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Efficient Motion Capture Database Indexing on the Cell

Processor

Bogdan-Cosmin Bucur

University of Dublin, Trinity College, 2009

Supervisors: Rozenn Dahyot & William John O’Kane

This project aims to implement the system and tools necessary for real-time motion seg-

mentation and recognition. Motion data streams are usually high-dimensional and Principal

Component Analysis is used to reduce them to a more manageable size. Singular Value De-

composition is employed on the lower dimensional representation of individual motions to

compute feature vectors that will be used in training a hierarchical decision tree of Support

Vector Representation and Discrimination Machines. A normalized variant of Edit Distance

on Real sequences is employed on recognized motions to compute a classification confi-

dence value and further improve the quality of motion stream segmentation. Finally, these

algorithms are implemented in a real-time motion segmentation and recognition library al-

lowing applications running on the Cell/B.E. to identify portions of interest in a potentially

live motion data stream (i.e. generated by a Motion Capture (MoCap) device).
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Chapter 1

Introduction

The trend in video games design during the past decades has been to present the human player
with increasingly complex environments, striving for close to real-world graphics quality and
compelling level of physical interaction. This has motivated the hardware manufacturers to
invest in developing faster, more powerful processors and graphics cards and has led to the
proliferation of gaming consoles, among which the latest arrivals (i.e. Microsoft’s Xbox 360
and Sony PlayStation R©3) are virtual ”beasts” of processing power. During the last five years
the returns from solely increasing the clock rate and polygon counts have started to diminish,
and it soon became evident that in order to survive, the gaming industry needed to focus its
attention towards a different, less-developed area.

The breakthrough came from Nintendo with the launch of the WiiTM gaming console on
September 14, 2006; although it was meant to compete primarily with Microsoft’s Xbox
360 and Sony’s PlayStation R©3, the focus was not on performance but on a new way of
player interaction. The notable feature of the console stands in its wireless controller (Wii
Remote) that comes equipped with an accelerometer capable of detecting 3D movement,
allowing for a more natural way of player interaction with a game through the use of hand
movements. The novel control scheme combined with reasonable quality graphics makes for
a more compelling, immersive game-play and a much more enjoyable user experience. Its
increasing popularity stimulated a growing interest in developing more advanced computing
interaction interfaces, striving to remove the cumbersome ”classic” controller mechanisms.
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Computer Vision based user interaction was explored by Sony in several released titles.
Among these it is worth mentioning the Eye Toy R© [1] series, where the player interacts with
the game through a USB camera; the player image is segmented from the background and its
position on the screen is used to detect collisions with various hotspots, triggering specific
game events. More advanced, The Eye of Judgment

TM [2] uses the camera to locate fiducial
markers in the real world and superimpose synthetic 3D characters over them, creating an
augmented reality experience for the players. However, because the camera input is 2D, the
amount and accuracy of vision based user control for the aforementioned games is limited to
rather simple scenarios. Nevertheless, the recently announced ZCam, a low-cost, consumer
video camera capable of capturing depth information, is a good candidate to revolutionizing
once again the video game industry, availing 3D body tracking as a way of interacting with
the virtual world [3].

1.1 Project Goal

The current project aims to implement a library capable of recognizing motions performed
by a human subject in real-time, after proper off-line training from a motion database. The
applications for such a tool are numerous, ranging from entertainment (e.g. a rhythm and
dance game such as Dance Dance Revolution, where the player is no longer required to
step on switches in the floor, instead his or her body pose is actively tracked by cameras
and compared to golden standard dance step patterns) to allowing people with disabilities
to better interact with a computer. In this implementation the user’s body pose is assumed
to be tracked in real-time by cameras and converted to joint angle values, similar to the
output of a MoCap system; the conversion from camera images to angular joint parameters
is ignored, the main focus being on segmenting and recognizing individual motions in the
high dimensional data stream.

A natural prerequisite of motion recognition is to train classifiers using sample motion pat-
terns. The patterns are normally taken from a (potentially large) database of pre-recorded
motion clips [4] where each clip usually contains several logically distinct motions. In an at-
tempt to simplify working with a large number of motion clips, this project also investigates
the possibility of automatically determining similar motion patterns and discovering motion
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classes in a collection of clips.

1.2 Document Outline

This document is structured as follows:

• Chapter 2 reviews the previous work in the areas of motion stream segmentation and
motion recognition;

• Chapter 3 sets forth the theoretical background and algorithms used in this project;

• Chapter 4 gives a detailed description of the implementation of both off-line database
management component running on Windows and the real-time motion classifier run-
ning on the Cell Broadband Engine (Cell/B.E.) [5];

• Chapter 5 presents the obtained quality / performance of the implemented motion seg-
mentation and classification algorithms evaluated on a set of motion streams;

• Chapter 6 offers a set of conclusions about the project and also several directions to be
explored in future work.
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Chapter 2

Previous Work

Motion data is generally given as a topological description of a set of bones (skeleton) to-
gether with a set of poses. While the topology remains constant (for instance, the head will
always be connected to the neck at an approximatively constant relative offset), the relative
bones’ orientation (e.g. the pose) changes with time. A typical MoCap device will sample
the pose of its human subject 120 times per second; for instance, assuming that the employed
(simplified) skeleton consists of only 30 joints each being encoded as a quaternion, the re-
sulting motion data stream will be 120-dimensional with a bit rate of 450 kbit/s. Although
at first glance the number of raw dimensions is high, the number of intrinsic dimensions is
intuitively lower, due to the constraints of some joints. For instance, as opposed to a shoul-
der joint that has 3 degrees of freedom, the knees, elbows or wrists can be approximated as
hinges having just 1 degree of freedom (DOF).

2.1 Dimensionality Reduction

Principal Component Analysis (PCA) [6, 7] is amongst the most popular dimensionality
reduction techniques employed on motion data. Given a data-set, PCA returns a set of or-
thogonal directions such that the data-set has maximum variance along the first PCA direc-
tion, second-maximum variance along the second PCA direction, and so on. The amount of
variance on each direction can be used to estimate the quantity of information preserved by
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choosing only a subset of the original dimensions. The new number of dimensions is usu-
ally chosen such that the quantity of information preserved is above 90%-95%; the reduced
dimensinality data-set is obtained by projecting the original data points along the chosen
subset of directions returned by PCA [8, 9, 10, 11].

An important observation to be made about the PCA based dimensionality reduction tech-
nique is that the number of dimensions needed to preserve the same amount of information
grows with the diversity of the motions in the database [12]. To keep the number of di-
mensions low, PCA can be preceded by a clusterization step that groups together similar
motion segments. For each cluster, a different set of PCA directions is determined and used
to compute a smaller number of relevant dimensions than it would be possible in the case of
applying PCA to the entire database [13].

Although PCA is the default dimensionality reduction algorithm, in the case where the data-
set distribution is not Gaussian its result is negatively influenced by the orthogonality require-
ment on the principal components (basis vectors). AutoSplit is a technique that determines a
set of hidden variables and basis vectors (not necessarily orthogonal) such that the mutual in-
dependence among the hidden variables is maximized [14]. Informally, in a manner similar
to Independent Component Analysis (ICA) [15, 16], the original data points are thought of
as generated by a number of unknown signal sources (hidden variables), and the algorithm
determines a set of directions and signal source parameters, such as the signal emitted by a
source is dominant in its associated direction and mostly null in all other directions.

The above mentioned methods have one thing in common: they all discover a lower dimen-
sional embedding in a linear space of the original high-dimensional space. However, the
data-set may have non-linear structures invisible to PCA and in this case, a better / more nat-
ural set of dimensions can be obtained by applying techniques similar to Isomap [17]. The
idea behind Isomap is to consider the data points on a non-linear manifold and the distance
between them defined as the length of the geodesic as opposed to the line segment (Eu-
clidean distance). The geodesic is estimated as the minimum cost path in a graph generated
by associating the Euclidean distances as the costs of the edges between each data point and
its k-nearest neighbors. ST-Isomap, an extension to Isomap for data with both spatial and
temporal relationships [18], was used to derive behavior vocabularies from time-series data
of human motion [19]. However, a downside to Isomap based methods is represented by the
assumption that the data-set has many samples (in order to be able to estimate the geodesics
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accurately), which does not always hold true in the case of human motion databases.

The poses in the original data-set can also be modeled with a Gaussian Process Latent
Variable Model (GPLVM), another non-linear dimensionality reduction technique, related
to PCA but allowing for a non-linear mapping between the embedded and the original
space [20]. The method is better suited for small data-sets and is at the base of Scaled
GPLVM, employed by Grochow et al. to model poses in a set used to train a style-based IK
system [21].

2.2 Motion Segmentation

Another important problem in motion data stream analysis is how to split the potentially in-
finite stream into small, manageable chunks (segments), comprised of distinct motions. One
of the simplest segmentation techniques is to detect zero crossings of angular velocities [22];
as a result, the obtained motion segments are normally shorter than a logical motion and
correspond to motion primitives, such as raising a hand, tilting the head, etc.

Barbič et al. propose three segmentation techniques involving PCA, Probabilistic Principal
Component Analysis (PPCA) [23] and respectively Gaussian Mixture Model (GMM) in or-
der to detect cut-points between logically distinct motions (e.g. walking, punching, running)
in a stream. In their experiments the PPCA based algorithm provided the closest solution
to the ground truth; a possible explanation for this observation is that PPCA tracks changes
in the distributions describing the motions rather than the change in dimensionality as in
the case of PCA. Furthermore, GMM discards the temporal dependence between frames
and also cannot easily run in an unsupervised setting because it needs an initial estimate
of the number of Gaussians in the data-set. While there are algorithms to automatically
estimate the GMM and choose a model that maximizes some criterion, the authors report
sub-optimal number of Gaussians returned by auto-estimation using the Bayesian Informa-
tion Criterion [12].

The segmentation techniques above are simple to understand and straightforward to imple-
ment; more importantly they do not need a training phase and can be applied to virtually
any motion stream. There are however more involved algorithms that are first trained to

6



recognize classes of motions and then used to perform both stream segmentation and mo-
tion classification. Billon et al. propose an architecture where training, segmentation and
classification can be done on the fly; an agent is trained to recognize only one motion seg-
ment and stream segmentation is achieved by allowing all agents to look for the pattern they
are trained to recognize in the incoming data stream. The input stream is segmented only
if an agent detects the start, middle and end of the motion it was trained for, in the proper
order [24]. While this method allows the human operator to train and test the system on the
fly, it also scales poorly with the number of motion samples and is therefore not suitable for
a constrained computation resources environment such as a games console.

In the case where the input stream contains only brief transitions between known motions,
Li et al. propose several techniques that track the output of a classifier to detect motion
segments. In the first phase the classifier is trained to recognize motion classes; at run-
time the motion stream is divided into increasingly longer segments and each segment is run
through the classifier; local maxima in the classifier output represent recognized motions and
thus valid segments [25, 26]. Due to the classifier design, the Support Vector Machine (SVM)
architecture [26] provides more accurate results but also scales poorly with the number of
classes. The method based on similarity search [25] has poorer recognition rate but scales
better with the number of training samples through the use of an index [27].

2.3 Motion Recognition

Several approaches exist to the problem of motion recognition. Template matching algo-
rithms evaluate a similarity/distance measure between an unknown data input and prede-
fined, labeled motion sequences in a database. Vlachos et al. note that Euclidean distance is
inappropriate to capture similarities in high dimensional data due to sensitivity to noise and
small variations in the time axis, and offer as better alternatives the Dynamic Time Warping
(DTW) and Longest Common Subsequence (LCSS), extended to handle an arbitrary num-
ber of dimensions [28]. Quian et al. use joint angles to represent the motion and use the
Mahalanobis distance to measure similarity [29]. Li et al. define a non-metric similarity
measure (kWAS) based on PCA analysis of both the unlabeled input and the database matri-
ces of motion data, and employ it to perform both segmentation and recognition on the input
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stream [25].

An alternative to template matching is to further reduce the number of data dimensions by
clusterizing similar body poses / motion primitives and associate unique integer identifiers
to each cluster. A Hidden Markov Model (HMM) can be trained for each class of motions
so that its output matches the sequence of cluster identifiers of the training motions [30, 31].
Alternatively, since both the motion database and the input sequence are encoded as strings of
cluster IDs, one can employ pattern matching algorithms to perform motion recognition [10,
11].

SVM classifiers have also been employed successfully in motion recognition, generally
achieving a higher classification rate than HMMs. Li et al. use Singular Value Decomposition
(SVD) on the motion matrices to compute the two most representative eigenvectors and con-
catenate them to compute feature vectors for individual motion classes. The feature vectors
are used in training one-versus-one SVMs to discern between each pair of classes in the
database and their output is combined to both segment and determine the most probable
motion candidate in the input stream [32, 26].

HMM or SVM classifiers alone do not always produce the smooth outputs required by a
specific application. Several hybrid approaches were taken in order to tackle this problem.
For instance, Sukthankar and Sycara connect the SVM classifier outputs to a hand-coded
HMM in order to reduce state transitions caused by false detections [9]. Alternatively, Wan
et al. use HMMs as the first stage of classification, further processed by a SVM classifier in
order to reduce the ambiguities in the output [33].

Wang et al. employ Gaussian Process Dynamical Models (GPDMs) [34] to determine a map-
ping from the high dimensional input space to a low dimensional latent space with associated
dynamics. The result is a nonparametric model for the dynamic system (in this case the hu-
man performing a motion) that also accounts for uncertainty in the model. Although the
technique achieves good classification results, the authors report impractical training times
(i.e. 9 hours for 289 frames of data) [35].
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Chapter 3

Theoretical Background

This chapter sets forth the theoretical foundations needed by the implementation phase of this
project. The exposition closely follows the path taken by the motion data, starting from the
motion capture device, passing through pre-processing and dimensionality reduction stages,
and finally being used in either off-line classifier training or real-time segmentation and
classification.

3.1 Motion Capture

Motion Capture (MoCap) is a technique of recording and digitizing the motion of a (gen-
erally) human subject. It is widely used in the entertainment industry, medical research or
military applications and it is preferred over manual animation of a virtual model in the case
of long / complex motions. Existing MoCap devices typically assume the human subject
wears a special suit with markers placed at the joints and the motion to be captured takes
place in an area surrounded by receivers (e.g. cameras). The MoCap device samples the
position of the markers several times per second with respect to the receivers; given the fact
that the configuration of the receivers is known and will not change during the recording ses-
sion, a triangulation algorithm determines the 3D position of each marker. Applying prior
knowledge about the relative positions of the markers on the human skeleton, and assuming
the latter is non-deformable (e.g. the distance between certain markers is constant, because
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they are placed on the same non-deformable bone), the MoCap system can further infer the
relative orientation of each bone with respect to its parent.

In what follows, the MoCap device is abstracted as a black-box that can provide a topolog-
ical description of the subject (i.e. the hierarchy, length and relative positioning of bones),
a frame rate at which the motion data is sampled, and finally, for each sampled frame, a
vector of relative orientations for each bone in the skeleton plus a translation for the whole
model. Relying entirely on MoCap data generated on the fly is impractical, time-consuming
and potentially expensive; given a motion category one can usually find several versions of it
already recorded and stored in the CMU motion database freely available on-line [4]. At the
time of writing, the CMU database provides 2605 recorded sessions belonging to over 140
human subjects as either asf/amc or c3d files. However, for easier visualization and debug-
ging this project employs a MotionBuilder-friendly version of the CMU dataset converted to
BVH [36] file format.

3.2 The BVH File Format

This project uses a subset of BVH encoded motion clips in the CMU database for both the
training and the performance evaluation phase. BVH files are commonly used in professional
animation packages such as MotionBuilder or 3D Studio Max, and consist of two parts: a
preamble that describes the topology and proportions of the animated skeleton, and the actual
motion data, sampled at fixed time intervals. A sample file is given in Listing 3.1.

The file begins with the keyword HIERARCHY, followed by the description of the ani-
mated skeleton. A skeleton can have an arbitrary number of root joints (i.e. with no parents),
but typically there is only one, defined by the ROOT keyword. Once a root joint has been
defined, its child joints are defined inside accolades by the JOINT keyword. Further children
of child joints are defined recursively in a similar manner, inside enclosing accolades.

The relative position of a joint with respect to its parent is given by the parameters of the
OFFSET keyword. The animated channels of a joint are specified by the CHANNELS
keyword: the first parameter sets the number of variables and the rest (one of Xposition,
Yposition, Zposition, Xrotation, Yrotation, Zrotation) specify the meaning of each variable.
Bones are not explicitly defined, but they can be generated between connected joints. A
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special non-animated joint is artificially added at the end of each chain of joints with the
End Site keyword; it cannot have children joints on its own and is only useful in inferring
the length of the terminal bones.

Several observations must be made about the animated parameters. First of all, they are
relative to the space of the parent joint and in order to compute the orientations of bones
in world space at a given time, one must start from the root and propagate the computation
towards the leaf joints. Furthermore, the transform matrix of a joint relative to its parent is
computed as follows:

Mrelative = RaRbRc + T, with a, b, c ∈ {X, Y, Z} (3.1)

where RX , RY , RZ are rotation matrices around the X , Y , and respectively the Z axis,
{a, b, c} is a permutation of the set {X, Y, Z} that indicates the order the multiplication must
take place and must be identical to the order of rotations in the CHANNELS parameters,
and T is simply a matrix containing only the translation component initialized to the relative
joint offset.

The start of the motion data is marked by the MOTION keyword. Following it, the number
of frames in the motion is given as the parameter of the Frames keyword, and the sample rate
as the parameter of the Frame rate keyword. In the remainder of the file, all the animated
parameters mentioned in the hierarchy are listed in the exact order as they appear in the
skeleton description, one frame per line of text.

HIERARCHY

ROOT Hips

{

OFFSET 0.00000 0.00000 0.00000

CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation

JOINT LHipJoint

{

OFFSET 0 0 0

CHANNELS 3 Zrotation Yrotation Xrotation

JOINT LeftUpLeg

{

OFFSET 0.17314 -0.47571 2.01064

CHANNELS 3 Zrotation Yrotation Xrotation
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End Site

{

OFFSET 0.00000 -0.00000 1.04147

}

}

}

JOINT RHipJoint

{

OFFSET 0 0 0

CHANNELS 3 Zrotation Yrotation Xrotation

End Site

{

OFFSET -0.00000 -0.00000 1.10597

}

}

}

MOTION

Frames: 495

Frame Time: .0083333

2.2287 17.6234 -24.8011 0 0 0 0 0 0 -17 0 0 0 0 0

//...............................................

Listing 3.1: Sample BVH file

3.3 Smoothing & Filtering BVH File Data

A BVH file stores information about the skeleton (bone names and topology, position of
joints relative to the bones, etc.) and also the relative orientations of the bones with respect
to their parents at each sampled time-step, encoded as Euler angles. This representation poses
a problem when interpolating between frames (this happens when files sampled at different
rates are to be combined into the same motion database and the animations within need to be
re-sampled at a common frame rate) and is addressed in this project by converting the BVH
file to a proprietary format, where the animation is encoded using quaternions. Also, up to
cubic Bézier curves are fitted on the data to reduce the joint orientation noise / jitter observed
in BVH animations and make them sample rate independent [37].
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3.3.1 Bézier Curves

The Bézier curve is a parametric curve fn(t) that is a polynomial function of the parameter
t [38]. The degree n of the polynomial fn(t) is exactly one less the number of points defining
the curve, also called control points. A Bézier curve has the desirable property that it passes
exactly through the start and end control points, but generally does not contain the interior
control points. Instead, the first segment of the control points polygon is tangent to the start
of the curve and in a similar manner, the end of the curve is tangent to the last segment of the
same polygon. Formally, given control points P0, P1,..., Pn ∈ R, the Bézier curve associated
with the set of control points can be defined as:

fn(t) =
n∑

i=0

PiB
n
i (t) ∈ R, t ∈ [0, 1] (3.2)

where Bn
i (t) are Bernstein polynomials of degree n, defined as:

Bn
i (t) =

(
n

i

)
(1− t)n−iti (3.3)

A sample cubic Bézier curve is shown in figure 3.1. Directly from the definition the following
relations hold true:

f1(t) = (1− t)P0 + tP1

= (P1 − P0)t+ P0

f2(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2

= (P0 − 2P1 + P2)t
2 − 2(P0 − P1)t+ P0

f3(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3

= (3(P1 − P2) + P3 − P0)t
3 + 3(P0 − 2P1 + P2)t

2 − 3(P0 − P1)t+ P0 (3.4)
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Figure 3.1: Sample cubic Bézier curve defined by four control points.

3.3.2 Curve Fitting

The problem of fitting a Bézier curve to a set of data points is straightforward: given value
pairs (t0, p0), (t1, p1),...,(tn, pn), the sought after polynomial f(t) must fulfill the following
conditions:

• f(t0) = p0

• f(tn) = pn

• minimize
∑n

i=0(pi − f(ti))
2

Since higher degree Bézier curves exhibit too much unwanted oscillations, this presentation
will only focus on fitting a cubic polynomial to a data-set. The first two conditions above
imply the first and last control points are already known, i.e. P0 = p0 and respectively
P3 = pn. The remaining problem is to discover the remaining control points P1, P2, such
that the approximation error is minimized, and it is equivalent to solving the over-determined
system of equations:



(1− t1)3P0 + 3(1− t1)2t1P1 + 3(1− t1)t21P2 + t31P3 = p1

(1− t2)3P0 + 3(1− t2)2t2P1 + 3(1− t2)t22P2 + t32P3 = p2

· · ·

(1− tn−1)
3P0 + 3(1− tn−1)

2tn−1P1 + 3(1− tn−1)t
2
n−1P2 + t3n−1P3 = pn−1

(3.5)
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In matrix form, the system can be written as A× P = B, where:

A =


3(1− t1)2t1 3(1− t1)t21
3(1− t2)2t2 3(1− t2)t22

...
...

3(1− tn−1)
2tn−1 3(1− tn−1)t

2
n−1


P =

[
P1

P2

]

B =


p1 − (1− t1)3P0 − t31P3

p2 − (1− t2)3P0 − t32P3

...
pn−1 − (1− tn−1)

3P0 − t3n−1P3

 (3.6)

As mentioned before, the system of equations is generally overdetermined and a vector P
that minimizes the residual of the solution ‖A × P − B‖ can be easily determined as P =

A+ × B, where A+ represents the pseudo-inverse of A. A+ can be computed from the
Singular Value Decomposition (SVD) of matrix A and suitable algorithms are thoroughly
discussed in numerical methods literature [39].

3.3.3 Smoothing & Filtering

Smoothing and filtering of the motion data is obtained by a curve simplification algorithm
applied on each of its dimensions such that the difference between the original data and the
approximation curves is less than a given (small) threshold. Closely following the exposition
of Önder et al. a pseudo-code implementation of the curve simplification technique is given
in Algorithm 1.
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Input: Set of motion channel values P0...Pn equally spaced in time
Output: Set of approximating Bézier curves

begin
while Enough data points do

Fit a curve on the data set passing through the first and last points
Compute lineLength = ‖ ¯P0Pn‖
Compute maxError = the maximum distance between the curve and ¯P0Pn

Locate the point Pi in the data-set corresponding to maxError

if maxError
lineLength

≤ Threshold then
Add curve to the set of approximating Bézier curves
Stop subdivision

end
else

Repeat algorithm on data-set P0...Pi

Repeat algorithm on data-set Pi...Pn

end
end

end
Algorithm 1: Curve simplification algorithm for filtering the BVH files motion data.

3.4 Dimensionality Reduction

The skeleton in the BVH files has 31 pivots (bones) and in the case where each pivot is rep-
resented by a quaternion, a motion frame will be encoded as a line vector containing 124
floating point components. As mentioned before, not all dimensions are equally important
and a large proportion of pose information can be maintained with only a subset of the orig-
inal components. To determine the intrinsic dimensionality of the motion data, this project
submits the entire motion database to Principal Component Analysis (PCA).

3.4.1 Principal Component Analysis

PCA is a technique that transforms data to a new coordinate system where the new coor-
dinates are ordered decreasingly by the variance of data along them [40]. Mathematically,
given a data matrix A with m rows, where each row contains a sample (in this case a mo-
tion frame) of a n-dimensional stochastic variable X ∈ Rn with zero empirical mean, PCA
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computes the decomposition:

A = UΣV T (3.7)

such that U ∈ Rm×m, V ∈ Rn×n, Σ = Diag(σ1, σ2, · · · , σmin(m,n)), U and V are orthog-
onal, and σ1 ≥ σ2 ≥ .... ≥ σmin(m,n) ≥ 0 are the eigenvalues of the matrix A. The first
column of V is the direction in the space where variable X lives, along which the samples
in the data matrix A have the greatest variance, and therefore is deemed the first principal
component. The second column of V represents the direction in Rn corresponding to the
second largest variance of the data and therefore is called the second principal component,
and so on.

The largest variance of the input data is concentrated in the first r directions (preferably
r � n) obtained after PCA and one can consider as relevant only the first r dimensions. The
fraction of information preserved by choosing r as the number of relevant dimensions can be
estimated by [12]:

fQuality =

∑r
i=1 σ

2
i∑n

i=1 σ
2
i

(3.8)

The number r of most relevant dimensions is determined by requiring that 1 ≥ fQuality ≥ τ

where τ is a user selected parameter (i.e. 0.95). The raw A ∈ Rm×n data matrix is then
transformed to its reduced representation Ared ∈ Rm×r by the following formula:

Ared = A · [v1|v2|...|vr] (3.9)

where v1, · · · , vr are the first r column vectors of matrix V . To inspect the quality of
the dimensionality reduction, one may need to compute the approximate raw data matrix
Aapprox.raw from Ared. Due to the fact that vi are orthogonal vectors, the formula is simply:

Aapprox.raw = Ared · [v1|v2|...|vr]
T (3.10)

A few remarks must be made about the time complexity of PCA. The decomposition of
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data matrix A = UΣV T is computed by SVD and the algorithms that perform it have a
complexity of O(mn2) [39]. Generally m � n - the number of frames is much larger
than the number of dimensions - and the computation time can quickly become prohibitive.
Fortunately, by defining the matrix M as M = ATA, M ∈ Rn×n and computing SVD for
it, the computation time can be drastically reduced. The matrix M as defined above is a
square matrix of size n, that is also symmetric. The following relation holds true, obtained
by replacing A with its SVD decomposition in the definition of M and observing the fact
that U is orthogonal:

M = ATA

= (UΣV T )TUΣV T

= V ΣUTUΣV T

= V Σ2V T (3.11)

Knowing that M is symmetric and SVD for symmetric matrices is unique, it is easy to
observe that the right eigenvectors of A are the same as the eigenvectors of M and the
latter’s eigenvalues are the squares of the eigenvalues of A. Therefore, all the data needed
by the dimensionality reduction (i.e. right eigenvectors and the squared eigenvalues) can be
computed from the SVD of M, having a much smaller complexity of O(n3).

3.5 Motion Segmentation

Due to the fact that the BVH files usually contain more than one motion, it is necessary to al-
low for specifying portions of interest inside a motion clip. In order to tackle larger amounts
of data, this project implements an automatic Probabilistic PCA [23] based segmentation of
motion clips [12] into distinct behaviors (i.e. walking, cartwheel, etc.), while also allowing
for manual editing of the cut points.
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3.5.1 Probabilistic Principal Component Analysis

PPCA is an extension to PCA where the dimensions higher than r are no longer dropped but
modeled with noise. Formally, closely following the exposition of Tipping and Bishop [23],
given an observed variable y ∈ Rn (in this case a frame of motion data), PPCA relates it to
a set of latent variables x ∈ Rr, r < n, such that:

y = Wx+ µ+ ε (3.12)

where W ∈ Rn×r is a matrix relating x and y, µ is the empirical mean of the observed
variable y, and ε ∼ N(0, λI) represents isotropic Gaussian noise. Therefore, PPCA models
the observed variable y as having a Gaussian distribution with mean µ and covariance matrix
C = WW T + λI . Maximum likelihood estimators for both W and λ are available in closed
form, as follows:

λ =
1

n− r

n∑
i=r+1

λi

W = Vr(Λr − λI)
1
2R (3.13)

where λi are the eigenvalues of the sample covariance matrix S ordered decreasingly by
magnitude, Vr ∈ Rn×r is the matrix having the column vectors vi equal to the corresponding
eigenvectors of matrix S, Λr = Diag(λ1, · · · , λr) and R is an arbitrary r × r orthogonal
rotation matrix.

Following the notations in the previous section, the sample covariance matrix S of a motion
matrix A ∈ Rm×n containing observations of the variable y (motion frame) as line vectors is
given by:

S =
1

m− 1
ATA =

1

m− 1
M =

1

m− 1
V ΣV T (3.14)

where V ΣV T is the SVD of M . Let the eigenvalues of matrix M = ATA be σ2
i . By
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virtue of uniqueness of SVD for the case of symmetric matrices, the eigenvalues of S will
be λi = 1

m−1
σ2

i and the eigenvectors of S will be identical to those of M . Substituting the
formula for λi and Equation 3.13 in the definition of covariance matrix, the following holds
true:

C = WW T + λI

= Vr(Λr − λI)
1
2RRT (Λr − λI)

1
2V T

r + λI

= Vr(Λr − λI)V T
r + λI

=
r∑

i=1

viv
T
i (λi − λ) +

n∑
i=1

viv
T
i λ

=
r∑

i=1

viv
T
i λi +

n∑
i=r+1

viv
T
i λ

= V Diag(λ1, · · · , λr, λ, · · · , λ)V T

=
1

m− 1
V Σ∗V T (3.15)

where Σ∗ = Diag(σ2
1, · · · , σ2

r , σ
2, · · · , σ2) and σ2 = 1

n−r

∑n
i=r+1 σ

2
i .

3.5.2 Detecting Logically Distinct Motion Segments

The idea behind PPCA based motion segmentation is to create a probabilistic model for a
number of motion frames (i.e. a segment) and detect how well the following frames are
predicted by the model. If the model behaves well, the frames are added to the current
segment and the model parameters are re-estimated. In the opposite case, the frames are
considered as the start of a new, logically distinct motion segment, a cut-point is generated
at the current position in the motion stream, and the whole process repeats starting from
the cut-point [12]. Formally, assuming that PPCA was used to model the first K frames
in a motion stream and compute a covariance matrix C as in Equation 3.15, the likelihood
of frames K + 1 to K + T belonging to the model is estimated by computing an average
Mahalanobis distance H:
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H =
1

T

K+T∑
i=K+1

(xi − x̄)TC(xi − x̄) (3.16)

where xi is the motion vector at frame i and x̄ is the mean of the motion vector in the first K
frames. Segments are determined by tracking the peaks and valleys of H along the motion
stream and inserting cut-points whenever a valley is followed by a peak. A sample pseudo-
code implementation is given in Algorithm 2.

Input: Motion stream, T = number of look-ahead frames, D = frame increment
Output: Set of cut-points

begin
K = T

while Motion stream not empty do

x̄ = 1
K

∑K
i=1 xi

Compute C using Equation 3.15
Compute H using Equation 3.16

if H is at peak and last valley is far enough then
Append cut-point to returned set
Consume K frames from the motion stream
K = T

end

K = K + T
end

end
Algorithm 2: PPCA based approach to motion stream segmentation.

3.6 Clusterizing Similar Motions

After identifying portions of interest in the database motion clips, logically similar motion
samples must be grouped together into motion classes so that classifiers can be trained to
recognize them. Again, in the spirit of minimizing user intervention, this project implements
an auto-clusterization technique based on the kWAS similarity measure [25]. Given two
motion matrices Ma = AT

aAa, Mb = AT
b Ab, the kWAS similarity measure between Ma and
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Mb is defined as:

kWAS(Ma,Mb) =
1

2

k∑
i=1

((
σi∑n

j=1 σj

+
λi∑n

j=1 λj

)
|ui · vi|

)
(3.17)

where σi, λi are the eigenvalues of the matrices Ma and respectively Mb, ui, vi are the eigen-
vectors of the same motion matrices corresponding to the eigenvalues σi, and respectively
λi, and k is an integer that controls how many (eigenvalue, eigenvector) pairs are considered,
1 < k < n. The insight for this measure is that similar motions will have similar principal
directions / variations along these principal directions. Using the same reasoning as in the
case of dimensionality reduction, not all principal directions are equally important, and we
can safely limit the number entering the similarity measure to only the most representative k
directions corresponding to the k largest eigenvalues.

In order to discover similar motion samples, each pair of motion segments has its kWAS

measure computed and pairs with a similarity score larger than a threshold τ (i.e. τ = 0.95)
are grouped together in the same motion class. A lower value for τ generates a smaller
number of classes, where more logically distinct motions are merged together, while a higher
value causes the opposite behavior, with more than one class for the same logical motion
class.

3.6.1 Rand Index

The performance of the clusterization based on the kWAS measure is evaluated against the
ground truth using the Rand index, a normalized measure of the number of correct cluster-
ization decisions [41]. Each pair of motion samples can be either in the same cluster or in
distinct clusters. Based on whether the pair naturally belongs to the same cluster, 4 situations
may occur:

• True Positive (TP): the pair is in the same cluster and naturally belongs to the same
cluster;

• False Positive (FP): the pair is in the same cluster and naturally belongs to distinct
clusters;
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Ground Truth
Positive Negative

Observed
Outcome

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 3.1: Sample confusion matrix.

• True Negative (TN): the pair is in distinct clusters and naturally belongs to distinct
clusters;

• False Negative (FN): the pair is in distinct clusters and naturally belongs to the same
cluster;

The four values are commonly organized into a confusion matrix, as shown in Table 3.1.
Given the above notations, the Rand index is formally defined as:

RI =
TP + TN

TP + FP + TN + FN
(3.18)

It is easy to see that the Rand index takes values between 0 and 1. A high value (close to 1)
indicates a clusterization solution close to the ground truth, while a value close to 0 indicates
almost random random behavior of the clusterization algorithm.

3.7 Motion Classification

SVM are a powerful approach to supervised learning problems such as classification [42, 43]
and were successfully applied to motion data. The theory behind SVMs is based on the
idea of finding an optimal separation hyperplane between object classes, in the sense of
maximizing the in-between-class margin.

3.7.1 Support Vector Machines

Formally, given m data samples x1, x2, ..., xm ∈ Rn and a set of class labels y1, y2, ..., ym

such that sample xi is associated with the class label yi and yi ∈ {±1}, the problem of
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classification is to create a function f(x)→ {±1} such that f best predicts the class label of
x ∈ Rn.

The SVM approach to classification is to consider the training samples x1, x2, ..., xm linearly
separable in a higher, possibly infinite dimensional space, and search for f as the equation
of the separating hyperplane that maximizes the distance (margin) between the two classes.
Given the (usually unknown) mapping φ(x)→ S that converts the data points x ∈ Rn to the
higher dimensional space S where the classes are linearly separable, the decision function f
as defined by the SVM formulation is:

f(x) = wT · φ(x) + b (3.19)

such that f(x) ≥ 1 for ∀xi that have label yi = 1 and f(x) ≤ −1 for ∀xi that have label
yi = −1. It is easy to notice that f is the equation of a (separating) hyperplane in S, w is
the hyperplane normal, and b is the hyperplane offset (scalar). As emphasized before, f is
determined by maximization of the margin between classes that is inverse proportional to
the norm of w. Therefore, the following problem must be solved (maximum margin SVM) in
order to determine the SVM decision function:

minimize :
1

2
wTw

s.t. : yi(w
Tφ(xi) + b) ≥ 1, i ∈ {1, ...,m} (3.20)

Of course, the assumption that a separating hyperplane exists between classes can be unreal-
istic and it can be relaxed by incorporating outliers (1-norm soft-margin SVM):

minimize :
1

2
wTw + C

m∑
i=1

εi

s.t. : yi(w
Tφ(xi) + b) ≥ 1− εi

: εi ≥ 0, i ∈ {1, ...,m} (3.21)
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The first step in solving the SVM minimization problem is to form the Lagrangian. For the
1-norm soft-margin SVM, the Lagrangian is:

L =
1

2
wTw + C

m∑
i=1

εi −
m∑

i=1

αi(yi(w
Tφ(xi) + b)− 1 + εi)−

m∑
i=1

βiεi (3.22)

The extremum point is found by setting partial derivatives with respect to w, εi and b to zero:

∂L

∂εi

= C − αi − βi = 0

∂L

∂b
=

m∑
i=1

αiyi = 0

∂L

∂w
= w −

m∑
i=1

αiyiφ(xi) = 0 (3.23)

Replacing the above condition in the Lagrangian, the initial SVM problem is transformed
into its dual:

maximize :
1

2

m∑
i,j=1

αiαjyiyjφ(xi)φ(xj)−
m∑

i=1

αi

s.t. : 0 ≤ αi ≤ C

:
m∑

i=1

αiyi = 0 (3.24)

As mentioned before, the mapping φ to space S is not usually known, but since in the dual
formulation the vectors in the unknown space S are only involved in dot products, the prob-
lem can be solved by the kernel trick. The trick consists in replacing the dot products
φ(xi)φ(xj) with a kernel function K(xi, xj) that has the mathematical properties of inner
product in the higher dimensional space S. A common kernel function is the Gaussian RBF,
defined as:
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K(xi, xj) = exp

(
−‖xi − xj‖2

2σ2

)
(3.25)

The normal vector w to the maximum margin separating hyperplane is a linear combination
of training sample mappings in S. From the Karush-Kuhn-Tucker conditions, if:

• αi = 0, φ(xi) is on the correct side of the plane;

• 0 < αi < C, φ(xi) is on the plane boundary and is called a support vector;

• αi = C, φ(xi) is an outlier.

As soon as the αi factors are determined, the plane offset b can be estimated as [39]:

b =

∑m
i=1 αi(C − αi)(yi − wTφ(xi))∑m

i=1 αi(C − αi)
(3.26)

3.7.2 Support Vector Representation and Discrimination Machines

SVMs have been designed to solve binary classification problems, an area where they exhibit
very good accuracy. However, in real-world situations, it is usually necessary to discern
between class and non-class samples and reject the latter as non-classifiable. In this respect,
the original SVM formulation does not produce accurate results and alternative definitions
were created to tackle this problem. The current implementation uses SVRDM to achieve
binary classification with good rejection of non-class samples [44]. The kernel function is
fixed to Gaussian RBF, the offset term b is dropped since for the particular choice of kernel it
does not have a major influence on the solution, and the SVRDM for a two class classification
problem seeks to find functions f1(x) = hT

1 φ(x), f2(x) = hT
2 φ(x), such that:
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minimize :
‖h1‖2

2
+ C

m∑
i=1

εi

s.t. : εi ≥ 0

: yih
T
1 φ(xi) ≥ +T − εi,∀yi = +1

: yih
T
1 φ(xi) ≥ −t− εi, ∀yi = −1 (3.27)

and in the same time

minimize :
‖h2‖2

2
+ C

m∑
i=1

ξi

s.t. : ξi ≥ 0

: −yih
T
2 φ(xi) ≥ +T − ξi,∀yi = −1

: −yih
T
2 φ(xi) ≥ −t− ξi,∀yi = +1 (3.28)

It is easy to see that a SVRDM is basically composed of two SVMs, where the±1 thresholds
were replaced by T and t respectively. If T = 1, t = −1, the SVRDM decision functions will
be identical, h1 = h2 and the classification behavior is that of a regular SVM. However, if
t is increased towards T , each decision function will tighten around the samples of the class
it represents; therefore, combining the decision functions in the SVRDM has the desirable
effect of improving the rejection capability over a conventional SVM. It is worth noting
that solving the above formulation for a SVRDM implies solving two identical quadratic
programming problems with box constraints. The first Quadratic Programming Problem
(QPP) solves for h1 that best represents class A with respect to class B, and the second QPP
solves for h2 that best represents class B w.r.t. class A. Since the training samples are the
same, the problems differ only by the threshold values, the latter QPP simply replacing T
with t.

Because the term b found in regular SVMs was dropped from the SVRDM definition, the
dual problem for a SVRDM is easier to solve. Indeed, the Lagrangian for the first half of a
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SVRDM is:

L =
1

2
hT

1 h1 + C
m∑

i=1

εi −
m∑

i=1

αi(yih
T
1 φ(xi)− τi + εi)−

m∑
i=1

βiεi (3.29)

where τi = T , if yi = 1 and −t otherwise. By setting again the partial derivatives of the
Lagrangian w.r.t. h1 and εi to zero,

∂L

∂εi

= C − αi − βi = 0

∂L

∂h1

= h1 −
m∑

i=1

αiyiφ(xi) = 0 (3.30)

the dual of the SVRDM problem becomes:

maximize :
1

2

m∑
i,j=1

αiαjyiyjKij −
m∑

i=1

αiτi

s.t. : 0 ≤ αi ≤ C (3.31)

As mentioned before, this is a QPP problem with box constraints, which can be solved by
successive over-relaxation (SOR). This project implements a SOR algorithm based on the
code from Numerical Recipes [39] with a modified relaxation replacement [45]:

αk+1
i = αk

i −
1

Kii

(
i−1∑
j=1

Kijα
k+1
j +

m∑
j=i

Kijα
k
j − τi) (3.32)

A sample pseudo-code implementation of the SOR technique that solves the SVRDM prob-
lem is given in Algorithm 3. Note that the procedure must be called twice, once for each half
of the SVRDM.
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Input: Set of training samples x1,...,xm

Output: Vector of weights α1,...,αm

begin
Set αi ← 0,∀i ∈ {1, · · · ,m}
while ∃i s.t. |αk

i − αk−1
i | > threshold do

for i← 1 to m do

Compute αk+1
i from Equation 3.32

if αk+1
i < 0 then αk+1

i ← 0
if αk+1

i > C then αk+1
i ← C

end
end

end
Algorithm 3: SOR algorithm for training a SVRDM

3.7.3 Estimation of SVRDM Parameters

An important problem in proper training of SVRDMs (and more generally, SVMs) to discern
between two classes of objects, is represented by the choice of parameters. In the case where
the kernel is the Gaussian RBF function as defined by Equation 3.25, there are only two
parameters that need be considered: C, the outlier penalty, and σ, the kernel width. Keerthi
and Lin provide a good analysis on the asymptotic behavior of SVMs with Gaussian ker-
nel, pointing out the cases where the solution manifests undesired traits such as underfitting
(the SVM recognizes all space as belonging to the trained class) or overfitting (the SVM
recognizes the training samples perfectly but virtually nothing else) [46].

Traditionally, bothC and σ are estimated by testing the generalization ability of various SVM
(one for each combination of (C, σ)) by cross-validation and choosing the model with the
best accuracy. However, parameter estimation by cross-validation is very time-consuming,
and in this project an automatic method for estimation of σ is employed [44]. The penalty
incurred by incorporating outliers has a fixed value of 10, following the observation in the
original paper also confirmed by personal tests, that its choice influences the classifier per-
formance only to a very small amount.

The technique for auto-estimation of σ is based on another concept introduced by Yuan
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and Casasent, Support Vector Representation Machine (SVRM), briefly discussed in what
follows.

Support Vector Representation Machines

A SVRM is basically a variant of a one-class SVM with no bias term and a Gaussian kernel;
its purpose is to best learn to distinguish samples belonging to a class with respect to the
rest of the space, in other words to create a representation of a class. The difference from a
common SVM is that the training process requires samples only from the class that needs to
be learned, samples from the non-class are assumed to be not available. Formally, a SVRM
strives to determine a decision function f such that f(x) ≥ T for each x belonging to the
represented class and f < T otherwise. Given the training samples x1,...,xm, the SVRM
decision function is determined by solving the following minimization problem:

minimize :
‖h‖2

2
+ C

m∑
i=1

εi

s.t. : εi ≥ 0

: hTφ(xi) ≥ +T − εi,∀i ∈ {1, · · · ,m} (3.33)

The problem is almost identical to the one of SVRDM, although somewhat simpler, and the
reasoning is similar; the associated Lagrangian is given by:

L =
1

2
hTh+ C

m∑
i=1

εi −
m∑

i=1

αi(h
Tφ(xi)− T + εi)−

m∑
i=1

βiεi (3.34)

Again, the partial derivatives of the Lagrangian w.r.t. h and εi need to be zero at the point of
extremum:
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∂L

∂εi

= C − αi − βi = 0

∂L

∂h
= h−

m∑
i=1

αiyiφ(xi) = 0 (3.35)

And the dual of the SVRM problem becomes:

maximize :
1

2

m∑
i,j=1

αiαjKij − T
m∑

i=1

αi

s.t. : 0 ≤ αi ≤ C (3.36)

It is easy to see the SVRM problem is indeed a simplified version of the SVRDM discussed
above, with yi = 1 and τi = T for ∀i ∈ 1, · · · ,m. The same SOR technique given by
Algorithm 3 is used to compute the vector of weights αi.

Estimation of σ

Following the work of Yuan and Casasent [44] a sample pseudo-code implementation of the
auto-estimation of σ is given in Algorithm 4. In the first part, the algorithm exploits the
potential clusters in the training data and estimates its approximate bounding boundary. A
cluster radius R is empirically estimated as a factor (2.2 in the original formulation) of the
average nearest-neighbor distance between the training samples, and m SVRMs are trained
for samples inside spheres of radius R centered around each sample. The σ value for the
samples inside a sphere is easily estimated as the average distance from its centroid to each
sample.

Further on, the algorithm attempts to estimate the SVRM bounding boundary around training
data in feature space. The bounding boundary of a SVRM is a subset of the training samples
xi for which the SVRM decision function f is equal to the threshold value T . Since for the
vectors in the training set that are not support vectors (i.e. αi = 0) the decision function
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is always f(xi) > T , the bounding boundary is a subset of the SVRM support vectors.
Knowing that support vectors with αi = C are associated with outliers and therefore f(xi) <

T (a direct consequence of the KKT conditions), the bounding boundary is actually the set of
support vectors xk such that 0 < αk < C. To compute the estimation of bounding boundary,
for each of them SVRMs, the algorithm tests whether the sample used to generate the SVRM
training sphere is located on its local bounding boundary. If it is, then the sample is probably
on the bounding boundary of the SVRM representing the entire set of training samples and
is therefore included in the estimation.

After obtaining an estimation of the SVRM bounding boundary, several values of σ are used
to train a SVRM for the entire set of samples. The best σ value is the one that produces a
SVRM bounding boundary that best matches the previously estimated bounding boundary.
The match cost is computed as the cardinality of the set intersection between the current σ
SVRM bounding boundary and the estimated boundary. Testing increasingly larger values of
σ is also important because it prevents choosing too small values that produce SVRMs with
many support vectors, and thus a high matching cost, at the expense of poorer generalization
ability.

It is worth noting that up to this point the algorithm only estimates a σ value for a SVRM,
in other words, for a single class classifier. To extend the procedure to a two class SVRDM,
Yuan and Casasent first apply the algorithm for the samples in the first class and then for the
samples in the second class; the SVRDM σ value is simply chosen as the arithmetic mean of
the σ values obtained for each class [44].

3.7.4 Computing Feature Vectors from Motion Segments

Training a SVRDM is done with feature vectors that can be thought as same length sum-
maries of the class samples to be learned. In this case, the samples consist in variable length
motion segments, represented by the motion matrices Ai. Following the argumentation in Li
et al., for a given motion sample with matrix Ai, the associated feature vector FVi is defined
as:
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Input: Set of training samples x1,...,xm

Output: Value of σ

begin
for i← 1 to m do di = minj∈{1,··· ,m},j 6=i‖xi − xj‖
d̄← 1

m

∑m
i=1 di

R← 2.2d̄
EstimatedBoundary ← ∅
for i← 1 to m do

S ← {xj|R > ‖xi − xj‖}
c← 1

|S|
∑

xj∈S xj

r ← 1
|S|
∑

xj∈S ‖xj − c‖
Train SVRM for samples in S with σ ← r

if xi ∈ SVRM Bounding Boundary then
EstimatedBoundary = EstimatedBoundary ∪ {xi}

end
end
σbest ← σmin

scorebest ← 0
for σ ← σmin to σmax do

Train SVRM for all m samples
score← |SV RMboundary ∩ EstimatedBoundary|
if score ≥ scorebest then

σbest ← σ
scorebest ← score

end
end
return σbest

end
Algorithm 4: Estimation of σ for a SVRM

33



FVi =

[
σ1∑n
j=1 σj

· vT
1 | · · · |

σk∑n
j=1 σj

· vT
k

]
(3.37)

where v1, ..., vk are the dominant right eigenvectors of matrix Ai corresponding to the eigen-
values σ1, · · · , σk, and k selects the number of (eigenvalue, eigenvector) pairs used in the
concatenation [26]. The insight for this definition resembles that of the kWAS measure men-
tioned above: similar motions will have dominant directions very close, and the 1-normalized
eigenvalues are used to scale the importance of the eigenvectors.

Li et al. noticed that since the eigenvalues of matrixAi are positive, its right eigenvectors can
have an opposite sign as long as the corresponding left eigenvectors also have opposite signs.
The authors propose a procedure to ensure a set of eigenvectors are properly oriented, and
an implementation in pseudo-code is given in Algorithm 5, where the number of training
samples is denoted by m, and the motion segments given in the form of motion matrices
Ai, i ∈ {1, · · · ,m} have the first k right singular vectors symbolized by vi

1, · · · , vi
k.

Input: Set of eigenvectors vi
j, i ∈ {1, · · · ,m}, j ∈ {1, · · · , k}

Output: The same set of (potentially altered) eigenvectors

begin
for j ← 1 to k do

v̄j ← 1
m

∑m
i=1 v

i
j

Sj ←
[
v1

j − v̄j| · · · |vm
j − v̄j

]T
UΣW T ← SV DDecomposition(Sj)
w1 ← first right eigenvector of matrix Sj

for i← 1 to m do if w1 · vi
j < 0 then vi

j = −vi
j

end
end

Algorithm 5: Algorithm ensuring that a set of eigenvectors have consis-
tent signs.

3.7.5 Non-Linear Dimensionality Reduction

Due to the fact that in the case of motion recognition the number of feature vector dimensions
is high compared to the number of training samples, there is a risk of over-training / over-
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fitting when computing the SVRDM decision function. This implementation employs a non-
linear dimensionality reduction technique on the training samples, that uses class centroids in
high dimensional space as a basis to compute new 2-dimensional feature vectors that are well
separated [47]. Formally, given two object classes C1, C2, a set of n-dimensional samples
xj

i ∈ Cj, i ∈ {1, · · · , nj}, j ∈ {1, 2}, and a generally unknown mapping Ψ from sample
space to a N -dimensional feature space, Park and Park first define the centroid matrix [47]:

C =

[
1

n1

∑
Ψ(x1

i ),
1

n2

∑
Ψ(x2

i )

]
∈ RN×2 (3.38)

Matrix C can be factored using QR-decomposition and let the thin QR factorization of C be
C = Q1R1, where Q1 ∈ RN×2 and R1 ∈ R2×2. It is easy to see that matrix CTC can be
entirely computed using the kernel trick, since it involves only dot products between vectors
mapped to potentially unknown feature space:

CTC =

[
1
n2

1

∑
K(x1

i , x
1
j) 1

n1n2

∑
K(x1

i , x
2
j)

1
n1n2

∑
K(x1

i , x
2
j) 1

n2
2

∑
K(x2

i , x
2
j)

]
(3.39)

Also, let the kernel function K be the Gaussian RBF; CTC is therefore symmetric positive
definite and it allows for a Cholesky decomposition CTC = LLT , with L ∈ R2×2 a lower
triangular matrix. Given the fact that matrix C has a full column rank, the R1 matrix from
the QR factorization will be equal to LT [48].

Given a vector x ∈ Rn, the non-linear dimensionality reduction technique presented here
computes the reduced vector x̂ ∈ R2 as an orthogonal transformation of vector x in feature
space:

x̂ = QT
1 Ψ(x) = (RT

1 )−1RT
1Q

T
1 Ψ(x) = (RT

1 )−1(Q1R1)
T Ψ(x) = L−1CT Ψ(x)

= L−1

[
1
n1

∑
K(x1

i , x)
1
n2

∑
K(x2

j , x)

]
(3.40)

The above algorithm uses all training samples in a set in order to compute the cluster matrix
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C and therefore may have performance issues for large training sets. However, some of
the samples in the training set can be omitted from the computation of the cluster matrix
without significantly altering the final result. The representative vectors that describe the
centroid of a class are determined here by computing the minimum enclosing hypersphere
around its samples in feature space [49]. Formally, the problem is formulated as follows:
determine point a such that radius R of a hypersphere containing the points in feature space
is minimized:

minimize : R2

s.t. : ‖ψ(xi)− a‖2 ≤ R2 + εi

: εi ≥ 0 (3.41)

Applying the same reasoning as in the case of SVM, i.e. computing the Lagrangian, im-
posing the extremum point constraints, performing the kernel trick in the particular case of
Gaussian RBF kernel, the dual problem becomes:

maximize :
n∑

i,j=1

αiαjKij

s.t. :
n∑

i=1

αi = 1

: 0 ≤ αi ≤ C (3.42)

where again C is the penalty incurred by the incorporation of outliers, αi are Lagrange
multipliers and the sought-for solution a is given by a =

∑n
i=1 αiψ(xi). The dual problem is

again a QPP problem with box constraints and an additional equality constraint. The support
vectors for the centers of each class are thus determined as the training samples with non-
null coefficients αi and only these are further considered by the non-linear dimensionality
reduction algorithm when computing the transformation to 2-dimensional feature vectors.
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3.7.6 Multi-Class Classifier Design

As mentioned before, SVMs have been developed mainly for binary classification. Several
approaches exist for solving multi-class classification problems; for instance, one can employ
n one-versus-rest binary classifiers. This approach involves training the n classifiers such
that they can recognize the desired class and reject the other n−1. The one-vs-rest classifiers
do not usually exhibit the best possible performance due to the imbalanced training set (it
can be expected that the number of negative training samples will be on average n − 1

times the number of positive training samples) [50, 51], and better classification accuracy
is obtained by training binary classifiers for all n(n − 1)/2 pairs of classes. However, this
solution also has some issues: first of all, the classification time is quadratic with the number
of classes, making it unpractical for problems with a large number of classes, and second,
given a sample x ∈ C1 to be classified, there will only be n− 1 classifiers that have actually
’seen’ the sample in training and can make an informed decision, the other (n− 2)(n− 1)/2

have a big chance of miss-classification due to the poor rejection ability of the conventional
SVM.

A solution with both a reduced classification complexity and better accuracy due to improved
rejection capacity is the SVRDM based hierarchical classifier [52]. The idea is to create a
classification tree, where each node can discern between two sets of classes (macro-classes).
The classification of sample x starts from the root node; a SVRDM output is evaluated to
determine whether the sample belongs to the left child node macro-class, the right child
node macro-class, or is an unknown (non-class) sample. If the sample is recognized, the
classification process continues in a recursive manner, following the edge to the child node
that is trained to classify the sample. A complete classification (from root to leaf nodes) takes
about log2 n SVRDM evaluations, less than the one-vs-all or one-vs-one methods mentioned
above.

Wang and Casasent [52] create the hierarchical classifier tree such that at each node the
two macro-classes to be recognized are best separated in feature space. A pseudo-code
implementation of this technique is given by Algorithm 6, where N denotes the number
of classes, xj

i , i ∈ {1, · · · , nj}, j ∈ {1, · · · , N} represent the training samples and Ψ is a
generally unknown mapping from sample space to feature space.

Wang and Casasent show that Algorithm 6 can be run without explicitly knowing the map-
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Input: Training samples xj
i

Output: Partitioning of the input classes into two best separated
macro-classes

begin
Estimate σ for the set of all training samples using Algorithm 4
for j ← 1 to N do

Train SVRM for class j and compute hj =
∑nj

i=1 α
j
i Ψ(xj

i )
end
Assign all hj randomly into clusters Q1, Q2

repeat
for j ← 1 to N do

Let centroids in feature space be
Ψ(mk) = 1

|Qk|
∑

hi∈Qk
hi, k ∈ {1, 2}

Let the distances to centroids be
dk = ‖hj −Ψ(mk)‖, k ∈ {1, 2}
Assign hj to cluster Qi, such that i = argmink∈{1,2}dk

end
until Clustering solution converged

end
Algorithm 6: Computing the partition into two best separated macro-
classes.
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ping Ψ to feature space, because the distances dk can be computed using the kernel trick.
Indeed, the formula for distance is reduced to computing a sum of products hT

i hj:

dk = ‖hj −Ψ(mk)‖
1
2

= ‖hj −
1

|Qk|
∑

hi∈Qk

hi‖
1
2

=

(hj −
1

|Qk|
∑

hi∈Qk

hi

)T (
hj −

1

|Qk|
∑

hi∈Qk

hi

) 1
2

=

hT
j hj − 2

hT
j

|Qk|
∑

hi∈Qk

hi +
1

|Qk|2
∑

hi1
,hi2
∈Qk

hT
i1
hi2

 1
2

(3.43)

For any i, j ∈ {1, · · · , N},

hT
i hj =

ni∑
k=1

αi
kΨ(xi

k)

nj∑
l=1

αj
l Ψ(xj

l )

=

ni∑
k=1

nj∑
l=1

αi
kα

j
l Ψ(xi

k)Ψ(xj
l )

=

ni∑
k=1

nj∑
l=1

αi
kα

j
lK(xi

k, x
j
l ) (3.44)

where K is again the Gaussian RBF kernel.

3.8 Edit Distance on Real Sequence

As noted in [25, 26], motion recognition algorithms based on SVD decomposition of the
motion matrix have a few caveats; they are insensitive to the direction of motion and more
generally, to the order of frames inside the matrix. Indeed, given the fact that PCA extracts
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the directions with the largest variance in the motion matrix, any permutation of the lines
in the matrix will generate the same largest variance directions. Therefore, using eigenvec-
tor based classifiers to perform motion stream segmentation leads to poor results in that it
soon desynchronizes with the ground-truth segments. An obvious example is the case where
the stream contains the same motion performed in rapid succession; desynchronization will
occur because segments starting from the middle of an animation and ending in the mid-
dle of the next (identical) animation will have similar scores to the ones aligned with the
ground-truth.

To overcome this issue, this project applies the same disambiguation technique employed
by Li et al. [25]; it summarizes a motion as a sequence of values representing the variation
of the dominant variance in the data, (i.e. the projection of motion data on the first right
eigenvector of the motion matrix) and computes a match between two such sequences using
Edit Distance on Real Sequence (EDR) [53]. The idea is to measure how well does the order
of frames in a motion sequence (summarized as a 1D motion vector) match the order of
frames in the set of training samples, and thus improve the results of segmentation by only
considering the motion segments that are closest to the training samples in the sense of EDR.

In the original formulation, given two real valued strings r ∈ Rm, s ∈ Rn, theEDR distance
is computed as:

EDR(r, s) =



0, s = null;

0, r = null;

min( EDR(r2···m, s2···n) + γ,

EDR(r2···m, s) + 1,

EDR(r, s2···n) + 1), otherwise

(3.45)

where γ = 1 if r1 matches s1 and γ = 0 otherwise. A match is considered when |r1 − s1| ≤
0.25σ, where σ is the standard deviation of all the motion vector components involved in the
training phase.
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Chapter 4

Implementation

The goal of this project is twofold: on the one hand it aims to build a set of tools that allow
to efficiently manage a motion database, while on the other hand it plans to use this database
to perform real-time motion segmentation and recognition. The project is implemented in
a series of steps summarized by Table 4.1; each step will be thoroughly discussed in the
following sections. The result of the implementation consists in two software deliverables:

• A Windows application (motion database manager) that allows a user to group to-
gether a set of BVH files into a motion database, implements automatic and manual
motion segmentation and clusterization techniques to facilitate the definition of mo-
tion classes, is responsible for training a multi-class hierarchical SVRDM classifier
to recognize the defined motion classes, and also offers a testbed for evaluating the
classifier performance before deployment on the Cell/B.E. A screenshot is available in
Figure 4.1.

• A Cell/B.E. library (MoRec) that uses the classifier created by the motion database
manager to perform real-time motion stream segmentation and recognition.
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Task Name Start Date End Date Status
Importing and filtering raw BVH files 11-May-09 15-May-09 Completed
Reducing raw data dimensionality 18-May-09 22-May-09 Completed
Splitting BVH clips into individual behaviors 25-May-09 29-May-09 Completed
Collecting similar behaviors into classes 01-Jun-09 05-Jun-09 Completed
Training SVRDMs for behavior classes 08-Jun-09 19-Jun-09 Completed
Implementing the motion recognition compo-
nent

22-Jun-09 26-Jun-09 Completed

System and Integration tests (Windows) 06-Jul-09 10-Jul-09 Completed
Porting the motion recognition component to
Cell

13-Jul-09 24-Jul-09 Completed

System tests (Cell) 27-Jul-09 31-Jul-09 Completed

Table 4.1: Project development milestones.

Figure 4.1: Screenshot from the motion database management application.
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4.1 Importing and Filtering Raw BVH Files

The input data is represented by BVH files; a large number of motion capture BVH files are
freely available from Carnegie Mellon University [4]. To test the proposed method of motion
segmentation and recognition, a subset of 44 files containing approx. 7.5 minutes of various
basketball and golf animations belonging to 13 human subjects was selected.

A simple tool was developed to convert the original BVH files to a proprietary format, where
the joint angles are encoded using quaternions and each animated motion channel (i.e. root
translation and joint orientation quaternion components) is individually compressed as a
sequence of up to cubic Bézier curves (key-frames). The implementation uses Algorithm 1
and has the effect of smoothing the motion, reducing joint orientation noise / jitter, and
also makes the animation sample rate independent. The motion database manager can only
work with proprietary motion files but this is not regarded as an important issue because the
conversion can be run as a batch process only once, with no need for manual intervention.

4.2 Reducing Raw Data Dimensionality

The skeleton in the BVH files has 31 pivots (bones) but the extremities (i.e. fingers, toes,
etc.) can be safely discarded as irrelevant in the context of full body motion recognition; as a
result, only 16 pivots are further considered (see Table 4.2). As the final goal of this project
is to provide a motion recognition solution independent of the subject performing it and also
of his or her relative orientation with respect to the motion capture device, the motion data
further considered cannot include positional variables (i.e. relative joint position) because it
will implicitly contain the bone lengths and will become dependent on a particular performer.
Additionally, the root bone world orientation is also unappealing because the motion will be
dependent on the particular orientation of the subject with respect to the MoCap device.
Therefore, the project considers the following motion data parameters as relevant:

• the relative orientation quaternion of a joint with respect to its parent for each child
joint;

• the relative orientation between the current and the next frame in case of the root joint.
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Pivot Name Pivot Parent
Hips (none)
LHipJoint Hips
LeftUpLeg LHipJoint
LeftLeg LeftUpLeg
RHipJoint Hips
RightUpLeg RHipJoint
RightLeg RightUpLeg
LowerBack Hips
Spine LowerBack
Spine1 Spine
LeftShoulder Spine1
LeftArm LeftShoulder
LeftForeArm LeftArm
RightShoulder Spine1
RightArm RightShoulder
RightForeArm RightArm

Table 4.2: Representative pivots hierarchy.

The choice of parameters for the root bone is a substitute for angular velocity and requires
further discussion. While the root angular velocity is not readily available, it can be estimated
from the root pose. Assuming that ∆ represents a fixed sampling time-step and that qW (t)

stands for the world orientation quaternion of the root node at time t, the root angular velocity
can be estimated as [54]:

ωW (t) =
AxisAngle(qW (t+ ∆)q∗W (t))

∆
(4.1)

However, during the implementation on the Cell/B.E. it was discovered that the estimation
of angular velocity was more prone to numerical imprecisions and produced different values
for the same input data than the Windows version, with absolute errors up to 10−2 in some
cases. To produce consistent numerical results on both platforms, it was decided to encode
root motion as only the quaternion qroot = qW (t + ∆)q∗W (t); this choice also improves the
numerical stability of further algorithms, because the motion data matrix is encoded using
only quaternions and therefore any matrix element is confined inside [−1, 1].
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The 16 pivot quaternions encode a motion frame with 64 floating point values. However,
these values are not independent, because human body joints have usually less than 3 DOF
and rotations in child joints are also correlated with those of their parents. The number of
necessary dimensions to represent the data can therefore be greatly reduced, with only mi-
nor deterioration in quality. In order to extract the most representative dimensions the data
set is subjected to PCA. As mentioned in Section 3.4.1, PCA is based on SVD decomposi-
tion of the data matrix. To make SVD decomposition fast, this project uses the symmetric
real matrix SVD code from CLAPACK [55] that employs the Multiple Relatively Robust
Representations algorithm [56, 57].

Dimensionality reduction is the second stage of processing the motion data in this project and
is applied on the processed (smoothed) animation files. First of all, each animation clip is
sampled at a fixed rate of 120Hz, generating k raw data matrices Ai, 1 ≤ i ≤ k. The average
motion vector is computed from all animation samples, and the lines of the matrices Ai are
centered to have zero empirical mean. Matrices Mi = AT

i Ai are formed and the matrix

M = ATA

=
[
AT

1 AT
2 · · · AT

k

]

A1

A2

...
Ak


=

k∑
i=1

AT
i Ai (4.2)

=
k∑

i=1

Mi (4.3)

(4.4)

is computed and analyzed with PCA, which determined that 16 values are sufficient to en-
code the motion with only 1% loss in quality. For a lower quality setting of 90%, the number
of dimensions drops even more to just 8 floating point values. The User Interface (UI) of
the motion database manager allows for easy selection of relevant pivots and re-computation
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of reduced dimensionality motion matrices. The latter are cached into temporary files for
speeding up further database operations, since it was considered that entire dataset dimen-
sionality reduction will be seldom performed but its results will be often used in training
classifiers.

4.3 Splitting BVH Clips into Individual Behaviors

Due to the fact that the BVH files usually contain more than one motion, the database man-
ager allows for specifying portions of interest inside a clip. In order to tackle larger amounts
of data, an implementation of Algorithm 2 offers the choice of automatic segmentation into
logically distinct motion pieces. In this implementation, the values used for K, T and ∆ are
the ones proposed in the original paper, namely K = T = 150 and ∆ = 10 [12]. While the
algorithm with this particular selection of parameters produces acceptable results in detect-
ing logically distinct motion segments in an animation clip, it is worth mentioning that for
cyclic / repeated motions it will not generate split points after each cycle. Therefore, user
intervention is still required to select and edit the motion parts that are relevant for classifier
training, but the database manager offers an easy-to-use point and drag UI to speed-up the
process.

4.4 Collecting Similar Behaviors into Classes

A necessary step to be taken before classifier training is to specify motion classes as groups
of logically similar motion segments. This process is implemented by an intuitive drag &
drop UI inside the database manager. Also, in order to easily accomodate larger amounts
of data, the application also contains an auto-clusterization feature that strives to determine
the implicit motion classes and their associated samples by means of computing similarity
between motion clips using the kWAS metric discussed in Section 3.6.

In this implementation, the number k of relevant eigenvalues considered in the kWAS mea-
sure is specified by the user (defaults to 12). Each pair of motion segments has its kWAS

measure computed and pairs with a similarity score larger than a user-defined threshold τ
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(defaulting to 0.95) are grouped together in the same motion class. The quality of the clus-
terization using the kWAS measure is given in Chapter 5.

4.5 Training SVRDMs for Behavior Classes

After the motion classes have been defined, a hierarchical classifier is generated by the mo-
tion database manager following Algorithm 7. The feature vectors for the motion samples in
each class are computed by Equation 3.37; the number of eigenvectors in this implementa-
tion is user-defined, but the best classification accuracy is achieved for small values of k, i.e.
k ∈ {2, 3, 4}. It is worth mentioning that before the feature vectors are determined, the signs
of the eigenvectors entering their definition are processed to have consistent orientations us-
ing an implementation of Algorithm 5. The vectors used in ensuring proper signs of the
eigenvectors are saved for further use in the real-time motion segmentation and recognition
phase and will be referred to as sign vectors.

The theory involved in training a single classifier node is given in Section 3.7; a sketched
implementation in pseudo-code is given in Algorithm 8.

Parameters involved in classifier training are generally customizable from the database man-
ager UI; default values include the SVRM / SVRDM outlier penalty C = 10, SVRDM
thresholds t = 0.4, T = 1, and number of relevant eigenvectors used to compute feature
vectors k = 2. As mentioned before, training a SVRDM involves solving a QPP with box
constraints; the code used by this project is derived from Numerical Recipes with the pecu-
liarities set forth in Algorithm 3 [39, 45]. Problem 3.41 is also a QPP with box constraints
and an additional equality constraint. Given the fact that the kernel matrix Kij is symmetric
positive definite in case of the Gaussian RBF kernel, the maximization problem is solved
with a variant of the QuadProg++ code, slightly modified to take advantage of the Cholesky
factorization implemented in CLAPACK and optimized for box constraints [58].
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Input: Set of motion classes {C1, · · · , Cm}
Output: Classifier tree

begin
Partition classes {C1, · · · , Cm} into macro-class sets Q1, Q2

using Algorithm 6
root.classifier ← TrainSVRDM(Q1, Q2)
root.Q1 ← Q1

root.Q2 ← Q2

Append(queue, root)

while queue not empty do
parent← RemoveHead(queue)
for k ← 1 to 2 do

if |parent.Qk| > 1 then
Partition classes parent.Qk into macro-classes
K1, K2 using Algorithm 6
child.classifier ← TrainSVRDM(K1, K2)
child.Q1 ← K1

child.Q2 ← K2

Append(queue, child)
parent.children[k]← child

end
else parent.children[k]← NULL

end
end

return root
end

Algorithm 7: Generation of a classifier tree.
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Input: Motion segment matrices Aj
i , i ∈ {1, · · · , nj}

belonging to macro-classes Qj, j ∈ {1, 2}
Output: Classifier node

begin
Compute feature vectors xj

i from Aj
i using Equation 3.37

Compute σfull by averaging estimated SVRM σ values
for each macro-class, using Algorithm 4 with xj

i as
training samples

Compute the support vectors aj
i for the minimum

enclosing spheres around samples xj
i in feature space by

solving Problem 3.41 for Gaussian RBF with σfull

Compute matrix CTC using Equation 3.39 and aj
i as class

samples

Determine L from the Cholesky decomposition of matrix
CTC and vectors x̂i

j from Equation 3.40

Compute SVRDM σred by averaging estimated SVRM σ
values for each macro-class, using Algorithm 4 with x̂i

j

as training samples

Solve Problems 3.27 and 3.28 with σred and training
samples x̂i

j

return SVRDM
end

Algorithm 8: Training a classifier node.
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Figure 4.2: Motion recognition pipeline inside the database manager (Windows).

4.6 Implementing the Motion Recognition Component

The role of the motion recognition component is to analyze in real-time a raw motion stream,
potentially coming from a MoCap device, and output motion segments corresponding to pre-
viously learned motion classes. In order to achieve real-time performance and simplify later
deployment on the Cell/B.E., this component was developed using the pipeline paradigm,
where each stage runs on a separate thread. The architecture is depicted in Figure 4.2. This
section discusses the Windows platform implementation inside the motion database man-
ager that is meant to act more as a visual testbed for different classifier settings. Once it
has achieved the desired accuracy, the classifier can be exported as a binary file and used
to perform real-time motion recognition on the Cell/B.E. The implementation on the latter
platform is based on a slightly different design, mostly imposed by program and memory
size limitations of the Synergistic Processor Element (SPE).

4.6.1 Raw Data Source (RDS)

This is the first stage of the pipeline that emulates a MoCap device data source. It is respon-
sible for loading a processed BVH file (raw BVH file with cubic Bezier keyframe extraction,
as mentioned before) and generating a raw data vector containing the current pose quater-
nions 120 times per second. The raw vector is then written to the RDS buffer in order to be
processed by the next stage. It is worth noting that all pipeline stages are not directly linked
and all communication between them is buffered, in order to allow maximum throughput.
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Since there will only be a reader and a writer thread accessing the buffers at any given time,
the multi-threaded access policy to the shared buffers was optimized to allow for simultane-
ous read / write access, as long as the operations do not involve overlapping locations. This
has the effect of reducing pipeline stage stalling and improving throughput.

4.6.2 Input Assembly (IA)

As mentioned before, not all pivots are relevant in full body motion recognition, and this
stage deals with selecting the proper pivot data and converting it to the format used in clas-
sification. Also, because of the fact that analyzing the motion stream at 120Hz in real time
is computationally expensive, this stage gathers the incoming motion frames into chunks of
∆ = 16 frames each. Formally, every 16 frames this stage performs the following operations:

• Form the raw motion matrix A where each line represents a motion frame (pose);

• Replace the root quaternion with the relative orientation between the current and the
next frame;

• Subtract the empirical mean determined in Section 4.2 from each line of matrix A;

• Apply the projection matrix discovered during PCA dimensionality reduction to keep
only r most relevant dimensions and determine Ar;

• Compute M = AT
r Ar and send it to the IA Buffer, to be consumed by the SA stage.

It can be seen from the pipeline diagram that the IA stage generates output in two buffers; the
second buffer keeps the Ar matrices computed for each motion chunk as they will be needed
later, at the FVE stage.

4.6.3 Segment Assembly (SA)

The Segment Assembly stage generates various motion segments to be run through the clas-
sifier in the following stages. A motion segment is a pair (cs, ce), where cs, ce are the start
and respectively the end index of motion chunks generated by the IA stage. When a new
motion chunk ce becomes available in the IA buffer, the segment assembly generates motion
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matricesMk =
∑ce

ci=ce−k A
T
r (ci)Ar(ci) where the matrix productsAT

r (ci)Ar(ci) are received
from the IA stage and k is the number of chunks in a segment, k ∈ {4, ..., 20} in the im-
plementation. The insight is to generate increasingly longer sliding windows on the motion
stream, analyze them against known motion classes and keep the motion segments with the
best scores. As soon as the motion matrices are computed, they are written to the SA buffer,
in order to be consumed by the FVE stage.

4.6.4 Feature Vector Extraction (FVE)

This is the most computationally intensive stage, as it performs SVD on the incoming motion
matrices sent by the SA stage. The SVD returns the most relevant eigenvectors / eigenvalues;
the eigenvectors are further processed to have consistent signs by using the sign vectors in-
troduced in Section 4.5, and finally combined into feature vectors. The motion data matrices
in IA2 buffer are also used at this stage to compute an associated motion vector for each
motion segment. The motion vector is the projection of the motion data on the direction
of maximum variance, or, more formally, the first right eigenvector in the SVD decomposi-
tion of motion matrix Ar. The (feature vector, motion vector) pairs associated with motion
segments are finally written to the FV buffer, in order to be run through the classifier.

4.6.5 Segment Classification (SC)

This is the final stage of the pipeline and deals with motion recognition and segmentation.
As mentioned before, the FVE stage feeds the SC stage with (feature vector, motion vector)
pairs for various combinations of motion segments, as generated by the SA stage. For each
feature vector, the hierarchical classifier developed in the training stage is run; the feature
vector enters the root classification node, the child with maximum SVRDM output is chosen
if above class threshold, otherwise it is rejected as a non-class. The classification runs down
the tree until a leaf node is reached; is is worth noting that the class threshold T used in
classification is different from the one used in training, to allow for a better generalization
(i.e. T = 0.92 in classification, vs. T = 1 in training).

As soon as a potential motion class is detected by the classifier, a confidence level is esti-
mated by computing the EDR distance between the current segment motion vector and the
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candidate class motion vectors (see Section 3.8). A problem with this distance measure is
that it produces an unnormalized result, that cannot be easily compared with similar dis-
tances obtained for different motion classes. To overcome this limitation, the EDR used in
this project was normalized by computing the minimum cost path of transforming r to s and
dividing this cost to the transformation path length [59].

Given a motion sample, its normalized EDR distances to all motion vectors in the suspected
class are computed, and the distance from the motion sample to the class is defined as the
minimum of the above computed distances. To further filter the segmentation output, the
normalized EDR cost between a motion sample and a class is multiplied by a Gaussian
that favors the motion segments with lengths close to the mean length of the samples in the
motion class. This has the effect of reducing the estimated confidence of very short motion
sequences. Formally, given a motion sample x starting at chunk ci and ending at chunk ce,
its confidence value is defined as:

Conf(xci,ce) =

(
1− 0.9

1 + e−30∗EDR+15

)
· e−

(lenx−lenavg)2

2(0.25lenavg)2 (4.5)

The EDR distance is passed through a manually-tuned sigmoid, that was preferred over a
linear dependence due to its better rejection ability for incomplete motion segments. The
length in seconds of the sample x is denoted by lenx and the average length of the motion
class in which x is assumed to be is lenavg. The sigma value for the Gaussian was again
empirically chosen to be a quarter of the average motion class length, as it produced the best
results.

The confidence values are considered samples of a function defined on R2 as shown in Fig-
ure 4.3. For each motion chunk produced by the Input Assembly, a new line of confidence
values is produced (depicted by a red rectangle in the figure); these confidences are given by
Equation 4.5. Of course, not all recognized segments are meaningful and segmentation can-
didates are determined as local maxima points in the confidence graph. A point is considered
to be a local maxima if its confidence value is higher than the confidence of its 8 neighbors
(depicted by green rectangles in Figure 4.3).

The resulting motion segments can still exhibit a large amount of overlap; for instance, when
a point of local maxima is in fact caused by noise / numerical imprecisions (false positive)
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Figure 4.3: Graph of confidence values entering the Segment Classification stage. A mo-
tion segment starts at motion chunk ci (x axis), ends at motion chunk ce (y axis), and is
represented as a single dot in the graph.

and a true local maxima is found nearby. To further clean-up the resulting motion segments,
a post-processing stage tracks the motion candidates, merging together any pair overlapping
more than 30% in time. The surviving motion segments and their associated classes are
reported as the solution of motion segmentation and recognition. A final remark must be
made about the tracked segments; as soon as the end time of a tracked segment precedes
any possible start time of a newly generated motion candidate, the tracked segment can
be removed from memory thus ensuring the scalability of the proposed solution to handle
infinitely long input streams.

4.7 Porting the Motion Recognition Component to Cell/B.E.

The final goal of this project is to provide a highly optimized library (further referred to as
MoRec) that would enable a Cell/B.E. application to perform real-time motion segmentation
and recognition. Cell/B.E. is a heterogeneous multi-core processor developed by the STI
alliance (Sony Computer Entertainment, Toshiba and IBM) primarily for the PlayStation R©3
gaming console. However, its impressive processing power, high throughput memory access
scheme and also its power efficiency make it a strong candidate for scientific applications,
as shown in a study by Lawrence Berkeley National Laboratory [60]. In what follows, a
brief description of the Cell/B.E. architecture is given in order to provide a clear context for
changes in the design of the motion segmentation and recognition component.
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4.7.1 Cell/B.E. Architecture Overview

The main building block on a Cell chip is represented by the PowerPC Processor Element
(PPE): a 64-bit two-way multithreaded core based on the PowerPC 970, the PPE is generally
responsible for coordination tasks. Its instruction set allows direct access to the eXtreme
Data Rate (XDR) main memory via a 512KB L2 and respectively 32KB instruction / 32KB
data L1 cache. While being geared towards general-purpose computing such as running an
operating system, the PPE also includes IBM’s VMX engine for SIMD processing, allowing
it to perform the same operation on vectors of data simultaneously (i.e. 4 single precision
floating point values) and therefore offer increased execution speed for various categories of
scientific applications.

The thing that distinguishes the Cell from regular desktop-oriented processors and positions
it closer to the chips found in graphics cards is the set of 8 interconnected SPEs. These
are highly specialized SIMD processors working only on 128bit data vectors, with a huge
number (128) of registers allowing the compiler to perform more aggressive code optimiza-
tions such as resolving more local function variables and function call parameters to register
locations rather than memory. A SPE cannot access main memory directly; it can only use
256KB of local on-chip memory called the Local Store (LS). The LS is shared by the pro-
gram instructions, program stack and also all allocated memory during program execution;
in other words the maximum memory requirements of any program running on the SPE must
be below 256KB and the burden of ensuring this is generally left to the programmer as there
are no triggered exceptions when for instance the stack pointer overwrites user-allocated
memory locations.

Each SPE contains a memory flow controller (MFC) that acts as a hardware thread responsi-
ble for managing communications in and out of the SPEs. The MFC implements primitives
that initiate, manage and track the completion status of Direct Memory Access (DMA) trans-
fers from / to LS to / from main memory / other LS. The transfers take place in parallel with
the execution of the SPE core, allowing the latter to interleave data processing with time-
consuming memory operations and thus hide memory access latency.

MFCs rely upon the Element Interconnect Bus (EIB) to provide the communication infras-
tructure. The EIB consists in four 16 byte-wide rings connecting the PPE with the 8 SPEs,
main memory interface controller (MIC), and I/O interfaces (IOIF), where two rings carry
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bool mrInit(char * szClassifierFile);
Initializes the motion recognition library with a classifier.

void mrTerminate();
Deallocates all resources held by the library.

bool mrSetDataSource(char * szSourceFile);
Starts generating raw motion data using as source the animation stored in
the given file.

bool mrStopDataSource();
Stops generating raw motion data.

bool mrIsDataSourceDepleted();
Tests if the data source can still produce data.

bool mrStart();
Starts the real-time motion segmentation & recognition process.

bool mrStop();
Stops the real-time motion segmentation & recognition process.

bool mrQueryMotionSegments(MotionSeg * pSegments, int & nSegments);
Queries the solution of the motion segmentation & recognition.

Table 4.3: MoRec API specification.

data in clockwise direction and the other two perform data transfers in the opposite, counter-
clockwise direction. According to Kistler et al. the EIB has a theoretical peak data bandwidth
of 204.8 Gbytes/s in a 3.2 GHz Cell processor [61]; however, special care must be taken by
an application developer in order to achieve high communication bandwidth. If for instance
the communication among SPEs is not carefully planned, a lot of EIB bandwidth can be lost
due to collisions; also, if the majority of communication accesses the main memory, the EIB
will be bottlenecked by the main memory transfer bandwidth, an order of magnitude lower.

4.7.2 MoRec Design

As it has been previously emphasized, MoRec is a port of the motion segmentation and
classification component introduced in Section 4.6 in the form of a static library compiled
for the Cell/B.E. The API made available to a calling application is listed in Table 4.3, while
a functional diagram is given in Figure 4.4. An example utilization of the MoRec library to
segment and classify motions in a stream is provided in Listing 4.1.
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Figure 4.4: Motion segmentation and recognition library architecture (Cell/B.E.).
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/* ... Other initialization code ... */

if( !mrInit(szClassifier) || //Init MoRec library
!mrSetDataSource(szSource) || //Init data source
!mrStart()) //Start recognition

return; //Error!

//Game loop
while(!mrIsDataSourceDepleted())
{

//Periodically query for segmentation results
nTestSegs = MAX_TEST_SEGS;
mrQueryMotionSegments(pTestSegs, nTestSegs);

/* ... Do other game specific updates ... */
}

if( !mrStopDataSource() || //Stop the data source
!mrStop()) //Stop recognition

return; //Error!

//Free memory
mrTerminate();

/* ... Other termination code ... */

Listing 4.1: Typical application using MoRec.
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At first, an application using MoRec must call mrInit(...); it opens the binary classifier file
exported by the database manager running on Windows and allocates all data buffers needed
by the classification process in main memory. These include empirical motion data mean and
dimensionality reduction projection matrix, sign vectors needed in feature vector computa-
tion, motion classes together with non-linear dimensionality reduction parameters, classifier
support vectors and motion vectors, and of course, the classifier hierarchy.

A data source is started by mrSetDataSource(...); this currently creates a PPE thread imple-
menting the RDS pipeline component as already presented in Section 4.6.1. It abstracts a raw
motion data source for the rest of the MoRec library and can be extended in future versions
to include support for real MoCap devices; all that is needed from such a source is the ability
to query its skeleton topology, data acquisition rate, and the frame data. The motivation for
implementing the RDS component on the PPE was to ensure easier development of future
extensions accommodating different data sources, without the need to modify the rest of the
system. The output of the RDS stage (i.e. a sequence of motion frames) is written in a cir-
cular buffer (RDS Buffer) allocated on main memory, again, in the spirit of minimizing the
impact on the rest of the system in case of future extensions.

Once a data source is live, the rest of the motion segmentation and recognition pipeline can
be started. This operation is performed by mrStart(); it uploads and starts the appropriate
pipeline stage programs into each of the 6 employed SPEs, waits for them to allocate working
buffers in LS, and configures inter-SPE communication by exchanging memory addresses
via mailboxes. At this point, the motion recognition pipeline is fully running and can be
queried for a segmentation solution with mrQueryMotionSegments(...). When the motion
data source is depleted or the application otherwise decides to end its execution, it must
first stop filling the RDS Buffer (mrStopDataSource()), signal and wait for the SPEs to stop
their execution (mrStop()), and finally release the memory resources held by the classifier
(mrTerminate()).

Figure 4.4 contains a detailed description of the motion segmentation and recognition pipe-
line. The IA, SA and FVE stages have the same functionality as their correspondents, already
covered by Sections 4.6.2, 4.6.3 and respectively 4.6.4. However, the FVE stage on the
Cell uses a different implementation to compute the SVD of a motion matrix because the
CLAPACK code proved to be too long to fit the LS of a SPE. Given the fact that SVD
is applied only to symmetric real matrices, the SPE implementation uses the tred2 and tqli
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algorithms in Numerical Recipes to first reduce the symmetric matrix to tridiagonal form
using the Householder method and then compute its eigenvalues / eigenvectors with the QL
algorithm with implicit shifts [39].

The SC stage described in Section 4.6.5 had to be divided in three in order to reduce mem-
ory requirements and fit the constrained space of the LS. The SC stage on the Cell/B.E.
only runs the hierarchical classification (the SVRDM tree); it provides to the next stage a set
of at most four probable motion classes the segment belongs to. The next stage, Segment
Scoring (SS) computes the normalized EDR distance between the incoming motion segment
and the classes identified by the SC stage as most probable. The output of this stage is the
motion class with the highest score, as computed by Equation 4.5. Finally, the last stage
in the pipeline is the Segment Tracking (ST); its responsibility is to analyze input from the
SS stage, extract confidence local maxima points as potential segmentation candidates, fil-
ter them to eliminate overlaps and update the solution buffer in main memory whenever the
former changes (see Section 4.6.5 for a more thorough description). Function mrQueryMo-

tionSegments(...) simply copies the solution buffer from main memory to a user specified
location using a mutex to ensure data consistency, it does not explicitly query the ST stage
for an update.

4.7.3 Communication Primitives

As mentioned in Section 4.7.1, a carefully chosen communication mechanism between the
PPE and SPEs can greatly increase the performance of an application. It is easy to notice
from the functional diagram in Figure 4.4 that the data flow in MoRec naturally maps to
the EIB ring topology. Main memory to SPE LS transfers happen mainly inside the IA
stage; the latter should be able to run faster if its SPE is closest to the memory controller
w.r.t. the EIB, because its communication with the main memory can take place virtually
unaffected by the other SPEs, at a bandwidth limited by the IA processing throughput and
the main memory transfer rate. In the same spirit, the bulk of communication takes place
using SPE to SPE LS DMA transfers, generally between adjacent SPEs so that the number
of simultaneous transfers in flight on the EIB is maximized. An exception is made in the
case of IA that outputs data in two distinct SPEs (SA and FVE) of which only one is adjacent
(SA); the situation is unavoidable but however not critical, due to the fact that only a SPE
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is in between the IA and FVE stages. Given the fact that the EIB has two rings for each
direction of transfer, it can be assumed that both the IA and SA stages can send data to the
FVE in parallel, using both rings on the EIB.

To ensure the level of interference between the SPEs is kept to a minimum, the best SPE
associated with each stage is chosen using the spe context create affinity function in the Cell
Software Development Kit (SDK) [62]. The IA stage is configured to have an affinity for
main memory (flag SPE AFFINITY MEMORY) and therefore be run on the SPE closest to
the MIC. Further on, the SA stage has an affinity for the IA stage and if possible will be
placed next to it, the FVE stage has an affinity for the SA stage, and so on, following the
natural order: Main Memory (RDS Buffer)→ IA→ SA→ FVE→ SC→ SS→ ST.

Referring again to Figure 4.4, the communication between SPEs takes place via circular
buffers protected against simultaneous access to identical addresses. In other words, SPEs
can simultaneously read and write from / to the same buffer object, while not at the same
location. While the buffers (with the exception of the RDS Buffer) are allocated in the local
storage of the SPEs to minimize main memory bandwidth, the concurrent access to their data
is arbitrated by mutexes. Unfortunately, a mutex cannot be allocated on the LS of a SPE, so
all communication buffers between the SPEs have their mutexes allocated on main memory,
and therefore still need to access it every time they require atomic access.

As a general rule, each circular buffer object that is not locally allocated is accessed by the
SPE via a DMA manager. This acts as a local copy of the buffer in the LS of the accessing
SPE that is responsible for permanently synchronizing its contents with the original, remote
buffer. The synchronization takes place in only one direction: the DMA manager either
reads from the remote buffer, or exclusively writes to the remote buffer. Naturally, the DMA
manager takes advantage of the MFC’s ability to manage up to 32 in-flight transfers and
uses a multi-buffered approach when synchronizing with the remote buffer object [62]. This
allows several completed buffer entries to be sent to the next stage via DMA while the SPU
continues to process data in parallel to fill other empty buffer entries.
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4.7.4 Caching

As mentioned before, the majority of communication in MoRec is done using the circular
buffer / DMA manager paradigm. However, the SC and SS stages deserve special treatment
due to the potentially large amount of main memory traffic they might require. First of all,
the Segment Classification stage needs both the non-linear dimensionality reduction support
vectors and the classifier support vectors. To ensure the design is scalable, this data is con-
stantly requested via double-buffered DMA from the main memory; in this way the SPE can
compute the classification independent of the number of classes or support vectors. However,
due to the fact that consecutive motion segments arriving at the SC stage for classification
only differ by a fraction of a second (in this case 0.16s), the path through the classifier tree
is mostly the same, so the number of memory accesses needed to classify the consecutive
segments can be reduced by caching the recently used classifier data in the LS.

The same insight is applied in the case of Segment Scoring that needs to transfer motion
vectors for a given motion class in order to compute the confidence score of classification:
consecutive segments are generally classified as belonging to the same motion class and
therefore the same set of motion vectors is needed to evaluate their confidence values. By
caching the most recently used motion vectors, the SS can decrease its main memory traffic
and improve its throughput.

Caching is implemented in a manner that takes advantage of the SIMD nature of the SPE
and is also optimized for speed. A cache is an object that maps a fixed-length chunk in main
memory to a pre-allocated, same-length chunk in the LS of a SPE. To map a main memory
address to LS, the following operations are done:

• A hash key is determined by shifting the main memory address right by 7 bits. This
exploits the fact that classifier data is allocated at consecutive memory addresses and
aligned to 128 byte boundaries in order to accept DMA transfers.

• A bucket is computed as the remainder of dividing the hash key to the bucket capacity
of the cache (fixed upon creation).

• The index of the minimum time-stamp is determined across the bucket entries. A
bucket entry contains only four (value, time-stamp) unsigned int pairs, encoded as two
128 bit vector values.
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• The main memory address is mapped at the LS address &ls_buffer[chunk_size *

((bucket << 2) + index)]. The bucket entry is also updated to reflect the mapping:
its value is set to the main memory address and the time-stamp updated to hold the
most recent time.

To determine if a main memory location is already in the cache, the following steps must be
taken:

• Compute the hash key and bucket as above.

• Search if the main memory address corresponds to any of the values in the bucket
entry, if so, determine its index.

• If a valid index was found, the main memory address is already mapped at the LS
address &ls_buffer[chunk_size * ((bucket << 2) + index)]. The time-stamp
of the bucket entry is also updated to the hold the most recent time.

It can be seen that the cache is 4-way associative: this was preferred due to its natural map-
ping onto SIMD data types. Because the data to be cached is usually allocated at increasingly
larger consecutive addresses and is accessed by the computation on the SPE in the same man-
ner, it will be typically cached in different (consecutive) buckets and therefore at first glance
associativity will not be necessary. However, the SPE only performs SIMD operations na-
tively, so writing scalar code for a direct mapped cache will produce a sub-optimal solution
due to the implicit scalar to SIMD conversion overhead. Therefore, the cache object in this
project is implemented as 4-way associative and optimized with SIMD intrinsics.

A final remark needs to be made about the support and motion vectors needed by the SC and
SS stages. They are stored in main memory as concatenated into fixed size chunks, and a
SPE will actually DMA-transfer several vectors at a time into the LS. This is done in part
to simplify the implementation of fixed-size cache presented above, but also to reduce the
number of DMA requests and minimize transfer overhead.

4.7.5 SIMD Optimizations

Almost all motion recognition stages were optimized to use SIMD. The data provided by
the RDS Buffer is naturally aligned to 4-valued single precision floating point vectors since
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it is formed by bone quaternions. Further on, in the dimensionality reduction stage (see
Section 4.2), the number of relevant dimensions is automatically rounded up to the largest
multiple of 4 in order to be able to continue using SIMD operations. Therefore, in the
IA and SA stages almost all operations involving the manipulation of motion matrices are
implicitly assuming multiple-of-4 sized data and process it using SIMD optimized code. It is
easy to notice that because the number of reduced dimensions is a multiple of 4, the feature
vectors also have a multiple of 4 length. Therefore, the Gaussian RBF kernels involved in
classifier non-linear dimensionality reduction are also computed with SIMD code. Even if
the support vectors after non-linear dimensionality reduction are only 2-dimensional, they
are padded to 4 dimensions and the SIMD Gaussian RBF kernel function simply discards
the two uppermost values from the final result. Unfortunately, the majority of code run by
the SS and ST stages is scalar; nevertheless, a large portion of the normalized EDR algorithm
was successfully SIMD-ised.
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Chapter 5

Evaluation & Discussion

In order to evaluate the quality and performance of the proposed framework, a set of 11
motion classes were manually defined as the ground truth. These are briefly summarized in
Table 5.1: Walk corresponds to a walking cycle starting with the right foot, VisibleCount,
Traveling, IllegalDribble, TechnicalFoul, StopClock, Pushing and NoScore are well known
basketball referee signals, DribbleLeft, DribbleRight are basketball dribble moves performed
with the left and respectively the right hand, and finally Swing contains samples of golf
swings. The table also contains the minimum, maximum and average length of each motion
class in seconds as estimated from its training samples, the number of available motion
samples (although only a subset is used in training), and also the number of distinct subjects
the samples belong to.

The following aspects of the proposed framework were evaluated:

• the quality of the automatic motion segmentation (Section 4.3);

• the accuracy of automatic segment clusterization into motion classes (Section 4.4);

• the quality of the hierarchical motion classifier (Section 4.5);

• the real-time motion segmentation and recognition accuracy (Section 4.6);

• the performance of the Cell implementation (Section 4.7).
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Code Name Length (sec) No. Samples No. SubjectsMin Med Max
C1 Walk 0.96 1.078 1.196 12 4
C2 VisibleCount 0.9 0.903 0.906 12 7
C3 Traveling 0.353 0.4365 0.52 20 7
C4 Swing 1.739 1.7995 1.86 10 1
C5 IllegalDribble 0.886 0.8995 0.913 11 7
C6 DribbleRight 0.74 0.8365 0.933 16 3
C7 DribbleLeft 0.866 0.8795 0.893 3 1
C8 TechnicalFoul 0.595 0.598 0.601 10 7
C9 StopClock 0.595 0.601 0.607 8 7
C10 Pushing 0.69 0.696 0.702 10 7
C11 NoScore 0.696 0.702 0.708 10 7

Table 5.1: Manually defined motion classes.

5.1 Automatic Motion Segmentation

The automatic motion segmentation algorithm in Section 4.3 was applied to several motion
clips in order to evaluate its capacity of detecting logically distinct motion segments. A sam-
ple run is given in Figure 5.1; the blue segments represent the desired result (the ground truth)
and alternating red and black segments are the result of the automatic motion segmentation.
It can be seen that in general, the resulting segments include the ground truth and in some
cases, more than one ground truth segment. The latter is a characteristic of the employed
algorithm, that is unable to detect cyclic / repeated motions as separate segments and simply
generates a single motion segment containing all repeated instances. Another problem with
the algorithm is the incorporation of potentially long transition / idle animations into the re-
sulting motion segments. This phenomenon can also be witnessed in Figure 5.1; this is the
reason why the automatically generated motion segments that include ground truth segments
are much longer than the latter.

The issue of not detecting cyclic / repeated animations and the incorporation of transitions /
idle frames into the resulting segments turn into major disadvantages in the context of auto-
matically detecting distinct motion segments appropriate for classifier training with minimal
user intervention. The resulting motion segments still need to be further tweaked by a hu-
man user before they can be used in training, which involves a fair amount of time and can
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Figure 5.1: Automatic motion segmentation result for clip 2 of subject 26. Blue segments
represent the ground truth, alternating red and black segments are the result of the automatic
motion segmentation. Class ID is encoded as y height.

Ground Truth
Positive Negative

Observed
Outcome

Positive 708 3852
Negative 0 2821

Table 5.2: Auto-clusterization confusion matrix for τ = 0.95. The number of discovered
classes is 2, with RI = 0.47.

become prohibitive for large motion databases.

5.2 Automatic Segment Clusterization

Given the set of manually defined motion classes, the quality of the automatic clusterization
algorithm is evaluated with the Rand Index (RI) introduced in Section 3.6.1. The number
k of eigenvalues used in the experiment is fixed at 12 but does not greatly affect the final
results; for instance, an identical solution was obtained for a much lower setting of just 4.
Confusion matrices for several values of τ along with the RI and the number of discovered
classes are given in Tables 5.2 to 5.4.

Unfortunately, the auto-clusterizaton technique based on the kWAS similarity measure does
not produce satisfactory results. For instance, in the case of τ = 0.99 the Swing motion class
is perfectly separated in a single cluster while Traveling and TechnicalFoul are clustered
together. Further increasing τ → 1 does not help because the number of discovered classes
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Ground Truth
Positive Negative

Observed
Outcome

Positive 708 3042
Negative 0 3631

Table 5.3: Auto-clusterization confusion matrix for τ = 0.98. The number of discovered
classes is 3, with RI = 0.58.

Ground Truth
Positive Negative

Observed
Outcome

Positive 588 438
Negative 120 6235

Table 5.4: Auto-clusterization confusion matrix for τ = 0.99. The number of discovered
classes is 14, with RI = 0.92.

is already above 11 (the ground truth), which means that there are already classes spanning
multiple clusters. Indeed, Pushing spans 3 clusters and both NoScore and VisibleCount span
2 clusters. Decreasing τ causes nearby clusters to merge but again is ill-advised, since there
are already clusters not fully separated. Therefore, the auto-clusterization algorithm based
on the kWAS similarity measure cannot be used in an unsupervised manner to discover
implicit classes. The problem might be remedied if the similarity criterion is replaced by
a more advanced method; research is still needed to provide further clarifications regarding
this subject.

5.3 Quality of Classification

A total of 61 motion samples was randomly selected from the set in Table 5.1 such that each
class is represented by roughly 50% of its available motion segments. An exception was
made for DribbleLeft due to the lack of available data and the respective class is represented
by all (3) of its motion samples. The 61 selected samples were used to train a hierarchical
SVRDM classifier tree (see Section 4.5 for details regarding the implementation) and the
result is given in Figure 5.2.

Due to the fact that while training each classifier tree node the dimensionality of the feature
vectors is non-linearly reduced to only 2, it is possible to visualize the result of the SVRDM
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 10 0 0 0 0 0 0 0 0 0 0
C2 0 10 0 0 0 0 0 0 0 0 0
C3 0 0 18 0 0 0 0 0 0 0 0
C4 0 0 0 10 0 0 0 0 0 0 0
C5 0 0 0 0 7 0 0 0 0 0 0
C6 0 0 0 0 0 15 0 0 0 0 0
C7 0 0 0 0 0 0 2 0 0 0 0
C8 0 0 0 0 0 0 0 5 0 0 0
C9 0 0 0 0 0 0 0 0 3 0 0
C10 0 0 0 0 0 0 0 0 0 6 0
C11 0 0 1 0 0 0 0 0 0 0 8
NC 2 2 1 0 4 1 1 5 5 4 2

Table 5.5: Confusion matrix for the hierarchical classifier in Figure 5.2.

Figure 5.2: Hierarchical SVRDM classifier tree. Red arrows indicate the progress of classi-
fication in case of a StopClock motion sample.
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Figure 5.3: SVRDM decision boundaries for macro-classes {C1, C5, C6, C7, C8, C9, C10,
C11} - {C2, C3, C4}. Decision function values are greater than T = 1 inside the blue
boundary and greater than t = 0.4 inside the magenta boundary. σ = 0.1.

Figure 5.4: SVRDM decision boundaries for macro-classes {C1, C5, C7, C8, C9} - {C6, C10,
C11}. Decision function values are greater than T = 1 inside the blue boundary and greater
than t = 0.4 inside the magenta boundary. σ = 0.1375.
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Figure 5.5: SVRDM decision boundaries for macro-classes {C1, C7} - {C5, C8, C9}. Deci-
sion function values are greater than T = 1 inside the blue boundary and greater than t = 0.4
inside the magenta boundary. σ = 0.07.

Figure 5.6: SVRDM decision boundaries for macro-classes {C2} - {C3, C4}. Decision
function values are greater than T = 1 inside the blue boundary and greater than t = 0.4
inside the magenta boundary. σ = 0.4.
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Figure 5.7: SVRDM decision boundaries for macro-classes {C6, C11} - {C10}. Decision
function values are greater than T = 1 inside the blue boundary and greater than t = 0.4
inside the magenta boundary. σ = 0.4325.

Figure 5.8: SVRDM decision boundaries for macro-classes {C5} - {C8, C9}. Decision
function values are greater than T = 1 inside the blue boundary and greater than t = 0.4
inside the magenta boundary. σ = 0.0575.
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Figure 5.9: SVRDM decision boundaries for classes {C1} - {C7}. Decision function values
are greater than T = 1 inside the blue boundary and greater than t = 0.4 inside the magenta
boundary. σ = 0.06.

Figure 5.10: SVRDM decision boundaries for classes {C3} - {C4}. Decision function values
are greater than T = 1 inside the blue boundary and greater than t = 0.4 inside the magenta
boundary. σ = 0.6725.
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Figure 5.11: SVRDM decision boundaries for classes {C6} - {C11}. Decision function
values are greater than T = 1 inside the blue boundary and greater than t = 0.4 inside the
magenta boundary. σ = 0.42.

Figure 5.12: SVRDM decision boundaries for classes {C8} - {C9}. Decision function values
are greater than T = 1 inside the blue boundary and greater than t = 0.4 inside the magenta
boundary. σ = 0.5225.
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decision functions in a simple 2D plot. This helps a lot in understanding how individual
nodes work and why certain classifications decisions are made; it also simplifies the debug-
ging process and allows for rapid feedback while numerically tuning the training process.
For exemplification, the decision boundaries and training samples involved in the classifier
depicted by Figure 5.2 are given in Figures 5.3 to 5.12.

An area where the 2D visualization of SVRDM bounding boundaries was particularly helpful
was in identifying a problem with the automatic estimation of σ (see Section 3.7.3). In the
original formulation, the cluster radiusR is empirically estimated as a fixed factor (2.2) of the
average nearest-neighbor distance between the training samples. However, in some cases,
the 2.2 value is too large (the samples are very well clustered together) and the estimated
bounding boundary can be the empty set. To resolve this issue, Algorithm 4 was slightly
modified to progressively decrease the factor in fixed steps (0.1), until the estimated bounding
boundary becomes non-null.

To evaluate the quality of the hierarchical classifier developed in this section, the entire set
of 122 motion samples was run through the classifier tree and the results were gathered
in a confusion matrix (Table 5.5). Its columns represent the ground truth class labels and
the rows symbolize the observed outcome; because the employed classifier design also has a
good rejection capability, in addition to the set of 11 user-defined class labels, the set of labels
in the observed outcome contains an additional symbol: the non-class (NC). This contains
the samples that are rejected by the classifier as not known; any other cell (row, col) in the
confusion matrix contains the number of samples belonging to class Ccol classified as Crow.

The classifier performance can be quantified at a higher level by its classification rate (PC),
error rate (PE) and respectively its rejection rate (PR), defined as [44]:

PC =
#correctly classified samples

#total samples

PE =
#incorrectly classified samples

#total samples

PR =
#rejected samples

#total samples
(5.1)
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 8 0 0 0 0 0 0 0 0 0 0
C2 0 7 0 0 0 0 0 0 0 0 0
C3 0 0 20 0 0 0 0 0 0 0 0
C4 0 0 0 7 0 0 0 0 0 0 0
C5 0 0 0 0 5 0 0 0 0 0 0
C6 0 0 0 0 0 10 0 0 0 0 0
C7 0 0 0 0 0 0 3 0 0 0 0
C8 0 0 0 0 0 0 0 8 0 0 0
C9 0 0 0 0 0 0 0 0 7 0 0
C10 0 0 0 0 0 0 0 0 0 6 1
C11 0 0 0 0 0 0 0 0 0 0 5
NC 4 5 0 3 6 6 0 2 1 4 4

Table 5.6: Confusion matrix for a hierarchical classifier trained with a mostly disjoint set of
samples than the one in Figure 5.2.

In the case of the classifier developed in this section PC = 77.04%, PE = 0.81%, and
PR = 22.13%.

To test how the hierarchical classifier performance is related to a particular selection of train-
ing data, a mostly disjoint set of samples was used to train a different classifier with the same
numerical parameters as the previous one. In general, the samples that were omitted from
training the former classifier were used to train the latter. An exception was again made
in the case of DribbleLeft, where due to the reduced number of available motion data, the
same set of samples was used in training both classifiers. The resulting confusion matrix for
the new classifier is given in Table 5.6. It has a classification rate PC = 70.49%, error rate
PE = 0.81%, and PR = 28.68%.

The variation in classification rate is most likely related to the fact that the training samples
were not uniformly distributed among subjects; due to the fact that some subjects perform
motions in different manners (i.e. with more ample arm movements, or starting from differ-
ent initial poses), by omitting some subjects’ samples from training, the variation in input
feature vectors decreases, the SVRDM decision regions naturally shrink to fit the training
data, and the classifier performance can be reduced. The fact that the error rate remains the
same and only the rejection rate increases further suggests more compact SVRDM decision
boundaries caused by an insufficient diversity of training samples.
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It was mentioned in Section 4.5 that the feature vectors used in training the SVRDM nodes
use Equation 3.37 as proposed by Li et al. [26]. However, after comparing several classifica-
tion results, the eigenvectors entering the equation were no longer scaled by the normalized
eigenvalues but instead translated and scaled such that each component falls inside the [0, 1]

interval. This results in a slightly more accurate classifier output, most likely because in the
original formulation the eigenvectors 2, · · · , k become small after scaling by eigenvalue and
cause numerical difficulties in solving the SVM / SVRDM minimization problems [63].

5.4 Accuracy of Real-Time Motion Segmentation & Recog-
nition

To evaluate the quality of the proposed architecture for real-time motion segmentation and
recognition, the hierarchical classifier developed in Section 5.3 was applied to 29 motion
clips belonging to 12 distinct human subjects. The motion clips contain a superset of the
training samples but as said before, the classifier was trained on only half the available an-
notated data.

To quantify the quality of the segmentation, an approach similar to the definition of the Rand

Index was preferred. For each ground truth motion segment, be it annotated or not, the
best matching segment is located in the solution of the real-time segmentation. Two such
segments are considered to match if their intersection on the time axis represents more than
50% of their minimum length; in other words, one of the segments must be contained in a
proportion higher than 50% in the other segment. Thus being said, four situations may arise:

• True Positive - a ground truth segment matches a motion recognition segment and
their classes also match;

• False Positive - a ground truth segment matches a motion recognition segment but
their classes differ;

• True Negative - a ground truth segment with no assigned class does not match any
motion recognition segment (in other words, the real-time motion recognition does not
recognize a valid class and the ground truth indeed contains no class in the respective
portion of the motion stream);
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Ground Truth
Positive Negative

Observed
Outcome

Positive 124 33
Negative 21 36

Table 5.7: Real-time motion segmentation and recognition confusion matrix.

Figure 5.13: Motion segmentation result for clip 2 of subject 26. Blue segments represent the
ground truth, alternating red and black segments are the result of the motion segmentation
and recognition pipeline and motion class ID is encoded as y height.

• False Negative - a ground truth segment matches no motion recognition segment (i.e.
the ground truth motion interval is labeled as belonging to a class, but the motion
recognition failed to identify it).

The above mentioned technique was applied on each of the 29 motion clips and the resulting
confusion matrix is given in Table 5.7. The accuracy of the real-time segmentation and
classification can be estimated in the same way as RI, i.e. the ratio of correct decisions w.r.t.
the total number of decisions taken:

Accuracy = RI =
TP + TN

TP + FP + TN + FN
(5.2)

Therefore, the resulting accuracy of the real-time segmentation and classification technique
using the classifier discussed in this section is 74.76%. The results of segmenting several
motion files are shown in Figures 5.13 to 5.14. Blue segments represent the ground truth,
alternating red and black segments are the result of the motion segmentation and recognition
pipeline and motion class ID is encoded as y height.
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Figure 5.14: Motion segmentation result for clip 2 of subject 27. Blue segments represent the
ground truth, alternating red and black segments are the result of the motion segmentation
and recognition pipeline and motion class ID is encoded as y height.

5.5 Performance Analysis for MoRec on the Cell/B.E.

As mentioned in Section 4.7.3, MoRec uses gang contexts in order to minimize communi-
cation conflicts on the EIB. Therefore, the six motion segmentation and recognition pipeline
stages are generally placed as in Figure 5.15. The RDS runs on the PPE and outputs data
directly into the main memory, IA (SPE-1) is as close as possible to the MIC because it
constantly needs to access raw motion data, SA (SPE-3) is placed immediately next to IA in
order to minimize communication interferences with other stages, and so on.

The performance of the motion pipeline was evaluated using IBM’s Full-System Simulator
(SystemSim) [64] on several motion clips and the most important statistics are summarized
in Table 5.8. Clocks per Instruction (CPI) represents the average number of cycles needed
to execute an instruction. An SPE has two instruction pipelines implementing distinct oper-
ations and therefore is capable of issuing two instructions per cycle; the percentage of cycles
that were used to execute a single instruction is given by the Single cycle line in the table,
whereas the Dual cycle line lists the percentage of cycles where a dual issue was possible.

Further on, when a branch is reached, the SPE prepares to execute a statically predicted code
path, as hinted by the compiler. However, if the prediction is wrong, the SPE needs to flush
the instruction pipelines and run the code following the correct branch. This has the effect of
stalling program execution and the percentage of cycles lost due to branch miss stalls is also
given in Table 5.8. Finally, the table also lists the percentage of cycles lost due to dependency
stalls - these are caused by instruction parameters that are not yet available at the moment an
instruction is about to be executed.
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It is worth mentioning that for all six SPEs, the percentage of cycles wasted on waiting for
channel operations is 0.0%, therefore the time spent in SPE communication (i.e. DMA trans-
fers, mutex acquisition) is not affecting the performance of the MoRec pipeline. As pointed
out in Table 5.8, the most important performance related factors are poor dual-issue rate
(6.5% on average) and relatively high branch miss and dependency stalls which negatively
impact CPI; in general, the goal is to achieve subunitary CPI values (0.7 - 0.9).

While branch misses can be reduced by allowing the compiler to use run-time information
in static branch prediction, the improvement in dual issue rate and dependency stalls is more
involved. For instance, the FVE stage computes the SVD decomposition with scalar code
that incurs a lot of overhead to position the operands in the SIMD registers. In general, scalar
operations involves various shuffle operations for proper operand positioning and in the case
of MoRec, it accounts for more than 35% of the dependency stalls.

Another issue negatively affecting MoRec SPE performance is the fact that the code is writ-
ten in C++ using object-oriented programming (OOP). This translates into additional over-
head when calling member functions or addressing member variables, but also implies better
code readability and reuse. For instance, the DMA communication primitives (circular buffer
and associated DMA manager) were implemented as classes and the same code was reused
for all SPEs and the PPE. It would be possible to modify the SPE stages to use C-style
functions in order to further increase performance, but this would make the code very hard
to maintain, an undesirable characteristic for a proof-of-concept application.

On the positive side, it is worth mentioning that MoRec is capable of processing on average
4487 motion frames per second, which is approximatively 37 times faster than a usual Mo-
Cap device providing data at 120Hz. The processing speed can be expected to deteriorate for
larger classifiers, with more support vectors and motion vectors to enter the computation, but
there is still a large enough margin to allow for an order of magnitude in performance drop.
Also, given the fact that MoRec is geared towards human motion recognition, in the case
of poor performance (for instance a large classifier involving frequent memory to LS DMA
transfers for support vectors / motion vectors and causing a lot of channel stalls) the Mocap
data source can be sampled at a lower resolution (i.e. 60Hz) thus reducing the workload by
half while in the same time preserving a relatively high quality of the captured motion.
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Figure 5.15: Typical placement of MoRec pipeline stages on the Cell/B.E.

Stage IA SA FVE SC SS ST
SPE ID 1 3 5 7 6 4
Code & data size (KB) 148.33 126.84 149.22 140.08 147.73 102.08
Free space / stack size (KB) 107.67 129.16 106.78 115.92 108.27 153.92
CPI 1.84 1.92 1.82 1.86 1.21 2.02
Single cycle 37.50% 36.30% 37.7% 37.5% 49.7% 35.5%
Dual cycle 5.30% 5.1% 5.7% 5.2% 13.3% 4.5%
NOP cycle 3.20% 3.3% 3.2% 3.3% 1.6% 2.8%
Branch miss stalls 23.20% 23.8% 17.7% 20.5% 0.7% 24.3%
Dependency stalls 29.30% 29.6% 33.9% 31.5% 34.7% 30.8%

Table 5.8: MoRec performance statistics on the Cell/B.E. captured with SystemSim.
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Chapter 6

Conclusions & Future Work

The primary goal of this project was to create a representation (index) of a motion database
that would allow an application to scan a potentially infinite stream for known motion cate-
gories (i.e. cartwheel, golf swing, etc.) in real-time. The first step was to develop a motion
database management application; this allows a human user to group together various mo-
tion data files, define portions of interest inside the files, gather similar motion segments into
classes, and also train and test classifiers capable of recognizing the defined motion classes.

Typically, motion files inside a database contain multiple logically distinct motions and in
order to minimize user interaction in identifying them, an automatic technique based on
PPCA [12] was implemented inside the motion database editor. This has proven to be in-
adequate due to the fact that it does not discover individual instances in the case of cyclic
/ repeated motions and also because it includes transition / idle frames in the returned seg-
ments. The problem is however of great importance in the case of large databases where
manually annotating motion clips can become prohibitive, and thus requires further investi-
gation. As future work, it would be interesting to test whether a technique based on partially
training a classifier for a manually annotated subset of the database and using it to segment
the remaining set of clips proves to be a better choice. However, such a technique would
still not be able to identify segments belonging to untrained motion classes and would still
require manual intervention.

After motion segments have been either automatically or manually defined, the next impor-
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tant operation is to group them into motion classes by similarity. Again, in the spirit of
minimizing user intervention, the motion database manager implements an automatic esti-
mation of the number of classes using the kWAS similarity measure [25]. However, the
resulting set of clusters does not produce a solution sufficiently close to the ground truth and
other clusterization techniques should be further investigated as future work. For instance it
would be interesting to test whether a SVM-based hierarchical clustering method [65] with
user control over the hierarchy depth would provide a better solution. This would still require
user intervention but it would be minimal, consisting in stopping further single-class cluster
subdivisions. In the same spirit, the algorithm that builds the hierarchical classifier already
performs class clusterization; it can be modified to consider each training sample as belong-
ing to a unique class and split the samples into a binary tree where each node best separates
its samples. Again, the discovered class hierarchy and division process can be controlled by
user intervention.

As the motion classes and associated motion samples have been defined, the database man-
ager allows the creation of a SVRDM-based hierarchical classifier [52] capable of recog-
nizing trained motion categories. The resulting classifier achieves good results and is also
capable of rejecting untrained motion classes. Its only downside is sensitivity to different
human subject versions of the same motion, but that is more a problem related to the set of
training data than the actual classifier design and therefore it is easily overcome by using a
more diversified set of training samples. An interesting direction of further development is
to devise a procedure of estimating the thresholds T , t used in evaluating the SVRDMs, as
they must be a little lower, respectively higher than the values used in training in order to
improve the generalization capability. However, if for instance T is too low, the SVRDM
classification ability is also negatively affected, and therefore it is important to strike a bal-
ance between the values used in training / evaluation in order to maximize the generalization
ability and keep the classification accuracy high.

Finally, as soon as the hierarchical classifier is created by the database manager, it can be
exported to a binary file as the database index. This is a very small file (approx. 50KB for
5MB of motion data) containing the hierarchical classifier tree together with the support and
motion vectors, and is used by the real-time motion segmentation and recognition component
running on the Cell/B.E. (MoRec) to split a motion data stream into known portions belong-
ing to previously trained classes. The main goal of the Cell/B.E. implementation was to run
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at real-time rates and the proposed architecture successfully does so, being able to process
more than 4000 frames of motion per second while a MoCap device typically produces data
at 120Hz.

As mentioned before, the architecture of MoRec is modular and consists of several stages
organized in a pipeline. In the test cases analyzed above, the classifier data was able to
fit entirely in the SPE caches and therefore the communication between the pipeline stages
and the main memory was minimal. However, this is not always possible, and for large
classifier configurations it is highly probable that support vectors and motion vectors need
constant transfer from main memory to SPE LS via DMA, altering the performance of the
other stages. In order to accommodate for this undesirable scenario, the classification stage
can be easily broken down and distributed on several SPEs, such that each handles a subtree
small enough to fit entirely in the SPE LS cache. The same reasoning can be applied to
the segment scoring stage, where several copies of it handling different classes can be run
simultaneously, in order to minimize communication with the main memory. As future work,
it would be interesting to investigate the overall performance of such an architecture, and
whether it is still fit for real-time motion segmentation and recognition. Another interesting
development would be to implement an interface to a real MoCap data source and test how
the proposed architecture is affected by it, whether it needs specific filtering of the raw data,
data conversions, and so on.

To summarize, the proposed architecture for real-time motion segmentation and recognition
performs well on the Cell/B.E. from both the perspective of performance and overall quality
and accuracy of the returned results. Further tests with larger classifiers as well as an imple-
mentation of a real MoCap data source are needed in order to show potential problems (if
any) in the implementation of MoRec. The motion database manager application developed
to generate the classifier allows a human user to easily perform various operations on motion
clips but nevertheless, more research needs to be done in order to minimize user intervention
and automate critical processes running on large datasets.
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Appendix A - List of Acronyms

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

BVH Biovision Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CPI Clocks per Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

DMA Direct Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

DOF degree of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

EIB Element Interconnect Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

FVE Feature Vector Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

GMM Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

HMM Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

IA Input Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii
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ICA Independent Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

LS Local Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

MFC memory flow controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

MIC main memory interface controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

MoCap Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

OOP object-oriented programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

PCA Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

PPCA Probabilistic Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

PPE PowerPC Processor Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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