
University of Dublin

Trinity College

Sketch-based Path Control

by

Brendan Carroll, B.A.Mod Computer Science

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science

University of Dublin, Trinity College

September 2010

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for a

degree at this, or any other University, and that unless otherwise stated, is my own work.

Brendan Carroll

September 13, 2010

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Brendan Carroll

September 13, 2010

Acknowledgments

I’d like to thank my supervisor John Dingliana for his tireless efforts to help me and to my friends

and family for supporting me through the development of this thesis.

Brendan Carroll

University of Dublin, Trinity College

September 2010

iv

Sketch-based Path Control

Brendan Carroll

University of Dublin, Trinity College, 2010

Supervisor: John Dingliana

Sketch-based interfaces are largely confined to experimental research and are used in specialist

areas such as those occupied by artists, architects and engineers. While mouse driven input and menu

based interfaces have become the common computer interaction method, sketch input is an intuitive,

natural way of communicating intent and ideas. Pathfinding algorithms are a very important part of

modern interactive entertainment applications. They can be used in a multitude of data structures

and research into their operation continues to this day. Interaction with these algorithms has been

primarily through the use of mice which limit the amount the user can contribute to their function.

This project implements an approach for the use of sketch-based interfaces with pathfinding so that it

is possible to control and modify the paths of agents on 3D terrain using sketch strokes in real-time.

v

List of Figures

2.1 Example of gestures . 9

4.1 Diagram of main components of the system . 18

5.1 Sketch ray projection-the point of intersection is matched with a cell below 24

5.2 Bounding box created for ray . 25

5.3 Diagram of the cell point . 26

5.4 Ray Projection with multiple collisions in the same cell 27

5.5 Diagram of the sketch treatment pipeline . 28

5.6 Collision detection for path in the application . 30

5.7 Path with smoothing off . 31

5.8 Smoothing with lookahead of two . 31

5.9 Pointer 1 and 2 iterating through path . 32

5.10 Smoothing paths in the application . 33

5.11 Flow chart of the gesture recognition stage . 34

5.12 Path broken into segments . 35

5.13 Grid representation of intersection . 36

5.14 Two lines being checked for intersections - Intersections detected at red circles 36

5.15 Line Segments for Editing . 38

5.16 Two lines with their constituent points going in opposite directions 39

5.17 Editing path in application . 39

5.18 Line Segments for Deleting . 40

5.19 Deletion in the application . 41

5.20 Appending in the application . 42

5.21 Diagram of the reservation table . 43

5.22 Sector omission in the application . 45

6.1 FPS graph as sketch input is being read . 48

vi

List of Figures List of Figures

6.2 FPS graph of sketch treatment and agent traversal . 49

6.3 FPS graph of sketch-based editing with agent traversal 50

6.4 FPS graph of Cooperative Pathfinding . 51

A.1 Stylus based camera controls . 56

vii

Contents

Acknowledgments iv

Abstract v

List of Figures vi

1 Introduction 1

1.1 Aims . 1

1.2 Motivation . 1

1.3 Outline . 2

I Background 3

2 Sketch-based Interaction 4

2.1 Outline . 4

2.2 Benefits of Sketch-based Interaction . 5

2.3 Problems with Sketch-based Interaction . 5

2.4 Model Creation . 6

2.4.1 Evocative . 6

2.4.2 Constructive . 7

2.4.3 Alterations . 7

2.4.4 Model Animation . 8

2.5 Gesture Recognition . 8

2.6 Miscellaneous . 10

2.7 Summary . 10

viii

Contents Contents

3 Navigation 11

3.1 Outline . 11

3.2 World Representation . 11

3.3 Pathfinding . 13

3.3.1 Heuristics . 15

II Project 16

4 Design 17

4.1 System Requirements . 17

4.2 System Design . 18

4.2.1 Sketch Input . 18

4.2.2 World . 19

4.2.3 Pathfinding . 19

4.2.4 Command . 19

4.2.5 Graphical Interface . 20

5 Implementation 21

5.1 Tools . 21

5.2 Pathfinding . 22

5.3 Sketch Input . 23

5.4 Sketch Projection . 23

5.5 Sketch Treatment . 28

5.5.1 Path Continuity . 28

5.5.2 Path Viability . 29

5.5.3 Path Smoothing . 30

5.6 Sketch Analysis . 33

5.6.1 Selection . 35

5.6.2 Editing . 37

5.6.3 Deletion . 38

5.6.4 Appending . 41

5.7 Cooperative Pathfinding . 41

5.8 Sector Omission . 44

5.9 Rendering . 44

5.10 Miscellaneous . 45

ix

Contents Contents

6 Evaluation 47

6.1 Performance . 47

6.2 Overview . 50

7 Conclusion 52

7.1 Conclusions . 52

7.2 Future Work . 53

7.2.1 Multiple Point Pathfinding . 53

7.2.2 Dynamic Environment . 53

7.2.3 Sweep Line Algorithm . 53

7.2.4 Pathfinding . 54

A Sketch Camera Controls 55

Bibliography 57

x

1

Introduction

1.1 Aims

The aims of this project are to develop a system which uses a sketch-based interface to interact with

agents in a 3D environment through the use of sketch strokes. With this interface, it will be possible

to select an arbitrary number of agents and sketch particular paths they should take over the terrain

itself. The project should be able to condition strokes for their use as paths, allow the modification

of agents paths using sketch, and do all of this in real-time.

1.2 Motivation

Interest has been growing in the last few years in non-mouse based interfaces with massive investments

being made in multi-touch surfaces and motion based input devices. Even with the rise of such devices,

sketch-based interfaces receive little attention compared to others. While stylus based interactive

entertainment devices are common, most resort to point and click mechanics and no functionality

that explicitly uses sketch strokes is employed. As this is the case, this project aims to use a sketch-

based interface to control agents in a 3D world by allowing the creation and modification of paths

through terrain, all in real-time. It is hoped that by demonstrating this, more sketch-based devices

will use sketch strokes as a viable way of interacting with agents in a 3D scenario.

1

1.3. Outline Introduction

1.3 Outline

This thesis is split into two main parts. The first part covers the background which contains the

theory and techniques of areas implemented in this project. The second part contains the design,

implementation, evaluation and conclusion of the project based on the techniques laid out in the

background. Each of the two will be briefly explained.

The background contains two chapters, one dedicated to sketch-based interaction(Chapter 2) and

the other to navigation(Chapter 3). Sketch-based interaction is described, starting with a brief outline

of the area and the benefits and negatives of using sketch as an input tool. It then explains the major

research areas today in sketch-based interaction. These areas are detailed with current papers and

approaches being described. Relevant information to the field which does not fit into these research

areas are then explained and the summary describes an overview of the field as a whole. The navigation

chapter outlines the current algorithms and approaches to navigation in modern applications. Different

graph data structures also called world representations are explained with their positives and negatives

being mentioned. Pathfinding algorithms are described with the most common in use today being

mentioned and heuristic algorithms currently in use also being explained.

Chapter 4 details the overall design of the system developed here. The different components of

the project and how each of them work and interact is also explained.

Chapter 5 describes the tools used to construct this project and the different parts which needed to

be created for the end result. Pathfinding algorithms used are explained as is the sketch input system

and how the input points are used for stroke creation. Then the analysis of the sketch strokes, so

gestures the user gives can be recognised and actions executed are described. The graphical rendering

component is also explained giving information about what visual information had to be added to the

project.

Chapter 6 contains information on evaluating the success of the project.

The conclusion chapter(7) contains the conclusion to the project but also details information

on possible future work for it. Numerous improvements are explained and possible directions for

furthering the project itself.

2

Part I

Background

3

2

Sketch-based Interaction

This chapter contains information on sketch-based interaction. Background information is described

with the most common and current methods available for approaching certain areas being mentioned.

2.1 Outline

Sketch-based interfaces take data from the user in the form of strokes. The user draws strokes onto

a tablet or some type of touch responsive surface, using a pen-like stylus. Most interfaces can take

in the pen’s position on the surface while others can additionally take the pressure at the point it is

being pressed, the angle it is being held and how close it is to the surface should it not be touching

it at all. Through all of this, sketch interfaces try to emulate the use of a pen on paper and apply

it to the use of a computer. Sketching is a natural way of communicating, conveying ideas and with

a few simple strokes, complicated and abstract concepts can be expressed. Sketching is a form of

drawing and is used in a multitude of fields. It is used in planning stages for designers and architects,

conveying complicated principles, abstract ideas and in art for preparatory work or the finished piece

itself.

It is hoped that by using sketch as the primary interface to computing, it will make the operation

of computers more accessible and naturalistic. Recent trends over the years have been towards finding

new ways of accepting input from the user, such examples include the motion sensing Wii remote[35],

4

2.2. Benefits of Sketch-based Interaction Sketch-based Interaction

Microsoft Kinect[31] and the popularity of multi-touch devices. Research into sketch-based interfaces

and modelling has also increased. There is now a yearly workshop on the topic, hosted by Eurograph-

ics and submissions have been plentiful[12]. The following sections describe the current status and

applications of sketch-based interfaces.

2.2 Benefits of Sketch-based Interaction

There are many benefits to sketching and sketch-based interfaces. Sketch-based interaction is an

intuitive, simple communication method. The physical activity and mental processes associated with

sketching form the basis for problem solving, development and general creative thought for most of

the areas where 3D modelling is used. As sketching is often used in the early stages of development

in the creative process when details are rough and designs are vague, this area is the exact stage of

3D modelling which is under-served by the current market[10].

With regard to model creation, sketch-based variations have shown themselves to be significantly

faster than traditional WIMP(Windows, Icon, Menu, Pointing Device) for creating 3D models[28].

2.3 Problems with Sketch-based Interaction

There are numerous problems with sketch-based interaction. It has several critical aspects, due to

difficulties during the interpretation step by the computer. These mainly derive from the semantic gap

between the users communicative intention and how he/she is able to convey it[5]. Solving ambiguity

is an ongoing problem with several different approaches being suggested to address it, such as analysis

of the context in which the command is issued[27], or relying on the knowledge of the user’s drawing

style[2].

Sketch-based interaction can be intuitive if designed carefully but the idea that the user should

instinctively know what to do in most situations is false as many gesture based systems still have

to be given cognitive effort and practice from the user to remember and master commands. WIMP

based systems already demand this level of effort so sketch-based interaction will not be placing any

increasing strain on users than what is already being asked of them today.

Modern WIMP based interfaces are largely incompatible with sketch-based controls as they are

primarily based on the point and click actions provided by a mouse. For sketch-based interfaces to

become common, a shift would have to occur away from WIMP based interfaces.

5

2.4. Model Creation Sketch-based Interaction

2.4 Model Creation

Model creation is the subfield of sketch-based development with the largest amount of research devoted

towards the topic. It involves reconstructing a 3D model based on 2D input provided by a sketch

device. Olsen et al[37][36] divided the range of model creation techniques into two categories which will

be used here to explain current developments. The categories are the Evocative and Constructive.

Evocative creation systems use sketch to instantiate a built-in model which is most similar to the

input, which means it has a pre-computed model stored and when a sketch is drawn, it picks the

model which it thinks the sketch is closest to. A constructive creation system maps the input strokes

to a model itself, the strokes are used to create geometry which has not been pre-computed.

2.4.1 Evocative

In the SKETCH system[49], the user draws strokes which are used to divide 3D primitive objects such

as cones, cylinders, spheres, objects of revolution, prisms, extrusions, ducts and superquadrics. The

strokes are also used to place the object in the scene. Template creation systems are a common way

of interpreting strokes. Using this system, the user would draw a series of strokes, and a collection of

pre-computed 2D templates would be checked until the most common one was found. Then the 3D

shape which is contained in that template would be inserted into the application. Template systems

can allow the user to create simple or complex shapes depending on the corresponding templates and

the strokes usually have to have a reasonable degree of resemblance.

Yang et al[49] used a template based system to create complex 3D geometry. Their system also

created the resulting 3D object using measurements of the user-defined input strokes and were able

to create models of planes, mugs and fish.

The benefits of such template systems are their extensibility: new recognitions can be added to

the applications as fast as the template can be created, although such complex shapes can also limit

them in their applications as they are more specific.

Shin and Igarashi propose a system which they called the “Magic Canvas System”[40]. This

approach uses templates to create scenes themselves. When the system takes in user sketch input, if a

corresponding shape is found in the templates then those objects are placed in the scene according to

that input. The object is also rotated and scaled to match that input and the relationships between

objects is also inferred with objects possibly being placed on top of each other, e.g. a cup on a book.

Lee and Funkhouser[24] propose a hybrid template system. The more complex shapes would be

retrieved from the database, but the objects would all be parts of complex models. The user would then

6

2.4. Model Creation Sketch-based Interaction

join all of these objects by sketching the connections. Lee and Funkhouser say “it allows creation of

highly detailed models/scenes (as details come from parts in the database), while 2D sketched strokes

provide all the information for part selection and composition (no 3D manipulation is required, in

general).” They report the application as a success with users finding scene position very easy with

sketch strokes. They did have 907 shapes in their template database so many shapes which a user

wanted to draw had a decent probability of being similar to a template in their database.

2.4.2 Constructive

Constructive model creation takes in sketch input from the user and without using any matching

templates, tries to reconstruct a 3D object based on the strokes alone. This is much more difficult

than template based methods as there is more ambiguity determining what the user is trying to do.

Constructive model creation is a very difficult problem, one which covers many different disciplines,

because of this there are many different methods for constructing different types of geometry.

There are a number of techniques which try to determine the meaning behind each stroke that

is drawn. Line labeling is an algorithm which classifies lines as contour, concave or convex edges.

Extensions on this idea come as systems try to label corners, edges and vertices of objects in the hope

of reconstructing the geometry. The strokes can be labelled as the user is drawing them but are only

reconstructed once input has stopped[42].

One method for solving ambiguity poised by sketch input is to apply previous knowledge attained,

a form of machine learning. Lipson and Shpitalni[26] propose an approach whereby a 3D model is

reconstructed using the 2D input sketched but taking into account models it has encountered in the

past. They “demonstrate how a simple correlation system that is exposed to many object-sketch pairs

eventually learns to perform the inverse projection successfully for unseen objects.”

Another method involves multi-view systems. In these systems, additional strokes can be added

to define more constraints to the surface and from other viewpoints. This added information allows

developers to gain more information about the users intentions and reduces ambiguity. Nealan et

al’s FiberMesh system[34] allows the user to draw additional strokes onto a surface and changing

viewpoint to modify strokes already drawn.

2.4.3 Alterations

Augmentation is the process of adding something to a mesh already created. In Teddy[19], the user

must draw a contour line to define the area of the model where the appendage is to be fixed. The

7

2.5. Gesture Recognition Sketch-based Interaction

user would then draw some strokes indicating the shape of the new limb. FiberMesh[34] also allowed

for augmentation but at a much simpler level. A stroke could be drawn on the surface of a mesh and

the user could then displace that stroke, thereby altering the surface of the mesh. These alterations

would only be superficial with creases being created either protruding or extending into the surface.

Numerous methods for the deformation of meshes exist with sketch-based implementations. Cut-

ting, bending, twisting, tunnelling and free-form deformations are some of the alterations that can

be made. Sketch-based deformations like augmentations, are usually straightforward to use as the

model being operated on has already been created. Some systems already mentioned[34][19] allow

handles which the user can select and drag thereby altering the stroke and the model that the handle

is connected to. When the stroke is moved, it deformed orthogonal to the viewing plane.

Kara et al.[20] propose a deformation system based on templates. The user draws some strokes,

the system then selects templates which it believes match the users input most, the user then selects

the one they want. The template is then aligned with the input sketch using a camera calibration

algorithm. From there the user traces the feature edges of the sketch on the computer screen, the

user’s 2D strokes are processed and interpreted in 3D to modify the edges of the template. The

resulting template is shown and the user can refine initial surfaces using physically-based deformation

techniques. Finally, new design edges can be added and manipulated through direct sketching over

existing surfaces.

2.4.4 Model Animation

Sketch input has been used to animate models and a number of papers have been published looking at

different ways of using sketch to animate models. Mao et al created a gestural interface for sketching

out 3D animation for stick figures[29]. Their approach uses rapid 3D key framing and motion/timing

control based on sketch input. Another approach was researched into using sketch-input for facial

animation[33] which involves associating each stroke with a facial element, then the stroke is matched

using templates, once it has been recognised, the differences between the template and the stroke are

used to morph expressions on the model’s face.

2.5 Gesture Recognition

Within the field of Sketch-based development, a common goal is to use sketch as a way of issuing

commands and for the user to convey meaning in a particular application. Thereby moving away

8

2.5. Gesture Recognition Sketch-based Interaction

from the traditional button and menu based interface which are commonly used today. A gesture

based interface allows stroke input to specify commands.

Therefore, such a system would need to able to recognise gestures when they are drawn. Usually

gesture recognition is template based, so a user can draw gesture 1 and it will match with template 1

in the system thereby causing that specific command to be executed. Templates can be represented in

a number of ways such as simple bitmap representations, sequences of bits or anything which allows

sketch input to be comparable. Thought should be placed into creating memorable and easy to draw

gestures. Remembering the correct way to draw them still requires effort and practice on the user so

the system should make it as easy as possible. An example of possible gestures is in figure 2.1.

Figure 2.1: Example of gestures

There are a number of different ways of recognising gestures. Weesan Lee et al[25] propose the

use of a graph based system where the symbols are represented internally as “attributed relational

graphs that describe both the geometry and topology of the symbols.” Then the recognition consists

of finding the definition symbol whose attributed relational graph best matches that of the unknown

symbol.

Rubine’s[38] classical paper on his GRADMA system uses single stroke input only and its recogni-

tion system is based on the geometry properties of the stokes such as the initial angle of the gesture,

the length and the angle of the bounding box diagonal, the distance between the first and the last

point, the cosine and the sine of the angle between the first and last point and the total gesture length.

Hammond and Davis proposed the creation of a sketch recognition language which they named

LADDER[16]. “The language consists of predefined shapes, constraints, editing behaviours, and

display methods, as well as a syntax for specifying a domain description sketch grammar, ensuring

that shapes and shape groups from many domains can be described.” They then went on to define

over 100 shapes in LADDER including UML class diagrams, finite state machine symbols, flow chart

9

2.6. Miscellaneous Sketch-based Interaction

symbols and various others. Avola et al[4] proposed another sketch based language based on XML,

they also noted commonalities with LADDER and claimed that their system was able to label sketch

strokes with a high degree of accuracy.

2.6 Miscellaneous

Sketch-based interfaces have found applications in numerous other areas not mentioned above. They

have been used for road design[8][30] both using sketch-based input to define nodal roads and curve

based roads respectively.

Zamora and Eyjlfsdttir[51] presented an application called CIRCUITBOARD. They propose a

system which uses sketch input to draw digital logic circuits and tested out the resultant designs.

Their system can recognise the full set of logic gates and provided a way of connecting them and

defining the inputs and outputs to the design.

Anastacio et al presented a system for parametrising L-systems for the creation of plant structures[3].

User input sketches are employed as a way to define and manipulate global-to-local characteristics of

L-system models. Eitz et al[11] used sketch input with regard to image deformations. Using user de-

fined strokes to outline the region on the image for alteration, the user can then draw a new boundary

stroke which will cause the image to deform matching the old boundary with the new one.

2.7 Summary

Sketch-based input is a very active and interdisciplinary research field. Many different applications

have been researched for sketch strokes and while there are still many open problems left for solving,

the interest in this area continues to grow. We can see this based on the growing number of papers

being submitted to the Eurographics workshop every year[12][13].

10

3

Navigation

This chapter contains a brief overview of the subject of pathfinding, its background and its current

state of the art. It describes overviews of the main algorithms used in current interactive entertainment

applications.

3.1 Outline

Navigation is essential in many applications involving agents and traversable environments. It is

used for searching for information in many types of graph structures and is useful in various areas of

Artificial Intelligence. The type of graph structures can have an enormous difference to the quality of

resulting paths generated and are mentioned in section 3.2. Pathfinding algorithms traverse the graph

structures searching for a path to a target node. Pathfinding algorithms are discussed in section 3.3.

Heuristic algorithms which estimate the cost of reaching a certain node are discussed in section 3.3.1.

3.2 World Representation

When it comes to navigation, how your data is represented in a 3D world is extremely important.

Different representations have different benefits and pitfalls, and usually one is chosen over another

11

3.2. World Representation Navigation

based on the application. Two considerations when a world or search space representation is being

chosen is performance and memory usage. In interactive applications your final pathfinding solution

will need to be as fast as possible and consume a reasonable amount of memory.

All representations are graph based, they all have nodes and connections called edges between

certain nodes. Edges represent a possible transition between positions that can be taken. Some

graphs can have a high amount of nodes, the larger the graph the more nodes that need to be stored

in memory resulting in high memory usage. Also the larger the graph, the more search space that

needs to be traversed to find paths between points and the slower pathfinding will be.

The goal of world representations is to keep the search space minimal but not too small so that it

doesn’t represent the world accurately. Different representations can be used for different aspects of

an application, they just need to correspond to the same world. World representation can also have an

effect on path quality, if the representation closely conform to the structure of the world, the quality

of the resulting path will likely be higher than those representations which are distantly related.

The following mentions the most commonly used world representation data structures. Grid

representation is the division of a world into rectangular tiles and are one of the most common

representation structures. They can be other shapes such as squares, rectangles, hexagons or triangles.

They are most useful in 2D environments and do not contain any 3D information. Should they be

implemented in a 3D world, they will have to be modified. Within the grids themselves, there is a

choice of using the edges, vertices or the tiles themselves for movement. If edges are chosen as their

grid representation, the paths generated can suffer from quality issues with jagged results as they can

only connect to cells vertically and horizontally. Tile and vertex based grids do not suffer from this.

A negative of grids are that they do not scale well. A large number of grid cells are often required

to represent large game worlds, thereby increasing memory usage and slowing down pathfinding. A

positive aspect of grid structures is that they support random-access lookup[14]. A certain cell can

be found in a structure in constant O(1) time.

A corner path representation, also called a polygonal map, creates nodes at the corners of obstacles.

It is a non-grid based representation. If two points in a node are not blocked by interceding objects,

an edge can be made between those nodes. The good thing about polygonal maps is that an edge

in the graph can extend over a lengthy distance, making pathfinding much faster compared to a grid

representation in which each cell would need to be traversed. A negative is that this representation

can result in sub optimal paths with agents seeming to cling to objects as they traverse the map.

They also take O(n2) time for generating edges between node pairs.

Waypoint graphs are another representation which are extremely popular in games today. They

12

3.3. Pathfinding Navigation

are very similar to polygonal maps except that the node points can be placed in the middle of areas

and do not have to be corners of objects. This solves the wall-clinging behaviour of polygonal maps.

Unfortunately generating edges between the waypoint nodes takes as long as polygonal maps, at O(n2)

time. Also, while there are automatic methods for placing waypoints in a 3D world, usually a level

designer will have to manually check and correct node placement. This can be a time consuming

process. Waypoint graphics can suffer from problems with multiple agents passing by each other

along the same edge between waypoints as edges can be quite long. The main benefit of them is their

memory footprint which is lower than grid based maps.

Navigational Maps are the last world representation structures mentioned here and one of the

more common maps in modern games today. Rather than map the obstacles like polygonal maps,

they map the areas which are walkable using non-overlapping polygons. The result is that varying

polygon sizes, usually all with the same number of sides e.g. 3 for triangular polygons, 4 for quads.

An advantage of navigational meshes is that they support outdoor and indoor scenes equally well and

allow you to reliably find the most optimal path between two points. Unfortunately they can also

have very high memory usage, particularly in large and geometrically expansive environments[45].

3.3 Pathfinding

Pathfinding or path planning is the creation of paths through a suitable structure from point A to point

B. They are a necessary part of any Game AI system for controlling agents in a virtual environment.

Pathfinding algorithms search through a graph, starting at one point and traversing adjecent nodes

until the final point is found or until the entire graph has been searched. There are many different

pathfinding algorithms, some such as depth-first search will eventually find the final point if they are

given enough time while others would be able to find it in less time. The following section details

different pathfinding algorithms and their strengths and weaknesses.

Dijkstra’s algorithm is a graph search algorithm which guarantee’s finding the shortest path be-

tween two points. It works by calculating the distance between two nodes and then adding this value

to the cumulative distance of the path so far. It repeats this process with all nodes around until it

finds the final node or traverses the entire graph. When it finds the final node, it simply takes the

path with the shortest distance and this is the shortest path. The performance of Dijkstra depends on

the data structures used to hold the nodes and the size of the graph itself. The performance is O(n2)

where n is the number of nodes in the graph. The worst case is when n = m where m is the number

of connections from a node to its neighbours[32]. For use in real-time solutions, Dijkstra’s algorithm

is not used but it is important as it forms the basis for the A* algorithm.

13

3.3. Pathfinding Navigation

The most commonly used pathfinding algorithm currently in use today is the A* search algorithm.

Created by Hart et al[18] in 1968, pathfinding in interactive entertainment has become synonymous

with A*. It is reasonably simple to implement, efficient and can be heavily optimised[32]. It is built

upon Dijkstra and is identical except that it also takes into account heuristic values derived from the

current node being tested and whatever heuristic algorithm being used. A heuristic is an algorithm

which estimates the cost/distance to the final point. Using both the heuristic value and the distance

cost travelled so far from Dijkstra, A* is able to find the shortest path to the final position and in

much faster running time. The biggest factor in determining the performance of A* is the performance

of its key data structures: the pathfinding list, the graph, and the heuristic[32].

When A* is being implemented in real-time environments, the algorithm is executed and a path for

an agent is computed. The AI does not take into account any moving objects or dynamic environments

so as the agent traverses the path, it checks to see if anything is in the way between the current node

it is on and the next node. If there isn’t then it proceeds to the next node, but if there is then it runs

the A* algorithm again, taking into account the new obstacle. This strategy is known as local repair

and it used extensively in games today[41].

A modification of the A* search algorithm was proposed by Anthony Stentz in 1993 which is called

Dynamic A* or D*. D* is “capable of planning paths in unknown, known, and changing environments

in an efficient, optimal, and complete manner”[43]. It is very similar to A* except in certain ways.

For instance it starts at the final node and works at finding a path to the starting node. It changes

the cost of edges between nodes as the program runs, if a node should become blocked by an obstacle

then all it’s neighbouring nodes have changes in cost reflecting this, raising their costs. This keeps

the pathfinder away from the affected area if it can help it.

Many different variations of A* have appeared over the years, all dealing specifically with particular

conditions they were developed for, algorithms such as Lifelong Planning A*[22], D*Lite[21] and

Dynamic Fringe-Saving A*[44].

A relatively recent pathfinding method developed which is based on A* is Cooperative Pathfind-

ing(CA*) [41]. There are number of differences between CA* and the original A* but the most

fundamental was the idea that each agent would have access to another agents path. The paper intro-

duced a data structure which it called the “reservation table”. This structure organised all possible

nodes in a particular graph, essentially a 2D structure but then added an extra dimension which

represented time. In this way, when an agents path was being planned using whatever pathfinding

algorithm it deemed necessary, most likely A*, it will then calculate at what time the agent would

be at each node and check if that node is available or reserved by another agent. If it is free then it

will reserve that node in the reservation table, otherwise a pause instruction would be issued until the

14

3.3. Pathfinding Navigation

next step and this sequence would be repeated. The result of all of this is that agents move efficiently

through the map, avoiding each other’s paths and getting out of the way when necessary. The benefit

of this is that while the initial performance overhead will be greater than executing regular A*, as the

agents will not be bumping into each other, A* will not be run again.

3.3.1 Heuristics

“A heuristic is a rule of thumb: an approximate solution that might work in many situations, but is

unlikely to work in all.”[32]. Heuristics are used extensively in modern pathfinding, mostly because

of A* based algorithm supremacy in creating reliable paths quickly. Heuristics are not only used in

pathfinding, they are used in Evolutionary Algorithms and Neural Networks[23].

When it comes to heuristics in pathfinding, the higher the quality of the heuristic, the faster the

path will be found. If a heuristic is perfect, it will return the exact distance to the target node and

A* will go straight to that node. The runtime will be O(n) where n is the number of steps in that

path. Most of the time, the heuristic will not be perfect, especially in complex search environments.

It can either return an estimation that is low, in which case it is called an underestimating heuristic

or high where it called an overestimating heuristic.

An overestimating heuristic could lead to A* returning paths which are not the best. As the

heuristic returns a greater cost to the final node than it really is, A* will start paying less attention

to the cost so far and more towards the heuristic as its result dilutes overall cost. The result is that

while the algorithm may find the target node faster, it might not be the shortest path to be from the

initial node to the final node.

An underestimating heuristic can lead to A* taking longer to compute a path but it will always

return the shortest path. As the heuristic returns a lower cost to the final node than it really is, A*

will start paying more attention towards the cost so far and less to the heuristic. This will cause it

to start favouring nodes closer to starting node as they have a lower cost. Underestimating heuristics

can cause A* to start behaving like Dijkstra.

The two standard heuristics for A* on grid like graphs are Euclidean distance and Manhattan.

Euclidean simply gets the distance between two points regardless of data structure and uses this as the

heuristic. Euclidean distance will always be underestimating and on complicated graphs can cause

significant performance drops. Manhattan distance gets the number of nodes between the current

node x-axis position and the final nodes x-axis position and adds it with the difference between the

current nodes y-axis position and the final nodes y-axis position.

15

Part II

Project

16

4

Design

This chapter contains the design of the project, its goals and main components.

4.1 System Requirements

The following section lays out the requirements and goals of this project, broken down into their

individual points.

• Take in and store user input from a sketch device in the form of strokes.

• Project points onto the surface of the terrain creating path.

• Parse the path correcting any continuity gaps.

• Check for path collisions with non-traversable terrain and correct.

• Allow agents to traverse user drawn path.

• Use the sketch pen device to move around a 3D environment.

• Allow agent selection with irregular sketch strokes

• Allow path editing, deletion and appending in real-time.

17

4.2. System Design Design

• Allow for multiple agent movement with agents path being planned relative to each other paths

under the direction of sketch input.

• Allow sector omission from system pathfinder using sketch.

• Create debug viewer allowing additional information and geometry to be seen.

Throughout the project, effort was made to optimise implementations when time allowed, in cases

where some implementations can be optimised further, I will mention possible improvements should

anyone be interested in implementing any features.

4.2 System Design

This section describes the individual components of the project including how they interact and their

main function. Figure 4.1 shows a diagram of the various components.

World Pathfinding

Graphical Sketch

Command
Map
Units

A*
Cooperative

Input Pool

Stroke Interpretation
Action Issue

Display Sketch,
Paths,
Map Surface

Figure 4.1: Diagram of main components of the system

4.2.1 Sketch Input

This part of the system is responsible for taking input from the sketch device, modifying it for use by

the system and storing it when the action is complete. It is also responsible for transferring the points

from the 2D screen space to 3D world space and recording the geometry the points interact with.

18

4.2. System Design Design

4.2.2 World

The World module is responsible for the world representation of the 3D environment. It also stores

information related to the map and agents. For the world representation of the system, many data

structures mentioned in the background section were considered. Finally a grid based map was chosen

with vertices chosen as the points which would be represent cells. When agents are being rendered,

they appear to be in the cell which the vertex represents. A grid map was chosen in the end as it

would allow for random-access lookup of cells and this will be extremely beneficial when parsing paths

which are mapped to particular nodes on the map. Grid based maps can have high memory usage

for significantly large maps but as maps would only be less than 500 nodes in width and height, it

seemed the memory usage would be negligible.

Polygonal maps were considered and while their memory usage is lower than grid based maps,

their faults such as wall hugging and long look up times, especially as the map gets larger seemed too

expensive for this system.

Navigational maps were also considered and while they are usually the primary choice for modern

games today, like polygonal maps, the look up time made the deciding factor as it too grew larger as

the size of the map increased.

4.2.3 Pathfinding

For the pathfinding module, the A* search algorithm was chosen. Its speed, reliability and its ubiquity

in modern pathfinding solutions made it the perfect choice for the system. Its extensibility is also a

positive allowing the system to take into account terrain heights and player orientation.

For group movement, rather than running the A* for each individual agent, it was decided that

cooperative pathfinding(CA*) would be implemented which would allow each agent in a group to take

each others planned path into account. The implementation of CA* differs in some ways from the

CA* laid out in the original paper and take into account the sketch stroke drawn by the user.

4.2.4 Command

The Command module is responsible for storing the paths computed from the sketch module. It

allows for the manipulation of the paths during runtime and provides functionality for searching and

the attribution of paths to particular agents. It interacts with the World module and issues requests

for information about agents and the map itself. It is responsible for interpreting the sketch strokes,

19

4.2. System Design Design

treating them for use as paths by agents and for the gesture commands which modify them. It sends

updates to the graphical module for displaying the world.

4.2.5 Graphical Interface

The graphical interface module is responsible for giving the user visual feedback of actions in the scene.

When the user uses the sketch stylus to draw or modify paths, or move around the environment, this

module will show visual feedback of the actions performed.

20

5

Implementation

This chapter contains information on the implementation of all the various parts of this project that

were mentioned in the past chapters. Specific tools used, with methods for implementing sketch input

and the other parts of the project being explained.

5.1 Tools

For this project a number of different technologies were looked at.

• For programming languages, C++ was chosen as it is fast and is commonly used in interac-

tive entertainment applications and graphics. It also has support from the standard template

library(STL) which provided more ease of use.

• The sketch input device used is a Wacom Bamboo tablet[46].

• To gain access to data being read in from the tablet, WinTab drivers are used[15]. WinTab is

a driver specifically made for the Microsoft Windows environment for communication between

digitalising tablets and applications. A wrapper API for WinTab called bbTablet[6] was used

as it provided a higher level view of the functionality of WinTab without the need to access its

many low level functions.

21

5.2. Pathfinding Implementation

• OpenGL is the graphics API used as it is widely supported and easily accessible using C++.

• Rather than have low level primitives representing agents and obstacles, GLEST was used.

GLEST is an open-source real-time strategy game that is currently in development[9]. It was

chosen as it is written in C++, uses OpenGL and allowed access to source code. It also has a

level editor so it allowed the creation of levels to test different parts of the project.

• The development took place in Visual Studio 2008 on a Windows XP operating system.

5.2 Pathfinding

Throughout this project, the A* pathfinding algorithm is used. GLEST had its own implementation

of A* for use in the game. It was necessary to rewrite this and extend it to account for a greater

number of factors. As mentioned in the background section, A* works by combining both the total

cost of getting to the current node from the starting node and a heuristic which will estimate the cost

from the current position being evaluated to the target position. Cost is the distance it takes to get

from node to node. When it is evaluating a position, it checks the distance cost it took to get to this

node from the original position and it checks its neighbours to see if any have been searched before.

If they have, it will then check if the current distance the search has traversed plus the extra cost of

going to the neighbouring node. If this total distance is faster than the path which was taken to get

to that neighbouring position when it was discovered last, then the new path has found a faster way

to reach that position and it makes the current node the parent of the other node, thereby shortening

the path. It continues this activity until it finds the target then iterates back along from final node

to its parent and so on until it reaches the starting node and this is the shortest path.

The implementation of A* in GLEST did not have a number of features which were included in

the end. The implementation did not take into account distance cost already traversed, it based its

pathfinding ability on the heuristic solely. As such it was not able to guarantee the shortest path

between two points but using the heuristic would eventually find a path. A* heuristics were extended

taking into account terrain height, it was more prudent to stay on level terrain if possible then to

ascend as the cost of transitioning between cells of a different height would increase costs. Euclidean

distance was used as the heuristic as it would either be perfect or underestimating making it guarantee

to finding the shortest path between two points and because agents can move diagonally, Manhattan

distance is not used.

22

5.3. Sketch Input Implementation

5.3 Sketch Input

For the sketch input, a Wacom Bamboo tablet was used. This tablet allowed the pen device to hover

over a point without actually touching the pad and for the device to read this point. Wacom are able

to do this using electromagnetic resonance technology. When the user starts touching the pad itself,

the points begin to pool until the pen is lifted. The user can draw strokes on the pad and using the

Wacom drivers, the system is able to read all the strokes pressed.

A method was written to check for events i.e. input information, where coming from the pad

itself. If there is data detected, then it is pooled until the input stops. From this data, the position

of the stylus on the pad(which is recorded as a 2D point) and the type of interaction with the pad

is extracted. The type of interaction will tell whether the stylus touched the surface of the pad or

simply hovered, if any of the buttons were pressed and if so which ones. When using the WinTab

drivers, the input stream would stop mid-stroke and with how the pooling system was written, the

points recorded up until the break would be designated as a stroke. For the stroke information to be

continuously read from the device and for continuous input to be rightly designated as strokes, the

checking system had to be modified. If two consecutive input checks are returned with no information

being read from the pad, then all the points read before the breaks are considered part of the one

stroke. Some inconsistencies also came from the amount of pressure being applied on the device itself.

If the pen is pressed too lightly, the pad and subsequently the drivers would record no input whereas

a simple hover of the pen over the pad records input well. This may be caused by faulty equipment

or slight bugs in the drivers themselves when interacting with this particular type of sketch pad.

Once a series of points is designated a stroke, the data is quickly scanned for any consecutive

duplicate coordinates and if any are encountered then they are removed. This is done for several

reasons. As the points themselves will have to be projected into the 3D scene which is mentioned in

section 5.4, the ray creation and intersection tests would be expensive especially when done on points

that are duplicates. Also when a particular part of the map is selected with rays, duplicate cells will

be removed anyway making the entire process wasteful. When the coordinates from the sketch device

are being mapped to the screen, they are in the representation of 0 to 1 from the operating systems

resolution and must be converted to the applications resolution.

5.4 Sketch Projection

When a series of points have been created for a stroke, they are in screen space and need to be

converted to world space. A raycasting solution was implemented. Raycasting involves shooting rays

23

5.4. Sketch Projection Implementation

from the point in 3D world space. This is done by getting the current modelview matrix, projection

matrix and viewport. Using these we can then reverse the graphics pipeline converting the points

from screen space to world space.

A ray that projects itself into the 3D scene needs to be created. The following process occurs for

each point in the stroke. A point in world space is created at exactly one unit away from the camera

position into the scene using the reverse pipeline of the point. Using the camera position and the new

point, a line of infinite length is constructed allowing the scene to be probed with the corresponding

sketch points. Once all of the rays have been constructed from the original sketch stroke points, then

tests need to be conducted to see which part of the map is colliding with the rays.

Figure 5.1: Sketch ray projection-the point of intersection is matched with a cell below

The terrain itself will be checked for collisions with the rays. As the terrain is made up of cells

which form grids, the number of cells to be tested can be quite large. Rather than test for intersections

against all cells in the map, a method was employed to reduce the number of tests that needed to be

performed. When the environment is being loaded into the application, a note is made of the lowest

height of the terrain. When the intersection tests are being run for each ray, a point of intersection is

calculated when the rays cross the minimum height. Using this point, a bounding box can be created

by getting the x and z coordinates of that intersection point and the x and z coordinates of the start of

the ray being tested. Figure 5.2 shows a diagram of this process. As this bounding box encompasses

24

5.4. Sketch Projection Implementation

the only cells the ray could possibly intersect with, it eliminates large parts of the map from being

checked.

Camera Position

Ray Crossing Lowest Height

Figure 5.2: Bounding box created for ray

The system then iterates through the cells encompassed by the bounding box. For each cell, a

polygon intersection test is performed. Using the points from the cell being checked, a plane which

has the same orientation and position is constructed. A point of intersection between this plane and

the incoming ray is then computed. From the cell’s four vertices, two individual triangles are created.

Then a triangle boundary test is conducted.

With the point of intersection, it must be checked to see if it is inside the particular cell being

checked. To do this, tests are run with the two triangles which make up cells and original intersec-

tion point. The following method was implemented to test whether the point was inside a triangle

geometrically.

There is a triangle made up of the vertices A,B and C and you have a point P which you want to

test to see if it is inside the bounds of the triangle. The way it is implemented here is test each edge

of the triangle and check if P is on the side which is inside the triangle. An example of such a triangle

can be seen in figure 5.3.

If the edge BA is being tested against PA, the point inside the triangle we can test it against is C.

25

5.4. Sketch Projection Implementation

A

B C

O O’

Figure 5.3: Diagram of the cell point

With the edge CB, the point inside the triangle is A and so on. This method checks a point to see if

it is on the inside of all the edges and if it is then it is inside the triangle. If it fails any of these tests,

the test exits.

D = BC × PC

E = BC ×AC

result = D · E

if result >= 0

then point inside triangle

If a cell is found to be colliding with a ray then that cell is noted. Once all the checks are complete

for a ray, if multiple cells were found to have intersected with a single ray then the cell which is

closest is added to a list containing the cells which are also colliding with other rays. As the stroke

coordinates are stored in order of their input, the points at the start of the strokes are stored first

and the points at the end of strokes last. When intersection tests are being conducted and the screen

space points are being used, this order of first to last is used so the cell order also corresponds from

first to last.

As the number of points being drawn on the screen are on the pixel level and can repeat, a number

of the points in a stroke can hit the same cell at the same stage of the path. The result is that there

are numerous duplicate positions in the path, all of which are adjacent to each other.

When this occurs, it is necessary to prune any duplicate positions from the list. Figure 5.4 shows

26

5.4. Sketch Projection Implementation

an example of the same cell being hit twice. This will insure that the agent is not stationary for

periods of the path as the same position happens to feature a number of times and will also cut down

on rendering costs. When the paths are being drawn, the same positions will be repeatedly drawn

when there are numerous duplicates and the frame rate of the simulation can quickly drop.

Figure 5.4: Ray Projection with multiple collisions in the same cell

It is worth noting that there is an opportunity for acceleration techniques with the raycasting.

Typically when there are a high amount of rays being computed and intersection tests need to be

conducted in scenes with a high amount of geometry, the drop in the frame rate can be substantial.

In the system developed here, the number of rays were limited to the size of strokes drawn by the

user and were not computed for every pixel in the screen like some other intensive raycasting or

raytracing solutions. An acceleration technique was implemented whereby a bounding box covering

the area of all possible ray intersections was created, allowing for a lot of intersection tests to be

skipped. As the strokes are only computed once when they are drawn initially and do not continue in

subsequent frames, it was not deemed a high necessity to implement advanced acceleration techniques

as the potential benefits for performance would possibly be negligible or minute. This allowed time

to be given to other areas. Spatial data structures such as Octrees, Binary Spacial Partition trees

and bounded volume hierarchies may cut down on wasteful computation on parts of a scene not being

selected. Construction of these structures are expensive however, and is often done as a pre-process[1].

27

5.5. Sketch Treatment Implementation

5.5 Sketch Treatment

This section explains the process of treating the sketch path after it has been created. Quite a number

of different methods need to check the path and correct it in many ways before it is read for use by

an agent.

Figure 5.5 shows the stages of this process in order from the unaltered sketch path generated by

the intersection tests to the final path being output by the path smoothing stage.

Path

Continuity

Path

Viability

Path

Smoothing

Raw Path

Input

Treated

Path Output

A CB

Figure 5.5: Diagram of the sketch treatment pipeline

5.5.1 Path Continuity

Now that there is a list of cells on the map corresponding to the sketch strokes, continuity gaps in the

cells need to be checked.

The list is scanned with two pointers at consecutive slots in the list. As both pointers iterate

along the list checking if the two cells they are currently on are adjoining in any way. If they are then

the iterators continue checking until they reach the end of the list. If they are not adjoining then

the gap needs to be closed. Gaps in paths will cause problems for agents as they iterate through the

path themselves. When they come upon a gap, they will suddenly speed to the next cell in the path,

possibly bounding over non-traversable cells in a very straight leap. There were two ways to go about

closing the gap.

The first was to create a line between the cell at the start of the gap and the cell at the end of

the gap and interpolate along the line checking the cells which the line passes through, adding them

to the list as they appear. The second choice involved using A* itself to close the gap. The second

option was chosen for implementation. The benefit of this is that usually the gaps are quite small

and the pathfinding algorithm will be run for a very brief time, and A* guarantees that it will find a

path if there is one. It should be noted that this version of the pathfinder will not take into account

the orientation of the agents body or environmental factors such as terrain height. It is thought that

28

5.5. Sketch Treatment Implementation

with these added conditions excluded, the resulting path found using the pathfinder would be close to

what the original sketch stroke looked like. If the pathfinding algorithm did take terrain into account

then you could get deviations from the original stroke where the pathfinder has found a quicker way

to get from point A and point B. The point of using sketch as an input method is to give the user

exact control over the paths agents traverse so the algorithms used should try to adhere to this goal.

Resampling of the sketch input when it was being read was not needed in this project as any

inconsistent gaps between points would be closed by this path continuity process. It may be necessary

for other applications that make use of sketch input to have their input resampled. Sometimes the

spacing between points read in from the sketch device can vary and resampling could be used to reduce

noise between points and to keep spacing between points consistent.

The result is that the path contains no gaps, with each cell being adjoined to its neighbours

allowing for the agents continuous traversal over the terrain.

5.5.2 Path Viability

This section describes the part of the project dedicated to path viability, which is checking that a

particular path is traversable by an agent. As sketch input gives the user the power to draw distinct

paths over all types of terrain, certain paths drawn or possibly parts of the paths being drawn will

pass over terrain that is not traversable by the agent selected.

It is up to the system to automatically correct these paths while trying to adhere to the original

sketch drawn by the user if it is at all possible. In this system, each cell has a structure which says

what type of obstacle(e.g. a tree, a river, rocks etc) or agent it has on it, if it has any at all. With

this in mind, the system scans the now gapless path searching each cell in the path for cells which are

occupied by obstacles or agents. If one is encountered then that cell is checked against the players

width and length. As the system is using a vertex based grid map, that vertex can overlap with more

than one cell, at a maximum four. So the the system must check the remaining cells to see if they

are at all occupied by a agent or obstacles. As the cells dimensions are quite small, it is not necessary

to check for collisions using bounding box type solutions but should the cells increase in size, some

type of bounding box solution would be more than likely need to be implemented. As the world

representation is already grid-based an axis-aligned bounding box would be appropriate for efficiency

reasons.

When an obstacle is encountered then a pointer records the previous cell to its position. A second

iterator starts scanning through the remaining list checking each cell. When it encounters a cell which

is does not have an obstacle, it then records its position in the list. Now the first pointer points to

29

5.5. Sketch Treatment Implementation

(a) Initial Stroke Drawn (b) Unsmoothened Path

(c) Traversing the Path

Figure 5.6: Collision detection for path in the application

the last traversable cell before the non-traversable segment was encountered and the second pointer

points to the first traversable cell after that segment.

Using both points we now run the pathfinder and find a path connecting them both. The system

now splices this new path into the original by removing the non-traversable and now bypassed cells,

and inserting the new path to take its place. The agent can then traverse the new path and continue

along the user designed sketch stroke. It is worth noting that multiple sections of one path can be

non-traversable and all will be fixed by the system as it scans through the list. Figure 5.6 shows a

sketch stroke being drawn and the non-traversable portion being corrected.

5.5.3 Path Smoothing

It became apparent that the paths which would be drawn using the sketch stylus were jagged in

places and allowed for some extremely poor agent movement. As agents in the system are capable of

diagonal movement, using the stylus sketch, there tends to be a lack of diagonal movement in places.

30

5.5. Sketch Treatment Implementation

To combat this negative effect, an approach for path smoothing was implemented. Figure 5.7 shows

examples of a non-smoothened path.

(a) Initial Stroke Drawn (b) Unsmoothened Path

(c) Traversing the Path

Figure 5.7: Path with smoothing off

(a) Initial Stroke Drawn (b) Smoothened Path

Figure 5.8: Smoothing with lookahead of two

A pointer would start at the beginning of the path to be smoothened. A second pointer would

31

5.5. Sketch Treatment Implementation

go a certain number slots ahead. How far the second pointer looks ahead is dictated by a variable

which could be made available to the user to alter. For descriptive purposes, this variable will be

referred to as the ’lookahead’. If the value set is greater than the remaining length of the path then

the lookahead is set to the remaining path length. This lookahead is used throughout the smoothing

process for setting the second pointer a certain number of slots ahead of the first pointer. Figure 5.8

shows the path smoothing function with a lookahead of two. A diagram of the two pointers iterating

through an array can be see in figure 5.9.

P1 P2 + lookahead

Compare

P1 P2 + lookahead -1

Compare
P1

P2 + lookahead -2

Compare

.
P1 P2 + lookahead

Compare

Figure 5.9: Pointer 1 and 2 iterating through path

The second pointer then starts iterating backwards, as it does this it checks each node to see if it

is reachable from the node the first pointer is pointing to. If it is not then it continues to iterate back

until it reaches the same node that the first pointer is on. From here the first pointer iterates to the

next node. The second pointer again goes a certain number of nodes in advance as specified by the

lookahead. It then starts iterating back again. If the second node does find a node which the first

pointers node can reach, then all the nodes between the two pointers are removed from the path list.

It is by this process that any jagged nodes are removed from the list. Also if any loops are drawn by

32

5.6. Sketch Analysis Implementation

the user and the lookahead length is long enough, the loop will be removed. The longer the lookahead

the greater the chance that it could possibly be shortened. Full smoothing can be seen in figure 5.10.

In the implementation of path smoothing in this project, the lookahead value was set to one as this

would remove any jagged movements that the agent would make and allow the user to draw any

path he/she wishes. Also, The longer the lookahead value, the greater the computation time for path

smoothing.

(a) Initial Stroke Drawn (b) Smoothened Path with Large Lookahead

Figure 5.10: Smoothing paths in the application

Another possible alternative to path smoothing would be to map the path to a bezier curve and

then plot this curve to the grid. Various path smoothing techniques have tried using bezier curves in

pathfinding stage itself[50] and for autonomous vehicles for smooth steering[48]. As this system tries

to adhere to the path drawn specifically by the user, bézier curves were not appropriate.

5.6 Sketch Analysis

This section contains information on certain commands which can be issued using the sketch stylus

and how they work. After the treatment process has concluded, the system will now examine the

sketch stroke and determine which command the user was trying to initiate, if there was one at all.

This section explains the gesture recognition system implemented. As sketch is used in a certain

number of determined ways, the system will now try and narrow down which command the user is

trying to invoke. It does this in a number of ways. Firstly, as sketch is primary used to control

agents in the environment, the system checks whether any agents are currently selected. If there are

some then it assumes that the user was trying to issue a command towards the agents selected. The

current state of the agents is also important. If they are stationary, then only certain commands are

possible just as there are only certain commands if the agents are moving. A flow chart of the gesture

33

5.6. Sketch Analysis Implementation

recognition stage can be seen in figure 5.11.

Sketch Input

Unit Selected?

Sketch Enclosed?

No

Yes

Select Unit(s)

Do Nothing

No

Interpret Sketch Execute Command
Yes

Figure 5.11: Flow chart of the gesture recognition stage

In the following subsections, each possible command and action will be discussed and the conditions

which are to be met for them to be initiated. For many of the sketch commands to work the system

needs to recognise the stroke patterns. As noted in the background, there are many different ways to

do this and pattern recognition is still considered to be a problem with active research continuing in

the area constantly.

Template matching was considered but as irregular shapes would have to be supported, using

pre-determined gestures would be limiting in the way sketch strokes could be used. In the end, a

different approach was implemented than the methods mentioned. As the commands issued using

sketch would be mainly focused on the paths themselves, gestures were developed which were thought

to be memorable and intuitive so the user would be able to use them without much effort.

Gestures would be recognised in the form of intersection tests between strokes and the context

in which the strokes are drawn. When the user draws a sketch and after it has passed through the

34

5.6. Sketch Analysis Implementation

treatment process, each cell of the stroke would be broken into continuing line segments. Figure 5.12

shows an example of this.

Figure 5.12: Path broken into segments

The paths of agents currently selected will also have their own line segments corresponding to their

paths. When a stroke is drawn a number of tests are run. Line segment intersection tests would be

executed, iterating through the stroke just drawn and checking each segment for intersections with

the path of the agents currently selected. These tests are conducted looking for specific points of

intersection if there are any. The points that comprise the line segments are 2D, representing the x

and z axis. Two intersection points can be seen in figure 5.15.

Line segment intersection tests are used because they give a certain reliability that other methods

do not and were chosen over curved solutions such as bézier curves or clothoids as the intersection tests

between line segments are less computationally expensive. For example, as the world representation

in use is grid based, you could possibly attain both strokes with reference to grid cells and check for

commonalities. This would be more efficient than running line segment intersection tests as the paths

being checked would only have to look for common cells in both. There is a problem here in that

while such tests may work for some strokes, they will not for others. In Figure 5.13a you can see two

paths intersecting at a common point being detected, but in figure 5.13b we can see that despite the

two lines intersecting, when mapped to the grid they fail they intersect.

The following subsections will detail how intersection tests are relevant to their commands.

5.6.1 Selection

For the selection of agents to work using sketch gestures, there needs to be no agents selected. If

there are agents selected when a selection like gesture is drawn, a different action could possibly be

executed as the context for selection is not correct.

For selection to be executed, the user must draw a sketch stroke which intersects with itself. This

35

5.6. Sketch Analysis Implementation

(a) Two lines intersecting at the same cell (b) Two lines missing the intersection as the lines
do not share any cells

Figure 5.13: Grid representation of intersection

Figure 5.14: Two lines being checked for intersections - Intersections detected at red circles

means that the user has to draw a loop. The sketch stroke will be checked for self-intersections and if

there is one then one of two things can happen. If the user has drawn a loop around an agent then the

agent will be selected, if it is not encapsulating an agent then the section of the map selected will be

become an omitted sector. This will be explained in the Sector Omission section later in this chapter.

The selection process works in the following way. When a command has been confirmed as a

selection command, a bounding box is immediately constructed, encapsulating the self-intersecting

loop. Then the cells inside in the bounding box are accessed, if the cell contains an agent then it is

36

5.6. Sketch Analysis Implementation

checked to see if they are inside the self-enclosed loop. It is checked by iterating from the cells position

along and negative and positive x and z axis checking to see if it is surrounded by a sketch mark. If it

is and there is an agent on the cell then that agent is added to a currently selected list. This method

is effective put can lead to some false positives if the sketch stroke is sufficiently complex where it

encapsulates agents but not inside the sketch stroke. Except in these rare cases, it works exactly as

expected.

5.6.2 Editing

For the editing of an agents paths, the agent in question should be selected. The method used to do

this is based on oversketching the path being edited. As shown in figure 5.17b, the sketch is drawn

by the user, one which intersects the current path in two places. That sketch is broken up into line

segments and it and the path selected are checked for intersections. Figure 5.15a shows two paths

being intersected at two points. The red circles show the points of intersection.

When the two points on both lines are found, both paths need to be spliced and swapped. On the

path being edited, all the information between its two intersection points need to be removed. Then

all the path information between the two points on the corresponding line which is doing the editing

need to by inserted into the original line. Figure 5.15b shows the result of this. The resulting path

will be the original path with a new section created using sketch and in real-time.

It is important to note that the order in which the editing stroke is drawn is important. For

instance, if the agent is traversing along a path from A to B and you draw an editing stroke that

intersects on the B side and intersects again on the A side, what you will have is two paths which are

going in opposite directions. Figure 5.16 shows an example of this.

The problem with this is that when the two paths are being spliced into each other, it can introduce

discontinuities into the resulting path and irregular agent movement will result. If the order of the

positions in the new path is going in an opposite direction then the agent will jump to the end of the

new path splice, start traversing back along the new addition to the line only when it gets to the end

of this new addition, it will again jump to the section of the original line after the splicing took place.

So when the two paths are being merged, the order of the new addition needs to be accounted for and

reversed as it is necessary to avoid any contaminated paths. Figure 5.17 shows the resulting editing

operation in the application.

37

5.6. Sketch Analysis Implementation

(a) Two lines being checked for intersections - Intersections detected at red circles

(b) Path after editing command - original path now modified

Figure 5.15: Line Segments for Editing

5.6.3 Deletion

Deletion functionality was added giving the user the power to delete sections of the path while an

agent is traversing it. To do this, a new gesture was created allowing the user to both select the

section for deletion and to make it distinct enough for the system to detect that the delete action was

being requested and not the editing command. For this command, a self-enclosed loop was used to

signify deletion. The agent, whose path was to be deleted would be selected and the user would then

draw a loop which intersected the agents path at two points. Essentially this is selecting the area of

the path for deletion using the sketch device and making sure the selection sketch is self-enclosed.

When the sketch is drawn by the user, after it has been broken into its corresponding line segments

38

5.6. Sketch Analysis Implementation

Line 1

Line 2

Figure 5.16: Two lines with their constituent points going in opposite directions

(a) Initial Path (b) Drawing Editing Stroke

(c) Result of the Editing

Figure 5.17: Editing path in application

39

5.6. Sketch Analysis Implementation

(a) Deletion gesture - Two lines being checked for intersections - Intersections detected at red circles

(b) Path after deletion command command - End of path now before gap

Figure 5.18: Line Segments for Deleting

and intersection tests have been run between it and the agents path, like the selection method it is

checked to see if it self-intersects at all. If this is the case and if two points of intersection were found

then the positions between those two points are erased. Figure 5.18a shows two lines being checked

for intersection points, with one line being self-enclosed. From figure 5.18b, it can now be seen that

the portion of the path which was encapsulated by the enclosed line has been removed.

The agents target point is then updated to the last point in the current path before deletion. This

is to prevent the agent from jumping between points over a long distance. The user can still add a

new path to the place where delete section is and the agents movement till continue along the new

path. The delete opertion can be seen in figure 5.19.

40

5.7. Cooperative Pathfinding Implementation

(a) Initial Path (b) Draw Delete Gesture Around Section of Path

(c) Section of Path Deleted (d) Agent Halt at Empty Section

Figure 5.19: Deletion in the application

5.6.4 Appending

For appending a new sketch-drawn path to a path already being traversed, a certain number of

conditions must be met. Like all of the possible commands for modifying paths so far, the agent

whose path is to be modified needs to selected. Once it is, then the user can append a new path

segment to the current. When a new sketch line is drawn, if none of the other checks for the sketch

commands are met then the location of the start of the input is checked. An intersection test begins

and if a point of intersection is found and it happens to be in the last two segments of the current

path then the new sketch line is appended to the end of the agents path, extending it by however

much the user drew. Figure 5.20 shows the append operation.

5.7 Cooperative Pathfinding

This section contains information on group movement using sketch as implemented in this project.

Rather than use local repair A* which was briefly described in the background section(section 3.3), a

41

5.7. Cooperative Pathfinding Implementation

(a) Drawing Initial Stoke (b) Drawing Appending Stroke

(c) Result of the Appending

Figure 5.20: Appending in the application

different approach was implemented. As local repair A* contains now functionality for avoiding other

agents, cooperative pathfinding was implemented.

The implementation of cooperative pathfinding in this project is not the same as demonstrated by

Silver[41]. Silvers implementation uses a heuristic for the pathfinding. The heuristic used is the A*

algorithm itself and is termed “true distance”. What he means is that A* will find a path between

points A and B and it will be the shortest if used properly. In this way, if you get the length of this

path, it is a perfect heuristic as it will always return the exact distance, never under or over-estimating.

This part of the algorithm was not implemented in this project as running A* as a heuristic would

carry performance penalties. What was implemented is the “reservation table” as used by Silver. This

table in terms of a grid based map would be a full copy of the grid map itself, a 2D structure except

there would be multiple copies of these maps all according to a specific time. The reservation table is

essentially a 3D data structure with multiple copies of the 2D map according to certain times. Figure

5.21 shows a diagram of the reservation table.

The idea is that at a certain clock cycle, the system will know which cells will be available and

42

5.7. Cooperative Pathfinding Implementation

Y

X

Time

Starting Position
Target Position

Figure 5.21: Diagram of the reservation table

occupied and in this way it is possible to plan paths that will be empty at particular times, thereby

avoiding collision between agents moving across the map. Using the selection command described

in section 5.6.1 multiple agents can be selected. Then the user will draw a path using the sketch

stylus. For cooperative pathfinding to work, an agent must compute their path first. With this

implementation, the user nominates a leader and that agent will be the first to have its path allocated.

This occurs by finding which agent is closest to the path just being drawn, so which agent was that

path intended for. This is done by getting the distance between the start of the sketch path and the

position of the agent. Once an agent has been chosen then a counter is enabled and the reservation

table is created. The system iterates through the paths and every position is added to the table but

in different versions of the map, each selected by the particular time it will be there at. New time

versions of the map are created as they are needed. Once this is done, the rest are to have their paths

computed and added to the reservation table. For the rest of the characters I simply used A* to find

a path to the final position as indicated by the sketch stroke.

They could be forced to adhere to the sketch stroke as drawn by the user, but for this implementa-

tion it has not been included. Rather, this implementation was testing the capabilities of a reservation

table based solution and using sketch to test out its functionality. When the agents paths are being

43

5.8. Sector Omission Implementation

added to the reservation table, they check if position is free on the map when they will be there. If it

is not then the agents will add a pause for one iteration and see if it is in the next iteration, when it

is free then they continue iterating through the path and adding it to the table.

The point of this is while the start can be quite intensive(especially if A* is used as a heuristic) it

stops the pathfinding algorithms from running again as they will not collide with any static obstacles

or any agents. In static environments, the initial computational overhead could be lower than a group

of agents running A* every time their paths cross.

5.8 Sector Omission

This section contains information on the implementation of sector omission. Sector omission is a part

of the map which is omitted from future executions of the systems pathfinder or of the users sketched

paths. The concept behind this is that it being possible for the user to customise the way in which

the system’s pathfinding module runs using sketch strokes.

A user customising certain parameters of the pathfinding module while the system is in runtime

and using sketch has very powerful implications. It could open up interactive applications to tailoring

their functionality to the users criteria, giving them more control over agents.

When no agent is selected, if an enclosed loop is drawn, the cells inside are considered omitted. For

this implementation, to allocate certain cells as non-traversable, as the implementation of maps within

this system allows for status of cells to be stated, an added parameter records whether it has been

designed for omission from subsequent pathfinding tests. This also allows for the action to be reversed

easily once a gesture is created that issues that command and contains the area or re-admission to

the pathfinding module. Figure 5.22 shows sector omission in the final application.

5.9 Rendering

For this project everything is rendered using OpenGL. A debug mode was created for showing terrain

of different heights in different colours so it would be easier to see if certain parts of the system work

correctly. Occupied cells are coloured differently, cells which are in agents paths are displayed and

both can be updated as the system progresses. Omitted sectors are also viewable in debug mode

letting us see parts of the map which have been set by the user as being omitted by the pathfinder.

As the map’s cells are being iterated through and their appropriate status are being rendered, data

structures containing currently selected agents and their paths and omitted sector cells have to be

44

5.10. Miscellaneous Implementation

(a) Initial Stroke Selecting Sector (b) Debug Mode - Showing Omitted Sector

(c) Pathfinder avoiding Sector (d) Debug Mode - Path Avoiding Sector

Figure 5.22: Sector omission in the application

checked, these values were surrounded in bounding boxes to limit these structures traversals and

performance noticeably improved.

For non-debug mode, certain graphical parts were written. Points which are being drawn using

the sketch device and being pooled are drawn to the screen regardless of whether the stroke is com-

pleted. Once the stroke has been submitted to the command module for interpretation, this screen

representation of the stroke is cleared. Paths were displayed using diamond shaped indicators and the

line segments that made with paths is displayed using simple lines. Also, when the input is being read

in from the stylus, the current position of the pen relative to the screen is displayed using a cursor.

5.10 Miscellaneous

This section contains information about other functionality implemented which should be noted.

When a sketch stroke has been drawn, it is very likely that it is not exactly where the agent is

positioned. To make sure the sketch is still possible to reach, any gap between the start of the sketch

45

5.10. Miscellaneous Implementation

stroke and the user must be closed so the pathfinding algorithm is run.

To make sketch-based input a viable way of controlling the movement of agents, it is necessary

to find a replacement to using the mouse for moving around the 3D environment. To achieve this,

controls for the systems camera were created specifically for the sketch stylus. The Wacom Bamboo

tablet has two buttons on the pen stylus itself allowing more information to be received from the user.

A description and diagram of the controls are in Appendix A.

46

6

Evaluation

This chapter contains the evaluation of the project. It lists the performance at stages when sketch is

being used in terms of the number of frames per second(FPS). The computer system being used to

benchmark the project is using a Quad Core Intel Xeon CPU with each core clocked at 2.67GHZ and

3 gigabytes of RAM. The GPU is a NVIDIA Quadro FX580 with 512mb of memory. It is running

Windows XP Professional. The application FRAPS[7] was used to calculating the number of frames

per second as various parts of this project are being run. An application based frame-counter in

GLEST itself was used to back up FRAPS results.

6.1 Performance

As this system is supposed to be real-time, the frame rates will be able to show how applicable sketch

based path control is to real-time applications today. 30 FPS is considered the frame rate to be aimed

for in modern computer games today.

Here the frame rate is checked when the sketch input is being read in from the device and the data

is being pooled. The points are being used to create rays which are being projected into the scene

and the resulting intersections are being stored. The strokes are also being drawn to the screen as

they are being read. Figure 6.1 shows a chart mapping the frame rates against the seconds as they

increase. As the counter begins, the application is idle with no agents in motion. The frame rate here

47

6.1. Performance Evaluation

is 321. From seconds 1 - 4 the selection of a agent occurs and from seconds 5 - 15 the stylus is drawing

a stroke on the screen. The minimum value recorded during this time is 315 FPS(frames per second),

well above frame rates needed for real-time applications today.

310.0

317.5

325.0
FPS

1 2 3 4 5 6 7 8 9
Figure 6.1: FPS graph as sketch input is being read

The sketch treatment process needs to be benchmarked now. As it does not involve reading input

from the sketch device, it will be much faster than the sketch input phase. Figure 6.2 shows the

frame rate during the sketch treatment process, the self-intersection tests and the agents traversing

the paths after they have been added. The Second 0 at the beginning of the graph is a continuation

of sketch-input being read in pooled as mentioned in the last chart. Seconds 0-2.5 is the section of the

chart where the path is being treated and checked for self-intersection tests. The frame-rate starts

increasing slowly at 3.5 seconds to 313 FPS and 312 FPS as the agent begins to traverse the path

and the frame rate stabilises in this range. Again this frame rate is above the minimum for real-time

applications.

Here the sketch-based editing is benchmarked. It is the most intensive sketch modification com-

mand as it requires splicing the original path and the new stroke into a resulting path for the agent.

The other two processes mentioned so far are also included. These are recieving the sketch input data

from the device, the raycasting of this data into the scene, the treatment process with the resulting

path and the intersection tests between the agents path and the sketch path. Figure 6.3 shows the

frame rate mapped against the seconds for the editing operation. The sketch strokes start to be read

in from the device start at 0 seconds and the process just described begins. During this period the

48

6.1. Performance Evaluation

310

315

320
FPS

1 2 3 4 5 6 7 8 9 10

Figure 6.2: FPS graph of sketch treatment and agent traversal

agent is also traversing the original path. From 0 - 5 seconds, the frame rate fluctuates between 304 -

305 FPS. At 5 seconds the frame-rate reaches 305 FPS. The intersection tests and the splicing of the

paths begin. The lowest FPS recorded is 304. After the splicing, the agent continues traversing the

path and as no input is being read from the device, the frame rate increases to 306 FPS. Of all the

commands possible with the sketch system, editing is the worst with regard to performance. Regard-

less, the frame rate is high enough that there is no perceivable drop in frame rate in the application

itself.

Next to be benchmarked is the group cooperative pathfinding. A sketch stroke is drawn and each

agent thereafter must add a path to the reservation table and begin traversing it. Figure 6.4 shows

49

6.2. Overview Evaluation

300

305

310

1 2 3 4 5 6 7 8 9 10 11 12 13

FPS

Figure 6.3: FPS graph of sketch-based editing with agent traversal

two graphs, both displaying the FPS for cooperative pathfinding with different numbers of agents.

Figure 6.4a shows the FPS for three agents. The minimum frame rate is 300 as the reservation tables

are being created and A* is being run. In figure 6.4b, it can seen that the frame rate also drops to

a minimum of 297 but the time the drop occurs over is longer with the extra agents causing longer

computation time. A* needs to be run for two extra agents and their paths need to be added to the

reservation table. Once all paths have been created and reserved the frame rate rises as the agents

traverse their paths. As 6.4a only has three agents, the frame rate is higher at 301 FPS while the

other with five agents rises to 300 FPS.

6.2 Overview

As the results show, the inclusion of sketch-based interaction with pathfinding is real-time, with the

frame rates being substantially higher than 30 FPS which most interactive entertainment applications

such as games would aim for. The addition of the ray acceleration structure helped improve the frame

rate immensely. Without its addition, frame rates were reaching as low as 245 FPS for the more

50

6.2. Overview Evaluation

295

300

305

1 2 3 4 5 6 7 8 9 10

FPS

(a) 3 agents

295

300

305

1 2 3 4 5 6 7 8 9 10 11

FPS

(b) 5 agents

Figure 6.4: FPS graph of Cooperative Pathfinding

intensive tasks, while with it the lowest frame rate recorded was 297 FPS.

51

7

Conclusion

This chapter outlines the conclusion to the project and mentions possible future work that could be

made to the system, should it be continued in the future.

7.1 Conclusions

This project had a number of aims when it was started. It was designed to incorporate the use of

a sketch-based input device with pathfinding and to do so in an interactive real-time application. It

allows the use of sketch strokes drawn by the user to create traversable paths for agents over varying

terrain types. A treatment process was created for sketch strokes to allow their use by agents as paths.

A gesture recognition system was built which made it possible to use a stylus and sketch strokes for

modifying paths and to allow for multiple selection of agents, both using varying gestures drawn by

a user. For group movement, it extended agent awareness, so their paths could be planned relative

to each other, all under the direction of sketch strokes. The project gives the user the possibility of

customising the systems pathfinder by limiting parts of the map it could plan for through sketch.

Overall the system shows that sketch-based input is a viable way for controlling agent movement

and it does this in real-time, allowing for its implementation in interactive applications such as games.

It has achieved the goals set out for this project and its integration into interactive applications will

lead to greater user control of agent movement than is currently available today.

52

7.2. Future Work Conclusion

7.2 Future Work

This section contains information on possible developments that could be added to the project should

it continue. Some are entirely new additions to the project itself while others are optimisations which

would improve the current project as it is now.

7.2.1 Multiple Point Pathfinding

Ways of using sketch-input with paths could be expanded. For instance, rather than designate a

particular position for an agent to go to, you could designate an area where any position in the area

could be the target. A self-enclosed sketch could be drawn designating this area as the target and the

systems pathfinder would have to find a path to somewhere in this area. As the shortest path should

always be chosen, the system would have to find the shortest path to multiple points and compare

them. A* can only perform one target point at a time but algorithms like the Floyd-Warshall algorithm

do not. Floyd-Warshall could find paths to multiple targets and compile the shortest path[47]. It is

also parallisable so it could be accelerated on the GPU[17]. If the environment in which the algorithm

was running changed, a path which was the shortest may not be so any more and another path to

another position in the area defined could be used.

7.2.2 Dynamic Environment

The pathfinding algorithms could be expanded to take into account dynamic environments. This

could have interesting implications for user defined paths as they could possibly be blocked by an

obstacle after the user has drawn them. The system would have to deal with this obstacle by possibly

informing the user that their path, although viable when it was drawn is no longer so.

A form of D* could be implemented where the cost of nodes are constantly changing due to

the dynamic environment. This would allow paths to dynamically redrawn taking to account the

environment. A negative is that D* like solutions can have very high memory requirements and might

not be suitable for real-time applications which are already conscious about performance like the game

industry.

7.2.3 Sweep Line Algorithm

In this project the gesture recognition for path commands is built around line segment intersection

tests. The number of line segments are quite low during run time as they are limited by the size

53

7.2. Future Work Conclusion

of the paths themselves and checks for intersections do not occur often as they are only checked for

intersections when the user draws a sketch stroke. Since the intersections are relatively infrequent, the

intersection tests were not optimised but when there are 100’s possibly thousands of 1000’s selected

on screen, such intersection tests could be extremely inefficient.

An optimisation which could be made would be the sweep line algorithm. Described by Shamos

and Hoey[39] in 1976, it describes an algorithm for efficiently checking for line intersections. Given n

line segments, the sweep line algorithm completes the same checks in O(n log n) time. It works by

sweeping over the range of values eliminating some and not others for intersection tests as it moves.

As the points in this project are 2D, if a line moves from the start of the plane to the right, it checks

to see which segments it is currently intersecting as it moves then it checks all of these against each

other. When it sweeps over a new segment it checks this against the others it is currently sweeping

over. When it has passed over a line segment, it will no longer check for intersections against it. In

this way the sweep line algorithm narrows down the segments it runs intersection tests on making it

faster at running them.

7.2.4 Pathfinding

For A* itself, there is some possible optimisations which could be used. A binary heap data structure

would improve performance. As a heuristic, the agents orientation could be taken into account leading

to some nicer turns for agents themselves.

54

A

Sketch Camera Controls

This section describes how the sketch stylus controls the camera. Figure A.1 shows a diagram with

the positions needed and if there is buttons to press for activating certain movements.

The instructions for using the controls are - To pan, the cursor from the stylus needs to be placed

into one of the outer boundary areas at the edge of the screen. For rotating, the first button on the

stylus needs to be pressed with the cursor being placed on the left and right of the screen to rotate

left and right respectively. To zoom, the second button needs to be pressed with the cursor being

placed on the top or bottom of the screen to zoom in and out respectively.

55

Sketch Camera Controls

Button 2 - Rotate
Button 1 - Zoom

Position of Sketch Cursor - Outer Areas for Panning

Figure A.1: Stylus based camera controls

56

Bibliography

[1] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering 3rd Edition. A.

K. Peters, Ltd., Natick, MA, USA, 2008.

[2] Christine Alvarado, Randall Davis, and All Davis. Resolving ambiguities to create a natural

computer-based sketching environment. In In Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence, pages 1365–1371. Morgan Kaufmann Publishers, 2001.

[3] Fabricio Anastacio, Przemyslaw Prusinkiewicz, and Mario Costa Sousa. Sketch-based interfaces

and modeling (sbim): Sketch-based parameterization of l-systems using illustration-inspired con-

struction lines and depth modulation. Computers and Graphics, 33(4):440–451, 2009.

[4] Danilo Avola, Andrea Buono, Giorgio Gianforme, and Stefano Paolozzi. A novel recognition

approach for sketch-based interfaces. In ICIAP ’09: Proceedings of the 15th International Con-

ference on Image Analysis and Processing, pages 1015–1024, Berlin, Heidelberg, 2009. Springer-

Verlag.

[5] Danilo Avola, Maria Chiara Caschera, Fernando Ferri, and Patrizia Grifoni. Ambiguities in

sketch-based interfaces. In HICSS ’07: Proceedings of the 40th Annual Hawaii International

Conference on System Sciences, page 290b, Washington, DC, USA, 2007. IEEE Computer Society.

[6] William Baxter. bbtablet. http://www.billbaxter.com/projects/bbtablet/index.html,

September 2010.

[7] Beepa. FRAPS. http://www.fraps.com/, September 2010.

[8] Alexander Blessing, T. Metin Sezgin, Relja Arandjelovic, and Peter Robinson. A multimodal

interface for road design. Technical report, University of Cambridge, 2009.

[9] GLEST Community. Glest. http://glest.org/en/index.php, September 2010.

57

http://www.billbaxter.com/projects/bbtablet/index.html
http://www.fraps.com/
http://glest.org/en/index.php

Bibliography Bibliography

[10] Matthew T. Cook and Arvin Agah. A survey of sketch-based 3-d modeling techniques. Technical

report, University of Kansas, 2009.

[11] Mathias Eitz, Olga Sorkine, and Marc Alexa. Sketch based image deformation. In Proceedings

of Vision, Modeling and Visualization (VMV), pages 135–142, 2007.

[12] Eurographics. Preface. In EUROGRAPHICS Workshop on Sketch-Based Interfaces and Model-

ing, June 2004.

[13] Eurographics. Article count. In EUROGRAPHICS Workshop on Sketch-Based Interfaces and

Modeling, June 2008.

[14] S. D. Goodwin, S. Menon, and R. G. Price. Pathfinding in open terrain, 2006.

[15] The Logic Group. Wintab. http://www.logicgroup.com/WintabDriver.htm, September 2010.

[16] Tracy Hammond and Randall Davis. Ladder, a sketching language for user interface developers.

Computers and Graphics, 29(4):518–532, 2005.

[17] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU using

CUDA.

[18] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of

minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100 –107,

July 1968.

[19] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching interface for 3d

freeform design, 1999.

[20] Levent Burak Kara, Chris M. D’Eramo, and Kenji Shimada. Pen-based styling design of 3d geom-

etry using concept sketches and template models. Technical report, Carnegie Mellon University,

2006.

[21] Sven Koenig and Maxim Likhachev. D*lite. In Eighteenth national conference on Artificial

intelligence, pages 476–483, Menlo Park, CA, USA, 2002. American Association for Artificial

Intelligence.

[22] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning a*. Artif. Intell., 155(1-

2):93–146, 2004.

[23] Natallia Kokash. An introduction to heuristic algorithms. Technical report, Department of

Informatics and Telecommunications. University of Trento, Italy, 2005.

58

http://www.logicgroup.com/WintabDriver.htm

Bibliography Bibliography

[24] Jeehyung Lee and Thomas Funkhouser. Sketch-based search and composition of 3d models. In

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, 2008.

[25] WeeSan Lee, Levent Burak Kara, and Thomas F. Stahovich. An efficient graph-based recognizer

for hand-drawn symbols. Computers and Graphics, 31(4):554–567, 2007.

[26] Hod Lipson and Moshe Shpitalni. Correlation-based reconstruction of a 3d object from a single

freehand sketch. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, page 44, New York, NY,

USA, 2007. ACM.

[27] Ellen Yi luen Do and Mark D. Gross. Drawing as a means to design reasoning. AI and Design,

1996.

[28] Tiago Lemos de Araujo Machado, Alex Sandro Gomes, and Marcelo Walter. A comparison

study: Sketch-based interfaces versus wimp interfaces in three dimensional modeling tasks. In

LA-WEB ’09: Proceedings of the 2009 Latin American Web Congress (la-web 2009), pages 29–35,

Washington, DC, USA, 2009. IEEE Computer Society.

[29] C Mao, S.F. Qin, and D.K. Wright. A sketch-based gesture interface for rough 3d stick figure

animation. Technical report, Brunel University, 2005.

[30] James McCrae and Karan Singh. Sketch-based path design. In GI ’09: Proceedings of Graph-

ics Interface 2009, pages 95–102, Toronto, Ont., Canada, Canada, 2009. Canadian Information

Processing Society.

[31] Microsoft. Kinect. www.xbox.com/kinect, September 2010.

[32] Ian Millington. Artificial Intelligence For Games. Morgan Kaufmann, 2006.

[33] G. Nataneli and P. Faloutsos. Sketch-based facial animation. Technical report, University of

California, Los Angeles, 2006.

[34] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Fibermesh: designing freeform

surfaces with 3d curves. ACM Trans. Graph., 26(3):41, 2007.

[35] NINTENDO. Wii remote. http://www.nintendo.com/wii, September 2010.

[36] L. Olsen, F.F. Samavati, M.C. Sousa, and J. Jorge. A taxonomy of modeling techniques using

sketch-based interfaces. In Eurographics 2008 State-of-the-Art Report (EG’08 STAR), 2008.

[37] Luke Olsen, Faramarz F. Samavati, Mario C. Sousa, and Joaquim A. Jorge. Sketch-based mod-

eling: A survey. Computers & Graphics, 33(1):85–103, February 2009.

59

www.xbox.com/kinect
http://www.nintendo.com/wii

Bibliography Bibliography

[38] Dean Rubine. Specifying gestures by example. In SIGGRAPH ’91: Proceedings of the 18th

annual conference on Computer graphics and interactive techniques, pages 329–337, New York,

NY, USA, 1991. ACM.

[39] Michael Ian Shamos and Dan Hoey. Geometric intersection problems. pages 208 –215, oct. 1976.

[40] Hyojong Shin and Takeo Igarashi. Iagarashi t.: Magic canvas: Interactive design of a 3-d scene

prototype from freehand sketches. In In Proceedings of Graphics Interface, 2007.

[41] David Silver. Cooperative pathfinding. In S. Rabin, editor, Game AI Programming Wisdom 3,

Cambridge, MA, 2006. Charles River.

[42] IEEE Computer Society. Stroke-input methods for immersive styling environments. In SMI ’04:

Proceedings of the Shape Modeling International 2004, pages 275–283, Washington, DC, USA,

2004. IEEE Computer Society.

[43] Anthony Stentz and Is Carnegle Mellon. Optimal and efficient path planning for unknown and

dynamic environments. International Journal of Robotics and Automation, 10:89–100, 1993.

[44] Xiaoxun Sun, William Yeoh, and Sven Koenig. Dynamic fringe-saving A*. In AAMAS ’09:

Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Sys-

tems, pages 891–898, Richland, SC, 2009. International Foundation for Autonomous Agents and

Multiagent Systems.

[45] Paul Tozour. AI Game Programming Wisdom 2. Charles River Media, 2004.

[46] Wacom. Bamboo pen tablet. http://www.wacom.com/bamboo/, September 2010.

[47] Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962.

[48] Ji wung Choi, Renwick Curry, and Gabriel Elkaim. Path planning based on bezier curve for

autonomous ground vehicles. World Congress on Engineering and Computer Science, Advances

in Electrical and Electronics Engineering - IAENG Special Edition of the, 0:158–166, 2008.

[49] Chen Yang, Dana Sharon, and Michiel van de Panne. Sketch-based modeling of parameterized

objects. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches, page 89, New York, NY, USA,

2005. ACM.

[50] Kwangjin Yang and S. Sukkarieh. An analytical continuous-curvature path-smoothing algorithm.

Robotics, IEEE Transactions on, 26(3):561 –568, jun. 2010.

[51] Shane W. Zamora and Eyrn A. Eyjlfsdttir. Circuitboard: Sketch-based circuit design and analysis,

2009.

60

http://www.wacom.com/bamboo/

	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Aims
	Motivation
	Outline

	I Background
	Sketch-based Interaction
	Outline
	Benefits of Sketch-based Interaction
	Problems with Sketch-based Interaction
	Model Creation
	Evocative
	Constructive
	Alterations
	Model Animation

	Gesture Recognition
	Miscellaneous
	Summary

	Navigation
	Outline
	World Representation
	Pathfinding
	Heuristics

	II Project
	Design
	System Requirements
	System Design
	Sketch Input
	World
	Pathfinding
	Command
	Graphical Interface

	Implementation
	Tools
	Pathfinding
	Sketch Input
	Sketch Projection
	Sketch Treatment
	Path Continuity
	Path Viability
	Path Smoothing

	Sketch Analysis
	Selection
	Editing
	Deletion
	Appending

	Cooperative Pathfinding
	Sector Omission
	Rendering
	Miscellaneous

	Evaluation
	Performance
	Overview

	Conclusion
	Conclusions
	Future Work
	Multiple Point Pathfinding
	Dynamic Environment
	Sweep Line Algorithm
	Pathfinding

	Sketch Camera Controls
	Bibliography

