
A Framework for Visual Features Database Creation for

Building Recognition on Mobile Devices

by

Marco Conti

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment of the requirements

for the Degree of

Master of Science in Computer Science

(Interactive Entertainment Technology)

University of Dublin, Trinity College

September 2010

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for a

degree at this, or any other University, and that unless otherwise stated, is my own work.

Marco Conti

September 13, 2010

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Marco Conti

September 13, 2010

Acknowledgments

I would like to thank my supervisor Dr. Gerard Lacey for providing the initial idea for this dissertation

and for the advices he provided through the duration of this project.

I would also like to thank my classmates in the MSc. IET course for the fun and the hard times we

shared in our late working nights.

Marco Conti

University of Dublin, Trinity College

September 2010

iv

A Framework for Visual Features Database Creation for

Building Recognition on Mobile Devices

Marco Conti

University of Dublin, Trinity College, 2010

Supervisor: Gerard Lacey

We propose the design and development of a framework for the creation of small visual features

database. This database is to be used on mobile devices to perform building recognition on a self-

contained “tell me what I am looking at” application using two inputs: GPS data and camera images.

The main contribution of our approach is exploring the automated creation of a compact local visual

features database to be installed on the mobile device. Using a local database is justified by scenarios

where a data connection to a remote server is not available or too expensive (e.g. tourists using data

roaming abroad).

Creating a compact database requires a balance between various constraints. The number of visual

features in the database will affects both the size of the database on the limited storage of a mobile

platform and the computation time of the image matching. However, having a small number of features

in the database also results in poor results. This project evaluate the use of a genetic algorithm that

will select the best parameters to build the database using visual features clustering.

v

Contents

Acknowledgments iv

Abstract v

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

1.1 Overview and motivations . 1

1.2 Structure of this document . 4

Chapter 2 State of the art 6

2.1 Visual features extractor and descriptors . 6

2.1.1 SIFT . 6

2.1.2 Evolution of SIFT . 8

2.2 Building recognition for augmented reality . 9

2.3 Commercial applications . 11

2.3.1 Location based . 12

2.3.2 Image recognition based . 13

Chapter 3 Background 15

3.1 Android . 15

3.1.1 Developing for the Android . 16

vi

3.2 SURF . 17

3.3 Nearest neighbour search . 20

3.4 Genetic algorithm . 21

3.5 Clustering . 23

3.5.1 K-Mean . 23

3.5.2 Quality Threshold . 24

Chapter 4 Design 26

4.1 Overview . 26

4.2 Location data . 27

4.3 Shared functionality . 28

4.3.1 Feature descriptor . 28

4.3.2 Feature matching . 28

4.4 Feature database . 30

4.4.1 Training sets . 30

4.4.2 Clustering . 31

4.5 Genetic algorithm . 33

4.5.1 Fitness function . 35

4.5.2 Parameters tweaked . 37

4.6 Mobile prototype . 39

4.6.1 Interface . 39

4.6.2 Matching and database . 40

4.7 Tests . 41

Chapter 5 Implementation 42

5.1 Software and Hardware . 42

5.2 Shared components . 43

5.2.1 SURF . 43

5.2.2 Feature matching . 44

5.3 Database creation . 45

5.3.1 Clustering . 45

vii

5.3.2 Visual feedback . 45

5.3.3 Genetic algorithm . 46

5.4 Android prototype . 47

5.4.1 Interface . 47

5.4.2 Database and matching . 48

5.5 Tests . 49

5.5.1 Images acquisition . 49

Chapter 6 Results 50

6.1 Genetic algorithm . 50

6.2 Database creation . 52

6.2.1 ALL FEATURES approach . 52

6.2.2 CLUSTERING approach . 54

6.2.3 TWO STAGES CLUSTERING approach . 58

6.3 Matching time and database size on the Android device 59

6.4 Comparison with previous works . 60

Chapter 7 Conclusions 63

7.1 Considerations . 63

7.2 Future work . 64

7.2.1 Tests and comparison . 65

7.2.2 Database creation . 65

7.2.3 Feature matching . 66

7.2.4 SURF . 66

Bibliography 67

viii

List of Tables

4.1 EASY set of buildings . 30

4.2 CHALLENGING set of buildings . 31

6.1 Genetic algorithm evaluations for fitness function comparison, ALL FEATURES ap-

proach, camera images . 52

6.2 GA and tests results for ALL FEATURES approach, camera images, 1000 iterations . 53

6.3 GA and tests results for ALL FEATURES approach, mobile images, 500 iterations . . 54

6.4 GA and tests results for CLUSTERING approach, camera images, 500 iterations . . . 55

6.5 GA and tests results for CLUSTERING approach, mobile images, 500 iterations . . . 58

6.6 GA results for TWO STAGES CLUSTERING with camera images 59

6.7 Matching times on the Android device . 60

6.8 Disk space occupied on the Android device . 61

6.9 Comparison with previous works . 61

ix

List of Figures

1.1 The concept of our “tell me what I am looking at” application 2

1.2 The self-contained application inputs . 3

1.3 The framework pipeline . 4

2.1 An example of metafeatures on the Christchurch Cathedral in Dublin 11

3.1 The Android stack architecture (Copyright Google Inc., Apache 2.0 licence) 16

3.2 Box filters approximating the Laplacian of Gaussian for the xy, x and y direction

respectively . 19

3.3 Haar wavelets used to compute the response in the x and y direction respectively . . . 19

4.1 The matching step . 29

4.2 Database creation approaches . 31

4.3 Wrong cluster assignment when considering only the cluster centre 32

4.4 The fitness evaluation pipeline . 35

4.5 The PARABOLOID (left) and PAIRWISE (right) fitness functions 36

4.6 The parameters (red) tweaked during database creation 38

4.7 The complete set of parameters (red) tweaked by the genetic algorithm 39

5.1 A screen shot of the visual interface used for testing and debugging 46

5.2 Screen shots of the Android prototype on the emulator, before (left) and after (right)

matching . 48

5.3 The relational database schema . 48

x

6.1 Convergence of the genetic algorithm with the ALL FEATURES approach, camera

images . 51

xi

Chapter 1

Introduction

1.1 Overview and motivations

Mobile phones offer a unique combination of features: they are easily accessible, can be carried every-

where, have photo/video capabilities and are getting powerful enough to perform complex tasks. They

are an attractive platform for see-through augmented reality applications. This type of applications

acquires video frames trough the camera, processes these images and then displays the live video on

the device screen with some overlaid information and graphics. The mobile platform is effectively

transformed into a looking glass the user can use to explore the world.

This project aims to use mobile augmented reality in buildings recognition. Our goal is to have a

“tell me what I am looking at” application usable to explore a city through the viewfinder (see Figure

1.1). The application would not rely exclusively on location (GPS/compass data) but will also “see”

what the user is pointing the camera at. This will make the difference not only when the GPS is

not accurate enough (and this is often the case in city centres with narrow streets and tall building)

but also when there is an occlusion between the user and the object - a commercial billboard, a tree,

another building. With a location-only approach, the user might be pointing the device at an hot-dog

stand and see it labeled as a bank, just because there is a bank on the other side of the road. Our

approach wants to avoid erroneous labelling caused both by occlusion or location inaccuracy.

1

Figure 1.1: The concept of our “tell me what I am looking at” application

This result can be achieved by performing an image matching between the image captured by the

camera and an image database. The images that we want to match (in our case, the facades of various

buildings) need to be acquired during the preliminary step. The images are then used to create a

database of visual features that are extracted using a feature extractor. Visual features are points in

the image that stand out because of some distinctive characteristics in the surrounding region (e.g.

sharp edges, corners, etc.); they can be mathematically described and compared with other features for

similarity. Once a features database has been created, new images can be matched with the database

by extracting the features from the new image and looking for similar features in the database. This

technique is known in literature as Context-Based Image Retrieval (CIBR) and is a widely explored

topic.

The images used to build the database can be geotagged. This means that they can be tagged with

the location where the picture was taken and that the visual features extracted from that image will

maintain this location tag. This is where the location data and the image matching approaches are

combined: when matching an image on the mobile device, the current position of the device is acquired

through GPS and the database is queried for the visual features that have been tagged with the same

location. Since the matching time increase with the number of compared features, limiting the search

space to the features that are expected in that geographical area will reduce the computational time.

This approach has already been explored in literature and has recently become popular in commercial

applications on various mobile platforms. Most of the solutions already available on a mobile device are

based on various degrees on a remote server. Using the client-server paradigm, the mobile application

capture an image and then either send the picture (or the extracted features) to a server for matching or

query the server to download the visual features associated with the current geographical cell. All these

approaches obviously require a data connection and this where our project main contribution is. Our

2

Figure 1.2: The self-contained application inputs

final goal is to have a self-contained application installable on the mobile device that doesn’t require

any data connection; the database will be transferred only once during the application installation.

This is a crucial aspect for some applications, the most obvious being tourism-related ones, for when

travelling abroad data roaming costs are an obstacle to client-server approach. Our idea is illustrated

in Figure 1.2.

There is of course a reason why this approach hasn’t been popular so far. Features databases can be

huge and the storage space available on a mobile device is limited. Furthermore, some application

simply send the image (or the visual features extracted) to the remote server and this is where

the matching step is executed, as this can require too much time to be performed on the limited

computational resources of the mobile device. However, mobile devices are evolving, they have better

CPUs and storage capacity (both internal and external) and new publishing channels allow developers

to create a number of versions of an application with location-specific content and make them easily

available to download for users.

This approach is validated in this project and a self-contained solution is demonstrated. The key is to

have a small database so that a big number of facades can be included on the mobile device itself and

the matching step can be fast enough. However, the database should also contain enough features

to have good matches and minimise the identification errors and this contrasts with the previous

requirement. To find the best balance between these two constraints, a genetic algorithm has been

3

implemented. The genetic algorithm will find the best database for the given input (i.e. training

images for a given location) without the need of tweaking the database by hand. The creation of

databases is therefore automatised and can be performed in batch for various location.

Figure 1.3: The framework pipeline

The framework implemented in this project is composed of two main components: a database creation

application, running on a PC, and a building recognition prototype running on an Android device.

The intended framework usage is summarised in Figure 1.3.

1.2 Structure of this document

The rest of this document is organised as follow.

In Chapter 2 the reader will find an assessment of the state of the art covering feature extraction

technologies as well as research and commercial works addressing the same area of interest as our

project.

Chapter 3 covers the background on technologies, methodologies and algorithms that have been con-

sidered in this project.

Chapter 4 presents the design of our framework and motivate the choices that have been made.

4

Chapter 5 illustrates details of the implementation for both the PC component and the Android

application.

In Chapter 6 we show the collected results and evaluate our framework and the various approaches

that have been included in it.

Finally, Chapter 7 spends some words on the conclusions we can draw from the results and on how

the framework can be improved and expanded.

5

Chapter 2

State of the art

The area of image matching, more specifically building recognition, has been already widely explored

both in the academic and commercial contex. We will now discuss the state of the art on applications

for building recognition on handheld devices and on some key underlying technologies.

2.1 Visual features extractor and descriptors

Our review will start from visual features extractors and descriptors, as they form the core of this

project. Visual features are points of interest in an image that present some distinctive traits in a

local neighbourhood of the point. Ideally a feature should be reproducible and stable to local and

global perturbation such as noise, illumination changes, rotations, distortions.

A wide range of choices for features extractor and descriptors is available in literature. Describing or

simply listing all the them falls outside the purpose of this document, so we just focus a few selected

interesting ones providing a quick overview rather than an exhaustive mathematical description.

2.1.1 SIFT

The breakthrough in this field - in terms of computational speed and stability - was achieved by Lowe

with the Scale-Invariant Feature Transform (SIFT) in 1999 [22] and then subsequently refined [23].

6

Lowe’s novel approach is based on concepts from biological vision resulting from studies on how the

human vision works. The key is using local descriptors for features, i.e. descriptors that characterise

small-scale features of the neighbourhood of the interest point in the image.

The SIFT algorithm starts by detecting key points in the image. Key points are locations in the image

that are invariant to translation, scaling and rotation but also robust to noise and small distortions.

Key points are searched in the image in the scale space, that is evaluating the image at different scales.

They are identified by local maxima or minima in a Difference of Gaussian (DoG) function, computed

efficiently by constructing a Gaussian-convolution pyramid of images with different σ values. In order

to be an extreme, a point has to have a larger or smaller value than its eight neighbours in the current

scale and the nine in the scale above and below.

Once a key point has been detected, its location has to be defined with sub-pixel accuracy, as the

maxima or minima might not lies exactly on a pixel. In-between pixel values ca be interpolated by a

Taylor expansion of the DoG scale-space function around the original key point position. The position

of the maxima or minima is found by solving for the derivative of the expansion.

Not all the maxima/minima will be stable or repeatable if some noise/distortion is applied to the

image. Low-contrast features, where the distance to the closest other extrema is below a given

threshold, are discarded. Points along edges are also discarded as their location is not stable. A point

lying on an edge will have a strong gradient response across the edge direction and a smaller one on

the perpendicular direction. Points on edges can then be detected and discarded by looking at the

ratio between the two responses (computed as eigenvalues of an Hessian matrix, see 3.2).

The remaining points are assigned an orientation so that they can be described independently of

rotations in the image. A histogram of gradient orientations is computed on the points surrounding

each key point. The highest peak in the histogram is assigned as the orientation of the key point. Any

other peaks above 80% of the highest peak is also considered by creating a new key point in the same

position and scale and the orientation of the secondary peak, effectively generating a new feature.

The key points are finally described as a 128-dimensional vector by sampling the magnitude of gra-

dients in a 4x4 grid of neighbours aligned to the point orientation; the neighbours are sampled by

selecting the magnitude in 8 different directions (hence the 128 elements: 8x4x4). The set of feature

7

descriptors is now complete. Each feature descriptor include scale, orientation and position in the

image and a 128-dimensional vector describing the neighbourhood of the key point.

The region-based SIFT descriptors outperforms any previous feature description ([25]) and are easy to

compare using Euclidean distance on a 128-dimensional space. SIFT become a popular approach for

image matching and has been the foundation of numerous image matching application ([4, 20, 37]).

2.1.2 Evolution of SIFT

SIFT has been refined and optimized and has been the starting point for other local features descrip-

tors, such as Gradient Location-Orientation Histogram (GLOH), PCA-SIFT and Speeded-Up Robust

Features (SURF). The first two extends the SIFT descriptors without affecting the key point detection

step, while the later one provides a different extraction approach.

GLOH [25] is an extension of the SIFT descriptor that also describe the neighbourhood using a polar

grid in addition to the 4x4 rectangular grid used by SIFT; this results in a bigger descriptor that is

more accurate in describing the neighbourhood but also more computationally intensive to handle.

To overcome this downside the descriptor is then reduced using Principal Component Analysis (PCA)

to a 128 vector.

PCA-SIFT [17] is another extension of the SIFT descriptors that uses PCA to reduce a 3042-

dimensional vector generated concatenating the horizontal and vertical gradient maps for a 41x41

patch centred at the key point. The resulting vector is a 36-dimensional vector, the smaller size

resulting in a faster feature comparisons at the cost of accuracy.

The last feature descriptor, SURF [2], is the most recent of the ones listed here. Various comparisons

between these feature descriptors are available in literature [36, 35, 25] and SURF (or its rotation

variant version U-SURF) is reported to be faster and/or more robust than the other candidates. This

is one of the main reason we decided to use SURF in our project and it will be discussed in detail in

section 3.2.

8

2.2 Building recognition for augmented reality

Various building recognition approaches can be found in literature and they mostly rely on the feature

extractors mentioned in 2.1. We will now quickly skim through some papers and comment on their

approach and limitations.

One early concept of augmented reality for building recognition on mobile devices is mentioned in

[30]. This paper assume that the user is looking at facades of building, hence at planar surface. A

wide-baseline matching algorithm is implemented, where main edges of the building, assumed to be

straight lines on a plane almost perpendicular to the camera, are used to rectify camera frames. Once

the image is free of perspective distortions, a feature detection and description is run. The detection

step is based on Harris corner detector and the descriptors comes from the RGB values of nearby

pixels. The resulting features are compared with a database at two different scales; the matching

features will produce the parameters for scale and translation transformation using RANSAC [10] and

votes for a given combination.

Having the transformation from the reference image to the current frame, this allows for a silhouette

of the detected building to be overlaid on the captured image. This early approach at visual features

based building matching for mobile devices is somehow penalised by a poor feature extractor and

descriptor. The performances average at 10 second per query on a regular 2004 PC.

The faster and more robust SIFT is used in [37], where a two stages approach is adopted. First, the

image is compared with a database of images using “local” gradient histogram, where local refers to

the direction of the perspective lines of the building. This technique is used to filter out negative

matches before applying the second step, SIFT features matching, only on potential matches. The

two stages approach of this paper succeeds in effectively reducing the search space for the matching

phase on the test database used. The implementation is running at 2 seconds per query on a 2005

PC and would probably benefit from a faster feature detector, however no information is given on the

size of the database.

An actual portable device, as opposed to the PCs used in the previous papers, is used in [28]. A

combination of GPS, gyroscope and a tablet PC runs an edge tracking application capable of identi-

fying and tracking building position. This paper presents and alternative approach compared to the

9

previous examined. Instead of using an image database to match visual features extracted from the

camera frame, this paper use 3D textured models of the buildings that are rendered in an internal

buffer of the device. An edge detector is run both on the rendered image and on the camera captured

one and the movement of the camera is estimated (also including information from the other physical

sensors). This process goes on as long as there is a previous estimation of the position for reference.

This is not true when the application is started or when the continuity of the tracking is interrupted.

In this cases, all the possible position of the camera in relation to the 3D model (according to the GPS

data and accuracy) are evaluated by rendering the 3D model and then comparing the corners detected

with FAST corner detector on both all the rendered images and the current frame. This recovery step

is slow (some seconds) but once the tracking is running the processing speed is an impressive 17 Hz.

The limitations of this approach are in depending on a continuous tracking and on a textured 3D

model of the buildings. While city-wide textured models can now be easily available (i.e. Google

Earth models), building an image-only database is still quite less demanding. Also mobile devices

other than tablet PCs might have problem in rendering 3D models at the required frame rate, and

finally we have no information on the size of the database.

The closest paper to our proposal is [32], where a SURF based image matching is used conjunction

with a GPS on a normal mobile phone. The application created by the authors displays information

about the building seen through the camera. This application require a connection to a remote server

that, given the position as detected with the GPS, returns a set of features to match against the

current captured image. The matching of features is computed using kd-search trees and the SURF

algorithm is optimised by the authors obtaining interesting speed performances.

Additionally, the features in the database are clustered to identify strong features and reduce the

number of features in the database by replacing them with metafeatures. Metafeatures are features

that recur in various view of the same building. The position, orientation, size and descriptor vector

of the extracted local feature can differs but they are all originated by the same physical feature (see

Figure 2.1). Metafeatures can be detected by the distance between the vectors of descriptors; if two

features are close enough, they might be generated by the same physical feature. The real scenario

however can a bit more complicate as the same physical features can be repeated (e.g. a row of

identical windows) and therefore generating the same visual features. The authors cluster features

10

into metafeatures using a graph-based approach. The graph used is generated from the results of

a preliminary automatic labelling step performed on the database; this step is basically an image

matching step using SURF to identify pictures containing the same buildings.

Figure 2.1: An example of metafeatures on the Christchurch Cathedral in Dublin

[32] has been a main inspiration for this project. We want to investigate the use of a local database

in this type of application as opposed to having the remote database used in the paper. We also want

to explore the automatic optimisation of the database for a given set of building using a different

clustering approach for metafeatures.

2.3 Commercial applications

We believe localization based mobile augmented reality is still a new field not explored to the full

extent of its potential by commercial companies. Since 2008 some commercial products have been

released on the consumer market and in 2010 a big name like Google entered the field, while a lot of

relatively simple applications are currently getting popular on mobile marketplaces. Reasons for this

recent interest might be related to the new generation of consumer level mobiles, which now provide

a widely available valid platform for this kind of application.

We now give a brief survey of the most prominent application related to location based mobile aug-

mented reality and mobile feature detection that overlap to some extent with our proposal, with the

two most used platform being Google Android-powered mobiles (see 3.1) and Apple’s iPhones.

11

2.3.1 Location based

We will first cover mobile augmented reality applications that use the location data to display infor-

mation in on the mobile display on top of the camera video feed.

The first commercial project to attract some attention was presented by Nokia in 2006, when Mobile

Augmented Reality Application - MARA was presented as a sensor based augmented reality system

for mobile [16]. The project used a GPS device connected to a Nokia S60 mobile, equipped with a

standard camera, to overlay location based information on the video captured by the camera. Not

many details were released about this project, now discontinued.

Both Layar [19] and Wikitude [26] are examples of currently available mobile augmented reality

applications that rely on the location data to display directions and label buildings. Layar displays

small icons and text in the direction of interesting location (which are fetched from a remote database)

depending on to the direction the camera is pointing to according to GPS, electronic compass and

accelerometer data. It was fist announced in May 2009 and is now available for Android and iPhone

platforms.

Wikitude is similar to Layar in displaying icons and text according to orientation data acquired through

GPS, compass and accelerometer. It was launched in August 2009 and allows for community created

content to be added on the remote database the mobile phones connect to. Wikitude is available on

Android an iPhone.

Both this applications suffers from GPS and compass accuracy issues. While they perform well in

optimal conditions, in many realistic scenarios the labels are notably offset and, due to drag in compass

or accelerometer data, they can be slowly moving around even if the user is perfectly still. Additionally,

the only value that discerns the visualisation of a given label is the distance as the crow flies. In case

of a high number of points of interest in the nearby area, this will results in labels stacked on top of

each other even if other buildings are interposing between the user and the points of interest, creating

a cluttered feedback that doesn’t reflect the visual perception of the user.

While applications resulting from the location based approach might look similar to the one proposed

in our project, there is a substantial difference in how we get to the same result. In our approach, the

location data is used only to reduce the search space of visual features to match, and the displayed

12

result is ultimately derived from an image matching process, while for these application the location

data is the only input to determine if the user is pointing in the direction of a given building.

2.3.2 Image recognition based

Another set of commercial applications is more closely related to our approach in processing the

camera frames to identify the object (be it a building or else) the user is pointing the device at.

Google released Google Goggles [13] in early 2010 as a multipurpose application capable of strong

image recognition. Its uses ranges from books and wine labels recognition, to OCR and, most in-

teresting for our point of view, landmarks recognition. This last feature is currently implemented

on pictures taken with the camera and processed by a remote server and not on real time video. A

simpler location based overlay (similar to the Layar or Wikitude approach) is provided with directions

to shops and landmarks in real time.

Kooba [18] is a spin-off from the Computer Vision Lab at ETH Zurich, Switzerland, where SURF was

designed. Currently they offer some visual search application (kooba Visual Search), automatic photo

tagging (Shooting Star) and have an interesting video of Smart Visuals where buildings (among other

things) are recognised on an Android device by image matching. Their visual matching database

is reported to contain more than 10 millions of images and is of course accessed remotely by the

application on the mobile device. However Smart Visual is still in its early stage and not available as

a building recognition application.

While these products use our planned approach in detecting building, they rely on an external database

that is accessed through a data connection. Our approach will use a local database where space

constraints are strict but no data connection is required and this will be an advantage in some situations

(e.g. data roaming costs).

A last markerless augmented reality application on mobile phone (Android) that is worth mentioning

is Popcode ([9]). It overlays content (3D models) on markerless recognised images, tracking the

movement so that the 3D models move according to the orientation and position of the recognised

features. The overlay is triggered by a special activation marker (the Popcode logo) that contains a

link to the remote resources to download and display but the feature database itself is stored on the

13

device.

Popcode has a Developer Kit that can be used to train Popcode to recognise any type of image (hence

buildings too). However the documentation doesn’t explain how the feature database is built. Also the

documentation states that “training is currently quite a long process” but no precise time is reported.

It would have been interesting to compare Popcode performances with our project but Popcode has

been unveiled at the end of our project time frame (end of August 2010) and we couldn’t investigate

it in detail.

14

Chapter 3

Background

In this chapter we will cover technologies and methodologies that we will be referring to in the design

and implementation.

3.1 Android

Android [12] is a software stack for mobile devices ideated by the Open Handset Alliance [33], a group

of 78 technology and mobile companies, and developed by Google.

While traditionally mobile application had to be written in low-level C/C++ specific to a given

hardware platform (or limited sets of platforms) [29], Android propose a different approach. Android

exposes a common interface for developers independently of the underlying hardware. The same

application developed for a given version of the Android interface will run on any device running that

version and should adapt to the specific device characteristics (like screen resolution and available input

devices). The onus of specialising the Android stack to the specific hardware is on the manufacturer

and is transparent to application developers.

From a technical point of view, Android contains an operating system that is based on a Linux

kernel and GNU software, a set of key application and a middleware layer providing a wide range of

functionality. It is released under the open source Apache 2.0 license and its latest release at the time

15

of writing is Android 2.2 ”Froyo” [12].

Figure 3.1: The Android stack architecture (Copyright Google Inc., Apache 2.0 licence)

Android applications are Java applications that run on Android’s Dalvik virtual machine. Android’s

Java is a custom programming language related the official Java 2 SE [27] from which it borrows the

syntax and the main classes and framework structure. Java applications sits on top of a framework

that allows for interaction with core libraries written in C/C++. These open source libraries provide

features such as web browsing, 2D and 3D graphic, relational databases, multimedia playback and

secure data transfer. A diagram of the architecture is shown in Figure 3.1.

3.1.1 Developing for the Android

Android requires the use of the Android Software Development Kit (SDK) [12] to develop application

for this environment. The SDK allows developers to write application in Android’s Java version;

16

but for high-performance code, developers can also use the Android Native Development Kit (NDK)

to write components in C/C++ that can be then used from the main Java application. The NDK

contains native system headers and libraries and a set of tools to generate Android-specific native

code from C/C++ sources.

The NDK comes with a set of popular C/C++ headers like libc, libm, OpenGL ES and relies on the

Java Native Interface (JNI) to interact with the containing Java application. However a notable lack

in the NDK headers is the popular C++ Standard Template Library (STL) that provides functionality

such as vectors and iterators.

We mentioned the importance of having a small database. Android applications have an size limit of

25 Mb which means that applications bigger than this size can be compiled but can not be installed

on the device. Considering that the compiled bytecode will not usually be bigger than a couple of

Mb, this leaves around 22Mb to be used for data and assets. There are method of overcoming this

limit, namely saving data on the external memory of the device (SD memory card) using the PC or

downloading, only once per application, the data to the external memory through a data connection.

This will virtually increase the size limit of the data to the size of the external memory (usually 4

Gb) but requires additional steps from the final user before the application can be used.

3.2 SURF

SURF was first presented in 2006 as “a novel scale- and rotation-invariant detector and descriptor”.

It shares the concept of local features descriptors based on the neighbourhood of the interest point

already seen in SIFT, while it differs in how the interest points are selected and described. It uses the

Fast Hessian detector for interest points selection and a novel feature descriptor. We will now briefly

cover how SURF works as some details will be relevant in this project but without venturing deeply

in the mathematical description.

The speed improvement achieved in SURF is mainly based on the use of integral images. An integral

image can be rapidly computed from an input image and used to speed up the computation of the

SURF descriptors for that image. The value of the integral image IΣ(x) in a point (x, y) is the sum

17

of all the pixel values of the input image I between the point and the origin.

IΣ(x) =
i≤x∑
i=0

j≤y∑
j=0

I(i, j) (3.1)

The integral image allows for a fast calculation of the intensities over any upright rectangular area of

the image by using only three additions regardless of the size of the image or of the area. Given a

rectangular area determined by four A, B, C, D points, the sum of the intensities in the area R is:

R = IΣ(A)− IΣ(B)− IΣ(C) + IΣ(D) (3.2)

This property is used in computing the determinant of the Hessian matrix. As in SIFT, SURF uses a

2x2 Hessian matrix of the image function I(x, y) to detect maxima and minima of the function. The

Hessian matrix of the image function at the scale σ in the point X = (x, y) is:

H(X,σ) =

∣∣∣∣∣∣∣
Lxx(X,σ) Lxy(X,σ)

Lxy(X,σ) Lyy(X,σ)

∣∣∣∣∣∣∣ (3.3)

where Lxx(X,σ) is the Laplacian of Gaussian with the image I in at the point X. The Hessian matrix

describes the local curvature of a function using second-order partial derivatives. Blob-like features

detection is based on the eigenvalues of the Hessian matrix: if eigenvalues in X have the same sign,

that point is an extrema.

While in SIFT the Hessian matrix is used to discard previously detected key points that lies on

an edge, in SURF the matrix is used to detect the key points. Additionally, while SIFT uses the

Difference of Gaussian to approximate the computation of the Laplacian of Gaussian, SURF pushes

the approximation further by using the box filters shown in Figure 3.2. Box filters have a rectangular

shape and the convolution of the image with a box filter can then be efficiently calculated using the

integral image formula 3.2.

A significant advantage in using the box filters with the integral image is that calculating the con-

volution has the same cost regardless of the size of the boxes. SURF exploits this fact to search the

18

Figure 3.2: Box filters approximating the Laplacian of Gaussian for the xy, x and y direction respec-
tively

size-space only by resizing the boxes instead of applying convolution and subsampling the image at

different scale as in SIFT.

A last important feature of the Hessian matrix is the sign of the trace. This value is the sign of the

Laplacian for the underling point and distinguishes bright blobs on dark background from dark blobs

on dark background. It is a inexpensive property to compute and can be used for a faster comparison

between features.

Successively, a threshold is applied to the determinant of the Hessian matrix so that low-contrast

points are discarded. The value of the threshold here affects the number of detected interest points

and will be used in our implementation to control the accuracy and speed of the matching (see 4).

To localise the interest point in the image, a non-maxima suppression is now performed by comparing

each pixel to the 8 neighbours in image-space and 18 in scale-space (9 per adjacent scale). Once local

extreme have been found, their position is refined to sub-pixel accuracy by interpolation using the

Taylor expansion of the determinant of the Hessian, in the same fashion as with the Difference of

Gaussian in SIFT.

At this point the SURF algorithm has detected the interest points at a given scale with sub-pixel

accuracy and unstable points have been discarded. Integral images are then used again to speed up

the creation of the descriptors.

Figure 3.3: Haar wavelets used to compute the response in the x and y direction respectively

First an orientation is assigned to the feature by calculating the Haar wavelets responses in a circular

neighbourhood of the point. The Haar wavelets have a rectangular shape (see Figure 3.3) and can

19

therefore be computed using the integral image. We won’t cover the orientation assignment in detail

as we are not using this information in our project. It’s worth noting that there is a rotation-variant

version of SURF, U-SURF, in which the orientation of the features is not computed.

Finally the feature descriptor is built using Haar wavelets again. A square window proportionate to

the scale of the feature is built around the interest point and oriented along its orientation. This

region is then split in 16 cells using a 4x4 grid and the wavelets response is computed in each cell for

25 points on a 5x5 grid. For each cell four values are computed. Given dx as the responses of the

wavelets on the x-direction (according to the point orientation) and dy as those on the y-direction,

each cell is associated to a 4-dimensional vector defined as:

v = (
∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|) (3.4)

Concatenating the vectors for all the cells will result in the final 64-dimensional descriptor of the

feature.

3.3 Nearest neighbour search

Once visual features have been extracted from an image, they are matched against a set of features

extracted from other images. All the feature descriptors covered in the previous section (see 2.1)

contain a vector of real numbers. The simplest way to compare two features is then to compute the

Euclidean distance (or the squared Euclidean distance) between these vector in a n-dimensional space.

This computation is obviously slower if the dimension is higher, so descriptors with smaller vector

(like the 64-dimensional SURF) are preferable over larger ones (like the 128-dimensional SIFT).

To compare a feature extracted from a test image with a features database, the closest feature in the

database has to be found. This search can naively be performed in an exhaustive fashion, comparing

the examined feature with all the features and selecting the one with the minimum distance. However,

more efficient approximated approaches have been proposed.

The original SIFT paper uses an approximated nearest neighbour search called Best Bin First [3]

designed by the same author. It is based on k -d trees data structure but adopt a different search

20

strategy. A k -d tree is created from recursively splitting the multidimensional data with a cut on

the median point of the dimension that exhibits the greatest variance. The result of this recursion

is a binary tree that shows higher resolution in regions where is needed. The Best Bin First search

performs an approximate search by visiting closest bin first and imposing limiting the amount of leaf

nodes visited, after which the closest neighbour found so far is returned.

The Best Bin First is reported to perform well with high-dimensional data like SIFT descriptors [23]

both in accuracy and speed, but the performances degrade as the feature database grows in size.

It would have probably performed better on SURF descriptors, being them half the size of a SIFT

descriptor, however in our project we decided to use an exhaustive search approach for the simplicity

in the implementation.

3.4 Genetic algorithm

A genetic algorithm is a search algorithms based on the mechanics of natural selection and genetics

[11]. It mimics the process of natural evolution in searching for solutions to optimization and search

problems.

The idea behind genetic algorithm is the Darwinian “survival of the fittest” concept. A population

of individuals, each described by a series of gene, is considered. The population is able to generate

some offspring in a sexual (two or more parents) or asexual (a single parent) fashion. The offspring

will inherit a combination of the parents genes, with a chance of a random mutation occurring.

In this population, only the “fittest” are able to survive and reproduce generation after generation.

Over time, this process will increase the “quality” or “fitness” of the population. It is evident from

these statements how important it is to evaluate the fitness of an individual. In a simulated environ-

ment the fitness of an individual is determined by the genes that describe that individual. A fitness

function is defined as

f : G→ R (3.5)

where G is the set of all the possible genes combinations. Given a combination of genes, the fitness

function will return a real number (its fitness value) and is therefore possible to compare the fitness

21

between individuals.

While the fitness function has to contain a knowledge of the meaning of the genes to return the fitness

values, the genetic algorithm itself is blind in the sense that it has no knowledge of the domain and

why a certain combination of genes has a given fitness value. The search for a optimal solution doesn’t

come from exploiting the knowledge of the domain but from an evaluation of some random choices.

However, even if a random component is present in the reproduction, a genetic algorithm is more

than a simple random walk search. Genetic algorithms use random choices as a tool to explore the

various regions of the search space and will keep exploring only the ones that return an improvement

in the fitness value. The advantage of using a genetic algorithm is clearly in those situations where

the search space is too complex to be described analytically or explored exhaustively.

A genetic algorithm might run for a indefinite period of time without finding the optimal solution and

ofter we can’t even tell if a given found solution is the optimal. For this reason some stopping criteria

has to be defined so that the algorithm will not run forever, as even if we have an upper limit for the

fitness function, we might not know if that value is achievable or even if we do, we don’t know if there

is a the combination of genes that results in that value. Therefore some limit is set on the algorithm,

such as the number of generation to be considered or the number of consecutive generations without

a marked improvement that will be tolerated.

Wrapping it all together, a genetic algorithm is characterised by:

• a set of possible gene values

• a fitness function

• a population of individuals

• a reproduction strategy

• a stopping criteria

As we already mentioned, genetic algorithms are useful in exploring large search space with a complex

domain that is not easily analysable. This type of algorithm can then be useful in some vision

application and some attempts in this direction have been made in [31].

22

3.5 Clustering

Clustering is a method of unsupervised learning that attempts to find a structure in a collection of

data or population. Conceptually a cluster is a collection of objects that are “similar” in some sense

and clustering is the action of categorising the population into clusters. In order to have a concept

of similarity, a distance measure has to be defined; a common measure is the Euclidean distance.

Considering the distance measure, a cluster can be then defined as a collection of object that are close

in space.

Several clustering algorithm are available. We will briefly cover the ones that have been considered

for this project.

3.5.1 K-Mean

One of the simplest and most used clustering algorithm is K-means [24]. Given a desired number of

clusters, this algorithm creates a partition of the population into k clusters where each element in the

data belongs to the cluster with the closest centre (mean of its elements).

K-means starts by picking k random points from the population as clusters centres. All the points

in the population are then assigned to the cluster with the closest centre. With this new assignment,

the centre of all the clusters is then computed again. The process of assignment and computation of

the centre is then repeated until the assignments don’t change further.

K-means is an iterative algorithm that will converge to a solution in time O(nkd) where d is the

dimension of the space [1]. However, since a random step is involved, repeated executions of the

algorithm with the same input can results in different partitions. If the initial random choice is

unfortunate, the resulting clustering can be ill-conditioned. Several variations of K-Means have been

proposed. Among those, we examined K-means++ and ISODATA.

K-Means++ [1] improves the initial random choice that can sometimes result in a poor clustering

result. Effectively K-Means++ is an algorithm to select the k initial clusters during the first step of

K-means. Instead of using an unweighted random selection, just one initial cluster is selected. Then

the remaining k−1 clusters are selected randomly one at time with a weighted probability proportional

23

to the distance from the already chosen centres. This ensures that the initial clusters are scattered

around the whole population. This approach has proven to match or improve the performances of

K-mean both on convergence speed and clustering errors.

ISODATA [34] is a more sophisticated algorithm that doesn’t require to know the exact number of

clusters. Instead, it takes as input a desired number of cluster that will be adjusted during the

algorithm execution to match some constraints specified as input: the minimum number of samples

per cluster, a threshold for standard deviation inside a cluster and a threshold for pairwise distances

between clusters. Basically this algorithm follows every single iteration of K-mean by a series of

checks that will adjust the clusters by merging or splitting them so that they will respect the specified

constraints. Since these constraints can be conflicting the computation can be endless, so a maximum

number of iteration is specified. ISODATA allows to have some control over the properties of the

generated clusters, at the cost of having to (often empirically) choose more initial parameters.

3.5.2 Quality Threshold

A limitation of the clustering algorithms mentioned so far is requiring the number of clusters (or an

approximation of it) as an input. This value is not easy to estimate and a bad choice can result in

poor results. The Quality Threshold (QT) algorithm [14] uses a different approach so that the number

of clusters is not to be given as input. An further difference compared to K-Mean-type algorithm is in

the absence of any random component; QT is a deterministic algorithm generating the same clusters

if repeated with the same input.

This algorithm is based on a maximum distance threshold, that is the only input parameter required.

QT starts by considering each point as a candidate cluster and add other points to the clusters in order

of distance until the threshold is reached. At this point the candidate cluster with the highest number

of points is selected as a cluster. All the points in the cluster are removed from further consideration

and the algorithm is applied again on the remaining set of point.

QT is a recursive algorithm that requires more computational time than K-means as it consider a

high number of candidate clusters. However there is an advantage in the quality of the clusters for

population where we have isolated points. K-means-style algorithms will force isolated points to be

24

included in a possibly unrelated cluster if k is not high enough, while QT will create as many clusters

as needed to keep isolated points in separated isolated clusters.

25

Chapter 4

Design

4.1 Overview

The aim of our project the creation of a self-contained building recognition application that runs on

a mobile device with no need of a data connection to a remote server. In order to obtain this, a small

visual features database has to be created and packed in the application so that it can be transferred

to the mobile device only once during installation. We are particularly interested in the process of

extracting a visual features database from a training set of images and we explored and compared

various approaches.

In order to reach this goal, the project can be divided in three main logical steps

1. Evaluate various database creation approaches and select the best one according to the result

of tests performed using that database

2. Create a database with the best approach we selected in step 1, using images of buildings

collected with the same mobile device where the final application will be executed

3. Create the mobile prototype and pack the database created in step 2 in the application, so that

can be installed on the mobile device

The design of our project actually differs from this breakdown as some steps have been merged. We

26

performed the evaluation of database creation approaches (step 1) and the creation of the actual

database (step 2) at the same time. Since creating and testing a database is part of evaluating

the different database creation approaches, this two steps have been joined. The database creation

approaches have been evaluated by using the building images so that the resulting databases could

been used immediately on the application.

The framework we designed is divided in two components. A set of application for the PC has been

created to evaluate the different database creation approaches and to prepare the database that will

be transferred on the mobile device (step 1 and 2). Then, a mobile prototype has been created such

that, in conjunction with that database, it can recognise building and tell the user what the camera

is pointing to (step 3). This prototype has been developed for the Android platform (see 3.1).

4.2 Location data

An ideal application would make use of the GPS data to filter the candidate buildings for matching.

During database creation, a subdivision is defined so that the area of interest (city, district, etc.)

in split in cells. The cells should be small so that the number of building present in a cell is low;

however the size of the cell should also consider GPS inaccuracy, especially in narrow streets with tall

buildings, a common scenario for this type of application. A possible approach is to use an irregular

grid with a resolution adapting to the GPS precision in the given area.

This application can use the current location, acquired via the GPS, to select only the features that

are expected in that area. This reduces the number of the features that have to be matched and

therefore improves the speed of the matching step.

While part of an ideal approach, the GPS filtering has not been implemented in our project, as we

focussed on the novel database creation. Adding a GPS filtering is not interesting for our research

purposes so it has been left out. Instead of using GPS filtering, we assumed that this filtering will

narrow the number of candidate building for matching to 5, a value coherent with the results obtained

in [32].

27

4.3 Shared functionality

Both the PC component and the mobile component need to perform visual features extraction and

matching. The PC component needs these features to build a features database and then test it, while

the mobile application needs them to identify the buildings the camera is pointing to. A common core

component is created to provide this functionality to both application.

4.3.1 Feature descriptor

We decide to use SURF for the feature extraction (see 3.2). Our decision is based on the ground

that SURF is invariant to scale and rotation, so that images of the same building taken from various

distances and angles will still be matched; it is also robust skew and perspective effects. Furthermore,

the descriptor is not based on colour but on the intensity of the gradient, so even if the image is

affected by some chromatic alteration (e.g. caused by different weather condition), the image can

still be matched. Other feature descriptors and extractors with these characteristics exists but SURF

matches or outperforms them in performance and accuracy (see 2.1).

SURF will extract feature descriptors that contain

• The orientation of the feature

• The scale of the feature

• The position of the feature in the image

• The sign of the Laplacian

• The 64-dimensional descriptor vector

4.3.2 Feature matching

In matching a feature extracted from a test image with the database, a comparison between features

is performed. Our approach consider only the sign of the Laplacian and the descriptor vector in

evaluating the dissimilarity between two features; the others elements of the descriptors are ignored.

While using the other elements of the descriptor allows for a more sophisticated matching phase that

28

Figure 4.1: The matching step

can take into account the coherency of scale and orientation, as well as the geometrical disposition

of the features in the image, we decided to use a simple matching for ease of implementation and to

avoid additional computations that will have slow down the matching phase.

The matching is performed using votes. For each feature in the test image, the closest feature in the

database is retrieved. The feature is associated with a building and a vote is added for that building.

At the end of the process, the building with the highest number of votes is selected. We select the

closest feature because two features from two different images of the same object, generated by the

same physical feature, will most likely (if not surely) not have the same descriptor vector. Noise,

deformations and occlusions will affect the two features such as they will be similar but not identical.

However, the closest feature can not be selected unconditionally. There will always be a closest feature

even if the feature that is being matched is a completely unrelated features. For this reason a threshold

is set such that features more distant that the given threshold will not be matched. As suggested in

[23], a valid global threshold adapting to different distributions in space might not exist. Instead, a

threshold is set on the ratio between the closest feature and the second closest feature. If the ratio is

close to 1, there is no single feature in the database that is clearly related to the one that is tested.

Ideally, the voting would be executed for all the feature extracted from the image. Since this can be

time consuming, we use a RANSAC approach [10]. Only a number of random features is selected and

matched. By choosing the features with an even probability the set of selected features is likely to be

representative of the full set. The matching step is summarised in Figure 4.1.

29

4.4 Feature database

A good feature database is the key to have a matching application running fast and with a low error

ratio. The database is created from one or more set of training images. In the ideal application, a set

of images is picked for each GPS cell, while for our project two sets of pictures have been considered.

These images depict a number of buildings that the database should be able to match and in order to

obtain good results, each building should appear in more than one picture possibly taken in different

lighting condition and at different times so that any occasional occlusion (like a bus) is not repeated.

Of course, more pictures means more features in the database and hence a bigger database and a

slower matching step.

4.4.1 Training sets

Two sets of buildings have been selected for this project. The buildings are scattered around the city

centre and represent a variety of architectural styles and building periods; they are public or historical

buildings that would fit in a tourist guide of Dublin’s city centre. A list of the buildings used for our

project is reported in tables 4.1 and 4.2.

Two sets of building have been defined to mimic the filtering that would be performed using the

location data. The two sets, of 5 buildings each, are referred as the EASY and CHALLENGING set.

Most of the pictures of buildings in the EASY set are clear, bright picture of the facade of the building;

the CHALLENGING set on the other hand includes some buildings that are difficult to capture with

a single picture either because of the shape or because there no physical spot in the location with a

good view exclusive of the whole building.

Name Trinity
College
Campanile

Christchurch
Cathedral

General Post
Office

National
Maternity
Hospital

St. Stephen’s
Green Shop-
ping
Centre

Sample
image

Table 4.1: EASY set of buildings

30

Name Parliament
House

Central Bank
Building

Trinity
College
Dining Hall

Liberty Hall St. Patrick’s
Cathedral

Sample
image

Table 4.2: CHALLENGING set of buildings

4.4.2 Clustering

Visual features are extracted from each training set and stored in a database. Our goal is to have

a small database that is still able to return good matches; the size of the database is also linked to

the time spent on the matching step as every feature in the database has to be considered during the

matching step.

We considered three different approaches in the creation of the database, nicknamed ALL FEATURES,

CLUSTERING and TWO STAGES CLUSTERING.

Figure 4.2: Database creation approaches

The ALL FEATURES approach

In the first approach (ALL FEATURES) all the features extracted from the training set are stored

in the database. This means that the number of records in the database is equal to the number of

features extracted; the more features, the bigger the database.

In this approach only a single image per building is used as training set. Since a fist-to-second nearest

neighbour ratio test is used, it was not possible to use more than one picture of the same building in

the training set, as the same physical feature will results in two images would result in two very close

31

visual features that will then be discarded by the first-to-second nearest neighbour ratio test even if

they are relevant features and their repetition is not an ambiguity.

The CLUSTERING approach

In the CLUSTERING approach the concept of metafeatures ([32]) has been used. In the set of

features extracted from the training set there will be some recurring features generated by the same

physical feature, or from identical physical features. These physical features can be unique for a given

building, e.g. a particular window design, or can recur in various building, e.g. the street lights of

a city. Grouping features by their similarity allows to identify such recurring features; this grouping

is performed by clustering the features. Using a training set of three pictures per building, all the

features are extracted from the training set and then clustered using a clustering algorithm. The

result of this operation is a set of clusters each containing one or more features. The set of clusters

is then refined to discard clusters that either include features from different buildings or that include

features that occurs in too few images of the same building.

The first rule (multiple buildings) targets clusters that are not relevant in determining the building:

features inside the clusters are not unique of a building and they won’t be used for matching. The

second rule (features from too few images) is enforced to eliminate features that will rarely be detected.

While they can still be specific to a given building and therefore be useful for matching, in the quest

for a small database precedence is given to features that are more likely to be detected used in the

matching.

Figure 4.3: Wrong cluster assignment when considering only the cluster centre

Once the set of clusters has been filtered, only the centre of the cluster is stored in the database as a

metafeature, discarding information about the single features in the cluster. This decision can result

in feature matching errors as searching for the closer (meta) feature can now return a different cluster

that the one the feature actually belongs to (see Figure 4.3). However by storing only the centre

32

the gain in space is evident and the cluster can be stored as if it was a regular feature, so the final

application can work with features or metafeatures transparently.

The TWO STAGES CLUSTERING approach

Finally the last approach performs a two stage clustering. In the TWO STAGES CLUSTERING

features are extracted from pictures of the same building and then clustered, as opposed to clustering

all the features from all the building as in CLUSTERING. Once building specific clusters have been

created, the set of cluster is refined by removing clusters with a small number of features. Finally, all

clusters from all the buildings are compared and clusters from different buildings that are too close to

each other are discarded as the contained features will not be useful in discerning different buildings.

This approach has been designed in an effort to reduce clustering computation time, as clustering a

smaller number of features (only features from the same building) reduces the clustering time sensibly.

The additional refining step has to compare all the clusters, but hopefully the number of clusters is

sensibly lower than the original number of features.

Clustering algorithms

Three clustering algorithms have been used in the project. These are Kmeans++, ISODATA and QT

(see 3.5). These algorithms have different characteristics and we explored and compared their use in

visual features clustering.

The refining step in the TWO STAGES CLUSTERING is performed using the QT algorithms.

4.5 Genetic algorithm

A lot of various parameters are involved in the techniques and methodologies described so far. For

example, we have to decide a value for the SURF threshold (see 3.2), the number on RANSAC

samples to use, and the parameters for the clustering algorithm we are using, such as the target

standard deviation in the ISODATA algorithm.

33

The traditional approach in computer vision is to tweak these parameters by hand, by empirical tests

or by exploiting the knowledge of the domain. Finding the right values is a search for a balance

between various aspects, such as increasing the number of features in the database will increase the

accuracy of the matches but reduce their speed.

However, when we are considering a set of different training images, as the case with our location

cell-based approach, there might be trainings sets that perform better with values specialised for

that specific set, while having global values used for all the sets doesn’t allow to exploit the specific

characteristic of the individual set. Let’s consider the case of a training set (an area of a city) with a

lot of buildings that look identical if not for small fine features. If we set a high threshold for SURF,

such that only the strongest features are extracted, the weakest discriminant features will be ignored

and discerning one building from the other will be an ill-conditioned problem. On the other hand, if

we have a set with very different buildings that results in non similar strong features, we don’t want

to include a number of useless weak features that will just increase the size of the database when the

match can be robustly performed using just the strongest features.

Another example of set specific values can be giving in regards to clustering. We can think of a

building that has a number of very identical features, so that those features fill all fit in a cluster with

a small variance or distance threshold but increasing the threshold will include some outliers. Another

building, on the other hand, might have a number of similar features that are more spaced and the

optimal threshold to include them in the same cluster would be higher.

Of course these values do not depends exclusively on the buildings that we want to match but also

on the other visual features present in the same cell and that are not part of our training set. For

example, we might have a large threshold for the size of the clusters to include all the similar features

of a building in the same cluster. But this might cause the cluster to include outliers when considering

non-positive images (e.g. if all the road signs in the area present a close feature). For this reason,

a given set of values has to be validate by performing some test matches with both positive images

(with buildings that should be matched) and negative images (without any building that should be

matched) from the same cell, possibly covering a number of different views of that area.

Given the high number of parameters that can be tweaked and the fact that this has to be done for

each cell, finding the optimal parameters by hand is not a practical approach. This project proposes

34

the use of a genetic algorithm (GA, see 3.4) to find good parameters automatically for each cell. At the

end of its evaluation, the GA returns the best database it has found in the given number of iteration.

4.5.1 Fitness function

The GA is used to evaluate the various combination of parameters. A combination of parameters is

good if the database created using that parameters is small in size and performs matches with a low

error ratio and a high speed. However, since the matching step involves a comparison with all the

features in the database (see 4.3.2), and the time spent for the comparison of two features is the same

independently of the features involved, the speed of the matching step is directly proportional to the

size of the database. So only one the matching time and the error ratio are considered, assuming the

database size is directly proportional to the time.

The evaluation of a given set of parameters is divided in two steps. In the first step, the feature

database is created using one of the three database creation approaches (the GA has been run once

for each approach, ALL FEATURES, CLUSTERING and TWO STEPS CLUSTERING). In the

second step, the database is used to match some positive and negative images; the error ratio and the

total matching time are stored. The evaluation pipeline is shown in Figure 4.4.

Figure 4.4: The fitness evaluation pipeline

A GA needs a fitness function that maps from a string of genes to a real value. Since the goodness

of a set of parameters is based on two values (matching time and error ratio), a function that maps

35

these two values to a single value has to be designed.

We tried two different approaches in designing the fitness function. The first function we used is a

paraboloid function that tries to reduce time and error ratio at the same time. Given an error ratio

e ∈ [0, 1] and a matching time t > 0 in milliseconds, the function PARABOLOID is defined as

paraboloid(e, t) = −a(1 + e)2 − bt2 (4.1)

where a and b are constants defined to adjust the ratio between e and t as t is usually in the order

of thousands. The PARABOLOID function is therefore a elliptic paraboloid with a maximum in

e = 0, t = 0. However, a combination of parameters can exists such that even with an error ratio of

100%, the time can be close to zero and result in a better value for the fitness function compared to

other combination with a slightly lower error ratio and bigger time. As an example, a combination

with a very high SURF threshold will extract no features at all and the matching time will be in the

order of ten milliseconds. To prevent this individuals from being selected, every individual with an

error ratio above 95% is discarded by setting its fitness to −∞ (or its machine equivalent).

Figure 4.5: The PARABOLOID (left) and PAIRWISE (right) fitness functions

A second function has been defined as a pairwise function. The idea is to reduce the error ratio

below an acceptable threshold and then minimise the time while remaining below the threshold. The

PAIRWISE function is defined as

pairwise(e, t) =


1
at if e < ε

1
log(e) otherwise

(4.2)

where ε is the desired error ratio and a is a constant introduced to smooth the curvature of the function

36

for low t values. In our evaluations, we used ε = 0.1

The plotted graphs of both function are shown in Figure 4.5.

4.5.2 Parameters tweaked

The genes considered by the GA are various parameters used in both the creation of the database and

in the test matching step. Hence every individual in the population of the GA is a combination of

parameters for the database creation and the test. The parameters that are considered in the creation

of the database are:

• The SURF threshold for the extraction of features from the training set

• Whether to use SURF or U-SURF

• The clustering algorithm specific parameters in the CLUSTERING and TWO STAGE CLUS-

TERING approaches

• The minimum images per cluster in the CLUSTERING approach

• The minimum features per cluster in the TWO STAGE CLUSTERING approach

• The minimum distance threshold for clusters in the refining step of the TWO STAGE CLUS-

TERING approach

The parameters tweaked are summarised in Figure 4.6. On the choice between SURF and U-SURF,

ideally an application using frontal pictures of buildings should expect to have the similar orientation

for all the pictures and therefore the faster U-SURF can be used. However, we want to avoid forcing

the user to stand exactly in front of the building as we want to allow for various different spots to

take the pictures from. This can result in small rotation in the images and U-SURF is not expected

to produce stable results if the rotation is more than a few degrees. On the other hand, U-SURF is

faster as it skip the orientation assignment step. We decided to have the genetic algorithm selecting

the best option.

Regarding the clustering algorithms, different parameters are evaluated according to the algorithm

used. For the Kmean++ algorithm, the only parameter is the number of clusters. Instead of providing

37

Figure 4.6: The parameters (red) tweaked during database creation

a hard value, a percentage in relation to the total number of feature is used.

For the ISODATA algorithm, the desired number of clusters is again a percentage, then other five

parameters are used: the number of iterations, the standard variance threshold, the minimum number

of elements per cluster, the maximum number of clusters to merge, and the pairwise distance threshold

for merging.

Finally, the QT algorithm only requires a single parameters, the distance threshold.

Another set of genes is the used to perform the test matching step required by the fitness function to

evaluate the database. The parameters in this case control how the features are extracted from the

test images and how the match is performed. These parameters are:

• The SURF threshold for feature extraction

• Whether to use SURF or U-SURF

• The number of samples to use in RANSAC (expressed as a percentage)

• The first-to-second closest ratio

In total, the number of genes, including all the database creation approaches and the clustering

algorithm, is 18. The complete set of parameters in the different steps is illustrated in Figure 4.7.

38

Figure 4.7: The complete set of parameters (red) tweaked by the genetic algorithm

4.6 Mobile prototype

The mobile component of the framework has been designed for the Android platform. Android is an

attractive platform for a number of reasons: is open source, application can be developed without the

need of a developer registration key and applications are written using a modified version of Java so

that the code can (almost entirely) be shared between the Android and any other platform supporting

Java.

Our Android application contains a database of features generated on the PC using the genetic

algorithm discussed above (see 4.5). Images are captured from the camera and then processed to look

for a matching building in the database. When a match is found, the user is informed of what the

camera was pointing to.

4.6.1 Interface

The user interface for the mobile prototype implements a see-trough approach where the user is

presented the camera feed on the display. Camera frames are processed and when a building is

recognised, a small icon of the building with the name of the building appears on one corner of the

display. A complete application will probably need to provide more information, such as tourist

information about the building, that can be visualised by tapping on the icon. Our prototype also

39

display a status bar on top of the display showing details about the matching step, such as the matching

time and the number of features extracted.

Two modes of interaction with the user have been designed. The first one is a continuous mode, where

frames are processed continuously as fast as possible. In this mode a frame is captured and processed

without any user interaction; when the processing is terminated, the new current frame is acquired

and processed, in an endless loop. The second mode is similar to the action of taking a picture as the

user is requested to press a button to capture the current frame. A progress dialog is shown while the

frame is processed (preventing any further capture) and then the result is displayed. The application

will then be waiting for the next user’s input to start the processing again.

4.6.2 Matching and database

As mentioned earlier, the features database is embedded in the application and hence stored in the

device. In this prototype our database creation approach has been tested again the strictest space

constraint, that is only the application package (with its 25Mb limit) has been considered as a storage

option, as opposed to use an external memory card.

The feature database is stored in a relational database table. For each (meta) feature, the following

information are available in the database:

• Descriptor vector (be it a real feature or the centre of a cluster in case of metafeatures)

• Sign of the Laplacian

• Building the (meta) feature belongs to

This structure allows to matching features as described earlier (see 4.3.2). In addition to the feature

database, the prototype also require the values of the parameters for feature extraction from the cur-

rent frame, the number of RANSAC samples and the first-to-second threshold. These parameters are

the one computed by the GA in conjunction with the database that is being used. The matching step

on the Android device is effectively the same matching step performed by the GA for the evaluation

of the database (see 4.5).

40

4.7 Tests

For practical reasons, the mobile prototype has not been tested on the phone but tests have been

completed on a PC with pictures acquired from the mobile device. This is an easier approach in terms

of speed and repeatability since it avoids having to travel around the city to visit the various building.

As the picture are taken with the mobile device, the results are still relevant.

A first test of the database validity has been performed by the GA itself (see 4.5). In evaluation a

combination of parameters, the database is tested against positive and negative images. However,

since these images are used to select the best database, they might be influencing the results in the

sense that the parameters are adjusted to perform well only with those specific images. To further

validate the database, once the best database has been selected by the GA, the database is tested

with another distinct set of test images, both positive and negatives.

In the GA, each database is tested against 25 test pictures, 10 negative and 3 positive for each of

the 5 buildings in the set. The additional test is performed with 10 negative pictures and 2 positive

images for each of the 5 buildings in the set, for a total of 20 tests. The images from the additional

test are not present in the GA test set or in the database training set.

In both in the GA and in the additional testing, the error ratio is defined as

Eratio =
Fp+ Fn

N
(4.3)

where Fp is the number of false positives (images erroneously matched to the wrong building), Fn

is the number of false negative (images that should be matched to a building but returned no match

instead) and N is the number of images tested. The maximum value for the error ratio is obviously

1.0 while a perfect random assignment, considering five building classes a the negative match, should

have an error ratio of 0.84.

41

Chapter 5

Implementation

In this chapter we will illustrate some details of the implementation of our framework that we omitted

in the design section (see 4) and that we feel worth mentioning. We will not go into the details of

the implementation but rather present an overview to give an idea of the challenges and issues faced

during the implementation of the project.

5.1 Software and Hardware

As mentioned earlier, our framework is divided in two component, the database creation part, running

on the PC, and the mobile application, running on an Android device. Both component have been

mainly developed in Java. This choice has been made both because of the author’s familiarity with

this programming language and because Android applications have to be developed in its own version

of java, so using Java on the PC component helped code reuse. The same result could also have

been achieved using C/C++ code wrapped with JNI on the Android device but the different C/C++

compilers and headers would have make it more time consuming.

Three main Integrated Development Environments (IDE) have been used. To modify the C++ code

of OpenSURF, Microsoft Visual Studio 2010 has been used. OpenSURF has been compiled using

the Microsoft compiler and headers for the PC and the gcc compiler and Android NDK headers for

42

the Android. The database creation application and all the utility libraries coded in Java on the PC

have been created using Sun NetBeans 6.9. For the Android application, Eclipse 3.6 from the Eclipse

Foundation has been used, in conjunction with the Android ADT plug-in included in the Android

SDK.

The PC we used in this project is a Dell Precision Workstation with an Intel Quad Core 2666Mhz

CPU, 4 Gb of RAM and running Windows XP 32bit Service Pack 3.

During most of the duration of the project, no Android device was available, and the Android prototype

has been developed on the emulator shipped with the Android SDK. An Android device was finally

available at the last stage of the project and has been used only partially. The device is an HTC

Desire phone running Android version 2.2 ”Froyo”.

5.2 Shared components

The shared component have been implemented as Java libraries that have been reused on both com-

ponents. The shared components are the feature extraction and feature matching (see 4.3).

5.2.1 SURF

To implement the feature extraction, we used the OpenSURF library [7]. This is an open source

implementation of the SURF algorithm that is also available for the Android platform. However, the

OpenSURF Android source code relies on a custom made Android NDK that included the STL; at

the time of writing that custom build of NDK was not available anymore. The C++ source code has

then been modified by the author to remove the dependency on the missing libraries. The OpenSURF

C++ is wrapped with JNI to be accessed from Java. This feature is already present in the original

source code of the Android version and the wrapper has not been modified.

The genetic algorithm approach requires a high number of iterations. In each iteration, features are

extracted from the training set, then the matching step is performed multiple times on images from

the test set and again, features have to be extracted from the training images. In order to speed up

the evaluation, a feature cache has been used. Instead of extracting the features from an image, with

43

a given SURF threshold, the features are extracted only once and the extracted features are saved into

a cache. Every subsequent feature extraction for the same file, parameter and method, is performed

by retrieving features from the cache.

The cache has been implemented in a MySQL database running on the PC in order to make it

permanent rather than having a volatile cache reset at every new execution of the genetic algorithm.

Since the SURF threshold parameter is used as a gene in the genetic algorithm, it is liable to a

random mutation and can assume any real value between its bounds. The consequence of using a

pure (pseudo) random threshold is that the likelihood of the same threshold being reused is close

to zero. Instead of using a completely random threshold, 20 possible evenly-spaced values for the

threshold are considered; when the value of the gene is randomised, a random value from the list is

selected.

The information saved in the cache are the same that results from the extraction, i.e. the extracted

features and the elapsed time for the extraction. This information is later used to compute the

matching step time, given by the sum of the test image feature extraction and the actual feature

matching time. The SURF cache is of course only available on the PC during database creation as the

images tested are known beforehand. On the Android prototype, all the features are always extracted

using the actual SURF algorithm.

5.2.2 Feature matching

In implementing the feature matching, the distance between the descriptor vector of the features has

to be computed. The distance between two vectors p and q is evaluated using an Euclidean metric:

dist(p, q) =

√√√√ 64∑
i=1

(pi − qi)2 (5.1)

However, to avoid comparing all the n feature extracted with the m features in the database (with

a complexity of nm), the sign of the Laplacian can be used for fast matching. As the sign of the

Laplacian discerns dark blobs on light background from light blobs on dark background, there is no

need to compare two features with a different sign as they will not be related to the same feature. If

44

we assume an uniform distribution of the sign of the Laplacian between the features, the cost of the

comparison is reduced to nm
2 .

5.3 Database creation

5.3.1 Clustering

The clustering algorithms considered (Kmeans++, ISODATA and QT) have been implemented by

the author following the approach given on the original papers.

Clustering has proved to be a computation intensive operation. Distances between points (in our

case, descriptors of features) are computed using an Euclidean distance on 64-dimensional vectors and

all the clustering algorithms use this operation intensively. In order to speed up the clustering step,

a distance matrix is computed as the first step of the clustering algorithm, such that distances are

retrieved from the matrix rather than computed at every iteration. This solution works in conjunction

with the QT algorithm, as the only distances computed are between points, but does not work with

Kmean++ and ISODATA as in this two last algorithms distances are computed between points and

cluster centres, with clusters centres constantly changing and not know beforehand.

In the TWO STAGE CLUSTERING approach, the second step, in which clusters that are too close

to each other are discarded, has been approximated using the QT algorithm on the centres of the

clusters. The distance threshold under which clusters should be discarded is used as the QT distance

threshold, then each cluster containing more than one centre is discarded.

5.3.2 Visual feedback

A number of various algorithms and methodologies have been implemented in this project. To have

a feedback during the development and to ease the debug of the code, a visual interface has been

created to manually perform all the operation that the genetic algorithm execute to evaluate a single

individual (feature extraction, database creation, clustering, matching). We will not go into the details

of this application as it has been used only as a development tool and is not part of the framework; a

45

screen shot of the interface is shown in Figure 5.1.

Figure 5.1: A screen shot of the visual interface used for testing and debugging

5.3.3 Genetic algorithm

The genetic algorithm code has been written by the author following the principles detailed in 3.4.

Three type of genes have been implemented, according to the type of value they represent: integer,

float and boolean. The individuals in the genetic algorithm are a list of 18 genes; the initial population,

consisting of 25 individuals, is generated by assigning random values to the genes of each individual.

The population is evaluated using one of the two fitness functions defined in 4.5.1. Once the initial

population has been evaluated, the best 7 individual are selected for reproduction. In order to prevent

the algorithm from being stuck in a local maxima, an additional individual is randomly selected from

the population, regardless of its fitness values.

This selection returns 8 individual that are then breded two by two, generating 4 new individual.

These individual inherit the value of each gene from one of the parent, randomly chosen with an even

probability. In an effort to avoid local maxima, there is a 20% mutation chance for each gene, i.e. a

gene every five is assigned a total random value.

Some measures have been taken to have the genetic algorithm running in a reasonable time. The

genetic algorithm has been implemented as a multi threaded application running the fitness evaluation

46

function on a pool of 4 thread. As the algorithm was run on a PC with a quad core CPU, its full

computational power was exploited. The clustering step however is still an issue. With a low SURF

threshold, an image can easily return more than one thousands features, resulting in a training set

containing more than twenty thousands features, each being a 64-dimensional vector. This scenario

reaches the memory or the stack limit (as QT is recursive) of the PC which is running a 32 bit

operating system. Combination of parameters that reach this limit have therefore not been evaluated

and the individual is assigned the lowest value possible for the fitness.

Furthermore, 500 or 1000 iterations of the genetic algorithm are computed, each evaluating 4 new

individuals and if the clustering step takes more than a few minutes on the PC for a high number of

individual, an execution of the algorithm could take days. In order to be able to run all the tests in

the time frame of this project, clustering execution time has been capped at ten minutes and every

individual requiring more than 10 minutes to be evaluated is detected by a timer, the evaluation

aborted and the individual is discarded by assigning the lowest value possible for the fitness.

5.4 Android prototype

The Android prototype has been implemented by the author as a single self-contained application

using the OpenSURF JNI wrapper. The images are captured through the camera at a resolution of

640x480 and processed by a separate thread.

5.4.1 Interface

The interface is implemented as a surface displaying the camera preview frames. On top of the

interface, a status bar with debug information and a building label is shown. When a building is

matched, a small icon of the building (pre-packed in the application) is shown in the bottom corner.

The user can switch between the two modes (see 4.6.1) via a user menu open with the menu button.

Once the matching is completed, the phone also vibrates to notify the user.

The user interface, running in the emulator with a test image, is shown in Figure 5.2.

47

Figure 5.2: Screen shots of the Android prototype on the emulator, before (left) and after (right)
matching

5.4.2 Database and matching

The feature database is stored in the SQLite relational database available to every Android application.

In addition to the feature database, the SQLite database also contains the parameters that will be

used for matching (SURF threshold for the captured image, number of RANSAC samples, etc.).

The feature database is transferred from the PC to the device via a text file containing the SQL

commands to populate the relational database. The file is then packed as part of the assets of the

device. When the application is started on the device, the version of the relational database is checked.

If a new database is available, the old tables are dropped and the database is re-populated with the

commands from the text file. A more efficient approach (in terms of file size) would be to create the

SQLite database file on the PC then pack the SQLite database file within the application. However

this approach is more complicate to code as the default Android-managed relational database has to

be overridden with the custom database file. In our prototype the simpler approach was implemented.

Figure 5.3: The relational database schema

The 64-dimensional descriptor vector of the features is stored in the relational database in a single

text field. Storing the floats with their textual representation is not optimal, however the database

creation file with the SQL commands, the one that matters for the application size, is effectively a

text file, so a textual representation is used anyways. The field is then read and converted back to a

48

float vector when needed. A database diagram is shown in Figure 5.3.

5.5 Tests

5.5.1 Images acquisition

The images used for the training sets and for the test sets have been acquired manually by the author

around the city centre of Dublin, then manually reviewed and edited by hand to remove any face and

registration plate in order to avoid privacy issues.

Ideally the images should have been captured with the mobile device itself, so that they would have

the same characteristics of the camera frames captured by the mobile application. However the mobile

device was not available until the later stage of the project so the images have been captured using

two digital cameras, a compact camera (Pentax Optio 30) and a reflex (Nikon D40).

Later in the project we had the chance to use an actual mobile device (HTC Desire) to capture the

images. However as it was too late in the progress of the project to rerun all the test, only a few

selected tests have been redone with the mobile captured images.

The main differences between the mobile captured images and the digital camera captured images

are in the focus, exposition and white balance. Mobile acquired images are generally more dark and

blurry than digital camera acquired ones.

49

Chapter 6

Results

We will now present the results of the various evaluation and comment on them. While more tests

were planned, the long running time of some approaches - spanning days - and the fact that mobile-

acquired images were not available until the very end of the project did not allow for a complete test of

all the possible combinations of building sets, clustering algorithms and clustering approaches within

the project time frame.

A broader range of tests has been run for the digital camera-acquired pictures, while only selected

evaluations with the mobile-acquired pictures have been completed - namely the ones covering the

EASY set.

In presenting the results, two different sets of values are shown. The first set, which we will be referring

as genetic algorithm evaluation, are the values returned by the fitness function for the best database

generated by the genetic algorithm, while the additional test results are the one obtained using a

external test set on the best database generated by the genetic algorithm, as explained in 4.7.

6.1 Genetic algorithm

The first evaluation performed is a comparison of the two fitness function we designed (see 4.5.1).

The aim of this comparison is both in validating the use of the genetic algorithm to find a good

50

combination of parameters and in evaluating the quality of the two fitness functions.

Set EASY
function PARABOLOID

Set EASY
function PAIRWISE

Set CHALLENGING
function PARABOLOID

Set CHALLENGING
function PAIRWISE

Figure 6.1: Convergence of the genetic algorithm with the ALL FEATURES approach, camera images

Four executions of the genetic algorithm have been evaluated. In the first, 500 iterations have been

used using the simples database creation approach, ALL FEATURES, using the fitness function

PARABOLOID on the EASY set acquired with the digital camera. In the second, the same setup has

been repeated but for the use of the PAIRWISE fitness function. The third and the fourth evaluations

have been run with the same setup, but on the CHALLENGING set acquired with the digital camera.

The ALL FEATURES approach has been chosen to validate the fitness functions as the approach

itself is already know to be valid and used with many variants in literature (for example [23, 2, 5]),

as opposed to the less explored CLUSTERING approach. All the setups converged to a solution, as

shown in Figure 6.1 where the average (red) and best (blue) value in the population for the fitness

functions is shown in relation to the number of iterations. What is interesting in this graphs are not

the actual values but the shape of the curve. It’s clear from the graphs that all setups converged to a

valid solution, even if there is no guarantee that it is the best solution possible (more iterations might

have revealed further improvement).

51

Set Function error ratio matching time GA run time
EASY PARABOLOID 11.4% 602 ms 02:03 h
EASY PAIRWISE 9.6% 731 ms 10:08 h
CHALLENGING PARABOLOID 25.9% 347 ms 01:15 h
CHALLENGING PAIRWISE 15.8% 750 ms 09:22 h

Table 6.1: Genetic algorithm evaluations for fitness function comparison, ALL FEATURES approach,
camera images

In Table 6.1 we report the values of the function and the breakdown of error ratio and matching

time that are used to compute the fitness function. The values in the table are relative to the

best solution found and we also report the time it took to complete the 500 iterations. We can see

that the PAIRWISE strategy, reducing error ratio before reducing time, results in a extremely long

computation that is not guaranteed to produce marked improvements in the error ratio compared

to the PARABOLOID approach. While on the EASY set the error ratios are comparable, on the

CHALLENGING set the PAIRWISE function obtain a sensibly better error ratio but in a doubled

matching time.

Considering these results it would be interesting to use both functions to test if the gap in error ratio

and time will change in other circumstances. Hoverer due to the fact that the other approaches,

CLUSTERING and TWO STAGES CLUSTERING, are expected to add heavily to the total running

time, we decided for practical reasons to use only the PARABOLOID function in any following

evaluation.

6.2 Database creation

6.2.1 ALL FEATURES approach

For the ALL FEATURES approach, a big database size is expected as all the features extracted from

the training set will be included in the database. The genetic algorithm has been run both on the

EASY and CHALLENGING set with digital camera acquired images for 1000 iterations, using the

PARABOLOID function.

With camera acquired images, we obtain modest error ratios in the genetic algorithm evaluation for

52

Genetic algorithm evaluations
Set Err. ratio Match time Features in DB GA running time
EASY 11.2% 566 ms 1419 04:06h
CHALLENGING 23.1% 475 ms 1101 02:34h

Additional tests results
Test images Set Avg. error Error std. Avg. time Time std.
Camera EASY 18.5% 1.53% 424 ms 153.6 ms
Camera CHALLENGING 34.4% 1.95% 436 ms 187.7 ms
Mobile EASY 37.3% 1.33% 359 ms 142.7 ms

Table 6.2: GA and tests results for ALL FEATURES approach, camera images, 1000 iterations

the EASY set and worse results for the CHALLENGING set. When tested with other camera acquired

images the databases revealed a higher error ratio but when the database created for the EASY set

has tested with mobile images the error ratio increased more than three times. Results are shown in

Table 6.2.

The the increase in the error ratio in the camera test can be blamed to our implementation of the

matching step, were only voting is used and no consistency constraint are enforced. This makes the

number of votes for a given building quite unstable and while the best solution found by the genetic

algorithm performed well in the genetic algorithm evaluation, when considering images with different

features even a small difference in the votes can make a sensible difference.

Considering the mobile acquired images, in addition to the aforementioned issues, the higher error

ratio might also be caused by the different nature of the images acquired with the two different devices.

The genetic algorithm has successively been re-run using mobile images to create the database and

the test results, while still showing a considerable error ratio, improved significantly in the test phase,

as shown in Table 6.3. We regard the mobile acquired pictures as being “harder” to deal with than

the camera acquired EASY set and a similarity to the CHALLENGING set is highlighted by the error

ratios.

An evident trait of the results is the high standard deviation in the matching time. This is due to the

varying number of features extracted from the test images. Some test images naturally presents more

features than others for the given SURF threshold and this makes the difference in extracting and

comparing with the feature database as an exhaustive comparison is performed. The computational

cost of the matching with the database is O(nm) where n is the number of features extracted and

53

then selected by RANSAC (where the RANSAC samples percentage is the same for all the images in

the test) and m is the number of features in the database, constant for the test. Hence extracting

double the features from an image would double matching time.

Genetic algorithm evaluation
Set Err. ratio Match time Features in DB GA running time
EASY 12.5% 370 ms 702 02:23h

Additional test results
Images Set Avg. error Error std. Avg. time Time std.
Mobile EASY 23.3% 2.1% 337 ms 132.4 ms

Table 6.3: GA and tests results for ALL FEATURES approach, mobile images, 500 iterations

Concluding, this approach is successful in matching some images but it can result in a relevant error

ratio. This result was expected. On one hand, this approach is widely used and therefore at least some

sort of positive matching was expected. On the other hand, some simplifications we implemented in the

matching step, namely not checking any orientation, scale or geometric coherency, caused numerous

errors. This evaluation however is useful in setting a reference that can be used to compare the other

two approaches with.

6.2.2 CLUSTERING approach

The three clustering algorithm,QT, Kmeans++ and ISODATA, have been evaluated for the CLUS-

TERING approach. As expected, the running time of the genetic algorithm drastically increased for

this approach as each evaluation of the individual require a clustering operation that can span for

minutes. Considering that in 500 iterations of the genetic algorithm 2025 individuals are evaluated,

running times of one day were not unexpected.

We were expecting that the CLUSTERING strategy would have show a sensibly smaller database

than the ALL FEATURES one with a lower error ratio, however the results obtained with the various

algorithms display different characteristics. Results are illustrated in Table 6.4 and discussed in the

following paragraphs.

54

Genetic algorithm evaluations
Clustering Set Err. ratio Match time Features in DB GA running time
QT EASY 08.0% 453 ms 878 03:10h
ISODATA EASY 08.8% 298 ms 760 11:46h
KMEANS++ EASY 18.0% 248 ms 93 20:40h
QT CHALLENGING 60.0% 156 ms 6 01:42h
ISODATA CHALLENGING 60.0% 195 ms 10 07:37h
KMEANS++ CHALLENGING 60.0% 123 ms 8 11:34h

Additional tests results
Test images Clustering Set Avg. error Error std. Avg. time Time std.
Camera QT EASY 16.1% 4.48% 418 ms 142.9 ms
Camera ISODATA EASY 13.0% 1.88% 275 ms 79.0 ms
Camera KMEANS++ EASY 27.7% 2.87% 235 ms 58.1 ms
Camera QT CHALLENGING 61.6% 0.00% 155 ms 17.0 ms
Camera ISODATA CHALLENGING 61.6% 0.00% 170 ms 25.5 ms
Camera KMEANS++ CHALLENGING 61.6% 0.00% 156 ms 16.0 ms
Mobile QT EASY 28.0% 1.63% 334 ms 124.1 ms
Mobile ISODATA EASY 29.3% 2.49% 232 ms 68.7 ms
Mobile KMEANS++ EASY 42.0% 3.39% 203 ms 51.5 ms

Table 6.4: GA and tests results for CLUSTERING approach, camera images, 500 iterations

The CHALLENGING set

Considering the CHALLENGING set, all algorithms failed to converge to a valid solution. The best

database returned is in fact a database that marks all images as negative - hence the 60% error ratio,

because 40% of the images in the GA test set are negative (this is 61.6% for the additional test set).

The database returned is practically empty and the matching time is very low as there are just a few

features to compare. Various reasons for this behaviour can be hypothesised.

First of all, we know there is at least a better solution - a combination of parameters that will create

a cluster for each feature and discard no cluster, so that the resulting database will be identical to

a database generated by the ALL FEATURES approach and this, for at least some combination of

SURF threshold and RANSAC parameters, returns a better solution as seen in the previous ALL

FEATURES tests.

The fact that this solution was not found can means that the search space is too wide and the genetic

algorithm, with the current setup of number of iterations and population size, was not able to explore

it adequately. If this is the case, re-running the evaluation with a more generous setup would result

at least in a (probably slow) convergence to that solution.

55

This result can also mean that the PARABOLOID function is not adequate. The matching time is

extremely low compared to the other results, so probably in presence of an higher error ratio that

can not be reduced under a certain value (as the CHALLENGING set was expected to have) the

function pushes for a lower time over a lower error ratio. If this is the case, adjusting the a and b

constant for the function (see 4.5.1) should prevent this behaviour. However, a reading of the logs of

the genetic algorithm reveals that no lower value for the error ratio has ever been generated over the

500 iterations, so this reason is to be excluded.

Finally, we can hypothesise that the time and memory limit of the evaluation discarded combinations of

parameters that would have otherwise contributed to a better solution. This explanation is supported

by the fact that, in order to obtain a solution similar to the ALL FEATURES approach, a cluster has

to be created for each feature. For the Kmeans++ and ISODATA algorithm, having almost as many

clusters as features is the slowest configuration possible to process. For the QT algorithm, having a

cluster per feature means that at each iteration only a single point is removed from the set so a new

call of the recursive algorithm in invoked per feature, possibly hitting the maximum recursion limit

or the maximum stack size. According to some further investigation on this thesis, about 5% of the

iterations in the non converging genetic algorithm evaluations result in a memory or time limit being

hit.

The reason why having almost one cluster per feature is the best solution in this case is to be searched

in the uniqueness of the features in this set - most likely there are few or no easily clusterable similar

features in the set. We probably selected images that are too different from each other to produce

similar features if not under a very few combinations of parameters.

Summarising, a combination of a restricted genetic algorithm setup and limited resources might be

causing a convergence to an invalid solution. If run without limitation, we expect to obtain a solution

that is similar to the ALL FEATURES approach, with probably only a minimal improvement on the

database size, if any, due to those few features that were clustered.

56

The EASY set

The EASY set shows completely different results from the CHALLENGING set. Here a convergence

to a good solution is reached but the improvement in relation to the ALL FEATURES approach

varies with the algorithm used. In discussing this comparison however it should be considered that

due to an longer running time, the CLUSTERING approach was evaluated with 500 iterations of the

genetic algorithm as opposed to the 1000 of the ALL FEATURES.

Each algorithm converged to a solution that shows some improvements over the ALL FEATURES

approach. The size of the database is extremely reduced in Kmeans++ and this affects both negatively

the error ratio and positively the matching time. The ISODATA and QT databases have a better

error if compared to the ALL FEATURES even if the improvement is not drastic, while it is more

marked on the databases size. This suggests that the reduction in the databases size resulted from

eliminating (meta) features that were not crucial for an accurate matching and this is the validating

our original idea.

The reason for better results obtained with the ISODATA rather than Kmean++ probably lies on

the quality of the clusters, since the first algorithm guarantee a limited variance in the clusters. The

QT algorithm on the other hand uses a complete different approach in clustering but produces similar

values to ISODATA.

Considering running time, Kmean++ display the longest running time. While this is not a main

concern for this project as the database creation step will be performed offline, further inspection in

this issue revealed that, not surprisingly, the additional time compared to ISODATA is spent on the

initial clusters selection (see 3.5.1) and that in the initial 5 iterations the time limit was hit for 15%

of the individuals. This might have conditioned the algorithm as we don’t know if those discarded

combinations of values could have brought an improvement.

On the other extreme, QT algorithm is the fastest to evaluate, as expected from being the only that

take advantage of a distance matrix (see 4.4.2).

The following external tests revealed again a poor performance with mobile images. The same eval-

uations - but only on the EASY set - have been re-run with a training set using mobile images. In

re-running the evaluations with the more challenging mobile acquired images, an additional positive

57

image per building has been added to the training set.

Genetic algorithm evaluations
Clustering Set Err. ratio Match time Features in DB GA running time
QT EASY 18.3% 274 ms 139 07:48h
ISODATA EASY 18.8% 329 ms 173 55:39h
KMEANS++ EASY 20.1% 155 ms 92 89:58h

Additional tests results
Test images Clustering Set Avg. error Error std. Avg. time Time std.
Mobile QT EASY 30.6% 1.33% 239 ms 76.1 ms
Mobile ISODATA EASY 22.6% 1.33% 281 ms 93.0 ms
Mobile KMEANS++ EASY 32.6% 3.88% 214 ms 57.7 ms

Table 6.5: GA and tests results for CLUSTERING approach, mobile images, 500 iterations

The first evident result is the drastic increase of the running time. Adding one image per building,

for a total of 5 images, pushed the running time from some hours to more than 3 days. However, the

QT is still definitely the faster thanks to the distance matrix and has comparable error ratio and time

values.

Results obtained with the ALL FEATURES approach with mobile images showed an high error ratio.

The CLUSTERING strategy did not affect the error ratio sensibly for mobile images but improved the

matching time and reduced the size of the database. While the error ratio still remains higher if com-

pared to camera images, in both camera and mobile acquired images the CLUSTERING approach

proved to be valid - if computable on the set - obtaining a drastic reduction in the database size.

However, with a lower number of (meta) features in the database the error ratio tends to increase.

Considering the wide improvement in the database size, probably our fitness function rewarded exces-

sively the size improvement over the precision. Tweaking the fitness function should result in a more

balanced solution.

6.2.3 TWO STAGES CLUSTERING approach

The last approach evaluated is the TWO STAGES CLUSTERING. This approach failed to return any

valid solution at all with all the considered clustering algorithm and sets. The databases generated

are the same seen in the CLUSTERING approach with the CHALLENGING set, however in this case

the even the EASY set failed to converge to a valid solution as shown in Table 6.6. In the table, only

58

the results obtained with QT clustering are shown. The Kmeans++ and ISODATA have identical

results - they failed to converge to a valid solution.

The same considerations discussed for the CHALLENGING set in the CLUSTERING section apply.

Moreover, since the failure was evident even with the EASY set, we can speculate that this approach

is too restrictive in eliminating clusters.

Probably clusters created in the first step of this approach for a given building (see 4.4.2) are very

likely to overlap with some other clusters created for other buildings; this might prove a fault in

the strategy of considering each building independently. We were expecting to have at least some

combination with a very low QT threshold for the second step so that some clusters would have

survived the elimination; in this case, the surviving cluster centres probably do not reflect the shape

of the cluster and the fist-to-second ratio in matching features might discard them. If this is the case,

the fitness function would select the configurations with no clusters at all because they are faster to

match. Even if we are not able to formulate a definite assessment on the possible convergence of this

approach without a deeper inspection of the behaviour and an unlimited genetic algorithm evaluation

of this approach, we can still speculate that this approach doesn’t present any advantage over the

other two.

Genetic algorithm evaluations
Clustering Set Err. ratio Match time Features in DB GA running time
QT EASY 60.0% 156 ms 71 02:54h
QT CHALLENGING 60.0% 155 ms 71 01:53h

Table 6.6: GA results for TWO STAGES CLUSTERING with camera images

6.3 Matching time and database size on the Android device

Tests results with mobile acquired images have been computed on the PC for practical reasons - doing

that on the Android device would have requested to repack and reinstall the application for each test.

Using mobile acquired images on the PC produces realistic results as the Java class library used to

perform the match is shared between the two implementations.

However the PC can run the tests in a fraction of the time it would take the Android device. For

59

this reason, while the values shown in the previous sections are useful in comparing the various

approaches, the times reported don not reflect the expected matching times on the mobile device. In

order to properly evaluate the times, selected tests have been repeated on the mobile device and the

matching times have been recorded. Table 6.7 summarises the values obtained.

It is evident from the data that the bottleneck in the evaluation on the Android is in the SURF feature

extraction. The matching step (RANSAC and voting) only accounts for a minimal contribution to

the total time even if no particular efficient implementation has been used in the code. The matching

time for a single iteration is also only loosely related to the number of features in the database as it

is only affected by the higher value of the ALL FEATURES approach.

Test PC avg. time # Feat. Mobile avg. time
Total SURF match

ALL FEATURES, EASY 370 ms 702 2625.4 ms 2606.6 ms 18.8 ms
CLUSTERING, QT,EASY 426 ms 139 2574.2 ms 2563.5 ms 9.7 ms
CLUSTERING, Kmeans++,EASY 155 ms 92 2294.8 ms 2285.8 ms 8.0 ms
CLUSTERING, ISODATA, EASY 329 ms 173 3142.8 ms 3138.4 ms 4.4 ms

Table 6.7: Matching times on the Android device

When presenting the results, the database size has been expressed in number of features. To have an

idea of what are the consequences of these values on the Android application, the number of features

can be converted in occupied disk space using our naive SQL file approach. Table 6.8 gives an idea of

the capacity of the Android device in relation to the size of the database.

6.4 Comparison with previous works

Comparisons with related works are not easy due to various factor. The main contribution of our

project is in having a compact local database on a mobile device. Some previous works in literature

perform the match on the PC, with an unspecified feature database size [21, 30, 37]. On the other

hand, mobile approaches, including commercial product, mostly rely on a remote server with no or

little information on the database size ([32, 13]) or have a complete different approach that is not

easily compared ([28]). Additionally, while papers usually report precise descriptions of the tests

performed, no such thing is available for commercial products. We decided to compare our results

60

Number of features Kb Max. cells on Android
100 82 Kb 256
150 120 Kb 175
200 164 Kb 128

1000 820 Kb 25
1400 1148 Kb 18

Table 6.8: Disk space occupied on the Android device

with two closely related, but remote server based, works: [32] and Google Goggles [13].

In [32] the number of features has been considered in order to reduce bandwidth and even if we can

not compare the size of the database on the storage, we have an indication of how many features are

transferred for each cell - reported to be limited to 10000. The matching time, that include network

latency for data transfer, refers to a matching step computed on the mobile device and is therefore

comparable to our results.

We also selected Google Goggles, in spite of the lack of testing data, to show a comparison with a

leading market application. In the comparison user perceived values are considered so the matching

time in this case will include the network latency and data transfer time. Google Goggles can match

landmarks building, or any other type of image, without GPS data. This means that each images is

matched to a huge database including thousands if not millions of images in an impressively short

time; however, the delay perceived by the user is quite long.

Error ratio Match time Features in database
Google Goggles n/a > 5000 ms n/a

[32] 7% 2800 ms 10000
Our approach 22.6% 3142 ms 173

Table 6.9: Comparison with previous works

The results we included in the comparison, shown in Table 6.9, are the best results we obtained for

the EASY set on the mobile phone. The comparison includes matching time as perceived by the user.

Our approach outperforms Google Goggles in matching time, even if no easy comparison can be made

about error ratio - which we expect to be lower on Google Goggles. When comparing with [32], we

obtain a higher error ratio with a comparable matching time. However, the number of features used

for the matching is sensibly smaller.

Our approach is successful in producing small databases, some ten (ALL FEATURES) to hundred

61

times CLUSTERING smaller than [32]. However error ratio is an open issue and this suggests that a

better balance between errors and size has to be found. We did not had the chance to implemented

a more refined matching step like the one seen in [32], so it is no clear how many matching errors

are related to the database size and how our error ratio would get closer to values in [32] just by

improving the matching phase maintaining the same database size.

62

Chapter 7

Conclusions

7.1 Considerations

We explored and tested various approaches for a compact visual feature database creation using genetic

algorithms to be used for building recognition on a mobile platform.

Our feature database creation strategy has been validated by tests. While some combinations of

clustering algorithms and clustering approaches that we experimented did not result in a valid feature

database, others have proven to be valid and resulting in a compact database. In any case, a genetic

algorithm proven to be a good tool to automate the creation of a number of such databases, in a

unsupervised learning fashion, even if enough iterations should be evaluated should be evaluated and

the fitness function has to be tweaked accurately in order to converge to an useful solution.

In particular, the ALL FEATURES approach resulted in a sensible error ratio, a moderate size and

a slow matching time, while the TWO STEPS CLUSTERING computation failed to converge to a

useful solution. On the other hand, the CLUSTERING approach is able to return good results in

database size with a comparable error ratio when the building set has a reasonable complexity. This

means that the ALL FEATURES approach can be used for more difficult sets, while for sets that

express a good result with the CLUSTERING approach, the later can be used. The advantage of

using a genetic algorithm is that this process can be automated instead of having to search for ideal

63

parameters for the two approaches by hand. The main drawbacks are the computation time required

to find a good database and the demanding hardware requirements in order to complete the clustering

without running out of memory.

We weren’t able to perform additional tests exploring different numbers of images in the training

set due to the additional time required by adding more features to cluster; also, in the database

creation the clustering was interrupted and discarded when the resource limit (time or memory) was

reached. Furthermore, for time constraints we had to limit the size of the population and the number

of iterations in the genetic algorithm. The results we obtained might therefore be suboptimal.

It is clear that the initial training set is key. Not surprisingly, a good training set should include

multiple pictures of the same building taken in various weather conditions in different days, and

negative picture should represent a good variety of the visual features available in the surrounding

area. The pictures should also be acquired with the same device that will be used for the application,

or should at least be a mix of pictures acquired with various devices. Tests run on the mobile device

(or images captured with it) are still performing worse than expected. The reasons lie in both a

somewhat unstable matching step and in a non trivial picture set.

A proper comparison with other approaches in literature and on the market is difficult both for the

difference in the architecture (local database versus remote database) and for the lack of data. The

commercial applications don’t disclose the internals (e.g. where the matching step if performed or

the size of the database) and no proper tests regarding the error ratio are available. Considering

other works in literature, [32] outperforms our solution in error ratio with a comparable speed but our

database size is sensibly smaller. In this regard we achieved our goal of creating a compact feature

database.

7.2 Future work

This project has multiple hooks for future enhancements. Improvements can be obtained in the

database creation and in the feature matching and the project could benefit of some more tests to

have a better understanding of the proposed approaches.

64

7.2.1 Tests and comparison

The performances of our framework have not been tested extensively with mobile-acquired pictures.

Given time and proper hardware, all the test could be re-run with no clustering time limit and

hopefully without incurring in memory limit too often (i.e. using a 64 bit system). A complete suite

of test with mobile-acquired pictures, also increasing the number of images in the training set, is the

first addition to this project to be considered.

Given the proper time, the use of other settings for the genetic algorithm can be tested, such as using

the PAIRWISE function and increasing population size and number of iterations.

Additionally, an extensive comparison with similar works, possibly using the same images and com-

paring database size, would help assess the value of this contribution.

7.2.2 Database creation

Regarding the use of a genetic algorithm, our strategy of having the algorithm tweaking a high number

of parameters might have not been ideal. Patterns should be searched in the returned results as there

might be some parameter values, or range of values, that always perform better than others. In this

case, using a genetic algorithm that randomise the value in a wider range is not optimal; if some

values are clearly better for all the possible databases, those values should be fixed to avoid useless

explorations of the genetic algorithm in a region of the search space where no good solutions can be

found.

Visual features clustering proved to be a valid approach to reduce database size and improve ro-

bustness. There are certainly code-level refinements that can be obtained but also other clustering

algorithms can be explored. We only used clustering algorithms that returns a partition of the features

(i.e. each point is in one and only one cluster) and other strategies, such as fuzzy clustering, can be

explored.

A good improvements in performances should be obtained by using a approximated nearest neighbour

algorithm both in clustering and feature matching. Best-Bin-First [3] or another k-tree based ap-

proaches should result in a speed up without affecting accuracy drastically, even if the current results

65

do not suggest improving the speed of the matching step as being a priority.

Also, our strategy of discarding clusters that contains features from different buildings might have

been too rough. A possible improvement would be to use probabilities in assigning more than one

building to a cluster.

Finally, clusters should be treated as more than just a centre. The standard deviation or the shape

should be considered when matching features with clusters. However, this approach would require

some changes in the database structure in order to store both regular features and clusters with these

additional information - they will no longer be simple metafeatures.

On the storage space side, using a text file with SQL commands is far from perfect. A proper way of

saving a database in a binary format compatible with Android’s SQLite should be developed.

7.2.3 Feature matching

In our project we obtained good results by simply comparing features and keeping track of votes

for a given building. This process can be refined by considering other relation between the matched

features. Checking for coherency in size, orientation and/or geometric relations, as seen in [22, 32],

would result in a more robust but potentially slower matching step. Having a solid value for size,

orientation and translation would also allow us to overlay some graphics on the actual building in

the captured image (such as a silhouette or an icon). However, the impact of this modification on

clustering and how the clusters are stored has to be considered.

7.2.4 SURF

While SURF is considered to be a fast feature extractor and descriptor, it can still be improved

especially in regard to a specific hardware platform [5, 6]. Optimisations in the OpenSURF code

should be considered as it is clearly a bottleneck on the mobile application. Improving the speed on

the extraction would allow to spend more time on matching if more robust but intensive matching

strategies are to be implemented.

66

Bibliography

[1] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In SODA

’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages

1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust features

(surf). Comput. Vis. Image Underst., 110(3):346–359, 2008.

[3] Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-neighbour search

in high-dimensional spaces. In In Proc. IEEE Conf. Comp. Vision Patt. Recog, pages 1000–1006,

1997.

[4] M. Brown and D. G. Lowe. Recognising panoramas. In ICCV ’03: Proceedings of the Ninth

IEEE International Conference on Computer Vision, page 1218, Washington, DC, USA, 2003.

IEEE Computer Society.

[5] Wei-Chao Chen, Yingen Xiong, Jiang Gao, Natasha Gelfand, and Radek Grzeszczuk. Efficient

extraction of robust image features on mobile devices. In ISMAR ’07: Proceedings of the 2007 6th

IEEE and ACM International Symposium on Mixed and Augmented Reality, pages 1–2, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[6] V.F. da Camara Neto and M.F.M. Campos. An improved methodology for image feature match-

ing. In Computer Graphics and Image Processing (SIBGRAPI), 2009 XXII Brazilian Symposium

on, pages 307 –314, October 2009.

67

[7] Chris Evans. Opensurf. http://www.chrisevansdev.com/computer-vision-opensurf.html,

retrieved 01/09/2010.

[8] Christopher Evans. Notes on the opensurf library. Technical Report CSTR-09-001, University of

Bristol, January 2009.

[9] Extra Reality Limited. Popcode. http://www.popcode.info", retrieved 05/09/2010.

[10] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395,

1981.

[11] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[12] Google Inc. Android. http://www,android.com/, retrieved 01/09/2010.

[13] Google Inc. Google goggles. http://www.google.com/mobile/goggles/, retrieved 01/09/2010.

[14] Laurie J. Heyer, Semyon Kruglyak, and Shibu Yooseph. Exploring Expression Data: Identification

and Analysis of Coexpressed Genes. Genome Research, 9(11):1106–1115, 1999.

[15] John H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge, MA, USA,

1992.

[16] M. Kahari and D. Murphy. Mara - sensor based augmented reality system for mobile imaging

device. In ISMAR: Proceedings of the International Symposium on Mixed and Augmented Reality.

IEEE Computer Society, 2006.

[17] Yan Ke and R. Sukthankar. Pca-sift: a more distinctive representation for local image descriptors.

In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE

Computer Society Conference on, volume 2, pages II–506 – II–513 Vol.2, june-2 july 2004.

[18] Kooaba AG. Kooaba. http://www.kooaba.com/, retrieved 01/09/2010.

[19] Layar. Layar. http://layar.com, retrieved 01/09/2010.

[20] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana Lazebnik, and Jan-Michael Frahm.

Modeling and recognition of landmark image collections using iconic scene graphs. In ECCV

68

http://www.chrisevansdev.com/computer-vision-opensurf.html
http://www.popcode.info"
http://www,android.com/
http://www.google.com/mobile/goggles/
http://www.kooaba.com/
http://layar.com

’08: Proceedings of the 10th European Conference on Computer Vision, pages 427–440, Berlin,

Heidelberg, 2008. Springer-Verlag.

[21] Frank Lorenz Wendt, Stéphane Bres, Bruno Tellez, and Robert Laurini. Markerless outdoor

localisation based on sift descriptors for mobile applications. In ICISP ’08: Proceedings of the

3rd international conference on Image and Signal Processing, pages 439–446, Berlin, Heidelberg,

2008. Springer-Verlag.

[22] David G. Lowe. Object recognition from local scale-invariant features. In ICCV ’99: Proceedings

of the International Conference on Computer Vision-Volume 2, page 1150, Washington, DC,

USA, 1999. IEEE Computer Society.

[23] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision,

60(2):91–110, 2004.

[24] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In

L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium on Mathematical

Statistics and Probability, volume 1, pages 281–297. University of California Press, 1967.

[25] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local descriptors. IEEE

Trans. Pattern Anal. Mach. Intell., 27(10):1615–1630, 2005.

[26] Mobilizy GmbH. Wikitude. http://www.wikitude.org/, retrieved 01/09/2010.

[27] Oracle Corporation. Java for developers. http://www.oracle.com/technetwork/java, retrieved

05/09/2010.

[28] Gerhard Reitmayr and Tom Drummond. Going out: robust model-based tracking for outdoor

augmented reality. In ISMAR ’06: Proceedings of the 5th IEEE and ACM International Sym-

posium on Mixed and Augmented Reality, pages 109–118, Washington, DC, USA, 2006. IEEE

Computer Society.

[29] Meier Reto. Professional Android 2 Application Development. Wiley Publishing, 2010.

[30] Duncan Robertson and Roberto Cipolla. An image-based system for urban navigation. In in

BMVC, pages 819–828, 2004.

69

http://www.wikitude.org/
http://www.oracle.com/technetwork/java

[31] J.E. Smith, T.C. Fogarty, and I.R. Johnson. Genetic selection of features for clustering and

classification. In Genetic Algorithms in Image Processing and Vision, IEE Colloquium on, 1994.

[32] Gabriel Takacs, Vijay Chandrasekhar, Natasha Gelfand, Yingen Xiong, Wei-Chao Chen, Thanos

Bismpigiannis, Radek Grzeszczuk, Kari Pulli, and Bernd Girod. Outdoors augmented reality on

mobile phone using loxel-based visual feature organization. In MIR ’08: Proceeding of the 1st

ACM international conference on Multimedia information retrieval, pages 427–434, New York,

NY, USA, 2008. ACM.

[33] The Open Handset Alliance. Open handset alliance. http://www.openhandsetalliance.com,

retrieved 05/09/2010.

[34] J.T. Tou and R.C. Gonzalez. Pattern recognition principles. Addison-Wesley, 1974.

[35] Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature detectors: a survey. Foun-

dations and Trends in Computer Graphics and Vision, 3(3):177–280, 2008.

[36] Christoffer Valgren and Achim J. Lilienthal. Sift, surf & seasons: Appearance-based long-term

localization in outdoor environments. Robotics and Autonomous Systems, 58(2):149 – 156, 2010.

Selected papers from the 2007 European Conference on Mobile Robots (ECMR ’07).

[37] Wei Zhang and Jana Kosecka. Localization based on building recognition. In CVPR ’05: Proceed-

ings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05) - Workshops, page 21, Washington, DC, USA, 2005. IEEE Computer Society.

70

http://www.openhandsetalliance.com

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Overview and motivations
	Structure of this document

	Chapter State of the art
	Visual features extractor and descriptors
	SIFT
	Evolution of SIFT

	Building recognition for augmented reality
	Commercial applications
	Location based
	Image recognition based

	Chapter Background
	Android
	Developing for the Android

	SURF
	Nearest neighbour search
	Genetic algorithm
	Clustering
	K-Mean
	Quality Threshold

	Chapter Design
	Overview
	Location data
	Shared functionality
	Feature descriptor
	Feature matching

	Feature database
	Training sets
	Clustering

	Genetic algorithm
	Fitness function
	Parameters tweaked

	Mobile prototype
	Interface
	Matching and database

	Tests

	Chapter Implementation
	Software and Hardware
	Shared components
	SURF
	Feature matching

	Database creation
	Clustering
	Visual feedback
	Genetic algorithm

	Android prototype
	Interface
	Database and matching

	Tests
	Images acquisition

	Chapter Results
	Genetic algorithm
	Database creation
	ALL FEATURES approach
	CLUSTERING approach
	TWO STAGES CLUSTERING approach

	Matching time and database size on the Android device
	Comparison with previous works

	Chapter Conclusions
	Considerations
	Future work
	Tests and comparison
	Database creation
	Feature matching
	SURF

	Bibliography

