivered.

Figure 6 depicts a simple entity statechart. Con-

sider the entity in question to be a blind creature which

spends all of its life walking back and forth between two

walls. If it bumps into a wall, it just turns around and

walks the other way. If it bumps into an enemy, it dies

of fright.

The actions speci�ed in a statechart can be inher-

ited, or can be part of the entity class itself. Common

actions, such as SetVelocity, could be provided by entity

base classes. More speci�c actions, such as our crea-

tures' RollOverAndDie, would be introduced for a spe-

ci�c entity, and would become part of that entity class

de�nition.

Note that in this case the conditions may be imple-

mented as notify constraints if the implicit parameter

of the Collision event was available. The event indicates
that the creature collided with something; the fact that

the event refers to the creature is implicit. In general

however, the condition may be a function of the data

members of the entity, in which case it would not be

implemented as a notify constraint.

As an application in its own right, the Entity Edi-

tor is somewhere between an integrated compiler and a

drawing package. Its user interface borrows ideas from

applications of both kinds. For drawing the statechart,

typical functions such as resizing, moving, cutting and

pasting of states must be available. As the Entity Editor

is to be used for creating entity classes for video games,

it must be easy for the user to build a set of classes for

a single game. This is analogous to the way integrated

compilers allow you to group many source modules in a

single project.

The general structure is given in Fig.7. The Entity

Entity

Definition

File
Entity Definition

Generator

GUI
Front-end

Generator
Code C++/ECO

Figure 7: The Entity Editor.

De�nition Generator controls the GUI front end and

is also capable of saving and loading Entity De�nition

Files (EDF). These �les are purely a storage format for

holding de�ned entity classes, and are not intended to

be used for execution purposes.

The Code Generator is responsible for creating the

code for a C++/eco class that is an executable repre-

sentation of the de�ned entity class. The code can then

be compiled and linked within the void development

environment.

Once all the entity classes have been de�ned, in-

stances of them can be used to build the application

universe. This is done through a world builder, which

allows the initial internal state of each entity to be set,

as well as enabling the game world to be built.

3.4 Distribution in void

void supports three scenarios for distributed execution:

centralised, replicated and partitioned.

In the centralised case, only one copy of the game

world exists and is managed by a single server. An

advantage of this centralised architecture is that it is

intrinsically simple with little work required for a new

user to join the game. The synchronization is handled

in one place and therefore is easy to realise. A disad-

vantage however, is that network tra�c becomes high as

output from the server must be broadcast to every par-

ticipant. Also, as all activities are channeled through

the central server, it may become a bottleneck as the

number of participants grows. In addition there is a

high dependency on the server.

With the replicated architecture, each participant

has a replica of the game world. Every participant ac-

cepts input from other the participants' console, passes

the input to its resident copy of the game, which then

recomputes and generates the necessary output to the
5

user. A major advantage to this type of architecture

is that a lower bandwidth is required, as only the in-

put rather than output, needs to be distributed among

users. In addition, all participants receive good interac-

tive performance because they interact with local copies

of the game or game. A disadvantage with replicated

architectures, however, is that they are more compli-

cated than centralised architectures and it is more dif-

�cult to maintain consistency across all copies of the

shared game world. Thus synchronisation mechanisms

are needed to ensure that every copy sees the same se-

quence of input events.

In the partitioned case the game is partitioned

among the participant's consoles thereby supporting

large scale applications which involve large numbers of

state changes which may not be relevant to particular

players at any given time. This may be particularly

true with indoor scenes where certain entities within

the world will not be visible [7]. Moonlight is devel-

oping a mechanism for organising entities to overcome

this problem. Entities may be grouped into sets called

zones according to their location and/or functionality

within the game world in a similar way to [9]. Entities

in a particular zone are only subscribed to the events re-

lated to that zone. This limits the propagation of events

to the nodes which have an entity present but which is

not belonging to the zone. Zones may overlap and stan-

dard events may be de�ned for each zone to which all of

its members are subscribed automatically as they join

the zone (and unsubscribed as they leave).

4 Future Work

At the current time, the design and speci�cation of the

eco model, the class library, and the entity and world

editors is complete. A class library allowing C++ pro-

grams to use events and constraints is available while

preprocessor and runtime support for the eco language

is being developed. First prototypes of the entity class

library and graphics library are also available. In addi-

tion to language support for eco current work is also

concerned with the implementation of distributed event

management and the detailed design of area manage-

ment.

Acknowledgements

The authors would like to acknowledge the very many

helpful contributions that our partners in the Moonlight

consortium, fromAPD, Caption, Deltatec and NR, have

made in the design of Void to date. Special thanks are

due to Luis del Pino.

References

[1] Moonlight Management Board. Technical Annex

to the Moonlight Contract, September 93.

[2] Vinny Cahill, Andrew Condon,

Dermot Kelly, Stephen McGerty, Karl O'Connell,

Gradimir Starovic and Brendan Tangney. VOID

Shell Speci�cation. Deliverable 1.5.1, TCD, 95.

[3] Vinny Cahill, Andrew Condon, Gradimir Starovic,

and Brendan Tangney. VOID Shell and Execu-

tion Environment De�nition. Deliverable 1.2.1 and

1.3.1, TCD, 94.

[4] Vinny Cahill, Christine Hogan, Alan Judge, Dar-

ragh O'Grady, Brendan Tangney, and Paul Tay-

lor. Extensible systems - the Tigger approach.

In Proceedings of the SIGOPS European Work-

shop, pages 151{153. ACM SIGOPS, September

1994. Also technical report TCD-CS-94-07, Dept.

of Computer Science, Trinity College Dublin.

[5] Pascal Cottin. Moonlight Project Graphics Inter-

face De�nition. Technical report, Caption Groupe

Telmat, 1994.

[6] David Harel. On visual formalisms. Communica-

tions of the ACM, 31(5):514{530, May 1988.

[7] R Kazman. Load Balancing, Latency Management

and Separation of Concerns in a Distributed Vir-

tual World. Technical report, Department of Com-

puter Science, University of Waterloo, Ontario,

Canada, 1993.

[8] Stephen McGerty, Vinny Cahill, Andrew Condon,

Karl O'Connell, Gradimir Starovic, and Brendan

Tangney. Moonlight Entities and Statecharts, 1995.

Working paper TCD.

[9] Macedonia M.R., Zyda M, Pratt D.R., and

T Barham P.T. Exploiting Reality with Multicast

Groups: A Network Architecture for Large Scale

Virtual Environments. Technical report, Computer

Science Dept, Naval Postgraduate School, 1994.

Also in proceedings of VRAIS'95.

[10] Gradimir Starovic, Vinny Cahill, and Brendan

Tangney. ECO: Events + Constraints + Objects.

Technical Report TCD-CS-95-02, Distributed Sys-

tems Group, Computer Science Dept.,Trinity Col-

lege Dublin, 1995.

[11] Chris Zimmermann and Vinny Cahill. Roo: A

framework for real-time threads. In Proceedings

of the Workshop on Parallel and Distributed Real-

Time Systems, 1995.

6

