
Pose-Space Deformation on top of Dual Quaternion Skinning.

by

Damien Murtagh,

Dissertation

Presented to the

University of Dublin, Trinity College

in partial fulfillment

of the requirements

for the Degree of

Master of Science in

Interactive Entertainment Technology

University of Dublin, Trinity College

September 2008

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for a

degree at this, or any other University, and that unless otherwise stated, is my own work.

Damien Murtagh

September 11, 2008

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Damien Murtagh

September 11, 2008

Acknowledgments

Firstly, I would like to thank my supervisor Dr. Ladislav Kavan for his insightful comments and

direction during the course of my dissertation. His knowledge and guidance has been of great help

to me. I would like to thank Barry Gormley for his help on the artwork side of the project. His

contributions, including the creation of a number of character models, along with lending me his

help and expertise in trying to master the various 3d animation tools, have been invaluable. I also

pay tribute to the Trinity College department of computer science staff involved in the running of

the Interactive Entertainment Technology course over the year, especially Dr. Steven Collins whose

teaching and mentorship has been second to none. I also mention my classmates who, over the year,

have showed tireless enthusiasm for the subject. I thank the many friends I have made during the

course, who have no doubt made the year an enjoyable one. I thank all my close friends, especially

my house mates Marc and Padhraig, who have been there for me when the going was tough. Lastly,

I must pay the biggest gratitude to my family, especially my parents. Without their constant moral

and motivational support it would not have been possible for me to pursue these studies.

Damien Murtagh

University of Dublin, Trinity College

September 2008

iv

Pose-Space Deformation on top of Dual Quaternion Skinning.

Damien Murtagh,

University of Dublin, Trinity College, 2008

Supervisor: Ladislav Kavan

Real time character animation is an area of on going research which attracts much attention. The

geometric method, skeletal subspace deformation has set the standard in real-time animation due to

its simplicity and relative effectiveness. Other methods such as dual-quaternion skinning have become

popular as a superior replacement to skeletal subspace deformation. Example based methods like

pose space deformation, which have their roots in the motion picture industry have become popular

too as a means of offering greater control over the animation than geometric methods. Because of

the ever increasing processing power of modern gaming machines example based methods are now

feasible in real time animation. The major contribution of this thesis is the implementation of a

novel skinning algorithm based on pose space deformation on top of dual quaternion skinning. The

algorithm is benchmarked against the current standard of example based methods which use pose space

deformation on top of skeletal subspace deformation. The results show our method to be superior

in the area of extreme joint rotations. The rotational regression method is also found to correct the

problems of extreme joint rotations, but in a manner which is more complex than ours.

v

Contents

Acknowledgments iv

Abstract v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

1.1 Assumptions of Prior Knowledge . 1
1.2 Conventions Used . 2
1.3 Aims of the Thesis . 2
1.4 Organization of the Thesis . 2

Chapter 2 State of the Art 4

2.1 Skinning Overview . 4
2.2 Skeleton Based Methods . 4

2.2.1 Skeletal Subspace Deformation . 4
2.2.2 Advanced Transform Blending . 9
2.2.3 Dual Quaternion Skinning . 9

2.3 Example Based Methods . 10
2.3.1 Pose Space Deformation . 12
2.3.2 Scattered Interpolation and Related Mathematics 15
2.3.3 Pose Space Deformation Variations and Improvements 17

Chapter 3 Design 22

3.1 Technical Specifications . 22
3.2 High Level Design . 23

Chapter 4 Implementation 26

4.1 Class Level Design Details . 26
4.2 Algorithm Implementation Details . 30

vi

4.2.1 Pose Space Definition . 30
4.2.2 Solving the Radial Basis Function . 30
4.2.3 Application of Corrections . 31
4.2.4 Inverse PSD . 31

4.3 Miscellaneous Issues . 32

Chapter 5 Results 33

5.1 Correctness and Simplicity of our Method . 33
5.2 Performance and Memory Requirements of our Method 33
5.3 Why PSD on top of SSD does not Correct Rotational Errors 36

Chapter 6 Conclusion and Further Work 41

6.1 Conclusion . 41
6.2 Further Work . 41

Appendices 43

Bibliography 45

vii

List of Tables

5.1 Performance Data . 36

viii

List of Figures

2.1 Rigid body blending . 5
2.2 Vertex blending . 5
2.3 Blending of rotations in 2 dimensions. 7
2.4 The candy wrapper effect . 7
2.5 Folding at the elbow . 8
2.6 Inverse SSD . 18

3.1 High level overview . 25

4.1 Class diagram of the system. 27

5.1 Bar animation test . 34
5.2 Candy wrapper test . 35
5.3 Inverse SSD transform of three poses . 37
5.4 Graph of 9 example poses using SSD. 38
5.5 Graph of 3 example poses using SSD . 39
5.6 Graph of 3 example poses using dual-quaternions. 39
5.7 Results of the wrist rotation animation in various configurations 40
5.8 The 9 poses used to train the animation. 40

ix

Chapter 1

Introduction

Character skinning is the process of deforming a virtual character model to simulate the motion of
that character. A character model usually consists of a list of vertices, and a defined connectivity,
which together form a 3 dimensional triangular mesh. The vertices have a number of attributes such
as position, surface normal, bone weights and texture co-ordinate. There are a large number of digital
content creation (DCC) tools available to artists, which can be used to create 3d character models.
Skinning differs from rigid-body deformation in that the deformation is not applied uniformly across
the entirety of the mesh, rather in a manner which allows individual body parts such as the arms,
legs and head to move independently of each other.

The most popular skinning method used in real-time character animation at the moment is a skele-
ton based algorithm known as skeletal subspace deformation (SSD). SSD has a number of flaws which
have been overcome by other more complex algorithms such as the skeleton based dual-quaternion
skinning and the example based pose space deformation. The aim of this research is to implement the
two aforementioned methods in tandem and study the properties of the resulting algorithm, which to
our knowledge has not been tried before. It is hypothesized that the method will correct some of the
rotational problems associated with current pose space deformation techniques, which will lead to a
reduction in the number of poses needed and an associated increase in performance and decrease in
memory requirements. Due to the lower number of poses needed the artist’s workload should also be
reduced as a result.

1.1 Assumptions of Prior Knowledge

This thesis assumes that the reader has a certain amount of prior knowledge in the areas of mathemat-
ics and computer graphics. On the mathematics side a familiarity with linear algebra, the application
of matrices as a geometric transform, and the least squares method of solving linear systems is as-
sumed. On the computer graphics side the reader is assumed to have some knowledge of the modern
graphics pipeline. In particular, an appreciation of the difference between CPU and GPU implemen-
tations is assumed. Some prior exposure to pixel and fragment shader programming would also be

1

of help. Although some previous exposure to character animation techniques such as SSD and shape
interpolation would also be an advantage, the document assumes no prior knowledge of these concepts
and endeavors to explain them thoroughly from the ground up. Some knowledge of quaternions is
also assumed as they are a commonly used construct in computer graphics.

1.2 Conventions Used

Scalar values are represented as lower case letters from the Greek or Latin alphabets, for example x.
Vector quantities are represented by boldface lower case letters and are assumed to be column vectors
by convention, for example w. Matrices are represented by upper case letters in boldface, for example
M. When referring to quaternion values the letter q is used, and for dual quantities the dual unit ε
is used. When referring to estimated quantities the hat symbol is used, such as d̂.

1.3 Aims of the Thesis

The thesis has the following aims:

• To provide a summary of the currently available geometry based and pose based skinning algo-
rithms.

• To implement a newly developed skinning method which is suitable for use in real-time anima-
tion, in particular in the video game industry.

• To provide a critical analysis of the newly developed technique. The main goal of this research
is to investigate the properties of the new method, and to benchmark it against the current state
of the art and discuss the results.

1.4 Organization of the Thesis

Chapter 2 provides a review of the current state of the art in skinning algorithms. Section 2.2 deals
with skeleton based skinning methods, first describing skeletal subspace deformation and its associated
artifacts. Then a number of advanced transform blending methods are discussed which solve these
artifacts in various ways, but have some drawbacks. Finally dual-quaternion skinning is discussed as
an artifact free replacement for SSD which is easy to implement. Section 2.3 provides a review of
various example based skinning methods which interpolate between a number of example poses. These
methods can also be used to correct SSD artifacts and can also capture some details, such as muscle
bulge, which skeleton based methods cannot. The original implementation of pose space deformation
is described in detail, along with some of the related mathematics and a number of improvements to
the technique which have emerged since it was first published.

Chapter 3 discusses the design of the system. In section 3.1 on the technical specification the
framework in which the project will run (Microsoft’s XNA framework) is discussed in terms of its

2

animation capabilities. The hardware specification for the project is also described. The high level
design is described in section 3.2 showing the major components of the system as well as the system’s
interface to the digital content creation tool.

Chapter 4 discusses the implementation of the system. Section 4.1 gives a detailed class and
method level description of the system. Section 4.2 describes a number of important aspects of the
implementation such as the definition of the pose space, the solving and application of corrections
and the use of the inverse PSD method. Section 4.3 describes a number of other issues affecting the
implementation, such as the choice of falloff value for the radial basis function and the generation of
poses.

Chapter 5 presents our results. Section 5.1 concentrates on the correctness and simplicity of our
method compared to others, and provides visual verification of our findings. Section 5.2 presents some
performance data for our method and analyses our frame rate and memory usage data with respect
to the alternative methods available. Section 5.3 provides some further analysis into why PSD on top
of SSD does not correct rotational errors, and why our method does.

Chapter 6 provides the conclusion to our research and suggests some topics which may warrant
further investigation.

3

Chapter 2

State of the Art

2.1 Skinning Overview

The skinning techniques presented in this chapter are broadly divided into two categories, namely
skeleton based skinning and example based skinning. Section 2.2 deals with the skeleton based meth-
ods which use an underling skeleton structure attached to the character mesh to perform skin defor-
mations. Section 2.3 describes the example based methods which perform character mesh deformation
by interpolating between a number of example meshes which depict the character in different poses.

2.2 Skeleton Based Methods

2.2.1 Skeletal Subspace Deformation

This algorithm has appeared under many names such as skeletal subspace deformation, linear blend
skinning, matrix palette skinning and enveloping, but for the remainder of this document will be
referred to as skeletal subspace deformation or by the acronym SSD. The algorithm itself is unpublished
but can be found in early works such as those of Magnenat-Thalmann et al. [17] from 1988, which
focuses specifically on deformations of the hand.

If one considers the problem of animating an articulated body part such as an arm, then the
simplest deformation model would be to treat the upper arm and forearm as two separate parts, and
to apply a rigid transformation to each. This is illustrated in figure 2.1, which shows the independent
rigid transformation of the forearm and upper arm. Transformations like this where no blending
occurs are not suitable for realistic character animation because of the obvious discontinuities created
at the joint, where the skin appears cracked or overlapping. A better solution is to define a system of
bone transforms and perform a weighted blending. As before the vertices which are clearly located in
the upper arm are transformed according to the upper arm matrix transform, and the vertices which
are clearly located in the forearm are transformed using the forearm matrix transform. The vertices
which are located in the elbow region are blended using a combination of matrices as illustrated in

4

Figure 2.1: Rigid body blending in which the forearm and upper arm are essentially treated as two
separate meshes and may become disjointed or display self-intersections when moved.

Figure 2.2: The forearm and upper arm bones are blended at the elbow using different weights, with
the vertices closer to the upper arm blended (2/3,1/3) in favour of the upper-arm and the vertices
closer to the forearm blended (1/3,2/3) in favour of the forearm. This simple example also illustrates
the folding defect which is a consequence of using SSD.

5

figure 2.2.
Mathematically the SSD algorithm is expressed as the following equation:

vt =
n∑
i=1

wiMi,tM−1
i,rvr where

n∑
i=1

wi = 1, wi ≥ 0 (2.1)

Here vr is the original vertex position in what is known as the rest post and is specified in world
coordinates. vt is the vertex position after transformation at time t. There are n bones influencing
the vertex vr and there are n corresponding weights wi which are convex and normalized to sum to 1.
The matrix Mi,r transforms from the initial bones coordinate system to the world coordinate system
for bone i in the rest pose. The matrix Mi,t is the world transform of the ith bone at time t and
changes in order to animate the mesh. The Mi,r term is often left out of discussions on SSD with a
single matrix equivalent to Mi,tM−1

i,r being used instead. In practice this concatenated matrix is used
to transform the vertices. The weights wi are usually hand crafted by an artist using a DCC tool,
often by setting envelopes of influence around each bone, by painting weight values on to the mesh
surface or by setting the values manually. Some automated weighting systems have also been tried
such as, ‘Building efficient, accurate skins from example,’[19] which is discussed in section 2.3.

One serious limitation of the SSD technique is illustrated using the following simple example. Take
two 2-dimensional matrices M1 and M1 which rotate the point v by different amounts. If the resultant
transformed points v1 and v2 are linearly blended, then the blended point p lies on the line between
v1 and v2 and therefore acquires a scaling factor and is no longer a pure rotation as shown in figure
2.3. The problem is most pronounced when the angle between the two rotations is 180 degrees. The
ideal blended position is that of p′ lies on the arc through v1 and v2 and is a pure rotation.

Because of the associativity of vector-matrix multiplication equation 2.1 may be re-written as:

vt =

(
n∑
i=1

wiMi

)
vr (2.2)

This equation represents the standard method of implementing SSD where the weighted sum of ma-
trices is calculated, then applied to the rest-pose position. The matrix M is typically a rigid trans-
formation, that is it is composed of rotation and a translation components but without any scaling
or skewing components. As an implication of figure 2.3 it can be seen that the weighted sum of
two or more rigid transformations does not necessarily result in a rigid transformation. This state-
ment is equally valid in three dimensions as it is in two dimensions. More formally, the set of rigid
transformations is not closed under addition. The resultant artifact which is present in SSD skinned
characters when the angle of blending between two adjacent bones approaches 180 degrees is known as
the, ‘Candy wrapper effect’. Shown in figure 2.4, the, ‘Candy wrapper,’ effect is a persistent problem
in SSD.

Despite the drawbacks of SSD, it’s use is widespread in the game industry. The obvious benefits
are it’s simplicity, which makes it well suited to GPU implementations, since the only operations
needed are matrix multiplications and additions. Another benefit is the widespread availability of

6

Figure 2.3: Blending of rotations in 2 dimensions.

Figure 2.4: The candy wrapper effect

7

Figure 2.5: Folding at the elbow: The SSD equation 2.1 restricts the possible deformations to a
particular subspace, which is equivalent to the linear hull of all the individual bone transforms of a
particular vertex. In the case of the elbow joint the desired deformation for the inside of the elbow does
not lie on this subspace, hence no amount of weight adjusting will produce the desired deformation.
This can be a major source of frustration for artists using SSD, because re-adjusting the bone weights
will sometimes fix a problem and other times can never fix it.

8

SSD in the common animation and modeling tools, allowing an intuitive work-flow between artist and
programmer as the same skinning algorithm is being used at authoring-time and run-time.

2.2.2 Advanced Transform Blending

[10] describes a hardware implementation of a spherical blending algorithm in which the rotation
element of rigid bone transforms are represented in their quaternion format. Their GPU implemen-
tation is an approximation of the well known spherical linear interpolation of quaternions (SLERP)
algorithm, which provides a solution to the collapsing of joints associated with SSD, by blending the
(quaternion,translation) pair in a manner which guarantees that the blended transform is a rigid one.
Whereas the SLERP algorithm traces out an arc across a 4 dimensional hypersphere which smoothly
blends rotations with respect to the angle of rotation, for efficiency this algorithm uses a linear blend
of quaternions, which are then re-normalized so that they reside on the unit quaternion circle, and
provides a good approximation of spherical blending. The article outlines, in Microsoft DirectX vertex
shader assembly code, an efficient implementation of the algorithm. The problem with the blending
of (quaternion, translation) pairs is that it is not co-ordinate system invariant and can produce poor
results due to the center of rotation being fixed.

[7] describes a transform blending algorithm which also guarantees that the blending of rigid trans-
forms results in a rigid transform, and is co-ordinate system invariant. The method is based around
matrix exponentials and logarithms. The downside of the method is that in general transformations
are not blended along the shortest path, which is a desirable property of any skinning algorithm.

2.2.3 Dual Quaternion Skinning

Dual-quaternion skinning is described in depth in [12]. Here rigid transformations are represented as
pairs of quaternions of the form q0 + εqε where q0 is the ordinary quaternion part, qε is the quaternion
dual part and ε is the imaginary dual unit, where ε2 = 0. Dual-quaternion skinning has the following
properties which are desirable for any skinning algorithm:

• Blending of rigid transformations always returns a rigid transformation.

• Blending is co-ordinate system invariant.

• Blending always occurs along the shortest path.

• The algorithm is GPU friendly.

Dual-quaternion skinning is seen as a viable, artifact free alternative to SSD because of its simplicity
of implementation and because it can use the same bone weight data as SSD without constraint. The
performance of dual-quaternion skinning is also similar to that of SSD, with SSD being only slightly
faster.

9

2.3 Example Based Methods

Example based skinning methods such as [16, 25, 23] have seen a significant amount of research effort
in the last number of years. These methods have been popularized as a means of enabling artists to
compensate for the inherent deficiencies of SSD as in [16] while still keeping within the performance
limits of a real-time system. In other works such as rotational regression and eigenskin[25, 14], a
number of mesh examples have been generated from a costly physically based simulation and used
to train a corresponding real-time system to a certain accuracy which is comparable to the original
physically based model. In yet another case, Kurihara and Miyata[15] provide the set of training
examples from medical scanning data.

[26] introduces an improvement to SSD simulation called Multi-Weight Enveloping. In this tech-
nique a separate weight is used for each component of the joint transform. Weights are solved using a
number of example meshes and the linear least squares algorithm. Both artist created and physically
simulated example meshes are used. While the technique represents a simple and fast addition to SSD
at run-time, the pre-processing stage can suffer from the problem of over-fitting, because of the large
number of weights per vertex (12 for each joint of influence).

Mohr and Gleicher’s, ‘Building efficient, accurate skins from examples,’[19] describes a system
of exporting sculpted character poses and their respective skeletal configurations from a modeling
package to a real time system. Here the distinction is made between the authoring and computation
phases of character skinning. Because offline character deformations are tightly coupled to the au-
thoring phase a number of complex and sophisticated skinning approaches have arisen. Sub-structural
skinning systems such as muscle and tendon simulations [27, 21] are cited as being commonplace in
high end graphics applications such as those used in the film industry. The comparison is drawn be-
tween these and SSD based interactive systems which allow for fast computation of skinning but are
notoriously difficult to author and exhibit deformation artifacts which are elaborated upon in section
2.2.1. A technique known as mesh animation is also described which involves the storing of static
mesh definitions for each key frame of animation, and then interpolating between them at run-time.
This simple method decouples the authoring and simulation steps and means that animation content
may be created in any digital content creation (DCC) tool. The following limitations, however, mean
that its popularity has declined in recent years:

• The possible poses must be known a-priori.

• The need to store many poses leads to a large memory requirement.

• It cannot be used to predict new poses which may be needed at run-time, such as would be
required by many computer games.

The algorithm in [19] is an extension of SSD which incorporates arbitrary poses created in any
DCC tool of the artists choosing. The examples presented are created in Maya, and are sampled
at regular intervals. A new skeleton is then programmatically computed, with extra joints so as to
represent the deformations which the original skeleton cannot. Fine tuning of these joint positions by

10

the user is allowed. In this new skeleton the extra joints are placed so as to fix the joint-collapsing
artifacts around hinge joints (see figure 2.5 in section 2.2.1) and candy-wrapper effects seen around
joint rotations (see figure 2.4). Adding extra joints may also allow the representation of muscle bulge,
wrinkles in the skin or indeed any concievable deformation if the number of joints is equal to the
number of vertices. This is impractical however, so a small number of strategically placed joints are
added. To solve the candy-wrapper problem a single new joint may be added, which is computed to
be half way between the rotations of the two existing joints using the spherical linear interpolation
(SLERP) algorithm [22]. To represent muscle bulge new scaling joints may be added which are
controlled by a nearby joint angle. E.g. the inverse of the cosine of the elbow joint angle may be used
to control scaling of the bicep muscle.

Prior to calculating the vertex weights for the newly generated skeleton, the set of joints which
influence each vertex is calculated. This calculation is performed by taking each of the posed versions
of a particular vertex and applying the inverse transform for a joint to translate the cluster of points
into the local space of that joint. This process is repeated for every joint in the skeleton and the joints
which produce the smallest clusters of points are considered to be most influential to that particular
vertex. Once the influence sets have been calculated the following SSD equation must be solved for
the rest pose positions and joint weights (see section 2.2.1 for a further discussion on SSD).

v̄e =
∑n
i=1 wiMi,eM−1

i,dvd

Here v̄e is the position of a particular vertex after the skinning deformation has been performed for
example pose e, n is the number of bones of influence of that vertex. wi is the weight of influence of
bone transformation i, Mi,e is the matrix transform of the ith bone of example pose e, M−1

i,d is the
inverse transform of the dress pose (also known as the rest pose) for bone i and vd is the rest pose
position of the vertex. The solution aims to minimize the following:

min ‖
∑n
i=1 v̄ei

− vei
‖

Only the example poses and not the rest poses are known to the system, making the system bilinear, i.e.
both weights and vertices must be solved. The solution is found using a process known as alternation.
First the vertex positions are set and the system is solved for the weights, then the weights are set and
the system is solved for the vertex positions. The process is then repeated until the solution converges
which usually takes one or two iterations.

The technique presents impressive solving speeds and runs on existing hardware which supports
SSD so it can be easily retrofitted into existing hardware accelerated systems. It can also be used in
the process of re-rigging characters or as an interactive feedback loop for high end animation which
may be to computationally intensive for real-time execution. Since it is an SSD based technique it is
more efficient than some other example based animation techniques such as PSD/Eigenskin[16, 14],
though it lacks the robustness of either. Another limitation, evident from the process of adding
extra joint transforms, is the hard limit on the number of constant registers available to store bone
transforms on the GPU. Prior to Direct3d 10 there were 256 4-tuple registers available to the vertex
shader restricting the maximum number of bone transforms to 60, if stored in 4x4 matrix format.
This restriction does not apply to direct3d 10 which provides 16x4094 constant registers [9].

11

2.3.1 Pose Space Deformation

Lewis’s 2000 paper ‘Pose space deformation’[16] describes a general approach to character skinning,
which has been used in the motion picture industry. The approach has its origins in an earlier
patented algorithm developed by the author at Industrial Light and Magic, and used in scenes in
the motion picture films Jumanji and Casper. The basis of the algorithm lies in the combination
of a skeleton based approach and a shape interpolation approach into a single unified approach to
character skinning. By layering a displacement correction algorithm on top of SSD the algorithm
targets the traditional animator work flow, allowing an artist to apply corrections to the traditional
SSD algorithm in a manner which provides instant feedback. The simplicity of SSD is retained while
the following enhancements are made possible:

• Muscle bulges can be sculpted by the artist and added to the real-time animation.

• Facial animations may be added.

• SSD artifacts may be corrected.

• Sophisticated skin deformations such as muscles, tendons and skin sliding over bone may be
represented.

Previous shape interpolation approaches were based on the linear combination of the corresponding
vertices in a number of key shapes

∑
k=0 wkSk. These methods are widely used for facial animations

and have the desirable characteristic that the target shapes are sculpted directly rather than manip-
ulated through some more abstract parameterization. The major disadvantage of shape interpolation
is that it is not suitable for use in capturing the range of movement of the regions of the body which
rely on an underlying skeleton. Another drawback to using linear interpolation of shapes is that the
interpolation is not always be as smooth as the artist would like. That is, while the interpolation
guarantees parametric continuity (no discontinuities in the position of the interpolant over time)
it does not guarantee geometric continuity (no discontinuities in the derivative of the interpolant
over time). This can necessitate the sculpting of extra poses around the critical poses to create a
smoother animation, imposes extra workload on the artist, and can lead to a larger than necessary
memory footprint.

In order to facilitate the creation of a unified approach Lewis et. al. introduce the concept of a
pose space to act as the interpolation domain of the displacement corrections which are applied to the
model. The range of the interpolation is the desired displacement correction of the surface vertices.
The pose space may be derived from the underlying skeleton, e.g. the angles which define the range
of movement of a particular joint may be used. To illustrate this concept an arm animation which
depends only on the shoulder and elbow joints may be visualized. A single angle may be used to
represent the possible motions of the elbow joints while two angles are needed to represent the motion
of the shoulder joint. The combined pose space for the elbow and shoulder joints would be three
dimensional. [25] suggests the use of an axis angle representation as the basis for a pose space. The
pose space may also contain a more abstract set of parameters such as the age, sex or emotional state

12

of the character. In [23] Sloan et. al. build on this idea by allowing the extrapolation of new models
from a number of sculpted models in a particular abstract space (Section 2.3.3). One such abstract
space exemplified by Sloan et. al. is a two dimensional space with one axis representing the sex of
the model and the other representing the angle of rotation of the elbow.

Deformation corrections of a surface are expressed as a function of the underlying pose space. The
system must allow artists to sculpt desired poses at arbitrarily spaced locations in the pose space. The
problem is therefore one of scattered interpolation, which cannot be handled by a construct such as a
spline which relies on the data points being regularly spaced within the pose space. [16] discusses the
following possible approaches to scattered interpolation, which are further elaborated upon in section
2.3.2:

• Shepards method - Computes a weighted sum of the surrounding data points. The weight is set
to an inverse power of the distance to the data point.

• Radial basis function (RBF) - Computes a weighted linear combination of the output of an RBF
for each data point. An RBF is a function which depends only on the distance between two
points.

• Energy functionals and non-convex methods - A method used in reconstruction of images, which
provides piecewise continuity in the reconstituted function.

Radial basis functions are chosen for the interpolation and take the following form:

d̂ (x) =
N∑
k=1

wkφ (‖x− xk‖) (2.3)

Here d̂ (x) is the predicted value at location x in pose space. There are N data points d(xk), N pose
space locations xk, and N weights wk. The linear system may be arranged as:

Φw = d

And the solution may be computed using the standard least-squares formulation:

w =
(
ΦTΦ

)−1
ΦTd

where w is a vector containing the weights w = (w1, ...,wk)T , d is a vector containing the input data
points d = (d1, ...,dk)T and Φ is a k × k matrix containing the RBF values:

Φ =

φ (‖x1 − x1‖) φ (‖x1 − x2‖) · · · φ (‖x1 − xk‖)
φ (‖x2 − x1‖) φ (‖x2 − x2‖) · · · φ (‖x2 − xk‖)

...
...

. . .
...

φ (‖xk − x1‖) φ (‖xk − x2‖) · · · φ (‖xk − xk‖)

13

Note that equation 2.3 relates only to the mapping of a pose space to a scalar value. In practice the
step must be performed three times, once for each of the x,y and z dimensions, yielding weight values
which are actually 3-dimensional vectors.

The next task is to choose a suitable radial basis function. Any nonlinear function φ(x) will
interpolate the data and a smooth φ(x) will result in a smooth interpolation because a weighted
sum of a continuous function is continuous. Lewis[16] chooses the Gaussian radial basis function
φk(x) = exp(−(|x−xk|)2

2σ2) for the following reasons:

• It is continuous.

• It is reputed to be well behaved and has been used as the basis of RBF interpolation in previous
neural network research[8].

• It approaches zero far away from the poses.

• The falloff σ is selectable.

The falloff value σ is exposed to the user and, though its meaning may not be immediately obvious,
allowing an animator to interactively change it should facilitate changes to the amount of influence
given to each pose.

The following is an outline of the steps involved in the pose space deformation algorithm:

1. Define the pose space. That is the pose controls and the degree of freedom of each control.
Pose controls may be the relative angles between the relevant joints, such as the angle of bend
of the elbow or some set of abstract manipulators such as the muscle bulge or facial attributes
such as ‘sadness’. This configuration makes up the input to the interpolater.

2. Sculpt. The artist positions a set pose controls and sculpts the deformation for each pose. The
artist also sets the Gaussian falloff σ for each pose. The value can be set uniformly across all
poses or individually configured for each pose.

3. Calculate ~δ(pose). For each pose, find the vertices which are different in the edited pose mesh
than in the equivalent SSD deformed mesh. Calculate the difference in position ~δi for each of
the vertices to be corrected. The difference should calculated between the SSD transformation
of the rest pose vertex vri and the posed vertex vpi , where wj and Mj are the SSD weights and
transforms for joint j respectively:

~δi = vpi −

 n∑
j=1

wjMj

vri (2.4)

4. Solve. When enough sculpted poses are ready the interpolation problem must be solved for each
of the vertices which is different from the underlying SSD deformation in any of the sculpted
poses. For each of these vertices, find the poses which contribute to the displacement of this
vertex, and the equivalent pose controls configuration. Solve the RBF weights w for the vertex

14

using the least squares method as described previously. The paper notes that it is possible to
pre-calculate w =

(
ΦTΦ

)−1
ΦT because its value does not change between vertices which are

effected by the same poses. The pre-calculation would avoid repeating a costly matrix inversion
for each vertex, but the optimization is largely irrelevant because the step is preformed prior to
runtime. It might, however, be relevant if it is being used in a feedback loop for artists and the
evaluation of changes is taking too long to process for a model with a large number of vertices.

5. Synthesize. When the model is moved to an arbitrary pose the location in pose space must
be calculated. For each deformed vertex, use the previously computed RBF weights w for that
vertex to calculate the interpolation of the displacement offset at that point in pose space using
equation 2.3. The interpolated displacement must then be added to the SSD deformed vertex
position.

6. Evaluate and repeat. The model now interpolates through all of the defined deformations.
The extent of each pose around its position in pose space can be visualized and changed using
σ and then re-tested. Lewis[16] recommends allowing axis aligned manipulation of the σ value
and mentions using the Mahalanobis distance instead of the euclidean distance, as input to the
RBF. This is discussed in section 2.3.2. New poses may also be added to fix problematic areas.

One aspect which is not referred to is the handling of surface normal during the interpolation
process. Obviously if displacement corrections are being applied to the vertex positions of a model
some form of correction must also be applied to the corresponding vertex normals, otherwise the
lighting calculations will be incorrect. While this is not explicitly mentioned in Lewis’s work [16] it
will be considered in this work in section 4.

Though pose space deformation is not GPU friendly a GPU implementation is discussed in [24].
The paper describes an implementation of weighted PSD (see section 2.3.3 for an explanation of
weighted PSD), where the SSD and PSD weights are packed into a texture and passed to the fragment
shader. The fragment shader calculates the vertex displacements which are stored to a texture for use
in the next rendering pass. The next rendering pass applies these displacements in the vertex shader.
The algorithm is summarized by:

• First pass: Calculate the displacements to the vertex position in the fragment shader.

• Second pass: Calculate the displacements to the vertex normal in the fragment shader.

• Third pass: Apply the corrections in the vertex shader.

Principle component analysis of the pose space data is also discussed to reduce the domain of the
computation. The paper reports a 20× performance gain over the CPU implementation.

2.3.2 Scattered Interpolation and Related Mathematics

In PSD the deformation of a surface is expressed as a function of the pose of an underlying skeleton
or abstract set of parameters. It is necessary to directly sculpt the desired deformations at various

15

points in the parameter space which are not guaranteed to be evenly spaced. This problem of fitting a
function to a number of arbitrarily spaced data points is known scattered interpolation and a number
of candidate solutions are discussed in [16, 20, 23]

Inverse distance weighting (Shepards method) is often used for scattered interpolation. It provides
a weighted sum of the surrounding data points, with the weight being an inverse power of the distance
to a particular data point:

d̂(x) =
∑
wk(x)dk∑
wk(x)

, wk(x) =
1

‖x− xk‖p

Shepards method has some drawbacks though. Firstly, as the function moves far away from the data
points the weights converge to approximately the same value, meaning that the interpolated value is
the average of all the data points. Ideally one would want the interpolation to decrease to zero far
away from the data points. Secondly the derivative of the interpolated function is zero at the data
points which may not be desired.

Thin plate splines are another common choice for the RBF kernel function where:

φ(x) = x2 log(x)

Thin plate splines have a more global nature than Gaussian RBF, where a small change to one of the
data points will effect the coefficients corresponding to all the other data points. Like the Gaussian
function thin plate splines are smooth. They also have the advantage of having no free parameters
which need manual tuning. They are considered for use in ‘Shape by Example’[23].

‘Shape by Example’ [23] uses the cubic B-spline cross section as its RBF kernel, because of its
compact support which aids extrapolation, i.e. the function reduces to zero as the distance to the pose
becomes greater (unlike the thin plate spline). The cubic B-spline is a generalization of the Bezier
curve. The Bezier curve defines a curve in terms of a set of control points, passing through the first
and last data points but not necessarily the others. The cubic B-spline cross section drops to zero at
twice the distance to the nearest example, as opposed to the Gaussian function in which the falloff is
selectable.

For a heterogeneous interpolation domain the Euclidean distance is sensitive to scale. For example
the pose space might consist of a number of joint angles specified in degrees and a ‘happiness’ factor.
The joint angle values may vary from -180 degrees to +180 degrees while the happiness parameter
varies from 0.0 to 1.0. This gives greater weight to the ‘happiness’ parameter, by virtue of its shorter
distance in Euclidean space, and may produce some unexpected results. To account for this type
of scenario the euclidean distance may be generalized in a number of ways, which are well known in
statistical analysis. The normalized Euclidean distance or the more general Mahalanobis distance may
be used to take into account the principle axes along which the data lies. The Mahalanobis distance is
computed using the covariance matrix of the available data points and may be used to correlate data
which is distributed along an arbitrary axis or to eliminate outliers from a set of data. The distance
measure has been used in research into neural networks[8] as a means of rotating and stretching a

16

radial basis function and could be used to augment radial basis interpolation in the context of character
skinning. The Mahalanobis distance is similar to weighted PSD (discussed in section 2.3.3) in that
both provide a scaling of the axes which aims to improve the results of PSD. The two are not mutually
exclusive though and it is conceivable that they could be used in tandem.

2.3.3 Pose Space Deformation Variations and Improvements

Kurihara and Miyata[15] use a set of medically scanned images as the basis for their hand deformation
system. Their images were obtained using computed tomography (CT) scans which show the bone
structure and skin shape for a number of hand positions. Their work is comprised of three steps.
Firstly the link structure of the hand are estimated using the scanned images. The joint centers and
joint angles are computed for each pose. Some simplifications are made, such as replacing the radius
and ulna bones of the forearm with a single bone which provides roughly the same functionality. The
number of bones in the complex carpel bone system of the wrist is also reduced for simplicity. Secondly
a set of model meshes are constructed from the scan data for each pose. The meshes are generated
to be topographically consistent to easily allow for shape interpolation. To ensure topographical
equivalence of the meshes the original base mesh is deformed using SSD into the pose configuration
to create an approximate mesh for a particular pose. A number of equivalent feature points are then
manually specified on the approximate mesh and the CT scanned mesh. The approximate mesh is
then deformed to the CT mesh using a Radial Basis Function at the feature points. A final step then
fits the vertices of the RBF transformed mesh to the CT ground truth by moving each vertex to its
nearest neighbor in the ground truth.

During synthesis the RBF interpolation phase has a couple of differences and improvements from
the original PSD. Firstly the inverse of the SSD calculated transform is applied to the pose mesh
vertices prior to calculating the displacements rather than applying SSD to the base mesh. The
comparison is then made between the inverse SSD transformed pose mesh and the base mesh so the
order of operations changes from:

PSD(SSD(Model), Corrections)

to

SSD(Model + PSD(Corrections2))

The following equation shows the calculation of the offset ~δ, first by applying the SSD inverse transform
to the posed vertex vpi and then finding the difference between this transformed vertex and the rest
pose vri , in contrast to equation 2.4 which performs the reverse:

~δi =

 n∑
j=1

wjMj

−1

vpi − vri (2.5)

Figure 2.6 illustrates the inverse SSD on some mesh examples. [28] provides a discussion on why this
inverse PSD method provides better results than regular PSD. The paper presents a simple example of

17

Figure 2.6: Pose examples transformed via Inverse SSD to the rest pose. (Image courtesy of Michael
Cohen [23].)

18

where inverse PSD provides a better interpolation of a deformed posed vertex over an elbow bending
animation. This also has the advantage of allowing the PSD Corrections to be applied on the CPU
and then standard SSD to be applied on the GPU.

Another improvement used in [15] is the addition of a weighting factor in the calculation of the
pose space distance to allow a small number of poses to be used to generate a larger number of
deformations. The principle observation behind this improvement is that the movement of a joint
which is far away from a particular vertex has little or no bearing on the correction displacement
which should be applied to that vertex. The SSD weights are used when calculating the distance in
pose space to ensure that joint movements which have little effect on a vertex have little effect on the
pose space distance calculated for that vertex. Thus the pose space distance between two poses x1

and x2 becomes:

d (p, q) =
n∑
i=1

wi,v
(
x1
i − x2

i

)2
(2.6)

where n is the number of degrees of freedom in the pose space, wi,v is the SSD weight of the joint
corresponding to i for the vertex v, x1

i is the ith component of the pose space location x1 and x2
i

is the ith component of the pose space location x2. This essentially applies a weighting to the pose
space axes which is dependent on the vertex in question, as opposed to using the Mahalanobis distance
(Section 2.3.2) which provides a weighting to the axes which is uniform over all the vertices, but is
dependent on the spread of data points within the pose space.

Eigenskin[14] also introduces a number of improvements to pose space deformation. The inputs
for this algorithm also consist of a skeletally rigged hand model and a number of key poses, though
this time the key poses are computed using a physically based finite element model which takes
several hundred CPU hours to execute. Like [15] the vertex displacements are mapped back to a
neutral character pose akin to equation 2.5. By using an error-optimal eigendisplacement basis for
pose corrections the authors develop a method which is suitable for hardware acceleration on modern
graphics hardware.

Eigenskin introduces the notion of joint support to leverage the fact that localized changes to the
pose configuration of a model result in localized deformations. For example, the bending of the index
finger of a hand model does not result in any significant deformations to that little finger of that model.
The set of vertices forming the joint support for each joint is computed using the output of the finite
element model, and the authors find this set not to be equivalent to the set of influence joints defined
by the SSD weights. Principle component analysis (PCA) is then used to create an orthonormal basis
for the displacements termed eigendisplacements. The PCA solution is formed for each joint where
the data correlating pose configurations to vertex displacements within the joint support for that
particular joint is reduced. In this manner a large number of poses may be compressed to k principle
components where k is less than the original number of poses. The eigendisplacement co-ordinates
are then interpolated using RBF’s in a manner similar to Lewis’s method[16] which is described in
section 2.3.1. Vertex shader synthesis of now becomes a simple linear weighted combination of the
interpolated eigendisplacements with the maximum number of eigendisplacements per vertex limited
by the per-vertex data constraints.

19

The results produced are claimed to be marginally slower than SSD in terms of execution time.
A comparison of the correctness of an unseen pose synthesized using Eigenskin to the original finite
element model shows impressive results. With a single eigendisplacement base per joint the relative
error is shown to be 16% of that of the equivalent SSD deformed model. Using 5 eigendisplacements
the relative error drops to 6.5%. One limitation of eigenskin is the fact that eigendisplacement bases
are constructed from a single joint and do not capture non-linear deformations which are dependent
on the configuration of a combination of joints.

In shape by example[23] a shape interpolation technique is presented which allows the efficient
run-time interpolation between multiple forms of an model. The method is demonstrated to create
multiple distinct models from a few example models as a cheap method of adding variety to a crowd
scene. It is also used to create smooth skinning deformations by blending examples. The method has
a number of differences from Lewis’s PSD[16]. Firstly, whereas Lewis solves a linear system of RBF’s
per vertex, shape by example solves per example mesh, which leads to reduced solution complexity
provided there are fewer example meshes than vertices (which is always the case in practice). Secondly
the RBF solution is augmented with a linear hyperplane which is intended to capture linear changes
between the examples. An abstract pose space is defined using adjectives such as young versus old
and male versus female to define the axes.

The notion of a cardinal basis is introduced with one basis function associated with each example.
The cardinal basis consists of a weighted sum of RBF’s and a low order polynomial. The linear part
provides an overall approximation, while the RBF part fits the interpolation to the examples. The
coefficients which define the linear hyperplane are first estimated using least squares fitting for each
example pose. The RBF weights are then fitted to account for the residuals in the cardinal bases.
Rather than fitting for each vertex as in PSD[16] N RBF’s are fitted to each cardinal base of which
there are N , where N is the number of example poses. This results in N × N weights which must
be solved and used during synthesis, which is significantly lower than the number of weights used in
PSD. For their choice of RBF a cross section of a cubic B-spline is used, for its compact support,
that is φ(x) decreases as x gets bigger. This is said to aid extrapolation because as one moves further
away from the location of a pose in pose space the the interpolation reduces to the underlying linear
basis. Smoother thin-plate interpolations were also considered. For more detail see section 2.3.2. The
technique is layered on top of SSD in a manner similar to Eigenskin [14] and [15] which are described
above. The examples are transformed back to the base pose using inverse SSD and then blended.

In shape by example[23] solving takes a fraction of a second due to the smaller number of weights
to be solved. This allows the method to be used in an interactive feedback loop for artists. Runtime
memory requirements are also reduced because of the lower number of weights.

[25] introduces a system of corrections called rotational regression which is layered on top of an
SSD system. Rotational regression is based on the mapping of an underlying skeleton pose to a system
of deformation gradient predictors, consisting of the rotational, shearing and scaling errors for each
triangle in a mesh. It is therefore a more sophisticated system than simply mapping mesh poses
to mesh displacements. The system is trained using a number of example meshes, and the resulting
mapping is simplified using dimensionality reduction. The paper also discusses a GPU implementation

20

of the algorithm. The results compare favorably to PSD in terms of the correctness of the predicted
mesh. The technique is shown to provide better prediction of unseen poses than either the PSD or
Eigenskin methods [16, 14], in certain instances where the rotational error is very pronounced. It
also compares favorably to SSD in terms of speed of execution, with performance shown to be less
than a factor of 2 times slower than SSD. Also during the dimensionality reduction stage a value
may be set to control the trade-off between performance and correctness. It is however a much more
complex algorithm to understand and implement than SSD. Also unlike PSD or Eigenskin it does not
reproduce the training poses exactly.

21

Chapter 3

Design

For this dissertation the intention is to implement a version of pose space deformation which would
be suitable for use in video games or other interactive application which require real-time character
animation. Using Lewis’s 2000 paper [16] as a base point, the project will implement radial basis
function solver to interpolate pose space corrections. The paper implements displacement corrections
on top of SSD, which will be reproduced by this work, along with the dual-quaternion based equivalent
for the purposes of comparison.

3.1 Technical Specifications

The work will be implemented using Microsoft’s XNA framework 2.0 on an Intel dual-core 1.86Ghz
processor Windows XP machine with 2Gb ram and an Nvidia GeForce 8600 GTS graphics card.
XNA is a games development toolkit which runs under the .NET framework and is aimed at students,
hobbyists and independent game developers. It provides a set of managed code development libraries
which support the common set of tasks necessary for games development such as graphics, animation
and networking. The XNA framework 2.0 provides only partial support for key frame animation as
standard. The class framework for supporting the input of skeletal information exists but no content
pipeline importer is shipped with the framework. The framework supports the importation of the
following elements of a skeletally rigged model:

• The initial rest pose mesh definition containing vertex positions, vertex normals and mesh con-
nectivity (a list of indices connecting the vertices).

• A skeleton tree structure representing the skeleton in the rest pose. This consists a list of
transform matrices corresponding to the bone transforms with respect to their parent bone, the
index of the parent bone for each bone, and a single root bone index.

• A list of bone indices for each vertex, which shows the particular bone transforms which are
relevant to that vertex.

22

• A list of bone weights for each vertex, which corresponds to the list of bone indeces and deter-
mines what weighting is to be applied to each bone.

• A key-framed sequence of skeleton definitions which is used to store the skeleton transform
matrices at each timestep.

Support is available for the .fbx and .x file formats. There is no support shipped with the framework
for motion synthesis through the vertex shader. There are, however, examples for both an animation
content pipeline and an SSD vertex shader available in the ‘Skinned Model’ example on the XNA
Creators Club website [6], along with the more advanced ‘XNAnimation Library’ available on the
Codeplex website[1]. A HLSL example of skinning using dual-quaternion blending, which runs under
XNA, has been written by Alexander Jhin[4] and will need to be adapted to make it suitable for CPU
execution.

Models are to be authored using the 3D Studio Max 9 modeling tool, which provides a huge number
of modeling and animation features, including SSD skinning (via the skin modifier), sub-structural
skinning features such as muscle bulges and tendons (via the physique modifier), key frame animation
and model re-sculpting. Static meshes and rigged models will be exported to the directX model file
format (.x), for use in XNA, using the third party Panda DirectX Exporter [3] plug-in for 3D Studio
Max, which is available under a freeware license. The Panda exporter provides facilities for the export
of mesh definitions, materials, animations and bones as well as providing some mesh optimization
options.

The linear least squares solution segment of the radial basis solution will require an implementation
of the linear least squares algorithm, which specifically requires the inversion of potentially large
matrices. Rather than writing code to do this an ‘off-the-shelf’ linear algebra toolkit will be used.
The Extreme Optimization Numerical Libraries for .NET provide such a toolkit, including a number
of options for matrix inversion.

The implementation will initially target the CPU, with RBF solving and the application of dis-
placement corrections being applied on the CPU. This is because the original pose space deformation
methods are not suitable for GPU implementation. Some GPU implementations have been explored
in the literature[24], and these will be discussed at least in theory. See section 2.3.3 for a review of
the current state of the art regarding GPU implementations.

3.2 High Level Design

Figure 3.1 shows a high level overview of the system. Here a rigged character is created and exported
to a .x file in 3d studio max. A number of pose meshes are also created and exported to the directX
format. All the model files are imported through the content import pipeline to the XNA application.
The application loads these files as content at startup time, and, once all poses have been loaded,
the solution step is performed to solve the RBF weights for position and normal corrections. After
this initialization step is complete the update/draw loop uses the PSD Engine to apply corrections

23

periodically, according to the current state of the animation. The deformed model is then rendered
on the GPU and shown on screen.

With regard to the individual components of the application, the ‘Content Importers’ component
consists of the default XNA Model Pipeline which is packaged with the XNA 2.0 distribution, and the
Skinned Model Pipeline which is to be obtained from a third party source as discussed in section 3.1 and
should not need any significant modification. The ‘Application Main’ component is to be written from
scratch, and will contain the methods Initialize(), LoadContent(), Update() and Draw(), which
are inherited from the XNA Game class and are commonplace in graphical applications. The ‘PSD
Engine’ component contains the capabilities necessary for the parsing the vertex, normal and weight
data from the model files, performing linear blend skinning and dual quaternion skinning, storing
the data associated with each pose, calculating RBF values and RBF weights and applying the RBF
corrections during synthesis. The only third party component within the ‘PSD Engine’ component is
the Extreme Optimization Numerical Libraries [3] least squares solver. The ‘GPU’ component of the
architecture performs the rendering tasks such as perspective projection and lighting as is standard
in 3D applications.

24

Figure 3.1: A high level overview of the system.

25

Chapter 4

Implementation

This chapter details the implementation which forms part of this thesis. The class level design details
of the system is discussed in section 4.1. For a higher level architectural discussion see section 3.2. The
details of the algorithm implementation are discussed in section 4.2. Variations on the algorithm, such
as forward versus inverse Pose Space Deformation, are discussed in section 4.2.4 and the choices made
in this implementation are justified. A discussion on the performance and memory considerations of
the algorithm and the issue of choosing an appropriate value of σ are also discussed in section 4.3.

4.1 Class Level Design Details

Figure 4.1 shows a class diagram of the system. Only methods and attributes which are relevant
to this system are shown, with boilerplate code such as graphics device and sprite batch variables
being omitted. Attributes and methods which are used for debugging the system are also omitted.
In figure 4.1 the ApplicationMain class contains, along with the standard LoadContent(), Update()
and Draw() methods, the following important attributes:

• animationContent: A reference to the AnimationContent class which abstracts the details
of loading individual animations, including which model and poses are to be loaded and their
positions in pose space. The setup details for pose space deformation are also abstracted by the
AnimationContent class.

• camera: The camera class calculates the relevant view and projection matrices and handles
input from the keyboard or Xbox360 controller which is used to move the camera.

• animationTime: Stores the current position in time of the animation. This variable may be
incremented or decremented using keyboard input.

The AnimationContent and AnimationPlayer class work together to co-ordinate the definition,
loading and playback of animations. Animations are chosen by calling the relevant LoadAnima-
tion method of AnimationContent. This loads the content relevant to that animation, initializes the

26

Figure 4.1: Class diagram of the system.

27

PSDEngine and handles the solving of the RBF weights through the PSDEngine class. The Anima-
tionPlayer class is used to obtain the bone transforms for a particular time-step into the animation.
The class was obtained from the skinning sample on the XNA creators club website[6] and contains
only minor modifications. The bone transforms are available in the following formats:

• Bone transforms: The bone transform matrices, relative to their parent bone coordinate
system. While this transform is not used directly in SSD it is necessary to compute the location
in pose space.

• World transform: Returns the world transform of each bone. This consists of the concate-
nation of a particular bone, its parent bone, and its parent bone, all the way back to the root
bone.

• Skin transform: This matrix specifies the transform with respect to the rest pose, and is
applied to the rest pose mesh to perform skinning. The transform consists of the world transform
concatenated with the inverse rest pose transform. See equation 2.1 in section 2.2.1 on SSD for
more details.

The PSDEngine class contains most of the important functionality of this implementation. The
important fields of the PSDEngine class are:

• Boolean switches to select between SSD and dual-quaternion skinning and to select between
forward and inverse PSD.

• References to the base and output model. The base model is the skinned model to which PSD
is applied. The output model is an XNA model type which has the model correction applied to
it. It is then rendered by the Draw() method of the ApplicationMain class.

• The variables baseDataElements and currentDeformation. BaseDataElements contains the ver-
tex position, normal and weight data which is extracted from the base model when the PS-
DEngine class is initialized. The currentDeformation stores updates to this data as SSD (or
DQ) and PSD deformations are applied during each update step. The data in currentDeforma-
tion is eventually written to the output model so it may be displayed.

• The leastSquaresSolver is used to solve the linear least squares problem when calculating RBF
weights.

• The indexMap field may be used to store a correspondence between the vertices in the base
model and the pose models if their topologies differ.

• The list of poses stores the data associated with each individual pose.

The important methods of the PSDEngine are:

• The constructor and the AddBasePose() method which are used to add the base rigged model.

28

• AddPose() which is used to add a posed model, specify its bone transforms and specify a sigma
falloff value for each pose.

• SolveWeights() which is used to solve the RBF weights after all the relevant poses have been
added.

• CalculateDeformation() calculates the deformation given a list of bone transforms, performing
the relevant SSD (or DQ) and PSD deformations as required.

• Further private access methods are provided to perform the following:

– Calculate the RBF weights for both vertices and normals.

– calculate the pose controls from a given set of bone transforms.

– Apply forward and inverse transform blending using both SSD and dual-quaternions.

– Calculate the RBF value given a particular pose and an arbitrary location in pose space.

– Compute the difference offsets between two corresponding arrays of vertices.

A code example is provided in appendix A1 showing how to set up and use the PSDEngine class.
The Pose class provides a storage area for the data associated with each pose and provides methods

to set and apply correction weights. The constituents of the pose space class are:

• MINIMUM WEIGHT THRESHOLD: Allows the setting of a threshold below which RBF weights
are ignored.

• differences: An array to store the offsets between the pose mesh and the base mesh in a given
pose.

• poseControls: The pose controls corresponding to a particular pose.

• RBFPositionWeights: A list of RBF position weight which are relevant because they are above
the MINIMUM WEIGHT THRESHOLD.

• RBFNormalWeights: A list of RBF normal weight which are relevant because they are above
the MINIMUM WEIGHT THRESHOLD.

• indecesOfWeights: A list of indeces mapping the RBF weights to their corresponding vertices.
This list is needed because of the thresholding operation which means that not all vertices have
corresponding weights.

The ModelParser class has the following methods:

• ReadVertexData(): Used to extract the vertex position, normal, bone and bone-weight data
from an XNA Model object. Given a Model type this method returns an array containing the
vertex data. This method should be called only on the fully rigged model, and not on the pose
models which do not contain bone-weight data.

29

• WriteVertexData(): This method is used to write vertex data back to the Model type. It
should be used after corrections have been applied so the corrected model may be rendered.

• ReadVertexPositionNormals(): Used to extract vertex position and normal data from a Model
object. The data is returned as a VertexPositionNormal array. This method should be used
on the pose models and not on the fully rigged model which contains bone-weight data.

4.2 Algorithm Implementation Details

4.2.1 Pose Space Definition

A number of formulations were considered for the definition of the pose space. The original PSD paper
appears to use the euler angles of a joint rotation as its basis. The degree of freedom of the joint
angle is set a-priori with, for example, the elbow joint having one degree of freedom so contributing
one dimension to the pose space. The shoulder joint likewise contributes two values to the pose space.
While this predefined assignment of joint DOFs appears to work well in the context of the original
algorithm which was aimed at the motion picture industry, it does not appear to generalize well to
real-time character animation, or characters which have more exotic skeleton types than the biped,
where the DOF of the joints may not be immediately obvious.

For this reason we chose the axis-angle representation of the joint angle as the basis for the pose
space, as is done in [25]. Using this formulation each joint contributes exactly 3 degrees of freedom to
the 0pose space. We experimented with pose spaces made up of only the joints pertaining to a single
arm, and pose spaces which contain all the joints for a given skeleton. Both appear to work well using
the axis-angle representation. Since the rotation is available to the application in matrix format only
the following conversions are needed:

θ = arccos((m00 +m11 +m22− 1)/2)

x = (m21−m12)
√

(m21−m12)2 + (m02−m20)2 + (m10−m01)2

y = (m02−m20)
√

(m21−m12)2 + (m02−m20)2 + (m10−m01)2

z = (m10−m01)
√

(m21−m12)2 + (m02−m20)2 + (m10−m01)2

The final result is the normalized axis vector multiplied by the angle.

4.2.2 Solving the Radial Basis Function

At the solution stage the RBF weights must be calculated for each vertex. The weights consist of a
3 component vector and one weight is needed per pose, per vertex. For each vertex the weights are
solved in the least squares sense as defined in equations 2.3.1. Since the matrix Φ is the same for each
vertex, the computation

(
ΦTΦ

)−1
ΦT may be pre-computed to save time by computing it for each

vertex. Since the calculation is only performed once at startup time and does not affect the run-time

30

performance, the optimization is not too important. It would be more important in a system where
real-time feedback is needed when authoring the animation though.

4.2.3 Application of Corrections

The algorithm for the application of PSD corrections is as follows:

• Calculate the current position x in pose space.

• Calculate the RBF values φ(|x − xj|) for each pose j, using the distance between the current
pose space location x and the pose space location of each pose xj. Note that the square root
operation does not need to be performed when calculating the distance because the Gaussian
function uses the distance squared value anyway.

• For each pose j:

– If φ(|x−xj|) for that pose is greater than ε (where ε is defined as some very small constant),
Apply the pose corrections for each vertex i associated with the pose:

– vi = vi + wi,jφ(|x − xj|) where vi is the position of vertex i and wi,j is the RBF weight
corresponding to vertex i and pose j.

– The same process is also applied to the vertex normals using the RBF normal weights.

4.2.4 Inverse PSD

Our implementation uses the inverse PSD variation which is described in section 2.3.3 and has its
advantages discussed in [28]. We found that the use of forward PSD was not suitable for real-time
application by considering the following example. If pose corrections are sculpted for some wrist
vertices and then the shoulder joint is rotated, then in the case of forward PSD the displacement
corrections will be oriented in the wrong direction. Inverse PSD would not have this problem because
the corrected pose is first transformed the via inverse SSD (or dual-quaternion) transform to its rest
pose equivalent. This means that the interpolation is essentially performed in the local joint co-
ordinate frame rather than in world space, as would be the case if forward PSD were used. Using
inverse PSD the solution stage has the following order:

• Apply the inverse SSD (or dual-quaternion) transform to the pose data.

• Calculate the difference between the rest pose vertices and the transformed pose data.

• Solve for the RBF weights.

And the synthesis stage has the following order:

• Apply PSD corrections to the rest pose vertices.

• Apply the SSD or dual-quaternion transform.

31

4.3 Miscellaneous Issues

As mentioned in section 4.1 the pose class stores a list of position and vertex weights associated with
that pose, as well as a list of indices to indicate which vertices the corrections apply to. The weights
are thresholded to eliminate weights whose contribution is negligible. This has the effect of reducing
the amount of run time processing needed to apply the corrections and to reduce the amount of
memory needed to store the weights. The threshold is set at 0.1 which has been empirically verified
to adequately reduce the number of corrections without compromising the quality of the animation.

Some of the meshes to which we applied our method had a difference in the mesh topography
between the underlying rigged model and the pose model, i.e. the vertices were listed in different
orders when imported into our system. This problem is mentioned but not addressed in [23]. The
solution we found was to export a static pose and its rigged equivalent and compare the two. By
comparing the vertices in the rigged model with the vertices in the static pose to find its closest
matching vertex, we were able to keep a list of corresponding indices and create a calibration step
which overcomes the correspondence problem.

For the generation of a number of character poses the 3d studio max physique modifier was used.
The physique modifier uses a bone weight rigging which is similar to SSD but also allows sub-structural
effects such as bulges and tendons. By using a 3d model which is well rigged using the physique modifier
we cut down on the need to manually sculpt example poses while retaining a rigging structure which
is suitable for SSD and dual-quaternion skinning.

The choice of a suitable value for σ was made partly through a process of trial and error and partly
through intuition as to what might constitute a good value. For animations such as the bar and arm
examples from section 5 (figures 5.1 and 5.2), where the poses are arbitrarily spaced and where no
tight cluster of poses exists, a uniform choice of σ seems the obvious choice. Since the pose space
is defined in terms of the angle of rotation of the joints, which has upper and lower limits at π and
−π respectively for any natural skeleton movements, a value of σ which is of this order of magnitude
seemed a reasonable choice. A value of 1.0 was used and appears to provide a good interpolation in
both the bar and arm animation examples. The lower σ value of 0.15 were also tested for the arm
example but they did not provide adequate interpolation between the two most distant poses, with
the influence of each poses only becoming evident as the animation moved into close proximity of
that pose. Further experiments with non-uniform values of σ showed instability in the interpolation
indicating that the use of a varying value requires a considerable amount of tweaking. It was also
noted that, when using a number of poses which are in close proximity to each other, a smaller value
of σ is necessary to avoid an undesired accumulation of pose corrections from a number of surrounding
poses at locations close to the cluster of poses.

32

Chapter 5

Results

This section outlines our results obtained by observing our method running a number of different
animations and by benchmarking it against the available alternatives. Sections 5.1 provides some
verifications of the improvement seen by using our method in image format. The videos associated with
these tests may be found at the authors research website[2]. Section 5.2 presents some performance
and memory metrics derived from our implementation and discusses their implications. Section 5.3
provides further analysis as to why our method is better at handling rotational joint blending than
PSD on top of SSD.

5.1 Correctness and Simplicity of our Method

It is well known that pose space deformation does not adequately correct the rotational errors produced
by SSD when the corrections are applied in the rest pose, i.e. inverse PSD is used. This has been
noted in the work of Robert Wang[25] which describes a sophisticated solution to the problem. Figure
5.1 shows a simple example where a bar is deformed using two bones. The upper bone is rotated
through 180 degrees while the lower bone is not moved. Applying corrections to the SSD deformed
model results in artifacts when interpolating between the 3 given poses. When corrections are applied
on top of the equivalent dual-quaternion deformation no artifacts are visible.

Figure 5.2 shows a real world example of the rotational error, where 4 training poses have been used
in an arm animation. Here the SSD version results in artifacts throughout the animation, and only
deforms correctly at exactly the location of the example poses. The PSD on top of Dual-quaternions
version, however, interpolates correctly all of the way through the animation and displays no rotational
artifacts.

5.2 Performance and Memory Requirements of our Method

Table 5.1 shows the performance data in frames per second for a number of test animations. Interest-
ingly the dual-quaternions version outperforms the SSD version by a small margin in each case. This

33

Figure 5.1: Evaluation of the animation of a bar in an unseen test pose. The animation was trained
using 3 poses. Top left shows the result in the unseen pose using PSD on top of SSD skinning, and
even though the unseen pose is very close to the second training pose large errors are still visible. Top
right shows the same pose using PSD on top of dual-quaternion skinning. The bottom row shows the
3 training poses.

appears to be a side effect of performing the skinning computation on the CPU, because when the
same animations are run with GPU skinning (with no pose corrections) the SSD version outperforms
the dual-quaternion version.

If the slowdown due to adding pose corrections is viewed as a percentage of the original execution
time the two techniques show broadly similar performance, with the box animation showing a 22%
slowdown for PSD/SSD corrections and a 26% slowdown for PSD/DQ corrections. Similarly the
candy wrapper animation shows an 11% and 14% slowdown for PSD/SSD and PSD/DQ respectively.
The figure for the wave animation is 11% versus 9.5% and for the rotate wrist animation with 3 pose
corrections is 9% versus 13%. From this we can conclude that the cost of applying pose corrections is
broadly similar in the case of PSD on top of SSD and PSD on top of dual-quaternions.

In terms of correctness of the interpolation, the rotate wrist animation with 3 pose corrections
provides a smooth, artifact free animation of the wrist rotating through 180 degrees, when computed
using PSD on top of dual-quaternion skinning. The PSD on top of SSD version of the same animation
displays interpolation artifacts between the 3 pose locations. The 5 pose version of the same animation
also displays artifacts when skinned using PSD/SSD, and only when 9 equally spaced poses are added
for the rotation through 180 degrees does the PSD/SSD animation match the quality of the PSD/DQ
version with 3 poses. So it seems a comparison of the 3 pose version using PSD on top of dual-
quaternion skinning and the 9 pose version using PSD on top of SSD skinning would be an appropriate
one. The 3 pose DQ version runs at 125 frames per second while the 9 pose SSD version runs at 72

34

Figure 5.2: Top From Left: SSD deformed model in which joint collapse is visible. Dual-quaternion
deformed model which corrects rotational errors but does not allow fine grained re-sculpting of the
model. PSD applied on top of SSD, where the rotational error results in an incorrect interpolation.
PSD applied on top of dual-quaternion skinning, which displays none of the rotational errors. Bottom
Row shows the 4 training poses.

35

Animation Vertices Fixed Poses σ PSD/SSD SSD PSD/DQ DQ
Box Animation 2646 2641 3 1 235 287 267 337
CandyWrapper 7992 2680 4 1 103 114 121 138

Wave 7992 7367 1 1 107 119 126 138
WristRotate 7992 2985 3 1 106 116 125 141
WristRotate 7992 7992 5 4 81 116 91 116
WristRotate 7992 6339 9 1 72 116 78 116

Table 5.1: Performance Data : The performance data in frames per second shown for a number of
animations. Also shown are the total number of vertices for the model used in each animation, the
average number of vertices fixed (number of vertices fixed did not vary significantly between poses,
nor did it vary significantly depending on whether the SSD or DQ method was used). The number
of poses used and the value of sigma used is also shown. Frame rate data is given for PSD on top
of SSD, SSD with no pose corrections, PSD on top of dual-quaternions and dual-quaternion skinning
with no pose corrections.

frames per second, representing a 74% increase in performance. In terms of memory requirements, 28
bytes are needed to store the pose corrections for a vertex, which consists of 2 Vector3 values, one for
the position correction and one for the normal correction, and a 4 byte index to denote which vertex
the correction belongs to. In order to store the 2985 pose corrections needed per pose, the 3 pose DQ
version needs 245Kb (2985 × 3 × 28 bytes). The 9 pose SSD version, which is found to be visually
equivalent needs 1600Kb to store the pose corrections (6339 × 9 × 28 bytes). Therefore the memory
saved by our method in this case is 85%.

5.3 Why PSD on top of SSD does not Correct Rotational

Errors

The inverse transform of example poses to their rest pose equivalent is dependent on the nature of the
blended matrices, which must be inverted then applied to the vertices of the pose. In the case where
SSD blending is used between two joints, as the angle between the two joints approaches 180 degrees
the blended matrix approaches singularity, and the inverse of the matrix approaches infinity. This
fact is responsible for the PSD on top of SSD rotation errors in the bar rotation example in figure 5.1,
and in the arm example in figure 5.2. It can be easily visualized in figure 5.3 which shows the inverse
SSD transformed poses from the bar example. Our method using dual-quaternion skinning does not
suffer the same problem because the DQ blending always results in a rigid-body transformation which
is easily invertible.

To help quantify the error a simple animation was created which rotates the wrist through 180-
degrees. It was found that using our method with 3 example poses is visually equivalent to using the
SSD on top of PSD method with 9 example poses. When used with 3 example poses the SSD based
method displayed artifacts due to the extreme nature of the inverse SSD transformed poses as the
angle of rotation approaches 180 degrees.

To further analyze why a correct interpolation between the poses was not possible using the SSD

36

Figure 5.3: Inverse SSD transform of three poses. The top row shows the example poses used to train
the bar rotation animation and the bottom row shows their equivalent deformations when the inverse
SSD transformation is applied.

37

method with 3 examples, we tracked the position of the vertex which showed the largest displacement
from the underlying mesh and plotted its displacement correction values against the interpolated
displacement correction. The interpolation was recreated using the RBF weight values from our
application. This is shown for 9 poses using the SSD method in figure 5.4, for 3 poses using the SSD
method in figure 5.5 and for 3 poses using the dual-quaternion method in figure 5.6.

Figure 5.4: Graph of 9 example poses using SSD. The vertical axis represents the y-value of the vertex
displacement correction. The horizontal axis represents the angle of rotation in radians. The circular
points are the data points corresponding to the 9 poses and the function graphed is the interpolation of
the displacements. Notice that as the angle approaches π (180 degrees) the function tends to infinity,
yet the use of 9 data points provides a reasonable approximation of this function.

38

Figure 5.5: Graph of 3 example poses using SSD. Due to under-sampling the interpolated function
does not provide a reasonable approximation when compared to figure 5.4.

Figure 5.6: Graph of 3 example poses using dual-quaternions provides a reasonable approximation of
the displacements unlike the SSD equivalent because the function does not approach infinity at any
stage. Also the displacements are of a smaller magnitude than the SSD equivalent.

39

Figure 5.7: Results of the wrist rotation animation in various configurations. Top row: PSD on top
of dual-quaternions with 3 example poses. Middle row: PSD on top of SSD using 3 example poses.
Bottom row: PSD on top of SSD using 9 example poses.

Figure 5.8: The 9 poses used to train the animation.

40

Chapter 6

Conclusion and Further Work

6.1 Conclusion

Our method shows an increase in correctness over the current PSD on top of SSD example based
methods such as ‘Shape by Example’[23] and ‘Eigenskin’[14], which means that fewer poses need to
be sculpted to achieve the same level of realism. We believe that this represents a step forward in
terms of research into example base skinning. Compared to the rotational regression model[25] our
method is shown to solve the same problem in a manner which is easier to understand and implement.

6.2 Further Work

While we have shown the benefits of our method by implementing it on the CPU, for it to be useful in
a real world application a GPU implementation would probably be necessary. Since dual-quaternion
skinning is GPU friendly, porting this part of the system to the GPU would not be difficult. Porting
the PSD component over is a little trickier since an RBF weight for each pose would need to be passed
to the vertex shader as per-vertex data. There is a fixed amount per-vertex data which can be passed
to the GPU, but since our method reduces the number of poses needed this may now be a viable
option. Another method used in [24] is to pack the RBF weight data into a texture and apply it
in the fragment shader, storing the result to a texture which is then used in a subsequent rendering
pass. In this manner PSD is applied through multiple rendering passes. This method could be used
to implement our algorithm on the GPU.

A problem not addressed in this research is how to handle the case of flipping due to quaternion
antipody. That is when a rotation reaches 180 degrees a flipping artifact occurs because the use of
dual-quaternion skinning always chooses the shortest path of blending. Here the PSD corrections
become incorrect because the underlying deformation is not continuous across the flip line, while the
interpolation function is. One possible solution might be to make a special case of the comparison of
pose locations which lie on either side of the flip line and handle the problem when distances in the

41

pose space are being calculated. Using the dual-quaternion representation to formulate pose space
distances might be of some help here.

Weighted PSD provides an improvement to PSD by localizing the influence of individual pose
controls on the resulting corrections, but at a cost in terms of execution time. As a result fewer poses
are necessary when using weighted PSD, as is also the case with our method. It would be interesting
to investigate if the two methods are complimentary to one another.

Dimensionality reduction of the weight data provides improved efficiency and reduced memory
consumption in ‘Eigenskin’[14]. It would be worth investigating dimensionality reduction with our
method to see if the same benefits are realized.

42

A. Appendix

A1. Usage of the PSDEngine Class

The following code example illustrates how the PSDEngine class is initialized. It also illustrates how
the AnimationPlayer class is used.

TimeSpan frameSpeed = new TimeSpan(0, 0, 0, 0, 30);

Model baseMesh = Content.Load<Model>("Wave\\masha_output");

Model [] poses = new Model[4];

poses[0] = Content.Load<Model>("Wave\\masha_pose130");

poses[1] = Content.Load<Model>("Wave\\masha_pose200");

poses[2] = Content.Load<Model>("Wave\\masha_pose230");

poses[3] = Content.Load<Model>("Wave\\masha_pose260");

// Look up our custom skinning information.

SkinningData skinningData = baseMesh.Tag as SkinningData;

if (skinningData == null)

throw new InvalidOperationException

("This model does not contain a SkinningData tag.");

// Create an animation player, and start decoding an animation clip.

AnimationPlayer animationPlayer = new AnimationPlayer(skinningData);

AnimationClip clip = skinningData.AnimationClips["Anim-1"];

animationPlayer.StartClip(clip);

// Create the PSD Engine

PSDEngine psdEngine = new PSDEngine(baseMesh);

animationPlayer.Update(new TimeSpan(0, 0, 0, 5, 200), false, Matrix.Identity);

psdEngine.AddPose(poses[0], animationPlayer.GetSkinTransforms(), 0.9f);

43

animationPlayer.Update(new TimeSpan(0, 0, 0, 8, 0), false, Matrix.Identity);

psdEngine.AddPose(poses[1], animationPlayer.GetSkinTransforms(), 0.9f);

animationPlayer.Update(new TimeSpan(0, 0, 0, 9, 200), false, Matrix.Identity);

psdEngine.AddPose(poses[2], animationPlayer.GetSkinTransforms(), 0.9f);

animationPlayer.Update(new TimeSpan(0,0,0,10,400), false, Matrix.Identity);

psdEngine.AddPose(poses[3], animationPlayer.GetSkinTransforms(), 0.9f);

psdEngine.CPUSkeleton = true;

psdEngine.SolveWeights();

44

Bibliography

[1] Codeplex: Open source community, August 2008. http://www.codeplex.com/.

[2] Damien murtagh, research page, September 2008. https://www.cs.tcd.ie/~murtagda/

research.

[3] Panda exporter, August 2008. http://www.andytather.co.uk/Panda/directxmax.aspx.

[4] Soiciety games, August 2008. http://www.societygames.com/dualquaternion/

DualQuaternion.html.

[5] Turbo squid, 3d model resources, August 2008. http://www.turbosquid.com/.

[6] Xna creators club, August 2008. http://creators.xna.com/.

[7] Alexa, M. Linear combination of transformations. ACM Trans. Graph. 21, 3 (2002), 380–387.

[8] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press, November
1995.

[9] Blythe, D. The direct3d 10 system. ACM Trans. Graph. 25, 3 (2006), 724–734.

[10] Hejl, J. Hardware skinning with quaternions. 487–495.

[11] Kavan, L., Collins, S., Žára, J., and O’Sullivan, C. Skinning with dual quaternions. In
I3D ’07: Proceedings of the 2007 symposium on Interactive 3D graphics and games (New York,
NY, USA, 2007), ACM, pp. 39–46.

[12] Kavan, L., Collins, S., Zara, J., and O’Sullivan, C. Geometric skinning with approximate
dual quaternion blending. vol. 27, ACM Press.

[13] Kavan, L., and Žára, J. Spherical blend skinning: a real-time deformation of articulated
models. In I3D ’05: Proceedings of the 2005 symposium on Interactive 3D graphics and games
(New York, NY, USA, 2005), ACM, pp. 9–16.

[14] Kry, P., James, D., and Pai, D. Eigenskin: Real time large deformation character skinning
in hardware, 2002.

45

[15] Kurihara, T., and Miyata, N. Modeling deformable human hands from medical images.
In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation (Aire-la-Ville, Switzerland, Switzerland, 2004), Eurographics Association, pp. 355–
363.

[16] Lewis, J. P., Cordner, M., and Fong, N. Pose space deformations: A unified approach
to shape interpolation and skeleton-driven deformation. In Siggraph 2000, Computer Graphics
Proceedings (2000), K. Akeley, Ed., ACM Press / ACM SIGGRAPH / Addison Wesley Longman.

[17] Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. Joint-dependent local
deformations for hand animation and object grasping. In Proceedings on Graphics interface ’88
(Toronto, Ont., Canada, Canada, 1988), Canadian Information Processing Society, pp. 26–33.

[18] Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. Joint-dependent local
deformations for hand animation and object grasping. In Proceedings on Graphics interface ’88
(Toronto, Ont., Canada, Canada, 1988), Canadian Information Processing Society, pp. 26–33.

[19] Mohr, A., and Gleicher, M. Building efficient, accurate character skins from examples. ACM
Trans. Graph. 22, 3 (2003), 562–568.

[20] Powell, M. J. D. Radial basis functions for multivariable interpolation: a review. 143–167.

[21] Scheepers, F., Parent, R. E., Carlson, W. E., and May, S. F. Anatomy-based modeling
of the human musculature. In SIGGRAPH ’97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques (New York, NY, USA, 1997), ACM Press/Addison-
Wesley Publishing Co., pp. 163–172.

[22] Shoemake, K. Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19, 3
(1985), 245–254.

[23] Sloan, P.-P. J., Charles F. Rose, I., and Cohen, M. F. Shape by example. In I3D ’01:
Proceedings of the 2001 symposium on Interactive 3D graphics (New York, NY, USA, 2001),
ACM, pp. 135–143.

[24] Taehyun Rhee, J.P. Lewis, U. N. Real-time weighted pose-space deformation on the gpu.
Computer Graphics Forum 25, 3 (2006), 439–448.

[25] Wang, R. Y., Pulli, K., and Popović, J. Real-time enveloping with rotational regression.
In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers (New York, NY, USA, 2007), ACM, p. 73.

[26] Wang, X. C., and Phillips, C. Multi-weight enveloping: least-squares approximation tech-
niques for skin animation. In SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation (New York, NY, USA, 2002), ACM, pp. 129–138.

[27] Wilhelms, J., and Gelder, A. V. Anatomically based modeling. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics and interactive techniques (New
York, NY, USA, 1997), ACM Press/Addison-Wesley Publishing Co., pp. 173–180.

46

[28] Xian, X., Lewis, J. P., Soon, S. H., Fong, N., and Feng, T. A powell optimization
approach for example-based skinning in a production animation environment. In CASA (2006).

47

