
Interactive Multi-Projection Display System

by

Eoghan Cunneen, BA (Mod) Computer Science

Thesis

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Computer Science

University of Dublin, Trinity College

September 2009



Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for a degree

at this, or any other University, and that unless otherwise stated, is my own work.

Eoghan Cunneen

September 8, 2009



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Eoghan Cunneen

September 8, 2009



Acknowledgments

As a part of this thesis, I would like to thank Dr Gerard Lacey for his supervision during the course of this

project. I would like to thank members of the GV2 group who generously offered help and suggestions,

and to my own Interactive Entertainment Technology class for making the past academic year as enjoyable

as it was. Finally, thanks to my family, Emily and my closest friends for their support and encouragement

over the last 12 months.

EOGHAN CUNNEEN

University of Dublin, Trinity College

September 2009

iv



Interactive Multi-Projection Display System

Eoghan Cunneen

University of Dublin, Trinity College, 2009

Supervisor: Dr Gerard Lacey

The subject of multi-projector and projector-camera pairs is currently receiving a lot of attention in both

industrial and academic research fields. Multi-projector displays offer the new opportunity of creating large

scale displays, paving the way for fully immersive environments in ways that a single projector could ever

hope to achieve. The rise of interest in this research field is driven by ever-growing computer processing

power in addition to the declining cost of high performance, highly portable commodity hardwares.

The use of multi-projection technologies can revolutionise a number of distinct areas. Virtual envi-

ronments, public presentations, scientific visualisation, interactive entertainment (gaming), performance

art and even architectural displays are but a few areas which can evolve with the use of emerging multi-

projection display systems.

However, to achieve both geometrically and photometrically seamless imagery, the accurate co-calibration

of each projector in the multi-projection system is imperative. This dissertation investigates the problem of

single and multi-projector calibration with the use of a camera device. Utilising camera-projector homogra-

phy, the calibration of projector and planar display surface can be solved. To resolve the issue of free-form

surfaces, Gray-coded binary structured light is used to analyse the surface geometry before remapping

the display image accordingly. The whole process adopts accelerated graphics hardware for speed and

efficiency.
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Chapter 1

Introduction

“Web 2.0 is Yesterday. Prepare for World 3.0” - Tom Melamad, HP Labs

We are currently experiencing a paradigm shift in the way we communicate and interact with technology

and the immediate world around us. Web 2.0 brought world wide collaboration, information sharing, social

networking and distributed knowledge. Now we see web technology creeping off our desktops and laptops

and into, not just our mobile or smart phones, but into the physical landscape around us.

The use of projection technology in the public domain can and is creating a new and exciting form

of media. Pervasive media, where human-computer interaction is not confined to the desktop, does not

have to be experienced via your web browser, but can interact with you as you walk through the physical

environment surrounding you. This technology creates an augmented space, a space in which you retrieve

information, interact, play, and can be entertained by.

The goal of this dissertation is to develop a flexible calibration framework for a multi-projection sys-

tem and input interface for large-scale pervasive media systems. The system will be capable of solving

projection problems such as keystoning artifacts, produced by a projector when it is not aligned with the

normal of the projection surface, and geometric artifacts caused when projecting upon non-planar, or free

form projection surfaces. The application draws from techniques that are considered state-of-the-art, and

combines them into one, manageable framework.

The scope of applications for this research includes, but is not limited to, information communica-

tion, commercial advertising, architectural displays, augmented reality based interactive entertainment

and performance art. The software application has been built upon Openframeworks, a C++ based library

of various graphics, vision and sound libraries. Through this framework, a multi-projector and camera

network can be easily calibrated and deployed. The desired outcome will be a robust and easy-to-use

calibration workflow and intuitive user-interface system with which artists or operators can project their

desired graphical content onto any arbitrary projection surface.

1



(a) Uncalibrated, keystoned image (b) Rectified image (c) Pre-warped projected image that is pro-
jected in (b)

Figure 1.1

1.1 Motivation: The Projector-Camera (PROCAM) Model

The goal of the projector-camera model is to fully automate the projector calibration process by using

the camera device to correct keystone artifacts caused by non-orthogonal projections, and to remap the

projection image to display a seamless and coherent image on a free-form, non-planar projection surface.

The system is calibrated once, offline, before the parameters are saved and the application is started.

The projector can be modeled as the inverse of the pinhole camera model and together with the

camera device creates an uncalibrated stereo pair. This allows for an opportunity to calculate a relationship

between both devices, regardless of any intermediary surfaces.

The camera device must be calibrated first to rectify potential lens distortion that could affect the

projector-camera calibration phase. If the projection surface is planar, a homography between the camera

device and the projector is calculated and is inverted to pre-warp the projection image to appear square to

the camera and audience. However, if the projection surface is a non-trivial or non-planar surface, Gray-

coded structured light is implemented to encode the projection surface’s feature points in the camera image

plane. The displacement of corresponding points can be calculated, inverted and applied to pre-warp the

projection image for coherent viewing. In each case, graphics accelerated hardware can be exploited in the

pre-warping stage of the calibration to increase the speed of the pre-warping process. Projector-camera

models can be extended to multiple projectors, where each projector is calibrated individually from the

perspective of the same camera, and the larger image is stitched together from the individual projections.

These topics will be discussed and explained in further detail throughout this dissertation.

The reason for selecting a PROCAM model over an alternative, manual system will now be presented.

While there are substantial strengths to a projector-camera system, it is not without its drawbacks.

1.1.1 PROCAM Advantages

• Aribitrary projector location, liberal setup

• Cut down presentation/display setup time drastically

2



• Full automation and no need for human involvement

• Accurate calibration results

• Larger displays with more projection devices

1.1.2 PROCAM Problems

• Photometric (colour) inconsistencies across surfaces and textures

• Utilisation of smaller percentage of projection frustum

• Projection technology is limited if the ambient light level in the environment is too high

1.2 Dissertation Layout

The rest of this dissertation will be laid out as follows: Chapter 2 will present a literature review of the

current state-of-the-art in the field of projector-camera models, introducing papers and each individual as-

pect of the calibration framework that is important to this dissertation. Here, camera calibration, projector

calibration, geometric calibration and multi-projector calibration techniques are presented and discussed.

Research and development areas are also presented here, offering an overview of the real-world applica-

tions for these systems. In Chapter 3, the design of the system, which is based on the extensive research

presented in Chapter 2, will be presented and defended. This will provide system architectures and de-

tails of how the system will operate. Chapters 4. 5 and 6 will present each step of the implementation

of this system. First the camera calibration technique will be presented and its use in this system shown.

Then the automatic projector calibration theory will be discussed and implementation outlined. Finally the

geometric calibration step will be explained and its implementation discussed. At this stage, the testing

of various different metrics regarding this system will be carried out and analysed in Chapter 7. Finally,

Chapter 8 will conclude this dissertation and offer possible future work for the topic.

3



1.3 Glossary of Terms

Homography 3x3 projective transformation relating two images

Keystoning The distortion caused to a projected image when the projector is at an angle

to the screen

Structured Light The projection of a known light formation into a scene to analyse geometric

makeup of a scene

Gray-code A binary numeral system where successive numbers differ by 1-bit

API Application Programming Interface

CPU Central Processing Unit

GPU Graphics Processing Unit

FPS Frames Per Second

GLSL (OpenGL) Graphics Library Shading Language

4



Chapter 2

Related Work and Literature Review

2.1 Camera Calibration

In any situation that requires accurate camera information for accurate scene analysis, the first step is

ensuring that the camera device itself is accurately calibrated. In situations such as stereo vision, where

point correspondences between two cameras must be made, it is mandatory to know the intrinsic and

extrinsic parameters of the camera devices. Zhang [49] provides a straightforward technique that will

correct the radial and tangental distortion of a camera induced by the camera’s lens. Kimura et al [20],

Fiala [14] and Zhou et al [50] all rely on the calibration of their camera systems for the calibration of their

projection systems.

Zhang’s method simply relies on the camera to identify a known planar pattern from at least two

orientations. In this case either the camera, or the plane itself, can be moved in any arbitrary direction. The

user will grab images of the patterned planar surface via the camera device and detect the feature points

in the image. A closed-form solution is used to calculate the camera’s intrinsic parameters (focal lengths,

principal points) and extrinsic parameters (rotation and translation of camera in real world coordinates with

respect to the calibration target). Finally the radial and tangental distortions are estimated. An in-depth

analysis of this method will be discussed in Chapter 4.

Another method, described in Raskar et al [31] uses a 3D calibration target, rather than a 2D planar

surface. Raskar et al place the pattern, which has known feature locations, within the frusta of the stereo-

camera system. By calculating the correspondences of the 3D target in 2D camera image space, the

projection matrix of each camera in the stereo pair can be resolved. As in Zhang’s method, the numerous

unknown parameters of the projection matrix are solved using the least-squares method.

2.2 Projector Calibration

Sukthankar et al [39] [40] provide means of accurately calibrating a projector system with an arbitrarily

placed camera and projector. This method depends on the use of a quadrilateral projection screen surface

5



to calculate perspective warp necessary for the audience to see a coherent, rectilinear image on the

projection screen. Sukthankar et al use a region growing algorithm to ascertain the full projection surface

before the homography between camera and screen is then calculated using the four corner points of this

projection screen. The projector-camera homography is calculated by the projection of known points onto

the projection surface by mean of calibration slides. These known projection points undergo a projective

transformation related to the orientation of the projector to the screen, and the screen to the camera. This

is then solved for by calculating each component of the 3x3 homography matrix, which is presented in

Chapter 5. A heuristic optimisation is finally used to determine the largest rectangle, with matched aspect

ratio, that can fit within the bounds of the projection frustum as it hits the projection surface. This ensures

that the audience will see the largest to-scale image that the projection setup can permit.

Sukthankar et al claim that their system is not “naive” as it calibrates the projection image to appear

coherent to the audience looking at the projection screen, rather than appearing coherent in the camera

image plane. This dissertation will argue that, without depending on a quadrilateral projection surface,

with just some extra effort to place the camera horizontally and position the camera at the sweet spot of

the audience, the same results can be achieved.

Fiala [14] and Okatani and Deguchi [28] also outline methods for carrying out the automatic calibration

of a projector using a camera. Fiala, first, uses computer vision techniques to calibrate a series of projec-

tors. ARTag, an augmented reality API, is used to project unique patterns onto the projection screen. The

ARTag patterns (fiducial markers or tags) are known and recognised and therefore can be detected by the

camera system. The tags are light invariant but also immune to affine transforms and perspective warps.

The tags are also capable of scaling, managing to be recognised from between the size of 15 pixels to

the camera viewport dimension. Knowing the homography between projection surface and camera device

and the projector-camera homography, the projector to projection surface homography can be calculated

to pre-warp the projected image.

Okatani and Deguchi present a method for computing the projection surface-camera homography with-

out the prior knowledge of the screen. Its goal is to project onto any arbitrary surface, rather than a desig-

nated screen. In this setup, the projector’s extrinsic parameters are unknown while the projector’s intrinsic

parameters are known, while the camera and projector are based on pin-hole models. The method out-

lines their efforts to uncover both the screen-projector homography and the camera-screen homography.

What is different about this implementation is that the camera-screen homography is estimated by project-

ing images onto the display screen and capturing them by camera, rather than feature points physically

located on the screen and then captured by camera as in [14], [39] and [40].

To establish the relationship between the projector and the screen, the authors identify a 3D projector

coordinate frame, O − XY Z, where the focal point of the (laser) projection beam corresponds with with

the origin of the projector’s image. A screen coordinate frame, o − xyz, is also identified where the xy

plane coincides with the display screen plane. M ≡ [X,Y, Z]T represents the direction of each beam in

the projector coordinate frame, while m ≡ [u, v, 1]T are homogenous coordinates in the screen coordinate

frame, where u, v are the x and y screen coordinates. m and M are related by: m ∝ KRM , where K

is a scale and translation and R is a rotational component of the coordinate transform from the projector

frame to the screen frame and ∝ signifies a proportional relationship.
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To capture the homography between camera and surface, it is common to locate known feature points

(at least 4) in the camera image plane to calculate the 3x3 transformation. However Okatani and Deguchi

offer a solution that calculates a camera-screen homography where no feature points are detectable. The

homography between the camera and screen is instead computed using a noniterative method whereby

camera-screen homography, Hsc, is calculated from a series of camera-projector homographies, Hpc

(Hpc1 . . . HpcN ). Like in some camera calibration techniques, this problem is solved by factorising the

matrices into a specific form. The goal here is to find a particular Hsc that permits the factorisation

Hpc ∝ HscKR for a given Hpc.

Lee et al [22] use a different technique for projector calibration. Instead of relying on a camera for

calibration and rectification, the projection surface is instead augmented by the addition of light sensors.

These sensors receive and transmit the data to decode a structured light sequence, described later, and

provide the relevant transformation that the projection image must undergo to project a coherent image

on the projection surface. This is a novel approach to solving the projector calibration problem, and the

results are highly accurate. While the initial prototyped system connected the fibre-optic light sensors via

wires, Lee et al have also developed a wireless alternative. The trade-off between high accuracy and ease

of setup must be assessed in this case.

Kimura et al [20], rely on the same projective geometry between a calibrated camera and the projector.

Instead of using single homographies, Kimura et al consider the projector as an inverse of the pin-hole

camera model. In this regard, they consider the camera-projector pair as a stereo vision pair and attempt to

calculate the fundamental matrix. The fundamental matrix is an n×n matrix that relates the image planes

between two cameras and can be easily acquired by registering several views of a specific observed plane

and an epipole. Using the known camera projection, the projector’s projection can then be computed by

optimising the extrinsic parameters of the camera.

2.3 Geometric Calibration using Structured Light

While the calibration of a projector system is possible for trivial, planar surfaces using techniques described

above, they are not suitable for calculating the deformation that occurs to a projected image when projected

upon a non-trivial, free-form surface. The described techniques above depend on the projection surface

to lie on a two-dimensional plane, however when a third dimension comes into account, an alternative

projection calibration technique must be performed.

Geometric calibration using structured light is a well researched and documented topic, with the de-

velopment of specifically coded patterns for specific purposes. Gray-coded binary, [22], [18], [1], can be

used for robust, noise resistant surface acquisition. The process works by shining alternating black and

white stripes of light onto the projection surface. For n pattern sequences (n-bit), the projection screen is

divided into 2n sections, which encodes each pixel covered by the projection frusta with a 1 or 0 value.

These values are recorded for each n pattern, creating an n-bit codeword, each of which corresponds to

a pixel in the image to be projected.

Gray-code is preferred to binary-code, used in [44], [43], [42], for the following reason: When the stripe
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Figure 2.1: Binary versus Gray-code: Image(left) binary vs Gray-code pattern, while image(right) displays
the boundary changes [47]

patterns of the Gray-code are projected, the boundaries between the black and white stripes never occur

in the same space. This means that ambiguities as to whether a pixel is in one location or another, do

not arise. Figure 2.1 depicts a Mathematica 6 notebook output depicting the bit layout and the boundary

changes.

Gühring [18] presents a combination of both Gray-coded binary and a phase shift. In contrast, Lee et

al [22] use only the Gray-code on two axes, while the light sensors provide a more accurate capture than

a camera would hope. Gühring opts for Gray-code for its robustness, however to overcome the resolution

inadequacy of casting just vertical stripes, the author adds a phase shift step. The phase shift step is

an on-off pattern cast as a sine wave that is shifted in steps of π2 . Lee alternatively opts to cast the light

vertically as well as horizontally. This is assuming that the orientations of the projector and camera are

unknown. If the information regarding the relative placement of either device is known, then only one

orientation of structured light would be required.

In an attempt to create a full, low cost 3D scanner based on structured light, Rocchini et al [33] adapt

the binary Gray-code projection technique and utilise the projector to its potential. Instead of projecting

two-tone black and white images, this technique uses colour coded light. At every step, each region

is divided by a one-pixel wide green stripe. The regions to the left and right of the green stripe are

coloured blue and red respectively. Instead of analysing the discontinuity between regions, as in traditional

structured light based 3D extraction, this method searches for the centre of the green light stripe. First,

for every captured image the pixels that represent areas that are occluded, thus remaining black, are

removed. The green stripes are then detected and indexed per-pixel and the medial axis of each stripe

is calculated to sub-pixel accuracy. These computed medial axes are added to those already found in

previous images and then, for each indexed stripe found in each image, the 3D point is calculated by

triangulation and stored before the 3D point cloud gets re-meshed.

This alternative colour-coded structured light approach can be more accurate as the brightness caused
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Figure 2.2: Structured light step proposed by Rocchini et al [33]

by the light and dark contrast in black and white structured light can cause a widening effect on the brighter

stripe at the expense of the darker one. If the brightness of the red and blue regions are kept consistent

with that of the green stripe, this becomes less of an issue.

Zhang et al [48] also use color coded structured light in an attempt to extract depth information from a

scene. Rather than aiming to carry out this task accurately, the authors have developed a way of extracting

depth very quickly. While [44], [22] and [1] all use a number of structured light images to encode each

pixel in camera space, Zhang et al use just one colour coded image to acquire depth. In this method,

equally sized coloured stripes in a single image are projected into the scene and captured by the camera

device. Each stripe is enumerated in a string of colours, P = (p0, p1...pn), where the information required

for triangulation is located at the discontinuities between the colour stripes, Q = (q0, q1...qn−1), where

qcj = (qrj , q
g
j , q

b
j). At each transition, the separate r, g, b colour channels take a -1, 0 or 1 value depending

on whether its value is falling, remaining constant or rising.

The pattern is observed by the camera device as a series of color edges, E = (e0, e1...eM−1), where

each edge is described as e = (er, eg, eb), with the edge intensity levels stored in the r, g, b channels.

Correspondence between Q and E must now be computed. In attempt to overcome inevitable problems

caused by occlusions from irregularities in the surface, and colour mislabeling caused by specular or

reflective surfaces, underlying textures or projector colour misrepresentation, the calibration technique

introduces what they call multiple hypotheses, where every label assigned to a stripe is paired with a

probability matching of that label. A global match optimisation technique then deals with these possibilities,

labeling the stripe with its most likely value.

Ashdown et al [2] and Bimber and Rakesh [5], offer horizontal and vertical line-based methods of planar

surface identification (Figure: 2.3). The structured light step taken in Ashdown et al is composed of vertical

and horizontal light stripes being projected onto the arbitrary surface. As the lines cross separate surfaces,

kinks appear in the line in camera space. These kinks are located and can be connected to determine the

precise boundary. The projector-camera homography is then estimated using a Direct Linear Transform

(DLT) method and applying it to a set of point correspondences. Each point x corresponds to a point x′

and are directly related by a homography H . Each point provides two constraint equations (an x value

and a y value). So these n points (where n ≥ 4) can be combined into a 2n × 9 matrix and solved using

Singlular Value Decomposition (SVD).

At this stage, the camera-screen homography must be calculated for each i screens. To do this, the

camera views a number of right angled rectilinear (envelope) shaped objects placed on the surfaces.
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Figure 2.3: Structured light step proposed by Ashdown et al [2]

Metric rectification of the image of a planar surface is carried out by finding 5 or more line pairs, the

postcards, that are orthogonal to the surface. These constraints, again, can be formed into a null-space

problem and solved for by SVD.

Finally, an iterative refinement algorithm (homography refinement algorithm) is used to calculate the

most accurate mapping possible. The aim of this step is to make sure that each common point on the

boundary between surface i and surface j can map to its position in the projector image, regardless

of whether the homography between projector and surface i, or surface j, is applied. As two separate

surfaces are being considered, each shared point on the boundary creates two separate points in the

projection image that should in fact be the same. This is rectified by taking the midpoint between these

distinct points. The homography between surface i and surface j are recomputed with the new point

correspondences. This process is repeated until the error metric falls beneath a certain threshold.

The projection of light need not be contained within the range of visible light. Frueh and Zakhor [15]

use the infra-red spectrum in their solution to create a system that will capture the 2 1
2D geometry of a

scene. The IR light, captured by a camcorder on nightmode, is invisible to the human eye and is used to

extract the depth data, while the texture of the scene is preserved and captured using an ordinary firewire

camera.

The depth is acquired solely in the IR domain, where equally spaced vertical IR stripes are projected

at the scene, while a single horizontal stripe of IR light scans the scene from top to bottom. The horizontal

IR scan line is used to distinguish the vertical lines from each other, as the vertical lines can become

ambiguous due to occlusion or deformation on a steep surface. Differentiating the vertical lines with

identification colours within the IR spectrum is impossible due to technical constraints. The depth then,

is obtained at the horizontal line at different locations during separate IR frames (IR frames captured at

30Hz), resulting in a different set of vertical stripes being located at each frame. The vertical displacement

between the IR camera, which captures the scene and is located directly next to the firewire camera,

and the horizontal IR emitter is known, so the depth of the scene between the camera and the object in

question can be resolved by triangulation.

Furukawa and Kawasaki [16] also present a scheme for extracting depth using structured light with

an uncalibrated projector-camera pair. The authors opted for the structured light with a projector-camera

pair rather than a camera pair, as the use of structured light will present far more correspondence points

than a camera pair would hope to. This means that the interpolation methods to populate a dense point

cloud from fewer feature points used in a camera pair system will not have to be applied to this system,
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potentially making it more reliable. Again, Gray-code is opted for to project both vertical and horizontal

light codes into the scene, permitting an arbitrary projector-camera setup. A laser pointer is used for

depth analysis and the consequent scaling issues. If scale of the resulting image is not an issue, the

laser is simply left out. To obtain the point correspondences, the vertical and horizontal stripes provide

the 1D correspondence points obtained by the camera device which when paired offer the 2D point. The

3D reconstruction is carried out by solving the epipolar constraints in Euclidian space where a non-linear

optimisation is applied to refine the accumulated results.

The coordinate system for this implementation is expressed as the projector coordinate system. The

projector is considered a camera in this setup where the origin of the coordinate system is the optical

center, or principle point, of the projector image and points in the −Z-axis direction. As in [28], the x, y

axes of the coordinate system lie on the same plane as that of the image coordinate system of the screen

and the focal length is expressed as the direction vector of the ith correspondence point in projector

coordinates. The correspondence between the projector image plane and the camera image plane are

expressed as a rotation matrix Rp and a translation vector tp, where the rotation matrix is made up of

Euler angles αp, βp and γp and expressed as Rp(αp, βp, γp). The epipolar geometry, where the lines of

sights of projector and camera intersect in 3D space, is then solved for.

Batlle et al [3] and Pagès et al [29] provide a thorough overview of many of the structured light tech-

niques discussed.

2.4 Calibration of Multi-projection Systems

Raskar et al [31] provides a framework to use an arbitrarily positioned multi-projector system to project

onto an irregular projection surface. Their system tracks a moving viewer through the environment by

use of an infrared tracking device, where Lagrangian multipliers are used to compute the transformation

between the coordinate system of the tracking device and that of the world coordinate system defined by

the 3D calibration pattern. This framework uses a stereo-camera model, rather than a single camera, and

uses binary structured light to identify point correspondences in the 3D projection surface. 2D Delaunay

triangulation is then used to reduce the points to a mesh structure. The projector’s projection matrix

is easily calculated by corellating each projector pixel to its corresponding 3D surface point. A 2-Pass

rendering algorithm is presented that simply stores the desired image as a 2D texture, before using this

to texture the 3D mesh of the projection surface. For the multi-projection stage of calibration the process

is repeated, registering the projection surface and each of the projector calibrations to a common world

coordinate space. A 3x3 rotation and 3x1 translation vector, together with two corresponding points are

resolved using least-squares. The correspondence between the points, like before, is solved by binary-

coded structured light.

Taking multi-projection calibration to whole new level is Chen et al [10], who present a method for

calibrating any arbitrary amount of projectors with a single pan-tilt-zoom camera. Here, 24 1024x768 XGA

projectors are used in a 6x4 array, powered by a group of networked PCs. The projectors cover an 18’

x 8’ projection surface creating a surface display of approximately 18 megapixels. Like Sukthankar et al
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[39], this method depends on homographies between the camera and the surface, and the camera and

projectors. First camera-camera homographies are recorded to develop a relationship between numerous

camera poses and the projection surface, essentially grabbing reference frames for the entire surface and

building a mosaic of the projection surface. These mosaics must overlap - this is because the homog-

raphy between two camera views cannot be calculated if the two views do not share common feature

correspondences. As a result, a homography tree which spans the entire set of views is created, whereby

the mapping of any view can be determined by compounding the homographies along the path to the

reference point at the root of the tree.

The projector-camera homography is calculated as per other similar methods. Each projector displays

a specific calibration target, whose well defined features are know in projector space. By locating the

corresponding features in camera space, the homography can be simply found. However, due to the size

of the display in question, inaccuracies can accumulate when the resolution of the display is far greater

than that of the camera. As a result, the authors propose a more accurate estimation of the projector-

camera homography. Instead of a simple checkerboard being projected, pairs of horizontal and vertical

lines are projected onto the surface by each projector. The intersections of these lines can be found, not

by edge detection, but by fitting a quadratic function to pixel intensities in the stripes. A strong peak of the

function at a particular point indicates a feature and provides sub-pixel accuracy of the line’s local position

with floating point precision. The new Camera Homography Graph (CHG) takes on a latticed behaviour

when projected upon a rectangular wall, where each vertex represents a camera view, and each edge

represents a directly computable homography. When multiple paths exist between two homographies, a

global registration method is used to resolve the issue.

Tardif et al [42] provide more research into multi-projector calibration. This method employs the use

of a single camera, used to simulate the audience’s point of view, and two projector systems to rectify

geometric distortion caused by a non-planar projection surface. This method uses structured light to

analyse the depth of the scene, opting for binary-coded light, the simplest form, as they are not concerned

with the speed and optimisation of the this step. The calibration step is performed offline before the display

image is warped in real-time with the use of graphics accelerated hardware.

The binary structured light is projected together with that bit’s inverse. If in the first instance white

(1) was projected, the inverse will be projected black (0). At this stage, the inverse image values are

subtracted from the converse image values, creating a resulting image whose values range from -255

to +255. The points in the camera image space that capture the projection undergo a large contrast

(difference typically greater than 150), while those outside of the projection will not have hugely contrasting

values at all (difference typically less than 50).

Once the images are thresholded, and the bits identified, the horizontal bit values are concatenated

with the vertical bits, creating NumOfBits × 2 long word. As the projected binary code nears the least

significant bit (LSB), the resolution of the camera is often not capable of distinguishing between the black

or white code. This results in rejected pixel values for a number of the LSBs. These bits are set to 0,

creating a down-sampled mapping.

For each coordinate in the camera image space that is not rejected from the previous thresholding

step, a down-sampled mapping is created to inversely map the display image to the camera image plane.
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An estimate of the centre of the display image in the camera image space is achieved by averaging the

non-rejected points in the camera image space, this provides a rough mapping between the display image

and camera image plane. This process is repeated for each coordinate in the camera image space.

The image is then reconstructed with the use of OpenGL textures. The down-sampling is used as a

square mesh, where the original 1024 x 768 image is rebuilt as 128 x 96 which represents 12065 squares.

This essentially texture maps the camera image space in real-time, utilising interpolation schemes in the

process. The down-sampled image must undergo a final transform before the calibration step is deemed

complete. It is necessary to find the largest to-scale rectangle that can reside within the projected area

within the camera image space. This creates a similarity transformation between the newly created rectan-

gle in camera image space, and that of the display image. This process is extended to multiprojectors by

carrying out the described method for each projector for any arbitrary amount of projectors. For a correct

image, it is important that the projectors must overlap before intensity blending is carried out.

Zhou et al [50] use projector-camera pairs for their calibration method. In this technique, there are i

projector-camera pairs, {Pi, Ci}, each of which have their intrinsic and extrinsic parameters calculated.

The cameras are calibrated by the same technique proposed by Zhang [49]. Once the cameras are

calibrated, the uncalibrated projectors {P1 . . . Pi} each project a checker-board pattern respectively. Then,

using the calibrated cameras and the same techniques as one would calibrating a camera, each projector’s

intrinsic and extrinsic parameters are then accounted for.

Zhou et al use an interesting method to project on to the projection surface. Harris corner detection

is used to extract the local features (corners) from an image projected from another projector in the set.

Normalised Cross Correlation (NCC) is then used to match points of the image already on the projection

surface, and the image to be projected by the current projector. What differs from this technique in contrast

to other similar techniques is that; while the initial projector-camera and geometric calibration steps are

carried out offline, there is an online, automatic self-calibration step that runs for the duration of the appli-

cation. The automatic self calibration step assesses any change that may be caused either by projector

movement, or projection surface movement. Every frame, the camera image is compared to the camera

image from the last frame. If there is any discrepancy, then there may have been a change in the system

configuration and the calibration stage is carried out again for that camera-projector pair. Harris feature

detection is used to locate the 2D image features in the camera plane. These matched 2D correspon-

dences are then triangulated to obtain points in 3 dimensional space before RANSAC is used again to find

the optimal plane fitting.

This method is also capable of projecting upon free-form surfaces using structured light to extract

the 3D geometrical make up of the scene. 2D correspondences between Pi and Ci are found for each

camera-projector pair. As the frusta of the cameras may overlap, a point of the projection surface will be

present in different locations according to different cameras. To solve this, a rigid rotation and transforma-

tion is carried out align the point between the two cameras.

The performance of this system is limited to the camera-projector synchronisation (feature extraction

per frame). At this rate, the system runs at 3.5Hz, however with a better synchronisation technique, the

application can meet video frame rate standards (∼24fps).

Once each of the projectors in the multi-projection set are calibrated, the overlap of projection beams
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cause non-uniform light saturation on the projection projection surface. To compensate for this, photomet-

ric calibration must also be carried out to ensure a uniform and constant projection surface.

2.5 Other Applications

This section will give a brief overview of some other novel implementations of projection technology that

are less related to this dissertation.

Bimber et al [4] present an interesting application for projection technology in the realm of the aug-

mented studio. This setup provides the opportunity to create real-time compositing effects in a real world

situation, using blue or green screen technology to place the scene actors into a computer generated

environment. Using multi-projector arrays and digital illumination, the computer generated scene’s colour

scheme can be replicated in the LED lights, allowing the system to light the scene so that it is consistent

with the computer generated imagery projected on the screen.

A novel table-top projection display system is presented by Cotting and Gross [12]. In this imple-

mentation, environment-aware display bubbles can be projected onto a user’s work top. Conscious of its

immediate surroundings, the projection utilises 2D rigid body physics and collision handling to only project

on the projection surface, and not objects placed on top. These objects are found by using structured

light to detect depth discontinuities before a Gabor filter is applied to the captured image. Thresholding is

applied to the image after the filter is applied, resulting in a binary image where white space designates

the area where the bubbles can be projected. The system is interactive, running at real-time rates.

A novel interaction wall is created by Summet et al [41] where redundant projection light from a number

of projectors is used used to simulate a back-lit projection setup. Using two or more projectors, the

potential for total occlusion caused by an obstacle is alleviated as the second projector compensates for

the area that the initial projector cannot reach. This instead creates two partial or half shadows, rather

than a single, full one. The use of a camera device allows interactivity between the projection surface

and users of the system. The novel interaction setup uses similar automatic calibration and keystoning

processes as were discussed before.

Song and Cham [36] use similar fiducial markers as those used in Fiala et al [14] to create a tangible

game interface. In this system, four fiducial markers placed on a surface are used and tracked by a camera.

The homography between the board can be found by locating each marker (as before, there must be at

least four), where a tracking system can calculate the tilt of the surface. The game play is then based on

the orientation of the board. In essence, this setup acts very much like an accelerometer that you would

find in modern game controllers.

In any of the systems discussed thus far, the permanent location of the projector in the scene is

imperative, while in some implementations such as [31] the viewer, or virtual camera, moves about the

scene, the projector is always in situ. Chan et al [9] have developed a system that makes use of a series

of ceiling mounted projectors, which remain in place throughout runtime, and steerable projectors that are

able to be controlled by the system users. The steerable projector’s role is to overlay the projection surface

with more information about what the user is looking at. It may provide resolution or intensity enhancement
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Figure 2.4: Example of advertising potential. Reprinted from [8]

for sub regions of the overall projection surface, thus essentially augmenting the augmented space. The

user can interact with the system using personal digital assistants (PDAs), while a camera, also mounted

to the ceiling also tracks potential interaction.

Kondo et al [21] and Tardif et al [43] use free form projection technology to project medical data onto

patients. This could mean superimposing an X-Ray or CAT scan onto a patient’s body to provide the

surgeon with more information regarding an internal injury. A leading car manufacturer, [6], is using similar

technology as an educational tool for trainee mechanics.

Of course, while offering these new and emerging applications for projections technology, it’s imperative

not to overlook the traditional use for projectors. A common application for projection technology would

be public presentations. Whether for education or for business, projectors are a common commodity to

have. So with the evolution of projection technologies, so too can you expect the evolution of presentation

setups. Sukthankar et al [40] offer a novel and easy way to calibrate an arbitrarily placed projector by an

arbitrarily placed camera, aiding quick set up times and versatility. Johnny Chung Lee, [23], presents a low

cost interactive white board that promotes collaboration on projected documents and content. To go one

step further; using the holographic technologies referred to above, one could imagine teleconferencing

with projected holograms of colleagues who are situated on the other side of the planet.

2.6 Research and Development Applications

This section will deal with the numerous actual implementations and hypothetical implementations of pro-

jection technology in the real world. This section discuss the applications and their potential, rather than

their technological makeup.
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Figure 2.5: 6th Sense Technology, MIT. Reprinted from [30]

2.6.1 Pervasive Media

Pervasive Media spans a wide gamut of new media endeavours. Projection technology plays an incredibly

important role in many of these areas, whether it’s social and pervasive gaming, augmented reality and

architecture, intelligent spaces, information communication and advertising, or even the fine arts. Whether

it is a 30,000 ANSI lumens projector for mass communication, or a pico-projector for mobile applications,

projection technology may provide an ideal solution.

Massachusetts Institute of Technology (MIT) has invested heavily in the research and development of

pervasive technologies. The MediaLab’s 6th Sense [30] technology combines mobile phone, digital cam-

era and pico-projector technology into an individual smart assistant-like device. The camera in the device

acts as both an interaction input, but also as a standard image capturing device. The user uses hand

gestures to operate, while the attached projector, displays the information upon a convenient projection

surface (Figure 2.5). Through a mobile web connection via the phone, the 6th Sense can also use feature

recognition capabilities (camera input) to recognise objects and retrieve relevant data from the world wide

web and display it upon the object, creating an augmented reality internet.

Figure 2.6: SenseAble City, MIT. Reprinted from [34]

Another research area in MIT is the SENSEable City Laboratory [34] where the researchers seek to

present relevant real-time information to city dwellers. Using state-of-the-art sensor technology, mobile

devices and embedded displays, the laboratory researches and develops new and innovative means to
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Figure 2.7: Architectural Projections. Reprinted from [45]

present real-time information. An example of this is their EyeStop [13] development to be unveiled in

Florence, Italy in November, 2009. These varying devices (Figure 2.6) will present interactive services,

community information and entertainment.

These pervasive, public technologies present an ideal opportunity for marketers and advertisers. With

affordable projection technologies together with well calibrated projection software, interactive marketing in

the physical world is now becoming a reality. Reuters Media Group [32] reported in 2008 of the partnership

of a leading international advertising company and high-end projector manufacturer to create advertise-

ments that would be projected within the London Underground train stations. This form of advertising

may well prove to be a more economically viable way of marketing products. Less paper based posters,

together with fewer aesthetically displeasing billboards may create a more positive reaction than the large

paper based solutions of old. Even more interesting still, is the prospect of turning advertisements off

between certain times.

However, with new computer vision technology, the ethical use of such technology will be under severe

scrutiny. New Scientist [35] reports of fears of such potentially “Orwellian” technology. Technology that

can record crowd numbers, locations of interest, a person’s gender or even age may have an unsettling

effect. The question of whether the technology is a novel interaction or a surveillance tool must be asked.

2.6.2 Architecture

With modern interactive graphics and graphics hardware devices, real-time graphics can be applied and

projected within the physical environment, creating ever changing, augmented buildings and spaces. Bim-

ber and Raskar [5] have extensively documented methods of creating spatially augmented spaces, apply-

ing real-time graphics to change the dimensions of the built environment, creating more internal space or

to vary the texture or colour of an exterior wall. Figure 2.7 displays examples of alternative architectural

projections.
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Figure 2.8: Performance Art Examples. Reprinted from [25]

2.6.3 Performance Art

For years it has been expected that computer generated special effects were confined to cinema or tele-

vision screen. Only in special circumstances, such as large theme parks, would these effects be seen

in the physical world. The advancement in projection technology, specifically bulb brightness and energy

efficiency, coupled with the evolution of holographic materials [46], [38] means that it is now common to

see projection technology in theatre, opera and live musical productions (Figure 2.8).

2.7 Summary

A non-exhaustive list of potential applications of projection technology has been presented. This list pro-

vided both actual applications of new age projection technology, and proposed hypothetical employments

of such apparatus in a commercial setting. This dissertation will now present a design specification for a

versatile projection calibration framework. The design of which is based on the state-of-the-art discussed

in this Chapter.
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Chapter 3

System Design

This Chapter will provide an overview of the design steps taken to create and implement the calibration

framework. The overall goal of the framework will be presented, before an introduction to the individual

components of the calibration framework is made.

3.1 System Requirements

This calibration system is a framework that can easily calibrate a set of projectors to display large-scale

image or video sequence with a camera device. The camera will be located at the audience’s sweet-spot

[5], viewing the projection from their perspective. This system will automatically correct for keystoning

artifacts that occur when a projector is not aligned orthogonally to the projection surface. The system will

also calibrate a series of projectors to display a coherent image on a non-planar, or free form projection

surface, thus creating a virtual projection canvas.

3.1.1 System Goals

The goal of this system is to solve for the following discrete steps:

1. Calibrate a set of camera systems to eliminate lens distortion

2. Calibrate the projector:

(a) Automatically correct keystoning artifacts if the projection surface is planar (Figure 3.1 (a))

using inverse homography function

(b) Extract 3D surface geometry to remap image (Figure 3.1 (b)) using Gray-code structured light

3. Divide projected image frame across n projectors

4. Prewarp image in real time, exploiting accelerated graphics hardware
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(a) Keystone Distortion (b) Geometric Distortion

Figure 3.1: Calibration state machine

3.2 System Design

The calibration system will need to employ underlying image processing, camera input and graphics func-

tionality. Therefore, Openframeworks, to be discussed, is availed of to supply solutions. With a design

based on previous research and state-of-the-art, this system has been structured as follows:

Camera Calibration

The camera calibration will utilise Zhang’s [49] calibration model to compensate for lens distortion. This

method has been used and tested extensively, making it a robust solution for this system. It is included in

OpenCV’s functionality, and will be straightforward to implement.

Automatic Keystoning

The first projection calibration issue that this system will address is the potential problem of image keyston-

ing on a planar projection surface caused when the projection device is not orthogonally aligned with the

surface. As a solution, this system will replicate methods used in Sukthankar et al [39] [40]. The sys-

tem will calculate the homography between camera and projector by projecting a calibration target on the

projection surface. The camera can capture this and using the same functionality used in the camera

calibration step, solve the camera-projector homography.

Sukthankar et al reported very good results from their implementation in terms of setup time and

accuracy, while also succeeding in being far more intelligible than alternative but similar systems. Unlike

Sukthankar et al, however, this implementation will assume that the camera is located at the point of the

audience. This may permit a more straightforward setup, without adding any excessive setup complexity.

Depth from Structured Light

When projecting upon a non-planar surface, it will be necessary to assess the geometric make up of that

surface. Structured light is ubiquitously used for this purpose, and there are numerous implementations
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Figure 3.2: Technical architecture of Openframeworks [24]

of it in similar applications. For this system, we will adopt Gray-coded binary ([22], [18]) for it’s robustness

over plain binary code.

Tardif et al [42] et al provide a framework of which this system will adhere to. As Tardif et al utilise

plain binary coded light, a comparison can be made between the two methods. Both of these systems are

calibrated offline first, before the main application is run.

3.2.1 System Architecture

The system architecture is built upon openframeworks, a C++ based, cross platform framework with a

particular bias for creative coding. Openframeworks (OF) is composed of a number of application pro-

gramming interfaces (APIs) and libraries, and wraps up their main functionality for ease of use.

The core libraries the OF framework cover graphics programming, sound processing, vision and image

processing, typography and video playing or sequence grabbing. The core libraries specific to this work

are OpenGL, for graphics programming and graphics card accelerated performance. OpenCV for image

processing capabilities and Apple’s Quicktime for video playback and webcam access.

Figure 3.2 displays the technical architecture of OF. The core API frameworks create the lowest level,

upon which OF’s own wrappers sit. The classes that are added to this framework as a part of this research

sit on top of these again, between the second and third layer. These classes are as follows (figure 3.3):
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Calibration Handler

Camera Calibration Camera Handler Projection Device Handler

Cameras Projection Devices

Figure 3.3: Calibration Framework

The calibration handler is responsible for the management of the calibration process for both projectors

and cameras. This class is responsible for the initialisation of the camera and projector handlers, and in

turn, the cameras and projectors themselves. The calibration handler is also responsible for finding the

homographies between its subclasses, and the loading and saving of data to XML files.

The camera handler looks after each of the cameras in the system. This handler will detect how many

cameras are currently connected, and store the intrinsic and extrinsic parameters of each camera. The

camera handler provides easy access to any of the connected camera devices. There is one camera

handler per application. Parameters specific to each camera are stored in the camera object class. These

refer to the camera’s intrinsic and extrinsic matrices.

The camera calibration class is responsible for the calibration process of the camera, as discussed in

Chapter 4. The user will take images of a calibration target, and rectify the radial distortion caused by the

lens. There is one camera calibration class per camera object.

3.2.2 System State-Machine

The system is modeled as a simple state-machine, with the user opting for a specific state to complete

a certain task. The state-machine is designed so that the user goes through the relevant procedure to

ensure that the projection devices are calibrated.

At runtime, the application starts in the neutral state. At this point nothing happens, it is merely an

opening screen for the application. The user can then navigate to the camera calibration state (Chapter

4) where the calibration of each camera takes place. The camera calibration screen displays an input

from each camera device. If the cameras’ frusta overlap, then the cameras can be calibrated in unison, or

otherwise individually.

The projector calibration state (Chapter 5) looks after the projector calibration with regards the camera.

The projector-camera homography is calculated at this stage if the projection surface is planar, otherwise

the 3D acquisition of the projection surface is taken using structured light (Chapter 6).

The display image will have to undergo a remapping so that it will appear rectified and coherent from

the perspective of the camera. These remapping parameters will be passed from the previous state and

transform the display image accordingly in real-time.
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Neutral State

Camera Calibration State Display State

Image Processing StateProjector Calibration State

Calibrate Projector(s)

Calibrate Camera Apply e�ects to display

Display Image(s)Exit Neutral State

Figure 3.4: Calibration state machine

3.3 Evaluation

The system will be tested against numerous metrics. In the first instance, visual inspection can be used to

get a good idea as to how the system has performed. This will not be enough in itself, however, and other

tests have been devised to assess the system’s performance. The evaluation of the system is discussed

in Chapter 7.

3.3.1 Calibration Accuracy

Using camera image space, the accuracy of the calibration can be measured by assessing the alignment

of the the projected image. Sukthankar et al [39] [40] claim that their system is accurate to ±3 pixels,

but on a camera resolution of 160x120 pixels. Projectors offer digital keystoning rectification, but typically

within ±12◦. This sets the goal for calibration accuracy on a planar surface.

3.3.2 Object Tracking Consistency

While the image may be nicely aligned on both planar and free-form surfaces, there may be unwanted

warping present within the image caused by inaccurate point interpolation, inaccurate geometry extraction

or misalignment between two projectors. To test for this, an object tracking test is performed to assess the

variance of points within the projected image. No other previous paper has used such a metric to test their

system.

3.3.3 Performance Benchmarks

In this test, the performance of CPU based operations will be compared to GPU accelerated alternatives.

OpenCV offers functionality to warp images based on a 3x3 matrix while running on the CPU. This warping

can be changed to a 4x4 matrix and used within OpenGL to warp the projection matrix, utilising accelerated

hardware.
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Chapter 4

Implementation: Camera Calibration

This Chapter will provide an overview into the research and development that went into the camera cal-

ibration component of this projector calibration framework. The framework uses Zhang’s [49] method of

camera calibration for its ease and accessibility through OpenCV. Additional information has been refer-

enced from Bradski and Kaehler [7].

4.1 The Pinhole-Camera Model and Calibration

4.1.1 Projective Geometry

To assess the 3D world via a camera, we adopt the pin-hole camera model. The pin-hole camera’s

aperture is a single point, without a lens, which means that everything viewed will be both in focus, and is

thus not subjected to distortion caused by a lens. This camera model maps a 3D coordinate in World space

to a 2D coordinate on the camera image plane. In mathematical terms, we refer to World coordinates as

M = [X,Y, Z]T and the 2D image plane as m = [u, v]T . For projective transformations, the homogeneous

vectors for both 2D and 3D coordinates are used. This creates new vectors m̃ = [u, v, 1]T and M̃ =
[X,Y, Z, 1]T for image and world coordinates respectively. We now model the projective mapping between

m̃ and M̃ as:

sm̃ = A
[
R t

]
M̃ (4.1)

Where s is an arbitrary scale factor. A is referred to as the camera’s intrinsic matrix, while matrix [R, t]

is considered the extrinsic matrix of the camera.

A =

α γ u0

0 β v0

0 0 1

 (4.2)

The intrinsic matrix, equation 4.2, contains variables specific to the camera and do not rely on the 3D
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space sampled. In equation 4.2, α and β signify the scale factors on the u and v axes in the image, this

is related to the closeness of the viewed object. γ, then, represents skewness of the two image axes.

Coordinate u0 and v0 is the image’s principle point (the centre of radial distortion).

A =

fx 0 cx

0 fy cy

0 0 1

 (4.3)

The intrinsic matrix is often represented as in equation 4.3. The camera’s focal points, fx and fy, are

represented in pixel values, while the image’s optical centre, or principal point, is also represented in pixel

values cx and cy.

The extrinsic matrix [R, t] is so called as it describes the camera’s external parameters rotation (R),

and translation (t) in real world coordinates from a particular point. This value is dependent on the 3D

space sampled. Its expanded notation is:

[
R t

]
=

R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

 (4.4)

These expressions can be simplified further with the assumption that the model plane (calibration

pattern) is along an axis where Z = 0. Therefore Z, now 0, can be disregarded. We can then assume the

following from equation 4.1:

s

uv
1

 = A
[
r1 r2 r3 t

]

X

Y

Z

1

 (4.5)

then becomes:

s

uv
1

 = A
[
r1 r2 t

]XY
1

 (4.6)

By analysing equation 4.6, it is clear that m̃ is related to M̃ by a 3x3 matrix. This matrix is referred to

as a homography (H). As this is a square matrix, it is invertible and is a characteristic which is utilised in

Chapter 5. We can finally state:

sm̃ = HM̃ (4.7)

Where H is:

H = A
[
r1 r2 t

]
(4.8)

The camera’s intrinsic parameters are subject to two constraints given a single homography. As a
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homography has 8-degrees of freedom, only two constraints can be obtained from the six extrinsic param-

eters (3 rotation vectors and 3 translation vectors). These are as follows:

If H =
[
h1 h2 h3

]
, then from 4.8, we get:

[
h1 h2 h3

]
= sA

[
r1 r2 t

]
(4.9)

Where s is a scale factor and rotation vectors r1 and r2 are orthonormal. This then leads to the two

constraints on the intrinsic parameters:

hT1 A−TA−Th2 = 0 (4.10)

hT1 A−TA−Th1 = hT2 A−TA−1h2 (4.11)

4.1.2 Lens Distortion

Using a camera which has a lens, we can be expected to encounter both a dominant radial distortion and

slight tangental distortion. Radial distortion occurs as the rays further from the lens centre are bent more

than those closer to the centre. Tangental distortions are related to the physical assembly process of the

camera. Figure 4.1 provides a visual example of lens distortion.

Figure 4.1: Camera Calibration: Barrell (left) and pillow (right) lens distortions

The distortion of the lens can be modeled by a Taylor series. The first two terms, k1 and k2, are

usually enough to model the distortion, however, if large distortions are present (from a fish-eyed lens)

then the third term, k3, can also be used to extend its accuracy. The following is the mathematical model

of distortion as of Zhang (1998).

x̆ = x+ x[k1(x2 + y2) + k2(x2 + y2)2] (4.12)

y̆ = y + y[k1(x2 + y2) + k2(x2 + y2)2] (4.13)

Where (u, v) are the ideal, undistorted coordinates in the image plane, and (ŭ,v̆) are the distorted

image coordinates, and (x, y), (x̆,y̆) are the normalised, undistorted and distorted image coordinates,
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respectively. k1 and k2, as mentioned, are the radial distortion coefficients. With equation 4.2, we can

deduce that:

ŭ = u0 + αx̆+ γy̆ (4.14)

v̆ = v0 + βx̆ (4.15)

And taking γ = 0:

ŭ = u+ (u− u0)[k1(x2 + y2) + k2(x2 + y2)2] (4.16)

v̆ = v + (v − v0)[k1(x2 + y2) + k2(x2 + y2)2] (4.17)

The webcams used in this project do have lenses and will therefore be subjected to lens distortion. We

will calibrate them to simulate a pin-hole camera model. The camera and projector will then be treated as

an uncalibrated stereo pair, whereby the relative positioning of each device is unknown. The rectification

of the lens distortion is paramount in this implementation, the calculation of the extrinsic matrices are not

important. This next section will present Zhang’s method of camera calibration.

4.2 Camera Calibration: Zhang’s Method

In the first instance, the calibration target (the chessboard pattern) is applied to a rigid surface. The feature

points of the calibration target are assumed to lie on a single plane (the model plane). If the feature points

do not reside on the same plane, the camera will attempt to rectify the image with inaccurate feature

positions, resulting in distortion artifacts that could corrupt the intrinsic and extrinsic parameters, and

hence what should be a corrected image. Then, by moving either the calibration target with respect to the

camera, or vice-versa, a series of images of the calibration target from numerous orientations is captured.

The movement need not be known. The feature points of the calibration target must be detected before the

five intrinsic parameters and six extrinsic parameters are calculated. This is calculated by a closed-form

solution. The radial distortion coefficients can then be estimated by solving the linear least-squares which

is then refined by a maximum likelihood estimation.

4.3 Camera Calibration: OpenCV

Vision framework, OpenCV, covers all relevant functions for the successful calibration of a camera. The

camera calibration component uses an 8x8 chessboard pattern (figure 4.2) as the planar object to detect,

as discussed. The following functions are then called in succession to acquire the camera’s intrinsic,

extrinsic matrices and distortion variants.

1 cvFindChessBoardCornerGuesses()

This function estimates the location of the features upon the chessboard. This function looks for the
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Figure 4.2: Camera Calibration: Calibration Pattern

possibility of a calibration target being present in the current image. For this framework, we use an

8x8 chessboard, with 7x7 internal corners. The function finds features where a black square meets

another black square and the locations are approximately stored. For a more accurate detection,

the following is used:

2 cvFindCornerSubPix()

Once the location of the chessboard’s features have been estimated, this function then iteratively

refines the location of the feature points to sub-pixel accuracy.

3 cvDrawChessboardCorners()

This function simply draws a graphical marker upon the location where a feature is deemed to have

been found. This step can be used for the user to visually confirm the result.

4 cvUnDistortOnce() Finally, this function is called to redraw the image, compensating for both the

tangental and radial distortions, passed as parameters as a part of the intrinsic matrix. Each pixel

from the input image is mapped based on the distortion values and are linearly interpolated.

The results of the cvFindCornerSubPix() function step can be seen in figure 4.3. The final correc-

tion of the image can be seen in Figure 4.4

Figure 4.3: Camera Calibration: Feature identification
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Figure 4.4: Camera Calibration: A non-calibrated image (left) and a calibrated image (right)

4.4 Camera Calibration: Framework

The framework is developed using both OpenCV and Apple Quicktime and is capable of handling nu-

merous camera inputs, using Quicktime to enumerate each device at runtime. The application will then

display each available camera input, allowing the user to calibrate the cameras. The calibration method

proposed by Zhang, and presented above, will be carried out. The user will have to calibrate the cameras

individually, if their view frusta do not overlap. Otherwise, both cameras can be calibrated in unison. The

following code outlines how the camera devices are located using the Quicktime API. Code examples can

be viewed in Appendix A where a screen shot of the camera calibration screen can also be seen. This is

the first part of the calibration process.

For convenience, the application offers the user the opportunity to save the camera calibration param-

eters to an XML file. It was found to be a nuisance to have to re-calibrate each camera at runtime. This

is acceptable as the distortion and intrinsic matrices of the camera do not depend on the scene being

viewed. Using OpenCVs’ cvSave() function call, each of the cameras’ distortion coefficients and intrinsic

matrix values are saved to a file and can be loaded at runtime, using cvLoad(), when the application is

next executed. The next chapter will deal the calibration of the projector image with respect to one of the

camera devices.

4.5 Summary

This Chapter presented the theory behind the camera calibration step used in this framework. Zhang’s

calibration method was described and its role and implementation in this framework discussed. Zhang’s

calibration method is fully supported within OpenCV and easily carries out the necessary functionality

necessary for this dissertation. The camera calibration stage of the process is needed to make sure that

the lens distortion of the camera is rectified and does not add its own warp to the projection rectification.

The extrinsic parameters of the camera are not required for this implementation.
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Chapter 5

Implementation: Projector

Homography and Calibration

This Chapter will detail the process required to calibrate a projector from the perspective of a camera. By

calculating the geometric relationship between the camera and the projector, the projector will undergo

an automatic keystoning process. The camera is located at the audience’s sweet spot, simulating their

perspective of the projected image on the projection surface.

5.1 Homography: Overview

CameraProjector CameraProjector

Image

pHc pHc

cHp 

Image

cHp cHp

Image

Figure 5.1: Overview of the relationship between camera, projector and projection surface

The relationship between an arbitrarily positioned projector, whose position and orientation are not

known, and an arbitrarily positioned camera, whose position and orientation are also unknown, can be

determined as long as the camera image contains the projected image on the projection surface. As the
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camera can identify the projected image on the projection surface, a mapping between the ideal, projected

image and that in the camera image plane can be deduced. This mapping is simply a perspective transform

described as:

(u, v) =
(
h11s+ h12t+ h13

h31s+ h32t+ h33
,
h21s+ h22t+ h23

h31s+ h32t+ h33

)
(5.1)

Where (s, t) is a pixel in projection space, and mapped to a pixel in camera image space (u, v). This

transform can expressed in matrix form with homogenous coordinates:αuαv
α

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


st

1

 (5.2)

Homography,H , is a 3x3 matrix, consisting of h11 . . . h33, and α is a scaling factor. However, h11 . . . h33

are each unknown variables of the homography H and must be solved for. In this instance equation (5.2)

is expanded as follows: αuαv
α

 =

h11s h12t h13

h21s h22t h23

h31s h32t h33

 (5.3)

If we accept α = [h31s, h32t, h33], we can create two simultaneous equations for u, v as follows:

u(h31s+ h32t+ h33) = h11s+ h12t+ h13 (5.4)

v(h31s+ h32t+ h33) = h21s+ h22t+ h23 (5.5)

We now have two linear equations with nine unknowns, as before. While there are nine unknowns in

this equation, it can be assumed that each coordinate lies upon the same unknown plane. We can finally

state that for n feature points detected, equation(5.4) can finally be written as a 2nx9 matrix and solved

using QR decomposition, a common method used to solve a least-squares function:

s1 t1 1 0 0 0 −u1s1 −u1t1 −u1

0 0 0 s1 t1 1 −v1s1 −v1t1 −v1
s2 t2 1 0 0 0 −u2s2 −u2t2 −u2

0 0 0 s2 t2 1 −v2s2 −v2t2 −v2
...

...
...

...
...

...
...

...
...

sn tn 1 0 0 0 −unsn −untn −un
0 0 0 sn tn 1 −vnsn −vntn −vn





h11

h12

...

h23

h33


= 0 (5.6)

As homogenous coordinates are used, it can assumed that there are 8-degrees of freedom as |~h| =
1. H can now be solved with four pixel correspondences, where each correspondence provides two

constraints u, v ([37], [40]). More correspondences add robustness to the homography estimation. The 3x3
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matrix is first estimated using least-squares, explained above, and is refined further using the Levenberg-

Marquardt function fitting algorithm [17].

5.2 Automatic Keystone Correction Framework

This framework reuses techniques utilised in the camera calibration framework described in Chapter 3.

To obtain the required feature points for the homography calculation, the calibration target (chessboard

pattern) is reused to map pixel correspondences in the camera image space to the projection image

space. In this setup, the projector is placed in an arbitrary position, while the camera is positioned at the

sweet-spot of the audience, simulating their point of view.

5.2.1 Camera - Projector Homography

The homography between the camera and projector are calculated by the following steps:

1. Project a calibration target (chessboard) onto the projection surface.

2. Detect the feature points to subpixel accuracy and store.

3. Use found feature points to determine 3x3 homgraphy between camera and projector via the display

screen.

4. Apply the inverse of this matrix transformation to the projection image image.

The feature points are detected as before, locating the 7x7 internal squares of the calibration target.

These points are then saved and passed to the OpenCV cvFindHomography() function, where the 3x3

homography matrix that maps the screen space to the camera image space is determined using the

mathematical techniques described above. Once the mapping function has been successfully obtained,

we can now apply the inverse homography transform to the ideal projection image, thus pre-warping it to

appear undistorted to the camera’s perspective. The sequence is performed as follows:

1 cvFindChessBoardCornerGuesses()

As described in Chapter 4, this function finds the 7x7 internal corners and stores their coordinates

in the camera image domain.

2 cvFindCornerSubPix()

Again, once the location of the chessboard’s features have been estimated, this function then itera-

tively refines the location of the feature points to sub-pixel accuracy.

3 cvFindHomography()

By passing the initial source points of the calibration target along with the destination points (the

ones uncovered by the previous function), this function is capable of finding the homography 3x3

transform that maps the source points to the destination points. RANSAC is used to find five random
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(a) Uncalibrated, keystoned image (b) Rectified image (c) Pre-warped projected image that is pro-
jected in (b)

Figure 5.2: Camera devices perspective of the uncalibrated projection, the rectified image and the image
projected to appear correct from the camera device’s point of view

corresponding pairs to estimate the homography where a least-squares function assesses the quality

of the outcome. The homography is further refined by applying a function fitting Levenberg-Marquadt

method.

4 CvWarpPerspective() This function is used to apply a 3x3 warp function to an image. The particular

image in question is passed, along with a destination image and the 3x3 matrix. The warp is carried

out on the source image and the result is saved in the destination image. The points in the image are

linearly interpolated. If only four points are available to identify, cvGetPerspectiveTransform()

can be used instead.

It is at this point that the use of OpenGL and GPU acceleration can be exploited. Instead of passing two

image files to the cvWarpPerspective() function, the newly found homography, which is only computed

once, can be converted from its 3x3 row-major to the OpenGL standard 4x4 column-major structure as

follows:

h1 h2 h3

h4 h5 h6

h7 h8 h9

 becomes

h1 h4 0 h7

h2 h5 0 h8

0 0 1 0
h3 h6 0 h9


This new 4x4 matrix can then be multiplied with the OpenGL scene’s projection matrix to warp the

scene and achieve real-time rates. Figure 5.2 displays the keystoned and rectified projections and also

the pre-warped image projected to create the rectified projection. These outputs were warped manually.

33



0

500

1000

0

200

400

600

0.0
0.5

1.0
1.5

2.0

Initial Points

500

1000

200

400

600

800

1000

1.0

1.2

1.4

Warped Points
0

500

1000

0

200

400

600 0.0
0.5

1.0

1.5

2.0

Initial PointscHp cHp-1

Figure 5.3: A warp transform applied to 4 points can be rectified by applying the inverse transform

5.3 Erroneous Results

Problems were encountered at this stage of the project. In this implementation, the camera device is

located at the audience’s location (audience sweet-spot) and therefore one transformation between the

projected image and the camera device should suffice to rectify the image to appear coherent to the

audience. In Sukthankar[39][40], the projection screen’s orientation must be taken into account in the

rectification function as that implementation expects the audience to be orthogonal to the projection surface

and the camera to be arbitrarily located elsewhere. In this dissertation, the screen’s orientation should not

play a part in the rectification of this dissertation’s calibration framework.

Figure 5.3 demonstrates that it is possible to rectify an image, which has been subject to a perspective

warp, by applying the inverse warp function. There then may have been the possibility that the homography

function calculated may be incorrect. Figure 5.4 displays the projection from the perspective of the camera

device (a), and the rectification test to make sure the the homography inverse function was correct. By

visual inspection, it is clear to see that the rectified image, (b), is a very similar to the calibration target (c).

(a) Warped image seen by camera (b) Rectified image in camera plane (c) Calibration target

Figure 5.4: A warp transform applied to 4 points can be rectified by applying the inverse transform

The homography transform was rigorously tested using Wolfram Mathematica 6 to confirm that the

transformation under the 3x3 matrix was in fact correct. Code samples and graphical outputs from this
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notebook can also be found in Appendix B, where the theory and the implementation are fully documented

in Appendix B.2 and the manual image warping function used instead is documented in Appendix B.3.

5.4 Automatic Keystone Correction Framework - Multi Projectors

Due to time constraints, the successful implementation of the multi-projector component for this aspect

of the system was not carried out. Had more time been available, its implementation would be relatively

straightforward. The exact process outlined above would be carried out by each projector sequentially for

each n projectors. The projection of the of the images from each projector could be performed in two

ways. First, if the aim of the system was to eradicate the potential of full occlusion by an object, then each

projector would project the exact same image, onto the exact same area. Instead of one full occlusion,

there would be n 1
n shadows, where n is the number of projectors. Alternatively, if the goal was a large

scale display, the image to be projected would be divided by creating n framebuffer objects. Each projector

would then be responsible for the projection of the image data in its designated framebuffer object. The

photometric calibration needed to correct colour artifacts is beyond the scope of this project.

This calibration process is successful for the automatic keystoning of a projection image on a planar

projection surface. This technique can not be applied to a free-form, or non-planar surface, as it cannot

be taken for granted that the feature points will lie on the same plane. To solve for projector calibration for

free-form surfaces, another technique must be investigated and this is discussed in Chapter 6.

5.5 Summary

This Chapter has provided a theory for automatically correcting keystone correction caused by a mis-

aligned projector from the perspective of a camera located at the audience’s sweet-spot. Mathematics has

been presented to confirm initial hypotheses, however these steps were not successfully implemented.

Details of the errors encountered are documented, as too are attempted solutions. To overcome this

problem, a manual warping tool was created.
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Chapter 6

Implementation: Structured Light

This Chapter will outline the implementation of the structured light component of this dissertation. It will

start by providing a general outline of the method and why it is used, before an explanation of how the

method is implemented into this dissertation is detailed.

6.1 Structured Light: Overview

Structured light’s purpose in 3D depth extraction is the creation of a dense number of feature point cor-

respondences with which the camera device can detect. A known light pattern, or series of known light

patterns, is projected into the scene and encode each pixel in the camera image plane with a colour value.

The most common case of structured light is the projection of black an white stripes that continue to grow

finer with each successive step. The black and white patterns then identify each pixel location in the cam-

era image domain, giving each pixel a 0 or 1 value for each pattern projected. Over a series of projected

patterns, each pixel accumulates a codeword which then corresponds to a pixel in projected image space.

To assist an arbitrary projector-camera setup, both vertical and horizontal patterns are projected. The two

main encodings of structured light are binary encoding and the more robust Gray-code encoding.

6.1.1 Binary and Gray-code Structured Light

Decimal Binary Gray-code

0 000 000

1 001 001

2 010 011

3 011 010

As was discussed briefly in Chapter 2, Gray-coded binary is preferred to binary coded light for robust

encoding. Unlike in binary code, the boundary of each stripe does not occur in the same place more

than once. In binary code, the boundary will remain in the same position for the duration of the projec-

tions, meaning that the pixels located at these locations become encoded incorrectly thus corrupting the
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(a) Gray-coded Binary (b) Binary

Figure 6.1: Vertical and Horizontal structured light patterns

integrity of the correspondences. This is not the case with Gray-code. Gray-code also has a relationship of

O(log2((n)) to the number of necessary patterns to project onto a scene. In the case of a 1024x768 XGA

projector, only 20 images are needed to uniquely encode each pixel to be projected. Figure 6.1 presents

an example of both Gray-coded binary and binary coded light patterns.

6.2 Structured Light: Implementation

The implementation of the structured light process in this dissertation is broken into separate components.

First, the current pattern must be projected into the scene. This is followed by the image capture by

the camera, where the camera can see all of the projector’s frustum on the projection screen. Then, the

images must be thresholded to binary values so that 1 or 0 values can be attributed to the pixel in question.

A mapping construction is then created between the projected image and the camera image plane. This

is followed by an inverse mapping and finally the mage construction, where the image is pre-warped in

real-time using OpenGL and the GLSL shading language to utilise the GPU.

6.2.1 Pattern Projection

The fundamental part of the structured light step is the correct projection of the binary pattern. First, the

amount of patterns to be projected must be known. As a 1024x768 image needs to encoded, enough

patterns to encode 768,432 pixels must be chosen. Gray-code projection is of the order O(log2((n)),
therefore 20 patterns are needed to uniquely encode each projected pixel, as 220 = 1, 048, 576. In this

implementation, where an arbitrary camera-projector can be expected, ten vertical patterns and ten hori-

zontal patterns are projected into the scene.

To set this up, decimal numbers Nd = [0 . . . 1023] are converted to their binary equivalent Nb =
[20...(210 − 1)]. These binary values are then used to convert directly to their Gray-code equivalent by the

following algorithm [27]:

• The binary code number has n-bits, so the Gray-code number will have n-bits.

• The most significant bit (MSB) is the same in both binary and Gray-code
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• The second MSB in the binary number is calculated by adding the MSB in the binary number to the

second MSB in the Gray-coded number, the sum is noted and any carry ignored

• Working from left to right, from MSB to least significant bit (LSB), the n-th bit (counting from right to

left) in the binary number is formed from summing the (n+ 1)th bit in the binary number with the nth

bit in the Gray coded number. The corresponding sum is noted and any carry ignored.

We now have our 10-bit Gray-code sequence, Ng = [0...(210 − 1)]. This sequence is then then used

to draw the necessary stripes. The width of the stripe is dependent on the on the highest value, in this

case 1024. 1024 stripes are drawn, and their colour is dependent on the current bit-value to be projected.

If the bit-value is 0, then a black stripe is projected, if the bit-value is 1, a white stripe is projected. The

horizontal stripes are projected first, and this rendering algorithm is simply repeated with the x, y values

swapped at draw time.

6.2.2 Image Capture

The image acquisition component’s role is to capture an image of each pattern projected up the projection

surface. Memory is allocated for 20 images to be stored initially (this is reviewed and later changed) and

at each point when the pattern is projected, the image is captured and converted to grayscale for later

thresholding. The pattern will only be incremented when the pattern has been successfully captured by

the camera. 20 grayscale images have now been stored in memory and await thresholding.

6.2.3 Image Thresholding

To attribute each pixel in camera image space with a 1 or 0 value, thresholding must be carried out.

For each of the 20 images saved in grayscale, these images are individually thresholded according to a

suitable threshold value. It was found, however, that for the images representing the LSBs, the resolution

of the camera device was not high enough and the integrity of the thresholded values, as a result, were

clearly in doubt. This would certainly have had detrimental consequences on the final calibration results.

The thresholded outputs can be seen in Figure 6.2.

At this point a better form of thresholding the images had to be implemented. To do this, Tardif et al

[42] present a more robust form of thresholding. In this thresholding step, both the structured light patterns

and their respective inverse patterns are projected into the scene. So if a bit projected initially was a 0

(ie black) then the inverse pixel value will be a 1 (ie white). The images are captured as before. The ten

vertical images are follows by ten horizontal patterns, this is then followed by their inverses. To do this,

n × 2 patterns are projected, and therefore 40 images are stored in this implementation rather than the

initial 20.

The images are each stored in grayscale as before and the thresholding occurs by subtracting the

inverse pattern by from its converse. This happens for each of the 20 images to result in 20 new difference

images. These values store the difference of the images from -255 to +255. We would expect to see the

pixels covered by the projection frusta to have the most extreme values of ± ∼255, with the pixels not

covered by the frusta to have a much smaller value, typically between ±50.
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Figure 6.2: Bit pattern 10, 5 and 1 respectively. The colour image capture can be seen on top, and its
corresponding thresholded image is beneath.

The threshold value is calculated empirically by studying the distribution of the pixel values in the

difference images and the threshold value of ±100 was chosen.

1 i f ( p i xe l_va lue ( u , v ) > T) p i xe l_va lue ( u , v ) = 1 ;

2 i f ( p i xe l_va lue ( u , v ) < −T) p i xe l_va lue ( u , v ) = 0 ;

3 else r e j ec ted

The distribution histograms can be seen in Figure 6.3. This technique provided a far more robust

thresholding response than the initial implementation. Problems encountered included blooming effects

from the white stripes which lightened the black areas and corrupted the outcome, this was greatly alle-

viated with the Tardif et al implementation. This method also excluded any outliers (pixels not included

within the projection frustum), as light pixels in the surrounding areas could be erroneously encoded. The

distribution histograms generated by this implementation echoed their outcome almost exactly.

6.2.4 Mapping Construction

The mapping, R between projector and camera space, is constructed by concatenating the ten horizontal

bits, from MSB to LSB, to the ten vertical bits, MSB to LSB and it takes the form:

R(u, v) = [R(u, v)vn−1 . . . R(u, v)v0], [R(u, v)hn−1 . . . R(u, v)h0 ]

Where R is the mapping for a particular pixel (u, v) and n is the number of patterns projected. As

discussed before, however, the LSBs lose integrity as the frequency of of the stripes increase in later

patterns. As a result, these bits cannot not be counted in the final mapping between projector and camera

pixels as the risk of error will be too high. Figure 6.4 displays the sudden fall-off of usable bits after
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Figure 6.3: Distribution of bit values of bit 10 (top) difference images and bit 1 (bottom)

thresholding. We know they are unusable as their value falls under the threshold permitted (ie -100 ≥
pixel_value(u, v) ≤ +100).

As can be seen from Figure 6.4, the quantity of usable bits declines rapidly after the 7th pattern

projection. Knowing this, the subsequent bits are set to 0, creating a new mapping function R′:

R′(u, v) = [R(u, v)vn−1 . . . R(u, v)vn−n′0 . . . 0], [R(u, v)hn−1 . . . R(u, v)hn−n′0 . . . 0]

Where bits n− n′ are set to 0 and n′ is the number of unusable pixels. This creates a down-sampled

mapping (R′) of pixels from projector to camera image space. Instead of dealing with 1024x768 points,

the new mapping R′, rebuilt with 7 bits creates a grid in the dimension of 128x96 points. These points can

be used as texture coordinates to essentially texture camera image space. Figure 6.4 is, again, a near

exact result of the same step carried out in Tardif et al [42].

6.2.5 Inverse Mapping

The first stage of the inverse mapping will differ from Tardif et al ’s implementation. As Gray-code structured

light has been adopted for this implementation, it will be necessary to convert from Gray-code to binary
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Figure 6.4: Percentage of usable pixels based on the different stripe widths. The number of usable pixels
falls sharply after bit 4

code at this point so that the correspondences can be made. This step is simply the reverse of what was

implemented to convert binary to Gray-code in the projection stage. The mapping R, and hence R−1,

from projection image space to camera image space is now ready to be computed.

For this step, the projector image plane (s, t) and the camera image plane (u, v) are normalised as

they are of different resolutions, but are of the same aspect ratio. Like in [42], a set of pixels within the

camera image plane, Sc(s, t) are defined where the thresholding step implemented previously eradicates

any pixels that do not lie within the projection frusta. An alpha map is created, masking the outliers. A set

of pixels Sp(s, t) represents the down-sampled pixels in the projection image.

Sc(s, t) = {(u, v)|R−1(u, v) = (s, t)}

Then, for each down-sampled position in the projection image space, the point’s corresponding position

is located in camera image space. This is carried out by matching the down-sampled pixel’s index in

projection space to its now binary code-word equivalent in the camera image domain. A mapping R will

describe the relative positions of each pixel where R is the displacement of a pixel between Sp(s, t) and

Sc(s, t).
This mapping R is essentially a displacement map between Sp(s, t) and Sc(s, t). This will then stored

as a 2D texture, where the s-displacement is stored in the R channel and the t-displacement stored in the

G channel of the texture as the projection image will be warped. This texture is to be used in the image

construction, discussed next.

6.2.6 Image Construction

The image construction is carried out using OpenGL and GLSL to utilise the GPU in the computer system.

This will allow real time pre-warping of the projection image, upholding the fasted FPS rate possible.

The displacement map, stored as a texture, is passed to the vertex shader where a 2D texture look-up

is carried out to fetch the values stored in the R and G channel of the texture respectively. OpenGL

normalises parameter values as they are passed to the respective GLSL shaders. Therefore, the values

are pre-normalised before being passed, and then a multiplication by 1024 in the R channel value (s-
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displacement) and 768 in the G channel (t-displacement) to un-normalise the displacement vectors. This

technique displaces the vertices accordingly, but also linearly interpolates the intermediate points in a

single, accelerated step. The GLSL vertex shader is detailed in Appendix C

The next stage of the image construction is the scaling and the translation of the image so that it will

occupy the largest to-scale rectangle within the projection area on the projection surface. This similarity

transformation, S, will fit the projected image to the largest possible rectangle, of the same aspect ratio,

that can reside within the projection frustum from the perspective of the camera.

Figure 6.5 presents the prospective results of this step. The former displays a wireframe and plain

image before a warp is applied while the latter displays the wireframe and plain image of the texture after

it experiences a random displacement.

6.2.7 Geometric Calibration - Multi-Projectors

As in Chapter 5, the multi-projector component of this implementation was not carried out. Like before,

and stated in Tardif et al [42], the exact process for a single projection calibration is repeated for each

n projectors in the multi-projector system. The division of the image across n projectors is as stated in

Chapter 5. If the system needs to be robust against occlusions, then each projector will cast redundant

images. If a large scale display is required, the image is split across n framebuffer objects and projected

by its respective projector.

6.2.8 Completed to Date

Due to time constraints experienced, this component of the system was not fully implemented. This cal-

ibration system can successfully project, capture and threshold the difference images while the structure

to pre-warp the image via the GPU is in place. The only element left to implement is the inverse mapping

stage. The implementation presented above is at this stage theoretical and would be subject to change.

Although the component was not fully implemented, the intermediary results displayed in Figures 6.3 and

6.4, as mentioned, reflect results shown in Tardif et al [42] and provide promising outlook for further devel-

opment.

6.3 Summary

This Chapter presented the implementation for the geometrical calibration component of this dissertation.

Gray-code structured light was opted for robust encoding of the camera image plane. The encoded pixels

in the camera image plane correspond to the those in the projection image plane and a displacement map

is created to warp the projection image to texture the camera image plane. While not entirely complete,

intermediary results are hugely promising.
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(a) No warp and wireframe (b) No warp image

(c) Warp on wireframe (d) Warped image

Figure 6.5: Random displacement map applied to vertices on plane

43



Chapter 7

System Evaluation

This Chapter will present the system’s performance based on a number of specifically designed tests.

The first performance based metric that must be assessed is the automatic keystoning calibration of the

system, using a single projector and projecting onto a planar projection surface. This test will track an

object as it moves horizontally across a screen. This will then be extended to test this automatic calibration

performance across two projectors upon a planar surface.To gauge the effectiveness of the calibration,

the results will be compared to those taken before the calibration step takes place. Metrics can also

be compared to other implementations of projector calibration systems. To assess the Gray-code based

geometric calibration component for non-planar, or free form surfaces, the same experiments can be

carried out, being compared to pre-calibration results.

The performance of the system will also be measured. Benchmark testing will be utilised to measure

the performance increase between the calibration being solely carried out on the central processing unit

(CPU) versus the graphics processing unit (GPU).

7.1 System Hardware

This project was developed using two XGA (1024 x 768) DELL 2400MP (3000 ANSI Lumen) projection

devices, UniBrain Fire-i firewire webcams and developed on an Apple MacBook Pro, running a 2.4GHz

Intel Core 2 Duo with 4GB of RAM. The computer also has access to NVidia 9600M GT and NVidia 9400M

graphics cards.

7.2 Single Projector - Planar Surface

7.2.1 Object Tracking Consistency

The object tracking test will aim to assess the correctness of the orientation and the consistency of the

internal warping of a calibrated, pre-warped projection. This test will plot the trajectory of a ball as it moves
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across the screen, calculating its centre point and storing the (u, v) coordinates as seen on the camera

image plane. The line plot ought to be linear, as it is a planar surface, and the standard deviation from the

v axis should be 0. If result is otherwise, it represents a warp of some description present in the projected

image with respect to the camera.

For comparison, the ideal projection’s object tracking plot will be displayed along with the recorded

uncalibrated plot and the newly calibrated plot. This will give an immediate, observational feedback as

to how the system performed. The standard deviation, σ(v), of the line plots produced from this test will

measure how often the plot strays along the v axis. If there is incorrect or inaccurate point interpolation

within the image, the standard deviation will highlight this. In addition, the difference between the starting

point and the finishing point, Diff (v), will be recorded as will the rate of the change (RoC) of the plot, giving

a full overview of the plot’s characteristics. The ideal projection will exhibit 0 on each of these metrics and

it is the goal of the calibrated projection to return values that are as close to 0 as possible.

The hypothesis is that the uncalibrated projection will exhibit a warp directly related to the respective

positioning of the camera, projector and projection surface. The standard deviation with regards the v

coordinate in the image plane will be non-zero as will the rate of change. The calibrated projection should

exhibit characteristics close to, or identical to, that of the ideal projection.

7.2.2 Object Tracking Consistency: Result

The resulting plots of the test are displayed in Figure 7.1. Here it is evident that the uncalibrated projection

image, (b), exhibits a strong distortion with respect to the ideal projection, (a). The uncalibrated plot

reveals a large standard deviation of 26.9455 and a rate of change of 0.25657. In comparison to this,

the calibrated, pre-warped image, (c), displays far more satisfactory results. The standard deviation is

negligible at 0.0212659 as too is the rate of change, 0.00965629, as hypothesised. These results are

detailed in Table 7.1.

Status RoC Diff (v) σ(v)
Ideal 0.0 0.0 0.0

Uncalibrated 0.25657 90.528 26.9455
Calibrated 0.00965629 2.481 0.0212659

Table 7.1: Object tracking results

7.3 Performance Benchmarks

The aim of the performance benchmarks are to compare the performance of the projection system running

on the central processing unit (CPU) via OpenCV, against the system running on the graphics processing

unit (GPU), using OpenGL. The metric in this case are the frames per second (FPS) rendered during

runtime.
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Figure 7.1: Results for the object tracking test

The hypothesis is that there should be a noticeable increase in the FPS rate when the image or movie

is warped using OpenGL rather than OpenCV. The setup of the test is as follows: The projector output

mirrors the computer display, so the projector displays the exact content showing on the computer screen.

During runtime, the current FPS rate, paired with the current elapsed time in seconds and milliseconds

(sec:millisec), is printed to the console providing a very dense plot of the frame rate of the application. The

output is plotted using Wolfram Mathematica 6.

For the CPU setup, the OpenCV cvWarpPerspective() function is called to apply the warp to an

image. In this function, a source image and transformation matrix is passed along with specific flags. The

transformation matrix is carried out upon the image, linearly interpolating points, and stored in a destination

image parameter which is also passed. The transferring of data from one image type to another can expect

to cause a lag in performance.

To measure the performance using OpenGL, the homography, which is a projective transform, is mul-

tiplied by the scene’s projection matrix. The 3x3 homography transform must be converted from its row-

major makeup to a 4x4 column-major matrix, as described in Chapter 5. This is subsequently multiplied

with the scene’s projection matrix to warp the OpenGL scene. As there is no swapping data from one

image to another and the OpenGL pipeline is accelerated by the GPU, we can expect huge gains from this

approach.

7.3.1 Rendering Image Files

The first test compares the rendering of a single image which undergoes a warp according to a calculated

homography. The test is run for 100 seconds and the output plots from 20 seconds to 100 seconds. This

test should perform at, or close to, interactive rates. As there is no image change or data transfers, the

update overhead is negligible other than the warping function call.

7.3.2 Performance Benchmark: Result 1

As can be scene from Figure 7.2 (a), the image warped with OpenGL pipeline renders at real-time rates,

seldom deviating from the 60 FPS rate we would hope for. This is a vast improvement over the OpenCV
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Figure 7.2: Result for benchmark test 1(left) and 2 (right)

rendering method which averages at 16 FPS, barely a third of the rate of the OpenGL implementation.

7.3.3 Test 2: Rendering Movie Files

The second test will examine the system’s performance while playing a video file. In this implementation

the metric is still FPS rate over a period of 100 seconds. The graph plots the performance between 20

and 100 seconds. In this test we can expect a drop in the performance of each implementation. As the

video file has to be updated at every frame, an overhead is created. Even though the video will run at

24FPS, it is updated at each frame to check if a new frame must be rendered. We still expect a superior

performance running the video though the OpenGL pipeline than that of OpenCV. The result is present in

Figure 7.2 (b).

7.3.4 Performance Benchmark: Result 2

As expected, a drop in performance is evident in both outputs. A large drop is evident in the OpenGL

rendering while a smaller performance drop is noticeable in the OpenCV implementation. Regardless of

the drop, the GPU accelerated version still renders at a rate comfortably higher than general video frame

rate (∼ 24FPS). A table displaying a comparison can be seen in Table 7.2.

Method Media Ave FPS
OpenCV (CPU) Image 16.5119
OpenCV (CPU) Video 14.0555
OpenGL (GPU) Image 59.6745
OpenGL (GPU) Video 32.9909

Table 7.2: OpenCV versus OpenGL benchmark
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7.4 To Be Evaluated

7.4.1 Single Projector - Free-form Surface

As the Gray-code based geometric calibration step was not fully implemented, it was not possible to test

the accuracy of this calibration step. Had it been implemented fully, the very same tests would be carried

out to assess the overall calibration and the integrity of the linear interpolation of warped points within the

image. However, much of the implementation is complete and though it can not be tested by these means

presented, the intermediary results presented in Figure 6.3 and 6.4 display the exact characteristics as

those found in [42], which is promising for further development.

7.4.2 Multi Projector Evaluation

As discussed in Chapters 5 and 6, the multi-projector component of this system was not implemented due

to time constraints. However, the testing of the multi-projector component would be identical to that of the

single projector tests.
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Chapter 8

Conclusions and Future Work

This dissertation attempted to create a flexible framework that would calibrate a multi-projector system

using a camera device. First, the camera device must under go lens distortion rectification so that the

camera device does not contribute its own warp in the the calibration process. Zhang’s camera calibration

model is used to implement this step.

Keystoning, which occurs when a projector is not correctly aligned to the projection surface, is corrected

by calculating the warp function a known image undergoes and applying the inverse transform to correct

the image so that it is square and coherent to the viewer. This is done by using the projector-camera

(PROCAM) model. The camera device is located at the audience’s sweet-spot, and by rectifying the

image within camera image space, the image will be rectified for the audience.

A more challenging task is to successfully calibrate the projection when projecting upon a non-planar,

or free-form, surface. In this situation, the robust Gray-code structured light is used to encode the scene in

the camera image plane. By analysing the correspondences, a displacement map is created between the

projected image and camera image plane. Using this displacement map, the image can be pre-warped

and linearly interpolated to essentially texture the camera image plane, rectifying the image from the

viewers perspective. These steps have been further enhanced by utilising the GPU for real-time rendering

performance.

While the implementation of the calibration framework is not complete, the preliminary results attained

from tests are very promising. First, the warping rectification test shows, with negligible standard deviation

(σ(v) = 0.0212659), that the linear interpolation method used to rectify the perspective warp works very

well. Though this warp was applied manually, it is expected that similar results will be attained by automatic

calibration once the inverse homography error, encountered in Chapter 5, is resolved.

The use of OpenGL and the utilisation of the GPU to apply the warp transform, rather than the CPU,

hugely improves the performance of the system. By using the GPU to render an image, the system runs

at an interactive framerate of ∼60FPS, 3.614 times faster than using the CPU. Rendering video files, too,

presents favourable results on the GPU, offering speeds 2.347 times faster than those achieved on the

CPU. While the video file did not run at interactive rates, an average framerate of 32.9909FPS mean that

the system can comfortably achieve video framerates of ∼24FPS.
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8.1 Future Work

8.1.1 Multi-projector Calibration

Due to time constraints, the multi-projector component of this calibration system was not implemented.

The respective multi-projector calibration development for planar surfaces and free-form surfaces has

been discussed in Chapters 5 and 6.

8.1.2 Photometric Calibration

When projector frusta overlap, the intersecting areas on the projection screen are subject to higher colour

intensity than those areas not intersecting. This creates artifacts that must be resolved to achieve a uniform

projection. Additionally, if projecting upon a surface which does not have uniform texture or colour, it is

also probable that inconsistencies, caused by the underlying colour or texture, will affect the final colour

make-up of the final projection. These issues can be solved with photometric calibration.

Using a single camera device provides an ideal opportunity to assess the outcome of the projected

images on the projection surface. The single camera is not subject to varying quantisation results, as

would be expected if a number of camera devices were to be used, and so can be used to calculate a

standard colour blending function to rectify the photometric artifacts of the projection.

There is extensive research done in this area. Bimber and Rakesh [5] use alpha blending on each

projected image to create a uniform projection across a multi-projector system. Chen et al [11], Juang and

Majumder [19] and Song and Cham [36] all offer separate solutions to the problem of accurate photometric

calibration of a PROCAM system.

8.1.3 Framework Extension

Further to the above additions to the calibration system, the addition of a robust event-handling graphical

user interface (GUI) would greatly aid the workflow of the system. Qt [26] is such an interface that would

allow the operator greater control of the entire calibration system.

The implementation of the image processing state, presented in Chapter 3, would permit the operator

to add different effects to the image or video currently playing. These effects could be created using GLSL

where the GPU would be used to accelerate rendering times.
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Appendix A

Camera Calibration Results

A.1 Enumeration of Camera Devices

1

2 i n t deviceCount = 0 ;

3 i n t avai lab leDeviceCount = 0 ;

4

5 for ( i n t i = 0 ; i < (∗ d e v i c e L i s t )−>count ; ++ i )

6 {

7 SGDeviceName nameRec ;

8 nameRec = (∗ d e v i c e L i s t )−>en t ry [ i ] ;

9 SGDeviceInputL is t d e v i c e I n p u t L i s t = nameRec . i npu ts ;

10

11 i n t numInputs = 0;

12 i f ( d e v i c e I n p u t L i s t ) numInputs = ( (∗ d e v i c e I n p u t L i s t )−>count ) ;

13

14 i f (nameRec . f l a g s != sgDeviceNameFlagDeviceUnavailable )

15 { deviceCount ++; avai lab leDeviceCount ++; }

16 else
17 deviceCount ++;

18 }

51



A.2 Finding Chessboard Patterns

1 bool ofCvCameraCal ibrat ion : : f indCorners ( const Ip l Image∗ bw, vector <o fxPo in t2 f >& po in t s ) const
2 {

3 Ip l Image∗ tempImg = cvCreateImage ( csize , IPL_DEPTH_8U , 1 ) ;

4 CvPoint2D32f∗ p = new CvPoint2D32f [ nCornersX∗nCornersY ] ;

5 i n t nCorners ;

6

7 i n t bPer fec t = cvFindChessBoardCornerGuesses ( bw, tempImg , NULL, cvSize ( nCornersX , nCornersY ) ,

p , &nCorners ) ;

8

9 cvFindCornerSubPix (bw, p , nCorners , cvSize (5 ,5 ) , cvSize (−1,−1) ,

10 cvTermCr i te r ia (CV_TERMCRIT_ITER, 100 , 0 .1 ) ) ;

11

12 / / conver t back

13 for ( i n t i =0; i <( nCornersX∗nCornersY ) ; ++ i )

14 po in t s . push_back ( o f x P o i n t 2 f ( p [ i ] . x , p [ i ] . y ) ) ;

15

16 cvReleaseImage ( &tempImg ) ;

17 delete p ;

18

19 i f ( ! bPer fec t ) {

20 cout << " Did not f i n d expected number o f po in t s . . . \ n " ;

21 return fa lse ;

22 } else {

23 return true ;

24 }

25 }
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A.3 Calibrate the Camera

1

2 void ofCvCameraCal ibrat ion : : cal ibrateCamera ( const i n t nImages ,

3 const vector <o fxPo in t2 f >& _screenPoints ,

4 const vector <o fxPo in t3 f >& _wor ldPoints ,

5 ofxVec4f& _ d i s t o r t i o n C o e f f s ,

6 o fxMat r ix3x3& _camIn t r ins ics ,

7 vector <ofxVec3f >& _transVectors ,

8 vector <ofxMatr ix3x3 >& _ro tMa t r i ces

9 ) const
10 {

11

12 / / assume a l l po in t s have been f o r a l l images

13 i n t∗ nCorners = new i n t [ nImages ] ;

14 for ( i n t i =0; i <nImages ; ++ i )

15 nCorners [ i ] = nCornersX∗nCornersY ;

16

17 CvPoint2D32f∗ screenP = new CvPoint2D32f [ nImages∗nCornersX∗nCornersY ] ;

18

19 for ( i n t i =0; i <nImages∗nCornersX∗nCornersY ; ++ i ) {

20 screenP [ i ] . x = _screenPoints [ i ] . x ;

21 screenP [ i ] . y = _screenPoints [ i ] . y ;

22 }

23

24 CvPoint3D32f∗ worldP = new CvPoint3D32f [ nImages∗nCornersX∗nCornersY ] ;

25 for ( i n t i =0; i <nImages∗nCornersX∗nCornersY ; ++ i ) {

26 worldP [ i ] . x = _wor ldPoin ts [ i ] . x ;

27 worldP [ i ] . y = _wor ldPoin ts [ i ] . y ;

28 worldP [ i ] . z = _wor ldPoin ts [ i ] . z ;

29 }

30

31 CvVect32f d i s t o r t i o n = new f l o a t [ 4 ] ;

32 CvMatr32f camera_matrix = new f l o a t [ 9 ] ;

33 CvVect32f t r a n s l a t i o n _ v e c t o r s = new f l o a t [3∗nImages ] ;

34 CvMatr32f r o t a t i o n _ m a t r i c e s = new f l o a t [9∗nImages ] ;

35

36 cvCalibrateCamera ( nImages , / / Number o f the images .

37 nCorners , / / Array o f the number o f po in t s i n each image .

38 csize , / / Size o f the image .

39 screenP , / / Po in te r 2D po in t s i n screen space .

40 worldP , / / Po in te r 3D po in t s i n r e a l space

41 d i s t o r t i o n , / / ou tput : 4 d i s t o r t i o n c o e f f i c i e n t s

42 camera_matrix , / / ou tput : i n t r i n s i c camera mat r i x

43 t r a n s l a t i o n _ v e c t o r s , / / ou tput : Array o f t r a n s l a t i o n s vec to rs

44 ro ta t i on_mat r i ces , / / ou tput : Array o f r o t a t i o n matr ices

45 0 ) ; / / i n t r i n s i c guess needed

46

47 P r i n t I n t r i n s i c s ( d i s t o r t i o n , camera_matrix ) ;

48
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49 / / conver t c o e f f i c i e n t s

50 _ d i s t o r t i o n C o e f f s . se t ( d i s t o r t i o n [ 0 ] , d i s t o r t i o n [ 1 ] , d i s t o r t i o n [ 2 ] , d i s t o r t i o n [ 3 ] ) ;

51

52 / / conver t camera mat r i x

53 for ( i n t i =0; i <9; ++ i )

54 _camIn t r i ns i cs [ i ] = camera_matrix [ i ] ;

55

56 / / conver t t r a n s l a t i o n vec to rs

57 for ( i n t i Img =0; iImg <nImages ; ++i Img ) {

58 _t ransVectors . push_back ( ofxVec3f ( t r a n s l a t i o n _ v e c t o r s [ i Img ∗3] ,

59 t r a n s l a t i o n _ v e c t o r s [ i Img ∗3+1] ,

60 t r a n s l a t i o n _ v e c t o r s [ i Img ∗3+2]) ) ;

61 }

62

63 / / conver t r o t a t i o n matr ices

64 for ( i n t i Img =0; iImg <nImages ; ++i Img )

65 {

66 _ro tMa t r i ces . push_back ( o fxMat r ix3x3 ( r o t a t i o n _ m a t r i c e s [ i Img ∗9] ,

67 r o t a t i o n _ m a t r i c e s [ i Img ∗9+1] ,

68 r o t a t i o n _ m a t r i c e s [ i Img ∗9+2] ,

69 r o t a t i o n _ m a t r i c e s [ i Img ∗9+3] ,

70 r o t a t i o n _ m a t r i c e s [ i Img ∗9+4] ,

71 r o t a t i o n _ m a t r i c e s [ i Img ∗9+5] ,

72 r o t a t i o n _ m a t r i c e s [ i Img ∗9+6] ,

73 r o t a t i o n _ m a t r i c e s [ i Img ∗9+7] ,

74 r o t a t i o n _ m a t r i c e s [ i Img ∗9+8]) ) ;

75 }

76

77 CvVect32f t r a n s l a t i o n _ v e c t o r s 2 = new f l o a t [ 3 ] ;

78 CvMatr32f ro ta t i on_ma t r i ces2 = new f l o a t [ 9 ] ;

79

80 CvMat∗ matRotMat ;

81 CvMat∗ matTranMat ;

82

83 f l o a t ∗ foca lLength = new f l o a t [ 2 ] ;

84 foca lLength [ 0 ] = camera_matrix [ 0 ] ;

85 foca lLength [ 1 ] = camera_matrix [ 4 ] ;

86

87 CvPoint2D32f p r i n c i p a l P o i n t ;

88 p r i n c i p a l P o i n t . x = camera_matrix [ 2 ] ;

89 p r i n c i p a l P o i n t . y = camera_matrix [ 5 ] ;

90

91 }
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A.4 Camera Calibration Screenshot

Figure A.1: Camera Calibration: Screenshot of camera calibration screen (number of camera devices = 2)
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Appendix B

Projector-Camera Homography Issues

B.1 Getting Camera Projector Homography

1 void o fxCa l i b ra t i onHand le r : : getCameraProjHomography ( )

2 {

3 cameraProjHomography = cvCreateMat (3 , 3 , CV_32F) ;

4

5 / / Temp v a r i a b l es f o r

6 bwImg2 = cvCreateImage ( csize , IPL_DEPTH_8U , 1 ) ;

7 Ip l Image∗ tempImg = cvCreateImage ( csize , IPL_DEPTH_8U , 1 ) ;

8 cvCvtColor ( tempHolder . getCvImage ( ) , bwImg2 , CV_RGB2GRAY ) ;

9

10 CvPoint2D32f∗ p = new CvPoint2D32f [ 4 9 ] ;

11

12 CvMat∗ mSrcPoints = cvCreateMat (49 , 2 , CV_32F) ;

13 CvMat∗ mImgPoints = cvCreateMat (49 , 2 , CV_32F) ;

14 CvMat∗ i nverse = cvCreateMat (3 , 3 , CV_32F) ;

15

16 CvPoint2D32f∗ s rcPo in t sA r r = new CvPoint2D32f [ 4 9 ] ;

17 CvPoint2D32f∗ srcPo in tsAr rFour = new CvPoint2D32f [ 4 ] ;

18

19 for ( i n t i =0; i <49; i ++)

20 {

21 s rcPo in t sA r r [ i ] . x = ( i n t ) ( i mod 7) ∗20;

22 s rcPo in t sA r r [ i ] . y = ( i n t ) ( i / 7 ) ∗20;

23 }

24

25 i n t nCorners = 0;

26 i n t found = cvFindChessBoardCornerGuesses ( bwImg2 , tempImg , NULL, cvSize (7 , 7) , p , &nCorners

) ;

27 i f ( ! found ) p r i n t f ( " Corners not found − \ d \n",nCorners ;

28

29 cvFindCornerSubPix ( bwImg2 , p , nCorners , cvSize (5 ,5 ) , cvSize (−1,−1) , cvTermCr i te r ia (

CV_TERMCRIT_ITER, 100 , 0 .1 ) ) ;
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30 cvSetData ( mImgPoints , p , s i z e o f ( CvPoint2D32f ) ) ;

31 cvSetData ( mSrcPoints , s rcPo in tsAr r , s i z e o f ( CvPoint2D32f ) ) ;

32 cvFindHomography ( mSrcPoints , mImgPoints , cameraProjHomography , CV_RANSAC, 1 .0 , NULL) ;

33 c v I n v e r t ( cameraProjHomography , inverse , CV_LU) ;

34

35 cvReleaseImage(&tempImg ) ;

36 cvReleaseMat (& mSrcPoints ) ;

37 cvReleaseMat (&mImgPoints ) ;

38

39 p r o j e c t o r C a l i b . project ionHomography = cameraProjHomography ;

40 }

B.2 Erroneous Results

In Chapter 5 it was stated that problems calculating the correct homography function, and inverse homog-

raphy function, were encountered. While the homography function seemed to correct the image within the

camera image plane (Figure 5.4 (b)), when applied to the projection image, by visual inspection the results

were incorrect. Figure B.1 (a) and (b) display a polygon (1024 x 768) undergoing the same homography

transform that corrected the image in Figure 5.4 (b). As can be seen from the results below, the images

are clearly incorrect with regards the correct pre-warped image B.1 (c).

(a) Homography reapplied (b) Inverse homography applied (c) Correct Warp

Figure B.1: Incorrect results from seemingly correct transform matrix

After testing the system in both Matlab and Wolfram Mathematica 6, it is clear that both 2-dimensional

and 3-dimensional transforms can be rectified by applying the inverse of the transform (Figure 5.3). This

may suggest that the initial theory of a direct keystone rectification by applying the inverse transform to

pre-warp the projected image is incorrect. Figure B.2 displays the most hopeful result of any tests carried

out. This replicates the function used in Sukthankar et al ’s [39], whereby:

pHs = cHs−1.cHp

However, this dissertation is yet to mathematically prove that this function is correct, and therefore
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(a) Camera-screen homography used (b) From camera’s perspective

Figure B.2: Better results using Sukthankar et al ’s [39] implementation

cannot be assumed to be the solution to this problem. It must be repeated at this stage that Sukthankar

et al have a different implementation to this dissertation.

It was because of this issue with the system that consequent components of the system were not

satisfactorily implemented. To satisfy this calibration problem temporarily, a manual warping function was

created which is discussed next.

B.3 Manual Warping for Calibration

To continue with the development and to carry out tests that would gauge the system’s performance, a

function to allow the manual warping of an image was created. As only four points are necessary to

compute a homography, four control points, one located at each of the image’s four corners, are used to

manually warp the image to be projected. Using the camera device to assess the position and orientation

of the projected image, the image can be pre-warped to appear coherent to the camera device, and

thus the audience. The user simply clicks and drags on the four controls points to actively warp the image

(Figure B.3). The homography transform gets calculated every frame and applies the 3x3 transform to pre-

warp the image. This process is carried out using the OpenGL implementation for speed and efficiency.
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Figure B.3: Manual Warp Interface
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Appendix C

Structured Light

C.1 GLSL Vertex Shader - (Displacement Map)

1 uni form sampler2D disMap ;

2

3 void main ( )

4 {

5 vec4 pos ;

6 vec4 newPos ;

7

8 pos = g l_ModelV iewPro jec t ionMat r ix ∗ g l_Ver tex ;

9

10 f l o a t dX = texture2DLod ( disMap , gl_Mult iTexCoord0 . xy , 0.0 ) . x ;

11 f l o a t dY = texture2DLod ( disMap , gl_Mult iTexCoord0 . xy , 0.0 ) . y ;

12

13 dX ∗= 1024.0;

14 dY ∗= 768.0 ;

15

16 g l_Fron tCo lo r = g l_Co lor ;

17 gl_TexCoord [ 0 ] = gl_Mult iTexCoord0 ;

18 g l _ P o s i t i o n = vec4 ( pos . x+dX , pos . y+dY , pos . zw) ;

19

20 / / g l _ P o s i t i o n = f t r ans fo rm ( ) ;

21 }
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