
Gaze and Voice Based Game Interaction

by

Jonathan O’Donovan, B.Sc.

Dissertation

Presented to the

University of Dublin, Trinity College

in partial fulfillment

of the requirements

for the Degree of

Master of Computer Science in Interactive Entertainment

Technology

University of Dublin, Trinity College

September 2009

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Jonathan O’Donovan

September 9, 2009

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Jonathan O’Donovan

September 9, 2009

Acknowledgments

The author would like to thank Dr. Veronica Sundstedt for all her guidance and advice

during the project, Paul Masterson for his help in all matters hardware related both

during the project itself and indeed throughout the duration of the course. The author

would also like to thank Jon Ward for kindly lending a Tobii T60 eye tracker for use

in the project.

Jonathan O’Donovan

University of Dublin, Trinity College

September 2009

iv

Gaze and Voice Based Game Interaction

Jonathan O’Donovan

University of Dublin, Trinity College, 2009

Supervisor: Veronica Sundstedt

Modern eye tracking technology allows an observer’s gaze to be determined in real-

time by measuring their eye movements. Recent studies have examined the viability of

using gaze data as a means of controlling computer games. This dissertation investi-

gates the combination of gaze and voice recognition as a means of hands-free interaction

in 3D virtual environments. A game evaluation framework is implemented controllable

by input from gaze and voice as well as mouse and keyboard. This framework is evalu-

ated both using quantitative measures and subjective responses from participant user

trials. The main result indicates that, although game performance was significantly

worse, participants reported a higher level of enjoyment and immersion when playing

using gaze and voice.

v

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Dissertation Layout . 2

Chapter 2 Background & Related Work 3

2.1 Human Vision . 3

2.2 Eye Movements . 4

2.3 Eye Tracking Technology . 6

2.3.1 Eye Tracking Categorisations 6

2.3.2 Calibration . 8

2.3.3 Fixation Detection & Eye Movement Analysis 8

2.3.4 Eye Tracking Systems . 9

2.4 Voice Recognition in Gaming . 11

2.5 Gaze in Gaming . 13

2.5.1 Game Genre Implications for Gaze Input 13

2.5.2 Gaze Input In Gaming . 15

2.6 Gaze & Voice in Gaming . 18

vi

Chapter 3 Design 19

3.1 Hardware . 19

3.2 Development Tools . 19

3.2.1 Tobii SDK . 20

3.2.2 Microsoft Speech API . 21

3.2.3 Game Development Tools . 22

3.2.4 The Component Object Model 23

3.3 Game Concept . 25

3.4 Game Framework . 25

3.4.1 Asset Loading System . 26

3.4.2 Asset Management System . 26

3.4.3 Menu System . 27

3.4.4 Game Data Storage System . 28

3.4.5 Map Generation System . 29

3.4.6 Eye Tracking System . 29

3.4.7 Voice Recognition System . 30

3.4.8 Input Handling System . 30

3.4.9 Camera System . 31

3.4.10 Collision Detection System . 32

3.4.11 Game Management System . 33

Chapter 4 Implementation 34

4.1 Framework Implementation . 34

4.1.1 Update Cycle . 35

4.1.2 Draw Cycle . 36

4.1.3 Threading . 36

4.1.4 Map Generation . 37

4.2 Camera Implementation . 37

4.2.1 Mouse Camera . 38

4.2.2 Gaze Camera . 38

4.2.3 Updating Camera Position . 39

4.3 Implementation Issues . 41

vii

Chapter 5 Evaluation 43

5.1 Experimental Design of User Trial . 43

5.1.1 Game Layout . 44

5.1.2 Experimental Setup . 46

5.1.3 Questionnaires . 46

5.1.4 Other Materials . 47

5.1.5 Participants . 47

5.1.6 Procedure . 47

5.2 Results . 48

5.2.1 Mouse/Keyboard Versus Gaze/Voice 48

5.2.2 Mouse/Voice Versus Gaze/Keyboard 55

5.3 Appraisal of Results . 56

Chapter 6 Conclusions & Future Work 57

Appendix A User Trial Questionnaires 59

A.1 Background Questionnaire . 59

A.2 Post-User Trial Questionnaire . 61

A.3 Comparison Questionnaire . 63

Appendix B User Evaluation Game Instructions 64

B.1 Mouse & Keyboard Instructions . 64

B.1.1 Game Menu . 64

B.1.2 Game . 65

B.1.3 Summary of Controls . 67

B.2 Gaze & Voice Instructions . 68

B.2.1 Game Menu . 68

B.2.2 Game . 68

B.2.3 Summary of Controls . 71

B.3 Gaze & Keyboard Instructions . 72

B.3.1 Game Menu . 72

B.3.2 Game . 72

B.3.3 Summary of Controls . 75

B.4 Mouse & Voice Instructions . 76

viii

B.4.1 Game Menu . 76

B.4.2 Game . 76

B.4.3 Summary of Controls . 78

Appendix C User Trial Data 79

Bibliography 82

ix

List of Tables

2.1 Video games with speech recognition. 12

2.2 Eye tracker compatibility per game genre. 14

3.1 The Tobii T60 technical specification. 20

5.1 Participant ordering for mouse & keyboard versus gaze & voice user trial. 45

B.1 Mouse & keyboard game commands. 67

B.2 Mouse & keyboard menu commands. 67

B.3 Gaze & voice game commands. 71

B.4 Gaze & voice menu commands. 71

B.5 Gaze & keyboard game commands. 75

B.6 Gaze & keyboard menu commands. 75

B.7 Mouse & voice game commands. 78

B.8 Mouse & voice menu commands. 78

C.1 Participant background data in trial one. 79

C.2 Participant recorded game data in trial one. 79

C.3 Participant questionnaire answers in trial one. 80

C.4 Participant background data in trial two. 80

C.5 Participant recorded game data in trial two. 80

C.6 Participant questionnaire answers in trial two. 81

x

List of Figures

2.1 Hermann grid illusion. 4

2.2 The structure of the human eye and degree of visual angle. 5

2.3 Scleral contact lens/search coil eye tracker. 6

2.4 EOG eye movement measurement. 7

2.5 Video-based combined pupil and corneal reflection eye trackers. 8

2.6 A hypothetical eye movement signal. 9

2.7 The hierarchy of eye tracking systems. 10

2.8 Examples of displays used in eye tracking systems. 11

2.9 “Virtual Keys” used by Castellina and Corno. 17

2.10 Revenge of the Killer Penguins. 18

3.1 Tobii T60 eye tracker. 20

3.2 Tobii eye tracker setup. 21

3.3 Different layers of Microsoft Speech API. 22

3.4 .NET runtime callable wrapper. 24

3.5 Class diagram for custom model processor. 26

3.6 Class diagram of asset classes. 27

3.7 Class diagram of menu classes. 28

3.8 Class diagram of game storage classes and structs. 29

3.9 Class diagram of map generation classes. 30

3.10 Class diagram of input classes. 31

3.11 Class diagram of camera classes. 32

3.12 Static collision detection utility class. 32

3.13 GameManager and demo classes. 33

xi

4.1 Class diagram showing main classes. 35

4.2 Example of a map displayed in the game. 37

4.3 Eight-sided Armenian Star. 39

4.4 Gaze camera buttons as displayed in game. 40

4.5 Left and right gaze camera buttons. 42

5.1 Different maze setups for user trials. 45

5.2 Hardware setup for user trial. 46

5.3 Graph of performance measures in trial one. 49

5.4 Graph of accuracy and control measures in trial one. 50

5.5 Graph of navigation measures in trial one. 51

5.6 Graph of difficulty measures in trial one. 52

5.7 Graph of immersion, naturalness and enjoyment measures in trial one. . 53

5.8 Graphs of map references and map usefulness in trial one. 54

5.9 Graph of performance measures in trial two. 55

B.1 Menu screen. 64

B.2 Coins to be collected and rabbits to be shot. 65

B.3 Game map and maze exit. 66

B.4 Menu screen. 68

B.5 Coins to be collected and rabbits to be shot. 69

B.6 Moving the view with your gaze. 69

B.7 Game map and maze exit. 70

B.8 Menu screen. 72

B.9 Coins to be collected and rabbits to be shot. 73

B.10 Moving the view with your gaze. 73

B.11 Game map and maze exit. 74

B.12 Menu screen. 76

B.13 Coins to be collected and rabbits to be shot. 77

B.14 Game map and maze exit. 78

xii

Chapter 1

Introduction

Eye tracking is a process which measures the motion of the eye. This gaze data can be

used to determine an observer’s point-of-regard (POR) in real-time. Combining gaze

data with voice recognition offers a hands-free alternative to conventional video game

interaction. The work presented in this dissertation hopes to show that gaze and voice

controlled game interaction is a viable alternative to mouse and keyboard, which can

augment game play, providing an enhanced, more immersive user experience.

1.1 Motivation

Recent innovations such as Nintendo’s Wii have illustrated how popular alternative

means of computer game interaction can be. The Wii sold over twice as many units

as the PlayStation 3 from when they were released to the middle of 2007 [1]. As eye

trackers become cheaper and less intrusive to the user the technology could well be

integrated into the next generation of games. It is important therefore to ascertain its

viability as an input modality and see how it can be used to enhance gamer experience.

Gaze based interaction is not without its problems. It tends to suffer from the

“Midas touch” problem. This is where everywhere you look, another command is

activated; you cannot look anywhere without issuing a command [2]. To combat this

gaze is often used in conjunction with another input mechanism such as a mouse click.

The intention of this work is to show that the “Midas touch” problem can be overcome

by combining voice recognition with gaze, to achieve a completely hands-free method

1

of game interaction.

Alternative means of interaction in games are especially important for disabled users

for whom traditional techniques, such as mouse and keyboard, may not be feasible.

Given that gaze and voice is entirely hands-free it presents a real opportunity for

disabled users to interact fully with computer games.

1.2 Objectives

The main objective of this project is to develop a video game using eye tracking and

voice recognition as a means of controlling it. Eye movement data will be obtained

and processed in real-time using a Tobii T60 eye tracker. Microsoft Speech SDK 5.1

will be used to process and interpret voice commands.

The game will be purpose built for evaluation tests in a controlled manner. It will

facilitate the saving of all relevant game data for later analysis. The game is to be

controllable by mouse/keyboard, gaze/voice, mouse/voice and gaze/keyboard. This

will allow comparisons to be drawn between the different input types.

A user study will be conducted to evaluate how suitable gaze and voice is as a means

of video game control. Being controllable by mouse and keyboard as well as voice

and gaze will facilitate direct comparisons between the two methods of interaction.

In addition to the saved game data questionnaires will be given to participants to

ascertain subjective data, such as how effective gaze and voice are perceived to be and

how immersive and entertaining the experience was.

1.3 Dissertation Layout

Chapter 2 reviews the state of the art with regard to the use of gaze and voice recog-

nition in video games. The design and implementation of the gaze and voice based

computer game are described in Chapters 3 and 4. Chapter 5 focuses on the evalua-

tion of the results gathered in a user trial of the game. Finally in Chapter 6 conclusions

are drawn and related future work is suggested.

2

Chapter 2

Background & Related Work

This chapter provides an overview of human vision, eye movements and how they

are studied using eye tracking technologies in Sections 2.1 - 2.3. Section 2.3 explores

the hierarchy of eye tracking systems with particular emphasis on interactive systems.

Sections 2.4 - 2.6 review the state of the art with regard to the use of voice recognition

and gaze in video games.

2.1 Human Vision

Human vision is a gradual process where the field of view is inspected little by little

through brief fixations over small regions of interest. This allows for perception of

detail through the central region of vision, also referred to as the foveal region. Central

foveal vision allows for fine grained scrutiny of only a tiny proportion of the entire visual

field. For example only 3% of the size of a 21" computer monitor is seen in detail when

viewed at a 60 cm distance [3]. Peripheral vision is not good at determining fine detail.

Figure 2.1 shows an example of the Hermann grid illusion, an optical illusion reported

by Hermann in 1870 [4]. It is a visual example of the difference between foveal and

peripheral vision. White dots are perceived along the lines crossing the fovea while

black dots appear along the lines in the periphery [3].

Figure 2.2 shows how the visual axis runs from the midpoint of the visual field to

centre of the fovea. At the back of eye is the retina. The retina contains light sensitive

receptors which are classified into rods and cones. In all there are approximately 120

3

Figure 2.1: Hermann grid illusion. Reprinted from [5].

million rods and 7 million cones [3]. Cones respond better in daylight and rods in

darker conditions such as at night [3].

How a viewed object subtends at the eye can be described in terms of degrees of

visual angle as shown in Figure 2.2. The degree of visual angle is defined as

A = 2arctan
S

2D′ (2.1)

where D is the distance to the object being viewed and S the size of the object [3]. The

fovea contains 147,000 cones/mm2 and a slightly smaller number of rods. At about

10° the number of cones drops sharply to less than 20,000 cones/mm2 and at 30° the

number of rods in the periphery drops to about 100,000 rods/mm2 [7].

2.2 Eye Movements

Repositioning of the fovea can be attributed to combinations of five basic types of

eye movement: saccadic, smooth pursuit, vergence, vestibular and physiological nystag-

mus [8]. Positional eye movements are important when using eye tracking as a means

of computer interaction since they indicate the position of the fovea and therefore the

4

Figure 2.2: The structure of the human eye showing the visual axis (left) and (right)
the degree of visual angle. Adapted from [6] and reprinted from [3].

point-of-regard (POR) of the viewer.

When visual attention is directed to a new area of interest fast eye movements known

as saccades reposition the fovea. Saccades can be both voluntary and involuntary and

range in duration from 10 - 100 ms [3] rendering the executor effectively blind during

the transition [9]. Saccades are considered manifestations of the desire to voluntarily

change the focus of attention.

Repositioning of the fovea is carried out by pursuit movements when visually track-

ing a moving object. The eyes are capable of matching the velocity of the moving target

depending on the range of target motion. Pursuits correspond to the desire to maintain

ones gaze on an object in smooth motion.

Fixations are eye movements that stabilize the fovea over a stationary object of

interest. They naturally correspond to the desire to maintain ones gaze on an object of

interest. Fixations are characterized by the miniature eye movements: tremor, drift and

microsaccades [10]. Counterintuitive as it may seem if an image were to be artificially

stabilized on the retina, vision would fade away within about a second and the scene

would become blank [11]. Typically these microsaccades are no larger than 5° visual

angle [12]. Fixations duration range between 150 - 600 ms. It is estimated that 90%

of viewing time is devoted to these tiny movements [13].

Nystagmus eye movements are a combination of eye movements. Vestibular nys-

tagmus is a smooth pursuit movement interspersed with saccades. They usually occur

to compensate for the movement of the head [3]. Optokinetic nystagmus is a similar

type of eye movement compensating for movement of a visual target [3].

5

Figure 2.3: Scleral contact lens/search coil eye tracker, (left) contact lens with embed-
ded search coil and (right) electromagnetic field frames. Reprinted from [14] and [3]

Other eye movements relating to pupil dilation and lens focusing include vergence,

adaptation and accommodation. However it is only really the three types of move-

ments fixations, saccades and smooth pursuits which need be modelled to gain insight

into visual attention. These movements provide evidence of voluntary, overt visual

attention [3].

2.3 Eye Tracking Technology

Eye trackers are devices used to measure the movements of the eye by measuring either

the motion of the eye relative to the head or the POR. One of the first measurements

of eye movement was made using corneal reflection in 1901 [3]. This section provides

an overview of eye tracking technology in use today.

2.3.1 Eye Tracking Categorisations

The four main categories of eye trackers in use today, are Scleral contact lens/search

coil, Electro-OculoGraphy (EOG), Photo-OculoGraphy (POG) or Video-OculoGraphy

(VOG) and video-based combined pupil and corneal reflection [3].

Figure 2.3 shows the Scleral contact lens/search coil technique of eye tracking which

came to prominence in the 1950s. It involves placing a contact lens on the eye. The

contact lens being attached to coils or mirrors used to record eye movements [3]. This

technique is very precise but suffers from two main drawbacks. First it is very invasive

6

Figure 2.4: EOG eye movement measurement. Reprinted from [15].

causing discomfort for the user. Second it measures the eye position relative to the

head and meaning unless used in conjunction with a head tracker is not suitable for

finding the POR.

EOG uses measurements of the skin’s electric potential differences, gathered through

the use of electrodes placed around the eye, as shown in Figure 2.4. This method also

only measures eye positions relative to the head and is therefore not suitable for ob-

taining the POR [3].

POG and VOG categories of eye tracking groups together a variety of eye movement

recording techniques. These techniques involve measurement of features of the eye

under rotation or translation, such as the shape of the pupil, the position of the iris-

sclera boundary and corneal reflections [3]. Although the measurements are different

in approach they are grouped together since they normally do not provide POR.

The above categories of eye movement measurements do not provide POR. To ob-

tain the POR the head can be fixed or some method of distinguishing head movements

from eye rotations used [3]. To differentiate between the two types of movements,

features of the eye can be recorded and analysed. Features which can achieve this

include the pupil centre and corneal reflection. Corneal reflection is recorded using

directed light sources, usually infra-red. Video-based combined pupil and corneal re-

flection trackers compute the POR in real-time using cameras and image processing

hardware [3]. They may be a table or head mounted apparatus as shown in Figure 2.5.

When these eye trackers are correctly calibrated they are capable of measuring an ob-

server’s POR on suitably positioned, perpendicularly planar surfaces [3]. They are the

most commonly used eye trackers in use today.

7

Figure 2.5: Left shows a Tobii X120 table mounted eye tracker. An EyeLink II head
mounted eye tracker is shown right. Reprinted from [16] and [17].

2.3.2 Calibration

Video-based combined pupil and corneal reflection eye trackers require calibration.

This involves presenting a sequence of on screen visual stimuli, at various extents of

the viewing region. By measuring the pupil position and corneal reflection the POR

can be calculated at these extents. These values can then be interpolated across the

viewing region [3]. Modern eye trackers often provide inbuilt calibration procedures.

The visual stimuli used in eye trackers manufactured by Tobii, for example are a

sequence of circles which appear at various positions on screen. The number of stimuli

can be set between 2, 5, or 9 points.

The primary purpose of calibration is to gather a sufficiently large range of co-

ordinates to allow interpolation of the viewer’s POR between extrema points (e.g.

upper-left, lower-right, upper-right and lower-left) [3]. It is also used to help the eye

tracker from losing the pupil or corneal reflection when faced with artifacts such as

eyelashes, glasses or contact lens. This is done by setting thresholds for pupil and

corneal reflection recognition [3].

2.3.3 Fixation Detection & Eye Movement Analysis

Eye movement analysis can be used to gain insight into the viewer’s visual attentive

behaviour [3]. As previously stated in Section 2.2, fixations tend to indicate where a

viewer’s attention is directed and saccades tend to indicate a viewer’s wish to change the

area of their focus of attention. Modeling eye movements as signals and approximating

8

Figure 2.6: A hypothetical eye movement signal. Reprinted from [3].

them to linear filters provides a relatively easy way of analysing them [3].

Figure 2.6 shows a hypothetical eye movement signal. Two methods are commonly

used to detect saccades and fixations from a given signal. Summation involves averaging

the signal over time, when little or no variance is recorded then the signal can be deemed

a fixation. A second method uses differentiation where successive signals are subtracted

to estimate velocity. This method explicitly detects saccades and implicitly detects

fixations, that is, where there is little or no difference between successive signals [3].

Eye movements signals are prone to noise due to blinking and the inherent instabil-

ity of the eye [3]. This noise needs to be removed prior to any analysis. Usually this can

be done by eliminating any signals outside a given rectangular range. The rectangular

area selected should also exclude areas outside the “effective operating range” of the

eye tracker itself. This will also remove noise due to blinks, since most eye trackers

return coordinates of (0,0) when a signal is lost [3].

2.3.4 Eye Tracking Systems

Figure 2.7 shows the hierarchy of eye tracking systems. Diagnostic systems are primar-

ily used to provide evidence of user’s attention processes. This dissertation is primarily

concerned with interactive eye tracking systems. There are two main types of interac-

tive applications using eye tracking technology: selective and gaze-contingent. Selective

uses an eye tracker as an input device, in a similar way to a mouse. Gaze-contingent

applications are a type of display system where the presented information is manipu-

lated in some way to match the processing capability of the human visual system. This

9

Figure 2.7: The hierarchy of eye tracking systems. Adapted from [3].

often matches foveal/peripheral perception in real-time.

Jacob [2] presented one of the first papers looking into the feasibility of gaze based

selective interaction and identified the “Midas touch” problem, discussed in Section 1.1.

Jacob suggested dwell time as a selection mechanism to over come the problem. In

the same year Starker and Bolt [18] introduced one of the first documented prototypes

with computerised real-time eye tracking and intentionally constructed storytelling. It

featured a gaze responsive self disclosing display. A rotating planet was displayed with

various features including volcanoes, staircases and flowers, as shown in Figure 2.8.

When the observers gaze dwelt on these objects long enough, the system gave more

information about the object of interest using synthesized speech. While this may

not be considered a game, many games have similar features, such as exploring ones

surroundings and interacting with objects and characters. Section 2.5 describes gaze

interaction in video games in more detail.

Gaze-contingent displays (GCDs) attempt to balance the amount of information dis-

played against the visual information processing capacity of the observer [20]. Hillaire

et al. [19] developed an algorithm to simulate depth-of-field blur for first-person navi-

gation in virtual environments, as shown in Figure 2.8. Using an eye-tracking system,

they analysed users focus point during navigation in order to set the parameters of the

algorithm. The results achieved suggest that the blur effects could improve the sense of

realism experienced by players. O’Sullivan and Dingliana [21] and O’Sullivan et al. [22]

10

Figure 2.8: Left shows Starker and Bolt’s 3D graphics display. Right shows a Quake
III video game with blur effects implemented. Reprinted from [18] and [19].

take another approach, instead of resolution degradation of peripheral objects, colli-

sion handling outside the foveal region of interest was degraded. In other words object

collisions were allocated more processing time when being examined more closely than

collisions occurring in peripheral vision. This resulted in in more believable, physically

accurate collision responses in the regions of interest. The collisions occurring in the

periphery were given less processing time, meaning they would be less accurate.

2.4 Voice Recognition in Gaming

This section gives an overview of how voice recognition works and examines some

examples of its use in gaming. There are two different categories of speech recognition

technologies, speaker dependent and speaker independent [23]. Speaker-dependent

requires each user to go through a process of training the engine to recognise his/her

voice. Speech independent recognition avoids this by training with a collection of

speakers in the development phase. The process of speech recognition can be divided

into the following steps [24]:

• Recognition grammar: specifies and defines the speech input and its pattern
to the speech recognition engine.

• Phoneme identification: Incoming audio signals are analysed and compared
to language phonemes.

• Word identification: The resulting output of phonemes are compared to words
in the recognition grammar.

11

Console Vendor Game Publisher Developer Speech
Technology

Microsoft: Xbox

Ghost Recon 2 Ubisoft Red Storm Fonix
Rainbow Six 3 Ubisoft Red Storm Fonix
Rainbow Six 3: Black Arrow Ubisoft Red Storm Fonix
SWAT: Global Strike Team Vivendi Universal/Sierra Argonaut Fonix

Nintendo: GameCube Mario Party 6 Nintendo Hudson Soft ScanSoft
Sega: Dreamcast Seaman (Japan) Sega Sega ScanSoft

Sony: PlayStation 2

Deka Voice (Japan) Sony Computer Sony Computer ScanSoft
Ghost Recon 2 Ubisoft Red Storm Fonix
Ghost Recon 2: Jungle Storm Ubisoft Red Storm ScanSoft
LifeLine Konami Digital Konami Digital ScanSoft
Operators Side (Japan) Konami Digital Konami Digital ScanSoft
Rainbow Six 3 Ubisoft Red Storm ScanSoft
SOCOM: U.S. Navy Seals Sony Computer Sony Computer ScanSoft
SOCOM II: U.S. Navy Seals Sony Computer Sony Computer ScanSoft
SWAT: Global Strike Team Vivendi Universal/Sierra Argonaut ScanSoft

Table 2.1: Video games with speech recognition. Recreated from [25].

• Output: The output produced is the best guess the engine can construe from
the user’s input.

Table 2.1 lists games which have used voice recognition. Some of the main issues

with the use of speech recognition in gaming include [26]:

• Work best in quite environments (not usually a natural gaming environment).

• Inconsistency, can work well with one person and badly with the next.

• The larger the vocabulary the easier it is to confuse the engine (generating false
positive recognitions).

• Long words are easier to recognise but short words are more common in language.

• Tends to be computational expensive, making results in real-time problematical.

Mehdi et al. [23] used natural language speech recognition to instruct virtual char-

acters in a 3D environment. Speech synthesis was also used to respond to the user. So

if a user instruction was incomplete for example “put the cup”, the virtual character

would ask “Where do you want to put the cup?” While this interaction is interesting

no results where provided as to how accurate the recognition was or as to how quickly

the virtual character reacted to voice input.

Hämäläinen et al. [27] developed a musical edutainment game in which the game

character was controlled using pitch. The idea was that the player had to sing in tune

to move a character up and down a path to its destination. This novel approach had

12

some issues. The pitch detection sometimes reacted to the background music when

the user was not singing. Acoustic echo cancellation (AEC) methods were suggested

as a possible solution to remove the music from the input signal. This could be used

in other games where voice recognition is used as an input mechanism. This would

allow game music to be played creating a more normal game environment. However

background noise would still be an issue.

2.5 Gaze in Gaming

When looking at eye tracking as a means of computer game interaction it is important

to look at different genres and the challenges they present. Isokoski et al. [28] discuss

this in some detail, a summary of which is presented in Section 2.5.1. Section 2.5.2

examines in more detail some previous work looking at gaze input in gaming.

2.5.1 Game Genre Implications for Gaze Input

For board games, puzzles and card games the main issues lie with updating games

expecting direct input from keyboard or mouse. Card games also tend to use bitmap

graphics, this makes it difficult to resize the interface for adapted use with eye trackers.

Shoot-em ups, or scrolling shooters, use two degrees of freedom in addition to a

trigger. Typically these involve evading enemy missiles/projectiles while shooting as

many targets as possible. The problem for eye tracking is that the player often needs

to look at a target while simultaneously staying out of the line of fire. So gaze position

cannot be directly linked to avatar position.

Beat-em up games typically involve sequences of timed operations in order to per-

form a particular move. This presents many challenges to eye trackers. Namely how

to associate the many varied moves involved with gaze.

The same may be said for the First Person Shooter (FPS) genre of game. While

these games are presented in first person perspective which typically lends itself well

to eye tracking there are usually also a number of controls to be invoked to fire, reload

and interact with objects in the game. Another issue is that of accuracy. Eye trackers

are not competitive with the sub-pixel positioning accuracy of modern mice. Racing

games present similar problems to FPS genre games. It may be difficult to associate

13

Game genre
Indicators for eye tracker use
Positive Negative
One
player
mode

Turn-based
gameplay

Online
multiplayer

Online
real-time
multiplayer

Continuous
position
control

Dissociation
of focus of
attention and
control

Large number
of commands

Board games and puzzles x x x
Card games x x x
Shoot-em up x x x
Beat-em up x x x x
First person shooters x x x
Flight simulators x x x x x
3rd person action and adventure x x
Level jumping (platform) x x x
Turn-based Strategy x x x x
Real-time strategy x x x
Turn-based role playing games x x x
Real-time role playing games x x x
Racing x x x

Table 2.2: Positive and negative indicators for eye tracker compatibility of a game
genre. Recreated from [28].

gaze directly to steering as it may be necessary to look at other parts of the screen

without changing the current direction.

Flight simulators require observing of the surrounding environment while also ma-

nipulating the controls in order to fly the airplane. Again this is difficult to achieve

using eye tracker input. Adventure games and level jumping platform games show

the player in the third person as if the cameraman were following the game character.

Again it may be difficult to invoke all the controls required to move the character to

desired locations.

Turn-based strategy and turn-based role playing games should be fairly compatible

with eye trackers provided the interface can be enlarged sufficiently to allow their use.

However some elements of the interface may present problems for inputting data or

commands. This could perhaps be overcome with the use of a menu system. Real-time

strategy games are similar except that the game evolves in parallel with the players

input, not in reaction to it. So eye tracker use may prove too slow to compete against

the computer or indeed other online players not using eye tracking input. Table 2.2

shows a summary of positive and negative indicators for eye tracker compatibility for

different genres.

14

2.5.2 Gaze Input In Gaming

The primary goal of Leyba and Malcolm’s [29] work was to examine the performance

variations of eye tracking versus mouse as an aiming device in a computer gaming

environment. They hoped to show that although user accuracy would be less, task

completion times would improve. A simple 3D eye tracking game utilising the Tobii

ET-1750 eye tracker was developed. Twenty-five balls with random velocity vectors

were randomly placed on the screen. The balls travelled according to a simple physics

simulation. The aim of the game was to remove the balls by clicking on them. To

overcome the “Midas touch” a conservative form of “Manual and Gaze Input Cascaded

(MAGIC) pointing” [30] was used. MAGIC pointing “warps” the cursor to the general

POR. The user can then make small adjustments to be directly on target with a mouse.

Leyba and Malcolm’s adapted method used the gaze point as the cursor position on

screen when the mouse was clicked. They found that as expected mouse input was more

accurate. However contrary to their hypothesis completion time also proved longer,

requiring an average of 49.98 extra seconds to complete the objective. This was most

likely due to problems with calibration and users tending to repeatedly click the mouse

rather than aim accurately when using the mouse as the input.

Kenny et al. [31] created a diagnostic eye tracking system. A FPS game was created

using mouse and keyboard as input. Using an EyeLink II head-mounted eye tracker

the players’ gaze was recorded while they played and later analysed. It was found

that the cross hairs in a FPS game acts as a natural fixation point. 88% of fixations

and 82% of game time took place in the ‘near centre’ of the screen (the inner 400 x

300 rectangle from the 800 x 600 resolution screen). Surprisingly only 2% of fixations

occurred within regions where health, status messages and score appeared. Kenny et

al. suggest that this information could be exploited to improve graphics rendering

algorithms, rendering central regions to a higher quality than the periphery. However

this observation may also prove useful for gaze based video game interaction. The areas

in the periphery could be used to fire commands using fixation while not interfering

with the normal FPS game play.

Jönsson’s [32] thesis experimented with the FPS, Half Life, and the Shoot-em-up,

Sacrifice. Open source versions of these games were adapted to accept gaze input from a

Tobii eye tracker. Two demos were created using Sacrifice, one were aim was controlled

15

by mouse and one by gaze. In Half Life three demos were created, one were the weapon

sight and field of view were controlled by mouse, one were weapon sight and field of

view were controlled by gaze and one where weapon sight was controlled by eyes and

field of view with mouse. Participants achieved higher scores with eye control when

playing Sacrifice than without it. However performance in Half Life, which potentially

had the more interesting input techniques was not reported.

Three different game genres were examined by Smith and Graham [33] the FPS,

Quake 2, a Role Playing game, Neverwinter Nights and a Shoot-em-up, Lunar Com-

mand. Eye tracking was used to control orientation, communicate with the avatar and

target moving targets in Quake 2, Neverwinter Nights and Lunar Command respec-

tively. To overcome the “Midas touch” problem all gaze based interaction was done

in conjunction with mouse and keyboard. For orientating the camera in the gaze con-

trolled Quake 2, users looked at objects which in turn rotated the camera to centre

on that point. All three genres reported lower performance where gaze was used as

compared to mouse control. The greatest discrepancy being Lunar Command, users

seemingly finding it difficult to “lead” missiles by looking into empty space in front of

moving targets.

Isokoski and Martin [34] and Isokoski et al. [35] developed a FPS style game which

decoupled aiming from viewing. The game used gaze for aim, mouse to control the

camera and the keyboard to move the player around the game world. This was mea-

sured against mouse and keyboard and the Xbox controller. Results suggested that the

gaze controlled version was at least as accurate as the other input methods. However

one must be skeptical of the results given only one participant, closely involved with

the project, was involved in the evaluation of the game.

Dorr et al. [36] adapted a game, Breakout, to allow for input from either mouse or

gaze. Breakout is a game, similar to Pong, in which a paddle is moved horizontally

to hit a ball that is reflected off the borders of the playing area. The ball dissolves

bricks in the upper part of the game area upon contact. The objective of the game is

to destroy all bricks. The game was adapted by connecting the horizontal movement of

the paddle with the player’s gaze. Breakout proved to be well suited to gaze control and

participants in the study performed better using gaze input. While gaze data cannot

compete with the accuracy of a mouse, eye movements are faster. This along with the

simple one-dimensional movement required to keep the ball in play suggests why gaze

16

Figure 2.9: “Virtual Keys” used by Castellina and Corno. Reprinted from [37].

performed better than mouse input in this case. Also elements of the original open

source game which did not work well with eye tracking input were removed entirely.

Castellina and Corno [37] developed some simple 3D game scenarios to test multi-

modal gaze interaction video games. Results showed that where gaze was the only

input device it was as accurate as any of the other input devices used. While direct

gaze control was not as fast as the other methods of interaction, this could be as a

result of the use of dwell time to overcome the “Midas touch” problem and would

perhaps not be an issue had another input modality, such as voice, been used instead.

The direct gaze control used VK, or “Virtual Keys”, four semitransparent buttons in

the middle of screen edges. These allowed left and right camera rotation and forward

backward navigation and were activated by dwell time as shown in Figure 2.9.

While accuracy and ease of use have been shown to be problematic when eye track-

ers have been used as input to video games very often subjective data gathered from

participants have revealed some interesting opinions. For instance a large majority of

participants in the study done by Smith and Graham[33] felt more immersed in the vir-

tual environment when using the eye tracker. Conversely in Leyba and Malcolm’s [29]

work a majority of participants deemed mouse input as the preferred option over eye

tracking. The analysis of the questionnaires taken in Castellina and Corno’s [37] work

showed that the VK method had been perceived as the most accurate and fastest

control type despite the objective data gathered to the contrary. A majority of par-

ticipants in Jönsson’s usability study [32] rated Sacrifice and Half Life as more fun

when controlled using gaze. It was also reported that the combination of weapon sight

controlled by eyes and field of view with mouse felt more natural than mouse control.

17

Figure 2.10: Revenge of the Killer Penguins. Left shows a staring competition and
right the catapult perspective. Reprinted from [38].

Perhaps the novelty factor and the immersion provided by gaze control gives players a

more complete and better game experience.

2.6 Gaze & Voice in Gaming

Wilcox et al. [38] created the first and only game which used gaze and voice control.

The game, a 3rd person adventure puzzle, could be controlled by both gaze and voice

and by gaze alone. In the second modality blinks and winking were also used to

activate commands. The work included some interesting features which utilised the

characteristics of both gaze and voice input. For example a time lag in selecting items

was used, which allowed time for voice commands to be recognised and processed. Two

of the game features are shown in Figures 2.10. Unfortunately the work did not involve

a user evaluation so it is difficult to judge the benefits or shortfalls of their approach.

18

Chapter 3

Design

This chapter examines the design issues involved in creating the gaze and voice game.

Sections 3.1 and 3.2 describe the hardware and development tools used in the project.

Section 3.3 discusses the game concept. Finally Section 3.4 gives an overview of the

game framework design.

3.1 Hardware

A Tobii T60 eye tracker, shown in Figure 3.1, along with the Tobii Software Develop-

ment Kit (SDK) was made available for use in the project from Acuity-ETS a reseller

of Tobii eye trackers for the UK and Ireland. The T60 eye tracker is integrated into a

17" monitor and provides eye math models with advanced drift compensation, which

allows large freedom of head movement [39]. The technical specifications for the T60

are shown in Table 3.1.

3.2 Development Tools

This section gives an overview of the development tools required to implement the

gaze and voice game. Sections 3.2.1 and 3.2.2 describe the Tobii SDK and Microsoft

Speech API respectively. Section 3.2.3 discusses which game development tools were

investigated and which was finally settled upon. Section 3.2.4 gives an overview of the

Microsoft Component Object Model (COM) and how .NET and COM communicate.

19

Figure 3.1: Tobii T60 eye tracker. Reprinted from [40].

Accuracy 0.5 degrees
Drift 0.3 degrees
Data rate 60 Hz
Freedom of head movement 44x22x30 cm
Binocular tracking Yes
Bright/dark pupil tracking Both - automatic optimization

TFT Display 17" TFT, 1280 x 1024 pixels
T/X firmware Embedded
User camera Built in

Table 3.1: The Tobii T60 technical specification. Data rate refers to the number of
samples the eye tracker is capable of per second, 60Hz is generally considered sufficient
to capture most eye movement. Recreated from [39].

3.2.1 Tobii SDK

The Tobii SDK enables development of applications for controlling and retrieving gaze

data from Tobii eye trackers [41]. One of the interfaces Tobii SDK provides is the To-

bii Eye Tracker Components API (TetComp). TetComp is a high level interface which

provides ready-made COM objects for collection of gaze data and ready-to-use cali-

bration, track status and calibration plotting tools. It hides much of the programming

complexity of the lower level APIs.

The TetComp objects of particular interest for this dissertation are:

• Tracking component: TetClient COM object which allows the retrieval of

gaze data.

20

Figure 3.2: Tobii eye tracker setup. Reprinted from [42].

• Calibration tools: The TetCalibManager, TetCalibProc and TetCalibPlot

COM objects provide tools for calibration.

Figure 3.2 shows a typical set up for a Tobii eye tracker. In the case of the integrated

T60 a TCP/IP connection is established with the host workstation. The host will run

the eye tracking application using TetComp to communicate with the eye tracker.

3.2.2 Microsoft Speech API

Microsoft Speech API (SAPI) provides a high-level interface between an application

and speech engines, allowing for the use of speech recognition and synthesis within a

Windows application [43]. SAPI communicates with applications by sending events

using standard callback mechanisms, such as Window Message, callback procedure or

Win32 Event. Figure 3.3 shows the different layers of SAPI.

Applications can control speech recognition using the ISpRecoContext COM inter-

face. The interface is effectively a vehicle for receiving notifications for speech recog-

nition events. The SPEI_RECOGNITION event is of particular interest in SAPI speech

recognition applications. It is fired when the speech recognition engine returns a full

recognition.

21

Figure 3.3: Different layers of SAPI. Reprinted from [43].

The ISpRecoGrammar SAPI interface enables the management of the words and

phrases that the speech recognition engine will recognise. In order to setup speech

recognition for the gaze and voice game, notifications for recognition events were first

created. Then a ISpRecoGrammar was created, loaded and activated. This indicated

which utterances to recognise so that when recognised the formerly mentioned events

would be fired.

3.2.3 Game Development Tools

In order to see which tools would be most appropriate for game implementation an

investigation was carried out. It was important to establish which tool would facilitate

rapid game development while allowing for integration with both the Tobii SDK and

SAPI.

Development Tool Investigation

Two game engines were looked at: The Torque Game Engine Advanced (TGEA) [44]

and Unity [45]. TGEA was used by Kenny et al. [31] when creating their FPS game,

although an EyeLink II eye tracker was used in that study, as described in Section 2.5.2.

Rather than a trial version of the engine, only a demo was provided. The demo was

very limited making it impossible to establish how easy it would be to integrate a game

created using TGEA with SAPI or the Tobii SDK.

Unity did provide a trial version of their software. Although impressive, it was felt

that the game engine was a highly abstracted tool making it difficult to see how easy

22

it might be to integrate with the Tobii SDK or SAPI.

The Object-Oriented Graphics Rendering Engine (OGRE) was also closely exam-

ined [46]. It is a scene-oriented, flexible 3D engine, as opposed to a game engine. OGRE

is written in C++ and is designed to make it easier and more intuitive to produce ap-

plications utilising hardware-accelerated 3D graphics. It is an excellent open source

graphics engine with a very active community and was shown to work with both voice

recognition and a Tobii eye tracker by Wilcox et al. [38], as described in Section 2.6.

The wealth of resources, active community and proven record of having worked with

voice and gaze data in the past made it a good candidate with which to develop the

application in.

XNA is a set of tools with a managed runtime environment provided by Microsoft

that facilitates computer game development. The XNA framework is based on the

native implementation of the .NET Compact framework 2.0. XNA is very user-friendly

allowing for rapid development of games. To the author’s knowledge, XNA has not been

previously used in an eye tracking study. A test application was built to investigate if

integration with gaze and voice was possible. The application successfully referenced

both TetComp and SAPI.

It was decided to go for XNA as the development environment given that it inte-

grated well with both TetComp and SAPI and using it would eliminate the extra time

that would be required to learn OGRE.

3.2.4 The Component Object Model

Since the functionality of both SAPI and Tobii SDK will be exploited via COM it is

timely to give a brief overview of COM and how it can be accessed from .NET.

COM Overview

COM is a standard specifying an object model and programming requirements that

enable software components to interact with other objects [47]. A software object is

usually made up of a set of data and functions that manipulate that data. A COM

object is one in which access to an object’s data is achieved exclusively through one or

more sets of related functions. These functions are known as interfaces. The only way

to gain access to the methods of an interface is through a pointer to the interface.

23

Figure 3.4: .NET runtime callable wrapper. Reprinted from [48].

A characteristic of COM is that it is Apartment Threaded. All COM objects in a

given process are divided into groups known as apartments [47]. A COM object resides

in only one apartment and its methods may only be directly called by a thread that

belongs to that apartment. Other threads must go through a proxy. There are two

types of apartments:

• Single-threaded apartments: Consists of exactly one thread. So all COM

objects on that thread can only receive direct method calls from the thread which

belongs to that apartment. All method calls are synchronized with the windows

message queue for the single-threaded apartment’s thread.

• Multi-threaded apartments: Consist of one or more threads. COM objects

that reside in an multi-threaded apartment can only receive direct method calls

from threads that belong to that apartment.

.NET/COM Interoperability

The procedure for calling COM components from .NET is shown in Figure 3.4. When

a COM object is called from .NET, the runtime generates a runtime callable wrapper

(RCW), which acts as a proxy for the unmanaged object [48]. The RCW binds to

the underlying COM object, factoring the COM interface into a managed form. It is

responsible for translating and marshalling data between the two environments.

24

3.3 Game Concept

The running of a user trial, described in detail in Section 5.1, has some implications

on game design. First for the application to be useful some sort of mechanism for

recording game data needs to be implemented. Second the duration of the trial must

not be unreasonable since participants can become fatigued and eye tracking calibration

can be lost [49]. Participants would need to fill in questionnaires and some time to

familiarise themselves with the game controls. So with this in mind the game needed

to be relatively simple so users could get get to grips with it quickly and finish it within

a reasonable time frame. This would allow for a quick turn-around of participants. It

was decided that the game should include as many common gaming tasks as possible,

such as, navigation, object selection and so on. It was also desirable to make the game

as inoffensive to potential participants as possible. To this end it was intended that

the game have a fun and cartoon-like feel.

The premise decided upon was “Rabbit Run”. The player is trapped in a rabbit

warren, inhabited by evil bunnies, from which they must escape. The objective being

to navigate through the maze and find the exit in the shortest time possible. In order

to earn extra points coins distributed throughout the maze could be collected. The evil

bunnies could also be shot. Once the exit was reached, players would gain their freedom

and win the game. A map would also be provided in order to assist players finding

their way through the maze. It was decided that the game would to be developed in

the first-person perspective since this is how we view the world in our everyday lives.

3.4 Game Framework

To facilitate the development of a robust, easily updated application it was decided

that a framework would be implemented as the basis for the application. This section

describes the design of the main components of that framework. The Game class is

the basis on which game projects are built in XNA and the use of GameComponents

and GameServices allows for the efficient organisation of any such project [50]. Where

possible these features of XNA are been incorporated into the design of the game

framework.

25

Figure 3.5: Class diagram for custom model processor.

3.4.1 Asset Loading System

In order to optimise the framework it was decided that a custom model processor would

be used. Figure 3.5 shows the classes need to implement the processor. RabbitRun-

ModelProcessor extends the XNA class, ModelProcessor, adding extra functionality

in order to loop each vertex in each mesh of the model creating a list of Triangles

which make up that mesh. Each Triangle is further processed to include the smallest

BoundingSphere which encompasses its three vertices. Once created the Triangle list

is added to Tag attribute of the mesh.

Making these calculations when loading the model optimises the code since the

calculations need only be made once and stored within the loaded model. Storing a

list of Triangles allows for collision detection tests.

3.4.2 Asset Management System

Figure 3.6 shows the main asset classes used in the system. There are four models

to be used in the game. One to represent coins, one rabbits, one the maze and one

the exit. Each model is represented by a class of its own, inheriting from the abstract

class, RabbitRunModel. Most methods are concerned with updating and drawing the

models. Bunny and Coin also define methods to allow for the shooting of rabbits and

26

Figure 3.6: Class diagram of asset classes.

collection of coins (both of which gain extra scores).

AssetManager is intended to load and make available assets such as fonts, models,

textures and shaders. It inherits from the GameComponent class and IAssetManager

interface and is added as a GameService, which makes it readily available throughout

the system.

3.4.3 Menu System

Figure 3.7 shows the menu classes of the system. There are menu classes for the various

menu screens that will be required by the system, main menu, play menu, demo menu

and pause menu. Each of these classes inherits from the abstract class, Menu. Each

menu contains buttons which display the menu option, these are represented by the

MenuItem class.

All menus are managed by the MenuManager class again this class is to be added as

27

Figure 3.7: Class diagram of menu classes.

a GameService, which will make it readily available throughout the system.

3.4.4 Game Data Storage System

Figure 3.8 shows the classes and structs required to save relevant game data in XML

format. The GameDataManager class provides methods which record various game data,

such as shots fired, coins collected and so on. All of this information is stored in memory

in the serialisable struct, GameData. When the game completes the GameDataStorage

class is to be used to store that data in XML format.

28

Figure 3.8: Class diagram of game storage classes and structs.

3.4.5 Map Generation System

Figure 3.9 shows the two classes required by the system in order to generate a map of

the current maze. Once a game is loaded a new instance of MapGenerator is created.

In doing so the the new instance of MapGenerator will parse the maze model building

up a map of the model for use in the game. The map is a two dimensional array of

MapElement objects. Initially the property IsRevealed is set to false. As the player

travels around the maze this property will be set to true. Only MapElements with an

IsRevealed property set to true will be rendered when displaying the map on screen.

3.4.6 Eye Tracking System

The GazeInput class, shown in Figure 3.10, creates a TetClient object and verifies if

a compatible Tobii eye tracker is connected. If so, upon start up of the application, any

calibration data present is cleared and a new calibration is initiated. Once calibrated,

eye tracking is started. Events are fired by the TetClient when new gaze data is

available. This data must then be relayed to the application. The gaze data includes

the area being looked at on screen by both the left and right eyes and the distance

of both eyes from the screen. This information is averaged to give the most likely

point-of-regard (POR).

29

Figure 3.9: Class diagram of map generation classes.

3.4.7 Voice Recognition System

The VoiceInput class, shown in Figure 3.10, creates a SpSharedRecoContext object

and attaches a grammar with specific grammar rules to it. These rules can be used

to recognise certain words and phrases. These words represent the various voice com-

mands which will be used in the system, such as “Option”, “Walk”, “Run” and so on.

The recognition event, _ISpeechRecoContextEvents_RecognitionEventHandler, is

fired when a voice command is recognised by the engine. This is used to inform the

game that a player has issued a specific voice command.

3.4.8 Input Handling System

Figure 3.10 shows the four different input handler classes and the InputAction class.

There are four input handler classes, one for each input type. When the application is

first loaded the appropriate handler will be instantiated and added as a GameService,

making it available throughout the framework. Each handler extends from the XNA

GameComponent class. This means that the handler’s Update method is called every

update cycle of the application.

The Update method checks for user input and creates a list of InputActions. Other

components in the game may access this list via the PollInput method. For example

MenuManager might load a new menu depending on the InputAction list returned to

it when calling the PollInput method.

Note that GazeVoiceHandler and GazeKeyboardHandler are to use GazeInput to

30

Figure 3.10: Class diagram of input classes.

access gaze data from the eye tracker. VoiceInput updates GazeVoiceHandler and

MouseVoiceHandler directly when a speech recognition event is fired, see Sections 3.4.6

and 3.4.7 for more details.

3.4.9 Camera System

Figure 3.11 shows the camera classes of the system. Note that there are different

cameras for each mode of input. This is because the different input types will con-

trol the cameras slightly differently from one another, see Section 4.2 for more details.

Since the game is to be in the first person perspective, the camera in effect represents

the player. Therefore the motion of the camera must be checked for collisions. The

GetBoundingSphere and GetBigBoundingSphere methods provide positional informa-

tion for collision detection between the camera and the surround game models.

31

Figure 3.11: Class diagram of camera classes.

Figure 3.12: Static collision detection utility class.

3.4.10 Collision Detection System

The static class CollisionDetectionUtils is the main collision detection for the appli-

cation and is shown in Figure 3.12. The method TestForCollisionsBroadPhase and

some overloaded methods of TestForCollisions allow for testing of collisions between

the camera and the various models, the warren, the exit, rabbits and coins. The colli-

sion response is dealt with by the calling object, the purpose of CollisionDetectionUt-

ils is to merely test if a collision occurred or not.

CollisionDetectionUtils also provides an overloaded method of TestForCollis-

ions which tests for collisions between a Ray and a model. This is intended to check

which model a bullet collides with, and therefore hits. Thus helping to determine

whether or not a rabbit has been shot.

32

Figure 3.13: GameManager and demo classes.

3.4.11 Game Management System

The demo game classes are shown in Figure 3.13 to illustrate how the game class

hierarchy is structured and how the GameManger class interacts with game classes.

The abstract class RabbitRunGame is at the top of the hierarchy all sub-classes inherit

its functionality. This is a three tier hierarchy, on the next level down classes define

where the initial camera positions are, where coins, rabbits and the exit are to be

placed through out the maze. In this case DemoGame resides on this tier. On the

next level of the hierarchy are the input method specific game classes, in this case

DemoGameMK, DemoGameGV, DemoGameGK and DemoGameMV. The suffixes MK, GV, GK and MV

denoting “Mouse/Keyboard”, “Gaze/Voice”, “Gaze/Keyboard” and “Mouse/Voice”

respectively. There is a need for separate classes for each type of input as each game

will use a different camera (as already discussed in Section 3.4.9) and be controlled and

react differently.

Figure 3.13 also shows the GameManger class. All games are managed by the

GameManger class and again this class is added as a GameService, making it avail-

able throughout the system. The StartGame method creates a new instance of the

selected game class and adds it as a GameComponent, this method is to be invoked from

the menu. GameManger also provides methods to end, pause and resume games.

33

Chapter 4

Implementation

This chapter discusses the implementation of the gaze and voice game. Section 4.1

gives an overview of the main features of the game framework and how it operates.

Then Section 4.2 details how cameras where implemented and how they work within the

framework. Finally Section 4.3 examines issues which arose during the implementation.

4.1 Framework Implementation

RabbitRunMain is the main class of the application. Figure 4.1 shows this class and

the other main classes used by the application. When RabbitRunMain is constructed

it carries out the following steps:

• Create an input handler (dependent on type of input required).

• Create a new AssetManager.

• Create a new GameManager.

• Create a new MenuManager.

Each of which are added as GameComponents automatically including them in the up-

date cycle of the application and, should they be DrawableGameComponents, also in

the draw cycle.

34

Figure 4.1: Class diagram showing main classes.

4.1.1 Update Cycle

While menus are being displayed only InputActions relating to the menu are processed

by the input handler. These actions are to be returned to the MenuManager via the

PollInput method. These actions allow for menu navigation.

Once a user selects a game to play, from the menu, only InputActions relating to

the game are processed by the input handler. These actions are returned to the loaded

game, again using the PollInput method. During the update cycle the currently

loaded game must do following:

• Update each displayed Bunny, running a simple hopping animation.

• Update each displayed Coin, rotating the coin.

• Update the camera, processing user input and updating the camera position and
orientation accordingly.

• Check for collisions between the camera and Warren and Bunny model classes.

– React to any such collisions.

• Check for collisions between camera and Coin models.

– Updating score and removing coin should collision occur.

• Check for collisions between camera and WarrenExit model.

– Triggering end game should collision occur.

35

• Check for fire bullet InputAction and animate bullet firing.

• Check for bullet intersection with Bunny model class.

– Updating score and removing rabbit should collision occur.

• Update the MapGenertor with the player’s current location.

Also during the update cycle the GameDataManager will update its record of relevant

game data.

4.1.2 Draw Cycle

While the menu is being displayed the Draw method of the MenuManager class will

be invoked. MenuManager selects the currently displayed menu and invokes it’s Draw

method, thus displaying that menu.

Similarly while a game is being played the GameManager class calls the currently

selected game’s Draw method. The game’s Draw method will render the various models

in their current positions and orientations.

4.1.3 Threading

In order to correctly synchronise XNA with TetComp, the keyword [STAThread] was

used at the main entry point to the application. This tells XNA to use single-threaded

apartment (STA) threading when dealing with COM objects created in the application.

Because multi-threaded apartment (MTA) is more efficient than STA threading

it is selected by default by .NET when communicating with COM objects. However

since STA in COM is single-threaded no additional thread synchronisation is required.

Calls to objects on STA threads are serialised with Windows message handling on that

thread. This makes sure that both the COM objects and the underlying windowing

objects are all synchronised.

Without STA enabled TetComp bombarded the XNA application with events from

the eye tracker bringing the frame-rate down to 1 frame-per-second, making the appli-

cation unusable.

36

Figure 4.2: Example of a map displayed in the game. In this example the entire map
has been revealed.

4.1.4 Map Generation

The MapGenerator class was implemented as set out in Section 3.4.5. However there

was a subtle difference between its implementation using mouse input versus gaze

input. For mouse input, the map was only updated with the coordinates of where the

player currently was. So if the player traveled to a new location that location would

be revealed on the map. Figure 4.2 shows a map from the demo game, the red arrow

indicates the avatar’s current location and direction, the green bar indicates where the

exit is located.

For gaze input a novel game feature was developed. It was decided to reveal the

locations where the player looked. So if the player looked at a particular location that

area would be revealed on the map without requiring the player to actually move to

those positions. This feature could be useful in puzzle based games where the player

needs to memorise parts of the virtual environment.

4.2 Camera Implementation

Given that the game is implemented in the first person perspective, the cameras in the

game plays a dual role of showing the game play and acting as the player’s avatar. As

such it is appropriate to discuss in some detail the implementation of the cameras in

the application and how they relate to the different input types.

37

4.2.1 Mouse Camera

The cameras MouseKeyboardCamera and MouseVoiceCamera are almost identical and

so are discussed as one in this section. In each update cycle the mouse was repositioned

at the centre of the game screen. To update the camera view the user could move the

mouse in the direction they wished the camera to face. The distance between the

centre point and the mouse pointer screen coordinates where used to calculate the

camera pitch (difference in Y value) and the yaw (difference in X value).

The different input from either keyboard or voice commands determined if the

camera position itself was to change. If such input was received the camera position was

updated accordingly. The camera target was then updated with appropriate rotations

from both pitch and yaw and transformed using the new camera position. Finally the

view matrix was updated using the new position and target.

Mouse Camera Targeting

For targeting rabbits to shoot a cross hairs was rendered at the current position of

the mouse, which is almost always at the centre of the screen. So in order to shoot a

rabbit players must move the camera (by shifting the mouse) to centre the target at

the centre point of the screen. This is the case with most FPS games available today.

The screen coordinates can then be unprojected to define a ray along which the centre

point travels through into the 3D virtual game world. This information can be used to

fire bullets along that ray.

4.2.2 Gaze Camera

Again the cameras GazeKeyboardCamera and GazeVoiceCamera are similar enough to

be discussed together in this section. The idea adapted for creation of a gaze input

camera builds upon the idea of Castellina and Corno [37] of using semi-transparent

buttons to rotate the camera and move the avatar, see Section 2.5.2 for more details.

As shown by Kenny et al. [31] the vast game time in a FPS games is spent looking

in the inner 400 x 300 rectangle of a 800 x 600 resolution screen, see Section 2.5.2 for

more details.

The idea was to utilise the outer rectangle of the screen to place semitransparent

38

Figure 4.3: Eight-sided Armenian Star.

gaze activated buttons. The inner rectangle could be left alone to allow normal game

interaction. By placing the buttons in this outer area it was hoped that they would not

interfere with game play. Also the buttons would not be displayed unless activated, by

looking in that area of the screen, to avoid distracting the player.

The purpose of the buttons was to rotate the camera in a given direction. So by

looking at the upper part of the screen the camera would shift upwards, if looking at

the bottom of the screen the camera would shift down, if looking left the camera would

shift left and so on. The original idea was to place the buttons in such a way as to

form an eight-sided Armenian star, as shown in Figure 4.3. The buttons would act as

a visual aid to the player indicating the direction the camera was shifting. Figure 4.4

shows the eight different camera shifting buttons as they were displayed in the game.

Gaze Camera Targeting

A cross hairs was rendered where the current gaze screen coordinates were on screen.

This separated the targeting from the camera view much in the same way as Jönsson [32]

did in her Half Life demo. The screen coordinates of the cross hairs are unprojected in

the same way as for mouse targeting. This information is again used to calculate the

trajectory of bullets.

4.2.3 Updating Camera Position

Two different input types, voice and keyboard, were used to update the camera position

in the game. This section describes how those input types were used to implementation

39

Figure 4.4: Gaze camera buttons as displayed in game.

camera motion and hence simulate player navigation.

Keyboard Input

Navigation in the game environment was implemented using the arrow keys since this

would be the most intuitive even to a novice player. So players could move forwards,

backwards, left or right relative to the direction the camera was pointing. This updated

the position of the camera at a “walking” pace. If players wanted to increase their speed

they needed to hold down the shift key.

40

Voice Input

Navigation with voice recognition input was achieved using three commands “Walk”,

“Run” and “Stop”. When the “Walk” command was issued the camera proceeded to

move, at a walking pace, in the direction the camera was facing until such time as it

encountered an obstacle such as a wall or a rabbit or the “Stop” command was issued.

The “Run” command was implemented to operate in a similar way except at a running

pace.

4.3 Implementation Issues

Some problems were encountered when implementing voice recognition. More intuitive

voice commands were not always recognised so more distinct voice commands were

chosen. For example instead of saying “Map” to bring up the game map, “Maze” had

to be used instead. When selecting menu items “Select” too proved to be inconsistent

so the command “Option” was used instead.

A pilot user trial involving one participant uncovered a number of issues which

were not anticipated prior to that time. It was decided to to delay the user trials until

these issues were resolved to some degree. The participant in the pilot study found the

the eight-pointed star gaze camera buttons unusable. She was unable to control the

camera well and the camera rotated when she did not want it to, causing it to spin in

a disorientating manner. This was most likely to the narrow screen of the integrated

eye tracker monitor used in the project. Perhaps if a wider screen was used this issue

may not have occurred. Due to time constraints it was decided to only use the left and

right buttons as shown in Figure 4.5 rather than to recode them.

Originally it had been intended to include obstacles over which players would have

to jump over or crouch under. However the pilot study showed these were difficult to

navigate through so it was decided to remove these obstacles from the game. There

was not enough time to update the code to make them easier to navigate through.

The collision response also proved to be poor with the player getting “caught” near

walls. Due to time constraints it was decided that there would not be enough time to

recode this so a quick fix was settled upon. The fix was to stop any voice commands

such as “Walk” or “Run” so that the player would stop colliding with the wall they

41

Figure 4.5: Left and right gaze camera buttons.

were facing.

The game also proved to be more time consuming than initially anticipated so a

time limit of eight minutes was placed in the game so that trial would not take too

much of the participants time.

42

Chapter 5

Evaluation

This chapter examines the created gaze and voice game and gives an evaluation of

how successful it was. Section 5.1 describes how the user trial was designed and run.

Then Section 5.2 goes on to review the results gathered during the user trial. Finally

Section 5.3 presents an appraisal of those results.

5.1 Experimental Design of User Trial

One of the main objectives of the project was to gather useful information from which

conclusions could be drawn, such as:

• How does gaze and voice compare with keyboard and mouse as a means of inter-
action?

• How enjoyable is the use of gaze and voice as a means of interaction?

The first objective is relatively easy to quantify. Data could be gathered and saved

while participants played the game see Section 3.4.4 for details on data storage. The

second is more subjective and requires the use of questionnaires to gather participants’

opinions.

In order for the data to be useful comparisons must be made between different types

of input. This means participants would need to play the game using both modes of

interaction. They therefore played the game using mouse and keyboard as well as with

gaze and voice.

43

Another consideration was, if gaze and voice proved not to be a viable form of

interaction, which mode of interaction was at fault. So ideally data needed to be

gathered to resolve this. The best way to answer this possible issue would be to make

a second comparison of gaze and keyboard against mouse and voice. This meant asking

participants to play the game four different times, with the four different combinations

of interaction.

• Gaze & Voice

• Mouse & Keyboard

• Mouse & Voice

• Gaze & Keyboard

This approach has two major drawbacks. The first drawback concerns the learning

effect. Players are likely to improve at the game the more they play it. So by the time

participants play using the fourth type of interaction, it would be difficult to determine

if the means of interaction has benefited the player or if it was simply due to their skill

level improving over time.

The second drawback was time, it would be unreasonable to ask a participant to

spend longer than twenty minutes completing a trial. Anything longer and they could

begin to lose interest skewing results. Also the longer the duration of the trial the

more likely eye tracker calibration would be lost. However given the need for two

different comparisons, involving four different types of interaction it was decided that

there should be two groups of experiments as follows:

• Mouse & Keyboard versus Gaze & Voice

• Gaze & Keyboard versus Mouse & Voice

5.1.1 Game Layout

Given that the game would need to be played twice and that results would need to be

comparable, the game layout in each version would also need to be comparable. To

this end it was decided that the exact same layout would be used in each trial by only

swapping the start and exit points. The exact same number of coins and rabbits were

used, distributed in the same positions in each setup. Using the same basic layout for

each trial would yield comparable results. While having different start and end points

44

Figure 5.1: Different maze setups for user trials.

Participant Experiment #1 Layout Experiment #2 Layout
1 Mouse & Keyboard Setup 1 Gaze & Voice Setup 2
2 Gaze & Voice Setup 1 Mouse & Keyboard Setup 2
3 Gaze & Voice Setup 2 Mouse & Keyboard Setup 1
4 Mouse & Keyboard Setup 2 Gaze & Voice Setup 1
5 Mouse & Keyboard Setup 1 Gaze & Voice Setup 2
6 Gaze & Voice Setup 1 Mouse & Keyboard Setup 2
7 Gaze & Voice Setup 2 Mouse & Keyboard Setup 1
8 Mouse & Keyboard Setup 2 Gaze & Voice Setup 1
9 Mouse & Keyboard Setup 1 Gaze & Voice Setup 2
10 Gaze & Voice Setup 1 Mouse & Keyboard Setup 2

Table 5.1: Participant ordering for mouse & keyboard versus gaze & voice user trial.

would eliminated the possibility of skewed results from learning. Figure 5.1 shows the

alternate layouts which were used in each user trial.

Counter balancing was used so both the layout and the input types were alternated.

Table 5.1 shows the order in which user trials were conducted for the Mouse & Keyboard

versus Gaze & Voice comparison trial. It was hoped that alternating the ordering in

this way would eliminate any distortion of results if a particular maze setup were easier

than another.

45

Figure 5.2: Hardware setup for user trial.

5.1.2 Experimental Setup

The user trial took place in a sound proof video conferencing room and ran over four

nonconsecutive days. This was to avoid any interference background noise might have

on voice recognition. The hardware setup is shown in Figure 5.2. It consisted of a laptop

running the application while connected to the Tobii T60 eye tracker (with integrated

monitor) via an Ethernet connection. A keyboard, a mouse and a microphone headset

were also connected to the host laptop to allow for keyboard, mouse and voice input.

An adjustable chair was provided to allow participants to make themselves comfortable

and place themselves 60 cm from the eye tracker monitor.

5.1.3 Questionnaires

When participants arrived they were asked to complete a consent form and answer

a short background questionnaire about age, profession and their gaming habits, as

shown in Appendix A.1. If any participant suffered from epilepsy they were to be

excluded from the trial as a precaution. Immediately after playing each of the two

games in the trial, participants were asked to answer another questionnaire, as shown

in Appendix A.2. This questionnaire aimed to get the participants opinions on how easy

or difficult they found that particular input. It was given immediately after playing the

game so that any opinions they had would be fresh in their minds. After the second

and final game was played (and the post-trial questionnaire was completed) a third and

final questionnaire was given to the participants, as shown in Appendix A.3. This final

questionnaire aimed to compared the two different games played by the participant to

46

gauge which they preferred. An open question at the end invited comments from the

participants.

5.1.4 Other Materials

In order for all participants to get the same instructions it was decided that an instruc-

tion pamphlet would be used to inform all volunteers in a consistent way. A pamphlet

was created for each type of input as shown in Appendices B.1- B.4.

5.1.5 Participants

Participants were sought by sending an email to postgraduates and staff in Trinity

College. Fourteen people volunteered for the trial. Of these, thirteen users success-

fully completed the experiment two women and eleven men aged between 23 and 38.

One user was excluded after running into difficulty maintaining calibration throughout

the experiment. Of the thirteen who completed the trial two participants encountered

notable difficulty using gaze, one wore glasses and the other contact lenses. It was

decided to also exclude these participants from the study. All other participants had

normal or corrected-to-normal vision. It was felt that because of the low numbers of

participants it would be best to use as many as possible in the first study (measuring

Mouse/Keyboard versus Gaze/Voice) so that statistically relevant data could be gath-

ered. To this end eight participants took part in the first study while only three took

part in the second (comparing Gaze/Keyboard versus Mouse/Voice). Ideally another

five would have allowed for further comparisons.

5.1.6 Procedure

To create the same environment for each participant the following procedure was used

for the user trial for each participant:

1. A consent form was given to and signed by the participant.

2. The background questionnaire was given to and answered by the participant.

3. The participant was given the relevant instructions pamphlet.

47

4. The participant was asked to play the demo version of the game for as long as

they wanted and encouraged to ask any questions they might have.

5. Once happy with the controls participants were asked to complete the full user

trial version of the game in the room by themselves.

6. The post-trial questionnaire was given to and answered by the participant.

7. Steps 3-6 were repeated for the second experiment.

8. The final comparison questionnaire was given to and answered by the participant.

5.2 Results

This Section examines the results gathered in the user trial both from game data and

questionnaires. A complete set of the results gathered is tabulated in Appendix C.

5.2.1 Mouse/Keyboard Versus Gaze/Voice

The results presented in this Section have been subdivided into related categories.

Performance

It is perhaps difficult to quantify how well a player did in the game. There were

three objectives, to find the exit in the fastest time possible, to collect coins and shoot

bunnies. So to measure performance it is necessary to examine each of these factors.

Figure 5.3 shows this data graphed.

Related t-tests were used to see if there was statistically significant differences be-

tween these performance measures. The difference between distances traveled using

Mouse/Keyboard (mean = 122.5) versus using Gaze/Voice (mean = 73.25) was sig-

nificant (T (df = 7) = 2.556, P < 0.05, two tailed). The difference in time taken

to finish the game was also significant showing that participants finished quicker us-

ing Mouse/Keyboard (mean = 228472.125 ms) than when using Gaze/Voice (mean =

418864.4 ms), (T (df =7) = 4.683, P < 0.01, two tailed).

Since there was a time limit of eight minutes imposed it was decided to also measure

the speed (distance covered divided by time taken) to see if players covered less distance

48

Figure 5.3: Graph of performance measures. Top left shows distance covered and time
taken to complete the game and top right shows number of coins collected and rabbits
shot. Bottom left shows how fast participants felt they played and bottom right how
well they thought they played.

using Gaze/Voice. A related t-test showed speed to be higher using Mouse/Keyboard

(mean = 0.583) versus using Gaze/Voice (mean = 0.176) (T (df = 7) = 7.4961, P <

0.001, two tailed). The difference was statistically significant.

The difference between rabbits shot and coins collected was also shown to be statis-

tically significant. Using Mouse/Keyboard a mean of 10 rabbits where shot as opposed

to 6.625 using Gaze/Voice, (T (df = 7) = 2.791, P < 0.05, two tailed). The difference

in the of number of coins collected using Mouse/Keyboard (mean = 9.125) versus using

Gaze/Voice (mean = 5.625) was also statistically significant (T (df = 7) = 3.004, P

< 0.02, two tailed).

In a two-tailed Wilcoxon Signed-Ranks test, participants felt they played faster

using Mouse/Keyboard (median = 6) as opposed to with Gaze/Voice (median = 3),

(T = 1, N = 8, 0.01 < P < 0.02). They also felt they performed better overall using

49

Figure 5.4: Graph of accuracy and control measures. Top left shows number of rabbits
killed versus shots taken and top right shows how difficult participants felt it was to
kill rabbits. Bottom left shows how much control users felt they had while bottom
right shows how precise that control was.

Mouse/Keyboard (median = 5.5) versus Gaze/Voice (median = 3), (T = 0, N = 8,

0.01 < P < 0.01). So participants performed worse using gaze and voice input across

all measures.

Accuracy & Control

Figure 5.4 shows graphs of shots taken versus rabbits killed and how difficult partici-

pants felt it was to shoot rabbits as well as how much control was felt by participants

and how precise it was. To gauge accuracy the number of shots taken was measured

against the number of rabbits killed. In a related t-test no statistically significant

difference was established between shooting accuracy using Mouse/Keyboard (mean

= 72.6%) versus using Gaze/Voice (mean = 64%)(T (df = 7) = 1.034, P > 0.2, two

tailed). Again this is backed up by a two-tailed Wilcoxon Signed-Ranks test which

50

Figure 5.5: Graph of navigation measures. Top left shows how easy or difficult it was
to navigate around the game, top right how difficult or easy it was to collect coins.
Bottom shows how easy or difficult participants found menu navigation.

showed there was no statistically significant difference between how difficult it was

precieved to shoot rabbits using Mouse/Keyboard (median = 6) or with Gaze/Voice

(median = 6), (T = 11, N = 7, P > 0.2).

A two-tailed Wilcoxon Signed-Ranks test shows that participants felt Mouse/Key-

board (median = 6) to offer more control than with Gaze/Voice (median = 4), (T = 0,

N = 6, P < 0.001). They also felt that the control was more precise for Mouse/Key-

board (median = 6) than with Gaze/Voice (median = 3.5), (T = 2, N = 8, 0.02 < P

< 0.05).

Navigation

A two-tailed Wilcoxon Signed-Ranks test showed game navigation was perceived to be

significantly easier using Mouse/Keyboard (median = 6) than when using Gaze/Voice

(median = 4), (T = 0, N = 7, P < 0.001). Coin collection can also be thought of as

51

Figure 5.6: Graph of difficulty measures. Left shows ranking of difficulty, right the
amount of effort required to play the game.

an indirect measure of how easy it was to navigate through the game. Coins were all

placed in small corner areas of the maze were navigation would be most testing. In

a two-tailed Wilcoxon Signed-Ranks test coin collection was found to be easier using

Mouse/Keyboard (median = 6.5) than when using Gaze/Voice (median = 4.5), (T =

0, N = 8, P < 0.001). Figure 5.5 shows graphs of these navigation measures.

Again in a two-tailed Wilcoxon Signed-Ranks test menu navigation using Mouse/Key-

board (median = 7) was ranked easier than with Gaze/Voice (median = 6), (T = 0,

N = 6, P < 0.001). Figure 5.5 also shows how menu navigation was ranked by the

participants. The participant who ranked menu navigation as being most difficult com-

mented on it saying “Calibration slightly off in menu but not so apparent in game”.

So perhaps the calibration for this participant could have been better.

Game Difficulty

Figure 5.6 shows how difficult participants found the game. In a two-tailed Wilcoxon

Signed-Ranks test participants found the game to be less effort to play using Mouse/Key-

board (median = 3) as opposed to with with Gaze/Voice (median = 5), (T = 0, N =

7, P < 0.001). Mouse/Keyboard was also ranked easier (median = 6) as opposed to

with Gaze/voice (median = 4), (T = 1.5, N = 7, 0.02 < P < 0.05).

52

Figure 5.7: Graph of immersion, naturalness and enjoyment measures. Top left graphs
how natural the control was ranked and top right shows how immersive the input type
was ranked. Bottom left shows how enjoyable the game was rated after each trial,
while bottom right shows which input type users felt was more enjoyable.

Game Enjoyment

While participants thought using Mouse/Keyboard (median = 6) was more natural

than using Gaze/Voice (median = 4.5), (T = 0, N = 6, P < 0.001), Gaze/Voice

(median = 6) was ranked as being more immersive than Mouse/Keyboard (median =

4.5), (T = 2.5, N = 8, P < 0.05). A Wilcoxon Signed-Ranks test was used in both

cases. Figure 5.7 shows the graphs of both sets of data.

Figure 5.7 also shows graphs of enjoyment measures. A two-tailed Wilcoxon Signed-

Ranks test showed no statistically significant difference between Mouse/Keyboard (me-

dian = 4.5) and Gaze/Voice (median = 4), (T = 3.5, N = 6, P > 0.2). However when

asked which they preferred, 75 % of participants selected Gaze/Voice as the more

enjoyable.

53

Figure 5.8: Graphs of map references and map usefulness in trial one.

Map Usefulness

One of the novel features of the game, discussed in Section 4.1.4, was for the map

generator to display all those areas on the map that the player had seen as opposed

to have been in. So as not to influence participants in anyway it was decided not

to inform users about this feature when running the user evaluation. To ascertain

the worth of the feature participants were asked to rank how useful they found the

map. The number of the times the map was referenced throughout the game was also

recorded. These results were graphed and are shown Figure 5.8.

A related t-test of the difference in the number map references using Mouse/Key-

board (mean = 10.1) versus using Gaze/Voice (mean = 9.8) showed that the difference

was not statistically significant (T (df = 7) = 0.08, P > 0.1, two tailed). Participants’

perception of how useful they found the map was tested using a two-tailed Wilcoxon

Signed-Ranks test. It showed that participants did not perceive the map to be any

more useful when using Gaze/Voice (median = 6) than using Mouse/Keyboard (me-

dian = 6), (T = 9, N = 7, P > 0.2). So participants did not find the map to be any

more useful or use it more in either case. Perhaps in a

Participant Comments

A lot of comments related to the game’s collision response. One participant said “I got

stuck a lot which was easier to get out of using the keyboard rather than the gaze” and

another saying “I felt I got trapped sometimes near the walls.” A quick fix for the poor

collision response had been to stop any motion commands. So if a player got stuck

54

Figure 5.9: Graph of performance measures. Shows performance of Mouse/Voice versus
Gaze/Keyboard in terms of rabbis shot, coins collected and speed maze was traversed.

colliding with a wall the walking or running motion would be automatically stopped.

One participant commented on this “I found it annoying that the motion stopped a

while after I told it to walk. I felt I had to say walk too many times.”

The fact that a smoothing filter had not been applied to the gaze data was com-

mented on by one participant who said it “was difficult to control as the cross hair

jumped around the screen too much.”

Voice recognition was also commented upon. One participant said it “took a while

to get used to since the responsiveness from the voice input was a bit slower than

mouse and keyboard” and another saying “using the voice commands felt slower than

pressing a key.”

One participant who found the gaze aiming helpful commented that “the gaze

worked well at targeting the rabbits to be shot”. Another commented favourably on

the gaze camera saying “I really liked the rotation movement (left/right) of the gaze

camera. It felt natural to look left when I wanted to go left, was nice, could be useful in

games.” A participant commented on Gaze/Voice input in general saying “experiment

felt weird but was interesting.”

5.2.2 Mouse/Voice Versus Gaze/Keyboard

Since only three participants took part in this study it is not possible to analyse the

results in a statistically meaningful way. Figure 5.9 shows performance of Mouse/Voice

55

versus Gaze/Keyboard. In related t-tests looking at the differences between rabbits

killed (T (df = 2) = 0.099, P > 0.1, two tailed), coins collected (T (df = 2) = 0.574,

P > 0.1, two tailed) or speed (T (df = 2) = 0.04, P > 0.1, two tailed) no statistically

significant difference was found. Perhaps if more participants had been involved in the

study a more definitive trend may have occurred.

When asked which type was easier and which was more enjoyable two of the three

opted for Mouse/Voice. Interestingly the only participant of the group to have had

experience of eye trackers in the past deemed Gaze/Keyboard to be both easier and

more enjoyable.

5.3 Appraisal of Results

From the results it is clear that mouse and keyboard performed better than gaze and

voice. The primary problem seems to have been difficulty in navigation. The collision

response appears to be the main problem in this regard. Had there been time to

code the collision response so that the colliding player would smoothly travel along

the wall rather than stop entirely this would not have been such a major issue. Other

problems noted by users included the delay between issuing a voice command and the

game reacting to this command. This is one of the facets of voice recognition and it is

difficult to see how this could have been avoided in this game at least.

Despite the negative effect these problems had on players ability to navigate around

the game easily, 75 % of the participants found gaze and voice the more enjoyable form

of interaction. There was also a significant difference in how immersed the participants

felt playing with gaze and voice as oppsed to mouse and keyboard.

56

Chapter 6

Conclusions & Future Work

This dissertation set out to create a game which could be controlled using gaze and

voice, build a framework with which it could be evaluated and to run a user trial.

The framework was implemented as a scalable tool and having been designed in an

object orientated way it could easily be used with many other types of games and even

different input types.

The game itself was implemented but not without its problems as discussed in

Sections 4.3 and 5.3. The greatest problem being a poor collision response which could

have been avoided had it been discovered earlier by means of a pilot study. It is difficult

to say whether or not gaze and voice could compete with mouse and keyboard as an

input modality with the results achieved. Although others in the past, such as Leyba

and Malcolm [29], have reported similarly disappointing results when comparing gaze

against more common input mechanisms, gaze and voice would have assuredly done

better had these collision problems been resolved in a more satisfactory manner.

However some promising results were achieved. The gaze and voice option was

selected by most participants as the more enjoyable and more immersive form of inter-

action in the study. This is a common trend of studies involving gaze based interaction

in video games. Participants in trials run by Jönsson [32] and Smith and Graham [33]

reported similar positive feelings towards gaze interaction. Perhaps it is only a novelty

factor but it does show that people are interested in this alternative form of computer

interaction.

There were no game sounds used in the created game and the user evaluation took

57

place in a sound proof room. This was to counteract any ill effects background noise

may have had by creating false positive recognitions. This is obviously not an ideal

gaming scenario. Further work could look at the effects of background noise on voice

recognition in games and how to overcome it.

Most previous studies looking at gaze interaction, including Jönsson [32], Smith

and Graham [33], Dorr et al. [36], have adapted open source games to work with gaze

data. A few exceptions include Isokoski and Martin [34] and Castellina and Corno [37]

who created game scenarios to compare different input types. Although adapting open

source games reduces the implementation time required, these games were originally

created with mouse and keyboard in mind. So the adapted game is restricted to using

gaze as a replacement for the mouse rather than an input device in its own right. The

gaze input acting only as a mouse emulator.

When a game is developed from scratch it should be free of this restriction. Un-

fortunately this was not the case in this study. Perhaps the goal of comparing gaze

and voice directly against mouse and keyboard unwittingly manifested this idea on the

project. A further study could exploit the way we use gaze and voice in the real world

to create a novel, fun video game. Rather than comparing directly against mouse and

keyboard the game experience itself could be measured. This could be done using a

game experience questionnaire such as described by IJsselsteijn et al. [51].

Another area that might be worth investigating could be how the animation and

AI of game characters could be adapted to react to the player’s gaze and voice. More

socially realistic scenarios could be created if game characters responded in appropriate

ways to the tone of the player’s voice and/or the focus of their gaze.

58

Appendix A

User Trial Questionnaires

A.1 Background Questionnaire

Please, tick the appropriate boxes:

Gender: Male f Female f

Age:

Profession:

Have you or anyone in your family suffered from epilepsy?

Yes f No f

How would you describe your vision?

Normal f Corrected-to-Normal f Contact lenses f Glasses f

Do you have any other eye deficiencies?

59

Have you ever used an eye tracker before?

Yes f No f

How would you rate your expertise in playing computer games?

Give a rating between 1 and 7. 1 being very poor and 7 being very good

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How often do you play video games?

Never f A few times a year f Every month f Every week f Daily f

Which type of game do you most like to play?

FPS f Role Playing f Sports f Racing f Other f

If other please state:

Which platform do you use to play games on?

Do not f PC/Mac f Wii f XBox f PlayStation f Other f

If other please state:

What kinds of input devices have you used?

Mouse f Joystick f Gamepad f Other f Do not play f

If other please state:

60

A.2 Post-User Trial Questionnaire

Please, tick the appropriate boxes:

What type of interaction was used?

Mouse/Keyboard f Gaze/Voice f Mouse/Voice f Gaze/Keyboard f

How easy or difficult did you find menu navigation?

Give a rating between 1 and 7. 1 being very difficult and 7 being very easy.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How easy or difficult did you find moving through the game?

Give a rating between 1 and 7. 1 being very difficult and 7 being very easy.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How easy or difficult was it to collect coins?

Give a rating between 1 and 7. 1 being very difficult and 7 being very easy.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How easy or difficult was it to shoot rabbits?

Give a rating between 1 and 7. 1 being very difficult and 7 being very easy.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How useful was the game map in completing the game?

Give a rating between 1 and 7. 1 being very useless and 7 being very useful.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How well do you think you played?

Give a rating between 1 and 7. 1 being very poor and 7 being very good.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

61

How much control did you feel you had?

Give a rating between 1 and 7. 1 being very little control and 7 being a lot of control.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How natural did the controls feel?

Give a rating between 1 and 7. 1 being very unnatural and 7 being very natural.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How difficult did you find the game?

Give a rating between 1 and 7. 1 being very difficult and 7 being very easy.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How fast did you play the game?

Give a rating between 1 and 7. 1 being very slow and 7 being very fast.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How precise did the game react to your controls?

Give a rating between 1 and 7. 1 being not precise at all and 7 being very precise.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How much did you enjoy the game?

Give a rating between 1 and 7. 1 being not at all and 7 being very much.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How much effort was it to play the game?

Give a rating between 1 and 7. 1 being not much effort at all and 7 being a lot of effort.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

How immersive was the game?

Give a rating between 1 and 7. 1 being not very immersive and 7 being very immersive.

1 f 2 f 3 f 4 f 5 f 6 f 7 f

62

A.3 Comparison Questionnaire

Please, tick the appropriate boxes:

Which interaction type was easier to use?

Game in experiment one f Game in experiment two f

Which interaction type was more enjoyable to use?

Game in experiment one f Game in experiment two f

Any additional comments:

63

Appendix B

User Evaluation Game Instructions

B.1 Mouse & Keyboard Instructions

B.1.1 Game Menu

To navigate through the menu (shown in Figure B.1) move the cursor over the menu

button you wish to select and click Enter on the keyboard. For the user trial you will

be asked to practice first using the demo version of the game, which you may do as

long as you wish. Once you are happy with the controls the trial will begin.

• To play the demo game, select “Demo” and then “Mouse & Keyboard”.

• To play the game and start the user trial proper, select “Play” and then “Mouse

& Keyboard”.

Figure B.1: Menu screen.

64

Figure B.2: Coins to be collected and rabbits to be shot.

B.1.2 Game

Objective

The objective of the game is to navigate your way through a maze and find the exit in

the shortest time possible. You should also collect as many coins and shoot as many

rabbits as you possibly can on your way to the exit. You will receive 10 points for

collecting a coin and 10 points for shooting a rabbit. There is a time limit of eight

minutes for the game.

Navigation

To change the view you are facing move your mouse around. Move it left to shift the

view to the left, move it right to shift the view to the right, move it up to shift the

view upwards and so on.

To navigate around the maze you can use the arrow keys to move forwards, back-

wards, left or right at a walking pace. To increase your speed to a run you can hold

down the Shift key.

To collect a coin move to its general vicinity and it will be automatically collected

and the points awarded to you. To shoot a rabbit aim the cross hairs at him and click

the Enter key. Coins to be collected and rabbits to be shot are shown in Figure B.2.

To help you navigate around the maze a little easier there is a map you can bring

up. The map shown in Figure B.3 will show you were you have been. The red arrow

indicates where you currently are and where you are facing and the green bar indicates

65

Figure B.3: Shows (left) map displayed on screen and (right) maze exit.

where the exit is located. The map will only show the places in the maze you have

been. So unless you have found the exit it will not appear on the map. To bring up

the map press the M key on the keyboard.

The exit of the maze is shown in Figure B.3. It will automatically open when you

stand near it. Once the door opens the game is over. If you want to pause the game

at any stage, click the Esc key. This will bring up the Pause Menu which can be

navigated like any other menu.

66

B.1.3 Summary of Controls

Action Mouse Keyboard
Shift view up Move mouse upwards -
Shift view down Move mouse downwards -
Shift view left Move mouse to the left -
Shift view right Move mouse to the right -
Move forwards - Up arrow key
Move backwards - Down arrow key
Move left - Left arrow key
Move right - Right arrow key
Move faster/run - Hold down Shift key
To fire bullet Aim with mouse Enter key
To show or hide map - M key
To pause game - Esc key

Table B.1: Mouse & keyboard game commands.

Action Mouse Keyboard
To select a menu item Hold mouse over menu item Enter key

Table B.2: Mouse & keyboard menu commands.

67

B.2 Gaze & Voice Instructions

B.2.1 Game Menu

To navigate through the menu (shown in Figure B.4) look at the menu button you

wish to select (this will move the cursor over the menu button) and say Option into

the microphone. For the user trial you will be asked to practice first using the demo

version of the game, which you may do as long as you wish. Once you are happy with

the controls the trial will begin.

• To play the demo game, select “Demo” and then “Gaze & Voice”.

• To play the game and start the user trial proper, select “Play” and then “Gaze

& Voice”.

B.2.2 Game

Objective

The objective of the game is to navigate your way through a maze and find the exit in

the shortest time possible. You should also collect as many coins and shoot as many

rabbit as you possibly can on your way to the exit. You will receive 10 points for

collecting a coin and 10 points for shooting a rabbit. There is a time limit of eight

minutes for the game.

Figure B.4: Menu screen.

68

Figure B.5: Coins to be collected and rabbits to be shot.

Navigation

To change the view you are facing, move your gaze to either the left or the right of

the screen. So for example if you wish to shift the view to the left, look towards the

left portion of the screen - the view will gradually shift leftward. Likewise to move

the view right, look towards the right portion of the screen. As means of a visual aid,

an arrow will appear on screen indicating the direction the view is shifting toward, as

shown in Figure B.6.

To navigate say Walk into the microphone. This will move you forwards in the

direction you are currently facing. If you wish to move more quickly use the voice

command Run. To halt either walking or running movement use the voice command

Stop.

To collect a coin move to its general vicinity and it will be automatically collected

Figure B.6: Moving the view with your gaze.

69

Figure B.7: Shows (left) map displayed on screen and (right) maze exit.

and the points awarded to you. To shoot a rabbit aim the cross hairs at him (by

looking at him) and say Fire into the microphone. Coins to be collected and rabbits

to be shot are shown in Figure B.5.

To help you navigate around the maze a little easier there is a map you can bring

up. The map shown in Figure B.7 will show you were you have been. The red arrow

indicates where you currently are and where you are facing and the green bar indicates

where the exit is located. The map will only show the places in the maze you have

been. So unless you have found the exit it will not appear on the map. To bring up

the map say Maze into the microphone.

The exit of the maze is shown in figure B.7. It will automatically open when you

stand near it. Once the door opens the game is over. If you want to pause the game at

any stage, say Pause Menu into the microphone. This will bring up the Pause Menu

which can be navigated like any other menu.

70

B.2.3 Summary of Controls

Action Gaze Voice Command
Shift view left Look towards the left of the screen -
Shift view right Look towards the right of the screen -
Move - Say “Walk”
Move faster - Say “Run”
Stop moving - Say “Stop”
To fire bullet Aim with gaze Say “Fire”
To show or hide map - Say “Maze”
To pause game - Say “Pause Menu”

Table B.3: Gaze & voice game commands.

Action Gaze Voice Command
To select a menu item Look at menu item Say “Option”

Table B.4: Gaze & voice menu commands.

71

B.3 Gaze & Keyboard Instructions

B.3.1 Game Menu

To navigate through the menu (shown in Figure B.4) look at the menu button you

wish to select (this will move the cursor over the menu button) and click Enter on the

keyboard. For the user trial you will be asked to practice first using the demo version

of the game, which you may do as long as you wish. Once you are happy with the

controls the trial will begin.

• To play the demo game, select “Demo” and then “Gaze & Keyboard”.

• To play the game and start the user trial proper, select “Play” and then “Gaze

& Keyboard”.

B.3.2 Game

Objective

The objective of the game is to navigate your way through a maze and find the exit in

the shortest time possible. You should also collect as many coins and shoot as many

rabbits as you possibly can on your way to the exit. You will receive 10 points for

collecting a coin and 10 points for shooting a rabbit. There is a time limit of eight

minutes for the game.

Figure B.8: Menu screen.

72

Figure B.9: Coins to be collected and rabbits to be shot.

Navigation

To change the view you are facing, move your gaze to either the left or the right of

the screen. So for example if you wish to shift the view to the left, look towards the

left portion of the screen - the view will gradually shift leftward. Likewise to move

the view right, look towards the right portion of the screen. As means of a visual aid,

an arrow will appear on screen indicating the direction the view is shifting toward, as

shown in Figure B.10.

To navigate around the maze you can use the arrow keys to move forwards, back-

wards, left or right at a walking pace. To increase your speed to a run you can hold

down the Shift key.

To collect a coin move to its general vicinity and it will be automatically collected

and the points awarded to you. To shoot a rabbit aim the cross hairs at him and click

Figure B.10: Moving the view with your gaze.

73

Figure B.11: Shows (left) map displayed on screen and (right) maze exit.

the Enter key. Coins to be collected and rabbits to be shot are shown in Figure B.9.

To help you navigate around the maze a little easier there is a map you can bring

up. The map shown in Figure B.11 will show you were you have been. The red arrow

indicates where you currently are and where you are facing and the green bar indicates

where the exit is located. The map will only show the places in the maze you have

been. So unless you have found the exit it will not appear on the map. To bring up

the map press the M key on the keyboard.

The exit of the maze is shown in figure B.11. It will automatically open when you

stand near it. Once the door opens the game is over. If you want to pause the game

at any stage, click the Esc key. This will bring up the Pause Menu which can be

navigated like any other menu.

74

B.3.3 Summary of Controls

Action Gaze Keyboard
Shift view left Look towards the left of the screen -
Shift view right Look towards the right of the screen -
Move forwards - Up arrow key
Move backwards - Down arrow key
Move left - Left arrow key
Move right - Right arrow key
Move faster/run - Hold down Shift key
To fire bullet Aim with gaze Enter key
To show or hide map - M key
To pause game - Esc key

Table B.5: Gaze & keyboard game commands.

Action Mouse Keyboard
To select a menu item Look at menu item Enter key

Table B.6: Gaze & keyboard menu commands.

75

B.4 Mouse & Voice Instructions

B.4.1 Game Menu

To navigate through the menu (shown in Figure B.8) move the cursor over the menu

button you wish to select and say Option into the microphone. For the user trial you

will be asked to practice first using the demo version of the game, which you may do

as long as you wish. Once you are happy with the controls the trial will begin.

• To play the demo game, select “Demo” and then “Mouse & Voice”.

• To play the game and start the user trial proper, select “Play” and then “Mouse

& Voice”.

B.4.2 Game

Objective

The objective of the game is to navigate your way through a maze and find the exit in

the shortest time possible. You should also collect as many coins and shoot as many

rabbits as you possibly can on your way to the exit. You will receive 10 points for

collecting a coin and 10 points for shooting a rabbit. There is a time limit of eight

minutes for the game.

Figure B.12: Menu screen.

76

Figure B.13: Coins to be collected and rabbits to be shot.

Navigation

To change the view you are facing move your mouse around. Move it left to shift the

view to the left, move it right to shift the view to the right, move it up to shift the

view upwards and so on.

To navigate say Walk into the microphone. This will move you forwards in the

direction you are currently facing. If you wish to move more quickly use the voice

command Run. To halt either walking or running movement use the voice command

Stop.

To collect a coin move to its general vicinity and it will be automatically collected

and the points awarded to you. To shoot a rabbit aim the cross hairs at him (by

looking at him) and say Fire into the microphone. Coins to be collected and rabbits

to be shot are shown in Figure B.13.

To help you navigate around the maze a little easier there is a map you can bring

up. The map shown in Figure B.14 will show you were you have been. The red arrow

indicates where you currently are and where you are facing and the green bar indicates

where the exit is located. The map will only show the places in the maze you have

been. So unless you have found the exit it will not appear on the map. To bring up

the map say Maze into the microphone.

The exit of the maze is shown in figure B.14. It will automatically open when you

stand near it. Once the door opens the game is over. If you want to pause the game at

any stage, say Pause Menu into the microphone. This will bring up the Pause Menu

which can be navigated like any other menu.

77

Figure B.14: Shows (left) map displayed on screen and (right) maze exit.

B.4.3 Summary of Controls

Action Mouse Voice Command
Shift view up Move mouse upwards -
Shift view down Move mouse downwards -
Shift view left Move mouse to the left -
Shift view right Move mouse to the right -
Move - Say “Walk”
Move faster - Say “Run”
Stop Moving - Say “Stop”
To fire bullet Aim with mouse Say “Fire”
To show or hide map - Say “Maze”
To pause game - Say “Pause Menu”

Table B.7: Mouse & voice game commands.

Action Mouse Voice Command
To select a menu item Hold mouse over menu item Say “Option”

Table B.8: Mouse & voice menu commands.

78

Appendix C

User Trial Data

Participant 1 2 3 4 5 6 7 8
Gender Female Male Male Male Male Male Male Male
Age 30 22 30 30 26 33 23 23
Profession Lecturer Student PhD Student PhD Student Student Lecturer Student Student
Previously used eye tracker Yes No No Yes No Yes No No
Gaming expertise 4 7 7 5 6 5 5 6
How often Monthly Daily Weekly Weekly Weekly Weekly A few times a year Daily

Table C.1: Participant background data for mouse/keyboard versus gaze/voice com-
parison.

Participant 1 2 3 4
Input type Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice
Killed rabbits 11 4 8 7 9 7 11 8
Shots taken 13 6 13 9 14 11 28 12
Coins collected 11 6 5 2 8 6 11 10
Map references 19 10 4 3 15 8 13 9
Distance 141 92 74 45 165 58 149 92
Exit found Yes No Yes Yes Yes Yes Yes No
Score 220 100 130 90 170 130 220 180
Time ms 353248 480013 85541 264877 239666 284161 274601 480012
Participant 5 6 7 8
Input type Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice
Killed rabbits 10 6 6 8 16 7 9 6
Shots taken 11 13 7 14 25 12 10 8
Coins collected 8 5 7 6 16 5 7 5
Map references 7 22 5 14 13 4 5 9
Distance 98 70 86 71 198 56 69 102
Exit found Yes No Yes Yes No No Yes No
Score 180 110 130 140 320 120 160 110
Time ms 145450 480007 170249 401836 428199 480009 130823 480000

Table C.2: Participant recorded game data for mouse/keyboard versus gaze/voice com-
parison.

79

Participant 1 2 3 4
Input Type Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice
Menu Navigation Ease (1-7, difficult-easy) 7 3 7 6 7 6 6 6
Game Navigation Ease (1-7, difficult-easy) 6 3 7 6 6 5 4 3
Coin Collection Ease (1-7, difficult-easy) 7 4 7 7 7 6 5 4
Rabbit Shooting (1-7, difficult-easy) 5 6 7 5 7 6 6 5
Map Usefulness (1-7, useless-useful) 7 6 7 7 7 6 4 7
How well played (1-7, poor-well) 5 3 7 5 6 5 4 1
How much control did you have (1-7, little control - lots of control) 6 3 7 7 7 5 5 4
Naturalness of Control (1-7, unnatural - very natural) 7 5 6 6 6 5 5 3
Game difficulty (1-7, difficult-easy) 6 4 6 6 7 6 5 3
How fast did you play (1-7, slow-fast) 6 2 7 4 5 6 5 3
Control Precision (1-7, imprecise-very precise) 5 2 7 6 7 5 4 3
Game Enjoyment (1-7, unenjoyable - enjoyable) 5 4 7 6 6 6 4 3
Effort to play (1-7, little effort - lots of effort) 4 5 1 1 1 2 3 6
Immersive (1-7, not immersive - very immersive) 5 6 4 6 4 5 4 6
Which was easier Mouse/Keyboard Mouse/Keyboard Mouse/Keyboard Mouse/Keyboard
Which was more enjoyable Gaze/Voice Gaze/Voice Gaze/Voice Mouse/Keyboard
Participant 5 6 7 8
Input Type Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice Mouse/Keyboard Gaze/Voice
Menu Navigation Ease (1-7, difficult-easy) 7 6 6 5 7 7 7 6
Game Navigation Ease (1-7, difficult-easy) 7 4 5 3 6 6 6 4
Coin Collection Ease (1-7, difficult-easy) 6 5 5 3 7 5 5 3
Rabbit Shooting (1-7, difficult-easy) 6 7 4 4 5 7 4 6
Map Usefulness (1-7, useless-useful) 6 5 4 5 6 7 3 6
How well played (1-7, poor-well) 7 3 5 3 6 3 5 3
How much control did you have (1-7, little control - lots of control) 6 4 5 3 6 5 5 5
Naturalness of Control (1-7, unnatural - very natural) 6 4 5 2 6 5 4 4
Game difficulty (1-7, difficult-easy) 7 5 6 3 2 3 7 4
How fast did you play (1-7, slow-fast) 6 3 6 2 6 2 6 3
Control Precision (1-7, imprecise-very precise) 7 3 6 3 6 4 4 5
Game Enjoyment (1-7, unenjoyable - enjoyable) 6 6 3 2 3 4 6 5
Effort to play (1-7, little effort - lots of effort) 1 3 2 6 3 5 3 5
Immersive (1-7, not immersive - very immersive) 4 5 5 4 3 6 3 6
Which was easier Mouse/Keyboard Mouse/Keyboard Mouse/Keyboard Mouse/Keyboard
Which was more enjoyable Gaze/Voice Mouse/Keyboard Gaze/Voice Gaze/Voice

Table C.3: Participant questionnaire answers for mouse/keyboard versus gaze/voice
comparison.

Participant A B C
Gender Male Male Male
Age 24 38 26
Profession Student Researcher Student
Previously used eye tracker No Yes No
Gaming expertise 7 1 6
How often Daily Never Weekly

Table C.4: Participant background data for mouse/voice versus gaze/keyboard com-
parison.

Participant A B C
Input Type Mouse/Voice Gaze/Keyboard Mouse/Voice Gaze/Keyboard Mouse/Voice Gaze/Keyboard
Killed Rabbits 16 12 8 6 7 14
Shots taken 24 53 9 7 10 48
Coins collected 15 8 4 3 7 10
Map references 7 28 10 6 8 26
Distance 217 122 94 174 76 176
Exit found Yes No No Yes Yes No
Score 310 200 120 90 140 240
Time ms 339138 480010 480007 366324 200286 480004

Table C.5: Participant recorded game data for mouse/voice versus gaze/keyboard com-
parison.

80

Participant A B C
Menu Navigation Ease (1-7, difficult-easy) 6 7 2 6 7 4
Game Navigation Ease (1-7, difficult-easy) 5 3 2 6 6 5
Coin Collection Ease (1-7, difficult-easy) 5 4 4 7 5 6
Rabbit Shooting (1-7, difficult-easy) 6 3 6 7 7 6
Map Usefulness (1-7, useless-useful) 7 6 3 5 7 7
How well played (1-7, poor-well) 5 2 2 4 7 3
How much control did you have (1-7, little control - lots of control) 4 3 2 6 7 3
Naturalness of Control (1-7, unnatural - very natural) 4 3 2 6 5 4
Game difficulty (1-7, difficult-easy) 7 5 2 5 6 5
How fast did you play (1-7, slow-fast) 4 1 2 4 7 5
Control Precision (1-7, imprecise-very precise) 5 3 2 6 7 3
Game Enjoyment (1-7, unenjoyable - enjoyable) 5 3 4 6 5 3
Effort to play (1-7, little effort - lots of effort) 3 2 6 2 5 2
Immersive (1-7, not immersive - very immersive) 4 4 4 4 7 6
Which was easier Mouse/Voice Gaze/Keyboard Mouse/Voice
Which was more enjoyable Mouse/Voice Gaze/Keyboard Mouse/Voice

Table C.6: Participant questionnaire answers for mouse/voice versus gaze/keyboard
comparison.

.

81

Bibliography

[1] M. Sanchanta, “Nintendos wii takes console lead,” Financial Times, 2007.

[2] R. Jacob, “What You Look At Is What You Get: Eye Movement-Based Interac-

tion Techniques,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 1990.

[3] A. Duchowski, Eye Tracking Methodology, Theory and Practice. Springer, sec-

ond ed., 2007.

[4] L. Hermann, “Eine Erscheinung simultanen Contrastes,” Pflügers Archiv European

Journal of Physiology, vol. 3, no. 1, pp. 13–15, 1870.

[5] Wikipedia, “Grid Illusion.” Accessed 28 August 2009 at. http://en.wikipedia.

org/wiki/Grid_illusion.

[6] T. Eye Health, “Eye Anatomy: Parts of The Eye.” Accessed 28 August 2009 at.

http://www.thirdeyehealth.com/eye-anatomy.html.

[7] R. Haber and M. Hershenson, The Psychology of Visual Perception. Holt Rinehart

and Winston Inc., New York, 1973.

[8] D. Robinson, “The Oculomotor Control System: A Review,” in Proceedings of

IEEE, pp. 1032 – 1049, 1968.

[9] W. L. Shebilske and D. Fisher, “Understanding Extended Discourse Through the

Eyes: How and Why,” 1983.

[10] R. Leigh and D. Zee, The Neurology of Eye Movements. F. A. Davis, Philadelphia,

second ed., 1991.

82

http://en.wikipedia.org/wiki/Grid_illusion
http://en.wikipedia.org/wiki/Grid_illusion
http://www.thirdeyehealth.com/eye-anatomy.html

[11] D. Hubel, “Eye, Brain, and Vision,” in Scientific American Library, 1988.

[12] R. H. S. Carpenter, Movements of the Eyes. Pion, London, 1977.

[13] D. E. Irwin, “Visual Memory Within and Across Fixations,” 1992.

[14] Skalar, “Scleral Search Coils and Accessories.” Accessed 28 August 2009 at. http:

//www.skalar.nl/index2.html.

[15] Metrovision, “Dynamic EOG.” Accessed 28 August 2009 at. http://www.

metrovision.fr/mv-eo-notice-us.html.

[16] Tobii, “Tobii X60 & X120 Eye Trackers Product Leaflet,” 2009.

[17] SR-Research, “Headmount Angle.” Accessed 28 August 2009 at. http://

sr-research.com/images/headmount_angle_sml.jpg.

[18] I. Starker and R. Bolt, “A Gaze-Responsive Self-Disclosing Display,” in CHI ’90:

Proceedings of the SIGCHI conference on Human factors in computing systems,

(New York, NY, USA), pp. 3–10, ACM, 1990.

[19] S. Hillaire, A. Lécuyer, R. Cozot, and G. Casiez, “Depth-of-Field Blur Effects for

First-Person Navigation in Virtual Environments,” IEEE Computer Graphics and

Applications, vol. 28, no. 6, pp. 47–55, 2008.

[20] A. Duchowski, N. Cournia, and H. Murphy, “Gaze-Contingent Displays: A Re-

view,” in CyberPsychology & Behavior, pp. 621–634, 2004.

[21] C. O’Sullivan and J. Dingliana, “Collisions and Perception,” ACM Trans. Graph.,

vol. 20, no. 3, pp. 151–168, 2001.

[22] C. O’Sullivan, J. Dingliana, and S. Howlett, “Eye-movements and Interactive

Graphics,” The Mind’s Eyes: Cognitive and Applied Aspects of Eye Movement

Research, 2002.

[23] Q. Mehdi, X. Zeng, and N. Gough, “An interactive speech interface for virtual

characters in dynamic environments,” 2004.

83

http://www.skalar.nl/index2.html
http://www.skalar.nl/index2.html
http://www.metrovision.fr/mv-eo-notice-us.html
http://www.metrovision.fr/mv-eo-notice-us.html
http://sr-research.com/images/headmount_angle_sml.jpg
http://sr-research.com/images/headmount_angle_sml.jpg

[24] J. Larson, VoiceXML: Introduction to Developing Speech Applications. Prentice

Hall PTR Upper Saddle River, NJ, USA, 2002.

[25] SpeechTechMag, “Speech Technologies Make Video Games Complete.” Accessed

28 August 2009 at. http://www.speechtechmag.com/Articles/ReadArticle.

aspx?ArticleID=29432.

[26] F. Laramee, “Speech Recognition.” Accessed 31 August 2009 at. http://www.

gignews.com/fdlspeech1.htm.

[27] P. Hämäläinen, T. Mäki-Patola, V. Pulkki, and M. Airas, “Musical computer

games played by singing,” in Proc. 7 th Int. Conf. on Digital Audio Effects

(DAFx04), Naples, 2004.

[28] P. Isokoski, M. Joos, O. Spakov, and B. Martin, “Gaze controlled games,” Uni-

versal Access in the Information Society, 2009.

[29] J. Leyba and J. Malcolm, “Eye Tracking as an Aiming Device in a Computer

Game,” in Course work (CPSC 412/612 Eye Tracking Methodology and Applica-

tions by A.Duchowski), Clemson University, 2004.

[30] S. Zhai, C. Morimoto, and S. Ihde, “Manual and gaze input cascaded (magic)

pointing,” in CHI ’99: Proceedings of the SIGCHI conference on Human factors

in computing systems, (New York, NY, USA), pp. 246–253, ACM, 1999.

[31] A. Kenny, H. Koesling, D. Delaney, S. McLoone, and T. Ward, “A Preliminary

Investigation into Eye Gaze Data in a First Person Shooter Game,” in Proceedings

of the 19th European Conference on Modelling and Simulation, 2005.

[32] E. Jönsson, “If Looks Could Kill - An Evaluation of E Tracking in Computer

Games,” Master’s thesis, KTH Royal Institute of Technology, Sweden, 2005.

[33] J. D. Smith and T. C. N. Graham, “Use of Eye Movements for Video Game

Control,” in Proceedings of the 2006 ACM SIGCHI International Conference on

Advancements in Computer Entertainment Technology, 2006.

84

http://www.speechtechmag.com/Articles/ReadArticle.aspx?ArticleID=29432
http://www.speechtechmag.com/Articles/ReadArticle.aspx?ArticleID=29432
http://www.gignews.com/fdlspeech1.htm
http://www.gignews.com/fdlspeech1.htm

[34] P. Isokoski and B. Martin, “Eye Tracker Input in First Person Shooter Games,” in

Proceedings of the 2nd COGAIN Annual Conference on Communication by Gaze

Interaction: Gazing into the Future, pp. 78–81, 2006.

[35] P. Isokoski, A. Hyrskykari, S. Kotkaluoto, and B. Martin, “Gamepad and Eye

Tracker Input in FPS Games: data for the first 50 min,” in Proceedings of CO-

GAIN, pp. 10–15, 2007.

[36] M. Dorr, M. Böhme, T. Martinetz, and E. Brath, “Gaze beats mouse: a case

study,” in Proceedings of COGAIN, pp. 16–19, 2007.

[37] E. Castellina and F. Corno, “Multimodal Gaze Interaction in 3D Virtual Environ-

ments,” in Proceedings of the 4th COGAIN Annual Conference on Communication

by Gaze Interaction, Environment and Mobility Control by Gaze, 2008.

[38] T. Wilcox, M. Evans, C. Pearce, N. Pollard, and V. Sundstedt, “Gaze and Voice

Based Game Interaction: The Revenge of the Killer Penguins,” in Proceedings

of International Conference on Computer Graphics and Interactive Techniques,

2008.

[39] Tobii, “Tobii T60 & T120 Eye Trackers Product Leaflet,” 2009.

[40] Acuity-ETS, “Acuity eye tracking solutions.” Accessed 30 August 2009 at. http:

//www.acuity-ets.com/.

[41] Tobii, “Tobii SDK Product Description,” 2009.

[42] T. Technology, “Tobii T/X Series Eye trackers Product Description.” Accessed

30 August 2009 at. http://www.tobii.com/archive/files/17995/Tobii_TX_

Series_Eye_Trackers_product_description.pdf.aspx.

[43] MSDN, “Speech API overview.” Accessed 31 August 2009 at. http://msdn.

microsoft.com/en-us/library/ms720151(VS.85).aspx.

[44] GarageGames, “Game Development Tools and Software.” Accessed 30 August

2009 at. http://www.garagegames.com/.

85

http://www.acuity-ets.com/
http://www.acuity-ets.com/
http://www.tobii.com/archive/files/17995/Tobii_TX_Series_Eye_Trackers_product_description.pdf.aspx
http://www.tobii.com/archive/files/17995/Tobii_TX_Series_Eye_Trackers_product_description.pdf.aspx
http://msdn.microsoft.com/en-us/library/ms720151(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms720151(VS.85).aspx
http://www.garagegames.com/

[45] Unity, “UNITY: Game Development Tool.” Accessed 30 August 2009 at. http:

//unity3d.com/.

[46] OGRE, “OGRE - Open Source 3D Graphics Engine.” Accessed 30 August 2009

at. http://www.ogre3d.org.

[47] MSDN, “COM.” Accessed 31 August 2009 at. http://msdn.microsoft.com/

en-us/library/aa139694.aspx.

[48] MSDN, “.NET/COM Migration and Interoperability.” Accessed 31 August 2009

at. http://msdn.microsoft.com/en-us/library/ms978506.aspx.

[49] V. Sundstedt, M. Whitton, and M. Bloj, “The Whys, How Tos, and Pitfalls of

User Studies (Invited Course),” in ACM SIGGRAPH, ACM, August 2009.

[50] R. Grootjans, XNA 2.0 Game Programming Recipes: A Problem-Solution Ap-

proach. Apress Berkely, CA, USA, 2008.

[51] W. IJsselsteijn, Y. de Kort, and K. Poels, “The Game Experience Questionnaire:

Development of a self-report measure to assess the psychological impact of digital

games,” Manuscript in preparation, 2008.

86

http://unity3d.com/
http://unity3d.com/
http://www.ogre3d.org
http://msdn.microsoft.com/en-us/library/aa139694.aspx
http://msdn.microsoft.com/en-us/library/aa139694.aspx
http://msdn.microsoft.com/en-us/library/ms978506.aspx

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Objectives
	Dissertation Layout

	Chapter Background & Related Work
	Human Vision
	Eye Movements
	Eye Tracking Technology
	Eye Tracking Categorisations
	Calibration
	Fixation Detection & Eye Movement Analysis
	Eye Tracking Systems

	Voice Recognition in Gaming
	Gaze in Gaming
	Game Genre Implications for Gaze Input
	Gaze Input In Gaming

	Gaze & Voice in Gaming

	Chapter Design
	Hardware
	Development Tools
	Tobii SDK
	Microsoft Speech API
	Game Development Tools
	The Component Object Model

	Game Concept
	Game Framework
	Asset Loading System
	Asset Management System
	Menu System
	Game Data Storage System
	Map Generation System
	Eye Tracking System
	Voice Recognition System
	Input Handling System
	Camera System
	Collision Detection System
	Game Management System

	Chapter Implementation
	Framework Implementation
	Update Cycle
	Draw Cycle
	Threading
	Map Generation

	Camera Implementation
	Mouse Camera
	Gaze Camera
	Updating Camera Position

	Implementation Issues

	Chapter Evaluation
	Experimental Design of User Trial
	Game Layout
	Experimental Setup
	Questionnaires
	Other Materials
	Participants
	Procedure

	Results
	Mouse/Keyboard Versus Gaze/Voice
	Mouse/Voice Versus Gaze/Keyboard

	Appraisal of Results

	Chapter Conclusions & Future Work
	Appendix User Trial Questionnaires
	Background Questionnaire
	Post-User Trial Questionnaire
	Comparison Questionnaire

	Appendix User Evaluation Game Instructions
	Mouse & Keyboard Instructions
	Game Menu
	Game
	Summary of Controls

	Gaze & Voice Instructions
	Game Menu
	Game
	Summary of Controls

	Gaze & Keyboard Instructions
	Game Menu
	Game
	Summary of Controls

	Mouse & Voice Instructions
	Game Menu
	Game
	Summary of Controls

	Appendix User Trial Data
	Bibliography

