
Real-Time Fluid Simulation using Control Point

Based SPH

by

Eoin O’Grady, B.E. (NUI Galway)

Thesis

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Msc. Interactive Entertainment Technology

University of Dublin, Trinity College

09 2008



Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Eoin O’Grady

September 11, 2008



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Eoin O’Grady

September 11, 2008



Acknowledgments

I’d like to thank my dissertation supervisor John Dingliana for all of his help and

guidance. I’d also like to thank all of classmates in IET for getting me through the

late nights and hard times.

Eoin O’Grady

University of Dublin, Trinity College

09 2008

iv



Real-Time Fluid Simulation using Control Point

Based SPH

Eoin O’Grady, M.Sc.

University of Dublin, Trinity College, 2008

Supervisor: John Dingliana

Smoothed Particle Hydrodynamics has become the front-runner of methodologies used

to simulate fluids in real-time due mainly to it’s flexibility and robustness. ”For the

mathematician, the particles are just interpolation points from which properties of the

fluid can be calculated. For the physicist, the SPH particles are material particles

which can be treated like any other particle system.” [1]. For my dissertation I propose

a method that uses control points spaced evenly in three dimensional space, that form

a grid, at which force densities are partially resolved using the SPH methodology and

then interpolate those force densities for the individual particles and then resolve their

accelerations. I also proposed an algorithm for rendering point based fluid simulations

in screen space using a depth-map texture created on the GPU and pixel shader op-

erations that render a smoothed depth map and a normal map from which the screen

space silhouettes of a fluid-air interface can be rendered. My rendering algorithm is

v



based on the work done by Matthias Muller on screen space meshes [2].

vi



Contents

Acknowledgments iv

Abstract v

List of Figures ix

Chapter 1 Introduction 1

1.1 The Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 State of the Art: Current Fluid Simulation Techniques 5

2.1 The MAC Method - Grid Based Eulerian Fluid Simulation . . . . . . . 5

2.1.1 The Projection Method . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 MAC Grid Discretization . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Semi-Lagrangian Advection . . . . . . . . . . . . . . . . . . . . 10

2.2 Smoothed Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The SPH methodology . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Why use SPH for Fluid Simulation . . . . . . . . . . . . . . . . 15

2.2.3 Resolving the Navier-Stokes Equations using SPH . . . . . . . . 15

2.2.4 Resolving The Field Force Vectors . . . . . . . . . . . . . . . . . 16

2.2.5 The Smoothing Kernels . . . . . . . . . . . . . . . . . . . . . . 18

2.2.6 An efficient SPH algorithm . . . . . . . . . . . . . . . . . . . . . 20

2.2.7 Augmentations to the SPH method . . . . . . . . . . . . . . . . 21

2.3 Rendering: Screen Space Meshes . . . . . . . . . . . . . . . . . . . . . . 22

vii



Chapter 3 Control Point Smoothed Particle Hydrodynamics 24

3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Binning the Particles . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Resolving Density . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Resolving Acceleration using Partially Resolved Force Densities 27

3.1.4 Updating the Particle’s Position and Velocity . . . . . . . . . . 28

3.2 Interpolation of SPH Values . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Considerations for Interpolation of Forces . . . . . . . . . . . . . 30

3.3 Loss of Symmetry and Other Issues with the Methodology . . . . . . . 30

3.3.1 How to Solve this Problem . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Linear Distribution of Density . . . . . . . . . . . . . . . . . . . 32

3.3.3 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 4 Results 35

4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 40

viii



List of Figures

1.1 The compressible Navier-Stokes equation. . . . . . . . . . . . . . . . . . 3

1.2 Conservation equation preserves mass in a compressible fluid. . . . . . . 3

1.3 The equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 The simplified conservation equation to preserve mass in an incompress-

ible fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 The incompressible Navier-Stokes equation. . . . . . . . . . . . . . . . 4

2.1 Euler’s Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Getting ~u(n+1) using forward differencing. . . . . . . . . . . . . . . . . . 6

2.3 The intermediate velocity. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Getting ~u(n+1) using forward differencing re-arranged to include the in-

termediate velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Applying the incompressible continuity equation. . . . . . . . . . . . . 7

2.6 The Poisson equation form for p(n+12) . . . . . . . . . . . . . . . . . . 7

2.7 The poisson equation re-written to remove density . . . . . . . . . . . . 8

2.8 Simplified equation for the next velocity . . . . . . . . . . . . . . . . . 8

2.9 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.10 The advection equation. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.11 The Courant-Friedrichs-Lewy condition . . . . . . . . . . . . . . . . . . 11

2.12 A field q is sampled at the centre points of grid cells. To compute q(n+1)~x,

we trace backwards through the velocity field and interpolate q(n) at the

old point that q was at, ~x−∆t~u(~x). . . . . . . . . . . . . . . . . . . . 12

2.13 How to calculate a quantity using particle back tracing. . . . . . . . . . 12

2.14 Interpolating a scalar quantity using SPH. . . . . . . . . . . . . . . . . 13

2.15 Property of a normalised kernel function. . . . . . . . . . . . . . . . . . 14

ix



2.16 Calculating density using SPH. . . . . . . . . . . . . . . . . . . . . . . 14

2.17 Calculating the gradient of a value using SPH. . . . . . . . . . . . . . . 14

2.18 Calculating the laplacian of a value using SPH. . . . . . . . . . . . . . 14

2.19 The Navier Stokes Equation to which SPH is applied for fluid simulation. 15

2.20 Reduced Navier Stokes Equation for a lagrangian method. . . . . . . . 16

2.21 How to calculate acceleration from Force density. . . . . . . . . . . . . 16

2.22 How to calculate force density due to pressure using SPH. . . . . . . . 17

2.23 How to calculate symmetrical force density due to pressure using SPH. 17

2.24 How to calculate symmetrical force density due to viscosity using SPH. 18

2.25 Smoothing kernel for density. . . . . . . . . . . . . . . . . . . . . . . . 18

2.26 A graph of the kernel functions used in SPH. . . . . . . . . . . . . . . . 19

2.27 The Desbrun spiky kernel function. . . . . . . . . . . . . . . . . . . . . 19

2.28 The viscosity kernel function. . . . . . . . . . . . . . . . . . . . . . . . 19

2.29 The laplacian of the viscosity kernel function. . . . . . . . . . . . . . . 20

2.30 The magnitude of the spiky kernel. . . . . . . . . . . . . . . . . . . . . 20

2.31 Calculating force density using adaptive SPH. . . . . . . . . . . . . . . 21

3.1 A visual representation of the control point SPH methodology. Here the

Green dots are the particles in the system and the black dots set in the

grid are the control points. . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Relationship between smoothing length and grid width regarding binning. 26

3.3 The viscosity force density equation can be split in this manner because

vi is constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Each control point contributes an SPH value (density or a force density)

to the red particle and is weighted by it’s inverse distance from the

particle. These weights are normalized so that they always sum to one. 29

3.5 The compressed particle strata of a regular SPH implementation. . . . 33

3.6 The less compressed particle strata of a control point SPH implementation 34

x



3.7 A comparison of the surface detail of SPH (left) and of control point SPH

(right)at equilibrium. In SPH the particles are spread evenly across the

surface due to perfect symmetrical forces but the number of particles at

the surface for SPH and control point SPH are relatively the same and

so the level of detail obtained when the fluids are in motion is effectively

the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 The comparative size of the two fluid volumes. . . . . . . . . . . . . . . 37

4.2 A comparison of the two fluid simulators when the container is being

sloshed from the right to the left. . . . . . . . . . . . . . . . . . . . . . 38

4.3 A comparison of the two fluid simulators when the container is being

swirled in a clockwise direction. . . . . . . . . . . . . . . . . . . . . . . 38

xi



Chapter 1

Introduction

Smoothed Particle Hydrodynamics’ strength regarding fluid simulation lies in it’s sim-

plicity. It is a Lagrangian particle-based method that interpolates the forces of pressure

viscosity and in some implementations surface tension [3] for each particle in accor-

dance with the Navier Stokes Equation [4] . It does this by sampling from each particle

within a range of h (known as the smoothing length of the kernel) in order to resolve

density and force densities. Comparing SPH to alternative grid-based Eulerian meth-

ods [5] in terms of physics the main difference is that the particles in SPH represent

physical ”parts” of the fluid in essence clusters of fluid molecules. In the grid-based

method the particles are used only to track the surface of the fluid. Mathematically

SPH is easier to solve avoiding the problems of energy dissipation, mass conservation

and solving the discrete poisson equation (see Stam’s stable fluids [6]). The weakness

of SPH is that the majority of the particles involved in the simulation don’t make up

the surface (the liquid-air interaction) of the fluid body. Although grid-based methods

don’t have this problem, computation is scaled only by the resolution of the grid in-

volved not the number of particles, i.e the accuracy of the simulation depends solely on

the resolution of the grid. This means that a coarsely defined grid will produce inferior

splashing or spray. In contrast for SPH a lot of computation is used on areas which

aren’t of interest to the user of a real-time application because they don’t contribute in

a tangible manner to the animation. Efforts have been made to address this problem

by having multiple resolution particle sizes and smoothing lengths [7] and by combining

SPH with the MAC grid method in areas of higher density i.e. within the body of the

1



fluid [8]. These attempts to produce a more efficient fluid simulation however have a

certain overhead associated with them that in effect treats the symptom but not the

problem. For my contribution I proposed using a particle system with a grid of control

points spaced at intervals in 3-d space at which the pressure and viscosity forces due

to SPH could be resolved I then attempted to estimate using interpolation the force

that each particle in the system would experience, using various techniques. The goal

was that this would be a much more efficient SPH-based methodology albeit less accu-

rate. In order to explain and understand fluid simulation techniques the navier-stokes

equations need to be understood.

1.1 The Navier-Stokes Equations

In 1822 Claude Navier and in 1845 George Stoke formulated the famous Navier-Stokes

Equations that describe the force vector fields of fluids in terms of their density pres-

sure and viscosity. Two additional equations, the continuity equation describing mass

conservation and the state equation describing energy conservation, are needed in com-

putational fluid dynamics in order to solve for these force vector fields at a point in

space. These Equations are continuous and hold for all points in space. Most methods

for simulating fluids work by solving discrete values for these equations. Generally

this involves selecting a finite number of points or areas in space and time at which

a numerical solution to the equations is computed. Grid-based methods are said to

be Eulerian in nature because they involve resolving these equations for areas in space

which never move. SPH is considered Lagrangian because force is resolved for points

in space that move with the particles in the simulation. My own method could be

considered a combination of both as the equations are partially resolved at fixed points

in space corresponding to the grid and fully resolved for each of the particles which are

moving through space. The compressible form of the equation itself is shown in figure

1.1.

Where t is time, ~u is the velocity, ρ is density, µ is the viscosity coefficient, p is

pressure, ∇ is the del operator and ~g is gravity. Two other equations are needed to

satisfy certain fluid conditions. One is to ensure conservation of mass 1.2.

And the other is the equation of state that relates pressure to density by the gas

constant (in practice for fluid simulation A user defined constant) 1.3.

2



Figure 1.1: The compressible Navier-Stokes equation.

Figure 1.2: Conservation equation preserves mass in a compressible fluid.

Figure 1.3: The equation of state

In most fluid simulations however a simplified form of the equation is used to resolve

discrete forces for incompressible fluids this is achieved by assuming that the density

field is constant. This means that the Continuity equation becomes simplified 1.4.

Figure 1.4: The simplified conservation equation to preserve mass in an incompressible
fluid

And The Navier-Stokes equation itself can be simplified and rearranged into a much

more easy to work with form 1.5.

3



Figure 1.5: The incompressible Navier-Stokes equation.

4



Chapter 2

State of the Art: Current Fluid

Simulation Techniques

2.1 The MAC Method - Grid Based Eulerian Fluid

Simulation

The marker and cell (MAC) method was first introduced in 1965 by Harlow and Welch

[9]. They proposed a grid-based method to solve the 3D Navier-Stokes equations using

particles as the markers for the fluid surface. The first attempts to use this method

for a physically based animation were by Foster and Metaxas [10]. This work was

the first application of computational fluid dynamics techniques to the animation of

3D fluid flow. The problem with this method was that the integration over time

had to be explicit and so a fixed small time step had to be used. Stam [6] relieved

this problem by introducing an unconditionally stable model for fluids using semi-

Lagrangian velocity advection. This method of semi-Lagrangian integration tends to

dissipate a lot of energy due to the repeated averaging and interpolation within the

discrete velocity field which in most cases is used as an implicit solver for viscosity.

This was an important step towards achieving a real-time fluid simulation because the

time step could now be large enough and not set to a fixed amount. There are a

few problems with this method such as volume and energy dissipation which makes it

difficult to simulate highly detailed fluid flow. In the MAC method the incompressible

Navier-Stokes equation is used, as mentioned earlier, due to the simplification that

5



it lends itself to. Also the viscosity term is generally ignored due to the numerical

energy dissipation. This simplifies the equation again to an inviscid fluid solver which

is usually referred to as the Euler equations 2.1.

Figure 2.1: Euler’s Equation.

2.1.1 The Projection Method

In order to calculate the velocity term for the next time step we can use the projection

method of Chorin [11]. This means that we use forward differencing.The first step is

to apply this method to the equation in 2.1 in order to get the equation in 2.2.

Figure 2.2: Getting ~u(n+1) using forward differencing.

Now we can compute an intermediate velocity field that ignores the pressure term

as shown in 2.3.

Figure 2.3: The intermediate velocity.

Applying this to the equation in 2.2 we can rewrite the equation in accordance with

forward differencing as shown in 2.4.

The problem is now that the pressure term is from the next time step. The reason

for this is that Chorin’s solution method is implicit in pressure and explicit in velocity.

6



3.10

Figure 2.4: Getting ~u(n+1) using forward differencing re-arranged to include the inter-
mediate velocity.

This means that the pressure field at the next time step is computed directly from the

intermediate velocity field. Knowing that the velocity field at the next time step should

be divergence-free i.e. incompressible, we can find a way to solve for the pressure term.

By maintaining the simplified conservation equation 1.4 for an incompressible fluid this

equation can be re-written as shown in 2.5

Figure 2.5: Applying the incompressible continuity equation.

This equation can be re-arranged to form a known mathematical pattern known as

the Poisson equation shown in figure 2.6.

Figure 2.6: The Poisson equation form for p(n+12)

By solving this equation for which many solvers exist, we can find the pressure field

for the next time step.The equation in figure 2.4 can then be solved by subtracting

the gradient of the pressure field from the intermediate velocity field to produce a final

velocity field that satisfies both the momentum equation and the incompressibility con-

dition for the next time step. Notice that, since the pressure field is defined implicitly

7



from the intermediate velocity field ~u∗ and the incompressibility constraint, the scale

of the pressure field doesn’t matter as long as we treat it as the same value between the

poisson equation and the equation in figure 2.4. This allows a simplification of these

equations by removing the density variable completely which makes sense because it

is constant through out the fluid. We can define a scaled pressure of p∗ = p(n+1)∆t/ρ

Applying this to the poisson equation it can be re-written as shown in figure 2.7.

Figure 2.7: The poisson equation re-written to remove density

And the equation for the velocity in the next time step can be re-written as

Figure 2.8: Simplified equation for the next velocity

2.1.2 MAC Grid Discretization

In order to solve the Euler equations in a discrete manner, the fluid’s domain is ap-

proximated for the field values of ~u and p by a finite number of equally spaced samples.

This makes it easy to evaluate spatial derivatives and interpolate quantities at arbi-

trary points within cells. However, instead of sampling the velocity and pressure at

the same location, the MAC method uses a special grid arrangement that is designed

to conserve mass. In a two-dimensional case, the pressure samples are located at the

centre of grid cells, the horizontal component of velocities are located at the midpoints

of vertical cell edges, and the vertical component of velocities are located at the mid-

points of horizontal cell edges. It follows that in the three dimensional case that the

x-axis component of velocities is located at the midpoint of x-minimum cell face aligned

and so on for the y and z axis components. This configuration of field variables is re-

ferred to as the MAC grid. The projection method can now be applied to update the

velocity field from ~u(n) to ~u(n+1). First, the intermediate velocity field ~u∗ is computed

8



as shown previously. Then using the equation in 2.7 we can compute the pressure field

p∗. Finally, the new divergence-free velocity field ~u(n+1) is computed from ~u∗ and p∗

using the equation in figure 2.8. The easiest way to perform these steps is to discretize

all of the differential operators that appear in these equations using a combination of

forward and central difference approximations as done in [10]. In particular, the dis-

cretization of a Laplacian operator (see figure 2.7) results in a linear equation at each

pressure grid point, coupling its value to its neighbours. This system of simultaneous

equations can be written as a matrix equation of the form A~x =~b, where A is a matrix

of integer pressure coefficients, ~x is a vector of unknown pressures, and ~b corresponds

to the right hand side of then equation in figure 2.7. Conveniently, this system has

the properties of being symmetric and positive definite. A large number of standard

techniques can be used to solve systems of this type. The most common method used

by modern simulators is the incomplete Cholesky conjugate gradient algorithm [12],

this is an iterative method with excellent convergence properties. Unfortunately solv-

ing the pressure Poisson equation is still, by far, the most computationally expensive

part of MAC-based solvers.

2.1.3 Boundary Conditions

In order to facilitate application of boundary conditions in a MAC simulation, grid

cells need to be categorized at the beginning of each time step. Each cell can either be

a liquid cell, an air cell, or a solid cell. Voxelizing boundaries in this way requires them

to coincide exactly with the edges of computational cells which greatly simplifies the

enforcement of boundary conditions. However, this is a rather poor approximation for

most surfaces, especially on coarse grids. Although only those cells marked as liquid

need to be updated each time step, it is still necessary to set physically meaningful

velocity and pressure values in all cells adjacent to liquid cells since these may be

accessed by the stencils used in finite difference approximations, interpolation opera-

tors, etc. The appropriate values can be inferred from the equation in figures 2.9 and

pressure as it only appears as a gradient can be set to zero for an air liquid boundary.

For example, in the context of the Poisson solver, equation 2.9 is respected by

requiring that the normal pressure gradient equals zero at edges that lie between solid

and liquid cells. In cases where the fluid does not fill the entire computational domain,

9



Figure 2.9: Boundary Condition

it is necessary to track the location of the liquid-air interface as it moves around. By

tracking the location of this moving boundary, we can determine which cells are air and

which are liquid and then place boundary conditions at the appropriate locations. The

original MAC method uses massless marker particles to represent the liquid. These are

advected based on the fluid velocity locally interpolated at their positions. Liquid cells

can then be identified as those cells that contain at least one particle. An alternative to

marker particles that has become very popular in recent years is to capture the liquid-

air interface as the zero level set of a dynamically signed distance function φ that is

sampled on the simulation grid [5]. This provides a smoother representation of the

liquid surface that gracefully handles extreme deformations and topological changes.

In order to advance the liquid surface based on the fluid velocity field, the discrete φ

samples need to be updated according to the equation in figure 2.10.

Figure 2.10: The advection equation.

The grid cells can then be classified based on the sign of φ at each cell. The

downside of the implicit surface representation is that noticeable volume loss occurs

due to numerical dissipation when solving the advection equation. This problem can

largely be overcome however by using the particle level set method [13] which augments

the signed distance field with particles in order to correct under sampling errors in the

position of the zero level set.

2.1.4 Semi-Lagrangian Advection

Previously I showed how to use finite differencing to resolve the spatial derivatives of

the advection term −~u · ∇~u. When this is used in conjunction with an explicit time

integration, this discretization imposes a severe restriction on the size of the time step

10



that can be used to advance the simulation. If the time step is too large then the

velocity values will oscillate and the simulation will become unstable. To stabilize the

time step it must adhere to the Courant-Friedrichs- Lewy (CFL) condition which limits

the size of the time step as shown in figure 2.11. where ∆x is the spacing between grid

points.

Figure 2.11: The Courant-Friedrichs-Lewy condition

This condition means that if a field quantity moves across a grid, it must be in-

tegrated using a time step small enough to ensure that no grid points are skipped.

Fortunately no time step restriction is associated with the pressure derivatives because

when Chorin’s projection method was applied the pressure field was resolved implicitly

to satisfy the governing equations. Obviously for a real-time application we’d like to

be able to choose a time step that’s as large as possible in case of a drop in frame

rate etc. . An unconditionally stable technique known as semi-Lagrangian integration

for computing the advection term was proposed by Stam [6]. This allows any time

step to be used without limitation by the CFL condition (though obviously accuracy

is dependent on the time step). This is done by using a Lagrangian technique called

particle back tracing. This simply bridges the gap between time step for the fixed

points in space that any quantity q is sampled at and the ”floating” point in space

that these quantities were at before a single time step. Figure 2.12 shows this in an

easier to understand visual form.

Since x(n) will not typically coincide with a grid point, interpolation is necessary

to evaluate q(n). Using linear interpolation for this purpose ensures stability because

the new field will never be larger than the largest value of the previous field no matter

what time step is used. But this also has the undesirable effect of smoothing out the

advected field variables. This can be alleviated to some extent by using higher order

interpolation schemes. But numerical dissipation is inherent in the semi-Lagrangian

method and can not be defeated entirely. The equation to calculate qn+1 is shown in

figure 2.13.

11



Figure 2.12: A field q is sampled at the centre points of grid cells. To compute q(n+1)~x,
we trace backwards through the velocity field and interpolate q(n) at the old point that
q was at, ~x−∆t~u(~x).

Figure 2.13: How to calculate a quantity using particle back tracing.

Also for non-constant velocity fields, forward Euler integration can be very inaccu-

rate and unstable. Therefore, it is usually desirable to use more accurate integration

methods to better preserve rotational motion in the flow field. A good alternative is

the midpoint method which can be implemented by replacing ~xn+1 −∆t~u(~xn+1) with

~xn+1 −∆t~u(~xn+1 − 1
2
(~xn+1)).

2.2 Smoothed Particle Hydrodynamics

A definition for SPH taken from [3]:”SPH is an interpolation method for particle sys-

tems. With SPH, field quantities that are only defined at discrete particle locations

can be evaluated anywhere in space. For this purpose, SPH distributes quantities in a

12



local neighbourhood of each particle using radial symmetrical smoothing kernels.”

The paper ”Particle-Based Fluid Simulation for Interactive Applications” was first pre-

sented at Siggraph 2003 by Matthias Muller, David Charypar and Markus Gross, it

was the first published paper on using SPH to simulate fluids. The paper’s focus was on

implementing a real-time interactive simulation of a fluid by using a particle system to

simulate the behavior of water. This was achieved by implementing the Navier-Stokes

equations using the Smoothed Particle Hydrodynamics methodology. SPH was first

developed to deal with simulating astrophysical phenomenons [14] but the method is

general enough to allow it to be applied to the simulation of fluid. SPH had previously

been used by Jos Stam and Eugene Fiume who first introduced SPH to the graphics

community to simulate fire and other gaseous phenomena [15]. More work would be

done in this area by Desbrun who used SPH to animate highly deformable bodies [16].

SPH for use in fluid simulation is an extension of Debrun’s method focusing on resolving

force due to pressure and viscosity. In order to do this, the equations to resolve force

due to viscosity and pressure are derived directly from the Navier-Stokes equation for

implementation through SPH. For the purpose of stability, special purpose smoothing

kernels were designed as the sampling functions for resolving different field values.

2.2.1 The SPH methodology

According to SPH, a scalar quantity A is interpolated at location r by a weighted sum

of contributions from all particles within distance h as shown in 2.14 .

Figure 2.14: Interpolating a scalar quantity using SPH.

The function W(r;h) is called the smoothing kernel with core radius h. Kernels

with finite support h are used so that we only need to sample from particles within

that support radius. There are various techniques to efficiently find these neighbours.

If W is even (i.e. W(r;h) =W(-r;h)) and normalized, the interpolation is of second

13



order accuracy. The kernel is normalized if it’s integral for a value r with respect to r

is equal to 1 as shown in 2.15.

Figure 2.15: Property of a normalised kernel function.

Another important property given the nature of the Navier-Stokes Equation and

SPH itself is that density can be found using the equation shown in 2.16.

Figure 2.16: Calculating density using SPH.

Again for use in the Navier-Stokes Equation we need to be able to find the gradient

and laplacian terms which are calculated simply by using the gradient and the laplacian

of the kernel function. So the gradient is calculated using the equation shown in 2.17.

Figure 2.17: Calculating the gradient of a value using SPH.

And the Laplacian is calculated using the equation shown in 2.18.

Figure 2.18: Calculating the laplacian of a value using SPH.

14



2.2.2 Why use SPH for Fluid Simulation

SPH lends itself naturally to simulating fluids because of the physical properties that

define the behavior of a fluid. Physically speaking a fluid is made up of an extremely

large number of particles, essentially the molecules in the fluid. By definition in the

Navier-Stokes Equations each of these particles’ movements are effected by force vectors

which are in turn produced as a result of the properties of the fluid in that point in space

and by the properties of the fluid in the surrounding area which determine the forces

being exerted in that area. By interpolating these quantities in a local neighborhood

for a point in space using a smoothing kernel these forces can be resolved in a much

more stable manner than they are for the grid-based methods. They are also resolved in

a more efficient manner completely avoiding grid descretization issues and the Poisson

equation. Another benefit is that SPH doesn’t suffer from the boundary issues that

Grid-based methods do. Collision detection and response can be calculated on a particle

by particle basis with static scene geometry without producing any artifacts in the

simulation. The short-comings of SPH are mainly down to the problem that lots of

particles are needed to give sufficient detail to a body of fluid as well as the fact that

the particles are compressible.

2.2.3 Resolving the Navier-Stokes Equations using SPH

To resolve the field force vectors a simplified version of the Navier-Stokes equation is

used as shown in 2.19.

Figure 2.19: The Navier Stokes Equation to which SPH is applied for fluid simulation.

This describes an incompressible fluid, where p is pressure, g is gravity, v is velocity,

t is time and µ is the viscosity term. But in practice in SPH because of the varying

density, and by relation pressure, the volume for each particle is compressible because

volume=mass/density and each particle has a fixed mass. The use of particles instead

15



of a stationary grid simplifies resolving Navier Stokes equation substantially. First,

because each particle has a constant mass, mass conservation is guaranteed and the

continuity equation can be ignored. Second, the expression on the left hand side of the

equation multiplied by density can be replaced by the substantial derivative Dv
Dt . This

is because the particles move with the fluid, therefore the substantial derivative of the

velocity field is simply the time derivative of the velocity of the particles meaning that

the convective term is not needed for particle systems. So the Navier-Stokes Equation

can be reduced to the equation shown in 2.20.

Figure 2.20: Reduced Navier Stokes Equation for a lagrangian method.

Where f is ρDv
Dt

known as the force density term so to get the acceleration for each

particle in the system we can use the formula shown in 2.21.

Figure 2.21: How to calculate acceleration from Force density.

Now that we have a method for resolving the acceleration of each particle we can

now work on resolving the force density terms due to pressure and viscosity.

2.2.4 Resolving The Field Force Vectors

Fluid particles are simulated with force vectors that move with the particles. Density

is calculated using the SPH formula shown in 2.16. The field force density vector of

pressure is calculated for each particle by sampling other particles within distance h

and smoothing their contribution using SPH methodology and the equation in 2.22.

Where pj is the pressure of the particle being sampled. Because these samples are

discrete contributions from physical ”pieces” of fluid, which do not have a common

16



Figure 2.22: How to calculate force density due to pressure using SPH.

pressure, there is need to preserve Newton’s third law for every action there is an equal

and opposite reaction. This means modifying this equation to make it symmetrical,

this will also increase the computational efficiency of the algorithm. Muller found that

this simple modification, using the average of the pressures for the two particles, works

best in achieving a stable fluid simulation as shown in 2.23.

Figure 2.23: How to calculate symmetrical force density due to pressure using SPH.

Pressure can be calculated from density using the gas constant formula: p=kρ .

However to provide numerical stability throughout the particle system it’s better

to have an offset for the pressure term which can be considered the pressure at rest i.e.

when a particle’s pressure doesn’t contribute to the force density due to pressure for

itself or any other particle. In reality this is when a particle’s pressure value is equal to

zero. A good way to choose this offset is to use a multiple of the density for a particle

when the only particle sampled is itself i.e r is equal to zero. I found that by using

twice this value for the rest density that this helps keep the system stable. In order to

resolve the pressure for each particle we should now use the formula: p=k(ρ− ρ0) .

The scalar value k corresponds to the gas constant of the fluid we are trying to

simulate but because the particles represent ”pieces” of fluid and not fluid molecules,

it’s best to use a user defined constant and tweak it according to how volatile you

would like the fluid to appear. In order to calculate a symmetrical force density vector

due to viscosity for a single particle, other particles within distance h are sampled and

their contribution is smoothed using SPH methodology and the equation in 2.24:

Where vj and vi are the velocity of the particle being sampled and the velocity

17



Figure 2.24: How to calculate symmetrical force density due to viscosity using SPH.

of the particle being resolved respectively. By examining the formula it’s easy to see

that this term is really just to smooth the effects of the pressure force by subtracting

a particles velocity from that of its neighbors and producing a force that smoothes a

particle’s velocity according to the area it’s occupying. It can be interpreted that µ

here is another scaling factor that helps a system find stability quicker but scientifically

speaking this is known as the viscosity coefficient.

2.2.5 The Smoothing Kernels

The stability, accuracy and speed of the SPH method highly depend on the choice of

smoothing kernels. The most important factor for picking a kernel was that they dis-

played the trends desired for the variable they were being used to calculate. Obviously

they also need to be symmetrical and normalized in order to fulfill the rules of SPH.

For density the kernel shown in 2.25.

Figure 2.25: Smoothing kernel for density.

This was used because it not only provided a smooth roll off from r=0 to h and

was zero when h=r but also because r (the distance) only appears squared removing

the need to use an expensive square root operation when calculating density.

In figure 2.26 the thick line is the kernel function the thin line is the gradient

towards the centre and the dashed line is the Laplacian, h=1 for all of these diagrams.

It is clear from the graph that the poly6 kernel function is not suitable for the pressure

18



Figure 2.26: A graph of the kernel functions used in SPH.

term as its gradient is zero at r=0 so another kernel function known as the DeBrun’s

spiky kernel was used shown in figure 2.27.

Figure 2.27: The Desbrun spiky kernel function.

It can be seen from the diagram that this kernel function gives a nice distribution

over the gradient and doesn’t go to zero at r=0. Unfortunately neither the poly6 nor

the spiky kernels are suitable to be used for the viscosity term as their laplacian’s are

negative at low r values. So a third kernel function was designed for the viscosity term

that has a positive laplacian value for all values of r between -h and h. This function

is shown in figure 2.28.

Figure 2.28: The viscosity kernel function.

One further property of this kernel is that it’s laplacian value shown in figure 2.29

19



is very similar to that of the magnitude of gradient of the spiky kernel shown in figure

2.30.

Figure 2.29: The laplacian of the viscosity kernel function.

Figure 2.30: The magnitude of the spiky kernel.

This makes computation more efficient.

2.2.6 An efficient SPH algorithm

In order to make the SPH methodology as efficient as possible it’s important to imple-

ment an efficient algorithm for solving the acceleration for each particle and updating

them every frame. The first thing to do in every frame is to sort the particles using

spatial hashing method into grid cells in 3-d space that are the same width as the

smoothing length being used in the SPH calculations. This makes populating a pair

list more efficient, the reason we use a pair list is because as already stated the force

density between two particles within a smoothing radius is symmetrical i.e. the con-

tribution for particlej of a pair is the negative of the contribution for particlei. For

density the contribution is added to both particles (obviously as there can’t be a neg-

ative contribution to density) that form the pair. This will effectively cut the amount

of time spent resolving contributions for each particle in half as described in [17]. The

pair list is populated by searching for neighbours for each particle in it’s own cell and

it’s neighbouring cells taken care not to add the same pair. Then density is resolved

for each particle followed by the force densities and acceleration for each particle (two

stages). The particle’s position and velocity is then updated and any collision detec-

tion and response can also be applied at this stage. This algorithm is repeated for each

frame.

20



2.2.7 Augmentations to the SPH method

Not many additional changes have been made to the SPH method since it’s inception

one that has been made, however, is the use of adaptive particle sampling [7]. This is

a method of splitting and merging particles into particles of different mass to produce

different sized particles. The particles are split or merged depending on their distance

from the medial axis which needs to be calculated each time the split and merge proce-

dure takes place. In their implementation the authors used a 4 tier system to produce

4 differently sized particles with 4 different smoothing lengths and related the latter

so that spatial hashing could be conducted efficiently when looking for neighbouring

pairs to compute contributions for. They also altered Mullers equations to preserve

symmetrical forces these are shown in figure 2.31.

Figure 2.31: Calculating force density using adaptive SPH.

This method certainly reduces the number of particles needed to model a volume

of fluid (and thus the computation) with adaptation to allow a higher level of detail

for the fluid surface. It actually helps with the problem of compressibility as well

because of the adaptive nature of the smoothing length. Unfortunately the means of

extracting the median axis and in particular finding pairs of particles to split or merge

proved computationally expensive. The authors, in a bid to find a middle ground,

decided to implement the split and merge procedure only once every 5 frames but still

failed to yield much of an increase in performance over regular SPH. The additional

computational expense for the adaptive density force algorithms probably contributed

to this. Although for this approach it is difficult to compare performance against

regular SPH. Specifically the question must be asked, is a smaller number of adaptive

particles the equivalent of a larger number of regular particles if they fill the same

volume? It’s hard to compare the two unless you conduct some sort of perceptual

testing. Another augmentation was a two way coupled SPH and particle level set (A

21



grid-based method) simulation. This combined the superior performance of SPH in

diffuse areas with the enforced incompressibility of the particle level set method but

this methodology is not a real-time application.

2.3 Rendering: Screen Space Meshes

Many methods have been proposed for rendering fluids but few are suitable for real-

time applications. There is of course the infamous marching squares algorithm [18] that

is far too costly. Point splatting [19] which doesn’t look good in diffuse areas. In [7]

they used their median axis method to produce a distance to the fluid surafce method

that worked well but was computationally expensive. Out of all the methods one jumps

out as the most suitable for real-time applications which is what I am going to detail

in this section. Screen space meshes were first used to render the air-fluid interface in

screen space of an SPH simulation by Muller in 07 [2]. The paper itself describes the

mesh generation being done on the CPU. Effectively a 2-d depth map of nodes (the

resolution is chosen by the user) of the particle system is created from the point of

view of the camera i.e. in screen space. The particles themselves are treated as spheres

with a user chosen radius and their radii are also projected into screen space. Muller

projected each particle’s centre into screen space and checked then for 2-d intersection

with the nodes surrounding the centre of the particle using the projected radius. If an

intersection occurs the Z-value for that point on the sphere representing the particle

is calculated with simple geometry using the projected radius and the distance from

the 2-d intersection to the centre of the Sphere as well as the particle’s distance from

the camera (i.e it’s depth). Any particle that contributes a depth value to a node

that is less than that of the previous occupant obviously replaces it. This way these

nodes are populated with values that represent the silhouettes of an approximate air-

fluid in screen space. Smoothing is used to remove bumpiness which is a problem

with techniques that use spheres to estimate a surface represented by points in space.

Smoothing is performed on the depth map of the nodes before transforming them back

to world space using a kernel function (they used a gaussian kernel in just the x and

y direction with a radius of 3 nodes using 2 passes the first in the x direction and the

second in the y direction). The kernel function’s size is limited at the edge of each

silhouette to make sure it doesn’t smooth over the edge. Marching squares algorithm

22



is used to construct meshes with normals from the silhouettes which are then projected

back into 3-d space. This 3-d mesh can now be rendered with reflection/refraction and

lighting easily.

23



Chapter 3

Control Point Smoothed Particle

Hydrodynamics

Control Point SPH is an attempt to combine features of both Grid-based methods

and normal SPH. For my dissertation I proposed using a particle system with a grid

of control points spaced at intervals in 3-d space at which the pressure and viscosity

forces could be partially resolved based on the SPH methodology as described in the

previous section. The particles in the system used used as they are in a regular SPH

implementation as mass carrying ”pieces”’ of fluid that have their own velocity, pressure

and density, see figure 3.1. Density and pressure would be calculated at each control

point and then interpolated for each particle in the system. Then the acceleration

due to pressure and viscosity forces experienced can be partially resolved (explained

later)) at the control points. These force densities are then interpolated for each of

the particles and the acceleration for the given particle is resolved. This method is an

attempt to combine the robustness and simplicity of SPH with interpolation methods

in order to increase the speed at which a fluid simulation can be conducted. My hope

was this would be a much more efficient SPH-based methodology albeit less accurate.

3.1 The Algorithm

The algorithm for implementing control point based SPH follows the same steps as reg-

ular SPH; find neighbours (for the control points), resolve density, resolve acceleration

24



Figure 3.1: A visual representation of the control point SPH methodology. Here the
Green dots are the particles in the system and the black dots set in the grid are the
control points.

and update particles. But there are also intermediate steps for interpolating SPH field

values for the particles. What follows is a description of each of the steps in the order

they should be executed in. Some of these steps have issues associated with them that

will be elaborated upon later.

3.1.1 Binning the Particles

The particles are binned into several nodes based on their position in the grid using

spatial hashing. Unlike regular SPH we can cull any particles that aren’t definitely

within the smoothing length of a control point because the control points are fixed in

place. The particles’ distances from the control points should be stored at this point

in order to make computation more efficient. Control points should be spaced at an

interval less than or equal to h, but h should be a multiple of this grid width in order

to ensure maximum efficiency when binning the particles. This means that if the grid

25



width is equal to h a particle’s distance must be tested for 8 possible nodes for which it

may be within the smoothing length of. For a grid width of h/2 there are 64 possible

nodes for which it may be within the smoothing length of, and so on. Figure 3.2 shows

a visual depiction of this.

Figure 3.2: Relationship between smoothing length and grid width regarding binning.

Issues and Optimizations

Each of the particles must be linked to the eight surrounding nodes of it’s cell for use

when interpolating the density and acceleration for a given particle from the values

computed at the control points. In my implementation I found that it is best to

link the particle’s to the control points just by maintaining pointers to the values for

density and to structures containing the partially resolved force densities for the control

points. This is because the nodes representing the control points will contain a buffer

of pointers to the particles that they are linked to and this will thrash the cache with

unnecessary data when trying to interpolate values for the particles. When binning

to the grid nodes a list of active nodes should be populated, active grid nodes are

26



only those that particles are linked to i.e just those from which the particle’s will be

interpolating values from.

3.1.2 Resolving Density

Density and pressure is resolved for each control point using the SPH methodology

as described in the previous section. Worth noting here is that in a regular SPH im-

plementation particles will have a density contribute due to themselves (the density

contribute when r is equal to zero) which obviously can’t happen in this implementation

because the control point is not a particle. As explained in section 4.1 this contribution

can be pre-computed easily and if used as the initial value for the grid node’s density

when summing the contributions from the neighbouring particles this problem is easily

overcome. Once density has been resolved for all the active control points it is interpo-

lated for the particles the interpolation practice is discussed in section 3.2.1. Pressure

is then calculated for the particles in the normal SPH fashion.

3.1.3 Resolving Acceleration using Partially Resolved Force

Densities

Force density due to pressure and viscosity is partially resolved for each grid node.

Because the contribution to force densities for both pressure and viscosity resolve to

zero when a particle is paired with itself we don’t have to worry about initial values for

the force densities they are simply the zero vector. The reason why the force density

for viscosity is only partially resolved is because the grid node has no velocity. This is

overcome by splitting the equation for calculating the viscosity using the two equations

as shown in figure 3.3.

Figure 3.3: The viscosity force density equation can be split in this manner because vi

is constant.

27



Now we end up with two terms for the viscosity force density resolved at a control

point. One is a float, corresponding to the series on the right, which is to be multiplied

by the particles velocity before interpolation, corresponding to vi. This term is then

subtracted from the partially resolved force density on the left (a vector) in order to

fully resolve the force density for viscosity. This effectively means that the force density

due to viscosity can be resolved each time a particle is interpolating from the control

point as if the control point had that particle’s velocity. The equation for pressure force

density should not be split to allow the pressure for the control point to be substituted

for the pressure for the particle, as the pressure term is specific to that location in

space. Also when resolving the acceleration for a given control point to be used for

interpolation, the force densities should be divided by the control point’s density and

not the density of the particle interpolating from it because the density is specific for

that point in space. There is a reason why the acceleration at the control point is not

resolved until the force densities are being interpolated for each particle and that is

discussed in section 3.2.1.

3.1.4 Updating the Particle’s Position and Velocity

Once the force densities are interpolated and the acceleration resolved for a particle

and gravity is added it’s velocity and position can be updated in a usual manner. I used

the leap-frog approach where the velocity applied to the particle’s position is half a

time step ahead of the velocity used to calculate the SPH acceleration. This makes for

a smoother simulation. Then collision detection and response is applied as described

in section 4.1.

3.2 Interpolation of SPH Values

When deciding how to interpolate the SPH values for each particle I considered several

options including a sampling function based on distance and the bi-cublic interpolation

[20] method. I had custom designed a sampling function but I found it could lead to

either a dissipation or a exaggeration of the SPH values when interpolating from the

8 surrounding nodes. The sampling function I used was based on distance to derive

a weight between 1 and 0 for the 8 nodes surrounding the particle. Unfortunately

28



despite trying several high order polynominals in most cases these weights would not

add up to exactly one hence the dissipation or exaggeration problem. Then I looked

into using the bi-cubic interpolation method but unfortunately I found that in a field

of high gradients such as a field of SPH values that the bi-cubic method would smooth

the values for acceleration too much and would lead to very uniform fluid motion. So

eventually I decided to use a very simple algorithm in order to produce 8 weights for

the 8 nodes the sum of which is guaranteed to be one. These weights are calculated

as the normalized inverse distance from each corner. The intermediate weight for each

corner is calculated as: (Total Distance from Corners)/(Distance from This Corner).

The normalized weight for each corner is calculated as: (Intermediate Weight for This

Corner)/(Sum of Intermediate Weights). I found this method to work best during my

implementation of control point SPH.

Figure 3.4: Each control point contributes an SPH value (density or a force density)
to the red particle and is weighted by it’s inverse distance from the particle. These
weights are normalized so that they always sum to one.

29



3.2.1 Considerations for Interpolation of Forces

When resolving the pressure force density using regular SPH the gradient of the sam-

pling function becomes the zero vector at a distance of zero i.e. when a particle is

sampling from itself. Likewise when resolving the viscosity force density the difference

in velocity between a particle and itself is zero therefore making no contribution. What

this means in terms of physics is that one particle cannot exert a force on itself. If this

isnt accounted for when interpolating from the control points particles will find equi-

librium much quicker than intended due to the extra force exerted by itself, on itself.

Visually speaking this leads to unrealistic behaviour, i.e. once a particle’s velocity falls

below a certain magnitude it’ll stop dead and oscillate slightly. An easy way around

this is to maintain the contributions that a particle makes to its eight surrounding

nodes for density, the pressure force density term and the two terms needed to resolve

viscosity force density. Then when interpolating the force densities due to pressure and

viscosity from a control point subtract these contributions for the particle in question

from the nodes force densities due to pressure and viscosity. Then use the control

point’s density to resolve this adjusted acceleration and carry out interpolation using

the weight system. This fixes the problem of a particle exerting force on itself but

unfortunately the system can never find a true equilibrium due to lack of symmetric

forces between the particles and not the interpolation method.

3.3 Loss of Symmetry and Other Issues with the

Methodology

The main problem with this methodology is that the accuracy for interpolated values

for each particle becomes extremely skewed when there are a number of other particles

within a single grid cell. SPH fluid simulation relies on symmetry in order to produce

stable fluids i.e. ”For every action there is an equal and opposite reaction”. For

particles in a regular SPH implementation the preservation of this symmetry for the

forces resolved is more important than the physical accuracy due to the smoothing

length of the algorithm. This symmetry effectively pushes two particles away from each

other so by proxy if you increase the smoothing length of the algorithm you can also

increase the ”size” of the particles because it’s local neighborhood now increases in size.

30



In control point SPH symmetry is lost completely for particles within the same cell as

they interpolate their accelerations from the same nodes and so cannot mathematically

produce a symmetrical contribution between each other. Outside the cell a symmetrical

contribution is maintained between two particles because the particles sample from

different nodes in space but the numerical accuracy may not be perfect. The numerical

inaccuracy is because the interpolated contribution won’t exactly match a contribution

derived from the regular SPH methodology due the difference between sampling kernels

and the linear nature of the weighting algorithm. This numerical inaccuracy makes

little difference however as long as the contribution is symmetrical the system will find

an equilibrium as the particles move in space. In fact when using control point SPH it’s

possible to get contributions even from particles outside the intended smoothing length

of the SPH methodology but these contributions will be relatively tiny in comparison

to the particles closest to the particle and because they are symmetrical we can afford

to ignore them. The lack of symmetry for forces between particles in the same cell

cannot be ignored however as these are the particles which should have the biggest

effect on the overall force experienced by the particle.

3.3.1 How to Solve this Problem

One way to solve this problem perfectly is to increase the resolution of the Grid until

such a stage that only one particle could possibly fit in the cell. This is done by re-

ducing the grid width to the size of the radius of the smallest particle in the system.

The volume of a particle can be found using the equation Volume=mass/density. We

can then assume that the particles, which as already discussed are ”pieces” of fluid,

are spherical and then we can derive the radius using the formula r = (V 3
4Π

)
1
3 . Un-

fortunately density is not constant and obviously the highest density possible should

be found (i.e. The smallest particle). Statistically speaking it is difficult to determine

the highest density in a SPH simulation because it depends on two many factors; K,

the smoothing length, the number of particles involved, the type of container they are

in, the mass of the particles and more. Its easier just to find out the highest possi-

ble density using a regular SPH implementation. At this resolution, however, control

point based SPH could not possibly run in real-time. I found that reasonably good

simulations can be achieved using a grid interval of half the smoothing length although

31



there will be some instability in the denser parts of the fluid. A better solution might

be found by combining control point SPH with regular SPH and I have detailed my

hypothesis for this solution in future work.

3.3.2 Linear Distribution of Density

In a regular SPH implementation density is calculated for each particle using the SPH

methodology i.e. by sampling from surrounding particles. It’s logical to conclude that

in an evenly distributed particle system, particles found towards the centre of the

system would have a higher density than those within the smoothing length’s distance

of the surface of the particle system (this includes those at the bottom of system).

This is why the fluid particles are compressible in SPH particularly for particles at

the bottom of the container. In order to exert a force strong enough to counteract

gravity and suspend the particles above them the particles at the bottom need to be

compressed i.e. the distance between the bottom particles and the particles above

them will decrease in order to increase the density of the lower particles and reach an

equilibrium. This holds true for each stratum of particles in the system thats within

the smoothing length of a boundary. In a lot of real time simulations this can mean the

majority of particles because deep pools of fluid means extra computation that won’t

contribute to the surface animation which is what we’re generally interested in. An

example of this compression is shown in figure 3.5 .

In other words an SPH implementation can never achieve equilibrium as an evenly

distributed particle system. This means most of the particles in the system aren’t

contributing anything to the surface animation which would be acceptable in some cases

if they were providing an efficient increase in volume but they are not. In control point

SPH, however, density at each particle is interpolated from the density at the control

points. This has a smoothing effect to the change in density from the particles found in

the space within the fluid volume, out to the particles at the surface and by association

their pressures. This has a knock-on effect of reducing the compressibility factor when

calculating the force densities at the control points, this is apparent from the formula

to calculate force density due to pressure in figure 2.23. The compressibility factor is

not completely removed of course but it is reduced as shown in figure 3.6 resulting in

a substantial increase in volume for the same number of particles while having only

32



Figure 3.5: The compressed particle strata of a regular SPH implementation.

slight negative effects on the surface detail of the air-fluid interface as shown in figure

3.7.

3.3.3 Other Considerations

The loss of symmetry also makes the computational expense for each control point more

expensive than for each particle in a regular SPH implementation. Symmetrical forces

means that instead of resolving density, pressure and viscosity forces for each individual

you can resolve individual contributions on a pair by pair basis. This effectively means

that you dont do the same calculation twice. A pair list can be populated at the start

of a regular SPH simulation by conducting an efficient neighbour search using spatial

partitioning. This is not possible with Control Point SPH because particles are paired

with the control points and not each other.

33



Figure 3.6: The less compressed particle strata of a control point SPH implementation

Figure 3.7: A comparison of the surface detail of SPH (left) and of control point SPH
(right)at equilibrium. In SPH the particles are spread evenly across the surface due
to perfect symmetrical forces but the number of particles at the surface for SPH and
control point SPH are relatively the same and so the level of detail obtained when the
fluids are in motion is effectively the same.

34



Chapter 4

Results

I developed two fluid simulators, one using my control point SPH methodology and

another using a regular SPH methododology for comparison. Both were developed in

C++ using the open source rendering API, Ogre. Through the OGRE rendering API

I used billboards in order to render the particles. I had planned to use these billboards

to render a screen space fluid-air interface, as described in my future work section. The

test results detailed in the next section were obtained while running my application

on a Dell XPS with an Intel Core 2 CPU with a clock speed of 1.86Ghz and 2.0 GB

of RAM using the Windows XP SP2 operating system. The graphics card is a NVidia

GeForce 8600 GTS.

4.1 Results

To give a critical analysis of my results I implemented an efficient SPH implementation

using the pair list method described in section 2.2.6 in order to compare it to my control

point SPH method. Both simulate the movements of 2200 particles and have the same

smoothing length (0.1 which is 1/10 the radius of the cylinder). In order to make the

regular SPH as efficient as possible I made my own alterations to the algorithm to

provide the most critical comparison possible. I then compared the performance of my

control point SPH to the regular SPH implementation in terms of behaviour and speed.

These alterations started with how to efficiently populate the pair list after sorting the

particles into their respective cells. I found that the best way to populate the pair

35



list without reproducing the same pair twice is to iterate through a list of active cells

(obtained from when the particle’s were sorted). By ’bubbling up’ through the list of

particles for each cell you can avoid putting the same pair into the pair list from within

the same cell. You should also save the value for distance (or distance squared) in the

pair list to reduce computation for later. Then for each particle in the cell I searched

in any active neighbouring cells for pairs. You can then make the current cell inactive

as all the pairs possible for the particles in this cell have been found. By doing this for

each cell on the active cell list the pair list will be populated quickly and perfectly. Now

density needs to be resolved for each particle so iterate through the pair list resolving a

single contribution at a time and adding it to the density of the particles that form the

pair. It’s important to note that in this pair list a particle cannot be paired with itself

because the contribution to force densities for both pressure and viscosity resolve to

zero when a particle is paired with itself (i.e. a waste of time). However the contribution

does not resolve to zero for density, luckily this contribution can be pre-computed. You

can just resolve the density contribution when r is equal to zero and use this as the

initial value for density for each particle at the start of each frame. Now that density

has been determined for each particle we can solve the acceleration for each particle

due to pressure and viscosity. By iterating through the pair list again we work out the

acceleration contribution for each pair using the formulas shown in section 2.2.4 and

add it to particlei’s acceleration and subtract it from particlej’s acceleration. Now

you can just update the particle’s velocity with the acceleration (not forgetting to add

gravity) and it’s position with the velocity using the time step for that frame. At

this stage collision detection and response can be applied for each particle. I found

that the most suitable collision response in order to maintain a stable simulation is to

push them out of static geometry (the container) and reflect the velocity component

perpendicular to the normal at the point of collision, with dampening of course. Control

point SPH was implemented in the manner described in the previous section with a

grid width of half the smoothing length. Both implementation’s used a cylindrical

container to hold the fluid particles. This container could be moved in a 2-dimensional

plane in order to allow interaction with the fluid and observation of it’s behaviour. A

6 degrees of freedom camera allows the fluid to be viewed from any angle In terms of

speed the regular SPH implementation runs at approx. 85 frames per second while

the control point SPH implementation runs at approx. 60 frames per second. This

36



made up for however by the volume that the control point SPH can simulate with the

same level of detail at the surface as the regular SPH implementation. The volume

appears to be twice that of the regular SPH implementation for the control point SPH

implementation as shown in figure 4.1. By experimentation I found that 5000 particles

will make up approximately the same amount of volume if used in a regular SPH

implementation with the same parameters for k and density zero i.e. the same level

of surface detail. With 5000 particles the frame rate drops to approx. 25 frames per

second in the regular SPH implementation. It’s clear that the reduced compressibility

exhibited by control point SPH is a desirable feature in a real-time fluid simulation.

Unfortunately despite using a fine grid (there is an average of approx. 2100 active nodes

every frame) in areas where the particles are tightly packed there are some artifacts and

instability in the control point SPH implementation. Occasionally this will effect the

particles at the surface but generally these will be held in a pseudo equilibrium. For the

regular SPH implementation there is no real instability issues due to the symmetrical

forces but occasional the fluid will ”pop” due to a the addition of a new stratum of

particles, from the compressed particles at the bottom of the container. However this

only happens as the fluid finds it’s equilibrium at rest. Both implementations perform

quite well while being interacted with, they can be swirled and sloshed convincingly

with no real difference in performance visually. The figures 4.2 and 4.3 show the fluid

being interacted with but this can only be fully appreciated when viewed in motion.

All figures feature the control point SPH on the left and regular SPH on the right.

Figure 4.1: The comparative size of the two fluid volumes.

37



Figure 4.2: A comparison of the two fluid simulators when the container is being sloshed
from the right to the left.

Figure 4.3: A comparison of the two fluid simulators when the container is being swirled
in a clockwise direction.

4.2 Conclusions and Future Work

Control point based SPH has some benefits such as the linear distribution of density

but proves unstable unless a very high resolution grid is used. This would mean that

it would become significantly slower than regular SPH. For this reason I believe that

control point SPH is not a great alternative on its own to an efficient SPH implemen-

tation. This due to the lack of symmetry for the forces exerted on particles within

a given cell. One possible benefit control point SPH may have for fluid simulation is

38



if it were used to interpolate the density and forces for only the particles outside of

a grid cell. If a cells maximum axis is the same length as the smoothing distance of

the kernels then we can say for certain that every particle within the cell is within the

smoothing length of every other particle in the cell. Regular pair-based SPH forces can

be efficiently resolved for the particles within a single cell. A low resolution Control

Point SPH will resolve the forces from particles outside the cell. This will reduce the

size of the pair list for regular SPH dramatically as well as reduce the amount of time

spent looking for pairs as it completely eliminates the need to search for pairs outside

a single cell compared to searching up to 27 cells using regular methods. Obviously

there would be some computational expense for running the relatively low resolution

Control Point SPH .But this method may run just as quickly as regular SPH with the

same number of particles due to the reduction in pairs and the efficiency with which

pairs can be found. This methodology should hopefully resolve symmetrical forces and

reduce the compressibility of the fluid particles. For my dissertation I had hoped to use

screen space rendering methods run entirely on the GPU to render the fluid-air inter-

face. I researched this methodology paying particular attention to the paper ”Screen

Space Meshes” by Muller [2] as discussed in section 2.3. The algorithm I proposed is

as follows. Render to texture a depth map of the iso-surface of the air-fluid interface

using billboards set to the particles’ positions. These billboards will have depth maps

of a hemi-sphere as a texture to tweak the pixel’s depth according to it’s position on

the sphere’s ”face”. In the pixel shader the depth value sampled from the texture must

also be projected into screen space before it is used to create the final depth value that

is stored at that pixel in the render target. In a second rendering pass another pixel

shader program will smooth these depth-values as described in Muller’s paper and ren-

der a new texture. In a third rendering pass yet another pixel shader program that

has the inverse view and projection matrix passed to it will enable the GPU to render

a normal for each pixel to a third texture by sampling from the surrounding pixels in

the smoothed depth map. When rendering to screen we can then use the normal map

texture and smoothed depth map texture with a pixel shader program to recreate the

ISO surface of the fluid and allow us to apply lighting reflections and refractions etc.

. I intend to finish implementing this algorithm in the coming weeks in order to see if

there are noticeable difference between control point SPH and regular SPH when they

are both rendered with an iso-surface.

39



Bibliography

[1] J. J. Monaghan, “Smoothed particle hydrodynamics,” Reports on Progress in

Physics, vol. 68, no. 8, pp. 1703–1759, 2005.

[2] M. Müller, S. Schirm, and S. Duthaler, “Screen space meshes,” in SCA ’07: Pro-

ceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer

animation, (Aire-la-Ville, Switzerland, Switzerland), pp. 9–15, Eurographics As-

sociation, 2007.

[3] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation

for interactive applications,” in SCA ’03: Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation, (Aire-la-Ville,

Switzerland, Switzerland), pp. 154–159, Eurographics Association, 2003.

[4] Wikipedia, “Navierstokes equations — wikipedia, the free encyclopedia,” 2008.

[Online; accessed 21-August-2008].

[5] N. Foster and R. Fedkiw, “Practical animation of liquids,” in SIGGRAPH ’01:

Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, (New York, NY, USA), pp. 23–30, ACM, 2001.

[6] J. Stam, “Stable fluids,” in SIGGRAPH ’99: Proceedings of the 26th annual con-

ference on Computer graphics and interactive techniques, (New York, NY, USA),

pp. 121–128, ACM Press/Addison-Wesley Publishing Co., 1999.

[7] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas, “Adaptively sampled particle

fluids,” ACM Trans. Graph., vol. 26, no. 3, p. 48, 2007.

40



[8] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw, “Two-way coupled sph and par-

ticle level set fluid simulation,” IEEE Transactions on Visualization and Computer

Graphics, vol. 14, no. 4, pp. 797–804, 2008.

[9] F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous

incompressible flow of fluid with free surface,” Physics of Fluids, vol. 8, no. 12,

pp. 2182–2189, 1965.

[10] N. Foster and D. Metaxas, “Practical animation of liquids,” in Graphical Models

and Image Processing, pp. 23–30, 1996.

[11] A. J. Chorin, “Numerical solution of the navier-stokes equations,” Mathematics

of Computation, vol. 22, no. 104, pp. 745–762, 1968.

[12] J. R. Shewchuk, “An introduction to the conjugate gradient method without the

agonizing pain,” tech. rep., Pittsburgh, PA, USA, 1994.

[13] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, “A hybrid particle level set

method for improved interface capturing,” J. Comput. Phys, vol. 183, pp. 83–116,

2002.

[14] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics - theory

and application to non-spherical stars,” Mon. Not. Roy. Astron. Soc., vol. 181,

pp. 375–389, November 1977.

[15] J. Stam and E. Fiume, “Depicting fire and other gaseous phenomena using diffu-

sion processes,” pp. 129–136, 1995.

[16] M. Desbrun and M. paule Gascuel, “Smoothed particles: A new paradigm for

animating highly deformable bodies,” in In Computer Animation and Simula-

tion 96 (Proceedings of EG Workshop on Animation and Simulation, pp. 61–76,

Springer-Verlag, 1996.

[17] A. Takashi, Game Programming Gems 6: Chapter 16 Real-time Fluid simulation

(Book & CD-ROM) (Game Development Series). Rockland, MA, USA: Charles

River Media, Inc., 2006.

41



[18] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface

construction algorithm,” SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 163–169,

1987.

[19] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Surface splatting,” in SIG-

GRAPH ’01: Proceedings of the 28th annual conference on Computer graphics and

interactive techniques, (New York, NY, USA), pp. 371–378, ACM, 2001.

[20] Wikipedia, “Bicubic interpolation — wikipedia, the free encyclopedia,” 2008. [On-

line; accessed 10-September-2008].

42


