
Optimized Face Tracking in Adobe Flash

by

Kevin Lockard, B.A. Real Time Interactive Simulation

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2010

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Kevin Lockard

September 10, 2010

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Kevin Lockard

September 10, 2010

Acknowledgments

I want to thank Yann and John, whose help during this whole process was immensely

appreciated, and my family for supporting my wacky idea to move to Ireland and learn

to make video games.

Kevin Lockard

University of Dublin, Trinity College

September 2010

iv

Optimized Face Tracking in Adobe Flash

Kevin Lockard

University of Dublin, Trinity College, 2010

Supervisor: Yann Morvan and John Dingliana

This dissertation aims to solve the problem of smooth face tracking for input. Face

detection is a heavily researched problem in the field of computer vision, but much less

attention is paid to smoothing the results to use as a form of input for applications.

Face movement cannot be used as an alternative form of input until solutions are

created to smoothly and accurately track a user’s face over time. Existing solutions for

face detection produce results that are often quite noisy and jitter a significant amount.

The chosen platform is Adobe Flash, in order to take advantage of that platform’s ease

of distribution through the web and desktop applications.

v

Contents

Acknowledgments iv

Abstract v

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Face Tracking . 1

1.1.2 Adobe Flash . 2

1.2 Goals . 2

1.3 Terminology . 3

1.4 Document Layout . 3

Chapter 2 State of the Art 5

2.1 Face Detection . 5

2.1.1 Template Matching . 5

2.1.2 Feature Cascades . 6

2.1.3 Color-based Detection . 10

2.2 Face Tracking . 13

2.3 Flash and Actionscript . 14

2.4 Head Movement as Input . 16

vi

Chapter 3 Design 19

3.1 Requirements . 19

3.2 Tracking Algorithm . 20

3.2.1 Feature Cascade Algorithm . 20

3.2.2 Color-Based Algorithm . 21

3.3 Actionscript Optimization . 21

3.4 Face Tracking Benchmarking . 22

Chapter 4 Implementation 24

4.1 Face Trackers . 24

4.1.1 Overview . 24

4.1.2 Camera Input . 24

4.1.3 Feature-Based Tracker . 25

4.1.4 Color-Based Tracker . 28

4.2 Face Tracking Benchmarking . 30

4.2.1 Motion Capture Data . 31

4.2.2 Performance Testing . 31

Chapter 5 Evaluation 33

5.1 Face Tracking Accuracy Results . 33

5.1.1 Base Case . 33

5.1.2 Feature-Based Tracking . 34

5.1.3 Color-Based Tracking . 35

5.1.4 Best/Worst Case Running Speeds 36

5.2 Face Tracking Result Evaluation . 37

5.3 Actionscript Performance Results . 38

Chapter 6 Conclusion 39

6.1 Future Work . 39

6.1.1 Face Tracking Improvements . 39

6.1.2 Flash . 40

6.2 Face As An Input Method . 41

6.3 Conclusion from Algorithm Development 41

vii

Bibliography 43

viii

List of Tables

5.1 Benchmarked Results for Feature Cascade Detection, No Tracking, Black

Background . 34

5.2 Benchmarked Results for Feature Cascade Detection, No Tracking, Noisy

Background . 34

5.3 Benchmarked Results for Feature Cascade Tracking, Fully Optimized,

Black Background . 35

5.4 Benchmarked Results for Feature Cascade Tracking, Fully Optimized,

Noisy Background . 35

5.5 Benchmarked Results for Color-Based Tracking, Fully Optimized, Black

Background . 36

5.6 Benchmarked Results for Color-Based Tracking, Fully Optimized, Noisy

Background . 36

5.7 Comparison of Best and Worst Case Running Times 37

5.8 Comparison of Running Speed of Design Options 38

ix

List of Figures

1.1 Screenshot from the Parallax Viewing Application 3

2.1 Example of Template Used by Chang and Robles 6

2.2 Examples of Features Used in Feature-Based Face Detection 7

2.3 Example of an Integral Image . 7

2.4 Finding the Sum of a Rectangular Area Using an Integral Image 8

2.5 Extended Feature Set . 9

2.6 Example of Rotated Summed Area Table (RSAT) 10

2.7 Series of Frames from [1] Showing Tracking. 14

2.8 Example of Mixed Interaction Space (MIXIS) from [7] 17

2.9 Screenshot of the Scuba Diving Game Presented in [17] 17

4.1 Flowchart of the System’s Outline . 25

4.2 Example of Thresholded Image in Color-Based Detection 29

4.3 Screenshot of the Benchmarking Application 31

x

Chapter 1

Introduction

1.1 Motivation

1.1.1 Face Tracking

The task of determining whether or not an image contains a human face is one of the

most basic problems in computer vision. The uses for such an algorithm vary widely,

from photo album software that can automatically determine the people within a pho-

tograph to security software performing face recognition on security camera footage,

but first must determine which part of the video stream represents a face. Because of

this, face detection is one of the most widely studied problems in the field of computer

vision. However, despite all of that work, little has been published on the matter of

head tracking as a form of input. Previous works focus very heavily on the detection

portion of the process, and very little is written about the task of getting a computer

to track a user’s head movement both smoothly and accurately. Head movement is a

viable method of input for those unable to use other forms of input, but only if the

tracking system used is both responsive and accurate. Augmented reality input options

are also becoming mainstream in the video game industry. Alternative forms of input

are available for every major game console. Both Sony and Nintendo have released

motion sensing controllers for their consoles. Also, in November 2010 Microsoft will

release the Kinect, an extension to the Xbox360 game console that implements face

tracking along with face recognition, skeleton tracking, and voice recognition. These

products all show the commitment that the video game industry has towards embracing

1

forms of input beyond traditional controllers.

1.1.2 Adobe Flash

Adobe Flash is one of the most widely installed pieces of software in the world, with

Adobe claiming that it can be found on 99% of internet enabled computers, and is

available on every major operating system. Due to this massive install base, Flash has

gone relatively quickly from a simple program for vector graphics and animations to an

advanced programming environment, complete with its own object-oriented language

in Actionscript 3.0. But a program that can be found on such a wide variety of personal

computers also has to make certain sacrifices in order to support them all. For example,

the rendering pipeline of Flash was completely software-based until very recently when

hardware acceleration was introduced into Flash Player 10.1. Just as Flash must make

sacrifices in order to accomodate all the different machines it finds itself installed on,

Flash applications must also be able to run on very low-end computers. The ability

of Flash applications to reach such a massive audience - either through embedding

them on websites or as desktop applications using Adobe Integrated Runtime or AIR

- and the challenge of optimizing the tracking algorithm to be fast enough to run on a

variety of computers are the main motivations for choosing Flash as the platform for

this thesis.

1.2 Goals

The aim of the project was to develop an approach to face tracking which is accurate,

fast, and smooth, and to implement that algorithm in Adobe Flash. During the course

of research, two separate approaches were developed, each being based on a different

underlying form of face detection. The developed algorithms are used to create an

example application that is a three dimensional parallax application controlled by

tracking the user’s face. This application will provide the user with a view of the front

square of Trinity College Dublin. The position of the user’s face will be used as input

to the application to determine the view point, therefore providing the user with the

impression that they are looking into an actual scene within the computer screen, and

by moving their head they can look around the scene.

2

Figure 1.1: Screenshot from the Parallax Viewing Application

The quality of the results will be benchmarked by a specially written application

that measures the tracking algorithms on several different metrics of performance.

Evaluating the results of these benchmarks will illuminate the proper situations in

which the two approaches excel or fail.

1.3 Terminology

Since the terms are used quite often, it is important that the reader sees the difference

between face detection and face tracking. For the purposes of this paper, face detection

can be defined as using image processing techniques to find an area or areas within

a static image that represent a human face. Face tracking is defined as using a face

detection scheme in order to track the position of a face within a series of static images,

or a video stream.

1.4 Document Layout

This thesis is presented in the following manner:

• Chapter 2 provides an overview of the current state of the art of face detection

and tracking. It also gives a bit of background into the Actionscript language

and the use of head tracking as a form of input.

3

• Chapter 3 outlines the design of the system created. It introduces the require-

ments for the ideal system, the algorithms chosen for investigation, and some

detail into the benchmarking that will be performed in order to test the accuracy

of the systems created.

• Chapter 4 delves into specific implementation details, problems faced, and the

optimizations performed in order to get the tracking running as quickly as possible

in Flash.

• Chapter 5 evaluates the results of benchmarking the algorithms using a few differ-

ent metrics, focusing on the speed and accuracy of the developed algorithms. It

also investigates the best and worst case scenarios for the developed algorithms,

and benchmarks the different Actionscript design decisions made.

• Chapter 6 concludes the thesis and presents some ideas of possible future work.

4

Chapter 2

State of the Art

2.1 Face Detection

Face detection is a well-studied problem in the field of computer vision, and several

different approaches to the problem have been put forth. Many solutions analyze the

colors of an image to estimate where a face may be found. Another popular approach

involves searching the image for areas of contrast that are often found in faces. This

section will provide a brief overview of a few different approaches to face detection,

and a bit more information on the methods that were chosen for the project.

2.1.1 Template Matching

Template matching is a face detection technique that attempts to determine if an area

can be classified as a face by comparing it to images that are known to be faces. One

of the earliest attempts at face detection through template matching was [4], but was

later improved upon by such work as [10].

The first step of any template matching algorithm is to isolate the area of the image

that should be tested against the template. This is done through skin color detection

and segmentation. [4] suggest a histogram calibrated with a large number of samples of

different types of skin color, which is then smoothed by a Gaussian distribution. This

histogram will produce images representing the probability that the corresponding

pixels represent skin, which can then be thresholded to extract regions most likely to

represent skin. [10] suggests a more complex luminance-conditional distribution model

5

for skin pixel detection. The next step is to extract the areas that are possibly faces.

The algorithm for this takes into account several different variables, such as orientation,

center of mass, and the number of holes in a segment. Once a possible face has been

extracted, it is tested against a face template. This template consists of an averaging

of several different front views of faces, as shown in Figure 2.1. The template is scaled

and rotated to match the segment as closely as possible, and the cross-correlation value

between the two images is found. This value is then thresholded to determine if the

area can be classified as a face or not.

Figure 2.1: Example of Template Used by Chang and Robles

Template matching can be a fairly accurate method of face detection, but suffers

from several drawbacks. It is computationally more expensive than some of the alter-

natives. Since the template is generally comprised of forward facing faces, it can have

trouble detecting rotated faces. Also, since the template is the main source of deter-

mining whether an area represents a face or not, any feature of the face that differs

from the template can cause misses. This could include anything from the face being

partially obscured to facial hair.

2.1.2 Feature Cascades

One method of face detection, set forth by [15], is to search an image for areas of

contrast called features, which are then combined into a hierarchical structure called

a cascade. This approach was developed as a general object detection algorithm, but

given the right feature cascade it is quite effective at identifying faces. The hierarchical

structure speeds up the algorithm significantly by allowing it break out of the search

early if the given area does not appear to be what the algorithm is searching for.

6

Figure 2.2: Examples of Features Used in Feature-Based Face Detection

The features used in this algorithm represent areas of differing contrast that can

be used to identify the object being searched for within the image. For example,

when searching for a face, the eyes will often be darker than the cheeks below them.

Features are often represented visually by rectangles that are part black, and part

white, as shown in Figure 2.2. When placed on top of an image, the black area can

be thought of as being weighted negatively, and the white areas weighted positively.

Summing the values of all pixels within the rectangles, multiplied by their weights, will

give you the value of that feature at the point in the image.

Figure 2.3: Example of an Integral Image

7

Calculating the values of features clearly is a bottleneck for this algorithm, and

[15] introduces a new data structure to speed that process up significantly, called the

integral image or summed area table (SAT). The integral image is defined as a version

of an image where the value of any pixel (x,y) is defined as the sum of all pixels above

and to the left of (x,y) in the original image, as shown in Figure 2.3.

This increases the calculation speed of finding the sum of all pixels in a given

region from linear time to constant time. In Figure 2.4, the sum of the values within

the rectangle created by points A,B,C, and D can be defined as

Sum(A, B, C, D) = I(A)− I(B)− I(C) + I(D)

Where I(A) represents the value of the integral image at point A.

Besides speeding up the summing of rectangular areas by a large amount, the

integral image is also quick to create, as it can be constructed with a single pass over

the original image using the formula

F (x, y) = F (x, y − 1) + F (x− 1, y) + I(x, y)− F (x− 1, y − 1)

where F (x, y) represents the value of the integral image at a given point (x, y), and

I(x, y) represents the original image. Any indexes outside of the bounds of the image

are assumed to be equal to 0.

Figure 2.4: Finding the Sum of a Rectangular Area Using an Integral Image

The actual search for a face consists of using rectangular masks of varying scale.

Searching at a wide variety of scales allows the algorithm to find faces of different sizes

8

within the image. When a scale is chosen, a rectangular mask of that size is moved

across the image using a set step size. At every step, the portion of the image captured

by the mask will be analyzed using the feature cascade. This search will either discover

that the given rectangle within the image represents a face, or it does not. The results

are recorded and the search continues after incrementing the position of the mask by

the step size.

This algorithm runs quickly due to the hierarchical nature of the cascade, which

eliminates a large amount of unnecessary searching. However it suffers from the ne-

cessity for a well-constructed feature cascade. Cascades can be constructed to detect

many different sorts of objects, but they are limited in their scope. A cascade cali-

brated to detect forward facing faces will not detect a face if it is sufficiently tilted or

rotated, which can prove to be a significant drawback in a tracking system.

Extended Feature Cascades

The feature cascade algorithm is extended in [11] with the addition of new types of

features. The paper describes a method that allows for feature rectangles that are

rotated 45 ◦. In order to allow for rotated features, a new type of integral image had

to be introduced, known as a rotated summed area table or RSAT.

Figure 2.5: Extended Feature Set

A RSAT is used to calculate sums of areas within rotated rectangles, as shown in

figure 2.6. Like the regular integral image, it is quick to calculate, requiring two passes

over the original image. Using the function R(x, y) to represent the value of the RSAT

at the point (x, y), the first pass goes left to right and top to bottom calculating

R(x, y) = R(x− 1, y − 1) + R(x− 1, y) + I(x, y)−R(x− 2, y − 1)

9

where any pixel with a negative index is set to 0. The second pass goes from right

to left and bottom to top calculating

R(x, y) = R(x, y) + R(x− 1, y + 1)−R(x− 2, y)

These advances can significantly improve the algorithm’s results, with a minimal

extra computation cost. However, it does not change the fact that a well-developed

feature cascade must be created, and that the algorithm will have difficulty finding any

object that does not specifically fit the criteria of objects that the cascade was created

for finding.

Figure 2.6: Example of Rotated Summed Area Table (RSAT)

2.1.3 Color-based Detection

Another common approach to face detection is to use a color-based approach. In

[13] an algorithm is set forth that uses Bayesian analysis to determine the probability

that any given pixel represents a face. The algorithm requires construction of two

color histograms, one representing the entire image and another representing just the

colors that can be found on the user’s face. Blink detection or manual selection are

recommended in obtaining the skin color histogram initially. This immediately presents

two limitations of the algorithm: users with different skin colors cannot be tracked

simultaneously, and the tracking may not be automatic if manual selection is selected

as the method of obtaining a skin color histogram.

Once a suitable sampling of face colors has been collected, the algorithm passes

10

over the image and calculates a probability that any given pixel of normalized color

value (r, g) represents a face. The desired probability is P (skin|r, g), which can be

discovered using Bayes’ Theorem. Bayes’ Theorem is an equation used in probability

theory which states that

P (A|B) =
P (B|A) ∗ P (A)

P (B)

Plugging the desired probability into Bayes’ Theorem gives the equation

P (skin|r, g) =
P (r, g|skin) ∗ P (skin)

P (r, g)

This equation can be solved using the two histograms hskin(r, g) and htotal(r, g), and

the total number of pixels contained in those histograms nskin and ntotal. Given those

variables, estimates can be made on the values in the above equation. The probability

of a color value (r, g) given that it is skin can be estimated by dividing the hskin value

for that color by the total number of colors in hskin as shown:

P (r, g|skin) ≈ hskin(r, g)

nskin

Similarly, the probability of a given color value can be estimated by dividing the

htotal value for that color by the total number of pixels in htotal.

P (r, g) ≈ htotal(r, g)

ntotal

And finally, the probability of a skin pixel can be estimated by dividing the number

of pixels in the skin histogram by the number of pixels in the histogram of the entire

image.

P (skin) ≈ nskin

ntotal

Plugging these values into Bayes’ Theorem gives the equation

P (skin|r, g) ≈ hskin(r, g)

htotal(r, g)

11

for a pixel’s probability of representing a face. Once a probability value has been

found for every pixel in the image, the algorithm can lock onto any clusters that appear

as probable faces.

This algorithm can be easily confused, namely by skin colored areas that are not

faces within the image. False positives are avoided by assigning each pixel a weight,

which is a Gaussian distribution centered on the last known position of a face. This

weighting will eliminate false positives from appearing in areas of the image that do not

contain a face. However, it also introduces a new issue where a particularly fast-moving

face can be lost track of if it moves a large enough distance in between frames.

Another method for color-based detection, set forth by [3], involves using simple

ratios between the R, G, and B values of a given pixel to determine whether it represents

skin or not, followed by K-Means clustering to accurately classify the resulting clusters

into discernible regions representing faces. Compared to some of the other approaches,

the factors used to determine if a pixel represents skin or not is exceptionally simple.

A few simple rules are followed:

• R > G

• R > B

• G > B

• The pixel cannot be near black, white, red, green, blue, yellow, magenta, or cyan

These simple rules form a fairly accurate filter for detecting skin colored pixels

within an image, and work well on all different skin tones. However, this filter has no

way of discerning if a skin colored pixel represents a face or another area of skin.

Color-based detection algorithms are in general, faster than other methods. They

tend to require little calculation beyond a single pass over the target image, and possi-

bly a clustering algorithm after that pass to classify the faces more accurately. However,

this decrease in calculation has a drawback, in that color-based detectors are also gen-

erally more inaccurate and noisy in their results. Using color as the main input in

determining if a pixel represents a face can produce a large amount of false positives.

Given certain backgrounds that contain a lot of skin-colored areas, it can render the

12

algorithm almost useless. Color-based approaches also introduce the additional re-

quirement that the image must contain color information, which renders them useless

on grayscale images.

2.2 Face Tracking

The amount of work done on specifically tracking faces is significantly less than what

has been done on face detection. Some of the reason for this comes from the fact that

certain approaches allow face detection to be performed in real time. When tracking

is not being used as a method of input, smoothness is not an issue and no solution

for tracking is required beyond simply running a full face detection search on every

frame of the video stream. This is a suitable solution for applications such as security

software performing face recognition. They do not need a smooth tracking of the faces

in a video, they simply need to identify the areas of the frame that represent faces so

that they can perform further analysis on them. However, when being used for input

purposes, a larger amount of work needs to be put into smoothing the results of the

face detection phase, and making sure that the algorithm is also working fast enough

to be responsive to the user.

[1] attempts to perform fast face tracking by using a combination of several different

algorithms. Feature-based detection is used to initially find the face, with an additional

step of a neural-network powered detector to verify the results of the feature-based

detector. The verified face is then tracked using the Bayesian Mean-Shift algorithm.

This is an iterative algorithm that analyzes confidence maps in an attempt to converge

onto the peak of confidence within the image. Histograms of the background and of the

area to be tracked are used to create this confidence map, in a process similar to the

color-based detection set forth by [13]. Once the confidence map has been constructed,

the Mean-Shift algorithm is used to find the area of peak confidence, which should

represent the face being tracked. A Kalman filter is used to predict the movement of

the face, in order to properly weight the confidence map towards the area which is

believed to contain the face.

A Kalman filter is also used in [12] to predict the location of the face during tracking.

However, this approach is not well suited to the task at hand. In these examples, the

Kalman filter is used in order to predict the next location that a face will be found at,

13

Figure 2.7: Series of frames from [1] showing tracking. The black rectangle represents
the search area, the cyan rectangle is the predicted face position, and the green rectangle
is the detected face position.

and restricting their search space to an area centered around that position and sized

according to the diagonal values in the covariance matrix. This is used to limit the

search space, and if a face is not detected in that area, then to provide an estimate

of where the face is to give back to the application. This is not acceptable behavior

for the task at hand because if the detector loses the location of the face, for example

by the tilting of the user’s head in a feature-based detection scenario, it could end up

searching an entirely incorrect portion of the image. If this is the case, then it becomes

quite difficult for the application to lock on to the user’s face again. A similar approach,

using the estimated position of the face in order to guide the search, is applicable to

the problem researched here, and will be discussed further in Chapter 4.

2.3 Flash and Actionscript

Flash was originally released in 1996 as a simple vector graphics and animation applica-

tion, evolving from a product called FutureSplash after it was aquired by Macromedia.

It touted the large advantage of being able to produce .swf files, which could then

be embedded on webpages. This made animations created using Flash able to be de-

ployed to an enormous amount of users very easily, across several different platforms.

Originally, only timelined animations could be created, but the release of Flash 2 in

1997 added a new element in the form of the scripting language Actionscript. In the

beginning Actionscript could only be used to manipulate the timeline, and interactive

applications were still impossible to create. But as they evolved, both Actionscript

14

and Flash grew into extremely important technologies, which now account for a large

amount of applications, both embedded in webpages and on the desktop.

Actionscript started as a simple scripting language to control the timeline of keyframed

animations. But as Flash grew, so did the language used to control it, and in 2000

Actionscript 1.0 was released with Flash 5. This provided only basic language con-

structs, such as loops, variables, and branch statements. It also provided for rudimen-

tary object-oriented programming by allowing users to define objects as ”prototypes,”

which could then be duplicated. Actionscript 2.0 was introduced in 2003 with Flash

MX 2004. This implementation of the language added strong typing and an actual

class syntax for more robust object-oriented programming. The most recent version,

Actionscript 3.0, was released in 2006 with Flash Player 9. This was a complete object-

oriented rehaul of the language. The inheritance system was re-created, with increased

performance, and stricter type checking was introduced, in addition to a large amount

of syntactical changes.

Actionscript is a relative newcomer in the world of programming languages, but due

to the massive install base of Flash it is quickly becoming one of the most popular. Its

simplicity and behind-the-scenes handling of advanced topics such as graphics make it

relatively easy to learn. It is even set forth by [5] as being an ideal language for new-

comers to computer science, due to the graphical nature of object creation and intrinsic

support for operations such as drawing, which can be an immense task for beginners

to program in a language like Java or C++. Despite all of this however, or possibly

because of it, Actionscript is often not regarded as a ”serious” programming language.

It is considered intrinsically slow and ill suited for any sort of heavy computational

task, such as image processing.

However, with the introduction of Actionscript 3.0, this is no longer the case. While

Actionscript is certainly still higher level than some of the alternatives such as C/C++,

with proper architecture in place it is absolutely capable of tackling a fairly advanced

computer science task such as face tracking. Many available sources such as [8] focus

on optimizing rendering performance, which was not an issue for this project. Fewer

sources focus on the micro-optimizations that can be performed by implementing simple

tasks in certain ways that, although less intuitive, run faster. This document will

benchmark a few of the different optimizations made in the code, showing them to be

significantly faster than alternative ways of achieving the same outcome.

15

2.4 Head Movement as Input

Many attempts have been made in the past towards making head and face tracking a

viable alternative method of input. [14] introduces a system that uses advanced 3D

model-based face tracking to use the translations and rotations of a user’s head as a

new method of mouse input. The authors also introduce a system to utilize mouth

movements to trigger mouse events such as clicking. Their system can be used as a

method of input for those with hand or motor disabilities as an alternate method for

computer control.

[7] explores using face tracking as input for mobile devices. It introduces Mixed

Interaction Spaces (MIXIS), in which the camera on a mobile device will track its own

location in relation to a tracked object within view, and use that information as input

for any number of applications. A few different challenges associated with this method

of input are also described. For example, the authors found that users would often

control the application by tilting the phone as opposed to moving themselves, especially

in situations where the screen needed to remain visible. They also found that while

lateral movement along the x and y planes was relatively simple to track, keeping track

of movement in the z-axis and of face rotation proved much more difficult to accurately

determine. This is especially true in any case where there is some occlusion, or the

face is not entirely within the camera’s view.

In [17], face tracking is presented as an enhanced method of input for some forms

of video games. The paper describes experiments run by the authors that test players

perception of games controlled through traditional means and by face tracking input.

One game was a simple scuba diving game where the player had to collect oxygen,

and the other was a modified first person shooter game that used face tracking to

determining when the player’s avatar should lean out of cover and attack. They found

that for the simple diving game, players vastly preferred versions that used face tracking

input. Testers felt that the experience was more immersive and challenging when their

actual bodies were the controllers. Results were more mixed for the more complex

first person shooter game, which combined both face tracking and traditional Xbox

controller input. Players were not used to controlling their avatar through face tracking

input, and most felt that the control scheme should be optional but not required.

Interestingly enough, there was no significant difference in performance between the

16

Figure 2.8: Example of Mixed Interaction Space (MIXIS) from [7]

two versions of the game. Also, the amount of horizontal movement in the players was

about the same in both versions, indicating that players would subconsciously lean

their bodies whether it affected the game or not.

Figure 2.9: Screenshot of the Scuba Diving Game Presented in [17]

[2] also exhibits success modifying Quake 2 in order to use face tracking as the main

method of input. Users are described as finding the experience enjoyable, although a

small learning curve exists in which they must acclimate themselves to the new way of

controlling the viewpoint.

Beyond the findings of [17] and [2], the release of Microsoft’s Kinect in November

17

2010 show that the video gaming market is taking face and body tracking methods

seriously as methods of input. The Kinect system uses a dedicated hardware accessory

to perform whole body tracking, facial recognition, and voice recognition all in real

time. Many game developers are taking advantage of this new technology to enhance

player immersion in their games, and to create entirely new genres of games such as

the exercise game.

18

Chapter 3

Design

3.1 Requirements

The goal of this project is to create a face tracking solution that is both accurate and

fast enough to run in a Flash application, either embedded in a website or on the

desktop using Adobe Integrated Runtime. Specifically:

• The algorithm has to run in real time (30FPS).

• The algorithm has to feel to the user that it accurately portrays the movements

of the user’s face.

• The algorithm has to be able to track the path of the user’s face smoothly,

minimizing any noise from the detection process.

• The algorithm must not at any point lose track of the user’s face. It is acceptable

to return an incorrect position if a face cannot be detected, but some position

must always be returned.

Alternatively, there are a few requirements that are being overlooked for this

project. Some things that this project does not aim to accomplish are:

• The algorithm does not have to match the user’s movements identically. As long

as the user feels that the algorithm is responding accurately, that is the most

important aspect.

19

• The algorithm does not have to track multiple faces simultaneously.

• The algorithm does not have to track the size of the user’s face, only the location.

• The algorithm does not have to do any sort of facial recognition, or facial feature

tracking. Only the position and scale of the face as a whole are being monitored,

nothing more.

3.2 Tracking Algorithm

When selecting an algorithm to pursue for the project, it was not immediately obvi-

ous which of the presented face detection paths should be taken in order to produce

the desired results. A color-based tracker will most likely be faster, but may not be

as accurate, and will also introduce more noise into the results. A feature-based cas-

cade tracker will likely be more accurate and robust, but also more computationally

expensive. Template matching or other approaches such as neural networks were im-

mediately discarded as being too computationally expensive to be performed in real

time, especially on machines that may not be state of the art.

It is for those reasons that we attempt to solve the problem using both a feature-

based and color-based approach, in order to compare the results and attempt to find

out which algorithm is better suited to the task of face tracking in Flash, and under

what conditions they each excel.

3.2.1 Feature Cascade Algorithm

The feature cascade algorithm presented in [15] and [16] was chosen for feature-based

face detection. The advantages of the extended set of features set forth in [11], while

valuable, was deemed to be to much overhead for not enough gain in accuracy. The

cost of creating another type of integral image to calculate what would end up being a

small percentage of the feature rectangles was too much computation work to justify,

when the original algorithm has an acceptable success rate by itself.

20

3.2.2 Color-Based Algorithm

The algorithm presented in [13] was chosen for color-based tracking. This algorithm

has the advantage of tracking colors specifically found on the user’s face, instead of

simply searching for skin-colored pixels. This eliminates a large amount of work that is

normally done by color-based detection schemes to determine which of the skin-colored

regions could represent faces. It also accounts for all skin colors. In fact, since the colors

are collected per user, any combination of skin color, facial hair, facial accessories, and

even face paint or masks can be supported. The only drawback is that to do this, the

algorithm requires a histogram of colors from the user’s face. This presents a chicken

and egg problem to the developer - you must know where the face is to get a sampling

of the colors, but you need the sampling of colors in order to figure out where the face

is. This problem was solved by initially using feature cascades to find the face, before

switching to color-based tracking once an area has been determined to be a face for a

sufficient amount of time.

3.3 Actionscript Optimization

When optimizing the code for Actionscript, a few major choices were made in order

to increase the speed of the algorithm. These were not always intuitively faster than

alternative methods of producing the same output, and in a few occasions were more

complex. In order to justify the choices made in coding the algorithms, benchmarking

was performed between the methods chosen and the alternative approaches. Some of

the major design choices made were:

Vector vs. Array

In Flash Player 10, a new Vector class was introduced. This class represented a strongly

typed list for the first time in Actionscript’s history. Until Vector, the only option for

creating lists was either a hand-rolled linked list implementation, or using the built in

Array class, which is weakly typed. The Vector class was touted as having a significant

performance increase over the Array class, at the cost of requiring the user to have Flash

Player 10 installed. This cost was deemed acceptable for the added speed benefit of

using the Vector class.

21

Events vs. Return Values

Flash uses a built-in event system to communicate between systems. It is quite robust,

and often improves the readability of code significantly. A function can be set to be

called whenever a given event is fired by an object. It will then be called at the correct

time, and often with an accompanying object which contains information about the

specific event. This is a very clean way of dealing with many different types of events,

such as mouse or keyboard events, but is not as well suited to tasks which are trying to

run as quickly as possible, such as the face detection portion of our tracking algorithm.

Preferring Inline Functions

Flash contains no built in support for inlining functions. This ends up becoming an

issue in time-sensitive code, because the overhead of function calls can quickly become

a major bottleneck of a significantly advanced algorithm. For this reason, whenever

possible in the creation of these tracking algorithms, manual inlining was preferred

over creating a function to perform a task. This approach has the disadvantage of

decreasing the readability and maintainability of the code, so an attempt was made to

limit the manual inlining to only simple tasks which could easily be performed without

calling an external function. A good candidate for inlining would be something like

finding the absolute value of a variable.

3.4 Face Tracking Benchmarking

More important than the design of either of the specific algorithms are the results they

produce. It is for this reason that a robust benchmarking application was also created.

This application uses motion captured head movement data to test the accuracy and

speed of a given algorithm and classify it with four separate scores:

• Speed: The average time in milliseconds that it takes this algorithm to process

an image and return the face position.

• Accuracy: A score based on the average amount of difference between the actual

position of the face and the position that the algorithm returns.

22

• Responsiveness: A score based on the number of frames in which the algorithm

returns a value which is moving in the correct direction. That is to say, if the

actual face is moving to the left, and the algorithm returns a value which is either

not moving, or is moving in the wrong direction, that will lower this value.

• Miss Percentage: A score added for comparisons to the base case, this represents

the percentage of the time that the algorithm fails to find a face. To meet the

requirements set forth in the beginning of this chapter, this value should always

be 0.

23

Chapter 4

Implementation

4.1 Face Trackers

4.1.1 Overview

Both of the face tracking systems developed follow the same basic outline. The track-

ing system takes an Actionscript BitmapData object as its input, and outputs a two

dimensional position representing the center of the face being tracked, or null if a face

has not been locked on to yet. Both trackers employ an initial lock on period in which

unchanged face detection is run on the image until a face has been detected in the

same area of the image for a set amount of time. Once the system is locked on and the

tracking begins, detection will be run on the input image. The values returned by the

detector are then smoothed by the tracking system and returned to the application.

The images given to the tracking system are assumed to be sequential video frames,

and information from the previous frame is used to optimize the tracker’s search.

4.1.2 Camera Input

The first issue involved in this problem is how to get a video stream from a webcam

into a format that allows us to analyze it. This is done simply enough by using

the built-in Camera class packaged with Flash. This class exposes a static function

getCamera(), which when called will return a reference to the user’s default camera

device, if available. Flash will also automatically show the user a dialog box telling

24

Figure 4.1: Flowchart of the System’s Outline

them that the application requests access to the webcam, which they can reject. But

if the user allows the application to access their webcam, this function will return a

valid Camera object.

Once a Camera object has been obtained, it must be attached to a Video object.

Video is a graphical class that will allow the video stream contained within the Camera

object to be displayed. The Video.attachCamera() function can be used to attach the

Camera to the Video object.

Lastly, for any sort of image processing to be performed on the video stream, it

is necessary to have pixel access to the image. This is only possible if the graphic

is within a BitmapData object. To get that, the Video object must be drawn into

a BitmapData object, using the BitmapData.draw() function. After this has been

performed the BitmapData object will contain the current frame of video, which can

then be analyzed at a pixel level.

4.1.3 Feature-Based Tracker

Outline

The feature-based tracker utilizes the detection scheme described by [15]. This object

detection algorithm is implemented within the OpenCV library, which is an open source

library with a variety of useful functions relating to computer vision. The object de-

tection section of OpenCV had previously been ported to Actionscript 3.0 by Ohtsuka

Masakazu for the also open source Spark project (http://www.libspark.org). This code

was later optimized for Actionscript 3.0 by Mario Klingemann (http://www.quasimondo.com/).

25

This optimized code embeds the feature cascade data within a class, which eliminates

the need to load it from an external file, in addition to optimizing some of the data

structures used. This code produced by Klingemann was used as the basis for the

feature-based tracker.

The optimized tracking algorithm uses coherence between frames quite a bit in

making decisions, so before the tracking is activated it is important that the previous

frame information is quality. For this reason the algorithm runs using an initial period

where it locks on to the user’s face. During this lock on period, none of the tracking

algorithm is used, and all that is running is the basic feature-based detection algorithm.

Once the detection algorithm finds a face in the same general area of the video for a

set amount of frames, it is then considered to be locked on, and the tracking algorithm

begins.

Optimizations

Several optimizations to the algorithm have been included in order to increase the

performance of this algorithm, and allow Flash to run it as quickly as possible. Most

of these optimizations are related to assumptions that may or may not be applicable to

a given situation, and it is advised that the reader carefully consider which assumptions

are applicable to their application if attempting to reproduce this algorithm.

The main efforts put forth towards optimizing the base code, as opposed to the

algorithm, follow the design decisions laid out in Chapter 3. First was to replace all

instances of the Array class with the Vector class. None of the code made use of the

ability of Array objects to hold different types of data in each index, so that was simple.

The other change made was to switch the code from using the Flash event system to

simply using return values. Originally, the code would fire an Event whenever a face

was detected. This was changed to simply return the position of the face that was

found from the trackFace() function.

In terms of optimizing the algorithm, the first and possibly most important opti-

mization made is that when a valid face is found, the tracking algorithm immediately

stops searching for further faces. This comes from an assumption put forth in the

Requirements section of Chapter 4, which states that the tracking algorithm need only

worry about tracking a single face at a time. If multiple faces were being tracked then

26

a thorough search of the entire image would be required, which would be extremely

time consuming. Breaking out of the search early also allows for another class of op-

timization: since we know that we will stop searching after the first face is found, we

can now focus on attempting to find that first face as quickly as possible.

Utilizing coherence between frames, we can attempt to find the face as quickly as

possible in order to end the search. Some simple ways of doing this are to begin our

search in the area of the image where the face was previously, and at the scale it was

previously. Since we can assume that it has not moved too far in between frames, this

will most likely result in finding the face fairly early on in the search.

Another approach to optimization is to try to detect when a face is not going to

be found, and try to end searching as early as possible in this situation instead of

exhaustively searching the entire image only to find nothing. This will often occur

when the feature cascade is optimized for forward facing faces, and the user turns or

tilts his or her head to the side. To prevent an exhaustive, time-consuming search when

a face will most likely not be found, an optimization is put in place that only searches

a subset of the possible scales. A full search will attempt to find faces at many different

scale sizes, but by limiting the amount of scales searched to those surrounding the last

known scale at which a face was found, quite a bit of unnecessary searching can be

eliminated.

The last optimization is both an optimization method and increases the accuracy

of the result. The basic detection algorithm chooses a scale rectangle to search, and

proceeds to step that rectangle across the image in small increments. This means

that the results will only fall on certain boundaries that are divisible by that step size.

However, utilizing coherence between frames will give us an area where the face is most

likely to appear. An adaptive step size can then be implemented, which uses very fine

steps in the area where the face was last found, but large coarse steps in other areas of

the image. This will both eliminate stepping artifacts in the results and decrease the

amount of time spent searching areas where a face will most likely not be found.

Smoothing Techniques

The results of the face detection algorithm can be quite noisy between seemingly iden-

tical frames, due to slight changes in illumination and noise in the camera stream. For

27

this reason smoothing techniques must be employed to remove that noise, and in order

to make the results smoothly track the user’s face.

One smoothing technique is to keep track of a current location for the face; and when

a new location is returned by the detection algorithm, interpolate our current position

to the new one. This provides the benefit of never having our tracked location jump

from one spot to another. The smooth interpolation from location to location provides

much smoother feedback and a more natural response from the user’s perspective.

Another obstacle to giving the user smooth reliable feedback is that sometimes the

algorithm fails to find a face. This can occur if the user tilts his or her head or it is

obscured for a brief moment. When the algorithm fails to find a face, this is dealt

with by returning the last known position. This means that the tracking algorithm is

guaranteed to return a location, which provides the benefit of giving the user feedback,

and decreases the feeling that the computer has lost track of his or her face, even in

cases where it has.

4.1.4 Color-Based Tracker

Outline

The color-based tracking implements a detection scheme quite similar to [13]. Similar

to the feature-based tracker, this approach utilizes an initial lock on period. For the

purposes of the color-based tracker, this lock on period is necessary to collect color

information about the user’s face before attempting to run the color-based detection

scheme. Feature-based detection is used initially, and once the detection algorithm has

found a face in the same area of the image for a set amount of frames, that area is used

as the basis for the histogram containing a sample of face colors. Once the histograms

of colors contained within the image and within the face are constructed, the algorithm

can begin working as described in Chapter 2.

Optimizations

One of the most significant optimizations made on the color tracking algorithm is per-

forming the analysis on a significantly down sampled version of the image. Decreasing

the amount of pixels needed to test increases performance by a large margin while

28

Figure 4.2: Example of Thresholded Image in Color-Based Detection

maintaining accuracy in detection. A small amount of down sampling actually has a

positive effect on detection by reducing the amount of false positive pixels that will be

found, and overall reducing the amount of noise in the thresholded image.

Another optimization made was to change the pixel weighting scheme from what

was recommended in [13]. That paper recommends weighting pixels using a Gaussian

distribution centered on the last known position of the face. This algorithm provided

a slight increase in performance by simply using a linear weighting scheme based off

of the distance from the current pixel to the last known face position. This provides

similar results while decreasing the amount of calculation necessary to find the weight

for any given pixel.

A simplification of the requirements for the algorithm also provide an implicit speed

increase. The requirements laid out in the beginning of Chapter 3 say that the algo-

rithms produced do not need to track the size of the faces, only the location. This

simplifies the amount of work required to be performed on the thresholded image sig-

nificantly. If the size of the face was a required output, then some sort of cluster

detection algorithm would have to be performed, possibly in addition to erode and di-

late operations that may be necessary to reduce noise and fill in gaps in the thresholded

image. Since this was not required, a large amount of image processing was eliminated,

which keeps the running speed manageable.

Finally, the method of determining the face position from the thresholded image is

simplified from the original proposal. [13] proposes a grouping algorithm to find the

position and extents of the face region. However, namely since the extents are not a

29

required output for our algorithm, this approach can be simplified to increase running

speed. A simplification to their approach can be made by simply averaging the position

of all the activated pixels in the thresholded image. Since outlying pixels are largely

eliminated by using the weighting scheme, this provides a good approximation of face

position.

Smoothing

A linear interpolation from the previous position to the current position is used as

the smoothing mechanism for the color-based tracking scheme. Despite the results of

color-based detection being fairly noisy, they tend to not stray too far from the position

of the face. This means that simple interpolation for smoothing is actually provides a

moderately stable position, with only a small amount of visual jitter when the face is

held still. Further smoothing was deemed unnecessary, as it would have only made the

algorithm run slower for a minimal increase in the smoothness of the tracking.

Unlike the feature-based approach, there is no need to plan for the situation where

the detection algorithm does not detect a face. Due to the nature of the algorithm, some

sort of value is always going to be returned. However, when no face is present within

the image the results consist of an average position of all false positive pixels, which

becomes an essentially random position. For this reason, a failure condition is included

in the algorithm where if the percentage of positive pixels within the thresholded image

drops too low, the detection scheme is deemed to have failed and the last known face

position is returned. This, at the very least, prevents the algorithm from returning

extremely varied, random results when no face is present.

4.2 Face Tracking Benchmarking

A proper method of testing the algorithms was necessary, which prompted the creation

of the benchmarking application. This uses motion captured data of head movement to

simulate a video stream, and check the tracking algorithm’s results against the actual

values.

30

Figure 4.3: Screenshot of the Benchmarking Application

4.2.1 Motion Capture Data

The most accurate test would ideally be against an actual video of head movement, but

it would be impossible to know the actual location of the face to compare the tracker’s

results against in that case. For this reason, motion capture data is used to simulate

a video stream. Several different captures of varying head movements were recorded,

and the information is read in and used to place and orient an image of a face in 3D

space within the application. This is then passed into the tracker as though it was a

video stream, and the resulting output can be compared to the motion capture data

projected into 2D space in order to find the error produced by the tracker. There is

also an option to display an image of a noisy background behind the face image, in

order to more accurately simulate a real-life situation.

4.2.2 Performance Testing

The benchmarker tracks several different performance metrics from the tracking algo-

rithms. For every different metric, the average value over the entire motion capture is

recorded, in addition to the best and worst case values. The different values tracked

are:

• Time per detection (ms): This measures the amount of time the tracker spends

actually determining the location of a face, and performing any smoothing.

• Positional Error (px): This measures how far the position returned by the tracker

is from the actual position of the face.

31

• Directional Error (%): This measures how often the tracker is moving in approx-

imately the same direction as the actual face. The higher this percentage is, the

more responsive and smooth the tracking will feel to the user. Directions being

approximately equal is defined as an angle of less than 30 degrees in between the

two motion vectors.

• Miss Rate (%): This measures how often the tracking algorithm fails to find

anything. For the tracking algorithms put forth, this value should always be 0%

since both algorithms have built-in mechanisms to handle the situation when the

detector fails to find a face.

32

Chapter 5

Evaluation

This section presents and evaluates the results of the algorithms described in the paper.

All results are tested on a desktop computer with a 2.67Ghz Intel Xeon processor, 3GB

of RAM, and running Windows XP SP3. All tests were run in Flash Player 10.1 running

in release mode. It is worth noting that this is a fairly good computer, and some of the

timing results will seem fast. However, the aim of the project was to create algorithms

that can run, using Flash, on a wide variety of hardware that may or may not be very

powerful. For this reason the algorithms should be required to run even faster on fairly

high-end machine.

5.1 Face Tracking Accuracy Results

5.1.1 Base Case

In order to adequately determine the effectiveness of the additional tracking logic

and optimizations performed, a base case must be established. For this project, the

base case is considered to be the feature cascade object detection code from Ohtsuka

Masakazu and Mario Klingemann, which embeds the ”haarcascade frontalface alt.xml”

file included with OpenCV. The results against a black background run at a fair speed,

averaging around 16.96ms per detection. It is also quite accurate, averaging only 7.56

pixels of error. However, for tracking purposes the results are fairly poor, with the di-

rectional error averaging at 24.65% and a 29.76% miss rate. Against a noisy background

the results degrade even further. The average detection time increases to 21.89ms. The

33

average amount of error rises to 10.5 pixels. The correct direction percentage drops

slightly to 22.64%. Interestingly, the average miss rate improves to 28.02%. This im-

provement can be attributed to the algorithm finding false faces in the background in

situations where it does not detect the actual face, which is not an issue with the solid

black background.

Motion
Capture
Track

Average
Detection
Time (ms)

Average
Positional
Error (px)

Correct
Direction
Percentage

Miss Per-
centage

1 16.4 7.49 19.94 29.14
2 17.68 7.561 26.42 31.33
2 16.79 7.654 27.6 28.82

Table 5.1: Benchmarked Results for Feature Cascade Detection, No Tracking, Black
Background

Motion
Capture
Track

Average
Detection
Time (ms)

Average
Positional
Error (px)

Correct
Direction
Percentage

Miss Per-
centage

1 21.21 9.729 19.46 27.98
2 23.6 13.34 23.4 28.65
2 20.86 8.43 25.07 27.43

Table 5.2: Benchmarked Results for Feature Cascade Detection, No Tracking, Noisy
Background

5.1.2 Feature-Based Tracking

The feature-based tracking significantly outperformed the base case in every field be-

sides accuracy, and only was slightly behind in that field. On the solid black back-

ground, it averages 7.841ms per detection. The error averages at 15.43 pixels. The

average correct direction percentage is 55.98%, a massive improvement over the base

case. Finally, in keeping with the requirements of the algorithm, the miss percentage is

a constant 0%, as even when the face is too tilted to detect, the algorithm will return

the last known face position.

Results degrade only slightly when the test is performed against the noisy back-

ground. The average detection time rises a small amount to 9.97ms. The average error

34

remains almost the same at 15.68 pixels. The average correct direction percentage

takes a small dip to 54.99%, and the average miss percentage remains 0%.

Motion
Capture
Track

Average
Detection
Time (ms)

Average
Positional
Error (px)

Correct
Direction
Percentage

Miss Per-
centage

1 7.822 13.23 51.61 0
2 8.191 16.38 51.4 0
2 7.51 16.67 64.95 0

Table 5.3: Benchmarked Results for Feature Cascade Tracking, Fully Optimized, Black
Background

Motion
Capture
Track

Average
Detection
Time (ms)

Average
Positional
Error (px)

Correct
Direction
Percentage

Miss Per-
centage

1 10.36 15.48 48.82 0
2 10.82 17.37 50.72 0
2 8.742 14.2 65.45 0

Table 5.4: Benchmarked Results for Feature Cascade Tracking, Fully Optimized, Noisy
Background

5.1.3 Color-Based Tracking

The color-based tracking algorithm also significantly outperformed the base case. On

a black background, the color-based tracking averaged 9.366ms per detection. The

average error was slightly higher than the other algorithms, averaging 16.24 pixels.

The average correct direction percentage was the highest of the approaches at 75.2%.

As with the feature-based tracking, the miss percentage remained at a constant 0%.

The color-based tracking was almost unaffected by the noisy background, which

makes sense since the algorithm requires a constant amount of work per-pixel regard-

less of the background. The average detection time stayed approximately the same at

9.068ms. The average error was also very similar, at 17.25 pixels. The average cor-

rect direction percentage dropped slightly to 74.62%, and the average miss percentage

remained at 0%.

35

Motion
Capture
Track

Average
Detection
Time (ms)

Average
Positional
Error (px)

Correct
Direction
Percentage

Miss Per-
centage

1 9.492 13.05 67.96 0
2 9.277 16.89 73.98 0
2 9.329 18.77 83.66 0

Table 5.5: Benchmarked Results for Color-Based Tracking, Fully Optimized, Black
Background

Motion
Capture
Track

Average
Detection
Time (ms)

Average
Positional
Error (px)

Correct
Direction
Percentage

Miss Per-
centage

1 9.049 15.15 67.96 0
2 9.054 17.81 75.05 0
2 9.101 18.8 80.86 0

Table 5.6: Benchmarked Results for Color-Based Tracking, Fully Optimized, Noisy
Background

5.1.4 Best/Worst Case Running Speeds

The averages of the various metrics are valuable, but it is also worth investigating

the best and worst cases for running speed. These best and worst case values are

recorded over runs of all three of the different motion capture tracks against the noisy

background. As the results show, the color-based tracking has a very small amount

of deviation from the average value. This is a reasonable result, as the color-based

detection requires an almost identical amount of work per search, simply passing over

every pixel of the downsampled image. The feature-based approaches show a much

larger deviation from the average. This is also intuitive, as the feature-based search

can spend a lot of time searching an area before determining that it does not represent

a face. If there is a particular area of the background which fulfills the requirements

of many of the features in the cascade, but not enough to fully qualify as a face,

quite a bit of time can be wasted investigating the area. These results also show a

hidden benefit of the feature-based tracker, which is that the best case scenario for

that approach is significantly faster than any of the others. This scenario is when the

face is not moving very much. Since the feature-based tracker begins its search at

the previous face location, if the face is very close to that position it should be found

36

almost immediately, making the search take almost no time at all.

Method Best Case
(ms)

Average
(ms)

Worst Case
(ms)

Base Detection 12 21.89 40
Feature-Based
Tracking

3 9.97 30

Color-Based
Tracking

7 9.068 13

Table 5.7: Comparison of Best and Worst Case Running Times

5.2 Face Tracking Result Evaluation

The results largely followed the hypotheses set forth when choosing the two approaches:

the feature-based tracking was slightly slower but more accurate, and the color-based

tracking was faster but less accurate. In both solid and noisy background tests, the

feature-based tracking performed approximately 2ms slower than the color-based track-

ing. Also on both backgrounds, the color-based tracking was approximately 5 pixels

less accurate than the feature-based tracking. But in reality, neither of the algorithms

fared particularly poorly in either field. 2ms is a very slight improvement to the run-

ning speed, and the average positional error in both cases is quite likely not enough

to be detectable when using such an imprecise input method as face tracking. The

results from these two metrics is not enough to show one approach to be a signficant

improvement over the other.

However, the correct directional percentage results for the two approaches do differ

significantly. The average correct direction percentage for feature-based tracking is

69.36% on the black background and 66.04% against a noisy background. The color-

based tracking manages to score approximately 75% on both backgrounds. The results

of having a high score in this field is face tracking that feels responsive and accurate.

When using head movement as a form of input, the actual position returned is not

nearly as important as accurately portraying any face movement, specifically the direc-

tion. Higher values in this field gives proof for the feeling gained by the author that the

color-based tracking performs more accurately, even when results show that it actually

does not.

37

As with any computer science problem, on approach cannot be deemed to be overall

”better” than the other. The choice, as always, depends on the problem at hand. When

using the face tracking as a form of input, the color-based tracking will often feel more

responsive and is capable of handling tilted faces significantly better. However, when

accuracy is truly valued and speed or responsiveness is not as large of a concern, the

feature-based tracking will be a better choice. The feature-based approach will also be

a good choice if the face is not expected to move very much, as the best case scenario

for that tracker is significantly faster than any of the other approaches. Both manage to

outperform the basic detection by a large margin, and that should only be considered

when accuracy is of the utmost importance.

5.3 Actionscript Performance Results

Some of the major design decisions were laid out in Chapter 3, but before implementing

them it was necessary to prove that those approaches were going to be faster than the

alternatives. This was done by creating a simple timing application which compares

the timing of simple examples of each approach. This program recorded the running

time of two functions performing the same job using different approaches, over 500,000

iterations. The results, shown in Table 5.8, were used to guide the design decisions

made while coding the algorithms.

Method Running Speed (ms)
Vector.<T> 1276
Array 1421

Return Values 24
Events 495

Inline 2
Function 26

Table 5.8: Comparison of Running Speed of Design Options

38

Chapter 6

Conclusion

6.1 Future Work

6.1.1 Face Tracking Improvements

There are several improvements that can be made to the face tracking algorithms set

forth by this document. Some examples include:

• This project completely ignores the aspect of tracking a face’s size. Lateral

movement was deemed to be the most important aspect of tracking, and tracking

the size of a face was deemed to be too time consuming, especially in the case of

color-based detection. However this is still an important aspect of a face detection

scheme, and should be addressed.

• This project also includes no level-of-detail considerations. The algorithms pre-

sented in this paper aim to be one-size-fits-all solutions. However, a face tracking

approach that improves or degrades its accuracy depending on the amount of time

it is taking to run could be a very novel and scalable approach to this problem.

• Only two possible approaches of many are considered in this paper. It is entirely

possible that one of the various other approaches to face detection could be

adapted in order to make a faster, more accurate tracking scheme. In fact, this

entire project revolves around modifying an existing face detection algorithm to

perform smooth tracking. It may be the case that the slightly different problem

39

of smoothly tracking a face can be best solved by an entirely new algorithm,

which is unsuited to basic face detection tasks.

• The algorithms developed make the assumption that only a single face is being

tracked. This is a fair assumption when using the results to control a small

application such as the parallax viewer, but for projects of a larger scale this

assumption will most likely not be acceptable. A large area of research that

uses face tracking is that of security applications attempting to perform face

recognition. Trying to track a large amount of faces found on security camera

footage is a much larger undertaking than what was proposed here, and would

require a much different approach.

• The algorithms implement no sort of future position prediction for when a face

is lost. Very accurate tracking could be achieved by developing an algorithm to

predict where a face is going to end up based on previous positions. The head

is a complex object that does not move predictably in all situations, so such an

algorithm would be quite complex to create, but would be able to increase the

accuracy of tracking significantly in situations where the detector is failing.

6.1.2 Flash

There has been very little critical research into the Flash platform. However, as it

continues to gain acceptance in the computer science community, more tasks that

were previously considered unsuitable for the platform are going to be ported over,

and architectures that take advantage of Flash’s intricacies are going to be developed.

This will allow the applications created using such approaches to reach a much wider

audience than they could originally. They will be able to span all major operating

systems, and very soon mobile devices running Android, using a single codebase. Since

Flash is a continuously developing platform, this research will hopefully illuminate

areas in which the compiler and language developers can improve performance, such

as function inlining.

40

6.2 Face As An Input Method

Using face movement as a method of input is still an idea in its infancy. Solutions

exist for people with motor disabilities, but for general use face tracking is seen more

as a novelty form of input than an accurate, acceptable solution. However, with the

advent of camera-based controllers in the video game industry, specifically Microsoft’s

Kinect, alternate forms of input are receiving more and more attention. The success

of Kinect could be the catalyst for an influx of research into the areas of alternative

input methods. Hopefully this work will influence future research in the field of face

detection to place more of an emphasis on obtaining smooth, accurate results in order

to allow for face movement to be a viable form of input.

6.3 Conclusion from Algorithm Development

This project attempted to develop two algorithms that would provide fast, accurate

face tracking solutions for applications. The algorithms developed were based on two

very different approaches to face detection, one using a feature-based solution and the

other analyzing the colors of the image. Both algorithms were optimized, both in terms

of optimizing the approach towards detecting the users face and limiting the amount

of time spent searching, and in terms of optimizing the code for the specific platform

of Adobe Flash. The results from the detection phase were then smoothed in order

to provide the user with smooth, accurate tracking of their face movements. Both

algorithms ended up performing significantly better than the base case of a simple

face detection scheme, both in running speed and in accuracy of tracking. Both of

the algorithms meet the requirements set out at the beginning of Chapter 3, which

include running in real time, minimizing the amount of noise in the results, and always

providing the user with feedback even when the underlying detection scheme fails to

find a face in the video stream.

The benchmarking application results show that the developed algorithms vastly

outperform the base face detection. They are significantly more accurate, and the

smoothing aspects allow them to accurately mirror the direction of user input, although

they do fall short in terms of positional accuracy. However, when using a method of

input as imprecise as head movement, it becomes difficult for a user to detect positional

41

inaccuracy. The most important aspect of tracking, for input purposes, is to match

the user’s movements in terms of direction and velocity - and the developed algorithms

are able to do that. The parallax viewing application runs well and feels natural using

either of the tracking schemes.

42

Bibliography

[1] Ognian Boumbarov, Strahil Sokolov, Plamen Petrov, Anatoly Sachenko, and Yuriy

Kurylyak. Kernel-based face detection and tracking with adaptive control by

kalman filtering. In IEEE International Workshop on Intelligent Data Acquisition

and Advanced Computing Systems: Technology and Applications, 2009.

[2] Gary R. Bradski. Computer vision face tracking for use in a perceptual user

interface. In IEEE Workshop on Applications of Computer Vision, 1998.

[3] Rob Byrd and Balaji Ranjani. Real time 2d face detection using color ratios and

k-mean clustering. In ACM Southeast Regional Conference, 2000.

[4] Henry Chang and Ulises Robles. Face detection. Technical report, 2000.

[5] Stewart Crawford and Elizabeth Boese. Actionscript: A gentle introduction to

programming. Journal of Computing Sciences in Colleges, 2006.

[6] Amir Faizi. Robust face detection using template matching algorithm. Master’s

thesis, University of Toronto, 2008.

[7] Thomas Riisgaard Hansen, Eva Eriksson, and Andreas Lykke-Olesen. Use your

head exploring face tracking for mobile interaction. In ACM Conference on

Human Factors in Computing Systems, 2006.

[8] Adobe Systems Incorporated. Optimizing performance for the flash platform.

Technical report, 2010.

[9] Dong-gil Jeong, Yu Kyung Yang, Dong-Goo Kang, and Jong Beom Ra. Real-time

head tracking based on color and shape information. Image and Video Commu-

nications and Processing, Proc. of SPIE-IS&T Electronic Imaging, 2005.

43

[10] Zhong Jin, Zhen Lou, Jingyu Yang, and Quansen Sun. Face detection using

template matching and skin-color information. Neurocomputing, 2007.

[11] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for rapid

object detection. In International Conference on Image Processing, 2002.

[12] Paulo Menezes, Jose Carlos Barreto, and Jorge Dias. Face tracking based on haar-

like features and eigenfaces. In 5th IFAC Symposium on Intelligent Autonomous

Vehicles, 2004.

[13] K. Schwerdt and J.L. Crowley. Robust face tracking using color. In 4th IEEE

International Conference on Automatic Face and Gesture Recognition, 2000.

[14] Jilin Tu, Thomas Huang, and Hai Tao. Face as mouse through visual face tracking.

In Proceedings of the Second Canadian Conference on Computer and Robot Vision,

2005.

[15] Paul Viola and Michael J. Jones. Rapid object detection using a boosted cascade

of simple features. In Conference on Computer Vision and Pattern Recognition,

2001.

[16] Paul Viola and Michael J. Jones. Robust real-time face detection. International

Journal of Computer Vision, 2004.

[17] Shuo Wang, Xiaocao Xiong, Yan Xu, Chao Wang, Weiwei Zhang, Xiaofeng Dai,

and Dongmei Zhang. Face tracking as an augmented input in video games: En-

hancing presence, role-playing and control. In Conference on Human Factors in

Computing Systems, 2006.

44

