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High dynamic Range Imaging (HDRI) techniques have existed in one form or

another for over one hundred years as photographic tools to aid in the creation

of realistic, scene referred images. Since the advent of ubiquitous digital imaging,

HDRI has become a wide ranging and continually evolving field, presenting many

opportunities for interesting research.

This body of work seeks to examine and evaluate the applicability of the Cell

Processor for HDRI while exploring some of the main concepts in this field. Techniques

in the areas of Image Alignment, Response Curve Recovery, HDR Image Composition

and Tonemapping, proposed by key figures in the field, are explored in depth with

particular focus given to both Image Composition and Tonemapping for the Cell

Processor.
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Chapter 1

Introduction

High dynamic range imaging (HDRI) is a set of techniques which allow for the repre-

sentation of a greater range of luminance values that which is afforded with traditional

image reproduction and scene rendering methods.

This high dynamic range of luminance enables images produced using HDRI tech-

niques to more accurately represent the luminance ranges found in the real world.

Currently, digital images are generally encoded in formats which specify one byte per

colour channel (RGB) and three bytes per pixel, allowing for a maximum of 1.6 mil-

lion unique colours at 24-bits per pixel. This equates to just 256 different values per

channel which is inadequate for the representation of luminance ranges present in the

greater majority of real world scenes. The dynamic range afforded by current image

capture and display technologies is limited to just two orders of magnitude dynamic

range, compared with the ten orders of magnitude range from darkness to brightness

present in the real world.

The problem is that this lossy compression of real world luminance ranges to the

limited range displayable happens directly following image capture. This means that

much of the luminance data available in the scene is discarded. This results in images

which can only accurately represent real world luminance for a portion of the image,

with the remaining areas appearing overexposed.
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This gross loss of luminance data during the imaging process quickly becomes a trou-

blesome issue to anyone seeking to capture accurate scene referred images.

In contrast to regular digital images (LDR images), HDR images reflect the true lu-

minance range present at the point of capture. As such they are described as scene

referred images. With the full luminance data available, a user, rendering device, or

image processing application is afforded the choice on how to represent the HDR data

for a particular purpose on a particular display device (whether it be a future HDR

display device, LCD, OLED, CRT or even paper).

The advent of the Cell as an emergent digital media processing platform [10] presents

this opportunity to examine the applicability of Cell Processor programming paradigms

in the HDRI field. Computationally the processes involved in creating HDR images

are slow and, apart from a few notable exceptions [34][33], must be performed by the

end user via an image editing package [22][32][11] on a standard PC. This limits the

proliferation of HDR technologies to the majority of end users, notably the amateur

photographer.

The focus of this body of work is the development and implementation of a HDR

image composition based technique to produce tonemapped HDR images in such a

way as to take advantage of the massive parallel processing power afforded by the Cell

Processor. As the Cell continues to evolve and more Cell enabled consumer devices

reach the marketplace, it is not a wild assumption to foresee the advent of Cell enabled

digital capture devices, capable of producing full HDR images on device without the

need for additional hardware.

In the following chapters the full range of processes involved in creating HDR im-

ages from image sets of differently exposed images, beginning with initial photographic

image capture to the final tonemapping operations for LDR display, are presented in

detail, along with associated implementations, complete evaluation and results.
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1.1 Overview

Chapter two of this dissertation covers the most pertinent areas relating to the field

of HDRI research, with both seminal and recent papers in each area presented and

discussed. The Cell Processor is examined and a detailed overview presented.

Chapter three details the main body of work; design and implementation. The Image

alignment, photographic response curve recovery, image composition, and tonemap-

ping methods presented in the preceding chapter are described at an algorithmic and

mathematical level, with several modifications and enhancements presented. For both

the image composition and tonemapping processes an implementation designed to take

advantage of the Cell Processor is presented along with a traditional x86 implementa-

tion, this forms the basis for the comparisons presented in the fourth chapter.

Chapter four concerns performance analysis and comparisons between The Cell and

x86 based HDRI for different sets of image input data. Additionally pertinent results

from the methods examined in the previous chapter are included.

Finally chapter five presents the conclusions brought about by the analysis of HDRI

methods on the Cell Processor, including discussions on the effectiveness of the chosen

HDRI algorithms for this project. The dissertation comes to a close with thoughts

towards future work involving HDRI and the Cell Processor, extending the research

presented.
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Chapter 2

State of the Art

In this chapter key topics relating to the current state of the HDRI field are discussed.

HDRI consists of many broad interrelated area’s but for the purpose of this work the

main topics of interest are response curve recovery, image alignment, image composi-

tion, and tonemapping.

The paper continues this pattern in later chapters.

2.1 Historical Overview

The roots of high dynamic range image generation techniques lie in the mid 1800’s with

a technique known as ”combination printing”[27]. Generally this technique involved

the manual composition of two differently exposed black and white film negatives, one

giving the sky proper exposure and one for the remainder of the scene. This extended

the luminosity range of the final composited image (see figure 2.1)

What we call HDRI today can be traced back to about 1995 with the publication

of a paper by S. Mann and R. W. Picard [17]. In this paper (which extended upon

work detailed in a paper Mann presented two years previous [16]) the mathematical

theory behind the composition of multiple, differently exposed images of the same scene

to produce an image with extended dynamic range, was presented. An outline was also

given of a process to recover the response function of the imaging device.
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This work formed the basis for Debevec and Malik’s seminal HDRI paper presented in

1997 [9]. In this paper Debevec-Malik refined previous HDR image composition im-

plementations by producing a robust method of recovering the response function of an

imaging system coupled with a simple and effective image composition method based

on a weighting function which gave greater precedence to correctly exposed elements

of an image in the final HDR composition.

Since then HDR techniques have progressed and spread to many area’s of imaging

research. Techniques such as HDR rendering and image based lighting have become

accepted as useful tools in the mainstream graphics industry [21]. Meanwhile HDRI

processing for photographic applications has continued to evolve, with different ap-

proaches being explored in each interrelated field of research.

Presented below is a breakdown of each of the main issues in HDRI for photographic

applications with reference to some of the published research in each area.

2.2 Response Curve Recovery

When an image of a scene is captured using some form of mechanical imaging device,

whether the capture device is a digital camera, scanning device (in this case the scene

is whatever object is lying in the path of the scanners optics) , or even an analog film

based camera, the final digital representation of the original scene obtained is not a true

measurement of the relative radiance present in the original real world scene. This is

due to a number of unknown non-linear mappings which map scene radiance to the final

image radiance dictated by the imaging device. These non-linear mappings happen at

various stages, from image capture to final digital representation. This means that in

order to retrieve the original radiance values of a scene using a digital representation of

that scene, the compounded series of non linear mappings need to be somehow resolved

and quantified in order to determine an inverse (recovery) function.

For an example of the non linear mappings which take place during image acquisi-

tion, we look at the image capture process for a digital camera.
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Figure 2.1: River Scene, Camille Silvy. An example of combination printing from the
1860’s. Note that both the land and the sky are correctly exposed[28].

First, light enters the lens and hits the charge coupled device (CCD) of the cam-

era for the length of the exposure. This actually produces a mapping proportional to

the irradiance of the scene, however, at the point where CCD data is composed into a

digital image and written to storage a non-linear mapping is generally applied. This

mapping is employed to give a digital image some of the aesthetic characteristics tra-

ditionally associated with analog film stock. Namely the characteristic curve of analog

film(see figure2.2). Additionally the 12 or 14-bit output from the camera’s CDD may

be converted to gamma-compressed 8bit for final storage (eg. JPEG).

The most notable and troublesome non-linear mapping from a HDR composition point

of view, occurs approaching the saturation point of the capture medium, whether film

stock, or CCD. That is, the point at which the greatest possible amount of light that

can be absorbed by the medium has been absorbed by that medium and any greater

amount will have no effect. In traditional sensitometry terms (see figure 2.2) when

referring to photographic film this area approaching the saturation point is known as

6



the shoulder (due to its shape). When the saturation point is reached any value ex-

ceeding this point is mapped to same max value, in 8bit terms (for example, JPEG)

this would mean a scene radiance value exactly twice as bright as a neighboring value

corresponding to ”240” will be mapped to the value ”255”. This corresponds to over

exposure and is clearly an inaccurate representation of the original scene. Significant

non-linearity also exists with pixels of low radiance, at the base of the response curve.

This area is known as the toe of the curve and corresponds with underexposure. The

area between the toe and the shoulder is the most linear area of the curve, correspond-

ing with correctly exposed pixels.

The technique of compositing a series of temporally coherent (not a necessity, but

preferable for dynamic scenes) images of the same scene, separated by differing expo-

sure times, encompassing the full range of radiance values present requires some way

to relate the pixels of one image to the pixels of another image. This is where the

problem of non-linear mapping from scene radiance to pixel value effects HDR image

composition. By recovering the response function of the imaging process used to cap-

ture the images, a look up table can be created. Using this table, pixel values can be

resolved to actual scene radiance facilitating the composition process.

Several techniques exist for recovering the response curve of the imaging process. The

Debevec and Malik [9] technique offers a technique which can recover an arbitrary

response curve from a series of differently exposed images. Final output consists of

a weighted average of the input pixels at different exposures. The recovery technique

involves generating an over-determined system of linear equations and solving using a

singular value decomposition method (SVD). This technique assumes no relationship

between colour channels and must be performed for each colour channel present, pro-

ducing separate response curves.

An alternative technique proposed by Mitsunaga and Nayar [19] uses a parametric

model to recover response data. Contrasting with the Debevec and Malik technique

Mitsunaga-Nayar assume a relationship between the three (RGB) response curves

which preserves chromaticity. This technique can potential recovery a more accurate

response function than the Debevec-Malik technique.
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Figure 2.2: A general characteristic film curve[29].

2.2.1 The RAW image format

As an aside, it is of interest to note that the usage of the RAW image format (a format

which generally stores unprocessed data directly from the CCD in the CCD’s native bit

format. Therefore constituting a true representation of the scene as seen by the CCD

sensor.) can potentially provide a work around to the problem of non-linear response.

Unfortunately this cannot be relied upon as a practical solution for the majority of

applications, reasons for which are detailed below:

• File Size: RAW files tend large in comparison with JPEG files due to the amount

of data they contain meaning that less images can be captured and stored on a

given storage device.

• Write Speed: Large files take longer to write to storage, increasing the period

of time between shots. When shooting an image sequence for HDR composition
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each image in the series need to be temporally close to its neighbors to avoid

changes in the scene which will effect the composition process (changing light

conditions, clouds, people moving through a scene).

• Format Standardization: There is no standardized format for RAW. Each

manufacturer specifies their own internal format which need to be treated

differently from a processing point of view. Formats can even differ between

camera models produced by the same manufacture. Certain RAW formats may

even include lossy compression or other such alterations to CCD data which

eliminate the benefit of using the RAW format from the perspective of avoiding

non-linear mappings.

With JPEG practically being the standard for image capture today it seems logical

to attempt to make up for its faults rather than use a non-standard format such as

RAW, despite potential benefits. Additionally, conversion from an analog process

photograph to a digital image (via scanning, or otherwise) cannot benefit from the

use of the RAW format.

2.3 Image Alignment

Image alignment is generally required for any HDR image composition technique. This

is because misalignment errors are introduced into the image set due to camera move-

ment between each image capture. For this reason it is generally recommended to

capture LDR image sets intended for HDR composition with the use of a tripod. How-

ever, even with a tripod alignment errors can appear in an image set.

HDR images produced using misaligned image sets generally result in blurry images,

with more extreme misalignment causing a clear double image (see figure 2.3). For this

reason, a robust HDR image generation technique should include an image alignment

operation as a pre-processing step.

9



Figure 2.3: A comparison between a HDR composition obtained with an unaligned
data set and an aligned data set

Image alignment is a very broad field but few alignment techniques have been pur-

posefully developed for HDR applications.

For example, Greg Ward [35] has produced an implementation of an alignment tech-

nique which boasts a fast, exposure independent, translational alignment technique

based on multilevel image pyramid alignment. This technique offers performance ben-

efits and exposure independence which negates the need for a response function of the

imagine process to align images. However, it can only align images via x,y axis adjust-

ments and does not compensate for rotational misalignments.

In comparison Kang et al. [14] has produced an image warping technique using mo-

tion estimation for frame interpolation as part of a HDR video implementation. This

technique offers a robust alignment technique at a performance trade off.

2.4 Image Composition

In scenes which have a high dynamic range, LDR photography produces images which

contain overexposed areas. By varying exposure we can capture the overexposed areas

correctly, but the other areas of the image become underexposed.

HDR through image composition of differently exposed LDR images, is based on the

idea that by capturing a scene at a range of different exposures, portions of the overall

dynamic range can be captured in each image. That is, different parts of the scene will

10



Figure 2.4: An short exposure set showing different areas of correct exposure

be correctly exposed in different images in the set (see figure 2.4).

By recovering the response function of the imaging process we can resolve pixel values

to scene radiances and composite the images to recover a HDR image of the original

scene.

Key to this concept is the assumption that each pixel has a correctly exposed counter-

part in at least one image in the set.

The majority image composition methods are derivatives of the method introduced

by Debevec et al. [9]

2.5 Tonemapping

As discussed previously the dynamic range of luminance in the real world is very high,

about 10 orders of dynamic range from darkness to brightness. An every day example

of a real world scene with a very high dynamic range is one comprising an outdoor
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sunlit area and an indoor area illuminated by an internal light source. Using the tech-

niques described in the previous Image Combination section the full dynamic range

of such a scene can be captured, however, the issue of how to display such an image

becomes a problem.

Current display devices operate on about two orders of dynamic range, with LCD

monitors allowing for a slightly higher range than traditional CRT’s. Printed paper

meanwhile has an even lower range, somewhere around 50:1. These limitations of tra-

ditional display devices necessitate a process to map the recovered real-world HDR

values to the limited range of the display device while retaining as much of the detail

(or at least an aspect of the detail) from the HDR image as possible.

Tonemapping is such a process, of which there are many, many variations. Two broad

categories of tonemapping operators exist; those that use global operators, and those

that use local operators. Other categories exist such as gradient domain and frequency

domain operators, but global and local operators are the most common. Global op-

erators distinguish themselves by compressing an image based on the use of the same

non-linear compression curve to map each pixel, while local operators apply compres-

sion according to the luminance values of each individual pixel and the values pixels

in the local neighborhood.

Global operators tend to be better for images without extreme variations in dynamic

range. Used on such images the tonemapped result can present with blown out high-

lights in high brightness areas, reducing visibility. However, different global operators

produce different results with the majority producing good, aesthetic pleasing results

across a vast spectrum of image types.

Local operators are useful in circumstances where an image has extreme variations

in dynamic range located through an image, multiple high intensity light sources in a

darkened room for example. The application of a local operator based tonemapping

algorithm generally results in a very distinctive hyper-real image due to the lack of a

global evaluation of the range present. This distinct look is preferred by some pho-

tographers for aesthetic reasons and shunned by others for presenting an unrealistic
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representation of the original scene. However, these are just opinions based on personal

perception and it is important to remember that there is no right, or wrong when it

comes to tonmapping operators.

Performance wise global operators tend to be appreciably faster [24] than any other

form of tonemapping. This quality means that global operators are the preferable

tonemapping method for high performance real time applications. Local operators,

although slower, still present generally better results than global operators in scenes

with extremely high dynamic range, as well as a unique aesthetic equality. As such

global and local tonemapping operators can be considers complimentary algorithms.

2.6 A Brief Overview of The Cell Processor

The Cell Broadband Engine (also commonly known as the Cell Processor, or simply

”The Cell”’) was developed jointly by a collaboration between Sony, Toshiba and IBM.

The Cell is the first processor in what is intended to be a new family of microprocessors

conforming to the Cell/B.E. Architecture (CBEA) model which was laid down during

the development of the Cell.[23]

Originally conceived by Sony Computer Entertainment inc. with the intention of devel-

oping a new CPU architecture as the basis for their then in development, ”next-gen”,

games console - the Playstation 3, the architecture as it exists today is capable of high

performance general purpose computation and is thus suitable for a wide range of ap-

plications in many fields.

This first generation Cell Processor is a single-chip asymmetric design comprising nine

individual processing cores, or elements loosely connected via a shared memory model

facilitated by an EIB, or Element Interconnect Bus. Eight of these nine processing cores

are Synergistic Processor Elements (SPE’s) with the remaining one being a Power Pro-

cessor Element (PPE). These two elements are distinct in their design and function,

being intended for use on different types processing tasks.

The PPE consists of a conventional PowerPC Architecture (RISC design) core ca-
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pable of 64-bit and 32-bit computation paired with a 64KB L1 cache and a 512KB L2

cache. [23] In comparison the SPE’s are self contained independent single-instruction-

multiple-data (SIMD) vector processors , and thus optimized for compute intensive

tasks. Each is paired with small 256KB local stores, lacks a cache, and has full access

to shared memory via multiple direct memory access (DMA) units.

The PPE is a conventional processor and as such is intended to handle the operat-

ing system and schedule tasks for the eight SPE’s while the SPE’s are designed to

perform the computationally intensive tasks. This relationship between the PPE and

the SPE’s forms the basis for CBEA.

The biggest difference between the PPE and the SPE’s is the way in which each ac-

cesses memory. The PPE is able to read directly from main memory and store data

into available local cache memory as required, just as a regular processor would. The

SPE’s however access main memory with DMA commands which move data in 1Kb to

16Kb chunks into what is termed local storage. Each SPE’s DMA controller can have a

maximum of 16 transfers in operation simultaneously. Instruction fetch and load and

store operations act on this local store rather than main memory. Additionally the lack

of an SPE cache and associated coherency logic removes a level of complexity from a

cache management perspective, increasing the rate at which data can be processed.

Effective use of the SPE’s local store is key to the performance gains inherit in the

Cell design as transfer operations between an SPE’s local store and an SPE’s registers

can be performed at an incredible sustained rate of 64Gigabyte per second, addition-

ally, effective management of DMA transfers between main memory and each SPE’s

local store by exploiting the bandwidth of the EIB is vital to maintaining a high rate

of computational throughput.
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Figure 2.5: An overview diagram of the Cell Processor architecture [20]
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Chapter 3

Design and Implementation

This chapter details the design and implementation of a HDRI program encompassing

the concepts introduced in the previous chapter. Both Cell Processor and x86

implementations are described where appropriate.

3.1 Design Overview

The over arching design philosophy behind this project was to produce a modular chain

of algorithms which took a set of LDR images of different exposures as input and pro-

duced tonemapped HDR output (see figure 3.1). This design allowed for a particular

algorithm to be swapped out and replaced with another algorithm without affecting

the rest of the project, making for a robust experimental HDRI platform.

For each of the HDRI area’s selected for implementation a suitable algorithm needed

to be sourced. Suitable, both in terms of effectiveness in their related area, and from

the point of view of deployment to the Cell Processors SPE’s.

At the beginning of the project it was decided that several versions, of what would

become the final implementation, would be created and deployed on both the x86 and

Cell Processor based platforms. One of the main reasons for this approach was to pro-

vide a solid basis for performance comparison between HDRI algorithms on the Cell

Processor and HDRI on the x86 platform.
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The second reason for this was to allow for initial algorithm prototyping, develop-

ment, and modification to take place on the familiar x86 platform rather than the

more esoteric Cell Processor platform. In effect algorithms were implemented on the

x86 platform, analyzed with the intention of deriving a suitable Cell implementation,

and finally ported and rewritten to take advantage of the Cell’s unique architecture.

This approach saved time in the initial stages of development where various avenues

of approach could be explored quickly and rapid prototypes developed in a familiar

setting.

Over the course of the project three different code bases were developed and utilized

to create the final Cell Processor SPE enabled implementation. Each was developed

with a specific need in mind.

Initial algorithm testing and rapid prototyping was conducted in the C++ program-

ming language with the use of the CImg [7] image processing library for both file IO

and pixel manipulation operations.

An improved C based HDRI implementation was then developed as a basis for the

eventual porting of the code base to the Cell’s PPE. CImg was replaced with a very

light weight public domain JPEG/PNG reader. This functionally complete x86 C code

base was used as the performance measure for HDRI algorithms on the x86.

Porting this C implementation to the Cell PPE was surprisingly simple. Effectively,

the only code that needed to be rewritten for the platform was due to conflicting op-

erating systems. The x86 C implementation was developed under Windows, while the

Cell enabled platform was Unix based. This necessitated a rewrite of the file IO code

to suit Unix directory manipulation.

The final implementation was a combination of the PPE only version and a full SPE im-

plementation of the image composition and tonemapping algorithms. These two area’s

of HDRI were selected for SPE deployment due to the vital importance they have in
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Figure 3.1: Sequence of operation, assuming response curve data has been recovered
and saved to file

the HDRI process. For instance response curve recovery is only required on a per de-

vice basis. Generally after recovering a response curve the algorithm will not need to

be executed again as the initial curve is saved to an external file and queried on future

executions. Implementing an SPE based response curve recovery system, while useful,

was not seen as vital to the project. Additionally Image Alignment is not required for

images which do not possess a significant spacial disparity within an image set. Any

image set captured with the use of a tripod will, in most circumstances, not require

image alignment. Thus for the majority of inputs to the HDRI algorithm chain, image

composition and tonemapping present the greatest computational expenses. Thus it

was logical to derive an implementation which offloaded both of these tasks to the Cell

SPE’s.

To facilitate this SPE implementation a suitable Cell programming paradigm was

sought. Studying the structure of the image set input data suggested a technique

based on parallel processing of partitioned data sets (See figure 3.3). A pipelined (See

figure 3.2) approach was also considered but due to time constraints this model was

not implemented.

3.2 Taking Photographs for HDR image composi-

tion

From a conceptual standpoint the process of capturing the images for high dynamic

range image composition is a simple process. An image set consisting of photographs
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Figure 3.2: A pipelined approach to cell processing.

Figure 3.3: A data partitioned sequential processing approach to cell processing.
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of the same scene at different exposure values (the more images the better, 10-13 im-

ages works well in most cases, but it can work with 2 images and above) taken from a

steady camera is all that is required. A tripod is recommended, clamping the camera

to a surface works equally well, with a steady hand only as a last resort.

However, capturing this image set can prove difficult given the limited settings af-

forded by standard ”point-and-shoot” consumer level digital cameras. The camera

used for the majority of this project was a Panasonic DMC-TZ1. This is a mid-range

consumer level digital camera, and as such offers little in the way of the manual control

necessary for capturing images for high dynamic range composition. Values such as

f/stop [8] and exposure time only allow for very minor adjustments, such as setting the

minimum shutter speed (1/8,1/2,1,2,4,8), and altering the Exposure Value (+2 - -2 in

1/3 increments).

As such, the user is mostly at the mercy of the cameras auto-exposure software. Var-

ious techniques must be employed both at an algorithmic and image capture level to

create viable input image sets.

An example of auto-exposure interfering with the image capture processes presents

itself when attempting to purposefully take exposures which are largely over or under-

exposed, in this case the camera will usually default back to a lower/higher exposure

time to prevent the user from taking a ”bad” photograph. In these cases it can be use-

ful to use a technique known as Auto Exposure compensation or AE Lock. An example

of this would be attempting to take a 1 second exposure in a very bright scene. In this

case the camera would detect the overexposure and default back to a lower exposure

time. To force the camera to take the shot with the desired exposure time the user can

focus the camera on a much darker scene making the camera receptive to the desired

exposure time. At this point the user can move the camera back to the scene without

refocusing and take the overexposed shot. (More expensive digital SLR’s and some

higher grade consumer level digital cameras include an AE Lock button enabling the

user to use the same forced setting between shots).

However, this can cause the f/stop to change between exposures since this is dictated
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mostly by the cameras auto-exposure system. Because we use exposure time as an

input for image composition and response curve recovery, it is necessary to normalize

exposure values, with respect to f/stop, across the image set.

3.2.1 Preprocessing for Exposure Time Normalization

In order to normalize the exposure values across a range of varying f/stop’s the ”Law

of Reciprocity” must be employed.

The law of Reciprocity refers to the inverse relationship between intensity and du-

ration of light that determines the reaction of light-sensitive material. With regards

to photography this refers to the interaction between the aperture size and the shutter

speed to determine the volume of light hitting the CCD/film stock, ie. aperture and

shutter speed are inversely linear, total exposure = intensity x time. Therefore the

same response can result from reducing exposure time and increasing aperture size and

vice versa. For example the same exposure time can also be achieved by doubling the

aperture to f/2 and halving the shutter speed to 1/250 s or by halving the aperture to

f/4.0 and doubling the shutter speed to 1/60 s.

Since the law of reciprocity defines f/stop and exposure time as inversely linear, and

we know that f/stop is a logarithmic scale of known factor; exposure times can be cal-

culated given a change in f/stop. eg. If at f/stop f/1.0, exposure time is 1/2000 what

is the exposure time at f/stop f/5.6? (or any other f/stop exposure time combination).

The formula for this is as follows.

Shorter exposure time -

A = B/2C

Longer exposure time -

A = B ∗ 2C

Where A is the new exposure time, B is the original exposure time and C is the

f/stop difference.
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F/stop difference is calculated as follows.

log(f1)−log(f2)

log(
√

2)

The normalizing of exposure times is done as a pre-processing step, just after the

EXIF data is extracted and the images are loaded into memory. This is followed by

a sort operation of the input image set, from brightest image (highest exposure) to

darkest image(lowest exposure).

3.3 File Handling and Data Storage

File handling is, of course, integral to the overall HDRI implementation. No HDRI

processing can proceed without an input image set.

To facilitate the storage of image data and pertinent variables related to each image,

a dynamic array of struct’s was created. With each struct containing data relevant to

the source image, including pixel values, f/stop, exposure time and original dimensions.

A simple directory crawling method was used to iterate over the input image files

for a given directory path. For image input only images with the extension ”.JPG”

are recognized, other file types and nested directories are ignored. Therefore it is im-

portant for the input directories to be free of any superfluous JPEG’s unrelated to the

current HDRI composition operation.

When valid input is found the pixel data is read from the image into the image list

data structure and separated by colour channel. The width, height, exposure time,

and f-stop data is then extracted from the EXIF header of the JPEG. EXIF support

was implemented with the use of excerpts from the public domain EXIF manipulation

tool ”jhead” [13].

Initially the CImg library was used for extracting pixel data from images. However,

due to a switch to pure C for the final Cell and x86 implementations a change to a

C image parsing solution was required. The ”stb image.c” [4] JPEG/PNG reader was
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selected for this task due to its lightweight design and minimal dependencies.

File output for tonemapped images was achieved using the same ”stb image” solu-

tion, with uncompressed 24-bit Bitmaps selected as the output format. The use of a

Bitmap was necessitated due to format limitations of ”stb image”, however, the only

tangible drawback to this is an increased file size.

3.4 Response Curve Recovery

This section gives an overview of the chosen response curve recovery method followed

by implementation details.

The method selected for response curve recovery was detailed by Debevec and Malik[9].

3.4.1 Selected Technique

The Debevec and Malik technique is based on the concept of Photographic Reciprocity.

Photographic Reciprocity refers to the inverse relationship between intensity and du-

ration of light that determines the reaction of light-sensitive material.

Specifically this refers to the interaction between the aperture size and the shutter

speed to determine the volume of light hitting the CCD/film stock, ie. aperture and

shutter speed are inversely linear (CCD charge = light intensity x time).

Therefore the same response can result from reducing exposure time and increasing

aperture size (effectively increasing the irradiance at the CCD) and vice versa. For

example the same level of total exposure can also be achieved by doubling the aperture

to f/2 and halving the shutter speed to 1/250 s or by halving the aperture to f/4.0 and

doubling the shutter speed to 1/60 s. The product of intensity*time is the only thing

that determines the total exposure, neither value has more influence.

Given this, we can recover the light intensity hitting the CCD at the point of cap-

ture for pixel X once we know the composite non-linear function, via:

E = X/∆t
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Therefore the goal of this method is derive this find this composite non-linear func-

tion and apply its inverse to each pixel value in the 24-bit range, thus enabling the

creation of a look up table of original exposures. This inverse function can be recovered

and applied because the response curve is monotonic in nature.

Describing the final pixel value as a function of non-linear mappings being applied

to scene irradiance values we can write the following:

Zij = f(Ei∆tj)

Where Zij is a pixel value where i is the index of a particular pixel and j is the

index of that pixels exposure, f is the non-linear function, Ei is the irradiance value for

pixel at index i, and ∆tj is the exposure time at index j.

Since we have assumed that f is a monotonic function it is possible to obtain the

inverse the and apply it to retrieve the total exposure of pixel i at exposure j.

f−1(Zij) = Ei∆tj

Breaking this down further we can apply the natural logarithm to both sides, giving:

lnf−1(Zij) = lnEi + ln∆tj.

We already know the exposure time as it has been extracted from the JPEG’s EXIF

header. This allows us to obtaining the original scene irradiance value for pixel i at

exposure duration j in isolation.

Given that function g = lnf−1, we now have.

g(Zij) = lnEi − ln∆tj

At this point we know everything except the function ”g” and the irradiance values

Ei. The idea is to find the function g and the irradiances Ei that satisfy the equation

above in a least-squared error sense.

Given that we have only a limited number of pixel values present in the encoding
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(usually 0-255), we only need to solve for that limited rage in order to create a look up

table of scene irradiances.

Therefore, assuming P is the number of photographs we are using as input to this

algorithm and N being the number of sample points we have chosen from the image

(50 points for 11 images is recommended by the paper) the problem can be refined to

one where we need to find the range of pixel values of g() and the N values of lnEi

that minimizes the following quadratic objective function:

O =
N∑
i=1

P∑
j=1

[g(Zij − lnEi − ln∆tj]
2 + λ

Zmax−1∑
z=Zmin+1

g
′′
(z)2

The first part of the function has already been described above, and ensures that

the final solution satisfies the set of equations in the least squares sense. The second

part of the function is a smoothing term ensuring that the resulting response curve is

smooth and provides coherence between the values in the pixel range. The smoothing

term specified by the paper is of the following form.

g
′′
(z) = g(z − 1)− 2g(z) + g(z + 1)

Lambda is an input to the smoothing function specifying the amount of smoothing

to apply.

Finally, since we know that the response curve will generally have a distinctive ”S”

shape to it, with a toe, straight and shoulder as discussed earlier. We can introduce

a weighting function w(z) to further increase smoothness and fit terms towards the

center of the curve which corresponds to correctly exposed pixels (z).

This weighting function suggested by the paper is a simple hat function.

w(z) = dZmax − zforz > (Zmin + Zmax)/2

bz − Zminforz ≤ (Zmin + Zmax)/2

Other weighting functions have been proposed in various similar approaches [26].

These alternative weighting functions conform to the shape of the expected response
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curve more closely.

This gives the final equation

O =
N∑
i=1

P∑
j=1

{w(Zij)[g(Zij − lnEi − ln∆tj]}2 + λ

Zmax−1∑
z=Zmin+1

[w(z)g
′′
(z)]2

This overdetermined system of linear equations can then be solved using the

mathematical technique of singular value decomposition (SVD) to derive the response

values for each pixel in the range. Plotting these values reveals the response curve of

the imaging system.

3.4.2 Implementation

Input to this function consisted of set of images separated by exposure time. To en-

sure that the recovered response curve accurately represented the range of pixel values

available (0-255) measures were taken to ensure a good spread of colour values in the

input image set.

According to the original paper response curves can be retrieved with as few as two

images with no upper limit. After extensive testing the an image set consisting of be-

tween four and six images seemed to produce the most accurate response curves. It is

important not to use too many input images as this can cause memory problems given

that the size system of linear equations is on the order of N x P + P-range. Where N

is number of samples and P is the number of images.

The first operation performed as part of the recovery technique is to obtain a list

of sample pixel index’s from the image list as input to the equation system. Basically,

pixel locations need to be chosen which give a good distribution of pixels in the pixel

value domain, which are well separated spatially, and are sampled from area’s with low

internal variance. This processes is fully detailed with alternate implementations in

the sampling section.

The linear system of equations is formed using the pixel values determined through the
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sampling function across the image set as specified by the method, and the smoothing

function applied. This set of linear equations is expressed in matrix form.

At this point the system of equations requires solving using SVD. In the original paper

SVD was accomplished through the use of Mathlab. Therefore it was necessary to

source a compatible linear algebra library to perform this function.

For the initial C++ implementation the JAMA/TNT [31] linear algebra package was

utilized to good effect. However, no C port of this package existed. Some C linear

algebra packages were explored as potential solutions but in the end it was decided to

rewrite the SVD, and related portions of the JAMA/TNT package for C compatibility.

Through initial use of SVD it was discovered that for the QR decomposition technique

used, the default weighting function provided by the original paper was inadequate.

This is due to the weighting function returning weights which equal 0 for pixel values

of 0 and 255. QR decomposition requires matrices which are full rank [36], for this to

hold true, the weighting function must never return zero. The simple solution to this

is to shift the weighting function up by 1, so that a pixel value of 0 or 255 produces a

weighting of 1.

The SVD function returns an array containing the response function.

This technique is repeated for each colour channel yielding three response curves.

3.4.3 Sampling Techniques

Effective sampling is key to the response curve recovery method outlined above. In the

original paper useful sampling points were selected by hand from the input image set.

Although automating the process was proposed and some of the criteria for effective

sampling were briefly discussed; an implementation was not detailed. To this end, sev-

eral sampling algorithms were developed and tested for effectiveness in retrieving valid

pixel data from an image set. Valid pixel data is assumed to be data which results in

the generation of a monotonic response curve similar in appearance to a film response
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curve.

The first sampling technique employed involved using random sampling to achieve

the specified number of sampling points. This technique has obvious advantages in

terms of computation time and code complexity but could not be considered a serious

point sampling solution due to its lack of robustness. Points sampled generally lack

good spacial distribution and the possibility exists of sampling points in regions which

remain over or underexposed for the lifetime of the image set. Additionally points sam-

pled randomly generally do not encompass the full range of intensity values from 0-255.

All of these issues contribute to a poor representation of the true response function

of a particular camera. Random sampling does produce usable, albeit highly variable,

results (see figure 3.4).

A second iteration of this sampling method was developed To improve upon random

sampling and address some of the criteria suggested for valid sample points. Random

points were selected from the median image of the sorted response curve image set, this

makes the task of picking a set of pixels with a wide distribution of intensity values

easier because the median image should have less extremely over and underexposed

areas. Half the points were selected in the lower half of the luminance range (0-128)

and the other half in the upper range (128-255), this ensures that the sampled points

cover a wide range of luminance values.

Points were then tested to see if they lay in a spatially homogeneous areas. Points

in the immediate surrounding area are tested against the chosen pixel for high levels

of variance. This helps to reduce the effects of chromatic aberration and other fringing

artifacts as well as CCD sensor noise which commonly presents as randomly dispersed

purple hued pixels in isolation.

The rejection criteria for points passing this test checked the individual colour channels

for high levels of internal variance, pixels with a high internal variance (by default a

value of 10 was used) were rejected. This was done with the intention of preventing

any particular colour channel exuding an unbalancing effect on the final response curve.
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Finally, in order to prevent inordinately long sample times and the possibility of enter-

ing into an infinite loop when sampling images which have few pixels which meet the

outlined criteria, a contingency was introduced which increased the tolerance of the

internal variance test after a given number of rejections.

Results for this sampling method were improved over the simple random sampling

method and gave uniformly similar results over multiple runs (see figure 3.5). How-

ever, some concerns were raised regarding the validity of testing for pixels with low

levels of internal channel variance, effectively sampling grey scale pixels, might cause

a misrepresentation of the true response of a particular colour channel.

To address this concern One final sampling variation was tested. For this sampling

variant the internal variance test for the sampled pixel was removed and fully one

third of the requested number of samples was reserved for each colour channel with

each half of this third for low luminance values and the other half for high luminance

(as detailed above). This effectively means each component of each sampled pixel is

treated as an individual sample independent of sibling components. For example a

pixel presenting with RGB values of (100,50,0) would constitute a valid sample for the

red and green channels but the blue component would be rejected for extreme under-

exposure. This increases the acceptance rate of selected pixels.

Results for this final sampling method were very similar to the previous sampling

method. Resulting response curves did not appear to be any more or less accurate and

the tonemapped HDR images composed with these RGB curves did not present any

major colour imbalance (see figure 3.6).

The final two sampling methods outlined are both valid techniques for sampling pixel

values for the Debevec and Malik recovery technique. Both methods are superior to

purely random untested sampling in terms of resulting response curves, consistency,

and robustness.
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Figure 3.4: Random sampling method. Pixel value vs luminance

Figure 3.5: Sampling with regard to internal channel variance. Pixel value vs luminance
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Figure 3.6: Points sampled at sub-pixel level. Each curve is sampled individually. Pixel
value vs luminance
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3.5 Image Alignment

In many cases input image sets are misaligned, generally resulting from camera move-

ment at the point of image capture. For this reason it is generally recommended to use

a tripod, however, in situations where a tripod is not available or an image set becomes

significantly misaligned despite precautions image alignment becomes necessary. This

section gives an overview of the chosen image alignment method.

The method selected for this operation was detailed by Greg Ward [35]

3.5.1 Median Threshold Bitmap Alignment

The median threshold bitmap (MTB) alignment technique was developed specifically

to facilitate the composition of high dynamic range photographs from hand held LDR

exposures. This was one of the main reasons this technique was selected.

The MTB technique is based on the creation of threshold bitmaps to act as an align-

ment proxy, reducing the computational complexity of the alignment operation. These

bitmaps are aligned horizontally and vertically with the use of an image pyramid. The

threshold bitmap also theoretically avoids the problems associated with aligning images

of different exposure levels. This is a point of note because traditional edge detection

algorithms don’t respond well when applied to image sets consisting of differently ex-

posed images (as found in the HDR composition process). This is because the resulting

edge detection bitmaps vary heavily with exposure. Additionally, this exposure invari-

ance negates the need for an exposure normalization technique necessitating the use

of the response curve of the imaging process. This is important to note because the

input to the response curve recovery step consists of an aligned image set differing by

exposure time. Without prior knowledge of the response function, aligning this image

set would pose major difficulty.

The first step in the algorithm is covert each image in the input image set to 8bit

greyscale images through the application of the following formula

grey = 0.2125 * red + 0.7154 * green + 0.0721 * blue
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The paper then suggests selecting an arbitrary image from the image set as the

reference image to form the basis by which every other image in the set will be aligned

according to. However, to increase the robustness of the algorithm an alternative tech-

nique is to select the center image in the image list corresponding to a moderately

exposed image. This prevents the use of massively over or underexposed images which

can exist in the input image set. These images are unsuitable as the basis for alignment

because they contain very little usable pixel data.

The titular median threshold bitmap is constructed from the greyscale input images

by creating a 1-bpp bitmap where 0’s represent pixels from the input image which are

less than the median grey value present in the image and 1’s represent pixel which are

greater than the median value. This technique produces exposure invariant bitmaps.

By computing the XOR between the MTB of the image to be aligned and the reference

image shows the alignment difference between the two images.

The alignment approach proposed by the paper involves the use of an image pyra-

mid [3]. Here the grey scale approximation for the reference image and the current

input image are sub-sampled by a factor or two for each level of the image pyramid.

The number of levels in the pyramid corresponds to the base two log of the maximum

alignment offset. So for a maximum offset of 64 pixels the image pyramid for each

image will have 6 levels.

Starting from the top of the pyramid (smallest image subsample) the threshold bitmap

is computed for both images and the minimum difference offset between the input

image and the comparison image is calculated within plus or minus 1 pixel in each

dimension. Moving down the pyramid the previous offset is doubled to account for

the sub-sampling operation and the offset is computed on the new level with respect

to the previous levels offset. This continues to the bottom of the pyramid. At this

point the final offset has been computed, here it can be noted that each level of the

pyramid corresponds to a single binary bit, from least significant to most significant,

in the overall offset. This is because, as stated previously, the number of levels in the

pyramid is calculated via base two log.
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To increase the robustness of the approach the paper proposes an additional oper-

ation to reduce the amount of noise present in the threshold bitmaps. This noise is

introduced by the computation of the threshold bitmap where there are a large number

of values close to the median value.

The approach taken in this step is quite straight forward and involves the creation

of an additional ”exclusion bitmap”. This bitmap is specified in the same way as the

threshold bitmap except that all values within a specified distance of the given thresh-

old are represented by 0’s and all other values consist of 1’s. This exclusion bitmap is

calculated for each image at each level on the pyramid. The bitmap is used by taking

the XOR difference for the current offset calculation and AND’ing it with both offset

exclusion bitmaps. This has the effect of removing the pixels which are classified as

noise by the threshold value thus eliminating the potential problem of local minima

during the alignment process.

3.5.2 Implementation

The MTB alignment technique was implemented as a recursive algorithm which took

an image to be aligned and a reference image as input and returned the integer amount

of x,y shift required to align the input image.

Each level of recursion in the algorithm corresponds with a level of the image pyramid.

Starting from the base of the pyramid, the algorithm recursively subsamples the input

image and the reference image until the base of the pyramid (specified as an input

parameter which controls maximal shift) is reached.

At this point the threshold and exclusions bitmaps are calculated. The threshold

value is calculated by taking the average luminance value from a computed greyscale

of the input images. While the exclusion bitmap is calculated using a tolerance to this

threshold value. The tolerance value suggested by the paper is 4, it is not mentioned

how this value was arrived at so it is assumed that it is empirically derived.

The alignment operation then takes place by searching for the best alignment match
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between the -1/+1. For each possible alignment, a copy of the threshold and exclusions

bitmap are shifted by that amount and the logical operations applied to remove the

noise (as specified by the exclusion bitmap) in threshold bitmap copy. The shift which

gives the best match to the reference input image is selected.

On the next level up the current shift value is scaled up by a factor of 2 and the

operation continues.

This operation is applied for each image in the image set with the median image

in the set selected as the reference image.

3.6 HDR Image Composition

Image composition is the heart of any HDRI implementation, as it is the process by

which LDR image data is processed to create a HDR image.

At this point in the algorithm chain we have an aligned image set and the relevant

response information recovered via the previous step. These are the inputs required

for this image composition step. Our final expect output is a series of float point HDR

data arrays, one for each colour channel (RGB).

3.6.1 Selected Technique

The composition method selected for implementation was proposed by Debevec and

Malik[9].

This method was introduced in the same paper as the response curve recovery tech-

nique detailed earlier in this chapter. As such it shares some similarities carry on from

that method, such as the use of the same weighting function.

The general idea behind the technique is one of converting LDR pixel data across

the image set into weighted relative radiance values through the use of the recovered

response curve data. This radiance data is then composited an average obtained. This
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in essence is HDR composition.

This is expressed in an algorithmic sense as follows,

lnEi =
∑P
j=1 w(Zij)(g(Zij)−ln∆tj)∑P

j=1 w(Zij)

Where lnEi is recovered as follows,

lnEi = g(Zij)− ln∆tj

As discussed in the response recovery section, this is possible because we know the

exposure time and the response function ”g”.

For the composition process the weighting function from the response recovery method

is reused. This weights pixel values closer to the linear section of the curve higher than

pixels in the toe and shoulder regions. This means that pixels of nominal exposure are

weighted higher than pixels which are over or under exposed, therefore these errant

pixel values have less influence over the final HDR output.

Across each image in the image set, the weighted sum of pixels which share the same

spatial location is calculated and divided by the sum of the pixel weights. This gives

the composite HDR value for this pixel. This process is performed for each sub-pixel

value of every pixel in each image. The result is a set of HDR data arrays representing

each colour channel.

3.6.2 x86 Implementation

The x86 implementation closely followed the algorithm as described. However, two

issues were encountered. Firstly, examination of the final tonemapped image (pro-

cesses described in the following section) revealed oddly coloured pixels appearing in

sections of overexposure (see figure 3.7). These area’s corresponded to locations of

extreme exposure in the LDR image set, such as the center of the sun, or glare bounc-

ing from a reflective surface. This issue was quite perplexing and remained unsolved

until quite late in development. This stemmed from an inability to resolve whether the

actual composition method was causing the problem, as the HDR data produced by
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Figure 3.7: Composition error due to weighting method.

the method cannot be viewed without tonemapping (which could have been causing

problem).

Eventually the problem was traced back to the weighting function, which is used by

the both response curve recovery and the HDR composition method. As explained in

the response recovery section the weighting method required modification, amounting

to adding a 1 to the result, in order to create a full rank matrix for SVD. Since this

weighting method is the same as that used in the HDR image composition process,

extreme over and underexposed values were being assigned a weight of 1 where they

should have been assigned a 0. This meant that these pixels were being included in

the final image where they should have been ignored. This is what caused the appear-

ance of the incorrectly coloured pixels. Creating a weighting function solely for image

composition solved the issue.

The second problem arose when compositing a HDR image which contained a section

of overexposed pixels in each image section corresponding to the sun. This in effect

means that there was no data available through the use of the method as described to

represent this area as the HDR composition technique relies on the assumption that

every over and under exposed section has a properly exposed representation in at least

one image in the exposure set. This problem was solved quite easily by checking at
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the end of the composition for HDR pixel values equal to 0. These pixels were then

assigned the value of their pixel counterpart in the last image in the ordered image set

(the darkest image).

3.6.3 Cell Processor Implementation

The cell Processor implementation of this algorithm was substantially more involved

than its x86 counterpart.

Initial work to facilitate this Cell Processor implementation involved ensuring that

each variable and data structure which would eventually be processed by the Cell’s

SPE’s was aligned along the 128 byte boundary to maximize the performance of data

transfer [23][6] and avoid potential bus errors.

This was accomplished through the use of the attribute (aligned()) function

This alignment operation facilitates optimal DMA because the MFC (Memory Flow

Controller) contains five cache lines of 128 bytes each.

A struct was then defined to encompass the idea of a ”work unit”.

This work unit contains the addresses to the assigned partitioned section of each RGB

data channels for the current image undergoing processing, the address of each of the

three response curves, the address for each of the three HDR output arrays, the address

of each of the three weighted sum arrays, and finally scalar values specifying the length

of the current work unit, the length of the response curve arrays and the exposure time

of the current image. The data type long long was used to store this address value

ensuring the full address was stored correctly. Since these work unit structures were

aligned along the 128 byte cache line, a char array was used (char is 1 byte in size) to

pad the structure to a byte value divisible by 128
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Effectively this work unit encapsulates the data required by an SPE to process one

image as part of the image composition algorithm.

Using the ”libspe2” library [5] an SPE context is created for each SPE, SPE code

loaded via this context, a thread created for each SPE, and finally each SPE thread is

executed. From this point on a total of nine synchronous threads were in operation.

The PPE then populates each work unit structure with the addresses to the parti-

tioned image data as it exists in main memory. For example, the first work unit

contains the address data required by each SPE to process their segment of the first

image in the image set. (see figure 3.9). When each work unit is populated the PPE

sends each SPE a message to its inbound mailbox indicating the work unit is available

for DMA. The PPE then waits for a reply indicating the composition operation for the

first image is complete. When the PPE receives this message it populates the work

units with the data for the next image in the set. This process continues until each

image in the set has been composited by the SPE’s.

On the SPE side some initial set up is performed. This involves creating several storage

vectors for intermediate values, and constant values for composition calculations (such

as the max 8bit value 255, and the median value 128, both used for the weighting

calculations). When each SPE has completed its initial set up operations, it enters

the outer processing loop which iterates so long as there are images left to process in

the image set. Each SPE then waits for a PPE message via its inbound mailbox, this

message indicates that the first work unit is available for DMA.

When this message is received each SPE DMA’s its work unit into its local store,

followed by entering into a loop which iterates through each RGB colour channel for

the current image. Here the relevant response curve data is DMA’ed into a local store

buffer, and an inner processing loop is entered. This inner loop iterates so long as there

is data remaining to be processed in the current RGB colour channel. Here the pixel

data for the current channel is DMA’ed into the local store along with the radiance

sum data and the HDR composition array for the same channel. The amount of data

transferred during this step is constrained by the limited size of each SPE’s local store.
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Finally the inner most loop which performs the actual composition operation is en-

tered. Here the current colour channel data is iterated through, four variables at a

time (corresponding to the use of SIMD)

Each iteration the following branchless SIMD composition operation is executed:

//perform the weighting operation

wselect = spu_cmpgt(vmidpoint,vimage[i]);

vtrue = spu_add(vimage[i],vone);

vfalse = spu_sub(vmax,vimage[i]);

vfalse = spu_add(vfalse,vone);

vweight = spu_sel(vweight,vtrue,wselect);

vweight = spu_sel(vfalse,vweight,wselect);

//add pixel weight to sum

vsum[i] = spu_add(vsum[i],vweight);

//look up the pixel values in the response curve

vcurveVals = (__vector float) {curve[image[i*4]],curve[image[(i*4)+1]],

curve[image[(i*4)+2]],curve[image[(i*4)+3]]};

//add weighted luminance to hdr array

vtemp= spu_sub(vcurveVals,vexposure);

vtemp = spu_mul(vweight,vtemp);

vhdr[i] = spu_add(vhdr[i],vtemp);

When the processing operations of the inner most loop are completed, the sum and

HDR data is DMA’ed from the local store back into main memory. The addresses for

the current colour channel’s pixel value, sum and HDR arrays in main memory is then

incremented by the amount of bytes processed. The addresses now point to the next
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segment of that SPE’s piece of the partitioned data arrays.

This processing continues until every value in each of the three colour channels has

been subjected to the composition operation.

At this point the SPE’s send a message to the PPE via their outgoing mailboxes

to indicate that they have completed processing on the current image, each SPE then

waits for a reply from the PEP. The PPE populates the work units with addresses to

data from the next image in the image set and sends a message to each SPE to indicate

the work unit is available for DMA. Again, the PPE waits for a reply to indicate that

the image has been processed.

This process continues until each image in the image set has been processed by the

SPE’s.

Finally, the PPE populates a work unit for the final image composition step where

the HDR data arrays are tested for 0’s values indicating an overexposed pixel in the

same area in each of the images in the set. These errant pixel values are set to the

value present in the final image in the image set.

To facilitate this operation the work unit for each SPE contains addresses to the image

data for the final image in the set.

Processing proceeds as above except without the image loop. This is because there

is effectively only a single image to process (the composite HDR image). The following

SIMD code performs the operation.

//check for hdr values which are 0 (overexposed in every image)

wselect = spu_cmpeq(vhdr[i],vzero);

//look up the input image pixel values in the response curve

vcurveVals = (__vector float) {curve[image[i*4]],curve[image[(i*4)+1]],
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curve[image[(i*4)+2]],curve[image[(i*4)+3]]};

vtrue = spu_sub(vcurveVals,vexposure);

//for hdr values which are 0, set associated sum to 1

vsum[i] = spu_sel(vsum[i],vone,wselect);

//set hdr values which are 0 to the radiance data values

//in the final image in the image set

vhdr[i] = spu_sel(vhdr[i],vtrue,wselect);

//divide hdr values by the sum of their weights

vhdr[i] = divf4(vhdr[i],vsum[i]);

//convert from logarithmic scale.

vhdr[i] = expf4(vhdr[i]);

3.7 Tonemapping

Given our current LDR constrained display technologies, tonemapping is necessary for

the display of the HDR image data computed via the previous composition step. This

is the final stage in our HDRI implementation, and requires the computed HDR data

for each channel (RGB) and the associated parameters for the tonemapping method.

3.7.1 Reinhard et al Global Tonemapping operator.

The Reinhard et al. Tonemapping operator is based on the photographic concept of

the zone system [1]. Basically, the zone system is a method that allows a photographer

to determine the best exposure level for a particular scene making measurements of

the scene with a light meter and adjusting exposure with reference to the middle-grey

value of a twelve zone grey card. The zone system involves additional processing at

the development stage.
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Reinhard’s method begins calculating the log-average luminance as an approximation

to the key of the scene. The term key refers to the subjective brightness of a scene. A

bright room would be high-key while a dark room would be low-key.

Lw = 1
N
exp

(∑
x,y log(δ + Lw(x, y))

)
where N is the number of pixels in the image, Lw(x, y) is the real world luminance

(taken from the HDR input to the tonemapping algorithm) of pixel at co-ordinates x,y

and δ is a small constant value (say, 0.00001) used to prevent NaN errors for black

pixels (black pixels are effectively 0’s, log(0) is negative infinity).

This value is then mapped to the middle-grey of the HDR image by scaling the log-

average luminance with the following

L(x, y) = a
Lw
Lw(x, y)

Where L(x,y) is the scaled luminance and a = 0.18 which is the middle grey value

on a scale of zero to one. For low-key (dark images) or high-key (bright images) this

value need to be modified. A value between 0.18 to 0.36 up to a max of 0.72 is rec-

ommended for low-key images and values from 0.18 down to 0.09 and a minimum of

0.045 are recommenced for high-key images.

Finally the following simple tonemapping operator is applied to the scaled luminance

values.

Ld(x, y) = L(x,y)
1+L(x,y)

This tonemapping operator compresses high luminances by approximately 1
L

while

low luminances are scaled by 1. This guarantees to bring all luminance values into a

displayable range of 0-1 while preserving detail in low contrast areas.

This is all that is required for the global tonemapping operator. The local tonemap-

ping operator is similar up to the final step above. The complete process for the local

operator is explained below.
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3.7.2 Reinhard et al Local Tonemapping Operator

Although the global tonemapping operator produces good results in most cases, how-

ever results for images of very high dynamic range tend to lack detail in high contrast

areas. For these situations Reinhard continues the motif of applying traditional photo-

graphic technique to digital imaging proposing an automated process of dodging and

burning [2] to restore contrast in these areas.

Dodging and burning is a technique employed in the dark room during the devel-

opment process. By blocking light from the photographic negative (usually with a

piece of shaped opaque material) in a dark area lacking in detail, the total exposure

time for the blocked area is lessened lightening the area revealing the detail; this pro-

cess is known as dodging. Conversely the process of burning involves increasing the

exposure time to an overly bright area by masking out every other area of the negative,

this darkens the exposed area. Exposure time during the development process works

inversely to exposure time during capture; less light results in a brighter image, more

light results in a darker image.

Reinhard’s local tonemapping operator seeks to emulate these results though a similar

technique.

Area’s on which dodging and burning are applied are bounded by sharp contrasts

to the surrounding scene. Reinhard operator uses this fact to determine the local

neighborhood of each pixel through a series of center-surround computations based on

the subtraction of two Gaussian blurred images. If the difference between the Gaussian

weighted center and the surround is significantly large this indicates that the surround

lies outside the local neighborhood (overlaps into a different contrast area), otherwise

the contrasts beneath the center-surround are reasonably homogeneous.

The Gaussian profile used is empirically derived and takes the form.

Ri(x, y, s) = 1
π(αis)2

exp(−x2+x2

(αis)2
)

Where s indicated the scale of the center-surround at location x,y. The use of this

function across an image results in a set of responses Vi comprising the luminance at
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location x,y.

Vi(x, y, s) = L(x, y)⊗Ri(x, y, s)

The center-surround function at scale s is given by:

V (x, y, s) = V1(x,y,s)−V2(x,y,s)
2φa/s2+V1(x,y,s)

Where V1 is the center, V2 is the surround (defined by the above equations) and

2φa/s2 +V1 serves to normalize the gaussian difference to prevent V from becoming too

large for small values of V1 and V2.a is the key value, while φ is the parameter which

specifies sharpness (8 being the value recommended by the paper).

Applying this center-surround function for each pixel in the image, starting with the

smallest scale s0 increasing in radius until the scale Sx is found which satisfies the

following:

|V (x, y, sm)| < ε

Where ε is a threshold value.

V1 may then be used as the local operator by replacing L in the final global tonemapping

formula as follows

Ld(x, y) = L(x,y)
1+V1(x,y,sm(x,y))

The difference between L and V means that dark pixels in bright regions will cause

a decrease in luminance Ld, increasing the contrast for that pixel (dodging), while

bright pixels in dark areas result in a lesser decrease in luminance. (burning). This

has the effect of increasing pixel contrast respect to the local neighborhood.

3.7.3 x86 Implementation

Reinhard’s global tonemapping operator was implemented successfully on the x86 test

platform with reference to the original paper. However, some aspects of the algorithm

as described caused difficulties which required modifications to various formula.

Firstly the calculation for the log average luminance of the scene proposed -
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Lw = 1
N
exp

(∑
x,y log(δ + Lw(x, y))

)
Suggests the following -

double Lw = exp(luminanceSum)/N;

However, the exponential of the luminance sum for the vast majority of images

far exceeds the highest value that can be stored with any regular data type. In the

accompanying source code for Reinhard’s own implementation [25] the following is used

double Lw = exp(luminanceSum/N);

which would suggest the following formula for log average luminance

Lw = exp
(

(
∑

x,y log(δ + Lw(x, y)))/N
)

This formula is not equivalent to the original however it makes more sense as a log

average calculation.

Secondly the paper does not suggest a method for extracting the luminance values

from colour pixels. In this implementation the following was used to approximate the

luminance given the RGB values of a pixel:

luminance[i] = (0.2125 * r_hdr[i] + 0.7154 * g_hdr[i] + 0.0721 * b_hdr[i]);

An alternative would have been to perform a colour space transform and extract

the luminance channel, this would allow operations to be performed on the luminance

values in isolation and negate the need to recover RGB colour values following the

tonemapping procedure.

The colour recovery goes as follows

r_channel = r_channel/luminanceMap * scaledLuminace;

simply following the formula

Ld(x, y) = L(x,y)
1+L(x,y)
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Figure 3.8: Reinhards Global Tonmapping Operator
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without taking into account the individual colour channels results in a greyscale

image

Alternatively the following can be used:

r_channel = pow(r_channel/luminanceMap, saturation) * scaledLuminace;

This can be used with an input saturation parameter to control the final saturation

levels in the tonemapped image.

The tonemapped data is then sanity checked for values exceeding the range 0-1. All

values > 1 are clamped. Finally the values are multiplied by 255 to covert the range

to 0-255.

Output from the tonemapping function is saved to the hard disk as a colour bitmap.

3.7.4 Cell Processor Implementation

The cell implementation of Reinhard’s global tonemapping operator runs on the same

SPE threads as the image composition operation. This was done to eliminate the as-

sociated thread initialization cost.

When image composition is completed a message is sent to the PPE from each SPE

via the SPE outbound mailbox, each SPE then waits for a reply from the PPE via the

SPE inbound mailbox to signal that the first tonemapping work unit is available for

DMA.

While the SPE threads complete their composition work the PPE populates the work

unit struct with the addresses of the tonemapping inputs in main memory. For each

SPE the associated struct is passed the address of the first value of that SPE’s segment

of the R channel HDR data, the G channel HDR data, the B channel HDR data (RGB)

and the related estimated luminance values for those channels (one array). Each SPE

is assigned one eight of each input array (see figure 3.9). Additionally each struct

also contains the size of each SPE’s data segment, the brightness or gamma value, a
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saturation value and the sum of the estimated luminances.

The PPE then waits for each completion message to arrive from the SPE before con-

tinuing, this is necessary because the previous image composition operation produces

the HDR input for the tonemapping step.

When each SPE message is received the PPE sends a message to each SPE’s inbound

mailbox indicating that the new work unit is available. In this implementation the

tonemapping work unit is the final stage of the program so the PPE calls pthread join()

for each SPE thread. This has the effect of stalling the PPE until each SPE thread ends.

On the SPE side each SPE has received the go message from the PPE. The first

task the SPE’s perform is to read get the work unit struct from main memory via

DMA. This list of addresses and tonemapping parameters are place in local storage in

the same form of struct as on the PPE side.

Scaler inputs for contrast, gamma and luminance sum are then converted to vector

values via the spu splats SIMD instruction. This is necessary for the use of these val-

ues in the SIMD tonemapping calculations.

At this point the SPE’s enter the main processing loop, which consists of three nested

loops.

The most outer loop iterates while data remains to be processed and DMA’s luminance

data into the local store. The amount of data which can be DMA’ed is controlled by

the size variable read in from the work unit struct, this variable decreases with each

iteration as work is completed. At the start of each iteration the size variable is checked

against the maximum size of the local storage buffer. If the size is greater than the

buffer the amount of data that can be brought in by DMA is equal to the maximum

size of the storage buffer, otherwise the amount of data that can be read is set to the

remaining size of the data to be processed.

The inner loop index’s through the RGB channels and, knowing how much data can
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be read this iteration, DMA’s the HDR data for the current channel into the storage

buffer for HDR data in the SPE’s local store.

The inner most loop indexes through the HDR and luminance values stored in the

local store buffers four variables at a time (corresponding to the use of SIMD intrin-

sics). Each iteration the following branchless SIMD tonemapping operation is executed

//store the current luminance values

luminance = vlum[i];

//calculate the scaled luminance values

tmp = divf4(vbrightness,vkey);

vlum[i] = spu_mul(vlum[i],tmp);

tmp = spu_add(vlum[i],vonef);

vlum[i] = divf4(vlum[i], tmp);

//tonemapping starts here

vtonemap = divf4(vhdr[i],luminance);

vtonemap = powf4(vtonemap,vcontrast);

vtonemap = spu_mul(vtonemap,vlum[i]);

//check for values exceeding 1

wselect = spu_cmpgt(vtonemap,vonef);

//for values exceeding 1, set to 1

vhdr[i] = spu_sel(vtonemap,vonef,wselect);

//multiply by 255, scale is now from 0-255

vhdr[i] = spu_mul(vhdr[i],vmaxf);

When the inner most loop completes, the tonemapped data is DMA’ed from the local

store into main memory at the address of the current HDR channel input array, origi-
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Figure 3.9: Graphical representation of data partitioning for a single image.

nally read in from the work unit struct. Effectively overwriting the input array in main

memory. The amount of data put into main memory is the amount of data which has

been processed that iteration. This process continues for each RGB channel.

Upon exiting the RGB channel loop, the address of the luminance array, and each

HDR channel array in main memory, is incremented by the number of bytes processed

this iteration (number of data values * sizeof(data type)). The size variable is then

reduced, indicating the remaining values to be processed. This continues until the

amount of data specified by the work unit struct is processed and DMA’ed back into

main memory.

On the PPE side, on completion of each SPE thread, the tonemapped data is com-

posed into an RGB data array suitable for image output to storage device by the

stbi write bmp function.

Execution of the program ends at this point.
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Chapter 4

Evaluation and Results

The performance testing for the Cell was carried out on a IBM BladeCenter QS20[12],

while an dual core Intel E6600 machine with 4GB of ram was used as the x86 testing

platform. For the BladeCenter machine tonemapping tests were performed with both

8 SPE’s and 16 SPE’s by accessing the additional SPE’s afforded by the second Cell

Processor.

Data sets for performance testing consisted of input image sets of exponentially in-

creasing length, from two up to thirty two images with the image resolution varying

from 2560x1440, 1280x720 down to 640x360. In all fifteen data sets were used with

each set being used multiple times to gain an average run time result for each set.

Runtime was measured at millisecond accuracy.

Performance was measured between four points. For image composition on the x86

the start point for timing was placed just after the response curve has been gener-

ated/read from file and just before the composition function call. On the Cell platform

the start point is, again, placed after response recovery but just before SPE thread

initialization. For global tonemapping the start point was placed after luminance data

has been recovered from the HDR image but before the actual tonemapping operation

as presented by the original paper. This holds true for both platforms.

The tests were designed to examine the performance of the Cell for different data
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sets which would occur in regular HDRI composition and tonemapping operations.

The main questions apart from how much performance benefit can be achieved via the

Cell Processor, are those that relate to scaling. How does the implementation scale

with changes in image set size, resolution, and SPE count?

4.0.5 Performance

Overall, scaling appears to be broadly linear across image set length and image reso-

lution on both x86 and Cell. As the total number of pixels to be processed increases

exponentially, runtime increases exponentially. (See page 62 for performance graphs

and tables)

For the image composition process performance on the Cell is best for large sets of

low resolution images rather than small sets of high resolution images even when the

total number of pixels in the image sets are the same (2 images of 2560x1440 takes

0.28sec vs 0.19sec for 8 images of 1280x720) . Outside of experimental error this indi-

cates that some portion of the SPE code is acting as a bottleneck. This is suggested

by the fact that the difference between the processing of these two data sets is that

the PPE performs less work in the low image count high resolution set. The opposite

result was expected. DMA from main memory to the SPE local store is a possible sus-

pect, double buffering could alleviate the issue by hiding the DMA latency. Additional

experimentation and testing is required to trace this issue to its source. As it is, the

current Cell image composition implementation represents a significant performance

improvement over an equivalent x86 implementation. Additional refinement and opti-

mization is required to unlock the full performance potential of the platform for image

composition.

For the global tonemapping implementation performance results were more clear cut.

Tonemapping a 2560x1440 HDR image on the Cell represents an approximate 23x

performance increase over a similar x86 implementation. Interestingly scaling the im-

plementation to 16 SPE’s almost halves the runtime. This result is surprising because
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the additional 8 SPE’s are part of a separate Cell within the same machine. The pro-

cess of accessing these external (from the point of view of a single Cell) SPE’s should

present a significant performance cost, however ignoring the additional setup cost of

creating 8 additional threads, this was not observed. Another interesting observation

is noted when tonemapping a 640x360 HDR image. Performing this operation on 8

SPE’s is faster than using all 16 SPE’s, this is most likely due to the set up cost for

16 threads outweighing the potential computational benefit. With this level of perfor-

mance increase it should be possible to perform tonemapping operations in real time

without modification to the general algorithm.

Overall these results show that the Cell Processor brings tangible performance benefits

to the field of HDRI.

4.0.6 Image Composition

Image composition for static scenes produced good results overall. The lack of practical

HDR displays precluded direct analysis of the HDR output from the composition oper-

ation, all outputs required tonemapping before display. Theoretically this could have

caused issues resolving artifacts to a particular operator. However, since the tonemap-

ping operator implemented was global it was generally obvious which operation was to

blame when artifacts appeared in the final output.

One of the most prevalent artifacts that appeared in the final tonemapped image was

ghosting. Ghosting is caused by misaligned in the input image set. Usually this mis-

aligned is resolved through image alignment as a post processing step, however, in

dynamic scenes (such as a crowed street) image alignment becomes ineffectual. Thus,

the final HDR image produced by the composition operation contains faint images of

the moving objects at each position they appear at in the image set (See figure 4.1).

Another artifact which appears due to image composition is lens flare. Lens flare

can become quite apparent in the composited HDR image if several images in the set

have lens flare to begin with (See figure 4.2).
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Figure 4.1: Ghosting in a tonemapped HDR composition

Artifacts aside, it was observed that image composition has a positive effect on gen-

eral image quality through noise reduction. In each tonemapped HDR image a near

complete elimination of sensor noise was noted. Due to the random nature of noise

in an image the same pixel of noise is generally not in the same location for each of

the images in the set, thus it fades into the background. This is the same issue which

causes the ghosting artifacts . However, since it occurs with isolated pixels which are

usually quite close in value to their neighborhood, the effect is that they merge into

the background. See figure 4.3

4.0.7 Mean Threshold Bitmap Alignment

Unfortunately the image alignment implementation failed for the majority of input

image sets, resulting in gross misalignment. Greater success was noted with image sets

which contained images with a low dynamic range or were close together in terms of

exposure time. This is probably due to a error in selection of the threshold for gen-

erating the threshold bitmap. The recursive implementation of this algorithm caused
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Figure 4.2: Lens flare in a tonemapped HDR composition

Figure 4.3: The affect of image composition on sensor noise. Left - LDR Image. Right
- Tonemapped HDR
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Figure 4.4: MTB alignment artifact caused by cloud movement
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difficulty in debugging and the root cause of the ineffectualness of the algorithm was

not discovered.

However, artifacts were still present in ”correctly” aligned images. One can conclude

from this that the artifacts are part of the algorithm and not due to the actual imple-

mentation.

If a dynamic object and a static object are present in a scene where the dynamic

object takes up the majority of the space, the image will be aligned according to the

dynamic object. This means that everything else in the scene becomes misaligned (see

figure 4.4. Aligning these images with translational alignment is impossible, a more

robust alignment technique is required in these situations. An alignment solution based

on localized warping of the image set should prove to be an more successful in these

situations.
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Chapter 5

Conclusions and Future Work

The original goal of this project was to examine the applicability of the Cell Processor

to the field of HDRI via a Cell based HDR through image composition implementation.

The work presented detailed both Cell SPE based image composition and tonemap-

ping implementations which took advantage of the symmetric SIMD processing power

afforded by the architecture. Image composition and tonemapping were shown to per-

form many times better than equivalent x86 based implementations, with the global

tonemapping implementation showing particular improvement in performance to the

point of becoming viable for real time applications dealing with very high resolution

imagery.

These results clearly show the benefit of a Cell based approach to HDRI.

5.0.8 Future Work

The results presented show a clear improvement in the performance of HDRI methods

on the cell processor. However, with additional research and development the work

presented could be further improved to yield additional performance benefit.

For example, the image composition process in particular contains a clear bottleneck

in its implementation. Further experimentation with alternative approaches in regard

to programming model would be especially useful in this area. Experimentation with
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a pipelined approach would be most likely to produce improved results. Additionally,

optimizations such as double buffering, loop unrolling and software pipelining could

improve performance further.

To increase the robustness of the image composition process in regards to removing

artifacts in the final composition a post processing operation would prove useful. In

this additional step ghost and lens flare removal functions could be employed to im-

prove the final tonemapped image. Techniques currently exist for ghost removal such

as that proposed by Khan et al. [15] which seem to offer a robust solution to the

ghosting problem. Lens flare removal techniques also exist, such as those proposed by

McCann et al. [18] and Talvala et al. [30]. Evaluating these techniques and building

a robust postprocessing step around them should serve to produce some high quality

images. Ghost removal in particular could be used to compensate for alignment errors,

possibly to the extent of using ghost removal to deal with the double images introduced

by misaligned images rather than using image alignment.

Disregarding the potential of ghost removal as a replacement for image alignment;

it has been shown that translational alignment does not produce good results in cer-

tain dynamic scenes. Therefore, a more localized approach to image alignment would

be prudent. Kang et al. [14] proposes an image warping technique using motion esti-

mation for frame interpolation as part of a HDR video implementation. In this work

Kang also noted the difficult of compositing images which involve the dynamic move-

ment of cloud cover with respect to the ground.

Further evaluation of alternate tonemapped procedures for their applicability to the

Cell architecture could suggest alternate high performance avenues for the represen-

tation of HDR data produced through image composition. Additionally, multiple

tonemapping operators would increase the options available from an artistic perspec-

tive.

Finally, it would be of interest to apply the performance increases gained through

Cell HDR image composition to the field of HDR video. Real time HDR video capture

and tonemapping via the composition of multiple LDR video streams would represent
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a significant leap toward a viable HDR video capture technology.
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Appendix A

Appendix

A.1 Performance Tables and Graphs

2560x1440 Cell 1280x720 Cell 640x360 Cell 2560x1440 86 1280x720 x86 640x360 x86
2 0.287 0.07 0.024 2.25 0.54 0.156
4 0.44 0.11 0.034 2.80 0.67 0.171
8 0.76 0.19 0.055 3.79 0.94 0.279
16 1.41 0.35 0.095 5.86 1.47 0.406
32 2.70 0.674 0.176 10.55 2.56 0.656

Table A.1: Image Composition. Cell vs x86. Images per set, resolution per image

2560x1440 1280x720 640x360
8 SPE 0.09 0.025 0.0087
16 SPE 0.05 0.0160 0.0095

x86 2.13 0.55 0.14

Table A.2: Tonemapping. Cell vs x86. Resolution, platform
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Figure A.1: Image Composition. Cell vs x86
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Figure A.2: Image Composition. Cell vs x86
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Figure A.3: Tonemapping. SPE scaling
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Figure A.4: Tonemapping. Cell vs x86
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