
Procedural Generation of Planetary Bodies

by

Dermot Hayes-McCoy, B.A.I., B.A.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2010

Declaration

I declare that the work described in this dissertation is, except where otherwise

stated, entirely my own work, and has not been submitted as an exercise for a degree

at this or any other university.

Dermot Hayes-McCoy

September 14, 2010

Permission to Lend and/or Copy

I agree that the Trinity College Library may lend or copy this dissertation upon

request.

Dermot Hayes-McCoy

September 14, 2010

Procedural Generation of Planetary Bodies

Dermot Hayes-McCoy

University of Dublin, Trinity College, 2010

Supervisor: Micheal Mac An Airchinnigh

Procedural generation is a technique used in multimedia for the creation of a variety

of its associated content. Such content may take the form of characters, images, land-

scapes, etc in both 2D and 3D applications and is usually created manually by highly

skilled artists or designers. In contrast, procedural generation refers to the produc-

tion of such content through automatic, algorithmic methods. Through automation of

such expensive and time-consuming tasks procedural generation can save money and

produce a more content-rich end product.

This report details a system capable of both generating and rendering in real-time

procedural terrain in the form of planets. Although terrain is usually generated using

a 2D heightmap image to represent elevation here a 3D heightmap is used. This results

in a longer generation time but avoids many of the problems associated with mapping

a 2D plane to a sphere and produces a much higher quality result. The heightmap

itself is generated from Simplex Noise, using Fractional Brownian Motion to create a

more realistic landscape topology. To create more heterogeneous terrain a series of

iv

multifractal-based heightmaps are also used. The heightmap is not stored in memory

as, depending on the size and number of planets to be generated, this could occupy

considerable space. Instead, a value is generated for each input position on the fly,

ensuring that computation time is determined by the degree of detail required on

screen at any time rather than the size and extent of the terrain itself.

In order to display the terrain in real-time a Level of Detail (LOD) system is used to

remove excess detail when necessary. This system uses an implementation of Geometry

Clipmaps to achieve this, although heavily modified to accommodate spherical terrain.

Improved performance is also achieved by utilising the GPU rather than the CPU in

both the heightmap creation and LOD stage. As modern graphics hardware provides

much greater computational power than the CPU for many tasks, offloading these

stages to the GPU results in very good performance and leaves the CPU mostly free

for potential future tasks.

Results show that these techniques are suitable for creating a number of proce-

durally generated planets in real-time, without consuming large amounts of memory.

Frame rates of greater than 60 frames per second can be maintained whilst generating

and displaying an earth-sized planet to a resolution of less than 1 metre per vertex.

Furthermore, the various fractal techniques used are capable of creating heterogeneous

terrain surfaces that provide a good approximation of realistic topography.

v

Contents

Abstract iv

List of Figures viii

Chapter 1 Introduction 1

1.1 General Procedural Generation . 2

1.2 Procedural Generation of Visuals . 3

1.3 Applications . 4

1.4 Noise Generation . 6

1.5 Using Noise . 8

1.6 Mesh Representation . 10

1.7 Irregular Meshes . 10

1.8 Regular Meshes . 11

1.9 Semi-regular Meshes . 12

1.10 Fractional Brownian Motion . 12

1.11 Fractals / Multifractals . 14

1.12 General LOD Systems . 15

1.13 CLOD / DLOD . 16

1.14 Visibility Culling . 17

Chapter 2 State of the Art 19

2.1 Realistic Terrain . 19

2.2 Geometry Clipmaps . 26

2.3 GPU-Based Geometry Clipmaps . 27

2.4 Spherical Clipmaps . 31

vi

Chapter 3 Design 39

Chapter 4 Implementation 41

4.1 Overview . 41

4.2 Terrain Class . 42

4.3 BuildVB method . 43

4.4 BuildIB method . 45

4.5 Draw method . 47

4.6 Terrain file . 49

4.7 Noise file . 52

4.8 fBm . 53

4.9 MultiCascade . 54

4.10 HybridMultiFractal . 55

4.11 RidgedMultiFractal . 57

Chapter 5 Evaluation 60

5.1 Results . 60

5.2 Potential Improvements . 64

Chapter 6 Conclusions 66

Bibliography 68

vii

List of Figures

1.1 A procedurally generated surface . 2

1.2 A Heightmap representing a surface . 7

2.1 The effect on fBm of H values ranging from 1 to 0. Taken from [1] . . . 20

2.2 Terrain from a Multifractal. Taken from [1] 24

2.3 The pyramid of Clipmap layers. Taken from [4] 26

2.4 Each layer in the clipmap is imperfectly centred. Taken from [4] 28

2.5 The detail layers are constructed from set templates. Taken from [4] . . 29

2.6 The levels in spherical clipmaps are concentric circles. Taken from [5] . 32

2.7 This shows the transformation of the vertex mesh. Taken from [5] . . . 33

2.8 This shows the mapping operations of the mesh. Taken from [5] 34

5.1 This shows the effect of fBm . 61

5.2 This shows the effect of a multiplicative cascade 62

5.3 This shows the effect of the hybrid multifractal 63

5.4 This shows the effect of the ridged multifractal 63

viii

Chapter 1

Introduction

This dissertation will be divided from this point onwards into six main sections. These

are:

• Introduction.

• State of the Art.

• Design.

• Implementation.

• Evaluation.

• Conclusions.

In the Introduction section a general overview of the field of procedural generation

will first be given. This will be followed by a section covering potential and current

applications for procedural landscapes in a variety of industries. Finally it will deal

with much of the necessary background techniques and information discussed in the

later stages of this dissertation.

The State of the Art section will also cover information on procedural techniques,

but will take a much more specific approach than that taken in the Introduction, going

into detail on some previous work that is directly relevant to this project.

1

Figure 1.1: A procedurally generated surface

The Design section puts the information gained so far in context, outlining the form

that the project will take and identifying what approaches will be used to tackle the

various problems.

The Implementation section describes in more detail how the design plan was put

into action. It discusses the architecture of the program and goes into detail on the

manner in which specific aspects of the source code operate.

The Evaluation section describes the end results of this project. It examines both

the positive and negative outcomes as well as describing potential future improvements.

The Conclusion section summarises the information of all of the preceding sections

and puts the overall project and its results in context.

1.1 General Procedural Generation

The goal of procedural generation is to automate processes in the creation of a virtual

environment that were formerly done by hand. These environments can be simple 2D

paintings, 3D virtual worlds or even remain entirely abstract, existing only as internal

2

representations in a larger simulation. In this regard there are countless areas where

procedural generation could be applied. This section will provide an overview of some

of the most common uses, particularly those related to the topic of terrain generation.

The most common area is that of creating visual information for these environments,

such as 2D backgrounds, 3D objects, etc. Other areas include procedural generation

of music or the generation of storylines and plot. As the definition of procedural

generation is very broad it can be claimed to include areas such as artificial intelligence,

physics simulation, speech generation and animation. However, these are generally seen

as entire fields in themselves so the title is usually applied only to cases outside of such

well established domains.

Procedural generation is useful as, once the generation system is created, it can be

utilised to continually produce content without the need for skilled content creators.

Furthermore, large amounts of content can be created in a fraction of the time it would

take to produce by hand. As the level of visual detail possible in media, particularly in

film and video games, rises exponentially the traditional approach of manual creation

becomes very costly in time and effort. Automating the task enables the construction

of almost limitless amounts of content for a very small cost.

1.2 Procedural Generation of Visuals

Visual elements in multimedia applications that are generated using procedural tech-

niques tend to fall within three main categories:

• Textures

• Objects

• World layouts.

Textures here refer to any 2D image created automatically. This can in some cases

take the form of actual artistic pieces in the application (generally falling under the

title of Artificial Creativity) or, more commonly, backdrops or tileable textures used

to increase the believability and realism of the virtual environment. Tileable textures

are images of repeating patterns, such as grass or brick, that can be placed regularly

3

over a surface to give the impression of detail. Backdrops also give the illusion of detail

but are generally not repeated but maintained at a distance from the viewer to hide

imperfections. Programs such as Terragen allow background images to be created and

used in other applications.

Objects are 3D elements which can be created by algorithmic processes. As some

objects can be quite unique they are often difficult to create computationally. The

advantage of procedural techniques mostly lies in adding extra small scale detail that

would be time consuming to do by hand. Furthermore, if a large quantity of similar

objects is required in the scene then the use of multiple perfectly identical objects can

be jarring and break the suspension of disbelief. To this end it is possible to create

what is known as an ’Imperfect Factory’, which is capable of producing many versions

of the same object but with subtle differences in each to represent natural variation.

Speedtree is a good example of this: it designs an infinite number of unique trees

according to various parameters. The user can then place a large number of these trees

over an area to create a convincing forest.

The final category of visual generation in common use is that of world layouts, and

here lies the focus of this dissertation. A world layout is an entire virtual area within

an application. It therefore can include many examples of textures and 3D objects,

potentially even procedurally generated ones as mentioned above, but concerns itself

with the macro-scale arrangement of elements to produce a convincing environment.

It may describe the arrangement of a room, of a city or even an entire universe. Each

potential type of layout would require its own algorithm, yet they can be broadly split

into two types: man-made and natural layouts. Man-made layouts tend to favour

regularity and hard lines whereas natural layouts are more uneven and often lack clear

definition. This dissertation deals with the creation of planets in a geographic sense

and therefore, falls under the latter category.

1.3 Applications

The potential applications for procedural terrain generation are varied but mostly fall

within one of two categories:

• Entertainment

4

• Scientific / Training

The medium of entertainment is perhaps the one in which potential benefits can

most easily be recognised. Many video games are requiring exponential increases in the

quantities of terrain they use to represent their game worlds. This is especially true

with the recent popularity of so-called open-world games, such as the Grand Theft

Auto Series[25], Red Faction Guerilla[26], and Fallout 3[27]. These games require a

large staff of artists and designers to create their environments, incurring substantial

costs. In contrast, titles such as FUEL[28] and Infinity: Quest for Earth[29] make

use of procedural terrain generation to synthesise landscapes of larger scales for lower

cost. In film the expanding visual capabilities of the medium have created many of

the same difficulties, to which the procedural solution can also be applied. Although

not as widespread in the film industry procedural generation has been used to great

effect in films, such as Inception[18]. Tron was perhaps one of the first instances of

procedural generation used in film[6], and from it came the technique of perlin noise

generation, described in more detail below.

There are a number of scientific applications for these techniques also, mostly falling

within the area of astronomical, cartographic or geographic fields. These are also

joined by simulation and training applications and often such programmes cover both

categories. For instance the Virtual Airspace Simulation Technologies programme[19]

is a joint NASA-FAA endeavour to vastly improve air transportation through both

improved modelling and training programmes for both air traffic control and pilots.

To this end the simulations need to accurately display large amounts of terrain of a

spherical surface in order to appropriately simulate the goal environment.

Other potential uses include extra-planetary simulation, such as the Eagle Lander

application[21] and the Mars Simulation Project[22]. Such simulations, or refinements

thereof, could be used for planetary exploration and, although they usually operate on a

predefined height representation, can use many of the same terrain display techniques

as demonstrated in this project. It is, of course, quite conceivable that procedural

height information would be required in addition to this, to represent unknown terrain

or to quickly generate suitable environments for certain scenarios. Further examples

exist in the form of maritime simulation for both dock and ship piloting training[30]

as well as mineral exploration and oil drilling[20]. These simulators require extremely

5

large amounts of accurate terrain to be utilised and therefore could benefit greatly from

a procedural approach. A number of applications alrady exist that create procedural

terrain[15][16][17], however these applications do not focus on real-time generation of

terrain, as out implementation does. Such programs are intended to create content on

a purely offline basis.

1.4 Noise Generation

Pseudo-random number generators are often used as a base for many procedural tech-

niques. The use of a given algorithm with random numbers as input should produce

varied, and hopefully useful output. True random numbers would be undesirable as

it would render it impossible to recreate a certain end result. Pseudo-random num-

bers enable the same result to be created so long as the seed value remains constant.

This allows an element to be stored solely as a seed value, rather than a complete

representation, saving space in memory but incurring greater computational expense.

Simple random number generation is usually too basic for many procedural appli-

cations. A further development of random numbers is procedurally generated noise.

Noise can take the form of an Ndimensional grid of pseudo-random numbers, which

are independent of each other. A simple two dimensional grid of numbers can be in-

terpreted as a two dimensional image, for example Figure 1.2, but the system can be

easily extended into three or more dimensions. The exact interpretation of the num-

bers is left to the user: three dimensional noise could be utilised to generate three

dimensional objects, such as clouds for instance. A fourth dimension could be added

to act as time, resulting in an animated cloud that moves and changes shape. For

each N − dimensional input position supplied to the noise function it will produce a

single value. An important aspect is that values can be obtained for specific positions

as needed rather than obtaining values for every position an advance.

The manner in which these numbers are interpreted can change the character of

the noise and produce large changes in the end result. Value Noise is often seen as the

simplest form. In it each grid point possesses a fixed value and values for locations

between the points are obtained through simple linear interpolation of the nearest

points. A less obvious approach is to interpret the number at each point as a gradient

rather than a final value in itself. The actual value at each grid point is always taken

6

Figure 1.2: A Heightmap representing a surface

to be zero with a gradient assigned randomly. The values at all locations between grid

points can be non-zero and are determined by the gradients of the nearest points. It can

be thought of as a grid of vectors, each representing a normal at that point. One can

extend this in many ways, such as declaring that the number assigned to each grid point

represents a combined value and gradient, as is the case with Value-Gradient Noise,

or by doing away with a regular grid altogether, demonstrated in Sparse Convolution

Noise. However, in most cases standard gradient noise is sufficient and it is this form

which is used in one of the most popular types of noise: Perlin Noise[6].

The manner in which the system finds values between grid points is often the

distinguishing feature between various types of noise. Perlin noise operates by finding a

hypercube of grid points surrounding the input position and using a piece-wise hermite

spline for interpolation of the query point. This means that interpolation has to occur

between 2N points (where N is the dimensionality of the noise) for each input position,

with the result that generating an entire noise field can be computationally expense.

For instance creating a three dimensional noise cube with 512 values per side would

require 5123 ∗ 23 = 1, 073, 741, 824 interpolation calculations. It should be noted,

however, that generating an entire noise field is often not necessary. Perlin noise is

generated on a point-by-point basis, therefore noise values can be obtained for a series

on N-dimensional coordinates without generating an entire N-dimensional area.

Simplex noise is an alternative to Perlin noise that offers lower computational com-

7

plexity at higher dimensions through the use of simplices rather than hypercubes[8].

Whereas a hypercube is effectively a square expanded to N dimensions a simplex takes

the triangle as its base form and expands that to the required dimensionality. Simplices

require a lower number of vertices to describe them than hypercubes. As stated above

hypercubes are described by 2N vertices whereas a simplex can by described by N + 1.

Simplex noise utilises these simplex vertices for interpolation with the result that in

the above example only 5123 ∗ (3 + 1) = 536, 870, 912 interpolation calculations need

be made.

As gradient noise has a value of zero at each grid point its behaviour is, to a certain

degree, predictable. Features will occur at a regular distance from each other and all

values will always fall within certain bounds. This is generally seen as advantageous

in procedural generation because it allows the user to create randomness yet control

it through certain input parameters (such as the distance between grid points for

example). The user also exerts control on the system in regards to the use of noise

values and their treatment within the system. Controlled Random Processes (CRPs)

such as these are important in content creation because users generally want to direct

the process in some way. This provides an important distinction between procedural

generation and entirely random generation. Even traditional painting on canvas can

be seen as something of a CRP, because the painter uses the uncontrolled nature of

the individual bristles to add detail to an overall brush-stroke that is controlled by the

painter.

1.5 Using Noise

For this project noise generation is used to create a three-dimensional landscape, there-

fore the pattern of noise that is created needs to somehow represent the vertices of the

final terrain. One easy way of doing this is to create two-dimensional noise and to treat

it as a heightmap. A heightmap can be thought of as a top-down map of the terrain.

The x and y positions in the noise field can directly map to the x and z positions of

the terrain vertices, while the value at those points in the noise field corresponds to

the height (y element) of the terrain vertex. In this way a flat x − z plane of terrain

vertices can be expanded into three dimensions by adding height values to each point,

creating hills and valleys. The noise field can be thought of as a function: it takes as

8

inputs two points (xandz) and returns a single point (y) as output. One limitation of

this approach is that only one height value can be obtained for each position vertex.

This means that features such as overhangs become impossible, but in practice this is

not a major issue. Realistic terrain contains very few natural overhangs is if such a

feature is strictly required in a terrain simulation then it can be created by hand where

needed. A number of sources exist to either create or supply heightmap data for other

applications[13][14][15]. These can be used in place of a local procedurally generated

version. Storing large heightmaps in memory can take up large amounts of memory

and bandwidth, however.

Modifications of a plane can be accomplished using a 2D noise field but to modify

a sphere a different approach is needed. One solution is to create a 3D noise field and

pass as inputs the (x, y, z) co-ordinates of each vertex on that sphere[23]. As before,

the noise function returns a single value as output. In two dimensions this represents

a height value, which is simply the value along the y-axis. For the spherical case

however height must be measured from the centre of the sphere to the vertex. It is

clear, therefore, that if a new vertex position is obtained by adding height to the initial

position, then these two points and the centre of the sphere are collinear. The new

position can be found by taking a unit vector from the centre of the sphere in the

direction of the initial position and multiplying it by the output of the noise function.

In this case the output can be more accurately thought of as the distance from the

centre rather than simply height.

As discussed previously, 3D noise generation is more expensive than 2D noise yet

the 3D implementation mentioned above is not strictly necessary. It is possible to use

a spherical coordinate system to represent the sphere in terms of only two values. The

first is an inclination angle measured between the line from the centre to the pole and

the line from the centre to the point in question. The second is an azimuth angle

measured from a fixed reference position on a plane orthogonal to the line from the

planet centre to its pole. In more common parlance these two values are referred to

as latitude and longitude respectively. Inputting these two values into a standard 2D

noise field will produce a height value for each vertex yet without substantial alteration

this approach will result in problems.

These problems manifest themselves as visual artifacts both around the poles and

along the line where the azimuth angle is zero. In the noise field values beyond a certain

9

distance from each other are completely independent. On a planar surface this works

well as points that are far from each other in noise space are also far from each other

in world space. When applied to a sphere however, points which are distant in noise

space can be very close in world space. This is noticeable at the poles where points

that have very different azimuth angles (distant in noise space) are located close by

each other in world space. A similar problem lies in the fact that points with azimuth

angles approaching 2π and those with azimuth angle 0 are also located next to each

other in world space. If two dimensional noise is to be used to determine height for

spherical surfaces then these problems need to be addressed or the final result will not

look realistic.

1.6 Mesh Representation

Terrain is created from a mesh of vertices, onto which heightmaps are mapped to

produce the desired terrain variation. In the case of planes and spheres it may seem

trivial to create a suitable mesh yet its layout can affect the speed and accuracy of the

final result. Layouts generally fall into one of three categories[31]:

• Irregular Meshes

• Regular Meshes

• Semi-regular Meshes

1.7 Irregular Meshes

An irregular mesh is one in which the position of its vertices are not restricted. This

means that triangles can be created of varying size and shape so long as they don’t

overlap. The advantage of such an approach is that vertex density can be concentrated

where it is needed most. Flat terrain, which has a relatively constant gradient, can

be represented by only a few, large triangles, whereas terrain that is very rough, and

therefore has a varying gradient, can use a larger number of small triangles. For a

given triangle number of triangles irregular meshes can provide an optimal depiction

10

of the underlying terrain by saving detail for where it is most needed, unlike regular

meshes described below.

There are a number of disadvantages to using irregular meshes. One of these is

directly related to its potential advantage of using small triangles in high detail areas:

namely that some triangles can become too small to be of any visual benefit. The

extent to which this occurs depends on the underlying height information, but it can

cause a significant problem, adding extremely small vertices that are of no benefit at

the expense of detail in other, potentially more advantageous locations. Perhaps the

most serious problem, however, is in the computational expense required to create

them. The calculation of vertex locations requires significant overhead, and makes the

operation of Level of Detail systems (described below) much more difficult. For this

reason irregular meshes are usually only used in situations where the overall triangle

processing power in the graphics device is very low compared to general computational

power. This is not the case in most modern devices.

1.8 Regular Meshes

In contrast to the irregular variety regular meshes consist of evenly spaced vertices and

therefore a defined distance between each. This produces a mesh of uniformly shaped

triangles arranged in a grid. No modification is made to account for underlying terrain

information and therefore every location on the grid is defined to the same detail. One

advantage of such an approach is that heightmap data can be mapped to vertices very

easily; in fact even a direct 1 : 1 ratio of heightmap points to vertices can be used,

eliminating interpolation calculations altogether. Also, due to the regularity of the

data, large batches of triangles can be sent to the GPU with little or no computation,

bringing about much faster rendering speeds. Finally, any calculations or modifications

on the terrain are usually simplified due to its homogeneous nature. This includes real-

time terrain alterations as well as Level of Detail operations and Visibility Culling (as

described below)

11

1.9 Semi-regular Meshes

Due to the focus on accuracy in irregular meshes and on simplicity and low compu-

tational expense in regular ones a number of approaches exist which attempt to use

aspects of both. Semi-regular meshes do not have evenly spaced vertices as is the case

with regular meshes, but restrictions on their location and spacing do exist. They

therefore attempt to increase the vertex density where needed, like irregular meshes,

but also maintain some form of structure in order to simplify calculations. One ex-

ample of this is by restricting all triangles to the shape of right-angled triangles. In

this case the density of these triangles can be changed as needed but the layout can be

calculated and stored easily, often in the form of tree based data structures.

Semi-regular meshes retain some of the detail of irregular meshes and some of the

storage and computation efficiency of regular meshes. Traditionally two of their main

disadvantages are that triangle construction requires a lot of CPU time and that passing

batches of such triangles to the GPU is inefficient. This is not necessarily the case any

more though when using modern graphics hardware, due to geometry shaders; these

allow much of the grid detail to be created directly on the GPU and so alleviate both

problems.

1.10 Fractional Brownian Motion

Using noise to directly produce height information does produce terrain but it is in

no way indicative of the realistic terrain that this application aims to create. Terrain

created straight from a gradient noise field often consists of a continuous series of

peaks and valleys, which one would not often find in nature. As mentioned previously

gradient noise is created from a grid of evenly spaced points. The frequency of these

points is the same as the frequency of the terrain features in the final result. Real

terrain does not possess such a set frequency in its features. For example a mountain

range might have a frequency of a mountain on average every 1km, but it might have

smaller dips and heights that would occur perhaps every 100m. On top of that are

smaller rocks and clefts that occur on average every 10 metres and so on, right down

to the smallest particles of soil. From this model we can see that as the frequency

of the feature increases its associated effect on the final height decreases. Small rocks

12

and pebbles would occur frequently but their effect on the overall height at that point

is minimal. In contrast mountains occur much less often but have a huge effect on

the height of any points they are placed on. It is clear that the overall height at any

given point is determined from the combination of each of the frequencies, obtaining

the sum of the low-frequency, high-amplitude values all the way to the high-frequency,

low-amplitude values. This results in the final terrain possessing detail at a number of

frequencies, producing a much more believable look.

A pseudo-code implementation of this approach might have the following form:

for(int i = 0; i<octaves; i++)

{

noiseSum = amplitude * Noise(sampleCoords);

amplitudeSum += amplitude;

amplitude *= gain;

sampleCoords *= lacunarity

}

noiseSum /= amplitudeSum;

return noiseSum;

The meaning of each variable is as follows:

octaves: the number of different frequencies that are to be applied. Standard noise is

just sampled at one frequency but this approach uses a number of different frequencies.

noiseSum: the final value that is to be returned. In this case where terrain is being

determined it will represent the height value at the required point. Set to zero initially.

amplitude: the current scaling factor for the noise. This is used to weight noise at

different frequencies to different degrees. Usually set to one initially.

amplitudeSum: a value indicating an ongoing sum of amplitude values used. Neces-

sary for normalisation of final result. Set to zero initially.

noise(...): a standard gradient noise method that will return a value for given input

coordinates

sampleCoords: the input coordinates for which this code will return a height.

gain: a value that controls how the amplitude is to be modified for each successive

13

octave.

lacunarity: a value that controls how the frequency of sampling is to be modified for

each successive octave.

The division operation is simply to ensure that the values returned lie between 0 and

1. This enables a maximum height to be set if desired. Example values for summing

over 8 frequencies going from low to high frequency might be:

octaves: 8

gain: 0.5

lacunarity: 2

A value of 2 is usual for the lacunarity variable. This will double the sampling fre-

quency for each octave. Values less than 2 are to be avoided: they can suffer from

recursive feedback as each noise field is added to a field similar to itself.

In the field of procedural generation the above method is claimed to generate Frac-

tional Brownian Motion (fBm), a random walk process[1]. This is not strictly true as

true fBm operates across all frequencies while this method only operates on a fixed

number of frequencies equal to the number of octaves used. Using a high number of

octaves however could be said to approximate the process. For the purposes of simpli-

fication though this report will refer to the approximation method detailed above as

fractional brownian motion from this point onwards.

1.11 Fractals / Multifractals

Fractals are loosely defined as shapes or patterns that display the property of self-

similarity[1]. This means that a part of the shape, when taken by itself, is similar to

a reduced size version of the whole. As an fBm heightmap consists of standard noise

at various scales it too can be considered a fractal. It should be noted that this self-

similarity is not infinite but depends on the number of octaves used in the generation

process. However infinite self-similarity is not a requirement for fractals and often

occurs over only a small number of scales.

All terrain generated from the fBm method will have roughly the same character

14

throughout: continuous rolling hills over the entire surface. The fBm fractal should

therefore be thought of as a monofractal due to this homogeneous nature. While this

may be suitable for some areas a realistic terrain model should have natural variance.

Some areas should be covered by flatlands, some mountainous. On some occasions

the mountains should rise dramatically out of lowland terrain, on others the land

should gradually rise up into hills and then mountains. Furthermore in some places

the mountains themselves should be very rough and jagged, whereas in other locations

the mountains, while still large, should be relatively smooth. In reality many of these

characteristics are caused by other factors such as erosion and thermal action. Some

procedural terrain generators simulate these effects with good results but visually ap-

pealing variation can be created through much simpler means, despite not being strictly

accurate.

The use of multifractals is one such method; they are in contrast to the standard

monofractals in that their behaviour varies strongly with location. A simple imple-

mentation would be to raise the final value to a power before returning it. This would

have the effect of exacerbating the differences between high and low height values,

giving smoother lowlands rising up to jagged peaks. Other solutions are to utilise a

multiplicative cascade rather than an additive one as in fBm. This creates a stronger

relationship between each octave and produces terrain that is heterogeneous over large

areas. A more complex approach would be to change the height generation algorithm

altogether, based on the input coordinates.

As no qualitative definition of good terrain exists any number of methodologies may

be used to some effect. Creating a height generating algorithm is currently more of

an art-form than science as even small changes to this algorithm usually bring about

rather unexpected results. Thorough experimentation, rather than theory creation, is

therefore usually the best approach.

1.12 General LOD Systems

In addition to creating terrain it is of course desirable to have some means of displaying

it visually rather than maintaining it as an abstract construct. Large terrain sizes result

in high computational cost, as each terrain vertex must be first calculated procedurally

and then displayed on screen. Simultaneously generating and displaying large amounts

15

of high detail terrain becomes prohibitively expensive in real-time but many techniques

exist to cut down on this cost with minimal degradation of the final image.

One solution to the problem is to cut down on the expense of height calculations;

however an often easier approach is to use Level of Detail (LOD) techniques. LOD

techniques involve decreasing the complexity of a 3D model by removing and merging

vertices to allow for faster calculation. Ordinarily this would have a detrimental effect

on the image but through careful analysis this can be reduced to a minimum, if not

eliminated entirely. For instance, by comparing the position of the camera to that

of the vertices the density of vertices in any particular area of screen space can be

determined. If this density is higher than the actual screen resolution then the effect of

many of these vertices is zero and they can safely be removed. Other LOD schemes use

techniques such as varying levels of importance for different objects as removal criteria

or take into account the current speed of the camera, reasoning that the viewer cannot

sufficiently see as much detail when moving rapidly.

1.13 CLOD / DLOD

There are two main methods of implementing LOD functionality: Continuous Level

of Detail (CLOD) methods and Discrete Level of Detail (DLOD) methods. CLOD

systems work by adding enough individual details to a vertex mesh to satisfy some

criterion, such as a minimum density of vertices in screen space. CLOD techniques

can be difficult to implement because calculations need to be made to determine the

number of vertices to be added and how to modify the existing mesh to accommodate

them. DLOD techniques, on the other hand, use a set number of meshes of increasing

detail to achieve a similar effect. Rather than continually modifying the mesh a DLOD

system will swap its entire mesh a version of lower or higher detail as the need arises.

As is the case with CLOD DLOD systems use a threshold factor to determine when

to replace the mesh. This threshold is usually much larger than CLOD thresholds

though due to the limited number of mesh versions that exist. Due to this fact DLOD

techniques can be susceptible to undesirable visual effects such as popping, where the

change from one mesh to another is clearly noticeable to the user. The individual

meshes in a DLOD system can be either be pre-computed and stored in memory or

generated on the fly as needed.

16

1.14 Visibility Culling

Whereas LOD systems operate by simplifying the detail of meshes other approaches

improve performance by removing entire meshes or sections of meshes entirely. This

is generally in cases where they do not contribute at all to the final image and so

drawing them is unnecessary. One of the simplest approaches is Backface Culling, which

removes triangles that face away from the camera. As it is handled automatically by

most graphics libraries it won’t be discussed here. Another approach used commonly is

View Frustum Culling, the aim of which is to remove any vertices outside the camera’s

frustum of vision. Due to the camera’s limited field of view, often only a subset of

all vertices in the world are capable of being projected to screen space. Any others

outside of this are calculated and drawn, but do not not appear on screen. This

is clearly unnecessary and culling vertices outside the view frustum can bring about

great performance increases. For example, if the view frustum was set at 90 ◦ in both

the x and y directions, then the entire world space would be six times the size of the

view frustum space.

Culling entire objects that lie outside the view frustum is relatively easy. Likewise

culling small objects that lie partly in the view frustum can be reduced to a simple

binary choice based on a threshold. In the case of large objects, such as terrain for

example, culling the entire object based on a threshold is unsuitable. Often on a small

part of this object will be visible on screen at one time, but can take up a lot of the

screen space, so passing a threshold would result in the object suddenly popping into

existence on screen, which can be jarring. Furthermore, when the threshold has been

passed and the object is drawn, a large proportion of it may be outside the frustum,

negating much of the potential benefit.

It is therefore usual to split up the object into many smaller sections. These sections

are evaluated independently of each other, allowing only part of the whole object to

be drawn. Obviously the manner in which the objects are split is important. Sections

that are too large have much the same problems as drawing the entire object. On

the other hand sections that are very small bring about the most efficient culling but

introduce a large overhead of computational cost due to the fact that each needs to

be evaluated individually. Further complications can result in the splitting process

itself as splitting irregular meshes can be very difficult to accomplish computationally.

17

For this reason regular meshes have a distinct advantage because they can be divided

simply and efficiently into distinct blocks.

18

Chapter 2

State of the Art

This section provides a more detailed analysis than the more general introduction and

covers some of the papers and other resources that are particularly relevant in the

implementation of this project.

2.1 Realistic Terrain

In Texturing and Modeling - A Procedural Approach[1] a variety of fractal-based meth-

ods are discussed for the purposes of generating terrain. Most of these start by using

fBm as a baseline and developing improvements on it. Their initial fBm method also

offers some improvements over the method listed previously, adding a new variable, the

fractal input parameter, to modify the amplitude for each octave. This parameter con-

trols the character of the fractal and is generally used with values ranging from 0 to1.

Values of 1 maintain a relatively smooth surface, as in the previous implementation.

As this value decreases, however, the height surface returned becomes rougher, each

point deviating more from its neighbours. The surface eventually approaches white

noise as each vertex point is more and more independent of its surroundings. Figure

2.1 shows the effect of decreasing H values on a one dimensional surface.

A further improvement to the algorithm is that of partial, or fractional, octaves.

These occur when the value of octaves used is a non-integer value and involve adding a

partial octave to the standard integer octaves. The partial octave is created as normal

but its result is scaled by the non-integer element of the octaves value, meaning that

19

Figure 2.1: The effect on fBm of H values ranging from 1 to 0. Taken from [1]

20

its values will have less of an effect. The pseudo code for the improved fBm algorithm

is as follows:

value = 0.0;

// Main loop of fractal construction

for(i = 0; i < octaves; i++)

{

value += Noise(coordinates) * lacunarity ^ (- H * i);

coordinates *= lacunarity;

}

// Find the non-integer remainder

remainder = octaves toInteger(octaves);

if (remainder > 0.0)

{

// Add partial octave

value += remainder * Noise(coordinates) * lacunarity ^ (- H * i);

}

return value;

Here the value variable contains the sum of all noise generated so far and H is the

fractal input parameter. Much as before, the code cycles through each octave adding

its contribution to the final value. However, in this case there are no amplitude or gain

values. Instead such functionality is subsumed into the H variable, and both it and

the lacunarity value determine the scaling for the noise at each octave. It can be seen

that as the H value increases the scaling factor for each additional octave in the loop is

lessened, whereas if the H value was set as 1, it would have the same effect as a gain of

0.5 (provided the lacunarity stayed at its standard value of 2, of course). The addition

of H enables easy parametrisation of surface roughness, unlike the more unpredictable

variables it replaced. Note, however, that this approach does not set bounds on the

21

maximum height generated, which could therefore vary hugely. The same approach of

dividing by the total of all amplitude values can be used here nonetheless, and should

return a height value between 0 and 1.

Fractals can be described in terms of their dimensionality much like euclidean

spaces. Dimensionality in such spaces takes the form of an integer value, such as a

value of 1 for a line or 2 for a plane, etc. Fractal dimensions (as defined by the author)

operate in the same way, in that a space with a fractal dimension of 2 is locally a plane

and a fractal dimension of 3 is locally a three dimensional space. However it can also

include real valued numbers, such as 2.31, for example. The closer the value is to an

integer dimension the closer it represents that dimension, so a fractional value close to

2 would be a slightly roughened plane. As the value increased this plane would become

rougher and rougher, expanding to fill a 3 dimensional area as the value approached 3.

Usually these areas are deliberately bounded rather than infinite, so that, for example,

a two dimensional plane representing terrain does not go on forever or a height value

does not go beyond a maximum point. Usually the non-integer element is taken by

itself to represent the character of the fractal, referred to as the fractal increment. For

example, a space with a fractal dimension of 2.31 would have a fractal increment of

0.31. The H value described above is directly related to the fractal increment of the

surface, as:

FractalIncrement = 1−H

It is clear therefore why the H value is used in fractal generating techniques: it

changes the roughness of the fractal by modifying its dimensionality. For extremely

rough terrain at H values of near 0 the surface is simply expanding to take up the

whole three dimensions within its bounding limits. H values are set between 0 and 1

as this forms a fractal increment from 0 to 1 also. It is important to note that the local

definition of dimensionality in this case is not the same as the global dimensionality. A

curved surface could have a fractal increment of 0, yet it is clearly not two dimensional.

The author defines local dimension to exist at any scale, so, in the above example, if

the curve is scaled up by a sufficient large factor the same sized area on the surface

approaches a plane. If the fractal increment was non-zero this would not be the case.

The partial octaves loop in the new fBm algorithm is also of note. It functions

22

similarly to the standard octaves, but is scaled by the remainder value. It also means

that the octave variable must be stored as a floating point number, rather than an

integer as before. The advantage of a floating point value of octaves is that it can be

generated procedurally, allowing detail to be determined by algorithmic means rather

than set manually. This can be particularly useful for determining the maximum level

of detail that can be displayed on screen. The author calculates that for a 2D image

in screen space the value necessary to obtain the highest visible detail is:

octaves = log2(screenresolution)− 2

In addition to this the fBm algorithm given above is then expanded to create a

simple multifractal. The algorithm is very similar to the original fBm implementation

but uses multiplication of the values from each octave rather than addition to create

the final height value. This is referred to as a multiplicative cascade. The following is

a pseudocode implementation

value = 1.0;

for (i = 0; i < octaves; i++)

{

value *= (Noise(point) + offset) * lacunarity ^ (-H * i);

point *= lacunarity;

}

return value;

Whilst looking superficially similar to the standard algorithm there are a number

of changes that have been brought about. The main difference is the multiplication

operation instead of an addition, but this itself brings about other changes. For in-

stance, the value variable must now start at 1 rather than 0 and the concept of partial

octaves has been removed entirely. The former is clearly necessary as 1 operates as

the identity in a multiplication operation in contrast to 0 in addition operations. The

latter comes about because of difficulties in managing scaling factors in multiplicative

23

Figure 2.2: Terrain from a Multifractal. Taken from [1]

operations. Whereas in standard fBm the scaling factor operated only on one octave

here such an operation would modify the entire return value.

The overall effect of the multiplicative cascade is to have each variable affect the

others in a more direct way. In this case even a single octave, regardless of which one,

can drastically affect the end result. The offset value here is another addition; it serves

as a means of keeping some sort of coherence between the values returned by each

octave. If the offset value is zero then the end result becomes wildly unpredictable and

heterogeneous in the extreme. This is because each point has little reason to be related

to its neighbours because of the compounding effect each minor difference has when

using multiplication. This is obviously undesirable as each point needs some connection

to its surrounding points in order to maintain relatively smooth and realistic terrain.

The offset value aims to be the main contributing factor in the final result rather than

the noise value. This allows variation from point to point but prevents each point being

completely random. Obviously the value assigned to this offset is very important. If

it’s too high the terrain is almost entirely determined by it, and the terrain acts as a

monofractal - tending towards completely planar if the value is high enough. On the

other hand too low a value ensures the aforementioned problems of terrain becoming

entirely heterogeneous. A value of 0.8 is suggested by the author, which is claimed to

produce good results as per Figure 2.2

One of the main issues with this terrain implementation is its sheer instability. Al-

though the offset value is intended to provide a balancing force modifying the value

24

assigned to it can drastically change the terrain surface. Furthermore, the offset value

is generally only suitable for a set number of octaves. Changing the quantity of octaves

can also change the terrain to a large degree and the ideal offset value for a given num-

ber of octaves is not defined. A final issue with this approach is that the final height

once again remains completely unbounded. Unlike the additive approach though, nor-

malising the heightmap results becomes more difficult and cannot be accomplished by

a simple division.

Due to the unpredictable nature of multiplicative fractals other methods have been

used to achieve more controlled results. One of these utilises a combination of mul-

tiplicative and additive techniques in an attempt to harness the best aspects of each.

The overall function is additive, in that a value is computed for each octave and the

combined sum of these octaves forms the final returned height value. A multiplica-

tive aspect is introduced, however in the form of an extra weighting variable. This

weighting variable is multiplied by the standard fBm value to produce a final value

for each octave. The weighting value itself is determined by a multiplicative cascade

of each octave result before weighting, ensuring a heterogeneous result. Any extreme

divergence is kept in check, however by clamping the weighting value to values less

than or equal to one.

Many fractal techniques can be created for terrain generation, each potentially

producing very different results. Some approaches suggested are to modify fractal

behaviour based on height, to use a power series of octaves or to include subtraction

and division operations in addition to multiplication and addition. Of particular note

is that one of the defining elements of terrain behaviour seems to be the underlying

noise generation function. In perlin or simplex noise interpolation is achieved through a

hermite spline basis function.. Changing the method of noise generation, and therefore

changing the basis function, has been shown to drastically affect the final terrain.

Therefore, whilst spline basis functions are suitable for reasonably rounded terrains, a

different noise algorithm may produce a surface possessing different traits, even when

using the same multi-fractal techniques.

25

Figure 2.3: The pyramid of Clipmap layers. Taken from [4]

2.2 Geometry Clipmaps

Geometry clipmaps[3] are a LOD system used to display large amounts of terrain with

a low computational cost. Terrain geometry is stored as a series of nested hierarchical

grids, enabling reduction of terrain detail corresponding to distance from the camera.

The highest detail terrain is focused closest to the camera. Terrain detail reduces

in concentric areas spreading out from the central point, as per Figure 2.3, enabling a

steady drop off in detail as the distance from the camera point to the vertices increases.

As well as a decrease in mesh density the source image resolution is also decreased

according to distance from the camera. The source information is therefore treated

much like a mipmap, presenting lower resolution versions of a heightmap image as

required. These lower resolution images are pre-filtered and stored in external memory

in advance. This allows much lower use of main memory at runtime due to the fact that

only a small area of the texture is stored at the highest resolution. Such a scheme can

prove useful when using a heightmap of very large dimensions, e.g. tens of thousands

of data points per side.

Most LOD systems for terrain suffer due to large computational and bandwidth

requirements. Geometry clipmaps avoids this by using preset mesh vertices. These

vertices decrease in density from the centre outwards, in a series of levels. This system

avoids recalculation of vertices by moving the predefined mesh so that it is always

centred around the camera position. Rather than changing the vertices themselves

the heightmap data that they represent are changed as the camera moves across the

terrain. This is is contrast to other LOD approaches which involve run time calculations

to create and modify the vertex structure and index buffers.

26

The finest level of detail in both the source heightmap and the vertex mesh is

represented as a square grid. Each level beyond that consists of square rings that

surround the previous level. The system aims to use this series of rings to keep the

screen-space distance between vertices roughly constant regardless of their distance in

world space. To avoid visible differences between detail layers all vertices near the outer

limits of a level are deemed to be within a transition region. The height of the vertices

in this region are modified by linear interpolation between their initial position and the

hypothetical position they would occupy if they were based on the next coarsest level

of the heightmap. This interpolation depends on distance to the next level, so vertices

far from the outside edge of level X have their height mostly determined by the level

X heightmap rather than the level X + 1 version whilst those close to the edge have

the opposite weights.

2.3 GPU-Based Geometry Clipmaps

Whilst the standard geometry clipmap method works well it is highly dependent on

CPU computation to operate. As modern GPUs have advanced the bottleneck of many

algorithms lies both on CPU processing speed and the speed of data transfer to the

GPU. In contrast the GPU is often under-utilised therefore it is usually beneficial to

transfer computational duties to it. This is not always possible, however due to the

Single Instruction Multiple Data (SIMD) nature of GPU operations as well as its more

limited instruction set. In their paper[4] Arul Asirvatham et al. claim to have succeeded

in transferring much of the geometry clipmap operations to the GPU, achieving speeds

in some cases that are an order of magnitude faster than the original implementation.

In transferring the calculations to the GPU heightmaps are stored as 2D textures.

As it would be impossible to store a full detail heightmap on the GPU multiple versions

are sent: one for each detail level to be used. The size of each heightmap texture also

corresponds to the detail level, in that only the lowest detail heightmap texture is sent

in its entirety. For each incremental detail level only the subsection that corresponds

with the area that lies within its associated mesh ring is sent. This means that every

mesh level will be able to use the heightmap associated with that level as well as each

heightmap of a lower detail level. This attribute is important for blending calculations

in transition regions as well as any fallback situations where proper detail is not able

27

Figure 2.4: Each layer in the clipmap is imperfectly centred. Taken from [4]

to be generated within the required timespan.

Due to the semi-regular layout of the vertices in the terrain mesh each one does not

have to be created and sent to the GPU. Instead, a set number of 2D grid templates

are created at initialisation time and sent in a vertex buffer. From these templates

the entire grid is created, by instancing the templates at various scales, translations

and rotations. The distance between each vertex at a particular level is twice that of

the previous level but the number of vertices remains constant. Also an odd number

of vertices is chosen to enable each level to match up evenly with the next. This has

the effect of ensuring that a given detail level can never be properly centred within

the next coarser level (Figure 2.4), a fact that must be accounted for when using the

templates to create the mesh. As hardware is often optimised for textures with sizes

that are powers of two their approach uses levels with 2n − 1 vertices on each side,

leaving the last potential row and column of the texture unused in order to keep the

number of vertices odd. The authors mention a value of 255 being used predominantly

in their work.

The grid templates that are sent to the GPU can create the entire mesh structure

and consist of the following types:

• m x m Grid square

28

Figure 2.5: The detail layers are constructed from set templates. Taken from [4]

• m x 3 Grid rectangle

• m x 1 Interior Trim

Here the value for m is determined by

m = (n+ 1)/4

and n is the number of vertices per level per side.

The manner in which these elements fit together is clear from Figure 2.5. From

this it is clear that the entire grid structure can be created from this small number of

template structures. Of note is an extra skirt of area zero triangles positioned between

the vertices of each level. This enables a seamless mesh to be maintained even at the

T-junctions between triangles of different sizes (i.e. of different levels). In the case

that any point on the edge of a triangle has a different elevation than its neighbouring

point in the adjacent level then the skirt will expand to link the two levels, preventing

gaps in the mesh.

As the camera moves around the vertex mesh moves with it while the texture

coordinates of each vertex change. A naive implementation would be to evaluate the

texture coordinates from scratch each frame, but this is not strictly necessary. As

most camera movement is continuous the texture coordinates will change very little

from frame to frame. Therefore for each detail level most of the texture information can

29

be reused after a simple translation. Some new information will need to be created at

the edges in the direction the camera is moving in and some is discarded at the opposite

side. For this reason only a small L-shaped region of new texture information needs to

be added. If the texture region for each detail level is represented with a wraparound

basis then the translation can be achieved by simply moving the centre point of the

texture. This means that the only an L-shaped region needs to be generated each

frame, vastly reducing computational time.

It should be noted that all height information for this implementation is created

in advance, rather than at runtime. This can reduce cost significantly, depending

on potential runtime creation methods. It has an advantage in terms of both vertex

and normal creation, as otherwise a height creation algorithm would need to be run

multiple times for every vertex in the mesh: once to determine height information

for that vertex and several more times to determine the normal, which is based on

the height information of nearby points. Creating a heightmap in advance does have

disadvantages however, in that either the heightmap image is filtered before being

passed to the GPU (as is the case with this implementation) or the entire heightmap

is passed to the GPU (which can be prohibitive in terms of bandwidth and memory

for anything but small heightmaps). In this case the authors conducted the filtering

operation on the CPU, which is relatively expensive but not so much as to cause a

bottleneck. As the CPU is remaining unused for most operations in this instance this

is acceptable, but if it were required to perform other tasks such as AI, physics, etc.

then the extra load could become problematic.

The authors’ results show that the new system is capable of rendering a heightmap

of size 216, 000x93, 600 in a 1024x768 sized window at 130 frames per second. In

contrast the original approach operates on the same data set but in a 640x480 sized

window at 120 frames per second. This clearly shows an improvement over the previous

work but perhaps not as great a one as was expected given the speed increases in

some areas of calculation. The authors acknowledge this in their work and claim the

bottleneck in speed now lies in the vertex shader. The NVIDIA GeForce 6800 GT

used in their test is limited in terms of its vertex texture lookup ability. As this

card was one of the first to introduce HLSL shader model 3.0, and with it the very

ability to perform vertex texture lookups, more recent graphics hardware should be

able to remove this bottleneck. In particular HLSL shader model 4.0 introduces unified

30

shading architecture, allowing any type of shader computation to be performed on any

of the device’s many computational processors. This should result in much fewer GPU

bottlenecks, as before only certain designated processing units could perform certain

shader computations. For this reason it is likely that on modern graphics hardware the

GPU based approach would outperform the CPU based approach to a much greater

degree.

2.4 Spherical Clipmaps

In Terrain Rendering using Spherical Clipmaps[5] the authors expand the geometry

clipmaps method to cover the use of spherical terrain. As geometry clipmaps cover,

by default, planar terrain there are a number of approaches to extending it in order to

accommodate 3D objects such as spheres [11][12][23]. Most of these approaches attempt

to solve the problem of spherical terrain by taking a cube as a rough approximation

of a sphere. This allows each face to be treated as a plane and calculated much as

before. Problems, however, can occur at the edges between each plane. Each vertex

can be modified in order for the mesh to take a spherical form yet the edges between

the original planes can cause visual artifacts where they join. Special cases need to

be made both for terrain near an edge and near a corner of three planes. Such an

implementation can therefore become quite complex, both in terms of usability and

processing time.

Clasen et al[5] attempt to alleviate these problems by designing a system based

wholly on spherical terrain rather than a simple conversion of planar approaches.

Whilst still utilising the general form of stacked detail levels that is demonstrated

in standard geometry clipmaps, the shape of these are circular rather than square, in

order to better fit the spherical structure. Therefore, instead of imagining the detail

levels of the clipmap as a pyramid, as is the case with the original clipmaps, spherical

clipmaps can be thought of as having a cone shaped hierarchy. The highest level is

represented as a circle of vertices and each subsequent level form a concentric circu-

lar ring around the previous one as per Figure 2.6. Heightmap information is again

pre-calculated, with filtered elements passed to the GPU as needed.

A major change from planar clipmaps is the parametrisation of the mesh of vertices

passed to the the GPU. As it is impossible to create a truly circular form using a

31

Figure 2.6: The levels in spherical clipmaps are concentric circles. Taken from [5]

standard (x, y) grid this approach must be abandoned. Instead the grid is formed from

spherical coordinates. These spherical coordinates represent a hemisphere of vertices

that form the clipmap mesh. A hemisphere, rather than an entire sphere, suffices in

this case due to the fact that, regardless of the camera position, the maximum area of a

sphere that can be seen at one time is half the surface area. As before, the hemisphere

changes based on the camera, but in this case simply rotates around a fixed position to

constantly face the camera position, rather than moving directly across a plane. The

coordinate system of the hemisphere is based around its single pole, and the entire

mesh rotates so as to place the pole at the closest vertex to the camera.

As a heightmap usually consists of a 2D plane a method of converting this 2D

surface to the 3D surface of the sphere is needed. The simplest means of achieving

this, and the one used by the authors, is to simply map the azimuth angle (φ) to the

X axis of the heightmap and the inclination angles (θ) to the Y axis, ensuring that

(φ, θ)ε[0, 2π)x[0, π). A point p on the surface of the sphere can therefore be represented

in overall world space as p = (x, y, z). It can also be represented in spherical terms in

the form p = (φ, θ). A final representation system needs to exist however to account

for spherical coordinates on the rotating hemisphere. Due to the constant variation of

the pole position with regard to camera location these coordinates are separate from

32

Figure 2.7: This shows the transformation of the vertex mesh. Taken from [5]

the main spherical coordinates. Therefore local coordinates on the sphere are created,

represented by plocal = (φlocal, θlocal) where (φlocal, θlocal)ε[0, 2PI) x [0, π/2). The camera

position determines the relationship between the plocal and p so it too needs to be

represented. In this case the direction to the centre of the sphere is required, rather

than the distance, so this can be set as pviewer = (φviewer, θviewer). In this case the poles

are defined as being on the z axis, so φviewer indicates rotation around the z axis and

θviewer indicates rotation around the y axis as per Figure 2.7.

Each mesh vertex is represented in terms of its local hemispherical coordinates

(φlocal, θlocal). In order to obtain height information for the vertex the heightmap must

be queried at its associated point. This is not a trivial matter however, as the heightmap

exists in world spherical coordinates (φ, θ). Therefore a mapping needs to be created

to translate from local to world coordinates. This mapping must also incorporate the

camera position so can be thought of as

f(θviewer, φlocal, θlocal)→ (φ, θ)

The only element of the camera location that needs to be passed in this case is

θviewer, due to its potential ability to modify the shape of the hemisphere grid in world

33

Figure 2.8: This shows the mapping operations of the mesh. Taken from [5]

coordinates. As can be seen in Figure 2.8, modifications of φviewer simply add a φ offset

to the world coordinates whereas θviewer determines the boundaries of the hemisphere

in this form. For this reason θviewer can be assumed to be zero and therefore removed

from the above function.

Any point on the hemisphere can be found in local cartesian coordinates by

plocal = (cos(φlocal).sin(θlocal), sin(φlocal).sin(θlocal), cos(θlocal))

To map this to world space a rotation needs to be made around the y axis, resulting

in

p = (cos(θviewer).plocalXsin(θviewer).plocalZ,

plocalY,

−sin(θviewer).plocalX + cos(θviewer).PlocalZ)

This is converted to spherical coordinates by

34

(φ, θ) = (tan−1(pY/pX), cos−1(pZ)θviewer)

Subtracting θviewer from θ ensures that the local coordinate system is set to align

with the viewer. Coupled with the fact that φviewer is defined as 0 this ensures that

the local system is correctly mapped based on viewer position.

Due to the constant nature of the hemispherical grid its local coordinates will never

change. For optimum speed therefore, the local cartesian coordinates of the hemisphere

can be calculated at initialisation time rather than per frame. Furthermore cos(θviewer)

and sin(θviewer) need only be calculated once per frame, so can be determined on the

CPU and passed to each shader, rather than calculated per vertex per frame.

The use of a circular mesh over the standard rectangular brings about extra mapping

issues but also provides many advantages in terms of providing good detail whilst

minimising the number of vertices to be drawn. Representing the mesh using spherical

coordinates creates an automatic LOD system due to the fact that the distance between

each vertex expands with greater theta values. This uses what is generally seen as the

main disadvantage of spherical coordinates: the loss of detail the further the point is

from the pole, and uses it to positive effect. The pole is always the closest point to

the camera, therefore should always have the highest level of detail. Detail should also

decrease as distance from the pole (and therefore distance from the camera) increases.

Although the above system works well to decrease detail in the φ dimension it

has no effect on the number of vertices used in the θ dimension. In fact decreasing

resolution in one dimension while maintaining the other as static creates very long,

elongated quads. This can result in visual artifacts when the heightmap is applied so

a means of applying a LOD system to the θ dimension needs to be employed. This is

done using the aforementioned clipmap concentric rings. Each ring implies a different

level of detail in the theta dimension, increasing the distance between vertices as θ

values increase. Each level I covers a θ distance given by

θε(2−iπ, 2−i−1π]

with the final, highest resolution level covering

35

θε(2−i−1π, 0]

Each level contains a constant number of vertices in the θ dimension, so as the theta

distances covered by each level increase the density of vertices decreases. The number

of such vertices in the θ dimension is set manually at value m. It is clear therefore that

each detail level actually consists of m concentric rings, each one quad in thickness.

The θ value for each ring could be obtained by linear interpolation, but in this case

also increases nonlinearly to provide greater detail closer to the camera. For a given

ring j, in level i with m rings per level its θ value is provided by

θij = θi0 ∗ 2−j/m

The overall result of these mesh modifications is that triangles take up approx-

imately the same same screen space, regardless of the camera distance. A further

major advantage is that there are no potential gaps at level boundaries therefore tran-

sition regions do not need to be used. Also, a direct 1 : 1 ratio of vertex overlap between

levels ensures the there are no potentially problematic T-intersections. However, the

move away from rectangular grids also ensures that the original 1 : 1 correspondence

of vertices to height samples no longer exists, meaning that heightmap sampling will

require a filtering operation.

As the shape of the extents of the hemisphere in 2D heightmap/world space can

vary depending on viewer position, the size and shape of each detail level in world

space will also change. If a given detail level ring contains a world-space pole then

that level will contain every value of φ in world space. In contrast, a level that only

contains coordinates near the world-space equator will only contain a small subset of

all possible φ values. θ values will remain constant throughout.

Sampling circular sections of the heightmap at various details to perform standard

clipmaps is next to impossible, due to the rectangular grid nature of the heightmap. For

this reason the sampling filters used on the heightmap texture must be rectangular,

and determined by the extent of their associated levels in world space. Due to the

aforementioned potential variance in φ the filter size is not always equal in both θ

36

and φ dimensions. Further modifications are necessary to clip θ values that go beyond

poles, as wraparound addressing occurs in the φ dimension, but not in θ (if it did the

shape would be a torus).

The LOD system described up to this point will change vertex density based on the

angle between the sphere and the camera position and is suitable for situations where

the camera maintains a constant distance from the planet’s surface. If the camera were

to move away from the surface while keeping the angle constant the vertex density in

world space would stay constant, meaning that in screen space it would increase with

distance. Conversely, if the camera were to be positioned at a very short distance from

the surface of the sphere the outer levels of the hemisphere cannot possibly be viewed

by the camera, and so are drawn unnecessarily.

To combat this waste the authors also devise a means of modifying detail based

on the distance to the camera by removing detail levels if they are not required. This

can be achieved by finding both a maximum θ value that can be viewed from a given

position as well as well as a minimum θ difference between vertices that can actually

be displayed on screen. The maximum value is obtained by the formula

θmax = cos−1(r/r + h)

Here r is the radius of the planet and h is the distance of the camera from the

surface. It should be noted that this is only an approximation based on a smooth

sphere, however. Differences in height may mean a point is sufficiently elevated to be

seen when beyond this limit, so a buffer zone of some sort may be needed.

The minimum θ difference is given by

θdiffmin = s/r

where r is the radius of the planet and s is the size of the area that one screen space

pixel takes up on the surface of the planet. An approximate value for s is gained from

the following formula

s = h.tan(fov/p)

37

where h is the height of the camera above the planet’s surface, fov is the field of

view angle of the camera and p is the number of pixels per scanline.

38

Chapter 3

Design

The design of this system uses a number of the techniques already described to produce

a system capable of generating and displaying multiple planetary bodies to a high level

of detail at real-time rates. Heightmap information is generated on the fly for each

vertex, removing the need for both precomputation and storage space for the heightmap

in both system memory and GPU memory, as well as bandwidth issues from the transfer

between the two mediums. As a large heightmap is necessary for extremely large-scale

terrain, such as this project, these constraints can become prohibitive. By generating

heightmap information as needed in real-time, computational speed is sacrificed instead

of memory. Due to the ever increasing processing speed of graphics hardware this is

deemed to be a good trade-off, especially as the algorithms scale very well to SIMD

techniques.

A number of techniques are used to generate height information. Simplex noise

is used as the base for all generating functions as it scales well to higher dimensions

and offers statistically better quality noise than its earlier perlin equivalent. This

implementation uses a modified version of pre-existing HLSL code [8][9][10] to generate

the noise directly on the GPU. From this base of simplex noise a selection of fractal

techniques are used to create a realistic terrain surface. These are:

• A standard fBm system, using the improved form as discussed previously.

• A multiplicative cascade, modified in an attempt to remove some of the unpre-

dictability of the approach.

39

• A hybrid multiplicative-additive approach, using a bounded multiplicative weight-

ing function to modify the standard additive process.

• A fractal model that generates ridged terrain. This is accomplished by allowing

negative noise values as well as positive, then taking the absolute value, creating

sharp ridges as well as more rounded terrain.

The mesh structure used to display the height information is heavily based on the

spherical clipmaps approach. This allows a static mesh of vertices that only needs

to be sent at initialisation time, rather than per frame, yet provides a robust LOD

scheme specifically designed for spherical terrain. Each vertex is assigned a height

based on its x,y and z coordinates, meaning that a three-dimensional heightmap needs

to be generated on the fly. Although this requires some extra calculation, this scales

linearly with dimension and produces very good mapping form heightmap to vertices

without visual artifacts that can occur in two dimensions. These artifacts were deemed

more costly and time consuming to fix than any potential speed benefits that would be

obtained. Furthermore, as the entire heightmap is not generated in advance, the same

number of heightmap calculations are undertaken in the three dimensional approach

as in two dimensions. The generation of an entire 3D heightmap in advance would

exacerbate the already expensive memory and bandwidth problems to a point where

performance would likely become unacceptable. Therefore an on the fly, per vertex

heightmap is currently the only way by which 3D heightmaps can be used for large

amounts of high detail terrain.

This system is mostly GPU based. All generation of heightmap information, plus

vertex transformation and rendering is done on the GPU. The CPU is limited to

creating the vertex mesh at initialisation time, plus simple tasks such as camera control

and rotation matrix creation. This design leverages the power of the graphics hardware

to both generate and display large quantities of spherical terrain in real time.

40

Chapter 4

Implementation

4.1 Overview

This system uses DirectX 10 and HLSL 4.0 to display all terrain information on screen.

To that end some generic initialisation and setup code for DirectX is taken from both

the Microsoft DirectX[10] and from Luna[2]. The system enables real-time resizing

of the display window and a user-controlled camera class that utilises the mouse and

keyboard. Whilst a proper user interface is desirable, time constraints unfortunately

made this impossible so all parameter modification is effected by modification of the

source code.

The main class that controls program operation is the TerrainApp class. Much

of the terrain functionality is called within the Terrain class as well as the Terrain.fx

and Noise.fx HLSL effect files. A variety of other classes exist to provide various

other utility functions for DirectX applications; these include classes providing camera,

texture manager, skymap, lighting, and timer functionality, amongst others. While

vital to program operation they are not specific to this procedural terrain application

and therefore will not be described in any detail.

The TerrainApp class is a child class of the more generic d3dApp class and from it is

obtained much or the functionality necessary to run a functional DirectX application.

This functionality includes operating system message handling, modifiable window dis-

play and fully functional draw and update loops. A Terrain object represents an entire

planet; the TerrainApp object initialises the required number of said objects along with

41

calling their draw and update methods. Along with the Terrain objects all other helper

objects (camera, lighting, etc) are initialised and updated by the TerrainApp object.

Any user input is also read in at this stage and assigned to variables in the appropri-

ate objects. A further operation of the TerrainApp object is to analyse information

received from other objects and present them on screen as statistics to the user. This

includes information such as rendering time, planetary positions, viewer angles, etc.

4.2 Terrain Class

Many of the the application calculations are performed on the GPU, rather than the

CPU so the role of the Terrain class is mostly limited to creation of the vertex mesh

and calculating the appropriate transformation mappings based on the camera loca-

tion. Upon initialisation the Terrain object is passed a number of parameters by the

TerrainApp object, determining the make-up of the planet the Terrain object will rep-

resent. This information is contained within an InitInfo struct for ease of use. The

struct itself is laid out as follows:

struct InitInfo

{

float PlanetRadius;

D3DXVECTOR3 PlanetPosition;

int NumPhi;

int NumLevels;

int NumRingsPerLevel;

};

PlanetRadius: the size of the planet and therefore the size of the mesh to be con-

structed.

PlanetPosition: the location of the planet in world space. The mesh will rotate

around this point.

NumPhi: the number of vertices used throughout in the φ dimension.

NumLevels: the number of detail levels to be used in the θ dimension.

NumRingsPerLevel: the number of of vertices used per detail level in the θ dimen-

sion.

42

Upon receiving the initialisation data the Terrain object uses it to produce the

vertex and index buffers that make up the terrain mesh through the BuildVB and

BuildIB methods respectively. The other principal method used in this class is the

Draw method. It is here that the buffers are sent to the GPU along with a rotation

matrix for the mesh. This rotation mesh is calculated in the Draw method each frame

and passed to the GPU to ensure the mesh faces the camera at all times, as is required

for a spherical clipmap implementation.

4.3 BuildVB method

In the BuildVB method the system must first assign memory for the vertex buffer

from both the size of memory an individual terrain vertex will take up and the number

of such vertices that will make up the buffer. A terrain vertex holds more than just

positional data and is represented by the following struct:

struct TerrainVertex

{

D3DXVECTOR3 pos;

D3DXVECTOR2 sphericalCoord;

int level;

};

pos: the 3D Euclidean position of the vertex in local space

sphericalCoord: the 2D spherical position of the vertex in local space

level: the detail level that this vertex currently lies within

From that it is clear that each TerrainVertex takes up 24 bytes on Win32 systems.

In order to determine the buffer size, however, the number of these vertices needs to

be established in advance. The formula is given by:

NumV ertices = NumLevels ∗NumRingsPerLevel ∗NumPhi− (NumPhi− 1);

43

The formula is relatively straightforward, as the size of the grid can be found by

multiplying the number of theta vertex location by the number of phi vertex locations.

The final subtraction operation is to take into account the layout of vertices at the

pole. For every other theta value there are phi vertices on that ring. However at the

pole all vertices on the ring would occupy the same space therefore only one vertex is

necessary.

Once the vertex buffer has been created the BuildVB() method fill it with vertex

information. It loops through each value of θ and φ, creating a vertex at each. A

pseudocode implementation of it has the following form:

for(currentLevel = 1; currentLevel <= numLevels;)

{

thetaValue = getThetaValue(currentLevel, currentRing);

for(j = 0; j < mInfo.NumPhi; ++j)

{

phiValue = getPhiValue(i, numPhi);

Vector3 position =

getSphericalCoordinates(planetRadius, thetaValue, phiValue)

vertices[positionMarker].pos = position;

vertices[positionMarker].sphericalCoord =

Vector2(thetaValue, phiValue);

vertices[positionMarker].level = currentLevel;

positionMarker++;

}

currentRing++;

if(currentRing >= numRingsPerLevel)

{

currentRing = currentRing % numRingsPerLevel;

currentLevel++;

}

}

In this case the counter loops through every detail level, and within it every ring,

obtaining a theta value in every case. For every theta value in the mesh though there

44

are phi vertices, so a further loop must accommodate that., obtaining a phi value

for each. Once these values have been obtained each element of the TerrainVertex

struct must be assigned a value, namely the three dimensional euclidean space, the

two dimensional spherical space and the current detail level. The special case of the

pole vertex is accounted for manually outside of the above loop. It should be noted

that level values range from 1 to numLevels whilst ring values have a range of 0 to

numRingsPerLevel − 1. This is for computational reasons at various stages of the

overall algorithm.

The getPhiValue function is relatively straightforward, as φ values are evenly spaced

across the mesh. It only needs to be transformed to within its proper limits of [0, 2π)

by the following:

phi = (j / NumPhi) * (PI * 2.0f);

The getThetaValue function is more complex, due to the fact that the θ position

varies based on detail level and ring number. It also must lie within its limits of [0, π/2).

θ values are obtained by this pseudocode:

levelBase = pow(2, - level * PI;

theta = levelBase * pow(2, - ring / numRingsPerLevel);

The levelBase variable determines the theta position of ring 0 of a given level.

Each subsequent ring on that level has a θ value determined by the levelBase value.

This algorithm ensures that θ distances between vertices scale continuously based on

distance from the pole.

4.4 BuildIB method

Along with the vertex buffer an index buffer must also be constructed in order to define

the triangle layout of the vertices. It too requires memory to be assigned in advance and

is determined from the value for the total number of vertices that has been determined

above. The number of triangles, or faces, to be constructed is determined by:

NumFaces = (NumVertices - 1) * 2 - NumPhi;

45

The minus operation exists to account for the vertex layout surrounding the pole,

which consists of a ring of triangles rather than a ring of quads as is the case for every

other theta value. The index buffer consists solely of integer values so occupies 4 bytes

of memory.

The technique for filling the index buffer is as follows:

totalTheta = numLevels * numRingsPerLevel;

for (tempTheta = 1; tempTheta < totalTheta-1; ++ tempTheta)

{

for (tempPhi = 0; tempPhi < NumPhi; ++tempPhi)

{

int v1 = 1 + (tempTheta-1)

* NumPhi + tempPhi;

int v2 = 1 + (tempTheta)

* NumPhi + tempPhi;

int v3 = 1 + (tempTheta)

* NumPhi + tempPhi + 1;

int v4 = 1 + (tempTheta-1)

* NumPhi + tempPhi;

int v5 = 1 + (tempTheta)

* NumPhi + tempPhi + 1;

int v6 = 1 + (tempTheta-1)

* NumPhi + tempPhi + 1;

indices[outerCount] = v1;

indices[outerCount + 1] = v2;

indices[outerCount + 2] = v3;

indices[outerCount + 3] = v4;

indices[outerCount + 4] = v5;

indices[outerCount + 5] = v6;

46

outerCount += 6;

}

indices[outerCount - 4] -= NumPhi;

indices[outerCount - 2] -= NumPhi;

indices[outerCount - 1] -= NumPhi;

}

This technique operates by visiting every vertex in turn and creating an associated

quad at that location. The quad is constructed between the current θ value and that

one below it, so the tempTheta variable must begin at 1 rather than zero. Furthermore

the indices surrounding the pole are not added as they are dealt with separately. The

location of the required vertex in the vertex buffer is calculated for all six vertices of

the quad. These locations are then input into the index buffer to form triangles, while

ensuring winding order remains constant. The loop then moves onto the next quad.

The final three modifications to the buffer upon completion of the φ loop is important.

It ensures that the quad at the end of a ring matches correctly with the starting quad.

Without this change the quads would form a spiral pattern on the hemisphere rather

than concentric circles, as is required.

4.5 Draw method

One of the main operations in the draw method is to calculate the correct rotation

matrix to be applied to the hemisphere mesh. The original implementation calls for

a complex series of mappings to be applied to a vertex whenever it is necessary to

transform from one coordinate system to another. This implementation eschews that

approach, abandoning a large series of calculations for each point and instead using a

simple rotation matrix, requiring only a single multiplication per vertex in the GPU.

The rotation matrix is created on the CPU here in the Draw method only once per

frame.

To construct the rotation matrix it is necessary to have 3 vertices which represent

the new coordinate system. These vertices are orthogonal and show the x, y and z-axes

as they would be if the final rotation was applied to them. These are often referred

47

to as the right, up and direction vectors respectively. The direction vector is easy to

obtain as the positions of both the sphere centre and the camera are known. Therefore

the direction vector is simply the normalised difference between these two points. The

right vector can be found by taking advantage of one of the limits on rotation placed on

the hemisphere - the fact that it has only 2 axes of rotation. By design the hemisphere

should only ever yaw and pitch, but not roll. As a result of this the right vector will

always stay on the X − Z plane and so can be represented by a single rotation value.

This rotation value can be determined from the rotation of the direction vector when

projected to the X − Z plane.

This can be described in pseudo-code as :

Vector3 terrainToCamera =

Vector3(GetCamera().position().x - PlanetPosition.x,

GetCamera().position().y - PlanetPosition.y,

GetCamera().position().z - PlanetPosition.z);

Vector3 terrainToCameraXZ =

Vector3(terrainToCamera.x, 0.0f, terrainToCamera.z);

Normalize(terrainToCameraXZ);

yRotation = ArcCosine(DotProduct(terrainToCameraXZ, origTarget));

if (GetCamera().position().x < PlanetPosition.x)

yRotation *= -1;

To use these rotation values an original set of right, up and direction is created at

initialisation time and maintained as a constant reference. This is what is being referred

to in the origTarget vector above. New vector directions are then obtained by rotation

of these reference values by the calculated rotation value. The if statement above is to

ensure rotation stays in range of −π to +π. Once the direction and right vectors have

been found the up vector can be obtained by a simple cross product operation as seen

here:

Matrix yRotationMatrix;

48

yRotationMatrix = CreateRotationAroundY(yRotation);

Vector3 rotatedRight;

rotatedRight = TransformVector(origRight, yRotationMatrix);

Normalize(rotatedRight);

Normalize(terrainToCamera);

Vector3 rotatedUp;

rotatedUp = CrossProduct(rotatedRight, terrainToCamera);

Normalize(rotatedUp);

Now that the three vectors have been obtained a rotation matrix can be formed.

This rotation matrix can be combined with the translation matrix in order to modify

the planet’s position as well as its rotation to form a world matrix. This takes the

following form:

Matrix terrainWorld = Matrix(

rotatedRight.x, rotatedRight.y, rotatedRight.z, 0.0f,

rotatedUp.x, rotatedUp.y, rotatedUp.z, 0.0f,

terrainToCamera.x, terrainToCamera.y, terrainToCamera.z, 0.0f,

PlanetPosition.x, PlanetPosition.y, PlanetPosition.z, 1.0f);

Once the world matrix is created it is passed, along with the vertex and index

buffers, to the GPU where height information is created and applied

4.6 Terrain file

Information is passed from CPU to GPU in the form of vertex and index buffers,

as well as separate buffers containing other variables that are needed in the GPU

based algorithms. As bandwidth between these devices can be an issue most programs

attempt to limit the amount of information passed between the two. This program

passes little extra information so this should not be an issue, however it is still advisable

to create buffers efficiently to avoid unnecessary bandwidth use. This system uses two

different buffers for passing information; one for values that remain static throughout

the program’s operation and another for values that may change from frame to frame.

49

Because of their mode of operation of buffers, if one value needs to be updated then the

entire buffer is updated. Grouping of variables based on their update rates reduces the

bandwidth used by the application by removing many potentially unnecessary updates.

The buffers used in this file consist of

Information is passed from CPU to GPU in the form of vertex and index buffers,

as well as separate buffers containing other variables that are needed in the GPU

based algorithms. As bandwidth between these devices can be an issue most programs

attempt to limit the amount of information passed between the two. This program

passes little extra information so this should not be an issue, however it is still advisable

to create buffers efficiently to avoid unnecessary bandwidth use. This system uses two

different buffers for passing information; one for values that remain static throughout

the program’s operation and another for values that may change from frame to frame.

Because of their mode of operation of buffers, if one value needs to be updated then the

entire buffer is updated. Grouping of variables based on their update rates reduces the

bandwidth used by the application by removing many potentially unnecessary updates.

The buffers used in this file consist of

cbuffer cbPerFrame

{

float4x4 gWorld;

float4x4 gWVP;

float4 gDirToSunW;

};

cbuffer cbFixed

{

float planetRadius;

int maxLevels;

};

The planet radius and the max number of levels are set at initialisation time and

therefore will never be changed. The direction to sun variable could potentially be

moved to the fixed buffer, as in this implementation it is never changed. Future itera-

tions of the program, however, will likely require dynamic lighting, therefore it is left

50

in the per-frame update buffer for now.

The vertex shader receives as input the information contained in a TerrainVertex

struct described previously, consisting of euclidean coordinates, spherical coordinates

and the detail level in which the vertex lies. Vertex shader operation proceeds as

follows:

Firstly the euclidean coordinates are transformed from local coordinates to world

coordinates through matrix multiplication with the world matrix. This provides the

translation and rotation operations needed to place the vertex correctly and enables use

of these coordinates as parameters to the noise function. Using local coordinates would

not have the desired effect as these are static for each coordinate, which would result

in terrain that doesn’t change yet always faces the camera. Secondly, a height value for

these coordinates is obtained by calling upon one of the fractal generating functions.

These take in the world coordinates plus a number of configuration parameters and

return a single height value. Finally the height value is transformed to a vector normal

to the surface of the sphere at that point and added to the world coordinates to obtain

a final vertex position.

This is represented in the vertex shader code as:

float4 posW = mul(vIn.posL, gWorld);

float heightToAdd = fBm(posW / 10.0f, 8, 2, 1.0f);

float3 tempVector = vIn.posL;

float3 direction = normalize(tempVector);

tempVector = direction * (planetRadius + heightToAdd * 2.0f);

vOut.posH = mul(float4(tempVector, 1.0f), gWVP);

posW: the position in terms of world coordinates

posL: the position in terms of local coordinates

gWorld: the world matrix to be applied

fBm: the height generating method (in this case fractional brownian motion)

posH: the final vertex position after height modifications have been applied

Note that some scaling modifications have been made at certain stages. These are

simply tweaking modifications to ensure a more visually appealing result and are not

51

strictly necessary. Other additions include a rudimentary lighting system which pro-

vides a shading value to each vertex based on simple spherical normal values.

The pixel shaders do very little in the current implementation; they simply colour

the pixel based on height information, then scale this colour based on the shading

factor. If textures or other more elaborate lighting features were used this is where

they would be implemented. A per-vertex lighting system was created and still exists

in the code but is not currently activated as it incurs a large performance penalty.

4.7 Noise file

The noise file contains a library of noise and fractal creation methods that are called

upon in the vertex shaders. The noise algorithm used in this case is a HLSL version of

Simplex Noise, based on pre-existing implementations[8]. Unlike Perlin Noise it does

not generate noise values from Hermite spline interpolation of surrounding points but

rather uses a simple additive contribution from each, with a weighting factor based on

distance. It first skews the input coordinates to as to be accessible in simplex space

then finds the surrounding simplex (in this case a tetrahedron) which contains the

point. Gradient values are then obtained each point of the tetrahedron and these are

used to interpolate a value for the point in question. The code for this method is

relatively large so is not included here but can be found on the accompanying CD of

source code.

Most GPU interpretations of the Simplex Noise algorithm do not offer truly random

noise, as random number generation is difficult to achieve on the GPU. Instead they

hard-code a pseudo-random series of numbers and store these as constants in graphics

memory, providing only a limited degree of randomness. As all noise functions utilise

random number functions as input this limitation can seriously affect the final terrain.

This implementation circumvents this limitation by generating random numbers on the

CPU, storing them as a one-dimensional texture and then passing them to the GPU.

This texture is created at initialisation time and passed only once to the graphics

hardware. Continuous generation of random numbers is not required because the

heightmap is constant, therefore requires a constant set of numbers to achieve the

same results each frame.

The other methods provided in the Noise file consist of a variety of heightmap

52

generating techniques using fractal methods. These are based on implementations

described previously and consist of:

• fBm

• MultiCascade

• HybridMultiFractal

• RidgedMultiFractal

4.8 fBm

This is the simplest form of fractal generation and has already been discussed thor-

oughly. It produces a relatively homogeneous heightfield. The code consists of

float fBm(float4 vInputCoords,

uniform uint nNumOctaves,

uniform float fLacunarity,

uniform float HValue)

{

float fNoiseSum = 0;

float fAmplitude;

float4 vSampleCoords = vInputCoords;

for(uint i=0; i<nNumOctaves; i++)

{

fAmplitude = pow(fLacunarity, -HValue* i);

fNoiseSum += fAmplitude *

SimplexNoise3D(vSampleCoords);

vSampleCoords *= fLacunarity;

}

53

return fNoiseSum;

}

In this case, along with the input coordinates, parameters for the number of octaves,

the lacunarity and the H value also need to be provided. It loops through each octave,

calling upon the SimplexNoise3D function each time. It can therefore be clearly seen

that the computational cost of the overall method is based mainly on the number

of octaves used. Of note is that the overall height is unbounded, as the division of

accumulated amplitude values has not been included. This is not seen as a problem as

the purely additive function is well bounded.

4.9 MultiCascade

This is a highly unstable fractal generating procedure that produces very heterogeneous

heightfields. It operates similarly to fBm, but uses a multiplicative cascade rather than

an additive cascade.

float MultiCascade(float4 vInputCoords,

uniform uint nNumOctaves,

uniform float fLacunarity,

uniform float HValue)

{

float fNoiseSum = 1.0f;

float fAmplitude;

float fAmplitudeSum = 1.0f;

float offset = 0.8f;

float4 vSampleCoords = vInputCoords;

for(uint i=0; i<nNumOctaves; i++)

{

fAmplitude = pow(fLacunarity, -HValue* i);

fNoiseSum *= fAmplitude *

54

(SimplexNoise3D(vSampleCoords) + offset);

fAmplitudeSum *= fAmplitude;

vSampleCoords *= fLacunarity;

}

fNoiseSum /= fAmplitudeSum;

return fNoiseSum;

}

The parameters are kept identical to the fBm function, but an internal offset variable

is used to control the terrain and remove any overly unstable effects. An extra addition

to the approach is a division operation designed to limit the potential values returned by

the process. This division removes the multiplicative effects on the amplitude elements

but maintains its affects on the direct noise values.

4.10 HybridMultiFractal

This process combines the additive cascade of the fBm process with the multiplicative

cascade of the MultiCascade process. The result is an attempt to maintain the het-

erogeneous nature of the latter’s heightmaps but with a level of control similar to the

former. It also uses a static array of weights to modify the noise values rather than

generating them repeatedly for each vertex. The first vertex to run this code initialises

the exponent array, setting weight values for each octave that will be used for each

subsequent vertex. The code consists of the following:

float HybridMultiFractal(float4 vInputCoords,

uniform uint nNumOctaves,

uniform float fLacunarity,

uniform float HValue)

{

float offset = 0.7f;

float frequency, result, signal, weight;

55

static bool first = true;

static float exponentArray[100];

// set exponent array

if (first)

{

frequency = 1.0;

for (int i=0; i<=nNumOctaves; i++)

{

exponentArray[i] = pow(frequency, -HValue);

frequency *= fLacunarity;

}

first = false;

}

// get first octave

float noise = SimplexNoise3D(vInputCoords);

result = (noise + offset) * exponentArray[0];

weight = result;

vInputCoords *= fLacunarity;

for (int i=1; i<nNumOctaves; i++)

{

weight = saturate(weight);

noise = SimplexNoise3D(vInputCoords);

signal = (noise + offset) * exponentArray[i];

result += weight * signal;

weight *= signal;

vInputCoords *= fLacunarity;

}

return result;

}

56

A further weight value is obtained from a multiplicative cascade of height values

from each octave up to the current. The height information from this octave is scaled

by this weight value but the overall result is simply added to the total, rather than

multiplied.

4.11 RidgedMultiFractal

This process uses a development of the hybrid approach discussed above to create

heightmaps with sharp edges as well as rounded features. In this case the noise value

is scaled to have a range of -1 to +1, then the absolute values of this noise are found

and used instead. The advantage of this is that the surface becomes discontinuous at

noise values of zero, producing a sharp ridge. This value is then squared to produce

an even more variable effect.

float RidgedMultiFractal(

float4 vInputCoords,

uniform uint nNumOctaves,

uniform float fLacunarity,

uniform float HValue)

{

float offset = 1.0f;

float gain = 2.0f;

float result, frequency, signal, weight;

static bool first = true;

static float exponentArray[9]; // Blatant hack. nNumOctaves+1

if (first)

{

frequency = 1.0f;

for (int i = 0; i<=nNumOctaves; i++)

{

exponentArray[i] = pow(frequency, -HValue);

frequency *= fLacunarity;

57

}

first = false;

}

// get first octave

signal = SimplexNoise3D(vInputCoords);

// get signal value between -1 and +1

signal = signal * 2.0f - 1.0f;

// get ridges through finding absolute value

signal = abs(signal);

signal = offset - signal;

// square it to increase jaggedness

signal *= signal;

result = signal;

weight = 1.0f;

for (int i = 1; i < nNumOctaves; i++)

{

vInputCoords *= fLacunarity;

weight = signal * gain;

weight = saturate(weight);

signal = SimplexNoise3D(vInputCoords);

signal = abs(signal);

signal = offset - signal;

signal *= signal;

signal *= weight;

result += signal * exponentArray[i];

58

}

return result;

}

59

Chapter 5

Evaluation

This system was tested on a computer with the following specifications:

• Windows 7 Professional 64 bit (program running in 32 bit mode)

• Pentium Q6600 Quad-core 2.4 GHz processor

• Radeon HD4870 1GB graphics device

• 3GB 800MHz DDR2 RAM

All screenshots provided display the height-adjusted terrain without realistic light-

ing or textures. To enable the viewer to view the characteristics of the terrain clearly

a shading factor is applied based on the height of the terrain. Large height values are

shown as bright terrain and smaller height values are shown as dark terrain.

5.1 Results

Overall the results of this project are very positive. The main goal of creating systems

of planets whose terrain is generated entirely procedurally was attained. Furthermore

this system is capable of creating a variety of different terrain types that show variance

over a number of scales. The performance of the system is also very satisfactory, being

able to display an earth-sized planet (radius 6,378,100 metres) up to a definition of 0.2

metres per vertex while maintaining a frame rate of 85 FPS. A number of large planets

60

Figure 5.1: This shows the effect of fBm

can be created and displayed simultaneously while still maintaining interactive frame

rates.

The fractal methods used proved effective in the creation of terrain that is subjec-

tively both realistic and varied. However, the variety or parameters used can mean

that even a well performing algorithm can produce poor quality terrain if these param-

eters are set to unsuitable values. Unfortunately the assigning of these values often

requires much trial and error before satisfactory results can be obtained. The problem

is compounded by the fact that ideal values vary from technique to technique, with the

result that using constant values for all techniques results in overall poor performance.

With suitable parameters in place, however, quite positive results can be obtained.

Although fBm is the simplest technique, it can still produce effective, if repetitive

terrain, a can be seen in Figure 5.1

The MultiCascade technique is perhaps the hardest to obtain proper parameters for

due to its instability. In Figure 5.2 this characteristic is demonstrated. While overall

the terrain is visually appealing there are a number of extreme spikes in the terrain

that are difficult to remove entirely. These hamper the believability of the final terrain.

The HybridMultiFractal (Figure 5.3) technique is a better alternative to the stan-

61

Figure 5.2: This shows the effect of a multiplicative cascade

dard fBm technique, producing more varied terrain without the extremes that the

MultiCascade can generate. Unfortunately it does not maintain all of the heterogene-

ity of this approach and the overall result is that of rolling hills interspersed with some

flatter valley areas.

The RidgedMultiFractal technique succeeds in producing terrain that is noticeably

different from the other techniques, as can be seen in Figure 5.4. Of note are the

distinctive lines of sharp terrain (in this case taking the form of inverted ridges) that

wander across the surface. Although perhaps not realistic in its shape, this method

certainly produces interesting terrain, appearing in some areas akin to noise produced

from entirely different techniques, such as Voronoi noise.

The lighting system used in this project is rather rudimentary, consisting of per-

vertex lighting over the surface of the planet but using a simple sphere as an approxi-

mation of the planet for the evaluation of vertex normals. A more accurate approach,

using normals obtained from the surface after heightmaps have been applied, is possible

and was tested in the course of development. It was found to have a hugely detrimental

effect on performance, however as it required at the very least three height calculations

for each vertex (in order to find the heights of neighbouring vertices) rather than one.

62

Figure 5.3: This shows the effect of the hybrid multifractal

Figure 5.4: This shows the effect of the ridged multifractal

63

The generation of heightmap information appears to be the bottleneck in the current

implementation so this causes large slowdowns. Although usable on smaller terrain it

is felt that this is too much of a loss in performance to justify keeping in its current

form as it is not one of the primary focuses of the project.

Another deficiency lies in the spherical clipmap LOD system used to display terrain.

Although this functions well in some regards, adjusting automatically to camera posi-

tion, it fails to take into account the distance of the camera from the terrain, thereby

potentially drawing unnecessarily high levels of detail in some circumstances. Although

an algorithm for reducing mesh complexity based on height exists, by definition this

would require the mesh to be recalculated, removing the advantage of maintaining a

constant vertex mesh. Generating the mesh per frame rather than at initialisation

time, as this approach would seem to imply, proves prohibitively expensive without

substantial modification.

5.2 Potential Improvements

Although this system performs well there are numerous improvements that could be

made to bring about better results. The most obvious is to improve the lighting and

the LOD system to remove the issues mentioned above. Possible solutions to the first

include evaluating normals at a much lower resolution than vertices, or improving the

speed of the fractal generating algorithms. The latter could be solved by removing the

necessary vertices from the existing mesh rather than simply creating a new one. This,

of course would also require modification of the index buffer. Another solution might

be to use geometry shaders to cull certain vertices on the GPU rather than the CPU.

Numerous cosmetic improvements could be made to the terrain itself, such as the use

of textures for example. A more interactive user interface would prove both practical

and appealing, particularly the use of sliders to control fractal parameters in real time.

This would allow the user to see the results of each parameter change instantaneously,

and lead to a greater understanding of their function.

Finally, a greater variety of fractal techniques could be explored. Although this

project uses a number of techniques an almost infinite variety of possible terrains

could be created from fractal-based operations. Only simple operations of addition and

multiplication have been employed in this project so far. More advanced techniques

64

have the potential to create much more varied and interesting landscapes.

65

Chapter 6

Conclusions

This dissertation investigated the use of procedural generation to create numerous

three-dimensional planetary bodies, each displaying varying and realistic terrain. A

number of noise-based techniques were used to create heightmaps - representing the

terrain topography. The effects of using different techniques to generate the final

heightmap surface were investigated and it was found that substantial variation could

arise from minor algorithmic changes. The parametrisation of these techniques was

also explored, showing that minor changes to input parameters had a similar and

unpredictable effect. Despite these difficulties the project was successful in producing

varied and interesting terrain, which possessed detail and displayed heterogeneity at a

number of scales.

To display large amounts of terrain to the user a number of steps had to be taken

to reduce the computation required and bring about acceptable real-time performance.

To accomplish this many of the algorithms were designed to utilise the extra processing

power of the graphics hardware, rather than the CPU. An LOD system using spherical

clipmaps was implemented to reduce the quantity of vertices necessary to maintain a

suitable quality representation of the terrain. An efficient noise algorithm was created

on the GPU that allowed heightmaps to be generated on the fly rather than in advance.

Generating such information every frame brought about substantial savings in memory

and bandwidth, but with increased computational cost.

Nevertheless the system was successful in creating and displaying extremely large

quantities of high-quality terrain to the user. For an earth-sized planet the methods

66

employed here enabled a level of detail to be displayed of as little as 20cm per ver-

tex, while generating topographical information for the entire planet every frame, and

maintaining a frame rate of 85 FPS. Further additions proposed can both improve this

performance and bring about more realistic and customisable terrain.

67

Bibliography

[1] Texturing and Modeling - A Procedural Approach;

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steven Worley;

Morgan Kaufman Publishers; 2002

[2] Introduction to 3D Game Programming with DirectX 10;

Frank Luna;

Wordware Press;

2008

[3] Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids;

Frank Losasso, Hugues Hoppe;

Stanford and Microsoft Research;

2004

[4] Terrain Rendering Using GPU-Based Geometry Clipmaps;

GPU Gems 2;

Arul Asirvatham, Hugues Hoppe;

Addison Wesley;

2005

[5] Terrain Rendering using Spherical Clipmaps;

Malte Clasen and Hans-Christian Hege;

Eurographics/ IEEE-VGTC Symposium on Visualization;

2006

68

[6] Presentation on Perlin Noise;

Ken Perlin;

http://www.noisemachine.com/talk1/;

Retrieved September 10 2010

[7] Noise Hardware;

Ken Perlin;

http://www.csee.umbc.edu/ olano/s2002c36/ch02.pdf;

Retrieved September 10 2010

[8] Simplex Noise demystified;

Stefan Gustavson;

http://www.csee.umbc.edu/ olano/s2002c36/ch02.pdf;

Retrieved September 10 2010

[9] Perlin Fire;

Andrei Tatarinov;

http://developer.download.nvidia.com/SDK/10/direct3d/Source/PerlinFire/doc/PerlinFire.pdf;

Retrieved September 10 2010

[10] Microsoft DirectX 10 SDK June 2010;

http://msdn.microsoft.com/en-us/directx/default.aspx;

Retrieved September 10 2010

[11] ROAM - Real-time Optimally Adapting Meshes;

Mark Duchaineau et al;

IEEE Visualization Proceedings;

1997

[12] Geomipmapping - Fast Terrain Rendering using Geometrical Mipmapping;

WH de Boer;

flipCode featured articles,

69

October 2000

[13] NASA Visible Earth;

http://visibleearth.nasa.gov;

Retrieved September 10 2010

[14] ImageMagick;

www.imagemagick.org;

Retrieved September 10 2010

[15] Terragen;

http://www.planetside.co.uk/;

Retrieved September 10 2010

[16] Bryce;

http://www.daz3d.com/i.x/software/bryce/-/;

Retrieved September 10 2010

[17] World Machine;

http://www.world-machine.com/index.php;

Retrieved September 10 2010

[18] Inception Visual Effects;

http://www.wired.com/underwire/2010/07/inception-visual-effects;

Retrieved September 10 2010

[19] Virtual Airspace Simulation Technologies Real Time;

http://www.aviationsystemsdivision.arc.nasa.gov/facilities/vast/index.shtml;

Retrieved September 10 2010

[20] Advanced drilling simulators offer realistic models to reduce crews learning curve;

http://www.drillingsystems.com/files/newsitem29IADCDrillingContractorJuly06−Simulators.pdf ;

RetrievedSeptember102010

70

[21]EagleLanderSimulation;

http : //eaglelander3d.com/;

RetrievedSeptember102010

[22]MarsSimulationProject;

http : //mars− sim.sourceforge.net/;
RetrievedSeptember102010

[23]AReal − TimeProceduralUniverse;
SeanO′Neil;

http : //www.gamasutra.com/view/feature/3098/arealtimeproceduraluniverse.php;

RetrievedSeptember102010

[24]RealtimeProceduralTerrainGeneration;

JacobOlsen;

http : //oddlabs.com/download/terraingeneration.pdf ;

RetrievedSeptember102010

[25]GrandTheftAutoSeries;

RockstarGames;

1997− 2009

[26]RedFactionGuerilla;

V olitionGames;

2009

[27]Fallout3;

BethesdaSoftworks;

2006

[28]Interview : CodiesonFUEL;

JimRossignol;

71

http : //www.rockpapershotgun.com/2009/02/24/interview − codies− on− fuel/;
Retrieved2010− 03− 06.

[29]Infinity : TheQuestforEarth;

F.Brebion;

http : //www.infinity − universe.com/Infinity/;
RetrievedSeptember102010

[30]APrototypeofMarineSearchandRescueSimulator;

LiuXiuwen,XiaoFangbing, JinY icheng;

InternationalConderenceonInformationTechnologyandComputerScience;

2009

[31]Multiresolutionmodelsfortopographicsurfacedescription;

L.DeF loriani, P.Marzano, andE.Puppo;

TheV isualComputer, 12(7) : 317−−345, August1996.

72

