
Dynamic Object Avoidance.

by

Barry O Sullivan, B.A.Mod Computer Science

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science

University of Dublin, Trinity College

September 2009

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for a

degree at this, or any other University, and that unless otherwise stated, is my own work.

Barry O Sullivan

September 5, 2009

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Barry O Sullivan

September 5, 2009

Acknowledgments

I’d like to say thanks to my friends, my family and my girlfriend for all their support. I couldn’t have

done this without you.

Barry O Sullivan

University of Dublin, Trinity College

September 2009

iv

Dynamic Object Avoidance.

Barry O Sullivan, M.Sc.

University of Dublin, Trinity College, 2009

Supervisor: John Dingliana

This project will implement a generic system whereby large numbers of dynamic agents will be

able to detect and react to dynamic world geometry. This system will be built on the foundation of

a physics engine and will feature simple agents with basic behaviors. These agents will be given a

sense of perception about their environment and the ability to avoid collisions with other agents and

objects. This feature will be implemented via CUDA, a parallel computing architecture that enables

developers to make use of the parallel nature of modern GPU’s. These features will be tested on a

variety of maps and situations in order to ascertain its viability as an addition to modern games.

v

Contents

Acknowledgments iv

Abstract v

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

1.1 Motivation . 1
1.2 Dissertation Overview . 1
1.3 Project Layout . 2

Chapter 2 State of the Art 3

2.1 Macroscopic Crowd Simulation . 3
2.1.1 Advantages of Macroscopic Systems . 4
2.1.2 Disadvantages of Macroscopic systems . 4

2.2 Microscopic Crowd Simulation . 5
2.2.1 Advantages of Microscopic systems . 6
2.2.2 Disadvantages of Microscopic systems . 6

2.3 Chosen Simulation Model . 6
2.4 Microscopic model breakdown . 7

2.4.1 Navigation . 7
2.4.2 Nearest Neighbor/Spatial divisioning . 8
2.4.3 Object Avoidance . 9
2.4.4 World Representation . 11

2.5 State of the Art in games . 12
2.6 Physics Engines . 12
2.7 Analysis . 13

vi

Chapter 3 Design 14

3.1 Requirements . 14
3.2 Chosen Modules . 14

3.2.1 Path Finding . 15
3.2.2 Nearest neighbour/Spatial Divisioning . 15
3.2.3 World Representation . 16
3.2.4 Object avoidance . 16
3.2.5 Overall Framework . 16

Chapter 4 Implementation 17

4.1 Framework . 17
4.2 Abstraction of the World . 17

4.2.1 Physics representation . 18
4.2.2 PhysX Optimizations . 19

4.3 Agents . 19
4.3.1 Steering Behaviors . 20
4.3.2 Decision making . 21

4.4 Navigation . 22
4.4.1 Navigation Meshes . 23
4.4.2 Path Finding Algorithm . 24
4.4.3 Path Finding Module . 25

4.5 MapMaker . 26
4.5.1 Saving maps . 27
4.5.2 Loading maps . 27

4.6 Collision Avoidance . 28
4.6.1 Perception range . 28
4.6.2 Avoidance Forces . 29

4.7 CUDA . 31
4.7.1 Overview . 31
4.7.2 CUDA avoidance overview . 33

4.8 Rendering . 36

Chapter 5 Evaluation and Discussion 37

5.1 GPU versus CPU . 37
5.2 System performance . 37

5.2.1 High Density Environment . 38
5.2.2 Cluttered Environment . 38
5.2.3 Indoor map . 39

vii

Chapter 6 Conclusions and Future Work 44

6.1 Conclusions . 44
6.2 Future Work . 44

6.2.1 Congestion avoidance . 44
6.2.2 3rd person testing . 45
6.2.3 Wall avoidance . 45
6.2.4 Further convex face simplification . 45
6.2.5 Chaotic scenarios . 45

Bibliography 46

viii

List of Tables

ix

List of Figures

4.1 The resulting system framework . 18
4.2 The bounding volumes used to represent agents and objects 19
4.3 An agent turning towards a point as handled by its lower level steering behaviors . . . 21
4.4 An example of a navigation graph with nodes and edges 23
4.5 An example of a navigation mesh with edges highlighted in white 24
4.6 The resulting Path Finding Module . 26
4.7 A series of points converted to a convex face . 27
4.8 2D map in C-sharp loaded as a 3D physical map, including nodes and edges for navi-

gation. 28
4.9 Example of an agents perception range, modeled as a rectangle that an agent projects

in front of itself. 29
4.10 An agent generating repulsive forces for 2 agents within its field of influence taking into

account their angle of direction and speed. 30
4.11 Prototype C-sharp application showing the avoidance equations in effect. Please note

the avoidance behaviors and the formation of lanes. 31
4.12 Nvidia GeForce 8 graphics-processor architecture. 32
4.13 Agents j’s location in world space, then translated into Agent i’s local space for com-

parison. 35

5.1 GPU and CPU performance comparison . 38
5.2 2000 dynamic agents in an enclosed area . 39
5.3 2000 dynamic agents in an enclosed area . 39
5.4 200 agents avoiding 600 randomly shaped boxes . 40
5.5 200 agents avoiding 600 randomly shaped boxes . 41
5.6 Plan view of the industrial map . 41
5.7 Snapshot of a busy corridor . 42
5.8 Snapshot of agents navigating the map while avoiding obstacles 43

x

Chapter 1

Introduction

1.1 Motivation

In recent years, games have benefited from the many advances in physics engines and middleware
technologies, it is now difficult to find a game that does not employ some form of physics engine.
The complexity of these engines has increased dramatically, with the majority of physics engines now
capable of handling objects numbers in the thousands. Despite these vast improvements, little to no
progress has been made in the field of agent awareness. Agents are as unaware of their environment as
they were five years ago, they have no concept of dynamic objects. When these objects were sparse,
this was rarely an issue, but it is now common place to find agents getting stuck behind dynamic
geometry, especially as the complexity of these dynamic environments increases. These scenarios need
to be avoided, they make the resulting game seem unprofessional and they break player immersion.
Immersion is an integral part of any gaming experience, it lets players feel as if they are part of the
game world. This increases the enjoyment and playability of said game. When this immersion is
broken it can be quite jarring, resulting in players becoming uneasy. To address this, agents need to
become more aware of their environment and react accordingly.

1.2 Dissertation Overview

This project will implement a generic system whereby large numbers of dynamic agents will be able
to detect and react to dynamic world geometry. This system will be built on the foundation of a
physics engine and will feature simple agents with basic behaviors. These agents will given a sense of
perception about their environment and the ability to avoid collisions with other agents and objects.
This is generally performed via a nearest neighbor query, but they are expensive to implement on a
CPU, this is most likely why agents are not given proper understanding of their world as it is too
expensive. This is why this project will attempt to port the nearest neighbor and avoidance code to
the GPU via CUDA, a parallel computing architecture that enables developers to make use of the

1

parallel nature of modern GPU’s.

This project will create a world with the following features:

• Individualistic agent modeling to simulate realistic, independent agents

• A physics engine to simulate a large, rigid body based world that includes both static and
dynamic objects

• Vast numbers of dynamic agents and objects

• A robust description of the world for fast path planning and agent navigation

• CUDA implemented spatial divisioning algorithm for fast/efficient nearest neighbor queries

• CUDA based agent collision avoidance and anticipation

1.3 Project Layout

The layout of this thesis is as follows: Chapter 2 reviews the current state of the art within the
field of agent simulation, specifically the techniques used to simulate large numbers of agents that
react to their environment. Chapter 3 outlines the original design of the system. Chapter 4 details
the implementation of this project, as well as the problems faced. Chapter 5 critically analyzes the
implementation and discusses both the positive and negative outcomes of this system as well the
results it offers. Chapter 6 presents the project conclusions and highlights possible future work that
could be relevant to the project.

2

Chapter 2

State of the Art

Realistic crowd simulation is a heavily researched area. Over the years many diverging methodologies
have been put forward, these range from looking at the problem on a per agent basis to looking at
the problem as that of global crowd dynamics, where the actions of one agent are irrelevant. This
chapter will give a brief overview of all the techniques available for multi-agent navigation, including
techniques based on path planning and physics based agent dynamics.

2.1 Macroscopic Crowd Simulation

In macroscopic systems, a crowd is modeled as a whole, not a concentration of individual agents.
Macroscopic crowd behaviors have been simulated in various ways. The earliest method is based on
the equation for fluid simulation, where an agent is simply a component of a much larger Macroscopic
system, such as a fluid of a gas. Others include generating density fields on a per area basis, which
are then used to guide agents towards their goal.

Helbing [1] was one of the first to model the behavior of pedestrians as a gas-kinetic model. The
underlying model is that of a fluid simulation, but the equations have been modified to handle agent
characteristics. In fluid simulation a mechanism exists for reaching equilibrium, which occurs through
the interaction process. For crowd simulation, this mechanism was altered so that equilibrium is
reached when agents are moving at their desired velocity. This modification enabled Helbing to sim-
ulate dynamic crowd flows, which to this point had been difficult to achieve. Interestingly, emergent
behaviors were also noted in this model, such as lane formation, which can be observed in congested
pedestrian areas.

Bauer at al [2] uses a Macroscopic model to simulate crowds in public transport areas after large
events. This model uses Helbings Macroscopic crowds for simulating crowd flows and for ascertaining
likely areas of congestion. Helbings model has been modified so that agents have concepts of impa-
tience and discomfort, depending on congestion and progression rate. This simulation was run on a

3

model of a train station and it simulated a massive influx of agents to the station. According to this
paper, the simulation was effective, but lacked real world data to compare against their results. This
work is of interest as public areas are often represented in games, especially during times of disorder
and congestion.

Hughes [3] developed an alternative Macroscopic approach to Helbing. His paper presented a theoret-
ical framework for understanding the movement of large crowds. This paper represents pedestrians
(agents) as a continuous density field, which is driven by ay an evolving potential function that guides
the density field optimally towards its goal. In this case agents are not modeled as discrete individu-
als, they are entities that optimize their behavior to reach goals within the density field. The theory
presented does not govern the behavior of individual pedestrians, but the behaviors of large groups.

Treuille [4] presents a real-time simulation of crowds based on continuum dynamics, based on the
work by Hughes. Motion is viewed as a per particle energy minimization with a continuum perspec-
tive on the system. Agents in this model have a discomfort field, which is a field they project around
themselves, it represents the distance they would rather be from other agents if they can. The world
is represented as a uniform grid, with a density field calculated for each cell. These cells are merged
to give an overall density field. This model works under the concept of groups, at each update step
it is only possible to calculate the movements for one group, the stipulation being that all agents in
a group are going in the same direction. Obstacles are also included in the density field, so agents
automatically avoid them. This method is capable of simulating 10,000 agents in real-time, but groups
of agents can only travel in one of 4 directions.

2.1.1 Advantages of Macroscopic Systems

The main advantage of Macroscopic agent simulation is that it can simulate vast quantities of agents
through relatively simple means, the governing equations can be easily modified to express different
crowd dynamics. Through these means various types of games can be simulated, from RTS games
(Real-Time Strategy) to heavily populated urban environments (Sand Box style games, eg. GTAIV).
These agents are also able to avoid dynamic obstacles, which is essential.

2.1.2 Disadvantages of Macroscopic systems

The main disadvantage of Macroscopic agent simulation is the loose level of agent control, agents are
not represented as individuals with their own goals but more as a member of a cohesive group. This
loss of definition and control is highly undesirable in a gaming environment, as the majority agents
must be completely autonomous and able to complete their distinct goals, without this adversely
affecting the system.

4

2.2 Microscopic Crowd Simulation

In Microscopic systems, agents are modeled on an individual level. All behaviors and decisions are
based on information spatially local to the agent, in other words, an agent scans its local environment
and makes its behavioral decisions on the current state of the world. This model most accurately
represents pedestrians and other autonomous agents. In a Microscopic system, the world is repre-
sented on an abstracted level that agents can easily interpret. Complex crowds behaviors, such as
lane formation, are emergent and are loosely defined in these systems.

Lamarche and Donikian [5] presented an implementation of Microscopic crowds. This model is com-
promised of 4 parts, each working in conjunction. They are world representation, spatial subdivision,
nearest neighbor computation and collision avoidance. This model is generic and can be used to
simulate both indoor and outdoor environments. The geometric world is converted, using spatial sub-
division, into a topological structure that agents are able to understand and navigate. Agents query
their environment for objects and agents in close proximity. This information is used in a reactive
navigation module for collision avoidance and smooth path following. Agents utilize the concept of
personal space between agents in order to give realistic behaviors.

Shao and Terzopoulos [6] presented an implementation of Microscopic crowds within an urban envi-
ronment. Like previous models, agents are entirely autonomous and base their decisions upon spatially
local information. Agents are given motor, perceptual, behavioral and cognitive components. These
components are integrated, resulting in individual agents that express realistic behaviors in urban
environments. The world is represented as a hierarchal environment model and is compromised of
perception maps, for nearest neighbor and obstacles queries, and paths maps, for path planning and
following. It assumes that static objects remain static and that the majority of moving objects are
agents. This information in then used to generate reactive behaviors (6 in total), which are then com-
bined together in a tested sequence, resulting in agents progressing through the map with minimal
collisions.

Pelechano [7]presented an implementation of Microscopic crowds.This system, called HiDAC (High
Density Autonomous Crowds),can simulate large, dense crowds of autonomous agents in confined ar-
eas (offices). In this model, agents are entirely autonomous and can be modified to express varying
personality traits. Agent behaviors are computed on two levels, a high level module and a low level
module. The high level module is responsible for navigation, communication and decision making.
The low level module handles perception and motion. These two modules cooperate to simulate the
complex behaviors exhibited by pedestrians. This model eliminates unwanted behaviors exhibited by
a Helbing [1] based system (agent vibration) and it displays complex social behaviors, such as natural
bi-directional flow, queuing behaviors, pushing behaviors, falling agents becoming obstacles and panic

5

propagation. This system is capable of simulating 600 agents in large indoor areas.

Van den Berg at al [8]presented an implementation of Microscopic crowds in both indoor and outdoor
environments. This system is compromised of two levels, a high and low level for simulating human
spatial navigation. A pre-computed road-map is used for global path planning and a reciprocal veloc-
ity obstacle module for local navigation and collision avoidance. Agents are able to avoid both static
and dynamic objects, including non agents. This model works exceptionally well in narrow, crowded
areas and does not exhibit agent vibration, however it does suffer from ”reciprocal dance” when two
agents meet head on in narrow passages. Agents are also incapable of choosing alternative paths
when an area becomes highly congested. This system is inherently parallel in nature, agents require
no coordination and are entire self localized. Tests show that the addition of extra cores increases
performance in an almost linear fashion, with decreasing performance attributed to cache coherency
and memory latency.

2.2.1 Advantages of Microscopic systems

The main advantage of Microscopic agent simulation is that agents are represented as individuals,
they are able to navigate locally and can plan paths through complex, structured environments. In
these model crowd behavior is emergent, so realistic crowd flows and other behaviors can be modeled
without loss of agent definition.

2.2.2 Disadvantages of Microscopic systems

The main advantage of Microscopic agent simulation is the complexity of the system, agents are self
contained and CPU intensive, making it expensive to simulate large, high density crowds. In reactive
systems, agents can suffer from vibration behaviors, caused by repulsion forces, which are undesirable.

2.3 Chosen Simulation Model

For this dissertation, a Microscopic system has been chosen. It allows fine control of actions, while
still simulating high level emergent behaviors of crowds. Macroscopic systems often demonstrate
homogenous behaviors, which are undesirable and do not demonstrate the varying characteristics of
individual agents. A properly tuned Microscopic system can simulate large numbers of autonomous
agents in highly complex environments with no loss of agent control, this is perfectly suited to large
gaming environments.

6

2.4 Microscopic model breakdown

As should be apparent, Microscopic systems seem to share certain characteristics. In each of the
Microscopic systems presented, agents and the world they inhabit have been abstracted into modules
in similar fashions. In each of the papers presented, each of the abstracted modules is implemented
in a different way, but with similar results. By reviewing these systems, agents can be broken down
into 4 separate intercommunicating modules. They are world representation, path planning, nearest
neighbors and object avoidance

2.4.1 Navigation

Most of the previously discussed works [5] [6] [7] [8] contain navigation and path finding modules.
Only Pelechano [7] does not go into detail, while the others give a brief overview. These modules
are dependant on the world representation. Robust path finding in dynamic environments is complex
and extensive research has been put into this field for over 20 years, resulting in vary techniques, each
with their pros and cons. A* is considered to be the defacto path finding algorithm for games, both
Millington [9] and Buckland [10] have extensive chapters on A*, including varying implementations
specialized for games. Games up to this point have been generally static, with small numbers of agents
and dynamic objects. A* may no longer be a viable solution for path finding in these dynamic worlds,
so extensive research has been put into differing implementations as well as extensions of A*.

Stentz [11] presented a paper on Optimal and Efficient Path Planning for partially known environ-
ments, or D* for short. D* is a path planning algorithm for partially known environments in which
the state of the world can change. A* was designed to handle static environments. If new information
about the environment is discovered, A* must recalculate the entire path from current location to
destination. Though the path returned is optimal, this brute force technique is inefficient. The D*
algorithm incorporates dynamic changes to the search space in an efficient and optimal manner by
recalculating less than the entire path in response to discovery of new information. The method pre-
sented in this paper uses 2-dimensional uniform grid to represent the world. Like A*, this algorithm
has large memory requirements that grows with the size of the search space. Stentz further improved
this model by introducing focussed D* [12]. A heuristic focussing function is added to D*, that fo-
cusses the repairs to significantly reduce the time required for initial path calculation and replanning,
vastly increasing the performance of D*. Likhachev [13] presented a paper on D*Lite, a new approach
to path finding in dynamic environments. It returns the same, optimal paths as focussed D* but it
is algorithmically different, bearing a strong resemblance to A*. Results indicate that it is more effi-
cient than traditional D*. Ferguson [14] proposed a multi-resolution D* algorithm that is capable of
generating paths across large scale environments, using quadtrees to merge smaller areas of constant
cost into larger areas. This results in a much smaller search space, provided that areas of unform cost
exist.

Gonzalez [15] presented a paper on generating multi-hierarchical graphs, which can be used for faster,

7

more efficient path finding. Graph searching is an expensive and memory intensive operation, A*
for example, stores every possible path during a search. This method combats this by abstracting
graphs into multi-level hierarchies. Lower level nodes are grouped into a singular node, which form
part a new graph at a higher, abstracted level. The higher the graph level, the fewer nodes there
are, until you reach the highest level where there is only one node. When performing a search, the
correct hierarchy level is chosen and searched, this happens recursively down each level until a path
is found at the lowest level. This model removes needless path searches and omits unnecessary nodes.
Searches on multi-hierarchical graphs retrieve the same paths as low level searches in 98% of cases,
while performing significantly faster with reduced memory consumption.

Korf [16] presented a paper on RTA* (Real-Time A*). RTA* is similar to IDA* (Iterative Deepening
A*) in that it has a limited search space. This model assumes that finding a complete path in one
search is impractical and expensive, so instead the search is limited to a preset horizon, it can only
make a certain amount of queries before it must choose a path. RTA* adds an extra heuristic that
adapts to gradually improve the performance of searches. This model is useful because resources are
limited in game environments and finding full paths is expensive, limiting the depth of searches would
greatly decrease overhead, and the guarantee that the best path would be chosen is appealing.

2.4.2 Nearest Neighbor/Spatial divisioning

Most of the previously discussed works [5] [6] [7] [8] require agents to examine their immediate envi-
ronment. Agents must ascertain which objects and agents should be considered for avoidance. Nearest
neighbor queries are expensive, especially in large, complex environments. In order to combat this,
spatial divisioning techniques have been researched to significantly increase the speed of this opera-
tion.

Ericson’s [17] book on Game Physics proposes various systems for spatially sorting objects, giving the
pros and cons for each. These include uniforms grids, quadtrees, octrees, loose octrees and k-d trees.
Primary focus is placed on BSP-trees, due to their versatility and ease of use.

Samet [18] presented a paper giving an overview of hierarchical data structures that can be used
for spatial divisioning. The simplest of which is a quadtree, it is a 2-dimensional divisioning tech-
nique that recursively splits the environment into quadrants, until each quadrant contains less than
n objects. Octrees extend this model by adding an extra dimension, so that each quadrant is now a
3-dimensional cube. Two extensions of the quadtree model exist, the PR Quadtree (for point data)
and the PM Quadtree (for polygons). Quadtrees/Octrees are inexpensive to generate and are widely
used to represent spatial data. Shao [6] uses quadtrees to store perception and paths maps. To date
there have been no documented cases of quadtree generation on a GPU using CUDA.

Guttman [19] introduced the R-tree. The R-tree is a hierarchical data structure used to store rect-

8

angular objects in close proximity. R-trees can be useful in physics systems that rely on AABB’s for
object pruning. Beckmann [20] presented a paper introducing the R*-tree. The R*-tree extends the
existing R-tree model and it greatly outperforms already existing R-tree techniques such as Greene’s
R-tree, quadratic R-tree and the linear R-tree. It is also capable of handling nonuniform data distribu-
tions, which can occur in physics engines. De Berg at all [21] further developed the R-tree, producing
the Priority R-tree. This model is worst case optimal and is able to answer any window query in
linear time. Results indicate it significantly outperforms existing methods when dealing with extreme
shapes and distributions.

G. Luque at al [22] presented a paper on Semi-Adjusting BSP trees. This paper extends the already
existing BSP (Binary Space Partitioning) model often used in physics engines and other systems that
require Broad-Phase Collision Detection. BSP trees are simple to implement but must be re-evaluated
every time the environment changes (ie. when there are moving objects). The Semi-Adjusting BSP
trees fixes this problem by re-balancing nodes of the BSP tree only when necessary, so this system
never requires a rebuild of the structure, which greatly improves performance. Semi-Adjusting BSP
trees show promising results in both sparse and highly cluttered environments, it is able to handle
thousands of objects in real-time and shows better performance than Loose-Octrees and Spatial Hash-
ing. There are negligible performance differences when compared to Quad-trees.

Garcia [23] presented a paper on Fast k Nearest Neighbor Search using GPU. Rather than building
Data structures for nearest neighbor searches, it may be possible to brute force the problem using the
GPU. This CUDA based system improves the kNN search by up to a factor of 400 compared to a
brute force CPU-based implementation. It also returns a set number of objects that are guaranteed to
be the closest to the agent, in previously discussed Object Avoidance modules only a limited number
of obstacles can be processed at once, giving more merit to this system.

Green [24] published a whitepaper on the implementation of a particle system in CUDA. This system
was able to simulate over 40,000 particles at 120fps. This system is one of the first to implement
uniform grid generation on a GPU using CUDA. The key to his algorithm is a GPU efficient version
of radix sort, developed by Nividia [25], which is used to sort particles into their appropriate grids.
Particles then query their surrounding cells for possible collisions with neighboring particles. This
system is able to simulate over 40’000 particles at 90 fps on a GTS 8600.

2.4.3 Object Avoidance

Most of the previously discussed works [5] [6] [7] [8] offer different equations and techniques for obstacle
avoidance, each allowing agents to avoid obstacles and other agents, so that movement is free flowing
and natural. This problem has also been extensively researched and there are many varying methods

9

proposed to solve it, including techniques for vehicle and robot navigation.

Sebastien at al [26] proposed a novel method for solving interactions between pedestrians and avoiding
inter-collisions. Rather than use a simple repulsive force, agents scan their environment and choose
a new velocity that will maximize speed and minimize collisions. This is done via the sampling of
every agent/obstacle in range and calculating their future positions at discrete time-intervals. Two
new velocities are calculated, one to overtake the obstacle and one to let it overtake them. The best
possible solution is taken from these samplings and is applied, resulting in realistic, collision free
movement. Real world data comparisons suggest that this method works best in low density areas.
This model can only simulate 150 agents in real-time because of high CPU overhead per agent.

Yang et al [27] proposed a system for vehicle collision avoidance. It is a multi-agent model that
decomposes the world into a set of agents, each with their own mass, position and velocity. Agents
come in 2 forms, obstacles and decision agents. Interaction behaviors are modeled as the inverse of
Newtons Law of gravitation between these objects. Agents repulse each other depending on their
proximity. An agents perception range is larger for static obstacles than it is for other decision agents,
since it is assumed that agents will try to avoid each other while an agent is itself entirely responsible
for avoiding an obstacle. This model assumes that agent interaction (collision) is catastrophic and is
designed to avoid this at all costs. Result indicate that their solution is adaptable, flexible and reliable
but further work is needed for adequate moving obstacle avoidance.

Braun et al [28] produced a paper that examines the impact of individual agents characteristics in
emergent crowds. They generalize Helbings equations in order to add individualism to the agents.
The primary use of this system is to simulate the motion of crowds evacuating an area in complex
environments. Group behaviors can be seen is a consequence of these individual parameters. In one
scenario, altruist individuals were modeled, instead of immediately saving themselves they tended to
save others first. This system shows a 20% improvement in the flow of people when compared to
Helbings model. This system suffers from the inherent problems of a physics agent simulator (ie.
agent vibration) but it’s simplicity means that vast numbers of agents can be modeled.

Reynolds [29] paper outlines how to construct basic motion for autonomous agents in a three level
hierarchy of: action selection, steering and locomotion. The paper presents a number of common
steering behaviors and their means of implementation. This includes an object avoidance behavior
that gives agents the ability to manoeuver in cluttered environments. This behavior enables an agent
to avoid only one obstacle at a time and if the environment is too cluttered it is possible for agents to
get stuck. Other interesting behaviors include flocking, which can simulate groups of agents staying
in formation. This system offers realistic behaviors, including deceleration when in close proximity to
an obstacle, through very simple means. It should also be noted that Reynolds paper is considered
the defacto basis for agent locomotion in gaming environments [10] [9] [?].

10

2.4.4 World Representation

Most of the previously discussed works [5] [6] [8] abstract their representation of the world in differing
ways. Agents are given a simpler, abstracted view of their world that they use for navigation and
decision making. There are many ways to represent a digital environment, each with their own pros
and cons. This includes representation of the walls, traversable areas and the objects within the en-
vironment.

Representing objects as their polygonal mesh for collision avoidance could prove very costly and it is
best to generalize these objects and to represent them in simpler formats. Physics engines commonly
simplify objects, creating bounding volumes to represent said objects instead of it’s polygon mesh.
These bounding volumes greatly simplify physic systems, with limited loss of realism. Ericson [17]
and Eberly [30] both presented commonly used bounding volumes. AABB’s (Axis Aligned Bounding
Volumes) are the simplest bounding volumes but they are not rotationally invariant, they must be
recalculated whenever an object rotates. OBB’s (Orientated Bounding Boxes) are also commonly
used, they are rotationally invariant and offer tight fits to complex objects, but intersection tests are
more complex. Spheres are the simplest option, they are commonly used by Microscopic systems to
represent agents and to generate the resulting repulsive forces. K-dops are another interesting bound-
ing volumes, but they are also not rotationally invariant.

Millingonton [9] discusses the various world representations that are commonly used in games, pri-
marily for navigation purposes. Shao and Terzopoulos [6] use tile graphs to represent the traversable
areas of the map, but they are expensive to search and if the tiles are too coarse, agent navigation
seems clunky and unrealistic. ”Points of visibility” is another popular method for automatic graph
generation, but it is incredibly expensive and can result in overly complex navgraphs. Polygons meshes
are another useful way to represent a navigation mesh. Vertices can become nodes and the edges of
a polygon become graph edges, but this produces poor results, it is often best to treat polygons as
nodes and to create connections to other adjoining polygons. This works well when the walkable areas
are coarse but the more detailed a polygonal mesh, the more complex the structure to search.

Rabin [31] further recommends the use of polygons meshes but rather than use the coarse mesh offered
by the map, a smoothing algorithm is passed over the mesh to merge neighboring polygons, creating
larger, convex polygons. These larger polygons offer smoother paths and greatly increase the speed
of the path finding algorithm, because the search space is now drastically smaller. Navmeshes are
used in Lamarche’s [5] Microscopic simulation and offer promising results, their construction is more
complex but it removes dead ends and narrow passages from the navmesh. Delauney triangulation is
used to create the mesh, this ensures that the mesh is smooth and the polygons are well fitting.

Delauney triangulation is a common algorithm used for navmesh generation and it may be possible
to generate fine navmeshes for navigating around dynamic objects in real-time, Majdandzic [32] pre-

11

sented a paper detailing the use of GPU’s to generate Voronoi diagrams, Voronoi graphs being the
dual graph of Delaunay triangulation graphs. This technique produces voronoi diagrams as textures
and the graph must be extracted from the textures, making them impractical for real-time use. Fur-
ther research should be put into this field, but for now it is too costly to implement.

Lamarche [33] presented a system titled ”Topoplan” that can generate topological maps from un-
structured 3D triangular meshes. This system creates a 2D representation of the map that is used
by agents for navigation. This system properly identifies obstacles, steps and bottlenecks, while it
describes zone connectivity using a small number of waypoints and paths. This system is quite recent
and work is currently being put into extending this model.

2.5 State of the Art in games

Kynogon is a middle ware company that specializes in Game AI. Their AI engine, Kynapse, has been
used in over 80 games [34], including Battlefield 2: Modern Combat and Crackdown, both best selling
games. Kynogon was recently bought by Autodesk, the company responsible for 3D Studio max and
various other applications used by games developers.

Kynapse is a highly complex AI engine. It is capable of handling dynamic worlds with complex
interactions between agents and obstacles. In a whitepaper released by Kynogon on dynamic path
finding [35], they explain that their engine groups collections of dynamic objects together. When an
Entities path becomes blocked by an object or a collection of objects, the dynamic pathfinder tries to
construct and follow a path that goes around them. Their worlds also include the concept of smart
objects, discussed later. These smart objects are tied to the path planner and expose methods to the
agent that enable them to navigate around or through them, such as a door or an elevator. Their
engine is also heavily multithreaded, resulting in complex game AI that does not tax the CPU.

Another white paper they have released [36] explains how perception can play an important part in
game AI but that it is often ignored, resulting in unrealistic behaviors and broken game mechanics.
By giving their agents a sense of perception, their behaviors can become more realistic, resulting in
deeper user immersion. Demo applications and videos can be found on their website.

2.6 Physics Engines

Physics engine are now considered an integral part of most games. These engines are designed to
approximate physics collisions as efficiently as possible, often trading realism for performance, this
loss of realism is generally imperceptible and enables these system to simulate large quantities of
objects. Physics have become such an important feature that it is now common practice to use an
outside engine ”Middleware” rather than develop one in-house. Below is a brief overview of both

12

commercial and open-source engines that are used in modern games.

Bullet [37] is an open source physics engine, it is multi-threaded and offers 3D collision detection,
both for soft body and rigid body dynamics. This engine is capable of simulating large numbers of
rigid bodies simultaneously. Bullet was the driving force behind GTAIV’s physics, which has been
applauded for having realistic physics and physics based driving behaviors. The Bullet engine can be
downloaded from their website.

Havok Physics [38] is a physics engine developed by Irish company Havok. It was one of the first
producers of a middleware physics engine and the company now specializes in physics and physics
based animation. Havok is considered to be one of the top physics engines and has been used in over
150 computer games to date, most notably in Half-Life 2, which is renowned for its use of physics.
In 2007 Havok gave interested parties access to most of the C/C++ source-code, giving them the
freedom to customize the engine’s features as they see fit.

PhysX [39] is a physics engine that has been released by the Nvidia coroporation. Originally developed
by Ageia, it was intended to run on a specialized Physics card, but this turned out to be impractical.
In February 2008, Ageia was acquired by Nvidia and they started work on porting this engine over to
the GPU using CUDA. In August 2008 Nvidia released PhysX and offered the SDK free to download
and use. PhysX is currently the only physics engine that runs of the GPU. By using the GPU, PhysX
is capable of simulating vast number of both rigid and soft body objects at great speeds.

2.7 Analysis

From the past section it can be seen that there are a multitude of ways to simulate large crowds in
dynamic environments. From analysis of both Macroscopic and Microscopic simulations, it is clear
that a Microscopic system is best suited to the needs of this dissertation. While all the systems
mentioned share common traits, they each offer differing implementations. Choosing the correct
implementation for each module is of paramount importance. Each module must not only perform
its task to specification, but it must also integrate seamlessly with other modules to form a cohesive
system.

13

Chapter 3

Design

This section deals with the design of the intended system. This design must be capable of simulating
smooth interactions between large numbers of agents and objects in a complex, physics based world
while in real-time.

3.1 Requirements

• Must be able to handle large numbers of agents (500+)

• Must be able to handle large numbers of dynamic objects (500+)

• Must use an existing physics engine, to prove feasibility

• Must run in real time at 30fps

• Must be able to handle large maps.

• Agent collisions (objects/other agents) must be kept to a minimum

• Agent flow and navigation must seem natural

• Solution must be generic - capable of handling varying maps types, eg. Indoor, outdoor, urban,
rural.

3.2 Chosen Modules

In the previous chapter a brief overview was given of varying techniques used to simulate microscopic
crowds. In this section these techniques will be analyzed and the most optimal configuration of
modules will be chosen. These modules must be able to work in tandem and as self contained units.
Particular weight will be added to systems that utilize CUDA, as this system aims to take advantage
of the parallelism of GPU’s and the performance increases they can offer.

14

3.2.1 Path Finding

After consideration of all the techniques presented, A* has been chosen for use in this system. D*
seems like the optimal choice for path finding in a dynamic world, such as the one this project aims to
simulate, but upon close inspection it seems that it is ill suited. D* is an agent based path finder, were
agents are not omniscient and do not have a full understanding of their world when planning paths.
In games, this is not the case, as agents have direct access to all information about their environment.
The only beneficial use of D* would be the efficient replanning of paths when the current path
becomes blocked, but this is a fringe case. As this is the case, D* and it’s varying implementations are
considered too costly and complex for this system. RTA* (Real-Time A*) was also considered, RTA*
is efficient, has a guaranteed runtime and uses minimal memory. The one disadvantage of this system
is that it cannot guarantee that an agent will reach its goal via the current path, it will gradually
edge the agent closer to its goal and may eventually find that no path exists along this route. An
example would be a search thats heuristic takes it closer to a node, until it realizes that an impassible
wall exists between it and the goal node, rendering search pointless. As this system must guarantee
that an agent will find the correct path, RTA* cannot be used. While A* has been chosen as the
optimal solution, it is still with it’s draw backs, such as the branching factor of A* and the expense
of finding large paths. This can become incredibly problematic when an agent requests a path that
does not exist, for example, in a standard implementation of A*, the search would branch out over
the entire graph before it realized that no path exists. This cannot be allowed to happen as it will
greatly impede the performance of this system. Hierarchal Path-planning A* (HPA*) could be used
to abstract the navigation mesh further, but the maps implemented in this system, while large, will
not finely grained enough to warrant its use, instead bas A* will be used and HPA* will instead be
considered for future work.

3.2.2 Nearest neighbour/Spatial Divisioning

It has already been stated that spatial divisioning and Nearest neighbor queries are expensive. This
system will attempt to use to use CUDA to speed up this process.
R-trees are usefull for storing objects such as AABB’s, but these shapes have already been considered
invalid, so R-trees are no longer a valid option. Quadtrees and Octrees are simple data structures that
are efficient for storing objects, but as yet there has been no implementation of these structures via
CUDA. BSP trees are used to split up large number of objects into separate groups, but these groups
are not guaranteed to be within a certain distance or range. To date, BSP trees do not currently
have a CUDA based implementation. Uniform grid generation could used in a similar fashion to the
particle system, but it was designed for sorting objects numbers of over 30’000, far above the needs
of this project.
It has been decided that a modified version of the k Nearest Neighbor Search on the GPU will be
used. While brute forcing these checks has always been considered an issue on CPU’s, GPU’s have
no such qualms and are well suited to the task.

15

3.2.3 World Representation

World representation is one of the most important aspects of this system, it describes the way in
which the world is represented and interpreted by agents. The traversable areas of the world shall be
represented by a navigation mesh. While a tile mesh, as used by Shao [6], is a simple and convenient
way to represent the world, it greatly increases search complexity, as well as taking up large amounts of
memory in the system. Navigation meshes have been chosen because of the simple way in which rooms
can be presented. Each face of a navigation mesh is convex, convexity is important as it guarantees
that an agent can traverse from any point to any other point on that face. Agents can also traverse
from one face to another is they share an edge. Tile graphs and other similar representations have
difficulty with large open areas, while a nav-mesh considers this problem to be trivial. Nav meshes are
also suited to indoor areas such as hallways and rooms, which are frequent in game worlds. Navigation
meshes are the optimal choice for representing the navigable areas of a game environment because
they are generic and can be used to represent any game world in an efficient manner. Representing
physics objects and agents is an important aspect of this system. As these objects are expected to
be dynamic, the chosen model must be inexpensive and capable of handling moving objects. K-dops
and AABB’s cannot be used because they lack rotational invariance, every time an objects rotates,
it’s bounding volume will have to be recalculated, which is an overly expensive operation that should
be avoided.
As this is the case, it has been decided that objects will be represented by simple proxy shapes, such
as OBBs, spheres and cylinder. These shapes can be used to represent almost any object and will be
handled by the chosen physics engine, PhysX.

3.2.4 Object avoidance

This part of the system is incredibly important, it is the means by which an objects avoids obstacles
in its path and great are must be taken to ensure it is implemented correctly. Each of the papers
referenced features a different technique and set of equations for solving this problem, this would
not be an issue except that each of the papers claims that their technique returns the most realistic
results.
As it is so difficult to tell which would be the most useful, it has been decided that a prototype
environment will created to test each of the equations presented. These technique will also all be
combined in different ways, to see if an amalgamated approach will meet with more success.

3.2.5 Overall Framework

This system will be created in a modular fashion so that each compartment can be tested separately,
prior to its integration into the main system. This ensures that the system is not completely reliant
on one module and will still operate, albeit to a lesser degree.

16

Chapter 4

Implementation

This chapter will detail the implementation process of this project. This will include the techniques
used, the problems that arose and a description of their solutions.

4.1 Framework

As stated previously, this system is comprised of four interacting modules, each representing a different
aspect of the system. A framework was created whereby each module is independent and self contained.
This enables a module to be implemented and tested independently, prior to its integration into the
system. Modules communicate through static methods, whereby a module exposes information to
other modules whenever they require it. These modules are as follow.

• Abstraction of the World

• Agents

• Navigation

• Object Avoidance

This system has evolved from the previous chapters proposal and the resulting Framework can be
seen in figure 5.1.

4.2 Abstraction of the World

As this is a microscopic system, agents are the predominant feature and they will base their decisions
on the current state of the world they inhabit. Despite this, agents do not need to have a complete
understanding of their world, they only require as little information as is necessary to make the correct
decision. To this end, the world they inhabit is abstracted into simpler, easier to interpret structures.
As agents,objects and walls are presented as shapes in 3D space, it has been decided that the physics
engine should handle their representation.

17

System.png

Figure 4.1: The resulting system framework

4.2.1 Physics representation

The chosen Physics engine for this project is Nvidia’s PhysX. PhysX is a relatively new technology, so
the learning curve is quite steep, especially since physics engines are generally so complex. As this is
a physics based project, agents and objects will be represented by rigid bodies. The models in games
are generally complex and finely detailed, performing collisions tests against these bodies is incredibly
expensive and is generally unnecessary, instead agents and objects are represented by proxy bounding
volumes. These bounding volumes are chosen based on the shape of the model, but the most common
shape used is that of a simple 3-dimensional box, which is placed around the existing 3D model.
Nvidia recommends the use of capsules for agents, because they form the tightest fit. A capsule is a
cylinder with a a sphere at either end, they are one of the simplest bounding volumes offered and inter
collisions between capsules and other geometry, such as boxes, is incredibly fast. They are suited to
agents because of the An example of both these bounding volumes can be seen in figure 4.2.

All rigid PhysX objects share certain properties, they have mass, a position in 3d space and vectors
for both linear and angular velocity. These values can be retrieved and modified at any time. PhysX
includes a specific character controller class, that can be used to create autonomous agents. However
this class is difficult to understand, and the resulting agents are awkward to control, which is a major
issue. Instead this project uses a custom made character class, that handles the movement of the
agent in the physics based world. It does so by updating an agents position according to its velocity,
ensuring that the character is constantly upright by resetting it’s orientation matrix. Resetting the

18

Figure 4.2: The bounding volumes used to represent agents and objects

orientation matrix may not seem to be the optimal solution, but Nvidia’s character controller class
solves this problem the exact same way. We now have physics based agents that can move about their
world, while obeying the underlying physics logic.

4.2.2 PhysX Optimizations

PhysX is incredibly powerful, but as with any physics engine it can be incredibly taxing on the system.
So as not to completely cripple the system, PhysX is set to run asynchronously on a different core to
the main game loop. The main loop calls the PhysX update function , but it does not wait for this
call to complete. PhysX is inherently designed for parallel processing, it uses buffers to store object
information, so it is possible to read an object’s values, at any time, regardless of wether PhysX is
currently updating that object. If too many objects are added then calculations can spill over on the
main core, so the number of simulated rigid bodies will be kept to 1500, which is more than enough
to prove the concept of this dissertation.

4.3 Agents

Agents in this system are required to navigate from area to area, all the while avoiding other agents
and obstacles that are in their path. To facilitate map traversal, agents have been broken down into
2 levels, a high level and a low level. The high level is responsible for goal selection and arbitration,
while the lower level handles point to point navigation. The lower level is modeled on Reynolds [29]
steering behaviors for agent locomotion, these behaviors are recommended by Buckland [10] as they
give agents smooth, realistic movement. This system does not feature a fully developed steering class,
as only steering two behaviors are required, seek and arrive. Seek brings an agent towards its target

19

point at it’s maximum velocity, while arrive moves an agent towards a point, applying deceleration
forces to slow the agent, causing the agent to stop at its target, rather than over shoot it. The steering
class is quite generic and is designed to handle all types of moving entities.

4.3.1 Steering Behaviors

An agents steering layer is comprised of different values, each representing a different aspect of an
autonomous agent. Position is the agents current position in space, it is generally represented as a
3-dimensional vector, with coordinates X,Y and Z. Velocity is also a 3D vector that expresses the di-
rection and speed of an agent (it’s speed is the magnitude of this vector). When an agent is updated,
its position is updated by it’s velocity, effectively moving the agent to a new location. So if you wish
to change an agents position, you must modify it’s velocity. A normalized copy of the velocity vector,
called Heading, is also saved, because it represents the directional vector of the agent and is useful in
many calculations.
As this is an autonomous agent, it is capable of changing its own velocity by apply force. These forces
are self-applied, and are hence limited. MaxAcceleration represents this limitation, it is the maximum
change in speed an agent is capable of applying to itself at a single time step. Agents have a MaxSpeed
value, which is the maximum speed an agent is capable of traveling, otherwise an agent would gain
speed indefinitely. Agents also have a limited turning speed, in this case called MaxTurnRate, which
is the maximum change in orientation and agent can have at any single time step. Mass is represented
but is not used by the steering class, it is instead stored in the physics engine as stated previously,
and it will be used by the avoidance module, which will be discussed later.

Steering class properties:

Mass float

Position vector

Velocity vector

Heading vector

Speed float

MaxAcceleration float

MaxSpeed float

MaxTurnRate float

To further understand steering behaviors, please look at figure 4.3. Here can see that an agent
wishes to turn and move towards a target point. When doing so it creates a vector from itself to its
target, this vector is then normalized and the angle between it and the heading vector is calculated.
If the angle is larger than MaxTurnRate, then the angle of the vector is scaled down. Finally the
speed of the agent is incremented by MaxAcceleration, unless it is currently equal to the MaxSpeed
constraint. The speed is then used to scale the newly generated vector, resulting in a new velocity that
is used to update the agents position. Proper tweaking of these values is required but these behaviors
can result in agents that turn and behave realistically.

20

Figure 4.3: An agent turning towards a point as handled by its lower level steering behaviors

4.3.2 Decision making

Agents are required to be autonomous and must be able to make their own decisions based on the world
around them. In order to express the individualism of each agents, each agent is given a separate goal
from those to their brethren. These goals do not need to be complex, they simply need to demonstrate
that each agent is an individual thats fulfilling its own needs. To this end 3 simple higher level goals
have been created.

• Follow random path

• Wait/observe

• Wander

At run time, an agent randomly choose one of these 3 goals. Once it has achieved its goal, it then
chooses another and continues this process indefinitely. ”Follow random path” is a behavior in which
an agent chooses two random nodes on the navgraph, finds the path between them and then follows
it. Wait/Observe is a behavior in which an agent waits at its current location for a random amount of
time, it is possible that an agent will be pushed away from its location, in which case it will traverse
back to its original point. Wander is a behavior were an agent wanders around its current area for
an indefinite amount of time. These 3 behaviors create the illusion that agents are actively seeking to
perform complex goals. These goals can be broken into a combination of very basic sub goals.

• Seek to point

• Arrive at point

• Wait at point

21

Millington [9], Buckland [10] and Rabin [31] all recommend the use of Finite State Machines (FSM)
for goal selection and arbitration. In the above example, a higher level goal is created by combining
lower level sub goals. These higher level goals can they be combined together to form more complex
goals. This means that new goals can be added to the system with ease.

4.4 Navigation

As is the case in any agent based system, agents must be able to navigate from one area in the
map/world to another. The world in its polygonal state is far too complex for agents to interpret,
therefore the world must be abstracted in such a way that agents can understand. As stated previously,
agents in this system are given the ability to move from their current location towards a 3-dimensional
point, provided that their path is not obstructed. By stringing together a series of these points, an
agent would be able to navigate from any area to any other area, provided that the transition from
point to point is not blocked by an obstacle. Choosing these points at execution time would be
incredibly difficult and expensive, it would involve scanning the environment and generating points
that lead the agent towards their target, all the while ensuring that agents can navigate from point
to point freely. This is essentially an impossible task, so instead, rather than generate these points
dynamically, it is best to create them beforehand. To use proper terminology, the points are called
nodes and the connections between them are called edges, while the overall interconnected collection
is called graph.
With the proper configuration of nodes and edges in a graph, it is possible to create paths across
diverse maps with ease. In figure 4.4 we can see an example of a navigation graph. Nodes are
highlighted in red, while the edges are coloured blue, if 2 nodes are connected by an edge then it is
possible to travel from one node to another unobstructed. Here we see a possible path between nodes
”start” and ”end” highlighted in green.

Creating these nodes if a difficult task, the worlds created today are far too large and complex for
manual node placement, so automatic node placement techniques are generally used. Buckland [10]
recommends using a flood fill algorithm that spreads out across the map, creating nodes and edges
wherever there is free space. This ensure that it is possible to find collision free paths all across the
map, but the resulting navgraph is finely grained (like a tile graph) and is ill suited to the large worlds
that games and this project wish to simulate. Other techniques include a line of sight graph, where
nodes are placed automatically and are connected via a line of sight algorithm. Often this results in
overly complex graphs [9], especially in large, open areas. Another problem with these techniques is
that the agents have a very poor understanding of their world, they’re only aware of the very distinct
edges they can traverse, they have no concept of walls or geometry. It is because of these issues that
this project opts to use navigation meshes.

22

Figure 4.4: An example of a navigation graph with nodes and edges

4.4.1 Navigation Meshes

Navigation meshes (nav-meshes) are considered to be the most efficient way to automatically generate
a navigatable graph [9] [5]. The traversable polygons of a map (ie. the floor) are taken and grouped
together into larger, convex polygons/faces. In order for a polygon to be convex, its sides must never
bend inward towards the center. Convex faces greatly reduces the complexity of both large and small
areas, resulting in simple, abstract shapes. The convexity of these faces is important, it guarantees
that an agent can travel in a straight line from any point on the polygon to another other.
After these convex faces have been created, it is now possible to create a navigation graph from the
resulting mesh. If 2 convex faces share a side, this means that it is possible to travel from one to the
other by traversing that side of the polygons. This means that the convex faces themselves become
the nodes, while the shared sides become the edges. This creates a simpler, easy to generate graph
that is suited to the abstraction of both simple and complex maps. In figure 4.5 the same map as the
one in 4.4 has been converted into a navigation mesh, each convex face is represented by a block of
colour, while the shared edges between them are highlighted in white.

When an agent traverses this graph, it immediately travels towards its goal edge in the current
face, once it reaches this edge, it is aware that it is inside the next convex face it wishes to traverse
and it then repeats the process, until it reaches its target. This leads to smoother, more direct mesh

23

Figure 4.5: An example of a navigation mesh with edges highlighted in white

traversal, while also ensuring that agents do not travel on rails (as can be seen in most games that
use generic navigation graphs).

4.4.2 Path Finding Algorithm

While the above navigation mesh is easy to generate, it is useless if the agents are unable to plan
paths from area to area. For this reason a path finding module has been created to use the above
the mesh. Path finding is the method by which a path from a one to another node is calculated.
An important aspect of this behavior is that is must return reasonable paths, meaning that the path
returned should be the shortest path out of all possible path. This problem quickly balloons in scale
as the size of graph increases, adding nodes and edges greatly increases the number of possible paths
that must be searched. In games, the shortest path is literally that, the path with the shortest total
length than any other path. To facilitate this, an extra variable is added to the edge class, called
cost. This value is aptly named as it represents the cost of traversing that edge, it is generally set to
the straight-line, euclidian distance between the nodes of that edge. The total cost of a path can be
calculated by summing all edge costs in that path. In games this cost is pre-computed, as nodes and
edges tend to be static.
This system relies on A* for finding the shortest path in the most efficient manner possible. A* is

24

considered to be the defacto path finding algorithm used in games, it is recommended by Millington [9],
Buckland [10] and Rabin [31]. A* is based on Dijkstra’s algorithm, one of the earliest path finding
techniques. Dijkstra algorithm works by spreading out from the start node along its edges from node
to node, keeping track of the edges it has traversed thus far. once it has found the goal node, it
returns the list of nodes that it followed, returning this as the resulting path. Dijkstra’s keeps a list
of all the nodes it has looked at thus far, as well as the cost of traveling to that node from the start
node. When the search iterates, it chooses the node in the list with the smallest cost so far and adds
all its neighbors to the list. This is repeated until the goal node is reached. Dijkstra is expensive and
will spread across the graph in unnecessary directions, using excessive amounts of memory. Overall it
has a performance complexity of O(n2), which is is far too costly. This lead to the creating of A*.
A* is modification of Dijkstra that greatly reduces the number of paths checked, resulting in greater
efficiency and cost effectiveness. A* works by using a heuristic function that estimates the most
effective node to use, in this case the heuristic function is based on euclidian distance. When selecting
a node to expand, both its cost and heuristic cost are taken into account, as well as the heuristic cost
of that node. This means that a node that is closer to the goal node is far more likely to be chosen
than one that is far away. The resulting algorithm is fast, efficient and is guaranteed to return the
shortest path from any node to any other node, as long as this path exists.

4.4.3 Path Finding Module

This simulation is required to handle 500+ agents, so it requires a stable, efficient path finding system
that will handle the path finding queries of every agent. When an agent requests a path, an instance
of a search is created and placed in an ordered queue. Each instance of a search contains all the
relevant information for that search, which includes the start and end nodes, the list of possible paths
expanded thus far and a pointer to the agent that created it. Whenever a path is found, the calling
agent is notified that a path is now waiting for it.

As has been stated previously, path finding is expensive, especially on larger graphs. The simplest
method of updating this module is to pop searches of the top of the queue, in a first come, first serve
basis. This search would then be iterated through to completion and the resulting path would be
returned to its calling agent. At first glance this seems optimal, agents do not need to wait for paths
as they are returned almost instantly. After implementing this solution, its problems quickly become
apparent. It is impossible to estimate how long it takes to find a path, it could take anything from
one iteration for a short path, to O(n2)) iterations int the worst case scenario, where no path exists
and the search expands across the entire graph, eating up memory and CPU cycles. This results in a
path finding module that behaves erratically, which is a serious issue, as games must have fixed run
time so that frame rates are smooth. Another issue is that agents must wait for other paths to be
completed before theirs is even considered, even if their path is relatively easy to compute, this is
wasteful and should be avoided.
Buckland [10] proposed a solution to both these problems, by limiting the number of iterations a
search is able to perform each time step. This way, a search is guaranteed to take the same amount of

25

Figure 4.6: The resulting Path Finding Module

time each update cycle, regardless of the search complexity. Agents may have to wait longer for their
search, but this will have negligible effect on the how the system looks and behaves. This solution
is further developed, by spreading the number of iterations over all searches in the queue. In this
method, the number of allowed iterations is divided by the number of active searches, the resulting
number is used as the number of iterations each search is allowed to perform. This guarantees that
agents are not left waiting for their path while other, longer paths are being calculated. To finish, the
path finding module now has a maximum guaranteed run time.

4.5 MapMaker

In order to fully test this system a wide variety of maps must be generated and tested. The original
plan was to generate maps procedurally, but the implementation of this was soon found to be far too
complex and beyond the scope of this dissertation. Using an existing map editor was also an option,
but existing map editors are game specific and documentation for interpreting the generated maps
manually was non existent. Based on this information, it was logical step to create a simple map
editor that can easily produce varying styles of maps.

The map maker was coded in C-sharp because of the ease in which small application can be made
as well as its built in .NET functionality. This system is based of the concept of inter-connected convex
faces, as the navigation system uses a navmesh representation of the world.The application gives the
user a top down view of the world. The user creates faces one at a time, clicking the map creates
a point at the mouse co-ordinates. By clicking multiple times, a series of points are created. The
user then signals to the application that it wishes to create a convex face from the points generated,

26

see figure 4.7 for an example of this. The system ensures that convex faces are created, so that the
representation of the world holds true.

Figure 4.7: A series of points converted to a convex face

Joining faces to creates paths is simple, just create a new convex face that shares two of the nodes
of another face. The application automatically realizes that the 2 faces are connected and it creates
a link between them.Once the user is finished creating a map, the system automatically generates a
navigation mesh, which included the interconnected node-graph used for navigation between meshes.
This map is then saved in an easily interpretable file format for the main application. It is important
to note that maps can be reopened, modified and saved in this map maker application.

4.5.1 Saving maps

Maps are saved using XML (Extensible Markup Language), it is a textual data format, so the infor-
mation is human readable when opened in any text editor. XML was chosen because of its simplicity,
generality, and usability. Maps in this example are composed of 3 elements, convex faces, nodes and
edges. Faces are stored as self contained objects with a list of nested points representing the vertices
of said face. Nodes contain a single point in space, which is its location, as well as the radius of the
node (used for proximity checks). Edges are saved as simple objects with only two attributes, the id’s
of the start and end node of this edge.

4.5.2 Loading maps

These maps are loaded into the application using tinyXML, a C++ based open source XML library.
It reconstructs the base elements of this map in 3D. Walls are created all the edges of each convex
face, unless the edge is shared, in which case it is an opening. The resulting 3D map can be seen in
figure 4.8. These maps can be scaled up or down, resulting in both large and small maps, similar to
the kind that are found in modern games.

27

Figure 4.8: 2D map in C-sharp loaded as a 3D physical map, including nodes and edges for navigation.

4.6 Collision Avoidance

As stated previously, agent must be able to navigate through their world without colliding with other
agents and objects. This requires agents to scan their environment for their nearest neighbors and
objects that may end up blocking their current trajectory. Each of the researched papers presented
different equations and techniques for solving this problem, each claiming to result in the most realistic
behaviors. Rather than immediately porting and testing all these techniques in CUDA, a prototype
environment was created in C-sharp. This environment was used to test each of the techniques
presented, in order to ascertain their pros and cons. This project required that agents demonstrate
the following characteristics when avoiding agents and obstacles.

• Collision anticipation/ avoidance

• Smooth flowing movements

• Minimal agent oscillation

• Emergent behaviors (lane formation)

After much testing, it was found that agents requires a combination of the techniques presented in
each of the referenced papers on Microscopic systems. The implemented technique is explained below.

4.6.1 Perception range

Agents are not required to avoid every obstacle in their world at once, they only need to avoid obstacles
that are in their immediate vicinity, specifically obstacles that are in their perception range. The
perception range of an agent is modeled after the rectangle of influence, as presented by Pelechano [7]
in the HiDAC system.

The rectangle of influence projects out from the agent in the direction that it wishes travel. Any
agents or obstacles that are within this rectangle are considered for avoidance. This rectangle is
not required to be static, different sizes of agents can be created with varying rectangle dimensions,
increasing or decreasing their level of awareness about their world.

28

Figure 4.9: Example of an agents perception range, modeled as a rectangle that an agent projects in
front of itself.

4.6.2 Avoidance Forces

The equation for collision avoidance is an amalgamation of 2 different techniques presented in differing
papers. The majority of these equations are modeled on the HiDAC systems governing, as presented
by Pelechano [7], but the techniques by which the repulsion vectors are generated is modeled after
Lamarche’s [5]method. The reason for these choices will be explained later in this results section.

FTo
i [n] = FTo

i [n− 1] + FAt
i [n]wiAt +

∑
j 6=(i)

FOb
ji [n]wOb

i (4.1)

The velocity change of agent i (FTo
i) ensures that an agent move in its desired direction (FAt

i),
while avoiding other agents and obstacles (

∑
j 6=(i) FOb

ji), while trying to keep its previous direction
of movement to avoid abrupt changes in its trajectory(FTo

i [n − 1]). All these forces are summed
together with different weights wi that are based on an agents preferences, these weights are used to
scale the importance of each force on the final direction of movement.

The resulting normalized force vector from the above equations is:

fTo
i =

FTo
i

|FTo
i |

(4.2)

This vector is then scaled by the agents current speed, resulting in a new velocity vector that is
applied to the agent.

29

Agent and object avoidance

In order for an agent to avoid an object in its rectangle of influence, it must generate a tangential
force (FOb

ji) away from it, this force is generated using an equation presented by Lamarche [5]. The
tangential force (tj generated between agent and i and agent j is calculated thusly.

tj =
dji

|dji| + vi

|vi|

| dji

|dji| + vi

|vi| |
(4.3)

In this equations, there are multiple vector normalizations these are required so that the lengths
of vectors (dji and (vi do not affect the direction of the resulting vector.

Figure 4.10: An agent generating repulsive forces for 2 agents within its field of influence taking into
account their angle of direction and speed.

Next the normalized tangential vector is multiplied by two scalar weights to obtain the final
avoidance force.

FOb
ji = tjw

d
i w

o
i mj (4.4)

wd
i is the weight due to the distance between the agents. It increases as the distance between the

agents decreases, thus the repulsive force is stronger the closer i is to agent j, resulting in a more
abrupt change. It was found that Pelechano [7] distance weight function increased exponentially as
the agents drew closer together, resulting in jarring movements. Instead Lamarche’s [5] was chosen,
as its weight function grew linearly as the agents became closer, it was also guaranteed to return a
number between 0 and 1.

wd
i =

(Di − dji)
Di

(4.5)

30

wo
i is the weight due to the difference in orientation of the velocity vectors of both agents. It

distinguishes whether an agent is moving towards or away from the current agent, if an object is
moving away it will generate less of a force than an agent moving toward the agent. This force also
applies to moving objects, resulting in agents avoiding both static and dynamic objects in single
equation. The below equation is a custom modification of Lamarche’s [5] technique.

wo
i = (vi • −vj)/2 + 1.5 (4.6)

The last weight of the total avoidance force equation is mj , which is the mass of the agent/object
in question. Lamarche’s [5] equations do not include this weight, as it assumes that all agents have
the same mass. This is not the case in this model, as both large and small objects are taken into
account.
These forces are calculated for every agent and then summed together, resulting in a final avoidance
force vector that ensures an agent will attempt to avoid all obstacles in its path.

Figure 4.11: Prototype C-sharp application showing the avoidance equations in effect. Please note
the avoidance behaviors and the formation of lanes.

The above equations were tested in the C-sharp environment, proving their validity and that the
resulting behaviors conform to the characteristics specified at the beginning of this section. Figure
4.11 shows a sample screen from the C-sharp prototype system with the above equations in place. 2
types of agents can be seen in this example, agents whose targets are to the left and agents whose
targets are to the right. In this figure the avoidance behaviors can be seen in the trails of agents,
another interesting point to note it that agents form lanes, this is an emergent behavior within this
system and it is loosely defined.

4.7 CUDA

4.7.1 Overview

Parallel processing on multicore processors is the industrys biggest software challenge

31

CUDA (Compute Unified Device Architecture) is a parallel computing architecture created by
the Nvidia corporation. CUDA is written in a c like language, with certain extensions that give
developers access to GPU specific functions and hardware that are unavailable on the CPU. CUDA
code compiles via the NVCC compiler, which is an Nvidia specific compiler. CUDA enables developers
to write programs that run on the GPU rather than the standard CPU. GPUs are essentially giant
parallel processor, a standard 8800 GTS has 128 stream processors, each capable of managing up to
96 concurrent threads, for a maximum of 12,288 threads. Each processors has its own FPUs, registers,
and shared local memory. These processors were originally intended purely for graphics operations,
such as rasterization, but recent advances in the architecture of these GPUs means that generic user
code, rather than shader code, can be run. The advantage of porting code to the GPU is that you
can take advantage of its incredibly parallel nature, but only if the problem being solved is itself
inherently parallelizable. If implemented correctly, programs can run 65 times faster than their CPU
counterparts, as can be seen in [32].

Figure 4.12: Nvidia GeForce 8 graphics-processor architecture.

Of course CUDA is not without its limitations, the stream processors are SIMD, which stands for
Single Instruction Multiple Data. SIMD processors work best in unison, so for maximum performance,
every SIMD processor should be performing the same instruction as its brethren. This becomes a
problem when code relies on branching statements, such as if and else. If you’re code is heavily reliant
on branching, it will greatly slow down the performance of CUDA, possibly negating the advantage
of porting it to CUDA in the first place, so great care must be taken when written CUDA code.

Another issues is that of memory, GPUs do not have caches like regular CPU’s, so memory fetches
are more expensive than normal. As can be seen in 4.12, memory is off chip, so when a thread tries
to access this memory, it stalls, but rather than sit on the processor waiting, the stalled thread enters
an inactive queue and is replaced by another thread thats ready to execute. As soon as the stalled
threads data becomes available, the thread enters another queue that signals its ready to go. Groups

32

of threads take turns executing in round-robin fashion, ensuring that each thread gets execution time
without delaying other threads.

Threads are run in blocks, blocks are large collections of threads that are all concurrently. Threads
in blocks are able to intercommunicate using shared memory, accessing this memory is on chip, so
its as fast as accessing local registers. This shared memory can be used to pass information between
threads in a block, which alleviates the issue of data dependency between threads.

Thus far, CUDA has primarily been used for high speed computing. The only implementation
of CUDA for games is PhysX, Nvidia’s proprietary physics engine. This is surprising as Nvidia are
trying to put forward the concept that gamers should get 2 graphics cards, one for graphics, and one
for CUDA programs. It is this dissertations belief that CUDA can be used to greatly improve gaming
technology and performance, and that previously impossible tasks, such as large scale, realistic crowd
simulation can be implemented using CUDA.

4.7.2 CUDA avoidance overview

In order to avail of the parallel nature of the CUDA architecture, it was logical to create a thread for
every agent in the system, resulting in 500+ threads at once. Each thread would then scan the agents
environment, select the obstacles within its rectangle of influence and then calculate the avoidance
forces for each one. While this seems simple, proper care must be taken when designing this algorithm.
CUDA C is based on C, and C is a very mature language. As such, programmers are used to playing
to its strengths, while avoiding its weaknesses. It is common practice for programmers to naively
implement their CUDA code as they would C code for a standard CPU application. This should be
avoided at all costs, as CUDA has a completely different architecture and thus, a completely different
programming paradigm. When porting code to CUDA, programmers must completely reanalyze their
implementation in order to make us of this new architecture, resulting in code that would seem strange
to a standard C/C++ developer.

Memory allocation and Data transfer

At each time step it is necessary to transfer agent and obstacle data to GPU memory. The attributes
required in this process are Position, Velocity and Mass, as well as a vector to store the resulting
avoidance force. CUDA is unsuited to data structures referenced by pointers, as it deals poorly with
data that is randomly distributed throughout memory, so structs cannot be used. To this end, the
position, velocity and mass values are saved as large, 1-dimensional arrays that can be easily indexed
into by the calling thread.
Memory creation and allocation is treated differently in CUDA applications. CUDA is poor at dy-
namically allocating memory at run-time. This can become a problem when new data is added to
the system, as is the case in a physics based system when a new object is created. In c or c++ it is
recommended that memory for objects is allocated when necessary, so as not the bloat the application
with unused memory. This is not the case in CUDA, it is actually much more efficient to allocate
memory for the maximum number of objects at program launch. This ensures that adding or removing

33

objects from the system does not impede its performance in any way. It is important to note that this
is standard practice in CUDA applications and it a technique that is highly recommended by Nvidia.

cutilSafeCall(cudaMalloc((void**)&dpositions, sizeof(float) * 2000*3));

The above sample code allocates an array of 2000 3-dimensional floats that will store the objects
positions. It is possible to use the ”float3” datatype instead of creating 3 sequential floats, but this
is purely semantics and has no affect on performance. The above function is called only once at the
beginning of the application, so the memory is constantly available. The total memory allocated for
the position, velocity, mass and avoidance variables of 2000 objects is 80’000 bytes, roughly 80kb.
Prior to calling the CUDA avoidance code, the CPU copies all object data to the appropriate arrays,
and these are then copied over the GPU memory.

Rectangle of influence

As stated previously, only objects that are within an agents field of influence will considered for
avoidance. These objects are found by iterating through all objects in the scene and comparing them
against the rectangle of influence. This seems like it is a massive waste of processing time, and this
would be the case if this application were running on a CPU, where the computational complexity
would be in the region of O(n2). This is not the case in CUDA, it is actually more efficient to brute
force this problem than to create a space partitioning structure, especially when the number of agents
is below 5000, as has been shown by Vincent et al [23].
When checking if an object is within an agents field of influence, the most efficient technique is to
translate that object into the agents local space. This would not be the case in a CPU implementation,
as it requires the use of ”sin” and ”cos” functions, which are CPU intensive. GPU’s, however, have
dedicated hardware for these functions [41] and a call to either only takes 32 cycles. The ”sin” and
”cos” values are only computed at the start of a thread and are stored locally for the rest of the
algorithm. Once an object has been translated, a simple comparison of an agents X and Y attributes
versus the dimensions of the rectangle are required, as is shown in figure 4.13.

Porting the avoidance algorithm

The actual avoidance algorithm itself requires little to no modification. The majority of the calcula-
tions used are based on vectors and floats, GPU’s have been specifically designed for floating point
calculations, so these calculations are performed at little to no cost. This inner pieces of code is
performed as soon as an object is found inside an agents rectangle of influence.

Coalesced reading and Code Divergence

As stated previously, CUDA has no cache memory, so accessing memory off chip is expensive. An in-
teresting feature of CUDA is the way in which it handles coalesced memory reads. If multiple threads
request the same piece of memory simultaneously, they will all stall, but once the data is returned to

34

Figure 4.13: Agents j’s location in world space, then translated into Agent i’s local space for compar-
ison.

one thread, it will be returned to all threads simultaneously [42], greatly increasing the speed of the
application.
Firstly, to ensure that there are not multiple, needless memory access calls, multiple registers are
allocated per thread to store all necessary information. Secondly, all threads are set to iterate through
objects in the same order. Of course, threads will eventually diverge, this occurs when a thread calcu-
lates an avoidance force, while all others continue ahead. The more this occurs, the more divergence
if found in both code and memory access. A solution had to be found.

__syncthreads();

To ensure that threads do not diverge, a synchronization function, shown above, is called after
every every object is checked. This seems wasteful but the synchronization function is hardware based,
so it is incredibly fast and it only synchronizes threads that are in the same block. The feature has the
added befit of ensuring that instruction coherency is kept, for the most part, over all SIMD processors,
ensuring maximum efficiency.

NaN generation and propagation

Of course, no implementation is without its problems. When testing this application, it was quickly
found that it would crash sporadically. These crashes were most frequent at the launch of the appli-
cation. Whilst debugging it was found that it was not CUDA that was causing the crash, but PhysX,
apparently it was being fed invalid values. But the application ran fine when the CUDA module
was disabled. It was discovered that CUDA was returning NaN’s, and this was causing PhysX to
crash. NaN’s stand for ”Not a Number” and they occur whenever a number is multiplied by infinity,
or divided by zero. Whenever a NaN is used in a calculation, the result will also always be a NaN,
causing one NaN to become many NaN’s, quickly spreading throughout the system.

35

The distance variable was the cause of this, it is used to normalize the directional vector from an agent
to an object, and if the distance is found to be zero, dividing the vector by it results in a NaN. It is
possible, at the start of the simulation, that two interpenetrating objects can share the same position,
because the physics engine has not yet had a chance to apply a separation force to these objects. The
simplest fix was to add an if statement, but this would resulting in code divergence, which was to be
avoided. It was found that it was simpler to add a small number, 0.001f, to the distance variable prior
to normalization. This ensured that NaN’s would no longer appear. The number is so small that is
has no discernable affect on the resulting avoidance forces.

CUDA asynchronicity

The CUDA module of the project is asynchronous to the rest of the system, much like Physx. The
main game loop calls an update function on the CUDA avoidance module, this function runs on the
GPU and the CPU does not wait for it to return. A buffer for the avoidance is used, the CPU reads
avoidance forces from an array, which is switched for the latest version whenever the CUDA call
finishes. This results in some of the agents being updated by an avoidance force one frame out of
sync, this is not noticeable and the asynchronicity of the calls ensure that system runs at maximum
speed.

4.8 Rendering

This system will be rendered using OpenGL. It will not feature complex models and lighting because
this would take away from the GPU processing power available to CUDA. As stated previously, this
project aims to show that games can greatly improved by the addition of a second GPU purely for
CUDA specific functions. Sadly the system this project is being tested on has only one GPU, so it
would be unwise to limit this GPUs performance with complex graphics.
Despite this, it is still possible to have textured polygons and basic lighting without this taxing
the system too severely. Agents are represented as coloured cylinders, while dynamic obstacles are
represented by textured boxes. The walls and ground of the world will also be textured.

36

Chapter 5

Evaluation and Discussion

This chapter outlines how well the system performed. The system is judged in two ways. The first
is based purely on performance, the CUDA module is directly compared to a CPU implementation
of the same module. The second is based on performance of this system when dealing with differing
world maps, in order to ascertain the usefulness of this system in a gaming environment. The test
machine for this system has a 2.4ghx processor with 2 gigs of ram and an 8800 GTS with 320 megs
of ram.

5.1 GPU versus CPU

To properly understand the speed increases offered by CUDA, the avoidance algorithm was also
implemented on the CPU. The CUDA module was then compared to its CPU counterpart, with
varying data sets and data set sizes, to ascertain which implementation is best suited to this problem.
The CPU implementation has the same algorithm for generating avoidance forces, but uses a spatial
divisoning algorithm to speed up rectangle of influence queries.

It was found that the CPU technique outperforms the CUDA technique when the number of agents
and objects is quite low. As the numbers increase, the CUDA technique quickly gains ground and
becomes more efficient when there are over 200 agents and objects. It should be noted that the CUDA
techniques complexity and performance increases almost linearly, due to its multi-threaded nature.
The CPU techniques complexity increases exponentially at O(n2). The CUDA implementation also
has a guaranteed maximum run time of O(n), so it is worst case optimal.

5.2 System performance

Three environments were created in order to demonstrate the varying capabilities of this system. Each
of the maps are different and are modeled after a specific type of game world.

37

Figure 5.1: GPU and CPU performance comparison

5.2.1 High Density Environment

This test aims to gauge the performance of the collision avoidance behaviors in dense, agent filled
environments. A square section of the map is filled with 2000 dynamic agents. The agents are split
into 4 groups. Each group crosses the map in one of four directions. In order to test the stability of
this system the map is modeled as a torus, this means that whenever an agent leaves the boundaries of
the test area, they are transported back to the opposite edge, thus simulating an infinite environment.
The colour of agents in the below images are representative of the direction they are traveling.

This test was incredibly successful. Agent collision was kept to a minimum 5.2, while other
interesting crowd behaviors, such as lane formation, quickly became apparent 5.3. This system was
also incredibly stable and displayed none of the agent vibration issues found in other implementations.

5.2.2 Cluttered Environment

For this test, a large square area is filled with a random assortment of debris, represented by varying
sizes of boxes. This is meant to mirror the complex maps found in sandbox games such as GTAIV or
Prototype, as these maps are often full of dynamic, physics based objects. 200 agents were created,
these agents move towards an area filled with 600 boxes, each set to a random size and position.

Results for this test were found to be very promising. Agents are able navigate across the intersec-
tion with minimal collisions 5.4, avoiding agents and obstacles5.5. The agents take an obstacles mass
and radius into account, causing agents to avoid larger objects, will stepping over smaller ones. Agents
will occasionally bump into these objects, sometimes taking a wrong route. This is to be expected as
agents are only given a limited view of their world and have no sense of lookahead or planning. Even
with these discrepancies, agents still demonstrate behaviors that have thus far been unseen in games.

38

Figure 5.2: 2000 dynamic agents in an enclosed area

Figure 5.3: 2000 dynamic agents in an enclosed area

5.2.3 Indoor map

For this test a map was created in the accompanying MapMaker, it is modeled after a large industrial
complex with large rooms and narrow corridors, these are frequent in games and serve as the ideal

39

Figure 5.4: 200 agents avoiding 600 randomly shaped boxes

test for the robustness of the pathfinding and navigation mesh aspects of this project, as well as the
avoidance behaviors. In this test, 500 agents are placed randomly and given random paths. 500
box obstacles are also placed randomly through the scene. This map will test the full features of
the system, putting a strain on each module. This will ascertain the validity of the system and its
usefulness in modern games.

This map provided the most interesting results, showing both the advantages and disadvantages
of this system. The avoidance behaviors work well in all the areas presented, but jittery movements
could been when an agent was in an enclosed space, surrounded by other agents and objects. The
path finder was found to be very efficient, capable of handling large numbers of path requests without
any one agent waiting too long for its request to be fulfilled. The path finder occasionally chooses
congested paths, as it currently has no way of gauging how many agents or objects are contained in a
particular face. Even with these shortcomings, this map demonstrates that the implemented system
is valid, producing realistic results that are currently unavailable in existing games.

40

Figure 5.5: 200 agents avoiding 600 randomly shaped boxes

Figure 5.6: Plan view of the industrial map

41

Figure 5.7: Snapshot of a busy corridor

42

Figure 5.8: Snapshot of agents navigating the map while avoiding obstacles

43

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation outlined a system that can simulate large quantities of dynamic agents. This system
also allows agents to perceive obstacles in their path and to avoid them. These agents display emergent
behaviors such as lane formation, while still behaving as individuals with their own goal sets. This
system also outlined the method by which an avoidance algorithm can be ported to a GPU using
CUDA, making use of GPU specific coding techniques that greatly increase performance. The CUDA
function calls are also shown to be asynchronous and that they put little to no strain on the main
game loop. This greatly increases the realism and immersion levels of a game at little cost, proving
that GPU’s can be used in games for more than just rendering.
The system outlined is designed to handle multiple map types, ranging from large outdoor sections
to narrow indoor corridors and rooms. The navigation mesh system has been proved to be a robust
choice, as it provides better performing navigation graphs with fluid agent movements when following
paths. Overall this system is capable of handling almost any type of map, with large numbers of
agents and objects, displaying previously unseen dynamic agent avoidance features. This system is
inexpensive and could be integrated into an existing game framework, resulting in increased realism
and immersion levels.

6.2 Future Work

6.2.1 Congestion avoidance

Currently this system can not tell if an area has become congested and that it should be avoided
in future searches. This could be implemented by tallying the number of objects and agents per
convexface, this number would then be used to add extra weight the cost of traversing that face,
causing the A* search to try less congested paths. Since path costs would then be able to change, it
could be beneficial to implement D*, but only for incredibly large maps, like the kind found in MMOs

44

(Massively Multiplayer Online game).

6.2.2 3rd person testing

At the moment it is impossible to test this system from a player standpoint, as you cannot control a
character. It would be interesting to create a character agent that a user could control as if it were a
standard 3rd person game. This agent could be given a higher mass than other agents, causing other
agents to give the player character a wide berth so that large crowds are not detrimental to gameplay.

6.2.3 Wall avoidance

Currently agents do not avoid static geometry, such as walls, resulting in unrealistic behavior in narrow
areas. Giving agents the ability to sense and avoid walls would greatly increase realism, as they would
try to keep a comfortable distance from walls rather than walking into them. This could be added
to the CUDA avoidance module by iterating through the walls of the convex face the agent currently
resides in.

6.2.4 Further convex face simplification

Game frequently feature static pieces of geometry, such as pillars and trees. In a standard path
generator, nodes would have be placed around these objects so that paths could be planned around
them. This results in extra nodes that increase search complexity. Another approach would be to
remove these objects temporarily, create a convex face from the surrounding area and then reintegrate
the objects as obstacles that the CUDA avoidance feature would take into account. This would result
in simpler navigation meshes and with realistic navigation around these objects, rather than the on
rails approach found in most games.

6.2.5 Chaotic scenarios

The scenarios modeled in the previous section are not action orientated and are used mainly as a proof
of concept. It would be interesting to see how the existing code would behave in an action oriented
environment, such as the kind found in game like Prototype. Avoidance forces need not only apply
to physical objects, they could be used to avoid all manners of things like flames, explosion, gun fire
and enemy creatures. An other interesting scenario would be to create a zombie simulator This would
involve civilians trying avoid zombies, while zombies have a negative avoidance force for civilians,
drawing them towards them, causing the infection to spread. The possible scenarios are endless and
this technology could be used to implement some interesting game mechanics.

45

Bibliography

[1] Helbing D, (1992) A fluid-dynamic model for the movement of pedestrians, Complex Systems
6 pp 391 - 415

[2] Bauer, D., Seer, S., and Brndle, N. (2007) Macroscopic pedestrian flow simulation for designing
crowd control measures in public transport after special events, In Proceedings of the 2007
Summer Computer Simulation Conference (San Diego, California, July 16 - 19, 2007). Summer
Computer Simulation Conference. Society for Computer Simulation International, San Diego,
CA, 1035-1042.

[3] Hughes, R. L. (2002) A continuum theory for the flow of pedestrians, Transportation Research
Part B 36, 6 (july), 507535.

[4] Treuille, A., Cooper, S., and Popovic’, Z. (2006) Continuum crowds, In ACM SIGGRAPH
2006 Papers (Boston, Massachusetts, July 30 - August 03, 2006). SIGGRAPH ’06. ACM, New
York, NY, 1160-1168. DOI= http://doi.acm.org/10.1145/1179352.1142008

[5] Lamarche, F., and Donikian, S. (2004) Crowd of virtual humans: a new approach for real time
navigation in complex and structured environments, Computer Graphics Forum 23, 3 (Sept.),
509518.

[6] Shao, W. and Terzopoulos, D. (2007) Autonomous pedestrians, Graph. Models 69, 5-6 (Sep.
2007), 246-274. DOI= http://dx.doi.org/10.1016/j.gmod.2007.09.001

[7] Pelechano, N., Allbeck, J. M., and Badler, N. I. (2007) Controlling individual agents in high-
density crowd simulation, In Proceedings of the 2007 ACM Siggraph/Eurographics Sympo-
sium on Computer Animation (San Diego, California, August 02 - 04, 2007). Symposium on
Computer Animation. Eurographics Association, Aire-la-Ville, Switzerland, 99-108.

[8] Van den Berg, J., Patil, S., Sewall, J., Manocha, D., and Lin, M. (2008) Interactive naviga-
tion of multiple agents in crowded environments, In Proceedings of the 2008 Symposium on
interactive 3D Graphics and Games (Redwood City, California, February 15 - 17, 2008). I3D
’08. ACM, New York, NY, 139-147. DOI= http://doi.acm.org/10.1145/1342250.1342272

[9] Millington, I. (2006) Artificial Intelligence for Games, Morgan Kaufmann Publishing, ISBN=
0-12-497782-0

46

[10] Buckland, M. (2005) Programming Game AI by Example, Wordware Publishing, Inc., 2005.

[11] Stentz. A. (1994) Optimal and efficient path planning for partially known environments, In
Proceedings of the International Conference on Robotics and Automation, volume 4, pages
3310-3317. IEEE, May 1994.

[12] Stentz, A. (1995) The focussed D* algorithm for real-time replanning, In: Proc. IJCAI-95,
Montreal, Quebec 1995.

[13] Likhachev, M. (2002) Fast Replanning for Navigation in Unknown Terrain, IEEE Transactions
On Robotics : A Publication Of The IEEE Robotics And Automation Society Volume: 21
Issue: 3 (2005-01-01) ISSN: 1552-3098

[14] Ferguson, M. and Stentz, A. (2006) Multi-resolution field D*, in Proc. Int. Conf. Intell. Auton.
Syst., 2006, pp. 6774.

[15] Fernndez, J. A. and Gonzlez, J. (2002) Multihierarchical graph search, IEEE Trans. Pattern
Anal. Machine Intell., vol. 24, pp. 103-113, Jan. 2002.

[16] RE Korf. (1987) Real-time heuristic search: New results, Proceedings of the AAAI, 1987 -
aaai.org

[17] Ericson, C(2004) Real-Time Collision Detection, Morgan Kaufmann Publishing. ISBN= 1-
55860-732-3

[18] Samet, H., (1988) /An Overview of Quadtrees, Octrees and Related Hierarchical Data Struc-
tures, NATO ASI Series, Vol. F40, Theoretical Foundations of Computer Graphics, Berlin:
Springer-Verlag, 1988.

[19] Guttman, A. (1984) R-trees a dynamic index structure for spatial searching, Proc ACM SIG-
MOD Int Conf on Managemnet of Data. pp 47-57, 1984

[20] Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B. (1990) The R*-tree: an effi-
cient and robust access method for points and rectangles, In Proceedings of the 1990 ACM
SIGMOD international Conference on Management of Data (Atlantic City, New Jersey,
United States, May 23 - 26, 1990). SIGMOD ’90. ACM, New York, NY, 322-331. DOI=
http://doi.acm.org/10.1145/93597.98741

[21] Arge, L., Berg, M. D., Haverkort, H., and Yi, K. (2008) The priority R-tree: A practically
efficient and worst-case optimal R-tree ACM Trans. Algorithms 4, 1 (Mar. 2008), 1-30. DOI=
http://doi.acm.org/10.1145/1328911.1328920

[22] Luque, R. G., Comba, J. L., and Freitas, C. M. (2005) Broad-phase collision detection using
semi-adjusting BSP-trees, In Proceedings of the 2005 Symposium on interactive 3D Graphics
and Games (Washington, District of Columbia, April 03 - 06, 2005). I3D ’05. ACM, New York,
NY, 179-186. DOI= http://doi.acm.org/10.1145/1053427.1053457

47

[23] Vincent, G., Debreuve, E., and Barlaud, N. (2007) Fast k Nearest Neighbor Search using GPU,
Technical Brief, Nvidia Corporation, June 2007.

[24] Green, S. CUDA particles, Whitepaper, Nvidia Corporation, June 2008. Can be found in the
CUDA SDK.

[25] Satish N., Harris M., Garland M.(2008) Designing efficient sorting algorithms for manycore
GPUs, NVIDIA Corporation

[26] Paris, S. Pettre, J. Donikian, S. Pedestrian Reactive Navigation for Crowd Simulation: a
Predictive Approach, COMPUTER GRAPHICS FORUM 2007, VOL 26; NUMBER 3, pages
665-674

[27] Yang, S., Gechter, F., and Koukam, A. (2008) Application of Reactive Multi-agent System to
Vehicle Collision Avoidance, In Proceedings of the 2008 20th IEEE international Conference
on Tools with Artificial intelligence - Volume 01 (November 03 - 05, 2008). ICTAI. IEEE Com-
puter Society, Washington, DC, 197-204. DOI= http://dx.doi.org/10.1109/ICTAI.2008.134

[28] Braun, A., Musse, SR., de Oliveira, LPL. and Bodmann, BEJ (2003) Modeling Individual
Behaviors in Crowd Simulation, casa, pp.143, 16th International Conference on Computer
Animation and Social Agents (CASA 2003)

[29] Reynolds, C. (1999) Steering Behaviors for Autonomous Characters, DOI= 10.1.1.16.8035

[30] David, H. Eberly (2004) Game Physics, Amsterdam ; Elsevier/Morgan Kaufmann Publishing,
c2004. ISBN= 1-55860-740-4

[31] Rabin, S. (2002) AI Game Wisdom, Charles River Media. ISBN= 1-58450-077-8

[32] Majdandzic, I., Trefftz, C., Wolffe, G. (2008) Computation of Voronoi Diagrams using a
Graphics Processing Unit, In: Proceedings of 2008 IEEE Intl. Conf. on Electro/Information
Technology (EIT). IEEE, Los Alamitos (2008)

[33] Lamarche, F. (2009) TopoPlan: a topological path planner for real time human navigation
under floor and ceiling constraints, The Author(s) Journal compilation 2008 The Eurographics
Association and Blackwell Publishing Ltd. DOI= 10.1111/j.1467-8659.2009.01405.x

[34] Customer Showcase,

Autodesk Kynapse Middleware

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=11661385&linkID=11654889

[35] P. Pontevia, (2008) Pathfinding is Not A Star,

Autodesk Kynapse Middleware

White Paper,

http://images.autodesk.com/adsk/files/3d_perception_pathfinding_is_not_a_star.pdf

48

[36] P. Pontevia, (2008) Open the Eyes of your Non Player Characters,

Autodesk Kynapse Middleware

White Paper,

http://images.autodesk.com/adsk/files/perception_open_the_eyes_of_your_npcs.pdf

[37] Bullet,

http://www.bulletphysics.com/wordpress

[38] Havok,

http://www.havok.com

[39] PhysX,

http://www.nvidia.com/object/physx_new.html

[40] Luebke, D. Humphreys.(2007) How GPUs Work, Computer, vol. 40, no.2, pp.96-100, Feb.
2007

[41] Nvidia CUDA Programming Guide Version 1.0, Technical Brief, Nvidia Corporation, June
2007.

[42] Phuong H. Ha, Philippas Tsigas, Otto J. Anshus. (2009) The Synchronization Power of Co-
alesced Memory Accesses , IEEE Transactions on Parallel and Distributed Systems, IEEE
Computer Society. (2009-08-13), doi = 10.1109/TPDS.2009.134

49

