
CHAPTER 1: INTRODUCTION ..3

CHAPTER 2: ST JOHN OF GOD SERVICES IN IRELAND5

2.1 INTRODUCTION ..5
2.2 ST JOHN OF GOD HOSPITALLER SERVICES ...5

2.21 Provincial Administration ..8
2.3 SOFTWARE SERVICES ...8

2.31 Mental Health Information System (MHIS)9
2.32 Intellectual Disability Information System (IDIS).......................... 10
2.33.1 Software development team.. 11

2.331 IT Manager ... 11
2.332 Database Administrator... 11
2.333 Business Analyst .. 11
2.334 Software Developer x 2... 11

2.4 USER PROFILE. .. 12
2.5 SOFTWARE DEVELOPMENT IN SJOG .. 12

2.51 Development of a Bed Management component. 13
2.511 Overview .. 13
2.512 From Requirements analysis to Implementation...................... 13
2.513 Usability issues arising following roll out. 16

CHAPTER 3: LITERATURE REVIEW..17

3.1 OVERVIEW .. 17
3.2 USABILITY.. 18
3.3 EVALUATION ... 20
3.4 CURRENT PRACTICE ... 22
3.5 WHY SHOULD HEALTHCARE ORGANISATIONS EVALUATE THEIR IT SYSTEMS 25
3.6 FORMATIVE AND SUMMATIVE EVALUATION ... 28
3.7 EVALUATION AND THE SDLC .. 30

3.71 Prototyping... 33

CHAPTER 4: METHODS, TECHNIQUES AND STRATEGIES35

4.1 Overview .. 35
4.2 Descriptive techniques .. 37

4.21 Behaviour based evaluation techniques 38
4.211 Observational techniques .. 38
4.212 Think-aloud protocols ... 39
4.213 Video confrontation .. 40

4.22 Opinion based evaluation methods .. 41
4.221 Questionnaire for User Interface Satisfaction........................ 42
4.222 Software Usability Measurement Inventory SUMI 43
4.223 IsoMetrics ... 45

4.23 Usability Testing ... 47
4.3 Predictive techniques .. 49

4.31 Usability Walkthroughs .. 49
4.32 Cognitive Walkthrough... 50
4.33 Heuristic evaluation... 51
4.34 Other Predictive Techniques ... 53

4.4 Comparison of techniques.. 55

CHAPTER 5: CHOOSING AN EVALUATION TECHNIQUE............................58

5.1 SET THE GOALS FOR THE EVALUATION ... 58
5.2 SELECT AN EVALUATION TECHNIQUE.. 59

 2

CHAPTER 6: HEURISTIC EVALUATION TRIAL..64

6.1 OVERVIEW ... 64
6.2 USABILITY EVALUATION OF BED MANAGEMENT COMPONENT 65

6.21 To launch Bed Management component 67
6.22 List of tasks to complete... 68
6.23 Evaluator Feedback following heuristic review.............................. 72
6.24 Conclusions .. 76

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS77

7.1 CONCLUSIONS ... 77
7.2 SUGGESTIONS FOR FURTHER WORK ... 78

REFERENCES ..79

Table of Figures

Figure 1 – MHIS main screen . 9
Figure 2 – IDIS mainscreen . 10
Figure 3 – Bed Management componentcalled from IDIS 13
Figure 4 – Software development process for Bed Management component 14
Figure 5 – 16 Powerful Reasons why not to Evaluate (Rigby 2001) 23
Figure 6 – 6 Overriding Imperatives (Rigby 2001) 26
Figure 7 – Waterfall Software Development model (www.startvbdotnet.com) 30
Figure 8 – Iterative software design (Kushniruk 2002) 32
Figure 9 – Tasks to be completed by evaluator

Index of Tables

Table 1 – Mental health services in St John of God Services (Ireland)
(http://www.sjog.ie) .

6

Table 2 – Intellectual disability services in St John of God Services (Ireland)
(http://www.sjog.ie) .

7

Table 3 – Relative effectiveness of low v high fidelity prototypes (Rudd 1996) 33
Table 4 – Classification of evaluation approaches (Friedman & Wyatt 1997) 36
Table 5 – Classification of usability evaluation techniques 37
Table 6 – Summary of usability evaluation techniques 57

 3

Chapter 1: Introduction

In order for any computer system to be effective, it must allow intended users to

accomplish their tasks in the best way possible. This concept of usability,

however, is often little more than an afterthought as software developers focus

on other aspects of system development such as product functionality and

performance. It is the author’s experience that in St John of God Services,

resource restrictions, looming deadlines and a general lack of expertise among

the software development team regarding the concept of usability are just some

of the reasons why software systems and components, when implemented, have

a less than high level of usability.

Usability is important for many different reasons. From the user's perspective it

can mean the difference between performing a task accurately and completely or

not, and the process being enjoyable or frustrating. For software developers,

usability is important because it can mean the difference between the success or

failure of a system. From a management point of view, software with poor

usability can reduce the productivity of the workforce to a level of performance

worse than without the system. In all cases, lack of usability can cost time and

effort, and can have a significant influence on the success or failure of a system.

(usabilityfirst.com)

In order to promote consistency in user interface development and improve the

usability of software systems developed by St John of God Services, a formal

usability evaluation strategy is sought which can be implemented as part of the

iterative software design process.

Before commencing research, an overview of St John of God Services in Ireland is

offered showing the different activities conducted by the organisation in their

various mental health and intellectual disability services throughout Ireland. In

this chapter, particular attention is paid to the structure and work practices of the

software development department. A profile of the staff within the department is

then included as is an example depicting the software development process (from

requirements to implementation) for a recently developed software component.

This background is necessary as it influences the selection of the most

appropriate usability evaluation technique for use in St John of God Services.

 4

A literature review is carried out in two sections. Chapter 3 discusses the

concepts of usability and of evaluation and shows why many organisations

neglect to include usability evaluation as part of their software design process.

There are many benefits which may accrue to an organisation from the

introduction of usability evaluation methods and these are demonstrated in this

chapter.

Chapter 4 forms the second part of the literature review and entails a detailed

appraisal of some of the most popular usability evaluation techniques being used

by healthcare organisations today. Divided into descriptive and predictive

strands, the many and varied approaches to usability evaluation are reviewed and

their relative suitability to the St John of God case assessed given the current

work practices and resource constraints outlined in chapter two.

Chapter 5 commences with a presentation of the goals which it is hoped will be

achieved by the introduction of a usability evaluation methodology in St John of

God Services. Following this, there is a discussion of the various factors which

might influence the selection of a usability evaluation technique. The relevance of

each of these factors to the St John of God case is also discussed so that the

most appropriate technique can be selected. The chapter concludes with the

selection of the usability evaluation technique deemed most suitable and the

decision is taken to use Nielsen’s Heuristic Evaluation.

In Chapter 6, this chosen technique is tested against a recently developed

software module to establish its effectiveness as a means of identifying usability

issues. A list of tasks are drawn up and a software developer, with no previous

involvement in the component’s development, acting as the evaluator, is asked to

inspect the various dialog elements and to compare them with a list of recognised

usability principles – the heuristics.

Finally, conclusions of the dissertation are discussed and suggestions are offered

as to further work which would compliment this study.

 5

Chapter 2: St John of God Services in Ireland

2.1 Introduction

Before we begin the process of choosing a usability evaluation strategy for

software development in St John of God Services, an overview of St John of God

Services as an organisation in Ireland is provided, paying particular attention to

the ICT function which is based in Stillorgan Co Dublin. A brief introduction to the

two main in-house developed systems, the Mental Health Information System

(MHIS) and the Intellectual Disability Information System (IDIS) will be followed

by a profile of the current software development team as well as a profile of the

users of both systems. In order to illustrate the current work practice regarding

software development in SJOG, the process of developing a new bed

management component for the IDIS will be laid out by way of example. A good

understanding of the working environment both in terms of resources, users and

current work practices is important as these influence which usability evaluation

technique will to select.

2.2 St John of God Hospitaller Services

St John of God Hospitaller Services is an international healthcare organisation,

run by St John of God Brothers with over 250 hospitals and centres throughout

the world. The Organisation is run by St John In Ireland, St John of God

Hospitaller Services (SJOG) provides mental health services, care for older people

and services for children and adults with intellectual disabilities. Each year over

3000 individuals receive support through mental health and intellectual disability

services operated by over 2000 staff and volunteers including 36 St John of God

Brothers.

Below is a table detailing the work carried out by each of our mental health and

intellectual disability services in Ireland.

 6

Mental Health

St John of God Hospital,

Stillorgan, Co Dublin

St. John of God Hospital is an acute psychiatric

teaching hospital with 210 beds, out-patient and

day hospital services. The hospital accepts patients

from all over the country. Patients are also referred

through the community mental health service for

southeast Dublin run by St. John of God Services

and based at Cluain Mhuire, Blackrock.

Cluain Mhuire Community,

Mental Health Services

Blackrock, Co Dublin

Provides community mental health programmes for

the people of Dun Laoghaire-Rathdown.

Lucena Services,

Rathgar, Dublin 6

Provides child and adolescent mental health

programmes in south Dublin city and county and in

county Wicklow.

Granada Institute,

Shankhill, Co Dublin

Contributes to the safety, protection and well-being

of children, adolescents and vulnerable adults

through the provision of assessment and treatment

services for those who have experienced sexual

abuse and for those who have perpetrated sexual

abuse and for the families of both.

Table 1 - Mental health services in St John of God Services (Ireland)

Source : http://www.sjog.ie

 7

Intellectual Disability

St Augustine’s School,

Blackrock, Co Dublin

Co-educational day and boarding school providing

educational, social, recreational and vocational

training programmes for 160 students with special

education needs.

Kildare Services,

Celbridge, Co Kildare

Provides a network of day, training, employment

services and residential services, as well as a respite

service to over 320 children and adults with

intellectual disabilities.

North East Services,

Dunleer, Co Louth

Provides 630 children and adults with residential

and day services in counties Louth, Monaghan and

Meath.

Callan Institute,

Shankhill, Co Dublin

Provides consultation and training in the use of

effective, non-aversive methods for supporting

people who have challenging behaviour.

Carmona Services,

Dun Laoghaire, Co Dublin

Provides a network of residential and day services in

southeast Dublin and north County Wicklow for 260

children and adults.

Brennán Services,

Tralee, Co Kerry

Provides training, employment, social and

residential programmes for people with intellectual

disability in County Kerry.

Menni Services,

Island Bridge, Dublin 8

Supports 425 children and adults attending a

network of residential and day programmes. The

catchment area is south west Dublin including

Tallaght.

STEP Enterprises Provides work and supported employment for 140

people in south county Dublin.

Northern Ireland Provides residential and independent living services

for adults with an intellectual disability and

residential care for frail, elderly people.

Table 2 - Intellectual disability services in St John of God Services (Ireland)

Source : http://www.sjog.ie

 8

2.21 Provincial Administration

Located on the grounds of St John of God Hospital in Stillorgan, Provincial

Administration is the administrative head quarters for St John of God Services in

Ireland. Here, the functions of Human Resources, Research, Programme

Development, Finance, Library Services, Publications and Information and

Communication Technology (ICT) are centred.

2.3 Software Services

The ICT Department is comprised of Infrastructure and Software Services

divisions. Software systems relating to mental health and intellectual disability

are generally developed in-house but where resource constraints dictate, external

contractors are occasionally employed to develop new components of existing

systems.

The two main in-house developed systems currently in place in SJOG in Ireland

are the Mental Health Information System (MHIS) and the Intellectual Disability

Information System (IDIS). Both systems which are developed using Visual Basic

6 with data held in a SQL Server 7 database.

 9

2.31 Mental Health Information System (MHIS)

Previously a COBOL based system, the current Windows version of the MHIS has

been in place for 10 years. Initially used as a patient administration system, it

has evolved significantly since its inception and now encompasses an electronic

patient record where a diversity of clinical data is held for each inpatient and

outpatient. From consultant to social worker, all interactions with patients are

recorded electronically as well as other patient related data such as laboratory

results, discharge summaries, alerts, referrals and medication. The system is

constantly being enhanced as requested by clinicians. As can be seen from the

screen shots in figure 1 and figure 2, the layout of the main user interface is

similar for both the MHIS and IDIS systems.

Fig 1 – MHIS main screen

All information about a particular patient can be accessed through the above

screen but in order to add to a patient’s record, components are launched

through which data can be added to a patient’s record.

 10

2.32 Intellectual Disability Information System (IDIS)

Development of version 1 of the IDIS has recently been completed and the

system is currently being implemented in each of our intellectual disability

services. Using the same database and front end design as the MHIS, the IDIS

system stores both administrative data and data relating to the day and

residential services a client receives from SJOG. Since the completion of phase 1

of development, work has commenced on a number of software components

which will improve the value of the system for those who use it. The components

currently in development are:

• Reporting Module

o Allows users to create and share reports on client data

• HRB Upload Module

o Facilitates nightly upload of client data from IDIS system to Health

Research Board.

• Bed Management

o Allows users to monitor bed occupancy in their service through a

graphical interface.

Fig. 2 – IDIS main screen

 11

All information about a particular client can be accessed through the screen above

but as with the MHIS, certain tasks require new components to be launched. For

example, where a client has been moved from one bed to another bed or where

they have been transferred to a hospital for treatment, the Bed Management

component is launched allowing the move to be recorded and the clients bed

history to be maintained. A more detailed account of the Bed Management

component will follow.

2.33.1 Software development team

Within the Software Services group there are five full time staff whose roles are

summarised as follows

2.331 IT Manager
The IT manager oversees the ICT department and with a software engineering

background carries out occasional software development work and oversees all

software development projects developed at St John of God services.

2.332 Database Administrator

Carries out all tasks relating to the administration of several test and live

databases. The database administrator also provides technical support for the

MHIS and IDIS systems and is involved in testing of new systems and

components.

2.333 Business Analyst

Oversees the process of acquiring and integrating bespoke systems and of

several externally developed software systems. The business analyst also carries

out testing of new systems and components and occasional software development

work.

2.334 Software Developer x 2

Duties include maintenance of in-house developed software systems as well as

development of new systems and new components for existing systems.

Involved at all stages of the Software development lifecycle. The developers are

also responsible for the creation of any new databases and amendments to the

structure of existing databases.

 12

2.4 User profile.

Users of the MHIS and IDIS systems are generally clinical staff who have limited

IT experience and knowledge although staff involved in mental health, tend to be

more IT literate than their colleagues in intellectual disability as the MHIS has

been in place for 10 years. It is the author’s experience that these staff

members, whether involved in mental health or intellectual disability, often have

a negative attitude towards existing systems and show little motivation to use

new systems. New systems are viewed as “just more work” and are perceived

as a distraction from core work rather than being seen as a means to improve

patient and client care.

Naturally there are exceptions to this and within each mental health and

intellectual disability service there are users who are more technically skilled and

who often act as champions for existing software and new software as it is

introduced. These staff play a vital role in the take-up of new and existing

software systems in St John of God Services.

2.5 Software Development in SJOG

The process of software development in St John of God Services is informal and

flexible and factors such as the complexity of the project and time constraints

determine the approach taken in each case. There are certain stages which are

common to each software development project as will be demonstrated in the

following example. This example illustrates the process from requirements

analysis to product implementation for a typical software component. The Bed

Management component has recently been implemented as an add on to our IDIS

system. Fig 3 shows the Bed Management component called from within the

main ‘Residential’ section of the IDIS system.

 13

Fig. 3 Bed Management component called from IDIS

2.51 Development of a Bed Management component.

2.511 Overview

The bed management module of the IDIS system allows users to monitor bed

occupancy in their service through a graphical interface. It also facilitates the

moving of clients either to another bed in the service, to an external location

(such as for hospital treatment) while recording a history of such moves. A

similar component (wardsview) already exists in the MHIS system but key a

number of key operational differences necessitated the development of a new

component as opposed to an adaptation of the wardsview component.

2.512 From Requirements analysis to Implementation

Figure 4 shows each of the stages in the development and implementation of the

Bed Management module and each stage is subsequently described.

 14

Fig 4 - Software development process for Bed Management module.

 Requirements Analysis

Technical Specification

Development of

Prototype

Database and software

development

Functional Testing

Product Demonstration

Roll out to Key User

Roll out to All Users

Feedback

from key

user

 15

Stage 1.

A meeting was held and attended by two representatives from the software

development team (IT manager and one software developer) and two key users

from the department requesting the component. The high level requirements

were verbally presented by the prospective users and notes were taken which

would form the basis of an informal technical specification document. By the end

of the meeting, there was broad agreement about how the component should

function but little discussion regarding usability or interface design had taken

place. The meeting was concluded with a commitment from the software

development team to implement the component within six weeks.

It was agreed that the component would facilitate the following transactions

A. Client A may be moved from bed 1 to bed 2.

B. Client A may be moved form bed 1 to bed 2, reserving bed 1 for client A

C. Where client A and client B are to exchange beds, provide a temporary

holding to hold client B and to allow client A to move to Client B’s bed.

Client B can then be moved from temporary holding area to client A’s old

bed.

D. Where a client is temporarily transferred out of the Service (e.g. for

hospital treatment), allow recording of this external move and reserve the

client’s bed for their return to the service.

Stage 2.

A Technical specification document was written by the software developer in

consultation with the IT manager. A basic non-functioning prototype was drawn

up using Visual Basic to show the various screens which would make up the

finished component.

Stage 3.

A meeting was held where the software developer and one key user were

present. The prototype was shown to the user and it was agreed that what was

presented matched the requirements defined at the outset of the project.

 16

Stage 4.

Following this meeting, software development and database design were

commenced. As with almost all software developed in St John of God Services,

Visual Basic 6 and SQL Server 7 were to be the technologies used. Through email

contact, the software developer and the key user were able to resolve any

queries regarding functionality which arose during development. Initial

Development phase was completed with three weeks.

Stage 5.

The product was tested against a test database by the developer in conjunction

with the database administrator until each of the transactions could be completed

with out error being raised.

Stage 6.

By the end of the fourth week, one key user was invited to view a demonstration

of the component at the software developer’s workstation. Functionality of the

component was demonstrated in full against a test database and it was agreed

that the component would be implemented the following week.

Stage 7.

The component was implemented with access given to one key user only. Over

the following week, phone calls and emails were used to communicate issues

regarding functionality and usability of the component. The developer addressed

each of these issues over the course of the week. The issues raised at this point

are detailed in chapter 6.

Stage 8

A new version of the component was launched in week six and having confirmed

that the issues raised had been resolved, it was agreed that the component

access would be granted to all users.

2.513 Usability issues arising following roll out.

The component was rolled out to three users in total, one of whom was the key

user. Following the implementation, a small number of issues were raised but

these issues related to functionality of the component as opposed to usability.

 17

Chapter 3: Literature Review

3.1 Overview

The purpose of this literature review is to assess the current thinking in the area

of usability evaluation and to provide information which will assist in the selection

of a formal usability evaluation methodology which can be applied to future

software development projects in St John of God Services.

Firstly, the concepts of usability and evaluation will be discussed and the scope of

the project will be established and justified. The author will then discuss the

current practice regarding evaluation in health care showing the reasons why

formal evaluations of software systems are rarely carried out. For a number of

reasons, it is vital that the barriers which hinder the practice of software

evaluation in healthcare today are overcome and these reasons will be presented

in the next section.

Following this, the concepts of formative evaluation, which takes place during a

product’s development and summative evaluation, which is conducted following a

product’s implementation, will be presented. The remainder of the literature

review will focus on the notion of formative evaluation as it is vital that any

usability issues are addressed prior to and during implementation. Before

analysing the myriad software evaluation techniques, it will be necessary to

provide an overview of software development paying particular attention to the

prototyping methodology which closely reflects the software development model

favoured by St John of God Services.

Having discussed the working environment and how evaluation might fit with the

prototyping software development model, the next step will be to consider those

software evaluation models which may be applied to a healthcare setting. These

techniques will be broadly categorised as descriptive, which analyse data

produced following user interaction with a system and predictive techniques

which employ the use of experts who aim to predict usability problems users will

face when the system is implemented. Having outlined the relative merits of the

many different techniques, a table will be produced which will illustrate the

benefits and drawbacks of each method. The final task is to select a technique or

elements of different techniques in order to produce a formal usability evaluation

methodology which can be applied to future software development projects within

St John of God Services.

 18

3.2 Usability

Software can be evaluated with respect to different aspects, for example,

functionality, reliability, usability, efficiency, maintainability, portability (ISO/IEC

1991) but to discuss the concept of software evaluation in relation to all of these

different aspects would be beyond the scope of this dissertation so it has been

decided to focus on the area of usability evaluation. The reasons for this

decision are outlined below.

Usability is a vital element of software design which can mean the difference

between the success and failure of a system. From the user's perspective

usability is important as it can determine whether a task is completed accurately

or not and whether the experience is enjoyable or frustrating. From the software

developer's perspective usability is important because it can influence the

credibility of a system and those who develop it. From a management point of

view, software with poor usability can reduce the productivity of the workforce to

a level of performance worse than without the system. In all cases, lack of

usability can cost time and effort, and can greatly determine the success or

failure of a system. (Usabilityfirst.com)

For these reasons, the remainder of this study will therefore deal with the

evaluation of software from a usability perspective. Usability can be broadly

defined as the capacity of a system to allow users to carry out their tasks safely,

effectively and enjoyably (Preece & Rogers 2002). This definition is consistent

with that which is contained in ISO 9241, Part 11 which defines usability as “the

extent to which a product can be used by specified users to achieve specified

goals with effectiveness, efficiency and satisfaction in a specified context of use”.

Shakel (1991) adds user training and support defining the usability of a system

as “…capability in human functional terms to be used easily and effectively by the

specified range of users, given specified training and user support, to fulfil the

specified range of tasks, with the specified range of environmental scenarios”.

Because usability is too abstract a term to study directly, it is usually divided into

the following attributes (Nielsen 1993).

 19

• Learnability
How easy is it to learn the main system functionality and gain

proficiency to complete the job.

• Efficiency
The number of tasks per unit of time that a user can perform using the

system.

• User retention over time
It is critical for intermittent users to be able to use the system without

having to climb the learning curve again.

• Error rate
This attribute contributes negatively to usability. It does not refer to

system errors but rather it addresses the number of errors the user

makes while performing a task.

• Satisfaction
This shows a user’s subjective impression of the system.

A primary reason for applying usability techniques when developing a software

system is to increase user efficiency and satisfaction and consequently,

productivity. Usability techniques, therefore, can help users achieve their goals

by helping them perform their tasks. Furthermore, good usability evaluation is

gaining importance in a world where, as systems become increasingly user

friendly, users are less computer literate and can’t afford to spend a long time

learning how a system works. Usability is critical for system acceptance – if users

don’t think the system will help them complete their tasks, they are less likely to

accept it. It’s possible they won’t use the system at all or will use it inefficiently

when it is implemented. If we don’t properly support the user task, we are not

meeting the user needs and are missing the main objective of building a software

system. (Ferre et al 2001).

 20

3.3 Evaluation

Before conducting a comprehensive review of existing literature in the area of

software evaluation it is first necessary to define the concept of evaluation and to

apply this definition to the world of health informatics.

Throughout the published literature there are many definitions of the concept of

evaluation in relation to software engineering within the health care domain.

These definitions broadly agree that evaluation comprises measuring or

describing something usually to answer questions or make decisions. (Friedman

and Wyatt 1990) note that most definitions of evaluation imply an empirical

process where data of varying shapes and sizes are always collected.

Ammenwerth et al (2004) add that simply measuring quality characteristics of an

object is insufficient and that such measures need a context in which they are

used: there has to be a question to be answered. They therefore define the

concept of evaluation in the healthcare domain as “the act of measuring or

exploring properties of a health information system (in planning, development,

implementation or operation), the result of which informs a decision to be made

concerning that system in a specific context.”

In the past software evaluation was usually practiced following the software and

development phase using statistical analysis and experimental designs but has

more recently been applied using the iterative software development process.

Whitefield et al (1990) note that traditional evaluations conducted in the past

were “poorly integrated with development and therefore ineffective.” They tended

to be “too late for any substantial changes to the system to still be feasible and,

in common with other human-factors contributions to development, they were

often unfavourably received….this situation has been improved in recent years in

a number of ways.”

Any software evaluation process has predefined goals which can generally be

classified in one of three ways.

• Which is better?

The evaluation aims to compare alternative systems to choose the system

which is best suited to a particular application, for a decision among

 21

several prototypes, or for comparing several versions of a software

system.

• How good is it?

This goal aims to assess the qualities of a finished system. In this case a

system may be evaluated with respect to pre-defined goals. This may be

in relation to pre determined usability goals (Carroll & Rosson 1995) or it

may aim to assess a system’s conformity with given standards.

• Why is it bad?

Here, the evaluation aims to determine the weakness of a software system

such that the result generates suggestions for further development.

The first two goals may be considered to relate to the concept of summative

evaluation whereas the third goal relates to the notion of formative evaluation.

In contrast, the goals of formative evaluation are the improvement of software

and design supporting aspects (Scriven 1967). It is considered the main part of

software evaluation and plays an important role in iterative development. In

every development cycle, formative evaluation results in

• Quantitative data to measure the extent to which the system meets the

usability goals outlined at the beginning of a software development

project.

• Qualitative data which can be used to detect the usability problems of the

system.

Hix and Hartson (1993) classify the resulting data by the following criteria

Objective: Directly observable data – typically user behaviour during the use of

the interface or the application system

Subjective: Opinions, normally expressed by the user with respect to the

usability of the interface or the application system.

Quantitative: Numerical data and results – e.g. user performance ratings

 22

Qualitative: Non-numerical data – e.g. list of problems, suggestions for

modifications to improve the interaction design.

Formative evaluation is discussed further in section 3.6.

3.4 Current practice

Before considering the potential benefits afforded to an health care organisation

which engages in software evaluation, it is important to identify the barriers

which can often hinder the effectiveness of such evaluations.

Rigby (2001) lists ’16 powerful reasons’ (see Fig 5) why the evaluation of

software in healthcare is not carried out as often or as effectively as it ought to

be. While this paper would appear to be more relevant to summative evaluation

(evaluation conducted when the product has been implemented), many of the

points can be applied to formative evaluation (evaluation conducted during the

software development process). Many of the barriers identified can be broadly

attributed to an innate organisational resistance to evaluation. Reasons include

the diversion of resources from activities that are perceived as more creative and

the reluctance to find or publicise mistakes or failures. Software Evaluation is

perceived as a luxury investment where resources would be better focused on

activities which directly contribute to patient care. “Evaluation is not seen as

saving lives. Claims that it may increase efficiency carry significantly less weight;

moreover such outcomes are only possibilities, and can only be shown

retrospectively” (Rigby 2001). Below is a list of sixteen barriers as identified by

Rigby.

 23

1. No news is good news

2. Unnecessary encouragement of opposition

3. Waste of valuable time

4. Loss of credibility

5. Patient care would suffer

6. Evaluation does not save lives

7. System development would be reduced

8. It represents a professional challenge

9. Fuels inter-departmental conflict

10. Life will have moved on

11. Modern timescales are short

12. Indicators not detailed reasoning are the vogue

13. Crosses research boundaries; No “ownership”

14. Information system evaluation yields no credit

15. A liability and libel minefield

16. It is a vested interest industry

Fig 5 – 16 powerful reasons why not to evaluate. Rigby (2001)

Expanding on the notion of scarce resources, Moehr (2002) questions the quality

of the sample of users at the disposal of those conducting the evaluation.

Referring specifically to those methods of evaluation classified as ‘Objectivist’

where a sample of users is required, Moehr notes that “One has often to work

with small convenience samples of highly motivated early adopters, who are not

typical of the general population. Since there is often no alternative, the question

is not how to achieve a representative sample but how to arrive at valid insights

despite the flaws of the sample for objectivist requirements”. Another inhibitor to

the effectiveness of usability evaluation in healthcare, according to Moehr, is the

effect of the research instrumentation on the study questions. As resources of

time and people are scarce, the need to judiciously select research questions is

often in conflict with time pressure. Hence, easy questions are more likely

pursued than difficult ones, which however may be the important ones. Moehr

(2002).

Software evaluation in health care is a complex process and is fraught with

problems such as those identified by Ammenwerth et al (2004).

 24

• Insufficiently available evaluation methods, guidelines and toolkits to cope

with the complexity of health care information systems originating from a

combination of technical as well as organisational and social issues.

• Insufficient collaboration between evaluation researchers from different

academic fields and traditions.

• Little support by methods and guidelines for constructive (formative)

evaluation in an implementation or installation project since many studies

focus on summative aspects.

• Often insufficient and costly evaluation studies are carried out which do

not ask or are not able to answer the important questions of information

systems evaluation.

• Limited value of evaluation reports to others, because these lack sufficient

information enabling others to adopt the approach or to judge the validity

of the conclusions given.

 25

3.5 Why should healthcare organisations evaluate their IT

systems

Healthcare is entering the information society. Effective evaluations of health

care information systems are necessary to ensure that systems adequately meet

the requirements and information processing needs of users and health care

organisations (Kushniruk and Patel 2004). While the use of modern information

technology offers tremendous opportunities, there are also hazards associated

with information technology in healthcare – modern information systems are

costly, their failures may cause negative effects on patients and staff and

possibly, when insufficiently designed, they may result in spending more time

with the computer than with the patient (Hendrickson & Kovner 1990).

Therefore, a more rigorous evaluation of IT in healthcare is recommended (Rigby

2001, Wyatt 1997) and is of great importance for decision makers and users of

future information systems (Kaplan 2002).

Having outlined some of the barriers which inhibit software evaluation, one may

question the value of attempting the design of, or support for, rigorous evaluation

studies. Rigby (2001) explains that there are ‘clear ethical and professional

imperatives’ which would appear to over-ride these problems, but which may yet

not be making their impact, nor being heard by senior policy makers’. He sets

out 6 such imperatives.

1. Organisational Duty of Care Imperative

2. Self-Review Ethical Imperative

3. Evidence-based Imperative

4. Minimisation of Disruption Imperative

5. Prevention Imperative

6. Extension and Sharing of Knowledge Imperative

Fig 6 - 6 Overriding Imperatives - (Rigby 2001)

Rigby calls his primary imperative the ‘Organisational Duty of Care’ Imperative.

Every health care organisation has a duty of care to its patients, staff and

population of potential patients. If the ultimate aim of information systems is to

improve the quality of patient care then we have a duty to ensure that these

systems work as efficiently and effectively as possible. If for example, the

 26

system is wasteful of time or other resources, or contains less than optimal data

sets or information outputs, this can be argued as causing indirect harm, in that

resources are wasted, or imperfect support is supplied to front-line staff. To

monitor this situation in order to make any adjustment necessary would seem to

be an essential ethical imperative.

Both the ‘Self Review’ Imperative and the ‘Evidence Based’ imperative highlight

an organisation’s obligation to ensure that their systems are as effective as

possible. The ‘Minimisation of Disruption’ imperative suggests that as a system

grows in terms of data and numbers of users, it becomes increasingly difficult to

alter the system. The longer the system remains unchanged, the greater the

disruption, retraining, data conversion and other related effects, all of which cost

money, time and user patience. Structured evaluation can identify these

necessary changes at the earliest opportunity.

The ‘Prevention’ imperative explains how many organisations draw heavily from

the processes and details of those who have gone before. Structured evaluation

provides a formal means of ensuring that mistakes, once identified, can be

prevented from occurring in new systems or future versions of existing systems.

Finally, the ‘Extension and Sharing of Knowledge’ imperative notes that as

technologies are moving forward with such pace and with unavoidably significant

repercussions, there is a moral imperative which requires that experience and

knowledge, in scientific form are generated and shared for the common good.

(Rigby 2001)

Friedman and Wyatt (1997) describe five major reasons why healthcare

information systems should be evaluated. The fist reason is to promote and

encourage the use of healthcare information systems (HCIS) by demonstrating

their safety and benefits. Secondly, evaluation of HCIS is pragmatic in that it

allows developers to learn from past successes and mistakes. They also argue

that there is an ethical and medicolegal obligation for evaluation. Finally they

suggest that evaluation helps develop informatics as a scholarly profession by

providing a foundation for research.

In the author’s experience, a system’s usability is a critical factor in users’

acceptance of a system. Where there is often a reluctance among staff to adopt

new technology, usability evaluation is an important means by which we can

 27

reduce the likelihood of users rejecting the system. This, allied to the reasons

outlined above demonstrate the importance of formal usability evaluation in the

development of software products in health care.

 28

3.6 Formative and Summative Evaluation

In General, summative evaluation is concerned with the global aspects of

software development, and does not offer constructive information for changing

the design of a system in a direct manner. It is generally performed when the

development of the system is almost or entirely accomplished. (Hix & Harston

1993)

When software evaluation was first introduced as a method for improving design,

many companies would simply (summative) “test” their product just prior to

shipping – a different form of quality assurance (Barnum 2002). Evaluation was

conducted to determine that the product was good and provide them with the

chance to claim that it is user-tested, human factor satisfied, or ergonomically

sound. The problem that many organisations had was that their testing did not

often reveal these results. Users would struggle with features and their

implementations, and a particular design would be discovered to have numerous

flaws. However, by this stage of development redesign would be too costly, and

imperfect designs were delivered with improvements being stored for future

implementations (Kushniruk 2002).

In recent years, therefore, an additional focus has emerged: the development of

approaches to evaluation that can be used in the iterative evaluation of systems

during their development (formative evaluation), with the objective of improving

the design and deployment of systems as well as ensuring that the process of

design of health care systems leads to effective systems (Kushniruk 2002). In

the general software industry it is increasingly recognised that continued

evaluation is needed throughout the system development lifecycle from early

design to summative testing, in order to ensure final products meet expectations

of designers, users and organisations (Kushniruk 2004, Stead 1996, Himson et al

1999, Rubin 1994). Just adding some kind of “user testing” to an existing

software process is not enough – usability comes from a complete process, one

that ensures usability and attests to when it has been achieved (Hix & Hartson

1993).

 29

Given the software development method employed at St John Of God Services, it

has been decided that focus should be placed on the notion of formative

evaluation.

As will be demonstrated in the next section, certain software development

lifecycle (SDLC) models are, by their nature, iterative and therefore lend them

selves well to formative iterative evaluation.

 30

3.7 Evaluation and the SDLC

“The key principle for maximizing usability is to employ iterative design, which

progressively refines the design through evaluation from the early stages of

design. The evaluation steps enable the designers and developers to incorporate

user and client feedback until the system reaches an acceptable level of

usability.” (usabilityfirst.com)

The System Development Lifecycle (SDLC) is defined on Computerworld.com as

the the overall process of developing information systems through a multistep

process from investigation of initial requirements through analysis, design,

implementation and maintenance.

There are many different models and methodologies, but each generally consists

of a series of defined steps or stages. Analysis, design, implementation, testing

and maintenance are generally part of any SDLC but traditional models such as

the waterfall model (described below) are procedural in their nature with each

stage commencing when the previous stage has been completed. More modern

approaches entail some level of iteration which allow a design to be revisited

repeatedly each time it has been evaluated.

Of the traditional models, The Waterfall Model (fig 7) is perhaps the best known.

Fig. 7 Waterfall SDLC model (www.startvbdotnet.com)

 31

The classic waterfall method implies that each subsequent step does not begin

until all elements of the steps preceding it have completed, and that there is no

going back to a prior step once the subsequent step has begun.

(www.informit.com)

The main problem with the waterfall model from a usability evaluation

perspective is that it assumes that the only role for users is in specifying

requirements, and that all requirements can be specified in advance.

Unfortunately, in the complex healthcare environment, requirements grow and

change throughout the process and beyond, calling for considerable feedback and

iterative consultation. (www.computerworld.com) . SDLC models such as the

Waterfall model presuppose a set of fixed stages for system development with

system evaluation being conducted primarily in the final stages. Such

approaches have proven difficult to apply in health care where information needs

may be hard to precisely determine. Kushniruk (2002) explains that the health

care environment is often complex and characterised by missing information,

shifting goals and a great degree of uncertainty. Health care decisions, he

continues, are subject to a level of uncertainty not found in traditional business

environments and consequently health care technology and the knowledge on

which it is based are often very volatile. In fact before the decision making

processes are understood, they may change within the time span of the

traditional SDLC.

For many applications, design may change, particularly for highly complex and

interactive applications, design may change dynamically and proceed in an

iterative fashion, with feedback from end users fuelling the evolution of the

design (Patel & Kushniruk 1998). The importance of design involving early and

rapid prototyping has emerged, particularly regarding the design of user

interfaces (Hix & Hartson 1993). Methodologies such as rapid application

development (RAD) and various interpretations of prototyping have gained

prominence (McConnell 1996). Usability evaluation and prototyping are

interconnected. Prototypes must be developed in order to experiment with

different designs and features, explore the feasibility of different aspects, but also

to allow interaction with end users followed by some form of analysis. Usability

evaluation facilitates the analysis of a system’s prototype. When combined with

usability evaluation prototyping can create an “adaptive design cycle and

encourages formative iterative evaluation methods”.

 32

Design issues raised in the first evaluation are fed into the design of a further

prototype and the cycle continues. (Sullivan 2004). Fig 8 shows software design

as an iterative process where the design is iteratively influenced by evaluation.

Fig 8. Iterative software design (Kushniruk 2002)

 33

3.71 Prototyping

Prototyping is the process of designing a mock-up of some specified degree for

one or more of the following purposes: to test the feasibility of an idea, clarify

requirements, or allow testing/evaluation (Preece 2002). It is the chosen

methodology for software development in St John of God Services.

According to Rudd (1996), there are essentially two levels of prototype, low-

fidelity and high-fidelity. Low fidelity prototypes are developed quickly and at low

cost and thus are suited to evaluation in the early stages of system design

(formative evaluation). High fidelity prototypes are more complex and detailed

and are generally used for summative evaluation. The table below illustrates the

relative merits of both prototypes.

Table 3 – Relative Effectiveness of Low v High-fidelity Prototypes (Rudd 1996)

Type Advantages Disadvantages

Low-fidelity Lower development costs. Limited error checking

 Evaluate multiple design concepts. Poor detailed specifications to code to

 Useful communication device. Facilitator driven

 Address screen layout issues. Limited utility after requirements

established

 Useful for identifying market

requirements

Navigation and flow limitations

 Proof of concept

High-fidelity Complete functionality More expensive to develop

 Fully interactive Time consuming to create

 User driven Inefficient for proof of concept designs

 Clearly defines navigational scheme Not effective for requirements gathering

 Use for exploration test

 Look and feel of final product

 Serves as living specification

 Marketing and sales tool.

During the iterative system development process, a number of prototypes may be

utilised. The initial prototype may be as simple as a paper based sketch of a

proposed user interface but as the cycle is repeated, prototypes become more

complex and the final version may contain much of the functionality of the final

system. The main disadvantage of the high fidelity prototype is the associated

cost in terms of resources but according to Dumas and Redish (1999) this can be

alleviated by using a fully functioning similar system that already exists but

 34

attacks many of the design concerns that one’s project may be facing. In

evaluating such a prototype, one can reap the benefits of high fidelity prototype

testing but without the associated resource cost.

 35

Chapter 4: Methods, techniques and strategies

4.1 Overview

Many different approaches to software evaluation and in particular usability

evaluation have been identified in the literature (Gediga et al 2000, Sung 1999,

Bowman et al 2002). Due to the proliferation and diversity of techniques, the

classification of approaches to usability evaluation has presented some difficulty

in the past (Dix et al 1998, Whitefield et al 1991) and this can make any

description of the various approaches appear convoluted. However, classifying

these approaches is essential to achieving a comprehensive understanding of the

usability evaluation techniques currently available.

Building on the ideas expressed by House (1980) who classified approaches to

software evaluation as being quantitative or qualitative, Friedman and Wyatt

(1997) in their seminal text in the subject area, recognize the importance of both

quantitative and qualitative elements in successful software evaluation.

Therefore, they choose to focus on the distinction between achieving objectivity

and exploiting subjectivity in an evaluation study and refer to these different

approaches as being “objectivist” or “subjectivist”. (Friedman and Wyatt 1997).

The objectivist approach focuses on numerical measurement and an “attempt to

obtain statistical analysis of performance or outcomes that could be considered

precise, replicable and in this sense “objective” (Kushniruk and Patel 2004). The

subjectivist approach is based on the concepts of personal observation and

judgment, context values such as merit and worth, differing perspectives on

comparison criteria, and constructive interaction among evaluators (McDaniel

2002).

 36

Table 4: Friedman and Wyatt’s classification of evaluation approaches

Classification Approach Methodology
Objectivist Comparison based Based on controlled experiments or

quasi experiments, outcome indicators,
planned variation.

 Objectives based Based on a comparison between the
resource to its design

 Decision facilitation Based on questions posed by decision
makers i.e. what if analysis

 Goal free Based on an analysis of the resource
without imposing a priori questions or
goals

Subjectivist Quasi legal Based on a formal adversary
proceeding to judge a resource

 Art criticism Based on formal methods of criticism
and judgment by connoisseurs

 Professional review Based on a review or site visit by
experts or peers

 Responsive/illuminative Based on the observations of
investigators immersed in the
operating environment for a purpose of
learning and understanding

Friedman and Wyatt’s (1997) widely referenced text, offers a comprehensive

overview of the various approaches to all aspects of software evaluation. It does

not, however, pay particular attention to the notion of usability and the

evaluation of same. Also, given that this study will be focusing on the notion of

formative evaluation as opposed to summative evaluation, the author prefers to

use the classification proposed by Gediga et al (2002) who classify evaluation

techniques into two categories, the descriptive evaluation techniques and the

predictive evaluation techniques both of which “should be present in every

evaluation”.

 37

4.2 Descriptive techniques

Descriptive evaluation techniques are used to describe the status and the

actual problems of the software in an objective, reliable and valid way. These

techniques are user based and can be subdivided into several approaches:

• Behaviour based evaluation techniques record user behaviour while

working with a system which “produces” some kind of data. Observation

techniques and “thinking-aloud” protocols are examples of this approach.

• Opinion based evaluation methods aim to elicit the user’s (subjective)

opinions. Examples are interviews, surveys and questionnaires.

• Usability Testing is a term which was originally used in classical

experimental design studies but has evolved as a technical term to imply a

combination of behaviour and opinion based measures with some amount

of experimental control, usually chosen by an expert.

It should be noted that all descriptive evaluation techniques require some kind of

prototype and at least one user. Furthermore, data gathered by a descriptive

technique needs some further interpretation by one or more experts in order to

provide recommendations for future software development. Table 5 depicts the

classification of the various techniques and the sections in which they will be

discussed.

Table 5 : Classification of usability evaluation techniques

Descriptive 4.2

 Behaviour Based 4.21
 Observational 4.211
 Think Aloud 4.212
 Video Confrontation 4.213
 Opinion Based 4.22
 QUIS 4.221
 SUMI 4.222
 IsoMetrics 4.223
 Usability testing 4.23
Predictive 4.3

 Usability Walkthroughs 4.31
 Cognitive Walkthroughs 4.32
 Heuristic Evaluation 4.33
 Other Predictive Techniques 4.34

 38

4.21 Behaviour based evaluation techniques

Behaviour based techniques rely on some form of observation in order to detect

usability problems. Since the user is confronted with a prototype of the system,

these techniques can only be applied in the later stages of system development.

A common measure here is the notion of “analysis time” which compares the time

taken by an expert user to complete a specific task compared to the time taken

by a standard user. These techniques lend themselves well to the ‘prototyping’

software development model discussed above.

4.211 Observational techniques

User observation techniques aim to minimize subjectivity by using standardized

procedures and documentation (Gediga et al 2002) and are conducted directly or

indirectly by trained observers (Hampe-Neteler 1994). Direct observation

involves observing users during task execution, with the evaluator making notes

on user performance and possibly timing sequences of actions. Observational

evaluation can be carried out in a laboratory or in the user’s workplace (Bannon

1998). Observation techniques may yield both quantitative and qualitative data

(Hix and Hartson 1993) and are often employed in a situation where the user’s

behaviour is of interest or if the user has difficulty articulating their behaviour

while using a system (Nielsen 1993). Preece (1999) questions the merits of

direct observation as the observer finds it difficult to absorb sufficient relevant

information. To combat this, users’ interaction with a system may be video

recorded and subsequently analysed. The idea of video recording users may be

as simple or as involved as desired. Indeed, Harrison (1991), in evaluating the

VANNA computer system, conducted “several parallel loggings (hands, screen,

face, whole body)” before beginning his data analysis. Bannon (1998) warns that

observation techniques, are intrusive by nature, with the users constantly being

aware that their performance is under scrutiny (be it direct or indirect) and this

can alter their performance levels. Users are likely to be aware that they are

being filmed. In order to reduce the impact this may have on the user’s

behaviour, he recommends leaving the equipment in place for several days before

recording starts so the user becomes used to it. (Bannon 1998)

 39

4.212 Think-aloud protocols

One simple yet powerful method that has been used for some time to study the

usability of systems is what has been called the “think aloud” method. The

method was first described within the context of usability and human computer

interaction (HCI) by Lewis (1982). The think aloud method informs the evaluator

of the thoughts and emotions of the user as they interact with a system (Gediga

et al 2002) and has it’s roots in cognitive psychology, the study of verbal

protocols of subjects as they perform tasks in order to get access to the kinds of

mental operations they are engaged in (Bannon 1998). The user is asked to

articulate what he is thinks and what he feels while working with the prototype.

The data may be recorded manually with pen and paper (Nielsen 1989) or using

more modern approaches such as audio or video (Jorgensen 1989). Nielsen

(1992) questions the value of technology in this instance arguing that a pen and

paper approach is sufficient to elicit the relevant contextual information.

The episodes which describe the users’ problems and complaints are extracted.

These episodes are listed and coded by a user number and an episode number.

Afterwards, the episodes are matched with one “feature” of the system. These

“features” define the grouping criteria for the episodes. The design aspect of the

“feature” and the frequency information provide further help for the interpretation

of the results (Gediga et al 2002). By using thinking-aloud techniques, the

evaluator obtains information about the whole user interface. This type of

evaluation is orientated towards the investigation of the user’s problem and

decision behaviour while working with the system (Hempe-Neteler 1993). The

procedures to transform the lingual information into evaluation criteria is only

weakly standardised, which may be problematic.

Further constraints of this methods are noted by Bannon (1998). Studies are

limited to a small number of people and analysis of tapes can be very time

consuming. In relation to statistics, this method does not produce a lot of

measures but rather gives details of complex behaviour for analysis (Bannon

1998). Gediga et al (2002) have found the expense of the method to vary

depending on how the technique is implemented. Data analysis can take up to

five times as long as the recording process (Gediga et al 2002).

 40

Bannon (1998) also suggests that the notion of a person thinking aloud as they

interact with a system is a bit artificial although this can be overcome by a

technique known as cooperative evaluation where two people work at the

interface. Communication is more natural in this scenario (Monk et al 1993)

Think aloud studies can help pinpoint problems with a system and elicit why a

particular problem occurred. They can also help the evaluator understand the

user’s attitude towards the system. Carroll et al (2002) found the think aloud

protocol to be particularly useful in assessing the learnability of an interface with

qualitative data being collected concurrently with task performance but offer a

similar caveat to that expressed by Bannon that user responses may be

influenced by the fact that the principle researcher is often well known to users.

4.213 Video confrontation

The video confrontation method is similar to the thinking aloud method in that

users’ interactions with a system are recorded but differs in how the data is

analysed. In contrast to the standard think aloud approach where a user’s

involvement in the study ends when recording has been completed, with video

confrontation, the user is interviewed about certain episodes which the evaluator

considers interesting. The interview is guided by pragmatic or theoretical goals

such as finding usability problems or examining the relationship between user

errors and emotional reactions. The questions concern cognition, emotions, or

problems which have occurred during the use of the system (Hamborg & Grief

1999). Questions are focused on the salient points and therefore the protocol is

far easier to analyse than with the think aloud approach. Using standardized

questions it is possible not only to arrive at a list of problems, but also to obtain

an indication of the reasons for these problems. Other sources of information

such as other recorded sequences and log-files may also help the evaluator to

interpret the outcome of the procedure (Grief 1991). Bannon warns that any

studies involving video recording of users are time consuming and therefore

studies should be properly planned to minimize time wasted. Gediga et al (2002)

also allude to the resource intensive nature of such studies where recording of

information can take up to five times as long as the period which the user spent

interacting with the system where time taken to evaluate the data collected can

take longer again.

 41

4.22 Opinion based evaluation methods

Opinion based methods may be either written or oral. Written evaluations take

the form of structured questionnaires as opposed to oral methods which generally

involve the evaluator interviewing a user or number of users to evaluate their

opinion about the software under study – the interview may be structured or

unstructured or, as suggested by Meister (1986) a combination of both to enable

the interviewer to ask further questions as a result of the subject’s statements

while also conforming to a formal set of topics.

Several evaluation questionnaires are proposed in the literature (Shneiderman

1987, Yamagishi and Azuma 1987). According to Zmud & Boyton (1991), in

designing any project, questionnaires should never be developed from scratch

where appropriate measurement instruments already exist. The use of a

standard measure with established validity and reliability allows comparison of

scores with other settings and spares the evaluator the time consuming process

of developing a new measure (Baroudi & Orlikowski 1988). Interviews can

include scaled response questions as well as open-ended questions, thereby

collecting both qualitative and quantitative data. The open ended questions may

be analysed quantitatively by counting various attributes contained in the data,

as in content analysis, or, as is more common in qualitative data analysis, by

seeking patterns and themes. (Kaplan 1997).

The difference between oral interview techniques and questionnaire based

techniques lies mainly in the effort for set up, evaluating the data, and the

standardisation of the procedure. The development of an interview is more

economic than for questionnaires, whereas carrying out and evaluating a

questionnaire procedure can be done with less effort and costs. Standardisation

and accuracy are also better for questionnaires. The advantage of an interview,

such as in video confrontation, in comparison with the observational methods

discussed above is that an interview helps to obtain an insight into the user’s

opinion of the system which cannot be gathered by observation alone (Nielsen

1993). Furthermore, these techniques are not as expensive as observational

techniques. Oral interviews are held in a flexible manner after the user had come

into contact with the system, and in a more structured way, if the user was faced

with unforeseen aspects (Kirakowski 2000, Nielsen 1993).

 42

Interviews and questionnaires are primarily used in the specification, design, or

re-engineering phase, or as a means of system comparison (summative

approach), where different techniques have different focal points. (Gediga et al).

A number of standard have been proposed since Dzida et al (1978) produced

their large scale questionnaire which entailed a rigorous measure of user-

perceived quality. They, however, started from a consideration of system

characteristics (such as input format, response time, detail of explanation etc)

rather than users’ expectations of and attitudes to the system being evaluated

(Kirakowski 2000). Further questionnaires such as those proposed by Baily &

Pearson (1983) and Lewis (1991) address the wider notion of software quality

rather than focusing on usability. Two of the more prominent questionnaires

currently being applied to evaluate usability are the Questionnaire for User

Interface Satisfaction (QUIS) (Shneiderman 1987, Chin et al 1988) and the

Software Usability Measurement Inventory (SUMI) (ucc.ie)

4.221 Questionnaire for User Interface Satisfaction

The “Questionnaire for User Interface Satisfaction” (QUIS) aims to provide a

measure of overall satisfaction; additionally it evaluates some aspects of the user

interface based on user opinions. The original version (QUIS 5.0, 11) consists of

the following five scales each of which has attributes such as terrible/wonderful,

frustrating/satisfying, dull/stimulating, inadequate power/adequate power,

rigid/flexible.

o Overall User Reactions

Evaluates the overall reaction to the interface

o Screen

Evaluates the display appearance

o Terminology and System Information

Evaluates the effectiveness of terminology and message display

o Learning

Evaluates the suitability of the system for learning

o System Capabilities

Evaluates the efficiency and related aspects of the system in terms of

speed and reliability

 43

The current version of the QUIS includes scales relating to multimedia, online

help and software installation. (Shneiderman 1998). A short (47 Items) and a

long version (126 Items) of QUIS are available. Where time and resources

permit, the more comprehensive version should be used but in cases where

resources are scarce or when motivational problems of the user are anticipated.

In the long version there are more concrete questions explaining and

complementing the “leading items” (which constitute the short version) of each

scale. At the beginning, there are questions about the properties of the system

under study (in terms of the user’s opinions) and the characteristics of the user.

The scaling of the items ranges from 1 to 9, and an additional “no answer”

option. The endpoints of the scales are anchored by pairs of adjectives (e.g.

difficult / easy). User comments about the system can be expressed at the end of

each scale.

In the health care domain, the QUIS has been successfully applied throughout the

software industry and has proven popular in the health care domain.

Documented cases include the assessment of usability of physician order entry

systems (Harvey et al 2001) and the evaluation of physician satisfaction with

electronic medical records (Sittig et al 1999). Few studies exist which seek to

evaluate the QUIS as a tool or indeed to compare it with other standardised

usability questionnaires although a study by Tullis and Stetson

(home.comcast.net) revealed that for small user samples, the QUIS was less

effective than other methods tested. They also found little benefit in using

samples of greater than twelve users. Chin et al (1988) concluded that the QUIS

was generally reliable but offered no insight into the relative effectiveness of the

different sub-scales.

4.222 Software Usability Measurement Inventory SUMI

SUMI is used primarily as a tool in summative evaluation and attempts to

measure a user’s perception of the usability of the software under study. It is the

only commercially available questionnaire for the assessment of the usability of

software which has been developed, validated and standardized on an

international basis and it is mentioned in the ISO 9241 standard as a recognized

method of testing user satisfaction. (ucc.ie).

 44

SUMI is indicated by Preece et al (1994) as a standard method for assessing user

attitudes, and by Dzida et al (1993) as a way of achieving measurement of user

acceptance in the context of the Council Directive on Minimum Safety and Health

Requirements for Work with Display Screen Equipment (EEC 1990)

SUMI consists of 50 items which are assigned to five scales detailed below. There

is also a sixth ‘global’ scale consisting of 25 items which presents the perceived

quality of the system as one index (Kirakowski 1993). The answer format for

the items consists of “agree” and “disagree”. In a SUMI evaluation, the

recommended number of users is 10 to 12. The headings of the scales are:

• Global (25 items)

• Efficiency (10 items)

Evaluates how well the software supports the user while working on

the tasks.

• Affect (10 items)

Measures the user’s general emotional reaction to the software.

• Helpfulness (10 items)

Measures the degree to which the software is self-explanatory, and

also the suitability of the help system.

• Control (10 items)

Measures the degree of the user’s feeling the (s)he controls the

software.

• Learnability (10 items)

Measures time and effort for learning the handling of the software from

the user’s point of view.

Originally applied to summative evaluation studies, SUMI was supplemented by

the “Item Consensual Analysis” (ICA) so that it could be used as a tool of

formative evaluation. The ICA enables the evaluator to locate usability problems

more precisely than with the analysis of the scales profiles. ICA requires a

“Standardisation Database" consisting of expected pattern of responses for any

SUMI item. A comparison of expected and observed frequencies for the items

(using a Chi_test) shows which item signals a demand for change.

The minimum user sample size needed for an analysis with tolerable precision

using SUMI is in the order of 10-12 users although evaluations have been carried

out successfully with smaller groups.

 45

The effectiveness of the questionnaire is more likely to be affected by the care

with which the context of use of the software has been studied and whether or

not a design plan has been drawn up. Validation studies of SUMI have shown

that the questionnaire has the capability to distinguish software of different

ergonomic quality. The usefulness of SUMI in consultancy-based studies as well

as in case studies has been exemplified in (Kirakowski 2000). Whereas earlier

questionnaires were usually applied as tools in summative testing, Kirakowski

points out that the SUMI questionnaire lends itself ideally to iterative

development models as it is short (five minutes to complete) and does not

require a large sample (Kirakowski 2000, Redmond-Pyle & Moore 1995).

4.223 IsoMetrics

The IsoMetrics usability inventory provides a user-oriented, summative as well as

formative approach to software evaluation and is based on ISO 9241 (Part 10).

ISO 9241 deals with the “Ergonomics of Human System Interaction”. Part 10

which focuses on dialogue principles presents a set of usability heuristics that

applies to the interaction of people and information systems. The standard refers

to this interaction as a “dialogue” and describes seven “dialogue principles”

• Suitability for the task (17 items)

The dialog should be suitable for the user’s task and skill level.

• Self descriptiveness (14 items)

The dialogue should make it clear what the user should do next

• Controllability (14 items)

The user should be able to control the pace and sequence of the

interaction

• Conformity with User Expectations (9 items)

It should be consistent

• Error Tolerance (17 items)

The dialogue should be forgiving

• Suitability for Individualisation (11 items)

The dialogue should be able to be customized to suit the user

• Suitability for learning (8 items)

The dialogue should support Learning

 46

The inventory consists of 151 items which are assigned to the various principles.

The IsoMetrics usability inventory is available in two versions both of which are

based on the same pool of items but using different formats to allow summative

as well as formative evaluation procedures. IsoMetricsS (short) is a summative

evaluation tool whereas IsoMetricsL (long) is suited to formative evaluation.

IsoMetricsL contains a five point rating for each of the items starting from one

(predominantly disagree) to five (predominantly disagree). A further category

(no opinion) is offered to reduce arbitrary answers by the user. Unlike the short

version, users are asked to give a second rating where they rate the importance

of the item in terms of supporting their general impression of the software.

(Gediga et al 1999).

This rating ranges from 1 (“unimportant”) to 5 (“important”), and a further “no

opinion” category may also be selected. In this way, each item is supplied with a

weighting index. The data collected may then be analysed using a range of

statistical analysis techniques.

The IsoMetrics design provides information that can be used within an iterative

software development. There are a number of features of the inventory which

make it suitable as an evaluative tool in an iterative software development

environment. These include scores of the usability dimension to measure the

progress of development, concrete information about malfunctions and their user-

perceived attributes and measures such as mean weight of any user-perceived

attribute, given a class of system malfunctions.

IsometricsL helps identify weak points of software systems, and therefore

provides concrete impact on their improvement and redesign. Since the

inventory evaluates software from a user’s perspective, it supports a participative

and user-oriented approach of system design. (Gediga et al 2000).

IsoMetrics has proven effective in a number of software development projects.

Gediga et al (1999 b) conducted two reliability studies for five software systems

and found that the IsoMetrics inventory could be justified for each of the seven

design principles. Hamborg et al (2004) showed that Isometrics is a well suited

and reliable technique in the area of health information systems. They note,

however, that the Isometrics questionnaire provides hints as to problem areas as

opposed to concrete weaknesses and suggest combining it’s use with other

evaluation methods for best results.

 47

4.23 Usability Testing

Usability testing is a technique for gathering empirical data by observing users as

they perform tasks with the application that is being evaluated. Usability testing

may be conducted in the field but is more commonly conducted in a usability

laboratory where equipment for recording and observing the sessions is available.

(Consolvo et al 2003). Usability Testing uses a systematic and quite rigid

experimentally based gathering of information about a product or a prototype

using user representatives (Rubin 1994). There are numerous approaches to

usability testing discussed in the literature. Rubin (1994) loosely categorises the

different approaches:

Firstly, formal tests conducted as true experiments. This approach is

characterised by the use of classical experimental designs for testing hypotheses

and for deriving causal dependencies. The second, less formal class of usability

tests employ an iterative cycle of tests intended to expose usability deficiencies,

and gradually shape or mould the product in question.

The latter approach differs significantly from classical experimental designs in

terms of the accuracy of the description of the independent factors. However, the

problem of defining the variables to be measured exists for both approaches.

Kushniruk and Patel (2003) outline the nine phases involved in applying usability

testing approaches to the evaluation of software systems.

Phase 1 – Identification of evaluation objectives

Phase 2 – Sample selection and study design

Phase 3 – Selection of representative experimental tasks and contexts

Phase 4 – Selection of background questionnaires

Phase 5 – Selection of the evaluation environment

Phase 6 – Data collection – video recording and recording of thought processes

Phase 7 – Analysis of the process data

Phase 8 – Interpretation of findings

Phase 9 – Iterative input into design

The dependent variables are chosen pragmatically according to the evaluation

goals. Techniques described above, including questionnaires and interviews,

observational methods, think aloud technique and video-confrontation are used to

 48

measure the impact of differences in system design, or different versions of a

prototype on the usability of the product.

Usability testing also employs the use of measurement criteria such as “time to

complete a task” or “percentage of tasks completed”, which can be easily applied,

if tasks are accurately described. (Tyldesley 1988).

The think aloud technique appears to be the technique most commonly used for

qualitative data generation. (Hix and Hartson 1993). Nielsen (1993) agrees that

“User testing with real users is the most fundamental usability method and is in

some sense irreplaceable, since it provides direct information about how people

use computers and what their exact problems are with the concrete interface

being tested”.

While this method can prove very effective, it is quite costly to conduct when

compared with other methods. Wharton et al (1991) concluded that usability

testing was an effective means of identifying serious and recurring problems, and

avoided identifying low-priority problems, but was the most expensive testing

method. Inn spite of the expense involved in conducting such studies, Karat

(1993) found that when compared to heuristic (expert) evaluations, the cost on a

per-problem basis was actually lower with usability testing.

Virzi et al (1993) concluded that the think-aloud approach seems to be desirable

for products that can be tested with readily available subject populations. If

obtaining naïve subjects is expensive e.g. where the desired population is

geographically dispersed, the costs of this type of evaluation will increase making

other approaches more attractive in comparison.

Although it has been argued that a significant disadvantage of usability testing is

that the testing environment tends to be artificial and that users may behave

differently knowing they are being watched (Consolvo et al 2003), it is generally

agreed that when compared to studies which employ the use of evaluation by

experts (heuristics), a usability test identifies the problems that will plague the

actual users of the application. Developers may doubt that a problem exists, but

when they see the user actually experience the problem in the laboratory, they

change their minds quickly. (Jeffries and Desurvire 1992).

 49

Because Usability Testing requires a large amount of expertise to set up the

experimental design, choose the suitable tasks for comparison, select the users

and the number of users, define the measurables properly, it is perhaps best

suited for usability engineers. It is certainly not a suitable technique for untrained

evaluators. (Gediga et al 2000)

4.3 Predictive techniques

Unlike observational and opinion based evaluation methods which require a more

or less sophisticated prototype, predictive evaluation techniques do not require a

built system. Empirical methods as employed in the descriptive techniques

outlined above are replaced by a theory on the contribution of experts.

Consequently, user involvement is not as dominant as in the empirical evaluation

techniques. Despite this, user participation can be more prominent in predictive

approaches as user representatives have the opportunity to actively influence the

software development process whereas with the descriptive techniques, the user

plays a more passive role. (Gediga et al 2000)

4.31 Usability Walkthroughs

Like the usability testing approaches, usability walkthroughs are based on the

concept of task analysis, where the evaluation is conducted in the context of

particular information processing tasks which are defined at the outset.

However, inspections are not based on empirical testing of end users of a system,

but rather a trained analyst (or team of analysts) steps through and simulates the

task under study. This approach entails the methodical analysis of an interface

where problems or cognitive issues are noted as the analyst(s) “walks through”

the system in order to carry out the particular task. (Kushniruk and Patel 2004)

As well as a trained analyst, walkthroughs may involve a group of participants

such as representatives from different disciplines, expected users, product

developers and human factors specialists. Group based usability walkthroughs

have proven to be more effective than individual walkthroughs. (Preece 1999)

 50

Walkthroughs are particularly useful for identifying problems caused by the gap

between system behaviour and user expectation (Wharton et al 1994) and are

also effective in determining whether the user interface is perceived to be

adequate focusing on such details as wording, the distinction between buttons ,

commands or menus and the analysis of preset tasks. (Gediga et al 2000)

Due to the associated cost, usability walkthroughs tend not to focus on the entire

interface but rather on selected features. Other disadvantages of this method

noted in the literature include the fact that the success of the walkthrough is a

function of the combination and the psychological fit of the group members (Karat

1997). Furthermore, explorative behaviour can only be simulated in a limited

manner so unexpected errors and glitches cannot be detected by usability

walkthroughs. (Bias 1994). Probably the most popular approach to usability

evaluations of this nature is the Cognitive Walkthrough.

4.32 Cognitive Walkthrough

The cognitive walkthrough approach entails the identification of sequences of

actions and subgoals for successfully completing a task and assigning causes to

usability problems. The approach focuses on evaluating how well a task can be

completed while using a system and can therefore be considered a form of task

analysis. (Kushniruk and Patel 2004). The method seeks to ascertain how easy a

system is for a user to learn and involves evaluating the system in the context of

specific user tasks. The cognitive walkthrough involves answering a set of

questions about each of the decisions the user must make as they use the

interface. The questions are concerned with identifying the users’ goals, the ease

with which users will be able to identify the consequences of a decision and how

easy it is for users to evaluate whether they are progressing towards a goal.

These questions are asked for each step of a task and following each task, the

likelihood of users having problems making the correct choice is rated.

(Kushniruk and Patel 2004).

According to Bannon (1998), one of the advantages of this method is that it

makes the users’ goals and expectations explicit. Another advantage of this

method is that it can be applied in early stages of the development, and that not

only usability weaknesses of the system are reported, but other problems as well.

(Gediga et al 2000).

 51

The Cognitive Walkthrough method requires an accurate and thorough

understanding of who the users are and what skills and experience they have

(Bannon 1998). Gediga et al (2000) add that the analyst should be familiar with

at least the basics of system development. It should also be noted that it is a

tedious method to perform and is less effective than other methods such as

heuristic evaluation. (Bannon 1998). The CW method has also been criticised in

that the focus of analysis sacrifices other important usability information such as

overall consistency (Vizri 1997).

4.33 Heuristic evaluation

Heuristic evaluation is a usability inspection method in which the system is

evaluated on the basis of well established design principles such as visibility of

system status, user control and freedom, consistency and standards, flexibility

and efficiency of use (Kushniruk and Patel 2004). The 10 heuristics developed by

Jacob Nielsen (1993) were applied to health informatics by Zhang et al (2003)

1. Visibility of system status

The user should be kept informed of system status at all times while they

interact with the system. E.g. When a task is in process or when it has

been completed, appropriate feedback should be given to the user.

2. Match the system to the real world

The system should use natural language at all times to communicate with

the user and should use ‘real life’ metaphors to map tasks to real world

conventions. For example, having a ‘rewind’ button to indicate backward

navigation maps to the physical rewind button on a common VCR or

cassette recorder.

3. User control and freedom

The user should always feel that they are in control of the program.

Offering clearly marked exits, supporting undo and redo transactions and

making it difficult to perform irreversible actions.

4. Consistency and standards

The user interface and basic system functions should be consistently used

throughout the system.

 52

5. Error Prevention

The interface should be as simple and straight forward as possible so as to

minimize the likelihood that the user will encounter an error in using the

system.

6. Minimise memory load – support recognition rather than recall.

In order to process a task, the user should not be required to remember a

series of steps, rather the system should make it easy for the user to

recognize the steps required.

7. Flexibility and efficiency of use

Users should be able to tailor the system so that it suits their individual

needs. Examples include allowing the use of shortcuts and the colour

coding of different elements of the interface.

8. Aesthetic and minimalist design

User interfaces should be kept as simple as possible and the use of

superfluous features should be avoided.

9. Help users recognize, diagnose and recover from errors

Where an error has been encountered, the user should be provided with

clear and easy to understand information about how to recover from the

error encountered.

10. Help and documentation

Help should be available throughout the system to assist the user with the

completion of tasks. Naturally, this help should be easy to navigate and to

follow.

The method employs multiple evaluators who conduct independent inspections,

comparing user interface elements against the usability heuristics outlined above.

The results from the experts involved are combined in order to maximise the

chances of properly identifying any usability problems and are then ranked to

prioritise iterative (re)design of each usability issue identified. No representative

users are included in the evaluation process (Bowman & Gabbard 2002). Studies

have found that the use of three to five evaluators is the reasonable minimum

that will ensure identification of about 75% of usability problems in a project.

The involvement of further evaluators has been found to only marginally improve

the problem detection rate (Nielsen 1994). According to Jeffries et al (1991), the

availability of skilled user interface specialists is a significant hindrance to the

successful employment of this method in many organisations.

 53

Nielsen (1995) defending heuristic evaluation in this regard stresses the flexibility

of the method finding that it exhibits “graceful degradation”, implying that small

deviations from recommended practice only results in slightly reduced benefits.

Indeed, he cites a number of instances where heuristic evaluation has proven

valuable where only one evaluator is involved. A further advantage according to

Nielsen is that it can be applied at all stages of product development from paper

mock up to advanced prototype.

4.34 Other Predictive Techniques

As well as the techniques outlined above there are other predictive techniques

which deserve mention. While the walkthrough methods described above have

been shown to be effective as a supplement to empirical testing methods (Lewis

et al 1990) structured walkthrough procedures tend to be time consuming and

unpopular with evaluators when used on substantial tasks. (Rowley and Rhoades

1992) In an attempt to maximise the problem detection rate while minimising

the overhead associated with the procedure, a number or new techniques have

been proposed.

The cognitive jogthrough is an example of a fast paced methodology developed

for use within the constraints of a real world product development environment.

(Rowley and Rhoades 1992). Rowley and Rhoades (1992) found that, when

compared with the results of the cognitive walkthrough, the feedback obtained in

the jogthrough was broadly similar but far more actions were evaluated and

design suggestions made that were not well accommodated by the rigid structure

of the walkthrough procedure.

The graphical jogthrough is a further modification of a standard jogthrough

method where the ratings of evaluators produce evidence in the form of a graph,

displaying estimated proportion of users who effectively use the interface versus

the time they had to work with it in order to achieve the effectiveness.

Demetriadis et al (1999) having applied their method to the evaluation of an

interface for a network simulator conclude that the graphical jogthrough can offer

useful quantitative and qualitative feedback to designers because the graph

encourages evaluators to focus on the process of the user gradually gaining

familiarity with the interface tasks.

 54

Software evaluation using the ISO 9241 Evaluator was developed in response to

an increasing need for practical and comprehensive evaluation methods and tools

for conformance testing with ISO standards. As with the ISOmetrics

observational method described above, this technique refers to the ISO Standard

9241 - the ergonomics of human-system interaction. The ISO 9241-Evaluator is

a guideline orientated expert-based evaluation method that prepares the

requirements of the standard to be tested in approximately 300 test items. The

items are structured in a two dimensional space defined by technical components

and software-ergonomic criteria where the individual technical components are

rated in regard to the principles of ISO 9241. (Oppermann et al 1997)

 55

4.4 Comparison of techniques

“In the case of usability, doing something is almost always better than doing

nothing. However, for HCI practitioners, making choices based on misleading or

erroneous claims can be detrimental – compromising the quality and integrity of

the evaluation, incurring unnecessary costs, or undermining the practitioner’s

credibility within the design team.” (Gray and Salzman 1998).

Gray and Salzman (1998), reviewing five studies which attempt to compare

evaluation methods, outline two major failings in such studies. Firstly, they

contend that those papers reviewed have adopted methods and statistical tests

that are inadequate to demonstrate cause and effect. This may be due to the

inherent difficulty in conducting well controlled research in an applied setting

although they cite the work of Vizri et al (1993) among others as being an

exception to this and proof that it is not impossible. Their second criticism

centres around the notion of “generality, primarily the construct validity of

effect”. Outcomes of interest may be very different for different types of system

– e.g. for safety critical systems, the outcomes of interest are very different from

those of ATMs or video games.

Despite the concerns expressed by Gray and Salzman (1998), it is important to

determine which usability evaluation methods are best suited to the system being

evaluated and the environment in which the evaluation is being conducted. A

number of studies have been conducted which compare heuristic evaluation

against other predictive evaluation methodologies (John & Marks 1996, Nielsen

1995), and against observational methods (Jeffries & Desurvire 1992, Virzi et al

1993, Wharton et al 1991, Simeral and Russell 1997) and walkthrough

techniques versus observational methods (Karat et al 1992, Rogers et al 2005).

Desurvire et al (1992) identified a number of usability problems with a product in

a lab through usability testing and then compared the techniques of heuristic

evaluation and cognitive walkthrough to see which technique found most of the

problems identified. Heuristic evaluation, when conducted by experts, was shown

to be more effective than cognitive walkthrough conducted by experts at

identifying problems. However, when the same comparison was conducted by

non-experts, the heuristic evaluation method was equally effective as the CW at

spotting the problems found in the lab.

 56

Comparing heuristic evaluation with usability testing, Simeral & Branaghan

(1997) argue that usability testing approximates the user’s initial experience of

using a product without assistance, employing real users conducting real tasks in

an environment similar to their home or office. Also, through this method, once a

problem has been identified, the analyst is given a good idea of the severity of a

problem from a user’s perspective - usability problems which prevent users from

proceeding are naturally more severe than those which simple annoy the user.

This is consistent with the findings of Jeffries and Desuvire (1992) who found, in

all of their studies, that “problems identified in the usability test were above the

median in severity”. This view was echoed by Karat et al (1992) who found that

empirical methods were significantly more effective than walkthrough methods at

identifying serious usability problems. In relation to the type of problems found,

Jeffries et al (1991) note that usability testing was highly effective at finding

serious usability problems when compared to a number of predictive techniques.

Another significant benefit of usability testing over predictive techniques

according to Jeffries and Desurvire (1992) is that problems identified by users

“have an impact on engineers developing the product that no expert evaluation

can equal.” They may doubt that a user interface problem exists but when they

see users encounter the problem in a laboratory situation, any doubts are shed.

This is echoed by John and Marks (1996) who, in comparing the relative impact of

six different predictive evaluation techniques on software development, found

that up to thirty percent of usability problems reported to software developers,

following a usability evaluation, were not perceived by the developers to warrant

design modification.

It is clear from the limited literature which compares different techniques that

there are clear advantages associated with each of the many different

approaches. Thus, in order to draw on the all the benefits offered by the

descriptive and predictive techniques, it would seem that a successful usability

evaluation strategy will ideally include techniques from both. According to

Jeffries et al (1991), deciding among the various techniques on offer “requires

careful consideration of the goals of the evaluation, the kinds of insight sought

and the resources available.”

 57

Table 6 – Summary of usability evaluation techniques

Technique Advantages Disadvantages

Behaviour based

record user behaviour
while they use a system

- record data based on
real users interacting
with a system
- meaningful problems
identified

- Expensive to implement
- Time consuming to
analyse data
- Require a prototype

Opinion based techniques

user opinion gathered
through interview /
questionnaire

- Inexpensive to
distribute
- Structured data easier
to analyse
- Can identify user
perceptions
- Questionnaires
commercially available

- Rigid structure may
miss important
information.
- Response rate often
low.

Usability testing

experimentally based
gathering of data from
user representatives

- measurement criteria
easier to analyse. E.g.
time taken to complete
task.
- suitable for comparing
alternative interfaces

- Expensive to conduct
- low cost benefit relation
- Expertise required

Usability walkthroughs

to evaluate a product
from the perspective of
the end user

- Easy to learn and use
- Facilitates iterative
testing

- Costly to conduct
- Only selected features
considered

Cognitive walkthrough

assesses the usability of
the user interface

- Makes the users goals
and expectations explicit

- Requires accurate and
thorough understanding
of user skill and
experience

Heuristic Evaluation

use a predefined list of
heuristics to find usability
problems

- Easy to learn and use
- Inexpensive to
implement
- Can identify problems
early in design process

- Debriefing session
required to find the
indication of how to fix
problems
- Can’t replicate real user
behaviour

 58

Chapter 5: Choosing an Evaluation Technique.

5.1 Set the Goals for the Evaluation

Before selecting an evaluation technique for a particular project, it is important to

clearly identify the goal or goals of the evaluation. This is the most important

aspect of the evaluation and failure to set goals clearly at the outset may result in

incomplete or invalid information being gathered.

Firstly, we must decide what is being evaluated. Is the purpose of the evaluation

to evaluate performance, functionality, usability and or other aspects of the

system or is it to focus on one area? The purpose of this dissertation is to

propose a usability evaluation strategy for software development in St John of

God Services so the primary goal in our evaluation strategy will be to evaluate

the usability of each software system or component being developed.

Referring back to the notion of usability, as discussed in the literature review, we

will evaluate each system’s

• Learnability:

How easy is it to learn the main system functionality and gain proficiency

to complete the job.

• Efficiency:

The number of tasks per unit of time that a user can perform using the

system.

• User retention over time:

How easy it is for the user to become familiar with the workings of the

system

• Error rate:

The number of errors the user makes while completing a given task.

• Satisfaction:

The user’s subjective impression of the system.

Having outlined the goals we hope to achieve through the implementation of a

usability evaluation strategy at St John of God Services, it is next necessary to

identify the factors which might influence the selection of a usability evaluation

technique and to assess how significant each of these factors is to the St John of

God case.

 59

5.2 Select an Evaluation Technique

In order to achieve these goals, it is necessary to choose a usability evaluation

technique which best suits the specific requirements of the software development

department in St John of God Services given the resource constraints outlined in

chapter 2.

In reviewing the literature, the author was unable to source a definitive list of

factors to consider in choosing a usability evaluation technique. However,

drawing from the literature review, it is felt that the following list represents

those factors which an organisation might consider in selecting the usability

evaluation technique most appropriate for their specific needs. Below each point

is a statement of how relevant each is to SJOG Services.

• Cost of Documentation

Certain evaluation techniques require the purchase of documentation on

which the evaluation is based. For example, any evaluation which is based

on the ISO 9241 (Ergonomics of Human System Interaction) is likely to

involve a significant outlay in order to purchase the complete standard from

the ISO website.

Relevance to SJOG

Funding for new IT related endeavours is limited and whatever technique was

selected would have to be a low cost option. One option considered was to

purchase the complete standard, ISO 9241, and tailor a bespoke predictive

evaluation technique based on it. The cost of purchasing the standard

precluded this option.

• Availability of Equipment

The observational techniques described in chapter 3 advocate the video

recording of users as they use a system. Choosing such a technique requires

access to such equipment as well as the availability of a physical environment

in which to conduct the session.

Relevance to SJOG

Any usability evaluation technique which entails the use of audio visual

equipment and preferably a lab in which to make the recordings, can not be

considered. Neither the equipment, the skills to operate it nor the expertise

 60

to analyse what is recorded are presently available to the software

development department in SJOG.

• Level of Expertise Required / Ease of Learning

This is a factor which differs greatly among the different techniques described

in the literature review. For example, a number of the techniques discussed

require the participation of usability experts who are skilled both in

administering the technique as well as in analysing the data produced. In

contrast, some techniques can be easily learned and carried out effectively by

staff who are not necessarily skilled in the field of usability. The heuristic

review technique described in chapter 3 is an example of such a technique.

Relevance to SJOG

Of the software development team members described in chapter 2, none

could be described as having expertise in the area of usability. Techniques

which require expertise in this regard would have to be excluded form the

selection process. Also, certain techniques such as the IsometricsL technique,

require skills in the area of statistical analysis which are not present in the IT

department. Ease of learning is vital, not only because of time pressures but

also, new staff members must be quickly able to familiarise themselves with

the technique. Nielsen’s heuristic review is particularly attractive in this

regard.

• User Participation

While all of the descriptive techniques described in the literature review

require the involvement of users, there are many usability evaluation

techniques available which do not. While the involvement of users in any

usability evaluation strategy is always desirable, it is not always feasible.

Geographical location of users, their availability to participate as well as their

willingness to participate are just some of the factors which need to be

considered before deciding whether to opt for a technique which can be

conducted without user involvement or one which relies on user participation.

Relevance to SJOG

As was explained in chapter 2, the users of computer systems in SJOG are

spread throughout Ireland and this represents a significant obstacle to any

technique involving users. Coupled with this, finding users who are available

and willing to participate is difficult in an environment where computer

 61

systems are often viewed as a distraction from core work. Naturally there are

exceptions to this and for each system or component developed there is

generally at least one key user who is happy to assist in any way in order to

improve the quality of the final product. As was mentioned in the literature

review, it is widely accepted that the most effective evaluation strategies

exploit the merits of both the predictive and descriptive approaches and so

despite the difficulties expressed, it is the author’s view that to completely

exclude users from any usability evaluation strategy is not an acceptable

route.

• Effectiveness in identifying usability problems

As detailed in chapter 3, certain usability evaluation techniques have been

shown to be more effective at identifying usability problems than others.

Different techniques identify different types of problems, some can identify

large numbers of insignificant problems while others identify small numbers of

important issues and different techniques produce different results depending

on how they are conducted.

Relevance to SJOG

With the main systems (MHIS and IDIS) already operational, most software

development work being carried out now and in the future will involve the

development of new components such as the Bed Management component

described in chapter 2. Such components are generally quite small in terms

of number of screens and extent of functionality. Therefore it is felt that

positive results can be obtained by using a technique which my be deemed

inadequate in a different setting. While a comprehensive multi-technique

strategy would doubtless identify more issues, such as approach would be

impracticable given the resource constraints outlined in chapter 2.

Techniques such as Nielsen’s heuristic review, while limited somewhat by their

inherent simplicity, would be very effective if executed properly in the SJOG

environment given the nature of the software being developed.

• Localisation of Evaluation Technique

 62

In large international organisations, it is important to know whether the

technique being considered can be easily adapted to different environments.

For example, if an international organisation chose to implement the

Software Usability Measurement Inventory (SUMI) described in chapter 3, it

would be important to establish whether the inventory was available in

different languages and whether the items shared the same relevance across

different geographical locations.

Relevance to SJOG

As the software development team is based in Dublin and developers are

English speaking, this factor is not significant for the purposes of choosing an

evaluation technique for SJOG Services.

Considering the above factors, it is the authors conclusion that the most

appropriate usability evaluation strategy for SJOG Services to pursue would

incorporate both a predictive and descriptive element.

The predictive technique the author has opted for is Nielsen’s Heuristic Review.

The following are the main reasons why this choice has been made:

• There is no cost associated with purchasing the evaluation instrument.

• The technique is easy to learn.

• It does not require the participation of users.

• It is relatively simple to conduct the review and to analyse the resultant

data

• It has been shown to be effective when deployed by a small number of

evaluators who do not require any specific knowledge in the area of

usability.

In order to supplement this technique, it has been concluded that some level of

user based evaluation is vital. As was described in chapter 2, informal user based

evaluation is already commonplace in software development in SJOG Services.

The level of user involvement in a project is generally influenced by factors such

as the complexity of the project as well as the user related issues outlined above.

Unlike the application of Nielsen’s Heuristic Review, any attempt to formalise user

based evaluation is difficult as the extent of user involvement varies greatly

between projects as does the number of design iterations.

 63

With paper or throwaway prototypes which are produced early in the design

cycle, feedback is informally recorded through notes taken meetings attended by

IT staff and key users. However, when a project reaches a stage where the basic

elements of functionality are in place, a session will take place with a key user

and the software developer whereby the user can step through a number of key

tasks while providing feedback to the developer who will note the usability issues

and following the session will apply the notes to the heuristics structure.

 64

Chapter 6: Heuristic Evaluation Trial

6.1 Overview

Heuristic evaluation is a usability engineering method used to identify usability

problems in the design of a user interface so that they may be solved by

developers as part of an iterative software design process. (www.useit.com).

As was mentioned in chapter 2, one key user was on hand to raise usability

issues during the design cycle. There was, effectively, one iteration in the design

cycle where user feedback was integrated into the design. The starting point for

this trial was the same point at which the feedback of the key user was first

sought. This enabled a comparison between the types of issues raised by the key

user against those raised by the evaluator.

As with all the predictive techniques discussed in chapter 4, the involvement of

more than one evaluator is advocated. In the case of the software development

in St John of God Services, this is not feasible due to the unavailability of

resources. Nielsen notes that through careful and thorough application of the

technique, significant results can be achieved with the involvement of just one

evaluator. (www.useit.com).

As mentioned in chapter 2, there are two full time software developers working in

St John of God Services. Developers usually work on separate projects and if and

when there is a combined effort in the development of a software component,

there is no collusion in the design of individual screens. Both developers have

read and become familiar with each of the ten heuristics. It is proposed that the

developer of the user interface (developer) will, following a briefing session, hand

over the component to the second developer (evaluator) who will carry out the

evaluation. The evaluator will see the user interface for the first time at the

briefing session. In the briefing session, the developer will talk the evaluator

through the functionality and flow of the component to be evaluated. Once the

evaluator has gained sufficient understanding of the functionality of the

component, they are presented with a task list which is composed by the

developer to ensure that each dialogue within the system is evaluated.

The evaluation is then commenced and the tasks on the task list are completed

by the evaluator. The output from using the heuristic evaluation method is a list

of usability problems in the interface with references to those usability principles

 65

that were violated by the design in each case in the opinion of the evaluator.

(www.useit.com). The ten usability heuristics developed by Nielsen

(www.useit.com), described in section 4.33 are listed below.

1. Visibility of system status

2. Match between system and the real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition rather than recall

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Help users recognize, diagnose, and recover from errors

10. Help and documentation

All but the last of the heuristics are relevant in this sample case. An online

manual has been developed as a separate project and thus the ‘help and

documentation’ heuristic was not considered as part of this evaluation.

6.2 Usability evaluation of Bed Management component

The Bed Management component as described in chapter 2 is launched from

within the main Intellectual Disability Information System (IDIS). A list of tasks

was prepared and the list was presented to the evaluator following the briefing

session. Instruction was given as to how the component should be launched.

This was not part of the task list. The screen shots were not offered as part of

the task list but are included here for illustrative purposes. The developer was on

hand to answer any questions regarding the completion of each task. Tasks 1-5

were completed from the main screen and tasks 6-8 were completed from the

holding area screen. (see fig 9 for list of tasks)

The version of the Bed Management component which was used for the purposes

of the evaluation was the same version of the component which was reviewed by

the key user during the product’s development. As the component was quite

incomplex, a single iteration in the design cycle is all that was required. More

complex systems and components may require multiple iterations as shown in

section 2.512.

 66

While the component had been implemented prior to the heuristic evaluation

being conducted, many of the issues raised in the evaluation were resolved by

the developer and a further release was implemented.

Section 6.21 details the steps involved in launching the Bed Management

component from within the IDIS system and is followed by a list of tasks which

the evaluator was asked to perform so that all screen elements could be

evaluated. The 8 steps are listed below.

1. Vacate bed and move client direct to an empty bed

2. Reserve bed and move client direct to an empty bed

3. Vacate bed and move client to holding area (internal transfer)

4. Reserve bed and move client to holding area (internal transfer)

5. Reserve bed and move client to holding area (external move)

6. Move client from holding area to empty bed

7. Return client to reserved bed (internal)

8. Return client to reserved bed (external)

Fig 9 – list of tasks to be compled by evaluator.

 67

6.21 To launch Bed Management component

• Launch IDIS system

• Select ‘Residential’ tab

• Select a ‘Managed Service’

• Set ‘Status’ = ‘Current’

• Set ‘Location’ = ‘Specific’

• Choose a Dwelling – with > 5 clients in residence and >= 1 empty bed

• Click ‘Dwelling Graphic’ on top of IDIS main Screen

 68

6.22 List of tasks to complete

1. Vacate bed and move client direct to an empty bed

2. Reserve bed and move client direct to an empty bed

 69

3. Vacate bed and move client to holding area (internal transfer)

4. Reserve bed and move client to holding area (internal transfer)

5. Reserve bed and move client to holding area (external move)

 70

6. Move client from holding area to empty bed

7. Return client to reserved bed (internal)

 71

8. Return client to reserved bed (external)

 72

6.23 Evaluator Feedback following heuristic review

Key: E = Issue raised by evaluator

U = Issue raised by key user
* = Issue addressed by developer

Below is a list of the tasks which the evaluator was asked to complete. The

numbers under each task refer to the heuristic which was violated in each case.

The 10 heuristics which are explained in section 4.33 are once again listed below.

1. Visibility of system status

2. Match the system to the real world

3. User control and freedom

4. Consistency and standards

5. Error Prevention

6. Minimise memory load – support recognition rather than recall.

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Help users recognize, diagnose and recover from errors

10. Help and documentation

Task #1 – Vacate bed and move client direct to an empty bed

1. Visibility of system status

a. Caption on dialog (“Moving Mr X”) should be more descriptive to

reflect the specific action being taken. E*

2. Match between system and the real world

a. Use of term “dwelling” does not reflect real world language. E

5. Error prevention

a. User should not be able to select a room which contains no free

beds. Assistance should be given to the user to help them locate

and empty bed. UE*

6. Recognition rather than recall

a. Once dialog is loaded, main bed management screen is hidden and

modal screen can not be moved. User should be able to drag

modal dialog away to allow viewing of underlying bed/room status.

UE*

 73

7. Aesthetic and minimalist design

a. “Dwelling” dropdown box is not sufficiently wide to display full text

of certain entries. This is a particular problem where entries are

differentiated only by a number. UE*

Task #2 – Reserve bed and move client direct to an empty bed

1. Visibility of system status

a. Caption on dialog (“Moving Mr. X”) should be more descriptive to

reflect the specific action being taken. E*

2. Match between system and the real world

a. Use of term “dwelling” does not reflect real world language. E

5. Error prevention

a. User should not be able to select a room which contains no free

beds. Assistance should be given to the user to help them locate

and empty bed. UE*

6. Recognition rather than recall

a. Once dialog is loaded, main bed management screen is hidden and

modal screen can not be moved. User should be able to drag

modal dialog away to allow viewing of underlying bed/room status.

UE*

7. Aesthetic and minimalist design

a. “Dwelling” dropdown box is not sufficiently wide to display full text

of certain entries. This is a particular problem where entries are

differentiated only by a number. UE*

b. “Support type” and “Support level” fields appear enabled but are

disabled. Should be hidden from user or greyed out to indicate

they are not to be used. UE*

Task #3 – Vacate bed and move client to holding area (internal transfer)

1. Visibility of system status

a. Caption on message box should be more descriptive to reflect

action being taken. E*

b. Message box text makes no distinction between “vacate” and

“reserve”. E*

c. Message box should contain graphic – vbQuestion E*

 74

Task #4 – Reserve bed and move client to holding area (internal

transfer)

1. Visibility of system status

a. Caption on message box should be more descriptive to reflect

action being taken. E*

b. Message box text makes no distinction between “vacate” and

“reserve”. E*

c. Message box should contain graphic – vbQuestion E*

Task #5 – Reserve bed and move client to holding area (external move)

1. Visibility of system status

a. Caption on dialog should be more descriptive E*

b. Confirmation message box should contain graphic – vbInformation

E*

2. Match between system and the real world

a. “External move type” caption should be changed to be more

meaningful to users. E*

Task #6 – Move client from holding area to empty bed

1. Visibility of system status

a. Caption on dialog should be more descriptive to reflect action being

taken. E*

4. Consistency and standards

a. Each field should only become visible as selection is made in

preceding field. UE*

b. Labels for each dropdown should be invisible where the dropdown

is invisible. UE*

c. Terminology should be consistent with other dialogs. “New” should

be dropped from location, dwelling, room and bed labels. E*

d. “Maximise” and “Minimise” buttons should be removed from the

dialog to be consistent with other dialogs. E*

 75

Task #7 - Return client to reserved bed (internal)

4. Consistency and standards

a. Exit button is placed in bottom right corner of dialog – inconsistent

with other screens. E*

Task #8 – Return client to reserved bed (external)

4. Consistency and standards

a. Exit button is placed in bottom right corner of dialog – inconsistent

with other screens. E*

8. Aesthetic and minimalist design

a. Insufficient contrast in colours used to denote internal/external. U*

 76

6.24 Conclusions

Following an evaluation of approximately two hours duration, the evaluator

identified all but one of the issues which were raised by the key user during

development. Furthermore, a number of the issues raised by the evaluator were

not highlighted by the key user in her review of the interface during the

development phase.

As can be seen from the key above, an “E” next to an issue denotes a usability

issue raised by the evaluator, a “U” next to the issue denotes an issue raised by

the key user and an asterisk next to the issue indicates that the issue was

addressed and resolved by the developer prior to final implementation of the

component.

For example, in task #1, the evaluator questioned the use of the term “Dwelling”

deeming it to be in breach of second heuristic – “match between system and real

world”. As this was not raised by the key user in her evaluation, this terminology

was not amended. In task #3, however, the evaluator pointed out that the

message text was not sufficiently clear. While this was not observed by the key

user, it was deemed by the developer to warrant amendment for reasons of

clarity and consistency.

The only issue raised by the key user which was not raised by the evaluator was

in relation to colour coding of items in the “holding area”. As the key user is

colour blind, she requested that the colours used to differentiate between

“internal” and “external” records should be more stark in contrast.

In this simple example, the application of Nielsen’s heuristics has proven to be

quite successful and indeed it has been demonstrated that in conjunction with the

task of identifying usability problems, a further task; determining which of issues,

if not all, should be addressed by the developer. In the sample above, a certain

degree of common sense was applied in choosing which usability issues should be

acted upon by the developer.

 77

Chapter 7: Conclusions and recommendations

7.1 Conclusions

The original purpose of this this dissertation was to attempt to develop a

methodology which could be used to evaluate the usability of computer systems

developed by the software development team in St John of God Services.

Having considered the structure and work practices of this department as well as

the various resource constraints which impact on these work practices a

methodology was sought which would suit the particular needs of the

environment under study. A number of different methods and techniques were

considered and their suitability to the domain under study was assessed.

Originally it was envisaged that the optimum technique would be one which

involved the input of users but certain prohibitive factors outlined in chapter 5

deemed such an approach to be infeasible although it was acknowledged that

user input into the iterative software design process would always be desireable

where possible. It was concluded that the most appropriate method for use

within St John of God Services was Nielsen’s heuristic evaluation which could be

conducted by staff within the software development department.

A small scale trial of this technique proved enlightening if inconclusive and it is

clear that further trials, more extensive in their nature and involving multiple

design iterations would be necessary to demonstrate the capabilities of the

chosen technique in the domain under study.

Despite this, a number of positive conclusions can be drawn from the work

conducted. In the sample case, all but one of the usability issues raised by the

key user were raised by the evaluator during the heuristic evaluation. A number

of these issues were resolved by the developer and others were left unchanged.

Inherent in the heuristic evaluation process, therefore, is an onus on the

developer to determine which among the issues raised should be addressed. Of

the iussues raised by the evaluator which were not raised by the key user, most

were fixed.

 78

Regardless whether these issues would ever have been raised by a user of the

component, they were, it was felt, in breach of the usability heuristics and were

fixed to as to promote consistently high standards in usability of systems

developed within St John of God Services.

Referring back to the introduction, usability is important for many differnet

reasons. It impacts not only on users and how they perform their tasks but on

software developers as it can mean the difference between success and failure of

a system and on management as poor usability can adversely affect the

productivity of the workforce to a level worse than without the system.

(usabilityfirst.com). Also, the delicate relationship between the software

development function and the departments which it supports, is another reason

why as developers we should strive to produce software which enables users to

perform their tasks in an effective and enjoyable way. It is the authors view that

implementing software with poor usability has a negative influence on this

relationship, damaging user confidence in IT systems and those who produce

them and consequently can hamper efforts to attain staff buy in for future

software projects.

It is the author’s conclusion that while the methodology adopted in this study is

far from ideal and is, in many ways, far removed from the recommended

application of heuristic evaluation prescribed in the literature (useit.com), there

are significant benefits to be gained by using it in the manner which the author

has described.

7.2 Suggestions for further work

Among the literature reviewed in chapter 4, there appears to have been little

work conducted which acknowledges the type of software development

environment which exists in St John of God Services. Nielsen (1994) addresses

this but in my view, does not go far enough, stopping short of suggesting an

effective usability evaluation technique which can be applied in a software

development environment of two software developers and with users who are

rarely availble to contribute to the iterative design process. An attempt to

measure the effectiveness of heuristic evaluation conducted by one evaluator

would therefore be beneficial. Such a study would be required to measure

evaluator feedback against user feedback over the duration of a software

development project which required several iterations in the design cycle.

 79

References

Ammenwerth E., Brender J., Nykanen P., Prokosch H. U., Rigby M., Talmon J.

(2004) Visions and strategies to improve evaluation of health information

systems. International Journal of Medical Informatics, vol. 73, pp. 479-491.

Ammenwerth E., Graber S., Herrmann G., Burkle T., Konig J. (2003) Evaluation

of health information systems – problems and challenges. International Journal

of Medical Informatics, vol. 71, pp. 125-35.

Barnum, C.M. (2002) Usability testing and research. New York: Pearson

Education.

Baroudi, J.J. & Orlikowski, W.J. (1998). A short-form measure of User

Information Satisfaction: A psychometric evaluation and notes on use. Journal of

Management Information Systems, vol. 4, pp. 44-59.

Bias R. (1994). “The pluralistic walkthrough: Coordinated empathies”. In J.

Nielsen & R. Mack (Eds.), Usability Inspection Methods, New York: Wiley. pp. 63-

76.

Bowman D.A., Gabbard J.L., Hix D. (2002) A survey of usability evaluation in

virtual environments: classification and comparison of methods. Presence, vol.

11, no. 4, pp. 404-424.

Carroll C., Marsden P., Soden P., Naylor E., New J., Dornan T. (2002) Involving

users in the design and usability evaluation of a clinical decision support system.

Computer Methods and Programs in Biomedicine. Vol 69, no. 2, pp.123-135.

Chin J.P., Diehl V.A., Norman K.L. (1998) Development of an instrument

measuring user satisfaction of the human– computer interface. Proc CHI. pp.213–

221.

Consolvo S., Arnstein L., Franza R.B. (2002). User Study Techniques in the

Design and Evaluation of a Ubicomp Environment. Proceedings of the 4th

international conference on Ubiquitous Computing.

 80

Carroll, J.M. & Rosson, M.B. (1985). “Usability specifications as a tool in iterative

development”. In H.R. Hartson (Ed.), Advances in Human-Computer Interaction,

Norwood. Ablex. pp. 1-28.

Demetriadis S., Karoulis A., Pombortsis A (1999). Graphical Jogthrough: expert

based methodology for user interface evaluation, applied in the case of an

educational simulation interface. Computers and Education. Vol. 32, no. 4, pp.

285-299.

Desurvire H.W., Kondziela J.M. & Attwood M.E. (1992). What is gained and lost

when using methods other than empirical testing. Proceedings of the HCI '92

Conference on People and Computers VII. New York: Cambridge University

Press. pp. 89-102.

Dumas, JS, and Redish, J (1999), A practical guide to usability testing, Intellect,

Revised edition. (paper)

Dzida W., Herda S. and Itzfeldt W.D. (1978) User Perceived Quality of

Interactive Systems, IEEE Trans Softw Eng. SE-4.4, pp. 270-276.

Dzida W., Wiethoff M., Arnold A.A. (1993). ERGOguide: The Quality Assurance

Guide to Ergonomic Software. Delft University of Technology, Dept of Work and

Organisational Psychology, PO Box 5050, 2600 GB Delft, the Netherlands.

Ferre X., Juristo N., Windl H., Constantine L. (2001) Usability basics for

developers. IEEE Software vol. 18, no. 1, pp. 22-29

Fitzpatrick R. (1999). Strategies for Evaluating Software Usability. Department of

Mathematics, Statistics and Computer Science, Dublin Institute of Technology,

Ireland. pp. 1-9

Friedman C., Wyatt J.C. (1997) Evaluation Methods in Medical Informatics. New

York: Springer. pp. 24-27.

Gediga G., Hamborg K.C., Duntsch I. Evaluation of Software Systems 2000

See – Gediga G., Hamborg K.C. and Düntsch, I. (2002) “Evaluation of Software

Systems” In: A. Kent and J. G. Williams (Eds.) Encyclopaedia of Computer

Science and Technology. Vol. 44 Marcel Dekker Incorporated pp. 162-196.

 81

Gediga G., Hamborg K.C. and Düntsch I. (1999) The IsoMetrics Usability

Inventory: An operationalisation of ISO 9241-10. Behaviour and Information

Technology, vol. 18, no. 3, pp. 151-164.

Gray W., Salzman M. (1998). Damaged Merchandise? A Review of experiments

That Compare Usability Evaluation Methods. Human Computer Interaction. Vol.

13, pp. 203-261.

Grief S. (1991). “The role of german work psychology in the design of artifacts”.

In J.M. Carroll (Ed.), Designing Interaction. Psychology at the human interface

Cambridge University Press. pp. 203-226.

Hamborg K.C., Grief S. (1999). Heterarchische Aufgabenanalyse. In H. Dunckel

(Ed.) Handbuch psychologischer arbeitsanalyseverfahren, Zurich. pp. 147-177.

Hamborg K.C., Vehse B., Bludau H.B. (2004) Questionnaire Based Usability

Evaluation of Hospital Information Systems. Electronic Journal of Information

Systems Evaluation. Vol. 7, Issue 1, pp. 21-30

Harrison B.L. (1991). Video annotation and multimedia interfaces: From theory

to practice. In: Proceedings of the Human Factor Society 35th Annual Meeting,

pp. 319-322.

Hendrickson G. & Kovner C.T. (1990). Effects of computers on nursing resource

use: Do computers save time? Computers in Nursing. vol. 8, no. 1 pp. 16-22.

Murff H.J. and Kannry J. (2001) Physician satisfaction with two order entry

systems. Journal of the American Medical Informatics Association. Vol. 8, no. 5,

pp. 499-511.

Hix, D. & Hartson, H.R. (1993). Developing user interfaces: Ensuring usability

through product and process. New York: Wiley

ISO 9241-10:1996 Ergonomic requirements for office work with visual display

terminals (VDTs) – Part 10: Dialogue principles.

 82

ISO 9241-10:1998 Ergonomic requirements for office work with visual display

terminals (VDTs) – Part 11: Guidance on usability.

Jeffries R. & Desurvire H. (1992) Usability Testing vs. Heuristic Evaluation: Was

there a contest? SIGCHI Bulletin vol. 24, no. 4, pp. 39-41

Jimison H.B., Adler L.J., Coye M.J., Mulley A.G., and Eng T.R. (1999) Health Care

Providers and Purchasers and Evaluation of Interactive Health Communication

Applications. American Journal of Preventive Medicine. Vol. 16, no. 1, pp. 16-22.

John B.E. & Marks S.J. (1996) Tracking the Effectiveness of Usability Evaluation

Methods. Behaviour and Information Technology vol. 16, no. 4/5, pp. 188-202.

Kaplan B., Shaw N. (2002) People, organisational and social issues: evaluation

as an exemplar, in R.Haux, C.Kulikowski (Eds.) Yearbook of Medical Informatics

2002, Schattauer, Stuttgart, pp. 91-102

Karat J. (1997). “User-centered software evaluation methodologies”. In M.

Helender, T.K. Landauer & P. Prabhu (Eds.), Handbook of Human-Computer

Interaction. Second Edition, Amsterdam: Elsevier. pp. 689-704.

Karat C.M., Campbell R., Fiegel T. (1992) Comparison of empirical testing and

walkthrough methods in user interface evaluation. Proceedings of the ACM CHI

1992, pp. 397-404.

Kirakowski J. & Corbett M (1993). SUMI: The software usability measurement

inventory. British Journal of Educational Technology. Vol. 24, pp. 210-212.

Jeffries R. & Desurvire H. (1992). Usability Testing vs. Heuristic Evaluation: Was

there a contest? SIGCHI Bulletin, vol. 24, no. 4, pp. 39-41.

Kreitzberg, C. and Shneiderman, B. (1999) Making computer and internet

usability a national priority, Common Ground. Revised version reprinted in

Branaghan, R. J. (Editor), Design by People for People: Essays on Usability,

Usability Professionals Assn, Chicago (2001), pp. 7-20.

 83

Kushniruk, A.W. Evaluation in the design of information systems: applications of

approaches form usability engineering. (2002) Computers in Biology and

Medicine vol. 32, no. 3, pp. 141-149.

Kushniruk AW, Patel VL. (2004) Cognitive and usability engineering methods for

the evaluation of clinical information systems. Journal of Biomedical Informatics

vol. 37, no. 1, pp. 56-76.

Lewis C., Polson P., Wharton C. and Rieman J. (1990) “Testing a Walkthrough

Methodology for Theory Based Design and Walk-Up-and-Use interfaces”. In

proceedings of CHI 1990. ACM, New York, pp. 235-242.

McConnell, S. (1996) Rapid development: taming wild software schedules.

Microsoft Press: Redmond, Washington.

McDaniel, J.G. (2002) Improving system quality through software evaluation.

Computers in Biology and Medicine vol. 32, pp. 127-140.

McKenna Sullivan J. (2004) Iterative Usability Testing in the Development of a

Learning Technology System for Teaching Geographical Information Systems

within a Civil Engineering Curriculum., Unpublished MSC Thesis, University of

Missouri-Rolla.

Meister, D. (1986) Human Factors testing and Evaluation. Elsevier, Amsterdam.

Moehr J.R. (2002) Evaluation: salvation or nemesis of medical informatics?

Computers in Biology and Medicine vol. 32, pp. 113-125.

Monk A., Wright P., Haber J., Davenport L (1993) Improving your human-

computer interface: a practical technique. London: Prentice Hall (BCS

Practitioner Series)

Nielsen J., Mack R.L. (1994) Usability Inspection Methods. New York: Wiley.

Nielsen J. (1994) Guerrilla HCI: Using Discount Usability Engineering to

Penetrate the Intimidation Barrier. http://www.useit.com/papers/

 84

Nielsen J. (1994) ‘Heuristic Evaluation’ in J. Nielsen and R.L. Mack (Eds.) Usability

Inspection Methods, New York, Wiley. pp. 25-62.

Nielsen J. (1993) Usability Engineering. Boston: AP Professional

Nielsen, J. (1989) “Usability engineering at a discount”. In G. Salvendy & M.

Smith (Eds.) Designing and Using Human-Computer Interfaces and Knowledge

Based Systems, Amsterdam: Elsevier. pp. 394-401

Nielsen, J. (1992) The usability lifecycle. IEEE Computer. Vol. 25, pp. 12-22

Patel V.L., Kushniruk A.W. (1998) “Interface design for health care environments:

The role of cognitive science”. In Proceedings of the 1998 AMIA Fall Symposium;

1998 November 7–11. Orlando, FL.

Preece J., Rogers Y., Sharp H. (2002) Interaction design: beyond human-

computer interaction. Wiley: New York

Preece J., Rogers Y., Sharp H., Benuyon D., Holland S., Carey T. (1994) Human

Computer Interaction. Addison-Wesley.

Redmond-Pyle D. & Moore A. (1995) Graphical User Interface Design and

Evaluation: a Practical Process. Prentice Hall International.

Rigby M. (2001) “Evaluation: 16 Powerful Reasons Why Not to Do It - and 6

Over-Riding Imperatives” in Proceedings of the 10th World Congress on Medical

Informatics (Medinfo 2001), Patel V, Rogers R, Haux R (eds.), IOS Press:

Amsterdam, pp. 198-202.

Rogers B., Hamblin C., Chaparro A. (2005) A Comparison of Two Evaluation

Techniques for Technical Documentation. Proceedings of the 13th International

Symposium on Aviation Psychology. pp. 1-4

Rowley D. and Rhoades D. (1992) The Cognitive Jogthrough: A Fast Paced User

Interface Evaluation Procedure. CHI 1992, pp. 389-395

Rubin J. (1994). Handbook of Usability Testing. New York: Wiley.

 85

Scriven, M (1967). “The methodology of evaluation”. In R. Tyler, Gagne &

M.Scriven (Eds.), Perspectives of Curriculum Evaluation, Chicago: Rand McNally.

pp. 39-83

Shakel B (1991). “Usability-Context framework, definition, design and

evaluation”. In: B. Schakel & S.J. Richardson (Eds.), Human factors for

informatics usability, Cambridge: Cambridge University, pp. 21-37

Shneiderman B. (1987). Designing the User Interface: Strategies for Effective

Human Computer Interaction. 3rd Edition. Addison-Wesley: Massachusetts.

Sung Heum Lee (1999). Usability testing for developing effective interactive

multimedia software: concepts, dimensions and procedures. Educational

Technoology and Society vol. 2, no. 2, pp. 1-12.

Simeral E.J., Branaghan R.J. (1997) A Comparative Analysis of Heuristic and

Usability Evaluation Methods. Proceedings of the Society for Technical

Communication annual conference. pp. 307-309.

Sittig D.F., Kuperman G.J., Fiskio J. (1999) Evaluating physician satisfaction

regarding user interactions with an electronic medical record system. Proceedings

of the American Medical Informatics Association Annual Symposium. pp. 400–

404.

Stead W.W. (1996). Matching the level of evaluation to a project’s stage of

development. Journal of the American Medical Informatics Association. Vol. 3,

no. 1, pp. 92-94.

Tyldesley D.A. (1988). Employing usability engineering in the development of

office products. Computer Journal, vol. 31, pp. 431-436.

Virzi R.A., Sorce J.F. & Herbert L.B. (1993). “A comparison of three usability

evaluation methods: Heuristic, think aloud and performance testing”. In

Designing for diversity: Proceedings of the Human Factors and Ergonomics

Society 37th Annual Meeting 1993, Santa Monica. Human Factors and Ergonomics

Society. pp. 309-313

 86

Wharton C., Jeffries R., Miller R. and Uyeda K.M. (1991). User Interface

evaluation in the real world: a comparison of four techniques. In Proceedings of

ACM CHI ’91 Conference on Human Factors in Computing Systems, ACM, New

York. pp. 119-124

Wharton, C., Rieman, J., Lewis, C., and Polson, P. (1994) “The Cognitive

Walkthrough method: A practitioner's guide”. In J. Nielsen and R.L. Mack (Eds.),

Usability Inspection Methods, New York: John Wiley & Sons, pp. 105-141.

Whitefield, A., Wilson, F. & McDowell, J (1991). A framework for human factors

evaluation. Behaviour and Information Technology, vol. 10, pp. 65-79

Wyatt C. (1997) “Evaluation of Clinical Information Systems” in Handbook of

Medical Informatics, Van Bemmel J, Musen M (eds.), Springer-Verlag, Heidelberg,

pp. 463-469.

Yamagishi, N. and Azuma, M. (1987). “Experiments on human–computer

interaction evaluation”, in G. Salvendy (ed.) Cognitive Engineering in the Design

of Human-Computer Interaction and Expert Systems (Elsevier, Amsterdam) pp.

167-174

Zmud, R.W. & Boyton, A.C. (1991) “Survey measures and instruments in MIS:

Inventory and appraisal”. In K.L. Kraemer (ed.) The Information systems

research challenge: Survey research methods. Boston MA: Harvard Business

School. pp. 149-180.

 87

Web References

Computerworld.com/developmenttopics/development/story/0,10801,71151,00.ht

ml

– last accessed 12th May 2005

Home.comcast.net/%7Etomtullis/publications/UPA2004TullisStetson.pdf

- last accessed 10th Apr 2005

Informit.com/guides/content.asp?g=it_management&seqNum=55&rl=1

- last accessed 12th Apr 2005

Ucc.ie/hfrg/questionnaires/sumi/

- last accessed 10th Feb 2005

Ucc.ie/hfrg/questionnaires/sumi/sumipapp.html

– last accessed 10th Feb 2005

Usabilityfirst.com/intro/index.txl

- last accessed 12th Jun 2005

Useit.com/papers/heuristic/learning_inspection.html

– last accessed 12th Apr 2005

www-sv.cict.fr/cotcos/pjs/MethodologicalApproaches/

evaluationmethods/evaluationpaperBannon.htm

- last accesed 8th Jun 2005

