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Painterly Stylization of Real-time Volume Rendering

Carlos Jorge da Cruz Ramalhão

University of Dublin, Trinity College, 2010

Supervisor: Dr. John Dingliana

Interest in the field of non-photorealistic rendering (NPR) has grown significantly within graphics

research and development. NPR techniques are regarded as increasingly important tools to provide

artists and designers with novel ways of achieving artistic expressiveness from visual information.

Furthermore, NPR abstracts the detail of a given set of information such that resulting images are

simplified into more comprehensible representations. For this reason, research in this field has also

been driven by science domains such as medicine and physics, especially for the visualization of 3D

volume information.

We shall concentrate on the research of painterly rendering techniques. That is, the representa-

tion of a scene in a way that it would mimic the visual appearance of a hand-made painting and the

effects achieved from the materials used, such as oil or acrylic paints.

We propose a real-time interactive painterly rendering pipeline for the visualization of volume

data on the GPU. A certain iso-surface, a region in the volume data of a certain iso-value, is retrieved

through a raycasting algorithm, all the necessary information (namely iso-surface intersections, gra-

dients and flow) is calculated on-the-fly and used to directly influence the final image. The result is a

real-time rendering that takes inspiration from traditional paintings. The volume’s colour, details and

surface topology are conveyed using brush stroke colour, size, density and orientation. The brush

properties and texture can be defined by an artist to achieve the desired result.
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Chapter 1

Introduction

”Photorealism, like pornography, leaves nothing to the imagination.”
- Cassidy Curtis [5].

Photorealism has always dominated research in real-time computer graphics. With increas-
ingly less barriers between the current state-of-the-art and real-time photorealism though, a greater
amount of research has been dedicated towards rendering simplified scenes where visual and cre-
ative expressiveness are vital. The field of non-photorealistic rendering (NPR) attempts to model
representations that resemble artistic media, with or without the help of creative input by a user. NPR
techniques are considered a key tool for the development of unique visual identities on real-time
interactive applications. Some of the oldest and most common NPR techniques are recurringly im-
plemented in the entertainment industry. Among these the most famous would include cel-shading
(also known as cartoon shading), shape contours and hatching. Another important feature from NPR
techniques is the ability to abstract renderings in such a way that unnecessary information is re-
moved from the scene while relevant information is highlighted. This, of course, greatly impacts the
understandability of an image by the end user. For such a reason, an area that has invested a good
deal of research into NPR is that of volume rendering, especially for medical imagery.

Volume rendering refers to the visual interpretation of 3D discretely sampled fields of data. The
representation of these values is relevant not only as a computer graphics technique but as a means
of interpreting the sampled data in a way that would expose certain properties of the information, the
later is often the primaty objective of volume rendering of scientific data. Use of volumetric data-sets
is widespread among the fields of medicine and science, which led to a great amount of research
in this area. Recently, it has also caught the interest of the electronic entertainment industry. New
hardware allows representation of large quantities of volume data in real-time, thus relieving artists
from previous constraints with art asset budgets, such as limited polygon counts.

Our proposal will concentrate on a particular set of NPR techniques called painterly rendering.
Painterly rendering refers to stylization techniques that represent a scene in a way that emulates the
visual appearance of a hand-made painting and the effects achieved from the materials used, such
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as oil or acrylic paints. When painting a scene, the artist relies on a refined range of techniques to
achieve expressiveness and creativity, relying heavily on representation and abstraction to convey
the essence of the scene. The artist can define forms, rhythm and energy through the variation of
brush stroke texture, size and direction, in order to direct the viewer’s eye. Larger brushes can be
used to represent surfaces with little detail, uniform textures or to move the attention of the viewer
away from objects of little interest, while thinner strokes can depict areas with more detail or highlight
objects of greater significance. NPR (Non-photorealistic rendering) research has explored many
techniques that achieve painterly rendering stylization by emulating the many effects of traditional
painting through distributions of brush strokes of varying size, density and orientation. Significant
amount of research pursued optimizations on arrangements and paths of said strokes. Some model-
based techniques depend on the parametric surface to generate a series of particles that would be
used to emulate a stroke. Other image-based techniques would use the gradient magnitudes and
directions of an image to decide where to place strokes, where these should be coarser strokes or
fine details and even extending them along the gradient normals. Most modern painterly rendering
techniques operate under the assumption that artists initially use larger brushes for their rough sketch
and progressively add in detail with increasingly smaller brushes in areas of higher magnitudes or of
greater interest, where the artist uses finer strokes in order attract the viewer’s eye to the finer detail.

Our proposal aims to combine state-of-the-art rendering techniques from both NPR and volume
rendering into a solid real-time painterly stylization of volumetric data. We will thus discuss the im-
plementation of a real-time painterly rendering pipeline specific to volumetric data-sets. The desired
result should not only resemble a traditional hand-made painting but also express surface properties
such as colour, detail and topology through visual cues like brush stroke colour, size, orientation and
density.

1.1 Motivation

Non-photorealistic rendering (NPR) research attracts attention from many creative areas since it
concentrates in providing great expressive capabilities to its users. In fields such as medicine and
science, NPR has been highly sought for its capability to hide unnecessary information from the user
and highlight relevant information instead, increasing comprehension of a given set of data. This is
especially true when dealing with areas such as medical imagery.

Volume rendering is widespread among the fields of medicine and science, which led to a great
amount of research in this area. Many researchers examine how to extract visual information from
these 3D fields of data it order to correctly convey the relevant surface information like contours,
shape, ridges, valleys and so on. These techniques can then be applied in order to enhance under-
standing of medical imagery resultant from non-invasive medical imaging techniques like Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI). Recently, it has caught the interest of the
electronic entertainment industry as new hardware allows representation of large quantities of vol-
ume data in real-time. This technology relieves artists of common constraints with art asset budgets,

2



(a) Jet Set Radio, Smilebit, SEGA R©2000. (b) Killer 7, Grasshopper Manufacture,
Capcom R©2005.

(c) Ōkami, Clover Studio, Capcom R©2006.

(d) Valkyria Chronicles, Sega WOW, Sega
R©2008.

(e) MadWorld, Platinum Games, Sega
R©2009.

(f) Street Fighter 4, Dimps/Capcom, Capcom
R©2009.

Figure 1.1: Non-photorealistic rendering techniques in Games.

such as limited polygon counts, providing incredible amounts of detail.
The relevance of non-photorealistic rendering in volume data is clear, but the additional invest-

ments by the entertainment industry in both fields further justify research in this area.

1.1.1 Non-Photorealistic Rendering in the Electronic Entertainment Industry

In the electronic entertainment industry, an increasing number of titles explore NPR techniques in
search of a unique visual identity that would separate them from the competition. These techniques
allow artists and designers to create novel interactive visual styles that often become a key charac-
teristic of the products.

Titles such as Jet Set Radio (Smilebit, SEGA R©2000), The Legend of Zelda: The Wind Waker
(Nintendo R©2002) or No More Heroes (Grasshopper Manufacture, Marvelous Entertainment, 2008)
make heavy use of techniques such as cel-shading and contours and are renown for their unique
visual styles. Titles like Valkyria Chronicles (SEGA WOW, SEGA R©2008) or Ōkami (Clover Studio,
Capcom R©2006) for example, make use of watercolor and stroke-based sketching to achieve some
amazing visual renderings. Borderlands (Gearbox Software, 2K Games R©2009) shifted their visual
direction to include comic-book style illustration and contours, a shift that is generally regarded as

3



a good decision and that provided them with a unique visual identity that set them apart from the
competition. Capcom’s Street Fighter 4 (Dimps/Capcom, Capcom R©2009) is highly regarded for
its amazing visuals and includes some of the most extensive implementations of non-photorealistic
techniques such as cel-shading, hatching, ink contours, watercolor and posterization.

As one can see, non-photorealistic rendering has become an increasingly important and popular
tool with much to offer to industries such as electronic entertainment or animation. We find greatest
motivation in our research from the rise of interest of such techniques and the impact it may have on
the creative and innovative projects that make use of them.

1.2 Dissertation Layout

The contents of this dissertation have been structured as follows:
Chapter 2 (Background and Related Work ) presents a literature review of the domains of interest

for the work described in this dissertation. In it, you will find not only general introductory information
on certain areas, but also reviews of state-of-the-art research of relevance to our work. Specifically,
you will find information on both non-photorealistic and volume rendering domains, with a look at
various different techniques and optimization algorithms, as well as relevant research in the areas.

Chapter 3 (Design) exposes the requirements and expectations of our work, the research pro-
posal and objectives we set upon ourselves. This chapter also explains how the proposed system
was designed and what influenced such decisions, both for the general pipeline and for each main
component that makes up the final system.

Chapter 4 (Implementation) gives you an in-depth look at how the pipeline works and details
the implementation of each component. In this section you can find a description of the pipeline,
components and algorithms used, their implementation details and optimizations.

Chapter 5 (Evaluation) reviews and analyzes the implemented system. In this chapter we discuss
how successful we actually were at reaching our goals and how well the results from our system met
the requirements we had set. Requirements can be divided into visual output, visible properties and
performance.

Chapter 6 (Conclusions) quickly reviews the proposal, challenges in its implementation and how
successful we believe the system is at performing its tasks. In this chapter we not only review the
proposed system but discuss future work to be done in this area that, although relevant, was not part
of this dissertation because it was either out of the scope of our research or beyond our possibilities
due to time constraints.
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Chapter 2

Background and Related Work

In this chapter we will go into the background research from which this work was inspired and the
theoretical background the reader should become acquainted with before we move onto the design
and implementation of the proposed system.

2.1 Volume Rendering Techniques

The visual representation of 3D fields of data, usually referred to as volume rendering, has been
an important research area over the past few decades. Although originally driven by scientific vi-
sualization such as fluid simulation and 3D medical imaging, volume rendering has also become
an important field in other graphics disciplines such as real time graphics and their applications to
computer and video games. Good examples of relevant work that targets applications in real-time
graphics and entertainment are found in the work of Laine et al. [22] on efficient voxel representa-
tions (volumetric data) as an alternative to triangle-based geometry, or that of Harris [18] et al. on the
simulation of cloud dynamics on graphics hardware.

Volume rendering covers a series of techniques used to interpret the contributions of each value,
commonly referred to as a voxel, in a discrete 3D array of data, referred to as a volume, into images.
A good example would be the interpretation of a medical scan of a human part and the respective 2D
rendering of the volume in a way that would allow users to examine the properties of certain areas of
the scan, such as bone or arteries.

Several techniques have been developed and optimized over the past few decades that enable
us to visualize volumetric information, offline or in real-time, whether in increasingly photo-realistic or
illustrative fashions.

Volume rendering techniques can be divided into two separate categories, direct and indirect
volume rendering. In the following sections we will take a brief look at some of the more common
approaches to volume rendering in real-time.

5



2.2 Indirect Volume Rendering (IVR)

Indirect Volume Rendering (IVR) techniques describe the representation of volumetric data by explic-
itly extracting geometric structures, often as polygonal representations, in order to render the desired
information. Common indirect volume rendering techniques include the classic marching cubes algo-
rithm proposed by Lorensen [26] et al. in which a polygonal mesh is constructed from an iso-surface
(a surface described by values contained within a specified threshold) by examining a cube of values
(eight neighboring voxels) and determining the correct polygonal representation for that configuration
from a precalculated array of 256 possible polygon configurations. For further work involving surface
extraction using indirect volume rendering, please consult the work of Levoy [25] et al.

2.3 Direct Volume Rendering (DVR)

Direct Volume Rendering (DVR) techniques display volumetric data by directly rendering the desired
information without the need of an intermediate conversion into an auxiliary geometric structure.
These techniques are able to handle large data-sets, complex information layering and dynamic
or animated information with greater ease. Examples of popular direct volume techniques include
shear-warp, 3D texture mapping, splatting and raycasting, all of which will be explained in more
detail shortly.

2.3.1 Shear-Warp

One of the fastest CPU volume rendering algorithms available was first proposed by Lacroute [21] et
al. in 1994. In this approach, volume information is split into slices and optimally traversed from slice
to slice. The render is not performed directly into a final image but to an intermediate image we’ll refer
to as the base plane. The volume’s slices are sheared and resampled so the viewing ray directions
are perpendicular to the base plane. Then, the information is sampled onto the intermediate image
which will need to be warped into the original projection. The ideal performances for the algorithm
are possible due to optimizations, such as run-length encoding, that require non-uniform access to
memory and thus are not feasible for implementation on the GPU.

2.3.2 3D Texture Mapping

One common approach to rendering 3D data arrays, popularized by the work of Cabral [3] et al. in
1994, bases itself on current hardware’s capability to perform trilinear interpolations of 3D textures. In
it, volume information is interpreted as a 3D texture where the parametric texture domain is sliced into
multiple planes all of which are parallel to the current viewing plane, meaning they need to be updated
whenever changes occur to the view. The respective index into the volume will be retrieved by the
interpolated texture coordinate values of the slice. The value for that pixel can be retrieved through
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Figure 2.1: Shear-Warp algorithm, courtesy of Lacroute [21] et al.

hardware texture mapping, which allows slices to be placed anywhere in 3D space. The sampling
rate for all viewing rays (rays that originate from the viewer and intersect the viewport at a given
point) is identical for orthogonal projection but differ when using perspective projection, although this
difference should only be noticeable with rather large fields of view. This provides a very fast hardware
supported approach where quality and performance depend directly on the number of slices used to
represent the volume, where too few slices result in greater sampling artifacts.

2.3.3 Splatting

Splatting, proposed by Westover[52] in 1990, is performed by projecting 3D reconstruction kernels
onto the image plane. These kernels are integrated into 2D images called footprints. The final render
may be composed using superposition of footprints weighed by the volumetric data values. This
technique traverses the volume in object space and the results are projected onto image space. This
traversal is quite flexible as long as the spacial order is maintained (i.e. through spacial sorting)
to guarantee a correct final image composition. Recent techniques, referred to as image-aligned

Figure 2.2: 3D Texture-based Volume Renderer, courtesy of Ikits [12] et al.
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Figure 2.3: Image-Aligned Sheet-Based Splatting Algorithm, courtesy of Neophytou [35] et al. ∆s
refers to the sampling interval between image-aligned planes.

sheet-based splatting, traverse the volume information along sheets (also called slabs, as referred by
Mueller et al. [33]) parallel to the image plane to eliminate drawbacks such as bleeding or brightness
variations (popping artifacts).

2.3.4 GPU-Based Raycasting

Raycasting is a well known high-quality rendering technique (especially CPU rendering applications
dating back to the 1980s). Raycasting refers to an image-order algorithm for computing the colour of
a pixel from a 3D scene to a 2D screen. A ray of sight is computed from the eye of the observer and
through the image plane, the 2D plane into which the users view of the 3D world will be projected

Figure 2.4: GPU-Based Raycasting Algorithm.
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Listing 2.1: Fragment shader pseudocode for volume raycaster. Courtesy of Stegmaier [49] et al.

Compute volume en t ry p o s i t i o n
Compute ray o f s i g h t d i r e c t i o n
While i n volume

Lookup data value a t ray p o s i t i o n
Accumulate co lour and opac i t y
Advance along ray

onto. Samples of contributions are taken along the defined ray until it intersects a surface, or in the
case of volume raycasting, until it leaves the volume or already contains the final contribution for that
ray. Unlike raytracing, this algorithm does not compute a new ray bouncing off of the intersection
between the current ray and the surface. This algorithm, however, can be quite costly and has for a
long time been considered not to be suitable for interactive rendering.

The graphics processing unit has grown into an incredibly powerful computational tool for paral-
lelizable tasks such as volume rendering. Even more exciting is the recent evolution of these pro-
cessing units to include more complex functionality such as branching and dynamic looping. These
advances allow for a technique as simple and powerful as raycasting to be a viable option for render-
ing at interactive rates.

GPU raycasting provides a viable real-time alternative to slice-based methods such as 3D texture
mapping. Despite their performance, these techniques suffer from several limitations that affect the
quality and complexity of the final image. These implementations are inherently rasterization-limited
and algorithmic optimizations are scarcely possible. They often produce artifacts due to integration
step size variations caused by perspective projection. Complex effects (i.e. light distortion effects
such as reflection and refraction) can be incompatible or require a great amount of effort to integrate
with slice-based techniques. Finally, these approaches are not suitable for large data-sets since the
number and position of the slices is dependant on the volume data-set.

In contrast, raycasting is a simple, flexible and robust technique that provides accurate, high-
quality results. It is not constrained by the same issues as an inflexible approach such as slice-based
rendering. The method is intuitive, fits neatly into current generation GPUs for parallel stream pro-
cessing and will easily accommodate advanced rendering algorithms and effects. For these reasons,
raycast is considered a future-proof alternative.

A GPU-based raycasting algorithm of interest was proposed by Stegmaier [49] et al. in 2005. A
single-pass pixel shader is sufficient to implement the algorithm. For each pixel of the final image,
each instance of the shader will cast a single ray from the camera, through the image plane and
trace it along the volume. The volume information is sampled along the ray and the values of each
sample are accumulated as contributions to the final chromaticity and opacity of the pixel in question.
In order to generate the viewing rays and their limits for a certain pixel, one needs the entry and exit
intersections of the bounding box that tightly encapsules the volume. For a pseudocode algorithm for
this technique, please refer to listing 2.1.
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Many optimization algorithms are available to improve the performance of raycasting. We’ll quickly
go through a few of these techniques. One of the easiest optimizations possible is the implementation
of early ray termination, a very simple principle that takes advantage of the GPUs current branching
capabilities in order to terminate calculations once all the visible contributions for a pixel have been
calculated. For static geometry, it is possible to store information on the spacial properties of the
volume and only evaluate rays intersecting areas that actually contain visible data with the support
of spacial division structures, such as octrees. This technique is often referred to as empty-space
skipping.

The most relevant technique for this work is called Iso-Surface Extraction. Iso-surface extraction
involves extracting surface information instead of evaluating contributions along a ray. Each voxel
within a volume is classified as belonging to a surface if its value is contained within a specified
threshold. These surfaces are commonly designated as iso-surfaces, while the threshold is referred
to as the iso-surface value or iso-value. Iso-surfaces can also be extracted using alternative algo-
rithms such as the classic marching cubes algorithm. Although we extract surfaces directly onto the
screen (or an equivalent off-screen buffer), these extracted surfaces can also be represented us-
ing intermediate data-sets such as polygonal surfaces. If you wish to know more about iso-surface
extraction, please refer to the work of Lorensen [26] et al.

For more information on these and other techniques, please refer to the work of Krüger [20] et al.
and Engel [11] et al. on volume rendering optimization techniques for the GPU.

2.4 Non-Photorealistic Rendering

In the following sections we will go into various research done in the field of NPR, especially when
applied to volume information. Although the greatest focus is put on painterly rendering techniques,
various different approaches are investigated as most of these techniques share source information,
algorithms and objectives that are relevant to our research.

2.4.1 Cel-shading and Contours

Cel-shading, also known as cartoon shading, is a critical simplification technique for animation when
scenes need to be (often manually) generated 24 frames per second of film. Because of this, artists
where forced to budget their efforts and transmit the optimal amount of information to the user (em-
phasizing or omitting certain features). This algorithm is based on an animation technique where
artists filled in existing line drawings in acetate cels with areas of solid colour.

This approach is now one of the most popular and widespread non-photorealistic techniques in
the entertainment industry due to its simplicity and attractive visual results. Lake [23] et al. pro-
posed a hard-shading (abrupt changes in shading) algorithm similar to a cel animator’s procedure of
painting an inked cel. Instead of calculating colour per vertex, Lake et al. generate a texture map of
discretized colours (usually 2 or 3 different levels representing areas that are in shadow, illuminated
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(a) (b)

(c)

Figure 2.5: Non-photorealistic renderings. (a) Hatching representation of the volumetric dataset of a
human hand, courtesy of Moritz Gerl [13]. (b) Engine block volume rendered as stipple drawing,

courtesy of Lu [27] et al. (c) Painterly rendering of 3D geometry, courtesy of Meier [32] et al.

or highlighted). The illumination value is then used to sample the appropriate colour level from the
texture map.

This technique is often accompanied by some sort of edge rendering technique. We consider
edges to be either silhouettes, boundaries and creases. A surface point p is defined as a silhouette
if V.N = 0 (V being the direction vector to the viewer and N the normal of the surface at point p,
or alternatively a silhouette can also be defined as an edge that is shared by both a front and back
facing polygon). Boundaries appear in non-closed models as edges that are not shared with any
other polygon Creases are regions of a surface where the surface normals change abruptly.

Edge detection techniques can be divided into object-space and image-space. Saito and Taka-
hashi [44] proposed an image-space edge detection algorithm where they use a depth render of the
scene in relation to the viewpoint. They define profile edges as first-order derivatives of the depth
values and internal edges as second-order differentials of the same values. For this they propose
derivation through the use of a Sobel filter. Decaudin [6] et al. improved on this algorithm by taking
normals into account, thus detecting creases as well as boundaries and silhouettes. Object-space
algorithms include a brute force approach where all edges are iterated and tested if they are being
shared by front and back facing polygons, which can become quite computationally expensive, spe-
cially for detailed animated models. Markosian [31] et al. proposed a probabilistic testing algorithm
where they use rapid probabilistic identification of silhouettes, trading accuracy for speed.
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2.4.2 Hatching

Hatching is a technique used in drawing wherein an artist expresses shapes using closely spaced
parallel lines that follow the curvature of the forms they are used to describe. The quantity and
thickness of the lines is used to represent lighting intensity and consequently describe the volume of
the shapes. To express darker areas, cross-hatching is often used by drawing sets of parallel lines
at different angles.

Hatching can convey the lighting, material properties and/or shape of a given scene. This tech-
nique can be used by itself, or with complementary techniques, not just to express shape and lighting
but also to achieve interesting visual styles.

Winkenbach and Salesin [53] developed a pen & ink hatching algorithm from parametrized smooth
surfaces using NURBS patches (Non-uniform rational B-splines, mathematical models commonly
used to represent curves and surfaces). They used hatching density patterns to express complex
texture and illumination effects. Elber [10] developed an hatching algorithm where lines where drawn
based on the principal curvature of a surface. Using curvature allows us to capture important geomet-
ric features without depending on parametrization. This approach though still suffers from problems,
especially in flat areas where curvature is not well defined, leading to noisy results. Saito and Taka-
hashi [44] developed a 2D image processing algorithm that renders uniform density hatched images.
They thin the number of lines drawn in areas where the gradient of the image is large and the con-
tour lines density increases. In areas where contour lines density decreases, new contour lines are
introduced in between existing lines.

The research of hatching on volume data-sets, sometimes referred to as volumetric hatching,
aims to simulate traditional hatching techniques. One reason behind this research interest is the
automatic generation of images similar to the ones used in scientific illustrations automatically onto
relevant data, such as medical scans. A good example of this is the research done by Feng [8] et al.
in the use of NPR in medical data.

2.4.3 Stippling

Stippling refers to the technique used to represent the volume of a shape, or other properties when
used in scientific illustration, by varying the density of a pattern of small dots. Darker (or lower
value) areas are represented by denser distributions of points while lighter areas will have lower
density distributions. As a manual process, stippling can be very time consuming and has a very
steep learning curve for beginners. It relies on even, but random, distributions of dots to express
shape and texture of an object. A common approach to define dot density on the surface of the
object is to directly relate it to the height of the surface from the current point of view, where height
h ∈ [0, 1]. Pastor [38] et al. proposed a technique for real-time animated stippled renditions that
produce view-dependant, frame-coherent animations based on 3D models. They use the concept
of particle systems where each vertex is a particle that indicates the position of a potential stipple.
Lu [27] et al. applied stippling render techniques by emphasizing features like silhouettes, surface
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details and interior details though point distribution. For this they needed to extract from each voxel
the following information: number of points, gradient, voxel data value, point size, list of points.

2.4.4 Painterly Rendering

Painterly rendering is the term coined for the representation of a scene in a way that would mimic the
visual appearance of a hand-made painting and the effects achieved with the materials used (such
as oil, acrylic paints and so on). We will go into detail on painterly rendering techniques since our
work specializes on painterly stylization as a form of non-photorealistic rendering.

Meier [32] et al. implemented painterly rendering through a set of particles with a computed
colour, orientation (dependant on the normal of the surface projected onto two dimensions along
the view vector), and size (user-specified) where each particle is applied a certain brush texture to
generate the final image. This approach was then implemented in real-time by Sperl [48] et al.

Figure 2.6: Painterly Rendering Pipeline proposed by Meier [32] et al.

Hertzmann [19] et al. built a painterly rendering model using curved brush strokes by assuming
that the visual emphasis in the painting corresponded roughly to the spacial energy in the source
image. Curved brush strokes are represented by cubic B-Splines, aligned to the normals of the image
gradients. Their algorithm also allowed different size brush strokes since they took into account that
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Figure 2.7: Painterly Rendering Pipeline proposed by Lu [28] et al.

artists usually start with rough sketches and add detail afterwards with increasingly smaller brushes,
applying fine strokes to draw the attention of the viewer to fine detail.

Vanderhaeghe [51] et al. proposed a dynamic drawing algorithm for interactive painterly rendering
based on the work of Meier [32] et al. that uses the surface’s principal curvature to orient thick strokes
in order to better represent surface shapes using painterly rendering.

The most important algorithm for the purpose of this paper was proposed by Lu [28] et al., who
improved on Hertzmann’s [19] work by implementing a parallel image-based painterly rendering al-
gorithm applicable to hybrid scenes with image, video and 3D geometry. They divided an image into
several layers with different levels of detail, in most examples three layers were sufficient. These
were categorized as coarse, medium and fine detail layers. Strokes are stored in a 2D texture where
each texel represents at most one stroke, with information about its orientation, center location and
short and long radius. These strokes are then calculated based on a localized stochastic process
where the probability of placing a stroke is defined by user and context, for example, probability of
placement is inversely proportional to the number of strokes per texels. The coarseness of a stroke is
determined by a set of probabilities for each layer, these are user-defined and style-specific but, since
one would want edges (higher gradient magnitudes) to have a higher number of strokes in order to
correctly delineate object boundaries, the following preset ranges usually achieve the best results:

The values pc,pm and pf will represent the probabilities for placing strokes on the coarse, medium
and fine layer respectively. It should be noted that it is not necessary to follow these guidelines for
all rendering styles. The algorithm depends on two computer vision algorithms, one of which can be
replaced by geometric information. Gradient information is extracted through a Sobel filter applied
to a blurred image (3x3 box filter) in order to retrieve the gradient magnitude and direction for each
pixel. This gradient information is necessary because artists commonly apply brush strokes following
the boundaries between different shading levels, hence the natural orientation for a single stroke is
perpendicular to the intensity gradient direction. The other algorithm is an optical flow algorithm they
apply to video and image data. For geometry, they resolve optical flow through geometry reprojection,
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that is, they track the position of a pixel p in the current and previous frame similar to the approach
implemented by Nehab [34] et al. Stroke placement is composed of three steps:

1. Image processing: A low-pass filter is applied and the image gradient is extracted.

2. Stroke processing: The stochastic process generates new strokes and outputs them to stroke
texture M. A vertex buffer of strokes is streamed to a geometry shader.

3. Rendering: The geometry shader reads the stroke information and generates point sprites for
each. The scene is then rasterized.

On each update the stroke particles are moved according to the optical flow vectors. To reduce
temporal artifacts, the following properties are restrained on update: fixed size and gradual update
on orientation (1 degree per iteration, expect for fine details), colour is updated to location, opacity is
changed so the particle fades out while new particles fade in to replace it. Particles overlapping in
some areas are removed while new particles are generated in areas with insufficient stroke density.
The authors also mention how failure in optical flow may generate artifacts, while gradient magnitudes
for coarse-layers are not well defined resulting in poorly oriented strokes.
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Chapter 3

Design

In this chapter, we expose our initial objectives and describe the design, inspirations and key features
of the proposed work. Finally, we also take an in-depth look at the full rendering pipeline we propose
in this chapter.

3.1 Goals

The aim of this work is to provide an implementation of a real-time painterly rendering pipeline specific
to volumetric data-sets. The desired result should not only resemble a traditional hand-made painting
but also express surface properties such as colour, detail and topology through visual cues like brush
stroke colour, size, orientation and density.

3.2 Requirements

Because the pipeline in question is specialized towards volume graphics, all input information must be
retrieved from the volumetric set itself in such a way that relevant intrinsic properties of volumes are
explored and visible in the resulting images. Also, as the pipeline aims to apply painterly stylization
to the input volume information, the result must not just reflect the volume’s visual properties but also
simulate the look of hand-made paintings.

3.3 Pipeline

In order to implement real time painterly rendering for volumes, the pipeline can be split into two
main areas. The volume rendering component of the pipeline is responsible for sampling and cal-
culating the necessary information from the volume in order to produce the final render. We use
an implementation of real time raycasting on the GPU to retrieve the significant iso-surfaces from
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Figure 3.1: Illustration of Proposed Painterly Rendering Pipeline.

the data-set. We calculate the first order partial derivatives for the surface which we use to retrieve
the gradient direction and magnitude. We then sample the colour values of the surface from a one-
dimensional transfer function and apply a Phong illumination model (Phong is an empirical model
of local illumination that describes the interactions between light and a surface as a combination of
ambient, diffuse and specular reflectivity components). Finally, we calculate the optical flow of the
data through reprojection and compare previous and current depth values to detect occlusion. This
information is computed simultaneously and stored in multiple off-screen render targets.

The painterly stylization component of the pipeline is responsible for the generation of the final
image given the data passed on by the volume rendering function. First, we threshold the magnitudes
into separate levels, in this case three, that are used to indicate the areas of the screen that will
be painted using coarse, medium and fine strokes. Using a GPU-based pseudo-random number
generator we populate the screen using a stochastic placement function to achieve different stroke
densities. We store all stroke information in stroke-map textures, where the texel coordinates specify
the screen-space position of the brush stroke on screen and its channels store information on the
orientation, size, aspect ratio and visibility. The size of each stroke will depend on which layer it
belongs to while its orientation is directly dependant on the gradient directions of the surfaces. A
buffer of strokes is generated from this information and updated according to the optical flow of the
image, this may cause areas of the image to become either overly or insufficiently dense. To address
this, we generate new strokes onto the stroke buffer using the previous stochastic placement function
in areas where stroke density is lower than a specified threshold. Also, in areas with excessive
congregation of strokes, strokes are removed from the buffer using a similar stochastic function as
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the one used for placement. Finally, the stroke buffer is streamed through a geometry shader where
each stroke is expanded into a screen-space quad and rendered with the appropriate stroke texture.
A screen-space quad is a simple rectangular render primitive composed of two adjacent triangles to
whom position coordinates do not refer to world space coordinates but directly to the position on the
2D screen surface.

We will go into more detail on each step of the pipeline in the following sections. For further
information on the implementation of the pipeline please refer to chapter 4.

3.4 Volume Rendering: Realtime GPU-Based Raycasting

3.4.1 GPU Volume Raycaster

In order to retrieve all the necessary visual information off of the volume data-set we use a GPU
raycasting algorithm based on the work of Stegmaier [49] et al. Stegmaier used a single-pass pixel
shader to project rays in a volume and sample along the ray all the contributions for the final pixel.
For more information on GPU volume raycasting algorithm consult chapter 2, section 2.3.4.

3.4.2 Iso-Surface Extraction

Our approach only extracts iso-surfaces directly from the volume and performs all further calculations
directly on the resulting surfaces, as proposed by Krüger et al. [20] and implemented in the work of
Hadwiger [16] on the advanced shading of discrete iso-surfaces. In iso-surface rendering, the only
contribution to a given pixel is the first value contained within a certain threshold. The surface defined
by the algorithm is called an iso-surface and the threshold applied to the sampled data is called an
iso-value. For more information on iso-surfaces, please consult chapter 2, section 2.3.4.

Figure 3.2: Illustration of Iso-Surface Raycaster and On-The-Fly Gradient Calculation.
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3.4.3 On-The-Fly Gradients

As implemented by Hadwiger [16] et al., the gradient directions and magnitudes are extracted on-
the-fly, that is, in real-time from the first-order partial derivatives of the values of the surface. These
gradient calculations are limited to the area of the extracted iso-surface.

On-the-fly gradients incur an extra cost to the rendering pipeline, but the benefits outweigh the
drawbacks since the extra-cost for on-the-fly gradient calculation is negligible on current hardware
implementations and this real time approach supports the use of large, dynamic and/or animated
data-sets as well as dynamic transfer functions.

3.4.4 Multiple Targets

The output of the volume rendering component of the pipeline includes surface intersection points,
colour and illumination (using a Phong illumination model, refer to section 3.3 for further detail),
gradient direction and magnitude, optical flow of the scene and occlusion detection. The actual
rendering to screen is performed in a deferred step on the non-photorealistic rendering component
of the pipeline. To optimize the pipeline interaction between components, we output all the necessary
information into off-screen textures (render targets). All the output is calculated and returned in one
single pass, simultaneously rendering all the results into multiple render targets to take advantage of
current hardware support for parallel output.

3.5 Non-Photorealistic Rendering: Painterly Stylization

The second major component in the pipeline is the painterly stylization and render of volume data-
sets. This component is responsible for taking the above-mentioned information and generating a set
of on-screen brush strokes that will not only represent the volume but reflect its colour, details and
surface topology correctly. For this, we were heavily inspired by the works of Meier [32] et al. and
Sperl [48] in painterly rendering techniques, but the greatest inspiration came from the pipeline pro-
posed and implemented by Lu [28] et al. on painterly stylization of images, videos and 3D animations.
For more information on their work, please refer to chapter 2, section 2.4.4.

3.5.1 Deferred Rendering

Deferred rendering refers to the deferring of render steps such as shading or lighting further down
the pipeline, where calculations are done at a per-pixel basis. With new hardware support for the
parallel render of several targets, deferred rendering is now a very attractive option since scene
complexity will not affect any calculations done in the deferred stages of the pipeline, where more
computationally intensive techniques are often performed. In our pipeline, with the exception of the
phong illumination model, which has negligible complexity, all complex calculations performed in
order to generate, delete or update strokes, as well as their expansion to screen-space quads and
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correct placement, are performed in one or more separate steps further down the pipeline. There is
always an option to apply a custom illumination model in the deferred rendering stages.

3.5.2 3-tier Layered Brush Strokes

To simulate the process an artist would take in order to represent a certain image as a painting, the
brush stroke creation was split into separate layers. One layer would represent the first pass of coarse
strokes for the general shape. A set of medium sized strokes would specify further detail while a finer
brush would finalize the image’s highly detailed areas with denser, smaller strokes. These layers
are retrieved from the surface’s gradient magnitudes by thresholding three different, user-specified
intervals.

3.5.3 Stochastic Placement

In order to place a stroke on a certain region of the screen, we use an independent stochastic function
to decide whether or not a stroke should exist on a given pixel. By specifying different probabilities
to the stochastic placement function on different layers, one can achieve different distributions of
strokes. The stochastic function itself simply tests if the result of a random number generator is
greater than the probability value for a certain distribution (please refer to appendix A for details on
the implementation of the GPU-based pseudo-random number generator).

3.5.4 Stroke Persistency

One common problem with painterly rendering techniques is the inconsistent final result, caused by
the random nature of stroke placement. If strokes are being randomly distributed per frame, this
randomness introduces visual noise to the animation. If, on the other hand, the strokes are constant
over the animation we introduce a problem commonly referred to as the shower door effect. The
shower door effect is described by Meier [32] et al. as a result of brush-strokes having constant
positions on screen instead of constant positions on the surface. The resulting effect is the distortion
of the underlying shape with a certain static texture, ”as if it were being viewed through textured
glass”. To address this problem, existing strokes are preserved as much as possible by incrementally
updating their properties, namely position, orientation and colour to reflect the properties of surface
area they were originally assigned to. These strokes are also translated along the screen according
to the optical flow of the image. When a given stroke disappears, is occluded or exchanges layers
then that stroke is deleted instead of being updated.

3.5.5 Stroke Control and Repopulation

The attempt to keep existing strokes and update them along time causes stroke density to decrease
in areas where strokes have originated and increase in areas where strokes may accumulate due
to the optical flow of the image. In order to keep the general stroke density in the image uniform, a
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density map is taken after the stroke update stage. If the density for a given area of the image is
insufficient, then new strokes are inserted using the aforementioned stochastic placement function.
On the other hand, if the density for a given area exceeds a set maximum value then strokes will be
arbitrarily removed using a variation of the mentioned stochastic function.

3.5.6 Artistic Control

Because the aim of this work is not to automatically generate art, but to provide artists and designers
with tools that will allow them to create meaningful visual expressions of the source data, several pa-
rameters are accessible in order to customize the result of the pipeline. The first and most important
properties of interest to artists are the volume transfer function and stroke texture. The transfer func-
tion maps the volume data’s values to visual output, namely colour, directly affecting the final colours
of the image. The stroke texture is the visual representation of a single stroke to be used in the final
image. Other values include layer thresholds based on gradient magnitudes, the size of the strokes
per layer, the probabilities per layer used in the stochastic placement function to control distributions,
the minimum and maximum stroke density and so on. Controlling these values can result in several
drastically different results using the same source information and can be used to configure a certain
painterly style, such as impressionism, pointillism and so on (for examples of different visual styles
created with these properties, please refer to section 5.1.3).
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Chapter 4

Implementation

In this chapter, we describe in detail how the rendering pipeline designed in chapter 3 was imple-
mented and which decisions and optimizations were taken and why.

4.1 Iso-Surface GPU Raycaster

The iso-surface extraction algorithm implemented for the propose of this work bases itself on the
GPU raycasting algorithm proposed by Stegmaier [49] et al. where rays of sight are computed from
the entry and exit positions of the volume’s bounding box and traversed within the volume using a
lookup to a 3D texture on a single-pass pixel shader program. Our implementation, though, is only
interested in the significant iso-surfaces, so instead of accumulating contributions we only return the
intersection values from the view to the desired surface by testing a sampled, and classified, value in
the volume against a set iso-value.

In order to retrieve the rays of sight for the volume area, we render the front and back faces of
the bounding box surrounding the volume in local space [0, 1]3. Then, retrieving a certain ray of
sight is simply a matter of getting the ray position from the sampled front face value for a given pixel
Entry(x, y), calculating the ray direction as the sampled back face value for the same pixel as the
ray starting position using RoS(x, y) = normalize(Exit(x, y)−Entry(x, y)). Both renders are stored
in off-screen textures and calculated in separate render calls.

After retrieving a ray of sight we iterate through it with a given step value. The resulting coordinates
(x, y, z) will be used to lookup the 3D texture containing the volume data in order to retrieve the data
value for that position (V alue = V olume(x, y, z)). This value is then classified, that is, it is used to
look up a transfer function, in our case one-dimensional, and the classified value for that position is
returned. In the current implementation, the transfer function expresses the final colour and opacity
of each value in the volume and the opacity component of the classified value is tested against an
iso-value (Colour = Transfer(V alue)). To put it simply, only values with an opacity component
superior or equal to the given iso-value are calculated and rendered (Colour.a >= Isovalue).
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Listing 4.1: Fragment shader pseudocode for an iso-surface GPU raycaster.

For p i x e l coord ina te x , y
Sample en t ry p o s i t i o n from t e x t u r e
Sample e x i t p o s i t i o n from t e x t u r e
Ret r ieve ray o f s i g h t s t a r t p o s i t i o n
Compute ray o f s i g h t d i r e c t i o n
While i n volume

Lookup data value a t cu r ren t ray p o s i t i o n
C l a s s i f y value using 1D t r a n s f e r f u n c t i o n
Test f o r i n t e r s e c t i o n wi th iso−sur face
I f i n t e r s e c t i o n i s detected

Return i n t e r s e c t i o n p o s i t i o n
Advance along ray

We’ll now go into the calculated output from the extracted iso-surface information. This information
is stored in a series of off-screen textures using multiple render-targets in order to efficiently render
and store all the necessary information in a single pass.

4.1.1 Transfer Function

In order to map the values of a volumetric data-set to visual properties, we need some kind of lookup
table to perform such conversions. That conversion table is what we refer to as the transfer function.
A transfer function maps one or more input values into visual information such as colour. The values
that serve as input to the transfer function need not be the original values of the data. One can use
calculated variables as indices to the resulting value. For example, curvature-based transfer functions
may use curvature magnitudes to index to a certain colour map that would visually represent ridges
and valleys on the volume.

A transfer function may contain more than one dimension in order to achieve more accurate or
complex data visualizations. For our purposes, a one dimensional transfer function will suffice. The
transfer function will directly map sampled values from the 3D data field into colour values.

Our one dimensional transfer function is implemented on the GPU as a simple texture lookup to a
user-defined texture, where each value is represented by the horizontal texture coordinate u ∈ [0, 1].

4.1.2 Surface Intersections

Surface intersections are calculated directly from the iso-surface extraction algorithm mentioned
above. This information is the starting point to all other calculations.
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4.1.3 Gradient Directions & Magnitude

As mentioned in section 3.4.3, our implementation does not perform a pre-pass for calculating gra-
dients offline. Instead, all gradients are calculated real-time on-the-fly, only for the areas of direct
interest. This allows us to not only express large data-sets but also dynamic or animated volume
data or transfer functions.

In order to calculate the gradient directions and magnitude, we need the surface intersection
points and the 3D texture with the necessary volume information. Given that information, we lookup
the surface intersection for each texel of the respective texture. We can then use the retrieved in-
tersection points to index the volume data-set directly by sampling the respective 3D texture at the
correct coordinates.

We decided to calculate all gradients using first order partial derivatives using a finite differences
scheme. Central differences, described in equation 4.1, provide us with a fast and efficient way of
estimating the gradients of a surface with only six texture lookups, two in every axis.

The gradient direction is taken from the normalized derivative calculated as described above,
while the gradient magnitude is taken from the length of the unnormalized derivative. This informa-
tion is packed into a 4-channel RGBA 32-bit texture where the colour channels store the gradient
directions and the opacity channel stores the gradient magnitude.

δh[f ](x) = f(x+
1

2
h)− f(x− 1

2
h) (4.1)

where:
δh[f ](x) is the derivative of f at x.
h is the difference quotient (the distance from which to sample neighbor values).

4.1.4 Colour & Illumination

With the opacity used as an iso-value to determine visibility, iso-surface colours are retrieved directly
from the colour components of the one dimensional transfer function.

For volume illumination, we opted for a gradient-based approach, using the extracted gradient
directions discussed in section 4.1.3. To illuminate visible surfaces we apply a Phong illumination
model (by Bui Tuong Phong [40], 1973) as demonstrated in equation (4.2).

Ip = kaia +
∑

(kd(L.N)id + ks(R.V )αis). (4.2)

where:
Ip is the light contribution for a given surface point.
ka, kd and ks are the ambient, diffuse and specular reflection constants, respectively.
ia, id and is are the ambient, diffuse and specular light intensities (often described as colour values).
α is a shininess constant for this material.
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Figure 4.1: Illustration of Colour & Illumination Component Process

L is a direction vector from the surface point to the light source.
N is the normal vector at the surface point.
R is the direction of a perfectly reflected ray L off the surface point in question.
V is the direction from the surface point to the viewer.

The colour and illumination contributions are stored on an off-screen texture as a final combined
colour value. This step is optional though, as illumination may be deferred to a different step further
along the pipeline.

4.1.5 Optical Flow

Optical flow represents the patterns of motion of all the objects in the scene. With it, we are able to
track a point on a surface across time. This enables us to tackle the randomness and ”shower door”
effects mentioned in section 3.5.4.

We take the optical flow of an image through a technique called reprojection. In reprojection
we make use of the information available about the spacial transformations applied to objects at
different times to calculate the motion of their respective pixels on screen. The position on screen of
a point belonging to an object can be calculated by simply multiplying it by its respective world, view
and projection transformations, in order to transform the position’s coordinates from local-space to
screen-space. Knowing the transformations applied to an object at time t and the same calculations
applied at time t − h one can easily know the motion vector of point p for the period of time h using
g(p) = f(p, t)− f(p, t− h).

For further information, we refer to Nehab [34] et al. and their work in reverse reprojection for
real-time caching.

In order to store information on the scene’s optical flow, we used a 4-channel 32-bit RGBA off-
screen texture where the values of the pixel motions along the screen’s x and y axis. These values
must be packed into two 8-bit channels with range [0, 1]. Remaining channels are used for occlusion
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detection as described in section 4.1.6. For further information on how optical flow is used in the
pipeline please refer to sections 3.5.4 and 4.2.3.

4.1.6 Occlusion

In order to detect if a certain existing stroke represents an area now occluded and thus should be
deleted, we require the detection of not just optical flow but the occlusion of pixels between frames.
To do this we take the previous pixel’s post-projection z coordinate z(t − h), compare them to the
current post-projection z coordinate z(t). The post-projection z coordinate should match regardless
of surface movement. If values do not match it means the surface point under evaluation is no longer
visible, so we consider there to be an occlusion.

Detected occlusions are flagged into an off-screen texture, in our particular case using the leftover
channels from the optical flow output.

For more details on how occlusion information affects the rendering pipeline, please refer to sec-
tion 4.2.3.

4.1.7 Downscaling

Because only a small set of pixels are actually represented by strokes, it is possible to use low
resolution renders for the most computationally expensive stages of the pipeline, such as raycasting
and gradient estimation. This dramatically increases the system performance without any noticeable
impact to the final result. To implement this optimization, all texture renders are performed on low
resolution targets (i.e. 480x300 render targets) while the final render of the screen-space quad
stroke representations may be done at full resolution (i.e. 1280x800) with little or no impact on the
performance of the system.

4.2 Painterly Rendering

4.2.1 Brush Stroke Maps

The next step in the rendering pipeline is to separate visual information into layers. Lower layers
would be filled with coarser strokes to describe uniform areas of the image. The higher the layer,
the more detailed the strokes and higher stroke density, in order to be able to represent greater
detail. In our particular case, we limit our use to three different layers: coarse, medium and fine. This
configuration of layers seems ideal in both quality and performance.

To achieve this effect, we segment the image into three levels of gradient magnitudes. Higher gra-
dient magnitudes represent areas with sharper difference between values and thus greater need to
represent detail, while areas of lower magnitude have less need to represent details and thus can be
represented with fewer, larger strokes. Segmentation is performed by simply applying the stochastic
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Figure 4.2: Illustration of Painterly Rendering Stages.

placement function, which we will discuss below, only when gradients are within the defined threshold
for the level in question.

The stochastic function used to independently perform the placement of strokes in screen-space
is based on a GPU pseudo-random number generator (for a detailed explanation of how the random
number generator works, please refer to appendix A). This random number generator is used to re-
turn random values that will be tested against a certain user-defined probability. So, for a distribution
rate of 10% (one stroke per every ten pixels) one would define the probability for that area to be
p = 0.1 and by only placing strokes when random ≤ p we achieve the desired average distribution.
This approach is advantageous because it runs independently per pixel, making it a perfect candidate
for a GPU-based single-pass pixel shader program.

Once the placement of a certain stroke has been decided for a given pixel on screen, we need
to specify the remaining stroke properties, namely scale and orientation. The size of strokes will be
defined directly by the layer of strokes where it belongs to. So all coarse layer strokes will have the
same size, which should be applied to all strokes in that level.

The orientation is calculated by using the previously retrieved gradient directions. Gradient direc-
tions are projected into screen-space and then normalized. The angle between the origin rotation
(horizontal brush stroke) and a direction perpendicular to the screen-space gradient direction is then
calculated and applied as the orientation of the brush. An approach similar to the one proposed by
Meier [32] et al. for brush stroke orientation.

With all properties of the brush strokes already calculated, they are finally stored in an off-screen
32-bit RGBA texture called a ’Stroke Map’ (please refer to Lu [28] et al. for details on the original
definition of stroke map). The position in the texture defines the position on screen and the channels
contain the size, orientation, aspect ratio and a flag to indicate whether or not the stroke exists at
that pixel. Different stroke layers are rendered to different textures to avoid the use of conditional
instructions when accessing the stroke information. Also, current hardware allows us to process and
output all layers in parallel and in a single pass, using multiple render targets.

One obvious limitation with this approach is that you can never have a higher number of strokes
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per image then the map pixel resolutions. This, though, does not present a problem as it is rarely the
case that the number of strokes will surpass or equal the number of pixels available on the stroke
map textures.

4.2.2 Stroke Buffer

A stroke buffer is a linear structure that contains the description of all existing strokes in the scene.
Each component of the buffer contains the position, texture coordinate, colour, size, orientation and
aspect ratio of the stroke. The position specifies the screen-position of a stroke. The associated
texture coordinate indicates where in the several texture maps that hold relevant scene information
the stroke is located. The colour specifies the tint with which the stroke texture will be modulated.
The size, orientation and aspect ratio define how to convert a stroke from a point to an oriented
screen-space quad.

The stroke buffer is generated by iterating through the generated stroke maps (for further detail
on stroke maps, see section 4.2.1) and generating a new entry for each stroke placement found. The
stroke buffer is also passed through the stroke update, generation and deletion step in order to add,
remove or modify stroke entries as needed.

In order to take advantage of hardware support, we use point-list vertex buffers to hold stroke
information, and pass it through a series of geometry shaders for data manipulation. Geometry
shaders were introduced into the programmable graphics pipeline with Shader Model 4.0. These
shaders can receive output from vertex shaders and emit zero or more primitives, passing them along
towards the pixel shader for rendering and/or streaming them back into memory. These properties
make geometry shaders the ideal tool for stroke manipulation, generation and deletion, as well as
for the generation in hardware of a final screen-space quad system from a list of points. To add
new strokes to a buffer, one simply has to append a given stroke input to the output stream. For the
deletion of strokes, the data is ignored and no stroke information is output for that point.

4.2.3 Stroke Update

The stroke update step aims to reduce temporal incoherency from the pipeline through the use of
persistent strokes. Common problems with the lack of temporal coherency in painterly rendering in-
clude noisy randomness or the shower door effect. Please refer to section 3.5.4 for more information
on the objectives of this step.

In order to update the strokes correctly in screen-space we need to track the motion of several
pixels across the screen. For that we need the optical flow of the scene. For details on how optical
flow works and/or how it is calculated please refer to section 4.1.5.

Given the optical flow of the scene we know exactly where each pixel in the screen moved to from
the last frame. Now, updating strokes becomes simply the process of looking up what was the offset
of the pixel the stroke is associated with and update its position and texture coordinates.
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With a new position and texture coordinates, we’ll need to reevaluate the stroke’s colour, opacity
and orientation based on the information from the colour and gradient direction of the newly associ-
ated texture coordinates. For details on how colour, opacity and orientation are calculated from the
respective texture inputs, please refer to section 4.2.1. Also, to reinforce temporal coherency, colour,
opacity and orientation may only change a limited amount per frame. In the current implementation,
strokes only take 5% of the new orientation, one third of the new colour and 90% of the new opacity.

To smoothen transitions and alterations on the image, any new stroke is created with nearly zero
opacity and any destroyed stroke is set to target transparency zero. This provides a seamless fade
in/out system for all strokes on screen.

Besides the optical flow information available to us, we also have information on pixels occluded
between frames. This allows us to identify which existing strokes have been occluded by new over-
lapping strokes and delete them appropriately.

When a given stroke moves out of its respective layer, the stroke is faded out and destroyed. New
strokes should cover the empty areas during the stroke generation step, refer to section 4.2.4.

This step is implemented in hardware as a geometry shader that receives a stroke buffer (for more
information on stroke buffers, see section 4.2.2) as input, where each point in the buffer represents
a stroke. Each stroke is processed, updated and copied over to an output stroke buffer. If a stroke
has been marked for deletion during the update process, the program will simply disregard the stroke
and output zero primitives for the stroke in question.

4.2.4 Stroke Generation

Strokes in this pipeline are animated in such a way that they follow the location on the surface they
represent (for more information on how strokes are updated see 4.2.3). This may cause the dis-
tribution of strokes to shift with time, leaving many areas with insufficient strokes to represent the
necessary surface information. To counter this problem we analyze the density of strokes across
the surface of the visual data and repopulate areas that do not contain sufficient stroke density to
correctly represent the surface.

The current stroke buffer is rendered to screen as a quad system (as described by section 4.2.6).
The opacity of each final textured stroke is accumulated in an off-screen texture by additively ren-
dering the resulting quads onto a render-target. The contribution of each stroke’s opacity value is
reduced so the resulting values [0, 1] can represent areas with several overlapping strokes.

The stroke generation step will then iterate through the whole density map. For areas of the
surface where density values are below a specified minimum, this stage will generate and place
new strokes to fill in the gaps. The minimum density is user-specified and designates how many
overlapping strokes any surface area should have as a bare minimum. The generation of new strokes
is done through the same stochastic placement process described in section 4.2.1 by looking up the
respective stroke map for each pixel. Because the stroke map for that frame already has a set of
possible stroke placements with a given distribution, this step will ensure the correct density of new
strokes for areas with a low population of strokes.
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4.2.5 Stroke Deletion

As strokes follow the optical flow of the areas on the surface to which they belong, they may drift
with time and cause a conglomeration of strokes in certain areas, such as edges. To address the
excessive density of brush-strokes in certain areas, we perform another pass where we evaluate the
density of strokes across the surface and stochastically remove strokes from overpopulated areas.

The current stroke buffer is rendered additively to a texture in order to represent the density of
strokes across the surface. For more details on the density map and how it works, please refer to
section 4.2.4.

This stage will then iterate through all strokes it receives as input and delete strokes in areas
where the density of strokes exceeds a specified maximum threshold. On such areas, strokes will be
deleted using a stochastic process similar to the ones described in sections 4.2.1 and 4.2.4. This
way, just enough strokes are deleted to keep the desired distribution. Deletion is performed by simply
omitting the stroke in its output stream.

4.2.6 Expansion into Screen-space Quads

The final step of the painterly rendering pipeline is responsible for taking a buffer of strokes in the form
of a list of points and generating a system of screen-space quads to be rendered to the screen with
the correct position, colour, size, texture and so on. A screen-space quad is a simple rectangular
render primitive composed of two adjacent triangles to whom position coordinates do not refer to
world space coordinates but directly to the position on the 2D screen surface.

For each stroke received by this stage, we calculate a quad centered around the stroke position,
with the respective size and aspect ratio and we apply a rotation to the quad’s vertices in order to
achieve the final orientation. To take advantage of hardware support for these operations, these
steps are implemented as a geometry shader that receives a stroke buffer (for more information
on geometry shaders and the stroke buffer, see section 4.2.2) and outputs a list of triangle strip
primitives, the screen-space quads that will represent the final strokes.

The geometry output by the geometry shader is passed to a pixel shader program that finally
applies the correct texture and colours it appropriately.
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Chapter 5

Evaluation

In this chapter, we will evaluate how successful we were in our implementation and examine how
well the outcome matches the expected results. The objective of the proposed pipeline is to establish
an implementation of a real-time painterly rendering pipeline specific to volumetric data-sets. The
expected result should not only resemble a traditional hand-made painting but also express surface
properties such as colour, detail and topology through visual cues like brush stroke colour, size,
orientation and density.

5.1 Results

To evaluate the implemented system, we will examine the final visual outcome and how well it meets
all the objectives. We will also evaluate the performance of the implemented pipeline, and whether
or not it is capable of real-time visualization.

5.1.1 Visual Results

We can see from the outcome of the discussed pipeline a system of brush strokes that not only
consistently covers the visible surface with strokes that reflect its visual properties, but also reduce
temporal incoherency by moving the strokes along with their corresponding original surface area.

The result is a smooth visually attractive, painterly rendering of visual volumetric information.
We can see little sudden change and random noise in the outcome. Areas of higher detail are
represented by a large quantity of small brush strokes, and thus given greater emphasis, while low
detail areas are covered by larger, simpler strokes. The general shape of the volume is defined with
large, coarse strokes in the background, while the detail is filled in using finer strokes, mimicking
a common practice in artistic rendering. Also, one can see the stroke colour correctly conveys the
colour of the original rendering and, more importantly, the strokes follow the general shape of the
volume, thus expressing natural cues of the topology of the volume’s surface.
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Figure 5.1: Temporal Coherency through Optical Flow based Stroke Update. Strokes are following
the objects surface as it rotates to the right.

Temporal Coherency

From an animation point of view, we set off with the objective of reducing temporal incoherency in
the proposed pipeline by updating the strokes along the surface area they were created to repre-
sent. We achieved this by calculating the optical flow of the final animation through a technique
called reprojection (please refer to section 4.1.5 for more detail). In figure 5.1, we see a sequence
of images representing the evolution of strokes with time. In this scene, generation or deletion of
strokes based on density has been switched off and we can easily see how the strokes are being
updated as the object in question rotates to the right. As we can see, the strokes correctly stick to the
areas they were assigned. One issue visible from this progression, though, is the deletion of strokes
due to overly sensitive occlusion detection or gradient noise causing strokes to switch between layers.

Surface Topology through Strokes

As for the objectives we set for any static image (whether or not it is part of an animation), two are
worth further discussion. The first is how well an image expresses surface information such as colour
and surface topology.

For better visual results and to provide visual cues that can express the shape of the object, we
oriented the strokes in our pipeline according to the gradient directions extracted from the volume’s
surfaces. In figure 5.2, we can see the gradient directions overlaid onto the final image. As we can,
see, especially from the back of the shape in question, the gradients correctly follow the sides of
the lobster, and down along the shape of the legs. We can also see that in areas with low gradient
magnitudes, such as the tail or claws, the gradient direction is not well defined and may introduce
noise into the animation.
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Figure 5.2: Brush Stroke Colour and Orientation. The orientation vector field was overlaid on the
final image in order to examine if stroke directions correctly follow surface gradients.

In order to truly evaluate the impact correct stroke orientation has in the final image, we compare
two identical renderings in figure 5.4. The image on the left has been rendered with strokes oriented
along the gradient directions of the surface. The image on the right had been rendered with static
stroke orientation. As we can see, detail on the gradient oriented strokes render is much greater and
obvious than on the statically oriented render, resulting in an image that is overall visually pleasing
and easier to understand.

Figure 5.3: Comparison between gradient oriented strokes and statically oriented strokes.
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Figure 5.4: Comparison between the same volume rendered by our pipeline (left) and the Voreen
Engine (right).

Comparison of Painterly Rendering with Standard Volume Raycasting

In figure 5.4, we can see the result of our painterly rendering pipeline (left) side by side with a
the volume raycasting rendering from one of the main volume rendering applications available, the
Voreen Volume Rendering Engine (right). Both renderings share the exact same volume data-set and
transfer function. As we can see, our pipeline not only correctly displays all essential information from
the original render, it also abstracts any unnecessary information by representing lower magnitude
gradients in less detail. The result is a visually attractive painterly rendition of the original volume
data-set, even when relying on a fairly basic set of information and simple 1D transfer function.

5.1.2 Performance

The work discussed and implemented here is suitable for real-time interactive applications that desire
painterly stylization of volume information. The system ran at interactive, real-time frame rates on
current generation hardware. Namely, the software rendered a 256x256x256 8-bit volume data-set
at a final resolution of 1280x800 on an Intel Core 2 Duo E6300 CPU at 3.15GHz with 4GB RAM
and an NVIDIA Geforce GTX470 using Microsoft DirectX 10 rendering an average of 30.0005̃0.000
strokes on screen at an average frame rate greater than 60 frames per second.

5.1.3 User-defined Values

Because the system we have discussed is meant as a tool with which artists and designers may
express themselves, several parameters were made accessible that let the users customize the result
of the pipeline as they wish. The developed pipeline allows the user to tweak the values and sources
as they see fit in order to generate truly creative and impressive visual styles.
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Three styles were developed to showcase the power and flexibility of the developed pipeline.
Each styles achieves a separate and unique result that exemplifies the creative possibilities of the
proposed work. For the detailed parameters of each style please refer to table 5.1. Each style is
demonstrated with the render (and close-up) of two different volumetric data-sets, an orange and a
bonsai tree (please refer to figure 5.5).

Style (a) Style (b) Style (c)
Number of Layers: 3 3 3

Threshold (Layer 1): 0.1 0.1 0.1
Threshold (Layer 2): 0.3 0.3 0.3
Threshold (Layer 3): 1.0 1.0 1.0
Probability (Layer 1): 0.01 0.01 0.01
Probability (Layer 2): 0.05 0.02 0.02
Probability (Layer 3): 0.05 0.05 0.05

Size (Layer 1): 100 150 200
Size (Layer 2): 100 100 80
Size (Layer 3): 40 50 30

Maximum Density (Layer 1): 0.3 0.8 0.8
Maximum Density (Layer 2): 0.1 0.03 0.025
Maximum Density (Layer 3): 0.1 0.03 0.02

Minimum Density: 0.1 0.01 0.01

Table 5.1: Table of user-defined values for the three different showcased styles.
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(a)

(b)

(c)

Figure 5.5: Examples of styles achieved with used-defined values and resources.
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Chapter 6

Conclusions

We proposed a real-time painterly rendering pipeline for volumetric data-sets. The main goal was to
improve upon the work of Lu [28] et al. and Sperl [48] by implementing real-time stylization of volume
renderings using surface properties, as proposed by Meier [32] et al. In order to extract the necessary
information from the volume, we implemented a real-time GPU iso-surface raycaster similar to the
one discussed by Hadwiger [16] et al. The extracted information is passed down the pipeline where
it is used to generate strokes and their properties such as position, colour, size and orientation. For
this, we need information on the iso-surface positions, gradients, optical flow and so on.

The main challenge for the development of this pipeline was the implementation of recent tech-
nology such as the one described by Lu [28] et al. based on a high quality yet notoriously expensive
technique such as raycasting while maintaining an interactive frame rate.

Having finished implementing this pipeline, we have found that we were successful not only at
achieving visually satisfactory output that mimics hand-made paintings but also at keeping the whole
system real-time. From the resulting images, we can notice that its not only colour that is expressed
as information on the volume but also surface topology through stroke orientation and size. Seeing
the pipeline in action, we can see that temporal incoherency problems are reduced since strokes are
persistent along time, yet not static on the screen, avoiding what is often referred to as the shower
door effect (see section 3.5.4 for details).

The implemented pipeline runs smoothly on current generation hardware. The examples shown
ran at an average of over 60 frames per second, rendering a 256x256x256 8-bit volume data-set at
a final resolution of 1280x800 on Intel Core 2 Duo E6300 CPU at 3.15GHz with 4GB RAM and an
NVIDIA Geforce GTX470 using Microsoft DirectX 10 with an average of 30.0005̃0.000 strokes on
screen, although the system supports a much higher number of strokes.

We are pleased with the stylization achieved using our pipeline and believe this is a valuable
tool for artists and designers to express their creativity for emergent visual data structures such as
volumes (for relevant work on volume information applied to the entertainment industry, see Laine [22]
et al.), making use of the available user-definable information that controls everything from colours to
stroke distribution and size.
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6.1 Future Work

Still, we believe that further work can be done in this area. Such work has not been currently im-
plemented either because of time constraints or because the subject might lay outside the scope of
the project. The following sections describe the different areas we consider of higher importance for
further research and/or implementation.

6.1.1 Optimizing GPU Raycaster

Examining the implementation of the proposed project as a whole, it is clear that the greatest bottle-
neck of the pipeline currently is the volume raycasting stage.

Although care was taken to optimize the GPU raycaster in order for the proposed system to run
in real-time, such as early ray termination or iso-surface extraction, further optimizations would lie
outside the scope of the project and thus were not considered during implementation.

Optimizations such as empty-space skipping or swizzling are just two examples of the many
possible to implement in order to increase the performance of the system even further. For more
information on optimization techniques for GPU raycasters, please refer to section 2.3.4 and/or to the
work of Krüger [20] et al. and Engel [11] et al. on volume rendering optimization techniques for the
GPU.

6.1.2 Colour mixing using Volume Contributions

While the current implementation of the system only works on extracted iso-surfaces, many volume
representations are desirable due to their capability to show several layers of information at the same
time and specify which properties are of interest and which are not.

Taking into account all valid contributions from a raycast raises several interesting challenges
such as stroke limitations. The number of strokes necessary to represent all data would increase
exponentially, not to mention stroke overlapping, that is, how to deal with strokes from different layers
in the volume that share the same area on screen.

We would like to research further into painterly rendering using the various contributions of the
volume data-set to define a final pixel. A system could receive all contributions of the volume for a
given pixel instead of a certain surface value. These contributions, and their order, could then be
simulated as mixing or overlaying paint in order to calculate the final colour for a given region of the
volume on screen.

6.1.3 Curvature-based strokes using image-space flow advection

The most interesting area of research that did not make it into this project is the study of the contribu-
tion of curvature information to stroke orientation, in order to optimize how stroke orientations would
map the surface. Previous research in the use of curvature for volume rendering include real-time
curvature calculation, visualization and contribution to non-photorealistic rendering techniques.
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(a) Curvature Colour Mapping. (b) Curvature Ridge and Valley Lines. (c) Curvature Flow.

Figure 6.1: Curvature-based shading, courtesy of Hadwiger [16] et al.

Hadwiger [16] et al. proposed curvature-based shading of iso-surfaces extracted from volume
data. In their work, they approach rendering optimizations, gradient calculation and more importantly,
efficient curvature calculation (based on their previous work [47]) as well as advanced curvature-
based shading effects.

Curvature colour mapping allows control of shading based on principal, mean and/or gaussian
curvature through a one or two dimensional transfer function. An example of this would the to use a
2D transfer function that highlights ridge and valley structures on the surface (see figure 6.1(b)).

Sigg [47] et al. proposed a technique for fast third-order texture filtering where Sigg and Hadwiger
calculate the first and second order partial derivatives in real-time on the GPU.

The first order partial derivatives are approximated using cubic B-splines, that is, the original
data is convolved with the derivative of the proposed filter kernel in order to reconstruct the cubic
B-spline’s derivative. The derived values, also known as gradients (see equation 6.1), are used as
surface normals for illumination.
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In order to efficiently compute the second order partial derivative on the GPU, they create the
respective three dimensional Hessian matrix (see equation 6.2) along with the first order derivative
computations.
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Surface curvature information can be computed with the calculated gradients and Hessian matrix
by evaluating a tricubic convolution filter for each of the nine required components (three values for
gradients and six for the Hessian matrix, due to symmetry). Hadwiger [16] et al. go into more detail
on how to extract principal curvature magnitudes and directions. The principal curvature magnitudes
are extracted from the two eigenvalues of the tangent space projection of the normalized Hessian
matrix (for more information on how to extract curvature magnitudes and directions please refer to
Hadwiger’s [16] chapter on differential surface properties).

In order to visually display the curvature information extracted from the surface, Hadwiger et al.
render the curvature directions based on image-based flow visualization by computing the advection
of each pixel according to the corresponding vector field of principal curvature directions.

Other approaches use curvature information to improve visual cues for expressing surface topol-
ogy in non-photorealistic rendering techniques. Vanderhaeghe [51] et al. proposed a dynamic draw-
ing algorithm for interactive painterly rendering based on the work of Meier [32] et al. that uses the
surface’s principal curvature to orient thick strokes in order to better represent surface shapes using
painterly rendering.

We would like to experiment improving our representation of surface topology and brush stroke
direction by taking principal curvature information into account. We believe principal curvature direc-
tion may provide a powerful and intuitive way of visualizing surface shape and the aforementioned
techniques provide us with feasible alternatives to perform these computations while remaining at
interactive frame rates.

6.1.4 User Perception Tests

As further work, we would like to carry out experiments in order to test how well our results match the
user’s expectations for a human-made painterly representation of the same shapes. We also intend
to test how fast and with how much accuracy users can identify specified surface properties on the
result based on the available visual cues such as stroke size, density and orientation.

Finally, and more importantly, we intend to perform tests on a certain set of participants in order
to determine how our render style affects the recognition speeds of the users, as proposed and
performed by Niall Redmond and John Dingliana [41]. In their experiment, Niall et al. studied the
gaze behaviour (using eye-tracking) and reaction times of twelve participants when instructed to click
upon a particular textured sphere as quickly as possible. This experiment used one hundred scenes
each of which contained one hundred and fifty randomly generated spheres. Twenty of the scenes
used normal 3D local illumination rendering while the other eighty used four different types of non-
photorealistic abstraction. User’s reaction times were averaged for each different render style and an
ANOVA (Analysis of variance between groups) was performed on the results. These results found
that the average recognition speeds for abstracted scenes (1.45s) were faster than normally rendered
images (1.64s), as well as which of the chosen styles performed the best.
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Appendix A

Pseudo-random Number Generator
on the GPU

A pseudorandom number generator, or random bit generator, is an algorithm that generates se-
quences of seemingly random numbers. These sequences though are entirely deterministic.

In order to implement a pseudorandom number generator on the GPU we populate a texture
offline with precalculated pseudorandom values for each available texel. This texture is passed onto
the necessary shaders, and applied to a texture sampler that wraps the texture coordinates around
their domain t ∈ [0, 1]. When sampling for random numbers in the texture, the appropriate texture
coordinates are generated as a function of both the screen-space coordinates where the lookup
is being performed and the current time. The result from these lookups should give us a random
sequence of numbers long enough to accommodate the number of queries demanded per frame.
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Appendix B

Glossary

ANOVA (Analysis of variance between groups): a collection of statistical models, and their as-
sociated procedures, in which the observed variance is partitioned into components due to different
sources of variation.
Cel-shading: a type of non-photorealistic rendering designed to mimic the style of traditional 2D
animation.
CPU (Central processing unit): the component of a computer system that carries out the instruc-
tions of a computer program; the primary element carrying out the computer’s functions.
CT (Computer Tomography): medical imaging method that processes geometry to generate a
three-dimensional image of the inside of an object from a large series of two-dimensional X-ray im-
ages taken around a single axis of rotation.
Geometry Shader: a graphics processing function that receives output from vertex shaders and emit
zero or more primitives, passing them along towards the pixel shader for rendering and/or streaming
them back into memory.
GPU (Graphics Processing Unit): a specialized microprocessor that offloads and accelerates 3D
or 2D graphics rendering from the CPU.
Gradient: a vector field which points in the direction of the greatest rate of change of the scalar field.
Hatching: a technique used in drawing wherein an artist expresses shapes using closely spaced
parallel lines that follow the curvature of the forms they are used to describe.
Image-space: object coordinates are defined in the image coordinate system.
Iso-surface: a set of voxels that describe a surface whose value is contained within a specified
threshold.
Iso-value: a value that specifies voxels belonging to a certain iso-surface.
MRI (Magnetic resonance imaging): noninvasive medical imaging technique used in radiology to
visualize detailed internal structure and limited function of the body.
Octree: a common 3D space partitioning structure; a tree data structure in which each internal node
has exactly eight children.
Painterly Rendering: a stylization technique that mimics the visual appearance of a hand-made
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paintings.
Phong: an empirical model of local illumination that describes the interactions between light and a
surface as a combination of ambient, diffuse and specular reflectivity components.
Pipeline: a set of data processing elements connected in series, so that the output of one element
is the input of the next one.
Pixel Shader: a graphics processing function that computes the final output (usually colour) and
other attributes of each pixel.
Polygon: a closed planar path composed of a finite number of sequential line segments (often trian-
gles) used as a primitive entity for rendering of more complex objects.
Posterization: conversion of a continuous gradation of tone to several regions of fewer tones, with
abrupt changes from one tone to another.
Pseudocode: a compact and informal high-level description of an algorithm intended for human
reading.
Render call: a full execution of the graphical rendering pipeline.
Reprojection: tracking the position of a pixel in the current and previous frame through its current
and previous transformations.
Shower door effect: constant brush-strokes positions on screen result in the distortion of the under-
lying shape with a certain static texture as if it were being viewed through textured glass.
Sobel filter: a discrete differentiation operator, computing an approximation of the gradient of the
image intensity function (used on edge detection algorithms).
Texel: a single data value in a texture with a respective texture coordinate.
Texture: an image held in memory that can contain colour (or other) information and can be applied
to geometry using texture mapping.
Transfer Function: a function that maps one or more input values into visual information such as
colour.
Vertex: a point which describes the corners of polygon primitives.
Vertex Shader: a graphics processing function that manipulates each vertex’s 3D properties and
positions them from virtual space to the 2D coordinate at which it appears on the screen.
Viewport: the 2D rectangle used to project the 3D scene to the position of a virtual camera.
Volume (Volumetric Data): 3D discretely sampled fields of data.
Voxel: a single data value on a 3D data field (volume).
Watercolor: the medium in which the paints are made of pigments suspended in a water soluble
vehicle.
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Appendix C

Painterly Renderings

Figure C.1: Bonsai Tree (256x256x256 8-bit)
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Figure C.2: Orange (256x256x64 8-bit)

Figure C.3: Lobster (301x324x56 8-bit)
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