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Abstract

Computer Graphics have come a long way since the pioneering work of Ivan Sutherland
in the early 60’s and his SketchPad software developed during his postgraduate research
studies at MIT. This system used a vector-based Cathode Ray Tube with a prototype
”light-pen” device with which users of the system could draw line based images on the
display.

In more recent times, computer graphics are not simply an interface between hu-
man and computer but a tool for visualisation, expression and communication. There
have been many goals for the computer graphics industry and academic community: to
simplify the interface to the computer; to allow manipulation and visualisation of data
in a meaningful and insightful manner; to facilitate medical exploration of the human
body; to provide faster drawing speeds for real-time applications including simulators
and games.

The dominant objective, however, has remained the attainment of realism. If we
have truly realistic computer graphics we can create digital actors and replace their live
counterparts for particularly dangerous or difficult movie sequences. We can produce
images of product designs with absolute faith that the image is a completely accurate
and faithful representation of a manufactured version.

Realism has a price though. It is probably fair to say that we understand quite well
the mechanics of image formation, optics and reflectance (at the very least for certain
classes of scenes and environments). There are tremendous problems associated with
acquiring accurate input data, however, and the final ingredient, the simulation, still
presents tough challenges. Each image we perceive is the result of countless billions of
interactions between photosensitive retinal cells and incident light energy. This energy
that arrives at the eye has almost certainly had an interesting journey from its source
experiencing many scattering events at the interfaces between media in the scene and
within the media themselves.

Solution strategies have involved the use of both Finite Element and Monte Carlo
Methods. We will examine how such methods may be employed in realistic image
creation, assess their current application and suggest areas of future research and de-
velopment.
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1



1 Introduction

Computer graphics are all pervasive, in today’s information age, as a means of expres-
sion and communication. From the desktop to the virtual surgery computer graphics
have revolutionised the way in which we interact with computers, information and
each other. One goal of computer graphics is to compute synthetic images of real and
imaginary scenes which are entirely realistic and are convincing enough to be used to
validate industrial designs and to fool cinema audiences that the actor on the big screen
really is made of mercury and slipping between the bars of his jail-cell. This paper
will outline current research into photo-realism, otherwise known as realistic image
synthesis, the basic ingredient of which is global illumination (the simulation of light
transport in arbitrary scenes).

To a large extent the physics of light transport and light interation with surfaces and
media is well known. We can draw on a huge body of research in areas from neutron
transport to thermal radiation heat transfer [SH92] to radar theory and apply many of
the techniques to solve the problem of visible light transport in scenes. However, the
particular challenges of simulating light transport to produce images of photo-realistic1

quality require new techniques in order to achieve acceptable quality and efficiency. We
can exploit, for example, the independence of quanta of light energy as they interact
with the scene2. We can ignore the wave nature of light considering only its particulate
nature and finally we can assume the existence of a steady state solution with no non-
linearities3.

The nature of the required solution is quite different from many other disciplines.
We are not interested in a set of measurements to be displayed using typical visualisa-
tion software. We require an image, or more precisely, a rectalinear array of samples
of theplenoptic function4 [AB91]. To compute an image we specify a view (position,
orientation, size of sensor and direction of view) which guides the simulation phase.
Given the view, we sample the plenoptic function at a sufficiently high density to recon-
struct an accurate image of the scene. Each sample may not be expensive to compute
relative to other disciplines, but the number of samples required for even the most mod-
est of views is high and the complexity of the scene is usually much higher than in other
applications. For example, the recent Disney film “Toy Story” included scenes which
were modelled using in excess of 100 million polygonal elements [Apo98]. This in-
troduces the final requirement: most designers/artists are not willing to wait very long
for an image (typically less than 2 hours) particularly when a sequence of images are
being generated (“Toy Story” required over 100 thousand) for animation purposes.

An image is formed when light energy arrives at the retina and is interpreted by
the brain or when light energy strikes the photosensitive sensor in a camera. This
light began its journey at a light source and probably experienced a complex series of
scattering events alongs its journey altering the frequency, phase and amplitude of the
light. To compute an image we must model the sensor, the light source and the physics

1By photo-realistic we mean that the image evokes a visual respose similar to that evoked by a photograph
of the scene being simulated.

2All phase effects can be ignored at a macroscopic level; we are interested in phenomena that exist at
magnitudes many orders greater than the wavelength of light.

3Although virtually all light sources have time variance due either to imperfections in the mechanics or
to fluctuations in the power supply, the human visual system is particularly good at filtering these effects out.
Therefore we can consider the average state of the system over a finite period. We will assume that the lights
have been switched on already and the scene has reached equilibrium

4Theplenoptic punctionrecords the distribution of light in all directions flowing through scene. It is a
function of positionx and direction(�; �).
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of light interation with surfaces and media in the scene.

Figure 1: Requirements for realistic image synthesis.

Figure 1 illustrates the requirements for realistic image synthesis.

1.1 Geometry

We begin with an accurate geometric model of the scene to be rendered. Models are
usually hybrid constructions of polygons, implicit surfaces, density functions, piece-
wise cubic manifolds or volumetric elements. Implicit in transport simulation is the
ability to intersect lines with each of these elements to determine points of potential
scattering events along the paths of light energy quanta (which we will callphotons,
though in this case “photon” is simply a convenient term for a finite quantity of light
flux which, in the absense of a scattering event, travels linearly with infinite speed, and
does not imply a quantum physics approach). The model allows us to establish regions
in the scene through which photons will not undergo scattering. Usually in these re-
gions we assume an isotropic (and transparent) medium. Photons travel from surface
to surface, being scattered at each interface and terminate only when the associated
flux drops below some threshold (i.e. the photon has been absorbed). If the photon
arrives at the sensor it contributes to the image being formed. Various algorithms re-
quire a more restricted geometry (see, for example, the radiosity method outlined in
Section 5.1). A vital component of the geometry, though often treated separately, is the
light source (orluminaire). In more recent work, light sources are becoming increas-
ingly complex, with non-isotropic emission characteristics, varied geometries and high
spectral variation (required for the treatment of flourescent sources) [VG84, LT92].

1.2 Surface Data

The characteristics of each surface in terms of how that surface is perceived under var-
ious lighting conditions depends entirely on the manner in which the surface scatters
incident light radiation. The selective absorption of light wavelengths gives rise to the
colour of the surface. We are very good at determining the micro-scale geometry of the
surface from the manner in which the scattering behaviour varies with direction (this
allows us to distinguish between silk and cotton, even though they may be the same
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colour). Surface scattering is quantified by the BSDF (bidirectional scattering distri-
bution function) defined as a spherical density function. In the following discussion
we will consider only opaque surfaces and thus the BSDF reduces to the hemispheri-
cal BRDF (bidirectional reflectance distribution function). The modelling, storage and
application of BRDF data will be dealt with in detail in Section 3.

1.3 Viewing System

We need to define a viewing system in order to create an image. In general if we have a
complete solution for the plenoptic function, our view is simply a 2D slice through this
5D function. For each point on the viewing sensor (which will normally be assumed to
be a rectalinear quadrilateral) we determine the direction(s) that light can arrive through
and sample the plenoptic function accordingly. This pre-supposes the existence of a full
solution which will rarely be available. Instead, we adopt one of two approaches:

View dependent simulation: rather than compute the entire 5D plenoptic function,
we evaluate it only on the 2D slice that is the sensor or viewing region. This is
an importance sampling approach and involves either rejecting photons that do
not arrive at the sensor or tracking photons in reverse beginning at the sensor.
Both approaches will be discussed in section 5.2.

View independent simulation: view independent schemes make no simplifying as-
sumptions regarding the view from which the image will be taken. Rather a
more complete representation of the plenoptic function is simulated. In order
to be tractable, we usually employ either a volumetric approach (the function is
approximated as a lattice with accurate values at the nodes) or a surface based
approach, where we assume non-scattering media between surfaces. In this latter
case, we evalutate the lighting at nodes on the surfaces, requiring a mesh repre-
sentation of the surface elements. We rarely compute the complete 5D sample
even at these points, instead we adopt simplifying assumptions regarding the re-
flectance of the surfaces (for example, by assuming no dependence on direction).
TheRadiositymethod employs such techniques and is discussed in Section 5.1.
In such cases, the simulation provides a simple compact representation of the
plenoptic function which is later queried by a viewing system in order to com-
pute a view using simple projective geometry.

1.4 Simulation

The final ingredient is the simulation. Depending on the application there is a rich
variety of rendering algorithms to choose from. A coarse taxonomy follows:

Projective Methods: early graphics algorithms computed images by projection of
polygonal elements onto a viewing plane. These projections were then coloured
according to a simple approximation of the lighting on the polygon, usually as-
suming lighting directly from light sources alone and therefore did not account
for intermediate scattering. The greatest difficulty is in the determination of
visibility and occlusion. These methods are employed in all real-time graphics
hardware epitomised by the Silicon Graphics systems.

Finite Element Methods: the first example of the use of FE technology in computer
graphics was work carried out by Goral et al. in 1984 [GTGB84]. Since then, the
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Radiosity Methodhas been one of the most active areas of graphics research. The
method requires a mesh geometry and expresses the global illumination prob-
lem as a linear system to be solved using traditional methods (including Gauss-
Seidel, Southwell-relaxation schemes and more recently Wavelet methods). This
method, as mentioned earlier, does not compute a single view, but rather eval-
uates the illumination at nodes in the scene only. The method is currently only
applicable in scenes exhibiting highly coherent reflectance.

Monte Carlo Methods: since 1980 [Whi80], algorithms similar in nature torandom
walkMC simulations have been employed in computer graphics. Theray tracing
algorithm is an example of such a system and is currently one of the most pop-
ular of all rendering algorithms. MC methods track the paths of photons as they
interact with scene elements, probabalistically assigning new directions and en-
ergies based on the scattering characteristics of the material encountered. These
methods scale extremely well to higher dimensional problems but exhibit error in
the form of noise which can be problematic for applications requiring extremely
high fidelity imagery. For example, the film industry demands noise-free im-
ages but are willing to accept other forms of error (e.g. consistently over-smooth
illumination, sharp shadows rather than penumbrae).

Image Based Methods:recently, image based rendering (IBR) methods [GGSC96,
LH96] have become a popular solution to the problem of geometry acquisition
and fast lighting. Rather than computing images, we take real-world imagery
(i.e. scanned photographs) and create new views of the scenes depicted in these
images by extrapolation, interpolation and reconstruction. This is currently one
of the most active areas of computer graphics research.

In this paper we are mostly concerned with Monte Carlo methods but will outline
in more detail the Finite Element approach as a means of comparison. The projective
and IBR approaches will be largely ignored as neither is concerned with the accurate
simulation of light transport.

2 Radiometry and Photometry

In computer graphics, we are interested in the spatial and directional distribution of
light flux. Instantaneous light energy is of no interest to us given our assumption of
a steady state solution, so it ispower5 (with units ofWatts and denoted�) that we
measure and simulate. Power will usually vary with position on a surface or within a
volume. This distribution is described by theradiosity6 (B = d�out

dA
) or exitant power

per unit area (with unitsWatts m�2) or irradiance (E = d�in
dA

) with similar units
which expresses incident power per area. Finally, to express directional variation we
employradiance(L = d2�

dA cos �d!
) which expresses the power per unit projected area

per unit solid angle (with units ofWatts m�2 sr�1). A geometric interpretation of
radiance is illustrated in Figure 2. The spectral dependence of all the above terms is
assumed but omitted for the purposes of clarity.

These are radiometric terms and as such include the entire electro-magetic spec-
trum as domain. Computer graphics involve visual results and therefore we can ignore

5Power and flux are used here interchangeably.
6Radiosity is more formally known asradiant exitance, but we will adopt the more common term for

convenience.
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Figure 2: Geometry of the definition of radianceL = d2�
dA cos �d!

.

all wavelengths outside the visible range (approximately380nm to 780nm). The hu-
man visual system is not uniformly sensitive within the range however. In particular,
we are very poor at descriminating differences in blues and relatively good when dif-
ferentiating greens. When we talk aboutbrightnesswhich is entirely a psycho-physical
sensation it is not sufficient to express the radiance, radiosity or power of a source. The
science ofphotometryis the measurement of the visual response of average human ob-
servers to radiometric quantities. Implicit in photometry is the notion of an “average
observer model”7. Associated with model is the luminous efficiency functionV (�)
which quantifies the sensitivity of the human visual system to all wavelengths of light.
Thus, given the spectral power function of a source (�(�)) we can easily determine the
apparent brightness (or luminous powerP ) of the source:

P =

Z 780

380

V (�)�(�) d� (1)

As with the radiometric measures, the luminous power (unitsLumens) can be
quantified according to its spatial and directional distributions (luminous power per
area = luminance, and luminous power per area per direction = luminosity). When
computing an image for display, it is important to assume that the display device is
not capable of reproducing the dynamic range of brightness present in the real scene,
therefore it is necessary to account for the effect of viewing this dynamic range and
computing an image which conveys the correct perceptual response.

2.1 The Radiance Equation

The radiance equation (Equation 2 and illustrated in Figure 2.1(a)) introduced in 1986
by Kajiya8 [Kaj86], is fundamental to global illumination and it is this that all rendering
algorithms seek to solve or approximate.

We are interested in the radiance scattered by a surface towards the viewer which
may be expressed as

7The foundation of all photometric research is the work of the CIE (Commission Internationale
d’Eclairge) in 1932 [WS82] which tabulated the visual characteristics of a sample population of visually
unimpaired subjects. This led to the establishment of a standard perceptually-based colour metric and the
standard observer model.

8In Kajiya’s paper, he uses the term “rendering equation” and expresses this in terms of intensity. Since
then a more rigorous formulation employing radiance has been adopted by the rendering community.
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Figure 3: Geometry of the radiance equation. (a) illustrates an integration over all
directions, whereas (b) illustrates a surface integral approach.

Lr(x; !r) = Le(x; !r) +

Z



fr(x; !i; !r)Li(x; !i) cos �i d! (2)

This accounts both for the radiance emitted in the direction!r by the surface atx,
Le, and the radianceLi which has arrived atx via directions!i and scattered according
to the BRDFfr. This is an example of a Fredholm equation of the second kind. The
domain of integration,
 is hemispherical if the surface atx is opaque and spherical
otherwise. Note the recursive but linear nature of the integral. Thedriving termLe is
non-zero for luminaires only.

The luminaires will tend to have smooth emission distributions and the BRDF is
often approximated by spherical functions which are also highly smooth. However
the implicit visibility term (in order to determineLi, the incoming radiance, we must
determine the surface visible in direction�!i from x) introduces the complexity. Al-
ternatively we can make explicit this dependence on visibility by re-formulating the
radiance equation as a surface integral [SW91], in which case we must relate the differ-
ential solid angle measured! to the differential area measuredA(x). This is illustrated
in Figure 2.1(b).

Lr(x; !r) = Le(x; !r) +

Z
A

fr(x; !i; !r)Li(x; !i) cos �i
dA(x) cos �o
jx� x0j2

(3)

Analytic expressions exist for certain simple scene geometries (e.g. a flat plane
illuminated by spherical or polygonal source), but as geometric complexity increases
(beyond 4 polygons in fact), analytic solutions become non-trivial and quickly become
non-existent. Thus we must rely on numerical methods to solve such problems.

3 Modelling Reflectance

Before exploring numerical methods for solving the radiance equation we will outline
the role of the BRDF in global illumination and discuss methods for aquiring, storing
and implementing reflectance data. The BRDF (illustrated in Figure 3) is formally

7



defined as the ratio of reflected radiance to the incident differential irradiance and is
expressed as

fr(x; !i; !r) =
dLr(x; !r)

Li(x; !i) cos �id!i
(4)

Figure 4: Geometry of the BRDF.

Note how the radiance equation is constructed by multiplying across the denomi-
nator of the BRDF ratio, including an emission term and integrating. The BRDF is a
density function (fr � 0 always) and thus directly applicable for importance sampling
in Monte Carlo integration (refer to Section 5.2.2 for further details).

The simplest BRDFs are those ofideal diffuseandideal specularsurfaces. We use
the term “ideal” to indicate that the surfaces do not simply exhibit diffuse or specular
characteristics but are entirely diffuse or specular. Diffuse surfaces exhibit coherent re-
flectance. The BRDF for such surfaces is constant for all outgoing directions, therefore
the BRDF may be replaced with a constant diffuse reflectance value,�d, related to the
diffuse BRDF by�d = �fr;d. It is no longer necessary to quantify radiance for such
surfaces, as the radiance does not vary with viewing angle, so instead we use radiosity.
To determine reflected radiance for a diffuse surface we scale the irradianceE by �d=�
(see [CW93] for further details).

Lr;d(x; !r) =

Z



fr;d(x; !i; !r)Li(x; !i) cos �id!i (5)

=
�d
�

Z



Li(x; !i) cos �id!i

=
�d
�
E

A BRDF which exhibits no coherence in reflection is that of an ideal specular sur-
face, a good example of which is an ideal mirror. In this case, the reflected radiance
depends entirely on the viewing direction and will vary considerably with changes in
the viewing angles. An ideal specular BRDF is non-zero for a single direction only
(the optically reflected direction) and is thus characterised by a delta function. Both
the diffuse and specular BRDFs are illustrated in Figure 3.
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Figure 5: Hemispherical graphs of various idealised BRDFs. In all cases the incoming
angle is fixed and the BRDFs are assumed to be isotropic.

Many real-world BRDFs lie somewhere between these two extremes. Two exam-
ples of less idealised BRDFs are shown in Figure 3. Many BRDFs however are sig-
nificantly more complex and exhibit dependence on wavelength, incoming elevational
and azimuthal angles and position (possibly even time). To model such BRDFs we
have a number of options. We can attempt to measure real BRDFs using agonioreflec-
tometerand thereafter interpolate for parameters not captured directly by measurement
[War92]. Alternatively we can derive an analytic model of surface reflectance based
either on empirical observation (the phenomenological approach) [Pho75] or derive an
analytic model for the behaviour of some simple micro-geometry [HTSG91]. A final
approach involves avirtual gonioreflectometerwhich uses a Monte Carlo simulation to
build a BRDF by firing photons at a geometric model of some micro-surface structure
and recording the scattered directions of these photons in a directional data-structure
[WAT92].

3.1 Empirical Methods

A good example of an empirical BRDF model is thePhong Model. This model is based
on the observation that many specular surfaces (plastics in particular) have BRDFs
that may be approximated by a linear combination of a constant diffuse term and a
rough specular term (sometimes known as a glossy term) modelled as acosn lobe. The
complete model is

fr(x; �i; !r) =
�d
�

+ �s
n+ 2

2�
cosn � (6)

The geometric interpretation of the model is given in Figure 3.1 and some samples
of what is possible with the model are given in Figure 3.1. The BRDF has a maximum
in the optically reflected direction. The reflectance drops as the angle� between this
direction and the outgoing direction!r increases. The numerical simplicity of this
model makes it very popular for rendering algorithms and so a large proportion of all
computer graphic imagery employs the Phong model or a derivation thereof.

In many cases it transpires that the simplicity of the BRDF model is actually
masked by the complexity of the radiance distributions and many of the most realistic
images produced to date have employed this simple model.

Other empirical models, including that of Ward [War92] actually measure surface
samples to determine their reflectances and attempt to fit this data to a function which
is sufficiently general to allow a good approximation of the measurements. In theWard
model, an elliptical Gaussian is chosen as a basis.
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Figure 6: The geometry of the Phong BRDF model.

Figure 7: Some sample BRDFs using the Phong model.

3.2 Virtual Gonioreflectometry

A novel approach to the problem of BRDF data acquisition is to construct a geometric
model of the micro-surface structure [WAT92] of the surface for which a BRDF is re-
quired (this model is typically of the order of millimeters in cross-sectional area). Many
surfaces (for example silk, cotton, brushed metal) have well-known micro-geometry.
Once this geometry is constructed, a large number of photons are fired at it and tracked
as they interact with the micro-surfaces. Usually, we assume a simple BRDF model for
the elements making up this micro-geometry9 which allows us to simulate the scatter-
ing in a probabilistic manner. Once tracked, we determine the directions with which
the photons leave the target geometry (if at all) and tabulate for all in-going directions
the resulting out-going directions. Some sample micro-geometries are illustrated in
Figure 3.2.

Figure 8: 2 micro-scale geometries for common surface materials.

9Salt crystals, for example, are entirely transparent when magnified, however when viewed from a dis-
tance they take on the appearance of a white powder, due entirely to the scattering of light through and off
the salt crystals. At the micro-scopic level we might model the BRDF of salt as if it were an ideal specular
transmitter like glass.

10



Storage of this data is another difficult problem. The BRDF can have dimension
of greater than 5 depending on the application, and so some form of compression is
required (particularly given that regions of the BRDF data-set can be both sparse and
highly symmetric/coherent). We have successfully applied a feed-forward Neural Net-
work to this problem and have reported significant compression ratios with efficient
query times during light transport simulation [GN98].

4 Analytic Reflectance

In some cases, the reflectance of the surface is well-known. If the surfaces can be as-
sumed to be optically smooth and are ideal conductors or dielectrics (for example gold,
copper and glass) then we can directly employ theFresnel equationswhich are solu-
tions to Maxwell’s wave equations for planar waves at the interface between media of
different refractive indices. By employing these equations directly we can accurately
capture the appearance of glasses and metals which is of particular importance in in-
dustrial design visualisation. Examples of analytic reflectance data of some materials
is given in Figure 4. This data is the result of applying the Fresnel equations to the
material’s frequency dependent refractive index function.

Figure 9: Fresnel reflectance for 2 materials.

5 Numerical Methods

The solution of the radiance equation for complex scenes is a non-trivial problem and
one which has received a lot of attention in the computer graphics research community
since 1980. Over the years since then two major families of algorithms have devel-
oped: the Finite Element based methods and the Monte Carlo methods. The choice of
algorithm depends very much on the final application. For example, in the case of in-
terior lighting design, a diffuse reflectance model will often suffice so a Finite Element
approach will usually produce the most desirable results. When visualising industrial
designs with varied surface types and possibly significant spectral variation (as in the
case of automobile paint or crystal glass) Monte Carlo approaches are more appropri-
ate. Each algorithm family has its strengths and weaknesses. Whereas the FE methods
produce smooth images with soft lighting they do not scale well and in particular are
poor at handling specular surfaces and discontinuous flux distributions. Monte Carlo
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methods are more general, can adapt to most surface geometries and reflectances but
are very slow to converge and can suffer from serious noise artifacts.

5.1 Finite Element Methods

In order to employ FE methodologies, it is first necessary to simplify the radiance
equation in order to reduce it to a finite linear system of equations. This involves a
number of simplifying assumptions:

1. All surfaces are diffuse, therefore we can drop the BRDFfr in favour of the sim-
pler reflectance�d. We can also work directly with radiosity rather than radiance
as all the surfaces exhibit no reflectance variation with respect to direction.

2. The scene is composed entirely of surface elements, usually planar, over which
the radiosity is assumed to vary in a known manner (often this is linear or cubic).

Given these assumptions we can reduce the radiance equation to the simpler discrete
radiosity equationwhich is expressed as

Bi = Ei + �i

nX
j=1

BjFij (7)

2
64
1� �1F11 : : : ��1F1n

...
...

��nFn1 : : : 1� �1Fnn

3
75
2
64
B1

...
Bn

3
75 =

2
64
E1

...
En

3
75 (8)

Equation 8 summarises the linear system ofn equations resulting from a scene with
n elements.Bi and�i are the radiosity and reflectance respectively of patchi, Ei is
the emitted radiosity of patchi andFij is the form factor from patchi to patchj which
accounts for the geometric relationship between patchesi andj and thus gives the ratio
of the radiosity leaving patchj which arrives at patchi.

To solve this system we can employ many different matrix methods. The matrix is
diagonally dominantand can be made symmetric via a simple transformation and so
iterative schemes converge rapidly. Currently the most popular method is an adapted
form of Southwell relaxationknown as theProgressive Refinement Radiosity Method
[CCWG88]. More recently, clustering algorithms10 [RPV93] and wavelet methods11

[GSCH93] are being used to accelerate the radiosity simulation with minimal error.
Appropriate meshing is vital in order to effectively capture important features in

the radiosity solution. The most commonly used approach is an adaptive meshing re-
finement scheme, usually employing a quadtree decomposition on each element, with
further subdivision being flagged by anoraclewhich tracks the local error. An a-priori
approach, that ofdiscontinuity meshingattempts to construct a mesh in advance of sim-
ulation which tracks the gradients of the illumination, ideally matching element edges
with discontinuities in the radiosity function. Although it appears that the solution to
the radiosity system is a requirement for such meshing, in practice the most important
discontinuities are those arising from direct lighting. It is therefore possible to deter-
mine the limits of umbral and penumbral given an area light source, a planar receiver
and blocker and these limits are used to align mesh elements.

10If elements are densely distributed in certain regions of the scene, these elements may beclusteredand
treated as a single meta-element when evaluating radiosity exchange with a distant element.

11Wavelet methods exploit smoothness in the radiosity kernel to reduce the number of element interactions
in regions where the radiosity is slowly varying whilst preserving discontinuous regions.
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5.2 Monte Carlo Methods

Realistic image synthesis in complex environments requires sampling over many do-
mains. Consider the spectral radiance arriving at a point on the sensor of a camera.
Light arrives at this pointx from all points on the lens assembly. Therefore we must
sample all points on the lensu. This radiance varies with wavelength requiring that
samples� be drawn from the visible wavelength domain. The radiance arriving at the
lens in any particular direction may vary with time if objects are in motion. Thus we
must sample the time dimensiont to account for this behaviour. Finally, the radiance
leaving each point in the scene in the direction of the lens depends on the radiance
arriving at those points from all possible scattering directions. We are now sampling
from a domain of dimension 8. It is precisely for this type of problem that Monte Carlo
methods [KW86] are highly applicable.

In practise, most Monte Carlo algorithms for global illumination solutions areran-
dom walks. Before discussing these methods we will summarise Monte Carlo integra-
tion. Given a real-valued functionf(u), we wish to integrate this over domain
:

F =

Z



f(u)d�(u) f : 
! R (9)

We will draw samplesx from
 with probability density functionp(x) : 
! R+.
A primary estimator forF is

F �
f(x)

p(x)
(10)

A secondary estimator is

F =

Z



f(x)

p(x)
p(x)d�(x) = E

�
f(x)

p(x)

�
�

1

n

nX
i=1

f(xi)

p(xi)
(11)

The error in this estimator is quantified by thevariancewhich is defined as

�2 = var

"
1

n

nX
i=1

f(xi)

p(xi)

#
=

1

n
var

�
f(x)

p(x)

�
(12)

As can be seen, the variance decreases withn but in fact the real situation is worse
than this. It is� which actually corresponds to visual error in our images and as a result
we must quadruple the number of samplesn in order to reduce the error by half. In
the limit,n!1, we will converge to the exact solution. In practice this convergence
is asymptotic and we must stop after a certain threshold error level has been attained.
Setting this threshold is more often than not a matter of trial and error.

5.2.1 Random Walks

To formulate the radiance equation as a random walk, we first recall its recursive form:

L(x) = Le(x) +

Z



�(x; x0)L(x0)d�(x) (13)
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The kernel�(x; x0)will account for all geometric terms involved in the scattering of
a particlex in new directionx0, thus the cosine term disappears. Essentially, a photon,
represented by samplexi, upon hitting a surface will be scattered by that surface in
a new random direction and will lose energy. If this photon initially carried radiance
L(xi), then the scattered photon radianceL(xi+1) is given by

L(xi+1) = L(xi)
�(xi; xi+1)

p(xi+1)
(14)

In this case, the radiance is the old radiance scaled by the kernel (given the ran-
domly selected scattering direction) divided by the probability of chosing that random
directionp1(x1). We can apply this basic technique to express the radiance equation
as aMarkov Chain:

E[L(x0)] = Le(x0) +
�(x0; x1)

p1(x1)L(x1)
(15)

= Le(x0) +
�(x0; x1)

p1(x1)

�
Le(x1) +

�(x1; x2)

p2(x2)L(x2)

�
(16)

= Le(x0) +

1X
i=1

2
4 iY
j=1

�(xj�1; xj)

pj(xj)

3
5Le(xi) (17)

This is agatheringapproach where we evaluate the illumination arriving at the sen-
sor by recursively tracking a path back through the scene (in effect, we are tracking the
photon back in time to determine its origin). In this way we are guaranteed to track
only those paths which will contribute to the final image. This approach is known as
path tracing[Kaj86]. A geometric interpretation of this is shown in Figure 5.2.1(a).
The problem with this brute-force approach is that we are not guaranteed to hit a light
source before the error threshold is reached (and in practice we terminate paths long
before this, usually according to a user-specified maximum recursive depth). An alter-
native approach is to begin at the light sources and emit photons into the scene, tracking
their paths until they hit the sensor. Again, this is problematic, as a large proportion
of the paths will never reach the sensor. This is ashootingapproach and is known as
particle tracing[PM92] in graphics research literature.

Figure 10: Random walk strategies. In (a) we track photons back in time from sensor
to source. Some of these paths may never reach a light source. In (b) we track photons
from the light source to the sensor. A large number of these paths will never actually
hit the sensor.
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Even for the simplest of scenes, as shown in Figure 5.2.1, a very large number of
paths must be simulated in order to compute an image that is recognisable (but still far
from noise-free).

Figure 11: Results of path tracing a simple box scene with a single spherical isotropic
light source and ideal diffuse BRDFs. Note that the number of samples quoted is on a
per pixel basis. Each image is a200� 200 array of pixels thus for the scene with 400
samples/pixel a total of 16 million paths have been traced.

Simply increasing the number of samples will not provide a sufficient improvement
in image quality. We must therefore examine other methods for reducing the variance.

5.2.2 Variance Reduction

A large number of variance reduction techniques exist and most of these have been ap-
plied to path tracing for computer graphics at some time or another. The most popular
strategies are

� Stratified sampling

� Low-discrepance sampling (otherwise known asQuasi-Monte Carlo)

� Importance sampling

� Control Variates

� Next event estimation

Importance samplingis probably the single most effective way to reduce variance
if some information about the domain is known. The basic idea behind this approach
is to sample more densely in regions where the function being integrated has large
magnitude. In this way we attach most importance to regions of the integrand that
have most influence over the final outcome. Knowledge of the function however pre-
supposes that we have a solution (the classic ”chicken and egg” scenario). In theory
we can achieve zero variance by chosing the ideal probability density function:

p(x) =
f(x)R



f(x)d�(x)

(18)

In practice we wantp(x) to be high whenjf(x)j is high. To achieve this we
can factor out known elements off(x) and sample according to these. Examples of
this include the BRDF or the lightsource emission characteristics. If we sample with
p(x) = kfr(x; !i; !r) then our new scattering directions will be randomly distributed
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around areas of high reflectance. This has no effect for diffuse surfaces, but specular
or glossy surfaces are sampled far more successfully using this approach.

In order to implement importance sampling using the BRDF as p.d.f. we must first
normalise the BRDF and then find the inverse of the associate cumulative distribution.
More formally if we wish have a functiong(u) that we wish to use for importance
sample, we first construct the cumulative distributionG(x) =

R x
u=0

g(u)d�(u). To
draw samples distributed according toG(x) we transform a canonical uniform random
variable� byx = G�1(�). Note that the cumulative distribution function is monotonic
increasing and therefore an inverse will always exist. Finding the inverse of arbitrary
BRDFs or light source emission characteristics, however, is often a difficult problem
and may not admit an analytic form requiring an expensive numerical inversion ap-
proach. Frequently, we simplify even further and draw samples from functions which
approximate the shape of the functions we really want to sample.

For example, consider the Phong model BRDF of Equation 6. The diffuse and
specular components are separable and therefore the simplest approach is to draw two
samples, one from each distribution (or probabilistically decide in advance which com-
ponent to sample). Therefore we sample the diffuse component with p.d.f.pd(!i) =
cos �i
�

and the specular component usingps(!i) =
n+1
2�

cosn �i.
A second method is to usenext event estimation. This technique attempts to par-

tition the integral into sub-domain with each of these domains having an associated
importance. An excellent example is that ofdirect light sampling[SWZ96]. At a given
positionx we are required to estimate the radiance leavingx in a certain direction!r
given byLr(x; !r). Rather than sampling the hemisphere uniformly, or simply im-
portance sampling according to the BRDF we may observe that the most important
directions are likely to be those that point in the directions of the light sources (i.e.
these directions will probably contribut most to the final solution). By missing these
important directions, the variance of our estimator increases. The next event estima-
tion approach involves sampling the directions to the light sources separately from the
hemispherical sampling scheme and weighting the samples accordingly to eliminate
bias12. Figure 5.2.2 illustrates this partitioning of the integral.

Figure 12: Normally the domain of integration for lighting calculations is the hemi-
sphere, with associated solid angle measure
 = 2�. We can partition this domain
into 
L, the solid angle subtended by a light source and�
L the remaining solid an-
gle. Samples drawn from each distribution are weighted according to the solid angle
subtended.

To sample the set of directions not pointing towards the light sources we can em-
ploy rejection sampling as the solid angles of the light sources will typically be small.

12Bias is the error due to convergence to the incorrect solution and is usually due to attaching too much
importance to certain directions.
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Sampling according to light sources requires examination of the kernel for direct light-
ing. In some cases we can distribute samples uniformly across the surface of the light
source geometry. In other cases we will samply uniformly within the solid angle sub-
tended by the light source. Some results of various sampling strategies for spherical
light sources are given in Figure 5.2.2. These results draw heavily from the work of
Pete Shirley et al. [SWZ96].

Figure 13: In the first row, we employ no variance reduction techniques and simply
sample the hemisphere of directions uniformly (p(!) = 1

2�
). The second row demon-

strates the improvement when directly sampling the spherical light source. In this case
we sample uniformly over the surface of the sphere,p(!) = 1

AL
. We still have high

variance due to rejection of sample points on rear facing regions of the light source. The
final row employs uniform sampling within the solid angle subtended by the sphere,
p(!) = 1


L
. For very little extra computation we dramatically reduce the variance in

the solution.

5.3 Multi-pass Methods

Attempting to solve for all possible modes of light transport quickly becomes an ex-
tremely computationally expensive problem. In many cases, we are more interested in
certain modes and will happily sacrifice accuracy in order modes. A good example of
this is the visualisation of crystal glass. To produce an image of crystal glass we are
rarely concerned with the full global illumination solution. Rather we wish to compute
a highly accurate solution locally around the glass. We can focus our efforts by em-
ploying amulti-pass method. Such methods decouple various modes of light transport,
simulate each mode separately and then reconstruct a solution based on the combined
results of the various passes. To simplify the solution we neglect certain paths. In the
case of crystal glass visualisation we can neglect the transfer of energy between diffuse
surfaces and consider only the energy due to light interaction with specular surfaces.
This will give a good approximation to the crystal glass design. If we wish to place this
design in an environement (a display cabinet for example), we can introduce further
modes. If we are interested in the complex pattern of caustics produced by light being
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refracted through the facets of the glass we will simulate a specular to diffuse transport
mode and add this to the final solution. This 2-pass scheme is illustrated in Figure 5.3.

Figure 14: In this example of a 2-pass solution, the first pass uses a shooting approach
to distributed photons into the scene. As these photons interact with surfaces their
energies are stored in illumination maps attached to the surfaces. In the second pass we
perform a gather and pick up the energy deposited in the illumination maps to construct
a view of the scene.

One of the main problem with such multi-pass methods is the storage and retrieval
of partial solutions from each mode. We have investigated the use ofillumination maps
(uniform meshes recording irradiance on diffuse surfaces) anddensity estimation13 for
the accurate reconstruction of caustic effects [Col96].

5.4 Sampling the Camera Model

To improve the apparent realism of the image we can construct an accurate model of the
sensor (either as a camera system or the human eye). This increases the parameter space
within which we must sample, but allows us to reproduce effects including motion blur,
depth of field and vignetting. To implement depth of field we must model the camera
lens using, at the very least, a thin lens approximation14. We sample the lens (usually
uniformly) by chosing points on the lens and firing rays from here through the focal
point and out into the scene. Objects positioned off the focal plane will appear blurred.
Figure 5.4 illustrates the geometry of the thin-len approximation and shows the results
of applying this model within a global illumination framework.

6 Conclusions and Future Work

There are many avenues for future research. Certainly the fact the global illumination
has yet to make its impact on TV and film graphics illustrates that current techniques
fall short of addressing the needs of the industry. Elimination of noise is paramount
to the future success of these techniques. This will probably require the introduction
of biased filtering techniques to consistently remove noise from the images, though
exactly how this may be done is a matter for future research. Many current algorithms
are brittle and require simple geometries and reflectances. The challenge to the research

13Density estimation is a statistical technique for reconstruction of a function from a sparse non-uniformly
distributed set of sample points.

14To simulate non-linear lens artifacts including coma and astigmatic effects we must implement a thich
lens approximation.
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Figure 15: The geometry of the thin lens camera model is shown on the left. The thin
lens approximation with focal lengthf establishes a focal plane at distanceu from
the lens givenv, the distance from the sensor to the lens, according to the well-known
formula 1

u
+ 1

v
= 1

f
. In image (a) we see the result of this model. The focal planes

lies at the centre of the 2nd sphere. In image (b) we sample the time domain while
pivoting the camera about the sphere at the rear of the room. Note the motion blur
which increases with speed of object motion. Both images are full path traced solutions
and took approximately 6 hours on a Pentium 100 class PC.

community is to facilitate global illumination solutions in scenes involving very large
data-sets (100 to 1000 million polygons) and highly accurate BRDF data.

As with most numerical systems, an obvious choice for improving performance is
to utilise a parallel system. Much research has already been conducted into the effective
use of parallel systems for computer graphics, examining caching and distributed mem-
ory issues as well as dynamic load-balancing and problem partitioning schemes. Each
particular algorithm requires special attention with the implemention of parallel FE ap-
proaches being substantially different from the implementation of MC algorithms. Of
prime importance, as always, is the minimisation of inter-node communication during
simulation, and assuming that the scene will never fit on a single processing element
this necessitates a distributed memory implementation. The challenge is to implement
such a distribution scheme that can maximise the work that each node can perform
independently of other nodes.

We hope to examine such schemes and in particular assess the applicability of
lazy evaluation and delayed computation approaches in conjunction with compression
schemes to reduce the inter-node bandwidth.
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