
Computer Graphics during the 8-bit Computer Game Era

Steven Collins�

Image Synthesis Group

Department of Computer Science

Trinity College Dublin, Ireland.

1 Introduction

The technologies being employed in current games
have advanced to the point where computer game com-
panies are now leaders in graphics research and indeed
the requirement for realistic real-time graphics has ar-
guably driven graphics research in areas such as im-
age based rendering and visibility processing. This arti-
cle will explore the early 8-bit computer industry (from
about 1982 to 1990) and in particular the graphics ar-
chitectures, algorithms and techniques being employed
at that time in computer games. Rather than attempt
a complete review of all the machines available at the
time (including the coin operated cabinets, the dedi-
cated home games consoles and the more general 8-bit
home computers), I’ll concentrate on what I know best,
the Commodore 64, which was inarguably the most suc-
cessful of the 8-bit machines but will also have a brief
look at the Atari 400/800 and Sinclair Spectrum for
comparison.

In later sections, I’ll outline the architecture of the
64’s graphics sub-system (and compare it with some of
its main rivals), list some of the graphical techniques
used in different genres of games and will also explore
some of the more esoteric effects that can be squeezed
from the 64 by exploiting quirks of its video chip. First,
though, we’ll look at the birth of the industry which has
surpassed even the movie industry in annual turnover.

2 A Brief History of Time

Most people would probably associatePong with the
first computer game. In fact, as early as 1962 a game
calledSpacewarwas created at MIT on a PDP-1 and
there is some evidence of aPong-like game which ran

�Email address: Steven.Collins@cs.tcd.ie , web ad-
dress:http://isg.cs.tcd.ie/scollins/

on an oscillascope at Brookhaven National Laboratory
in Upton, New York. The first commercial computer
game1 wasComputer Spacewhich appeared in Novem-
ber 1971. It never really sold, however, and by the
time production ceased a total of only 3,000 machines
had been made. An excellent chronological archive,
I.C.When[1], is a great source for historical informa-
tion regarding the computer industry with particular ref-
erence to computer games.

2.1 The Coin-Operated Arcade Game

The first real commercial success wasPong, cre-
ated by Nolan Bushnell in November of 1972 who,
with fellow electrical engineer Ted Dabney, formed
a company called Syzygy which later became Atari.
Atari, now synonymous with the early game indus-
try, had huge successes withPong, Asteroids, Missile
Command, (Breakoutdesigned incidentally by Steves
Jobs and Wozniak before they began Apple) and cre-
ated the home game console market with the Atari
2600. Other manufacturers quickly followed suit in-
cluding Bally/Midway and Taito (responsible forSpace
Invaders), and Williams (who released classics that
included Eugene Jarvis’Defender, Robotron: 2084
and Joust). For more information see the excellent
Videotopiawebsite [2].

2.2 The Home Computer

The golden era of the 8-bit computer game began
around 1982 and continued until about 1990. Following
on from the success of hobbyist computer kits (like the
Altair and the Sinclair ZX-80) a number of computer

1This was anarcade gametaking the now familiar form of an
upright cabinet with dedicated computer hardware and black & white
display.

1



Machine CPU RAM ROM Resolution
Atari 800 6502 48K 8K 320 � 192

BBC Model B 6502 32K 32K 640 � 256

Commodore 64 6510 64K 20K 320 � 200

Dragon 32 6809 32K 16K 256 � 192

Jupiter Ace Z80A 3K 8K 512 � 368

Lynx Z80A 48K 16K 248 � 256

Oric 1 6502A 48K 16K 200 � 240

TI 99/4A 9900 48K 16K 256 � 192

VIC-20 6502 5K 16K no hires mode
ZX-81 Z80 1K 8K 64 � 48

ZX Spectrum Z80 48K 16K 256 � 192

Table 1: A summary of a selection of the large range of
8-bit home computers that appeared on the market from
1982.

companies simultaneously released a range of power-
ful pre-assembled home computers, epitomised by the
Commodore 64, the Sinclair Spectrum, and the Atari
400/800 (which I will simply refer to as the Atari 800
or just Atari; the 400 has a smaller RAM specification
and hat a flat touch sensitive keyboard). In fact, there
were many more contenders and a summary of these is
given in Table 1.

The market leaders were the 64, the Spectrum and
the BBC (in Europe) and the Atari (in the U.S.). Only
Amstrad were able to make a major impression captur-
ing some of the market share in the mid-Eighties with
the CPC-464, but until the advent of the 16-bit machine
(heralded by the Commodore Amiga and the Atari ST)
the Commodore 64 was the most popular home com-
puter. Its popularity was almost certainly due to the
graphics and sound capabilities rather than O.S. (the
64’s implementation of BASIC was notoriously bad) or
speed (the processor is clocked slower than most of its
contemporaries). It was a simple matter to achieve ba-
sic animation effects (the 64 has hardware support for
sprites2 and scrolling), and so it encouraged experimen-
tation and an entire generation of programmers became
familiar with the architecture and began to push the
boundary of what was possible.

3 The Machines

The graphics sub-systems of the 3 main 8-bit computers
were quite different:

2Sprites or MOBs (moveable object blocks) are small graphic ele-
ments of fixed width and height that may be positioned independently
of the main screen and were provided for the implementation of mov-
ing characters in games. See Section 3.3.2 for more detail.

Figure 2: The Atari Player Missile (PM) graphics.

3.1 The Atari-800

The Atari (see the Planet Atari website [3] for more
information) had the most powerful graphics system
which is not surprising given the machine’s lineage.
The GTIA chip (George’s Television Interface Adaptor)
provided hardware support for sprites (calledPlayer
Missile Graphicsor simply PM graphics), a large num-
ber of video modes and a display list processor, the
ANTIC, allowing mode changes per raster line for ad-
vanced display effects. Both chips are memory mapped
and have a large number of registers controlling their
operation.

3.1.1 PM Graphics

Five 8-pixel wide columns can be displayed at vary-
ing horizontal positions (see Figure 2). These columns
spanned the entire height of the display (i.e. 192 pix-
els). To move a player’s graphic horizontally, the hori-
zontal position register of the player was updated. For
vertical movement, the bitmap data associated with the
player was shifted in memory. The fifth player sprite
may be optionally split into 4 2-pixel wide sprites each
with independent horizontal control. These were de-
signed for displaying missiles. This arrangement was
ideally suited to certain types of games (particularly the
Space Invadergenre a good example of which isGalax-
iansshown in Figure 1(c)).

Inter-sprite and sprite-background priority could be
specified and the GTIA chip would detect all collisions
between sprites and background and latch these in reg-
isters, indicating the sprites which had been involved
in the collision. The implementation was more flex-
ible than that of the Commodore 64 in which a sin-
gle bit registered sprite-sprite collisions and another
flagged sprite-background collisions, requiring further
testing of extent overlaps to determine which sprite had

2



Figure 1: Classic Atari titles: (a)Miner 2049er, (b) Defenderand (c)Galaxians.

been involved. This is analogous to thebroadandnar-
row collision detection phases in use in most physically
based animation systems [4].

3.1.2 Display Lists

The ANTIC chip was responsible for interpreting the
display buffer for the GTIA chip. It was the AN-
TIC chip that determined the resolution and number of
colours available on the display and it did so by se-
lecting one of a large number of both text based and
bitmap graphics modes. Unique to the Atari, however,
was thedisplay list, which later became an integral part
of the Commodore Amiga’s graphics architecture (the
Copper chip of the Amiga provided functionality simi-
lar to Atari’s ANTIC chip). The display list was a list
of commands interpreted by the ANTIC chip and ac-
cessed via DMA (during which time it asserts control
over the address bus by issuing a HALT signal to the
6502 CPU). Each command of the display list was ca-
pable of selecting one of the 16 display modes (which
determines the resolution, number of colours and the
interpretation of the display buffer). The display list
had its own flow control implemented usingjumpcom-
mands so effectively the ANTIC chip was a processor
operating in parallel with the 6502. Potentially, each
line of the display could have its own entry in the dis-
play list, thus allowing selective control over each raster
line. Thus many modes could exist on the screen at the
same time (calledscreen splitting).

Hardware support for scrolling was provided through
X and Y scroll registers, allowing the entire display to
be shifted in the horizontal or vertical direction by up
to 15 pixel positions. For larger scrolls, the display
data was shifted in memory. Each display list com-
mand could enable/disable scrolling for its associated
line, thus allowing split screen scrolling. Finally, each
display list entry was capable of flagging an interrupt re-

quest, thus control may be passed to the CPU when the
raster scan reaches a certain point in the display, facil-
itating synchronisation of the display and the software.
These techniques were also in common use on the Com-
modore 64, but significantly less support was provided
and display list functionality could only be emulated in
software. See Section 5 for more details.

Depending on the mode, a number of colours could
be displayed on the screen selected from a palatte of 16
hues. Uniquely, the brightness of these colours could
also be specified (there were 8 luminance settings) giv-
ing a total palatte of 128 colours.

3.2 The Sinclair Spectrum

The Spectrum (originally known in the U.S. and Canada
as the Timex/Sinclair) distinguished itself by having
no hardware support for sprites which became a major
stumbling block for graphics programmers developing
for the machine. In fact, the Spectrum was a marvel of
minimalist engineering, lacking even a dedicated video
chip. All video I/O is performed via an ULA which
controls the lower 16K of RAM, of which 6912 bytes
are used for the display buffer. The is made up of a
256 � 192 bitplane with a 0 representing a pixel to be
coloured with the background colour and a 1 indicat-
ing the use of the foreground colour (as is the case with
many of the other 8-bit machines, including the Atari
and the Commodore in certain modes). However, an
ATTR buffer of 768 bytes encodes unique foreground
and background colours for each8 � 8 pixel square
(and also selects between 2 brightess values and tog-
gles flashing). Thus from the 16 available colours, 2
were selected into each block.

As a result it is very difficult to avoidcolour bleed-
ing artifacts (and unlike in radiosity solutions, these are
to be avoided). When an animating character (imple-
mented usually as arrays of8 � 8 pixel blocks) moved

3



Figure 3: Problems arising from the 2 colour per block
limit on the Spectrum (usingKarnov as an example):
(a) colour bleeding from the bird characters, (b) large
surround around the main character.

smoothly across a background, if the character was a
different colour to the background, it was often impos-
sible to serve the colour requirements of both character
and background graphics within single blocks, thus usu-
ally the character colour was used both for foreground
and background graphics and so the character colour
appeared to have bled into the background (see Figure
3). To minimise this, many games either a) avoided
colour altogether, b) confined animation steps to mul-
tiples of 8 pixels in any direction or c) created a thick
border surrounding the character to minimise the effect
of bleeding.

As with the 64 and Atari, it was possible to synchro-
nise the software with the display using interrupt han-
dlers invoked in response to ULA interrupts to prevent
flicker (see Section 5.1). For more details see thePlanet
spectrumwebsite [5].

3.3 The Commodore 64

The 64’s graphic capabilities were provided by MOS
Technologies 6567/6569 VIC II chip (Video Interface
Controller). These devices were originally designed
for cabinet based games and graphics workstations and
had excellent graphics capabilities, surpassed only by
the Atari’s GTIA/ANTIC devices. The VIC device
supported 3 character based display modes, 2 bitmap
modes, 8 hardware sprites, hardware assisted scrolling,
a palette of 16 colours (no luminance control) and light-

Figure 6: Bus arbitration on the Commodore 64. Nor-
mally the 6510 and the VIC accessed the bus on alter-
nate clock phases, but the VIC could take over the bus
for certain periods (by asserting pinBA), locking out
the CPU. There was a short delay between the change
in the BA line and the VIC actually asserting control to
allow the CPU to finish any pending writes to RAM.

pen support. As with the Atari, the device was mem-
ory mapped and addressed 16K of DRAM. It had a 12-
bit data bus to allow simultaneous connection to main
memory (8-bits) and 4-bit static RAM which contained
the colour information for the screen.

Since the launch of the Commodore 64, the VIC chip
has been reverse engineered to the point where prob-
ably every nuance of its operation is now understood.
This has allowed programmers to take advantage of
some quirks of the design which facilitate certain graph-
ical effects that would be impossible to achieve through
software alone. We’ll examine some of these in Section
5.4. For general information regarding Commodore
products and software visit Jim Brain’sCaBoomweb-
site. For more details about the inner workings of the
Commodore 64 visit the CBM Document Page) [6] and
for an excellent review of the VIC chip functionality
read Christian Bauer’s technical article [7]. Christian is
the designer ofFrodo an excellent Commodore 64 em-
ulator.

3.3.1 Video Memory

The VIC addresses a total of 16K which was composed
of a number of registers, character RAM and display
RAM. The VIC always had access to colour RAM via
the hardwired connection to the upper 4-bits of it’s data
bus. The 6510 processor and the VIC both required
access to memory and so the 64 implemented a sim-
ple bus arbitration scheme: they shared successive bus
phases. The CPU had control of the bus during positive

4



Figure 4: Classic Spectrum titles: (a)Sabrewulf, (b) KnightLoreand (c)Manic Miner.

Figure 5: Classic Commodore 64 titles: (a)Ghosts ’n Goblins, (b) Impossible Missionand (c)Paradroid.

clock phases and the VIC had control during negative
clock phases (see Figure 6). At certain times, the VIC
needed to access RAM for longer than one half clock
period and so it asserted full control over the bus, effec-
tively locking out the CPU. It is this locking out that can
cause synchronisation problems during timing critical
operations (e.g. disk accessing) and so for certain oper-
ations the VIC device was disabled (thus disabling the
display). Unusually, the 6510alwaysaccessed memory
during positive clock phases even if executing instruc-
tions which do not require access to the bus, and so it
was not possible to use the CPU when the VIC asserted
control over the bus.

When in a character-based mode, 1000 bytes of
screen memory were used to specify the character sym-
bol to use in each of the40 � 25 character positions.
Each character was itself a block of8 � 8 pixels. The
default character set was available in ROM, but the VIC
could be pointed at RAM to allow the creation of user
defined characters. The VIC could generate and display
256 such characters. The foreground colour for each
character position was supplied by the colour RAM
mentioned earlier.

In bitmap modea full 8000 bytes was used to address
the320�200 pixels of the display. To facilitate cheaper
implementation via the VICs memory scanning archi-
tecture, the bitmap data was arranged rather unusually

Figure 7: Display memory layout in bitmap mode. Dis-
play bytes were ordered as the would be in character
mode to simplify the implementation of the scanning
hardware in the VIC chip.

as shown in Figure 7. As can be seen, this arrangement
was similar to the memory scanning sequence the VIC
would adopt for character based modes.

3.3.2 Sprites

The 64 had 8 independent sprites, each being a block
of 24 � 21 pixels (i.e. 63 bytes of graphics data per
sprite). Unlike the Atari, the 64’s sprites were free to
move both horizontally and vertically. The VIC re-
solved collisions between sprites and between sprites
and screen data and latched this information in registers

5



to be read by the software (or would raise an interrupt
if enabled). Sprites, like the Atari’s PM graphics, could
be stretched vertically and horizontally by a factor of 2.
Display priority was fixed between sprites, with sprite
0 always in front and sprite 7 to the back, but prior-
ity with the screen data could be specified by the user,
allowing for basic depth effects exploited in many 3D
games (see Section 4.1 for more details). Unlike the
Spectrum, sprite colours were managed independently
of the background graphics and so there were no colour
bleeding artifacts.

3.3.3 Scrolling

Hardware scrolling allowed the entire screen image to
be offset by up to 7 pixels in either the horizontal or ver-
tical direction. For scrolls larger than this, the software
was responsible for shifting the display memory appro-
priately when the hardware scroll limit was reached. To
achieve independently scrolling regions within the same
screen, the programmer had to implement more compli-
cated raster methods (see Section 5 for more details).

3.3.4 Colour

The 64 had a fixed palette of 16 colours. Border and
background colours were specified using the appropri-
ate VIC register. Foreground colours could be speci-
fied for individual character positions using the colour
RAM (in both character based and bitmap modes). The
VIC chip also supported a multi-colour version of each
mode (and multi-colour sprites). In all cases, when
multi-colour mode was selected, pairs of bits in display
memory were used to specify the colour (background,
multicolour1, multicolour2 and foreground). Whereas
the foreground colour could vary from character posi-
tion to character position, the remaining 3 colours were
fixed for the entire display. A consequence of multi-
colour mode was a halving of the display resolution and
thus it was frequently dubbedfat pixel mode. Figure 8
illustrates both normal and multicolour sprites.

4 3D Game Graphics

Its fair to say that around 1985 (when the games in-
dustry was in full swing) computer graphics used in
games were quite primitive when compared to the state
of the art in graphics research. At the time when the
Hemicube method for Radiosity and distribution ray

Figure 8: A sprite in a) normal mode and b) in multi-
colour mode.

tracing were being developed the pinnacle of graphi-
cal achievement in the games scene was some clever
visibility determination in the seminalKnight Lore(see
Figure 9(h)) from Ultimate Play The Game (now called
Rare). The technique, namedfilmation (which I’ve al-
ways associated with SuperMarionation, StingRay and
Gerry Anderson!), was remarkable at the time though
and represented the first real attempt at detailed 3D iso-
metric graphics. The use of 3D in games dates right
back to the earliest days: Atari’sBattlezone(the origi-
nal first-person perspective game) was a classic 3D tank
simulation (rumour has it that the game was adopted by
the U.S. D.O.D. for training prospective tank drivers)
and theStar Warscoin-operated game featured the fa-
mous Deathstar tunnel strafing sequence. Figure 9
shows some ”important” games (in terms of advancing
the graphical standards employed in computer games).

4.1 Depth Priority

A large number of techniques were used to convey the
impression of depth. The simplest involved the use of
sprite-background or sprite-sprite priority to achieve a
degree of hidden surface removal.Nebulusused this
effect to achieve the appearance of rotation around a
central tower, as can be seen in Figure 10. In such cir-
cumstances, usually the graphics were tailored to avoid
any ambiguity (i.e. a sprite should never need to be both
in front of one piece of the foreground and behind an-
other).

4.2 Character Graphics Animation

This method was used to create some of the least CPU
intensive 3D effects. It is analagous to colour lookup
table animation; if a single8 � 8 pixel character is re-
peated over an area, then a cheap scroll effect can be
achieved by simply rotating (or shifting) the bits repre-
senting the character. All the character blocks displayed

6



Figure 9: Definitive 8-bit computer games: a)Encounter, b)Tornado Low Level, c) Elite, d)Lords of Midnight, e)
Stunt Car Racer, f) The Hobbit, g) Ant Attack, h) Knight Loreand i)Head over Heels.

Figure 10: Using sprite background priority for 3D
depth effects. In (a) the sprite has lower priority and
appears behind the wall, whereas in (b) its priority has
been raised and so it appears in front of the wall (thus
it appears as if the ball has travelled around the corner
of the tower). This priority switch was done through
software.

with this character will scroll accordingly giving the im-
pression of a moving area. The technique comes into its
own when combined with hardware scrolling. For ex-
ample, if the hardware scroll is shifting the display 4
pixels to the left each frame, and assuming we’ve draw
”background” characters using the character we will an-
imate, then animate the characters by rotating their bit
patterns 3 bits to the right. The net effect is that the
background characters appear to scroll left at a rate of
1 pixel per frame, whereas the rest of the image scrolls
at 4 pixels per frame. We have created a parallax scroll
(see Figure 11). This technique has been used in count-
less games, most notablyParallax (I wonder how they
came up with that name),BounderandUridium (a final
explosion sequence used the technique to simulate fire
spreading in the opposite direction to a fast scroll).

4.3 Isometric Graphics

Isometric graphics (originally appearing in Sega’sZa-
xxon arcade game, are probably best represented by

7



Figure 11: The parallax scroll effect involves shift-
ing the data making up background characters by an
amount not equal to the hardware scroll amount. In
this example the display is shifted left by 8 pixels each
frame and the character data is shifted right by 2 pixels,
and thus appears to move 4 times more slowly than the
foreground (unshifted) character data.

Figure 12: By drawing elements of the image in depth
order, a 3D image was created with consistent visibility.

the Ultimate Play The Game’s filmation games series
which began withKnightlore in 1984. Since then there
have been a large number of games employing the tech-
nique (notablySpindizzy, Head over Heels, Batman)
which was achieved using depth ordered drawing. In
almost all cases, the data to be drawn was aligned to
a grid and viewed from fixed orientations (usually per-
mitting rotation of the view through 90 degrees) thus
simplifying the depth ordering. Figure 12 demonstrates
the result of this technique. Arguably the technique was
an old one. Ant Attack, released in 1983, employed
the Soft Solid 3D technique to achieve believably 3D
worlds (see Figure 9(g)). Using a similar method, the
famousLords of Mignightgame composited flat bit-
planes in a depth ordered manner to put together land-
scape vistas as you travelled through a vast world (see
Figure 9(d)).

Figure 13: The visibility determination algorithm em-
ployed byElite resolved local visibility only via back-
face culling. Note the incorrect visibility indicated by
the arrow.

4.4 Wireframe 3D

One of the earliest of the wireframe based games was
David Braben and Ian Bell’sElite, originally released
on the BBC Micro and which remained the best selling
game for a long time. Its combination of space trading,
vast playing area and atmosphere more than made up
for the rather sluggish frame rates (which often dropped
as low as 1 a second if a number of ships were being dis-
played simultaneously).Elite implemented back-face
culling per object but no global visibility testing was
performed (see Figure 13). One of the major innova-
tions was the superlative 3D radar control which re-
mains one of the most intuitive 3D navigation control
I have come across and was patented by the authors.

Other noteworthy examples includeMercenary
which defined the standard for Commodore 64 wire-
frame graphics with update speeds significantly faster
than those ofElite and which allowed you to discover
the joys of flying a piece of cheese!Stunt Car Racer,
shown in Figure 9(e), showed what could be done with
filled polygons, and though slow to update it managed
to (ironically) convey a convincing sense of speed and
momentum.

4.5 Bas-Relief

A special mention must go to Andrew Braybrook who
possibly still is the most famous of Commodore 64 pro-
grammers. I myself was enthralled by the ”Game Di-
aries” that he published in popular magazines of the
time chronicalling the development of bothParadroid
andMorpheus. Andrew was undoubtedly responsible
for the hugh interest in the use of bas-relief for im-
parting a sense of 3D to a game (you get the same ef-

8



fect by passing an image with good contrast through an
embossing filter), and it became a favourite method of
mine when designing 64 graphics. See Figure 14 for
some examples. Games making use of this technique
includedParadroid (of course),Uridium, Sanxionand
Parallax.

5 Raster Effects

Whereas the Atari has its ANTIC chip and the asso-
ciated display list, to achieve similar results on the 64
or the Spectrum you were required to implement your
own interrupt handlers called at key moments during
a screen refresh. Many of the more esoteric effects
possible with the VIC chip relied on precise manipu-
lation of VIC registers during each refresh. However,
raster interrupts were a necessity if you required smooth
scrolling, flicker-free screen updates or split screen dis-
play modes.

5.1 Flicker Free Animation

Everyone knows that in order to eliminate flicker, you
must synchronise the update of the display with the
frame refresh (in particular avoid drawing into an area
of the screen that is currently under the raster beam).
Current video hardware usually implements this via a
double buffer switch which is synchronised in this man-
ner. On the 64 the normal method was to enable VIC
raster interruptsand request an interrupt on a line just
beyond the bottom of the visible display (during thever-
tical blank). The interrupt handler was then responsible
for updating the display before the raster returns to re-
fresh the next frame. Figure 15 shows the raster phases
for a screen in normal mode.

5.2 Splitting the Screen

A trivial implementation of a split screen mode involved
simply requesting a raster interrupt at the line we wish
the split to occur at. The interrupt handler then simply
switched modes as required and reinitialised the raster
interrupt to occur sometime during thevertical blank
period to allow the mode to be flipped back in time
for the next raster refresh. This works quite well for
static screens and horizontal scrolling, but when verti-
cal scrolling is required within a split window and when
sprites are allowed to cross the split boundary the tim-
ing of the split become more critical. We need to ex-

Figure 15: The geometry of the raster screen.

amine briefly the timing of a single raster line to under-
stand the techniques required to achieve a rock-steady
split. Wherein lies the problem? Recall that the VIC
was capable of locking out the CPU when it requires
the bus for graphics data accesses. If this happens at
a split point the result could be a nasty flickering line
around the split point representing the delay introduced
as a result of the CPU halt.

Normally the CPU has access to the bus each positive
phase of the clock cycle. There are 2 reason why this
might be interrupted:

Sprite Data Access:if any of the 8 sprites lay across
the current raster line, the VIC reads an extra 3
bytes from memory for the graphic data for each
sprite. If all 8 sprites were active on the line, the
CPU would be halted for a total of 24 clock phases.

Bad Lines: every 8 lines, the VIC loaded the char-
acter datarequired for the next 8 lines of display
from RAM. This required an additional 40 cycles
and thus the CPU would be locked out under these
conditions also.

The position of the bad-lines is affected by the cur-
rent vertical scroll position (which is independent of the
sprite vertical positions), and thus it was a little tricky to
keep track of these events. At worst the CPU will only
have bus access rights for 6 phases of a line as shown
in Figure 16. This is the source of the flicker. The pro-
cessor didn’t have time to flip modes before the raster
beam hit the visible portion of the screen and so the
split point would jump back and forth across the line as
sprites crossed it and as the scroll position varied. To

9



Figure 14: The bas-relief effect was a great way to simulate raised surfaces: (a)Herobotix, (b) Sanxionand (c)
Parallax.

Figure 16: The timing of each line was fixed and the sequence of bus accesses was fully deterministic and depends
on the line position, the scroll position, the number of sprites active on the line and the display mode currently
active. TheSn blocks indicate a read of spriten data and the character data is read only duringbad lines.

account for this you had to take careful steps to ensure
this is minimised by introducing variable length delays
(usually achieved usingnop (no operation) instructions
and a liberal does of self modifying code).

5.3 Hordes of Sprites

To increase the number of sprites being displayed
simultaneously you simply needed to change each
sprite’s vertical position once the raster had completely
displayed it. The VIC did not keep track of the number
of times a sprite was displayed; it simply examined the
contents of the sprite y-position registers and at each
raster line displayed those sprites that lay on the cur-
rent line. Sprites could therefore be reused as many
times as required with the proviso that a sprite could
not occupy a single raster line more than once (this was
known assprite multiplexing). This created some diffi-
culties in determining the optimum raster interrupt line
after which sprites were be re-positioned. Consider the
scenarios depicted in Figure 17 for example. If we used
the simplest method and always positioned the interrupt
request at the last line of the lowest sprite then we could
potentially get sprite splitting artifacts where sprite data
breaks up due to a sprite being repositioned before its
display had completed. What was required was an op-

Figure 17: (a) demonstrates the successful application
of sprite multiplexing. An interrupt is set to occur at
the line corresponding to the last line of the 8th lowest
sprite. At this point the sprites are re-positioned verti-
cally to assume the positions of the next 8 sprites. In
(b) however, this simple scheme fails, as sprites 1 and 2
have not been repositioned in time to display the lines
above the split point.

timisation step which minimised sprite splitting; there
would not always be a solution (i.e. if the software re-
quired more than 8 sprites on a raster line, then some-
thing had to give), but through clever scheduling it was
possible to minimise the problems. Some games suf-
fered terribly from sprite break-up, the best example of
which wasCommando.

10



5.4 Quirks

There were so many quirks to the VIC chip that pro-
grammers frequently exploited to introduce interesting
effects to a game or simply to show that they could! I’ll
mention one: turning off the top and bottom borders.
These borders are there for a reason; to hide data during
vertical scrolling and to allow a buffer zone under which
sprites could disappear gracefully. Getting rid of the
border allowed you to display sprites in these normally
hidden areas and thus you could achieve larger screen
displays (sometimes known ashyperscreenthough it
wasn’t exactly Omnimax). The enabling and disabling
of the border was performed at pre-determinded scan-
lines and the current border state was recorded by the
border flip-flip. The border was normally enabled at line
251 and disabled again at line 51. For smooth vertical
scrolling it was necessary to shrink the vertical extents
of the visible region (i.e. the border grew by 4 pixels at
the top and bottom) to cover invalid lines. In such cases
the border was enabled at line 247 and disabled again at
55.

To kill the border you initally selected a normal bor-
der (ON at 51 – OFF at 251), wait until the raster had
reached line 248. Now you switched to an expanded
border (ON at 55 – OFF at 247). In this mode the VIC
only toggled the border state on line 247, but we were
now on line 248, and so the VIC ”forgot” to enable the
border. After line 251 simply you reset the border to its
normal state so as not to confuse the VIC when it came
to disable the border on the next frame.

6 How Far Have We Come...

The Commodore 64’s reign ended in the early nineties.
This marked the end of the 8-bit computer (the 64 was
probably the last of the popular 8-bit computers) and
suddenly the 16-bit era was upon us with the Com-
modore Amiga and the Atari ST, and now in the late
nineties these machines have been surpassed by the
PC which currently holds the home computer crown.
Games today are rarely ever the result of a single pro-
grammer and involve teams of programmers, graph-
ics artists, musicians, directors, actors, script writers
(and I’m sure there are probably grips and Foley artists
and hairdressers). In the golden 8-bit era the program-
mers were the heros. Everyone waited for the next
release from the afore mentioned Mr. Braybrook, or
Jeff Minter, Tony Crowther, Paul Noakes, Goeff Cram-

mond, David Braben, Steve Turner, John Phillips and
so many others. Usually the programmer was also re-
sponsible for the graphics (though not always) but of-
ten somebody else would provide the music. The fa-
mous musicians of the time were Rob Hubbard, Martin
Galway, Ben Dalglish and the Maniacs of Noise among
others. The Commodore 64’s SID chip (sound inter-
face device) was an excellent 3-oscillator sound gener-
ator with resonant filtering that was pushed to the limits
by these guys. With multiplexed chords, pattern based
sequencing and sampled drum sounds some of the mu-
sic created was quite amazing. The music forParallax
(about 20 minutes worth) by Galway andMasters of
Magicby Hubbard were among the very best.

I suppose the attraction back then was the accessibil-
ity; you felt that you too could partake in the program-
mer’s quest for the ultimate game, whereas today the
industry has grown up and we go to College, get our
degrees and then get a day job with a games company.

Current 3D technology (with Direct3D, OpenGL and
the plethora of 3D acceleration cards) and 16 or 32 bit
multi-channel sound and genetic algorithms for creature
intelligence and CDROMs with gigabytes of level data
have certainly changed the face of the computer game.
Its now an interactive immersive environment with en-
tities and goals and strategies. So have things really
changed? What metric might we use to judge this; if I
were to apply the metric of level of excitement gener-
ated, or the fear, or the sense of achievement at having
completed a goal, then we haven’t moved at all. I con-
sider Paradroid and Mission Impossibleto have been
the best of the 8-bit crop. I would now considerQuake
II to be the best of the current crop. I get equally as
much enjoyment out of each. All I can really conclude
is that the technology and the industry has grown up,
but I haven’t.

References

[1] I.C. Whenwebsite,
http://www.l4software.com/icwhen/

[2] Videotopiawebsite,
http://www.videotopia.com/

[3] Planet Atariwebsite,
http://www.geocities.com/SiliconValley/Vista/3015/atari.h t

[4] Hubbard, Philip. Collision detection for interactive
graphics applications.IEEE Transactions on
Visualization and Computer Graphics, 1(3):218–230,
1995.

11



[5] Planet Spectrumwebsite,
http://www.nvg.unit.no/sinclair/planet/index.html

[6] CBM Document Pagewebsite,
http://www.hut.fi/Misc/cbm/docs/index.html

[7] Bauer, Christian. The MOD 6567/6569 Video
Controller (VIC-II) and its Applications in the
Commodore 64, 1996. Available on the web at
http://www.uni-mainz.de/ bauec002/FRMain.html

12


