
Procedurally Aided Level Design

by

Dariaus Stewart, B.Sc.

Dissertation

Presented to the

University of Dublin, Trinity College

in ful�llment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2010

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Dariaus Stewart

September 14, 2010

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Dariaus Stewart

September 14, 2010

Acknowledgments

I would like to thanks my supervisor Mads Haar and course director John Dingliana

for their help and suggestions with this project. I would also like to thank my friends

and peers in the Interactive Entertainment Technology course for a truly memorable

experience.

Dariaus Stewart

University of Dublin, Trinity College

September 2010

iv

Procedurally Aided Level Design

Dariaus Stewart

University of Dublin, Trinity College, 2010

Supervisor: Dr. Mads Haar

Recent research in procedural content generation has demonstrated ways of creating a

vast amount varying geometry. From multiple types of variant terrain to vast cityscapes

have been explored. Many theorised that the methods employed in such research

would become adopted by the games industry to solved their growing development

costs for producing game content. But this has not been the case apart from a few

exceptions. The purpose of this research is to explore the task of applying procedurally

generated content intended for use within games. It is probable that content produced

procedurally must meet other criteria that would allow it to be more pliable.

This thesis will �rst analyse the multiple applications of procedural generation

techniques and looks at their usefulness within game development. The fundamental

theory within this report, is that procedurally generated content in most cases, would

be unsuitable for use in games. The reasons for this are numerous but the foremost one

is the lack of control and �exibility available when procedural methods are employed.

This report advocates that content for games should be authored by designers on

v

an abstract level and then procedurally enhanced to create detailed physical models.

This is to allow the author to explicitly state the inclusion of certain desired aesthetic

features.

To demonstrate this theory a unique approach to developing suitable game con-

tent using various procedural content generation techniques is presented along with a

example implementation. Speci�cally the generation 3D game levels will be done to

highlight the merit of this method. This novel approach demonstrates how procedural

methods, if applied tactfully, can generate quality content that would be usable in a

variety of game genres. The output will conform to the structure provided by the

author but also introduce small random elements to aid replayability.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Goal . 1

1.2 Motivation . 2

1.3 Document Outline . 3

Chapter 2 Background 4

2.1 Procedural Techniques . 4

2.2 Level geometry . 5

2.3 Structuring level design . 6

2.4 Gameplay . 7

2.5 Storytelling . 7

2.6 Interface . 8

Chapter 3 State of the Art 9

3.1 Generation Systems . 9

3.1.1 Procedural Vs. Manual Modeling 9

3.2 Procedural Geometry . 10

3.2.1 Procedural Terrain . 10

vii

3.2.2 Sketched Terrain . 13

3.2.3 Ecosystems . 14

3.2.4 Urban Modeling . 16

3.3 Level Representation . 18

3.4 Gameplay . 18

3.4.1 Drama and Immersion . 19

Chapter 4 Design 21

4.1 Abstract Level Representation . 21

4.2 Interface . 22

4.2.1 Graph Construction . 22

4.2.2 Secondary Interface Elements 22

4.2.2.1 Edges . 22

4.2.2.2 Nodes . 23

4.3 Procedural Enhancement . 24

4.3.1 Resolving Graph Con�icts . 24

4.3.2 Generating Terrain . 24

4.4 Additional Details . 25

4.4.1 Vegetation . 25

4.4.2 Urban Road Networks . 25

4.4.3 Buildings . 26

Chapter 5 Implementation 27

5.1 Interface . 27

5.1.1 Graph Editor . 27

5.1.2 Node Options . 28

5.1.3 Edge Options . 29

5.2 Procedural Enhancement . 30

5.2.1 Graph Enhancements . 30

5.2.2 Terrain Generation . 33

5.2.3 Vegetation Distribution . 34

5.3 Random sub-graphs . 35

5.3.1 Replacement Procedure . 36

viii

Chapter 6 Evaluation 38

Chapter 7 Conclusions and Future Work 40

7.1 Conclusions . 40

7.2 Future Work . 41

7.3 Closing Thoughts . 41

Appendices 43

Bibliography 44

ix

List of Tables

x

List of Figures

3.1 Simple Fractal Image . 11

3.2 Sample Terrain Generated from Fractals 12

3.3 Terrain Sketching . 14

3.4 Plant Distribution based on Slope and Altitude 15

3.5 Plant Distribution using Size and Proximity Constraints 15

3.6 L-System Example . 16

3.7 Plant Generated form L-System . 16

3.8 Frequent Road Patterns . 17

5.1 Example Graph . 28

5.2 Altitude Visual Aid . 29

5.3 Inclination Visual Aid . 30

5.4 Urban Road Generation . 31

5.5 Terrain Generation . 34

5.6 Terrain with Noise Applied . 35

5.7 Graph Grammar Productions . 37

xi

Chapter 1

Introduction

1.1 Goal

This project and dissertation focuses on the development of a unique system which

can author content to be used as 3D levels within video games. The system should

be �exible enough to generate a wide variety in content so that it can be reusable for

multiple types of game genres.

To achieve this, two objectives much be reached. The �rst will be to design and

create an intuitive interface that can not only be utilized by developers but also by

none technical personnel such as consumers. This will require user input to be kept at

a minimum but still o�er enough options to guide the procedure to generate desirable

content. Using the interface, users will describe the basic layout of the level they want

to generate by controlling the placement and shape of landforms with the inclusion of

other aesthetic features.

The second objective will be to implement a procedural system which can enhance

the outlined basic level structure into the full geometry of a level using procedural

techniques. The system should be robust and produce varied terrain types. These

terrain types may not always produce realistic results. Limiting the system capabilities

in such a way to produce only realistic outputs would also limit users creativity. Games

can be incredibly creative media forms so it is important for the system to be �exible

in this area.

While achieving these objectives, this research will demonstrate the strengths and

1

weaknesses of procedural content when they are applied a highly interactive form of

media such as video games.

1.2 Motivation

While the procedural generation of multiple types of geometry has been extensively

research, applying them to a speci�c purpose such as game development remains rel-

atively unexplored. Also past research only focuses on one type of geometry, however

for this system to be successfully used in games development, it will have to be �exible

enough to incorporates multiple types of geometry simultaneously.

A system like the one purposed has multiple applications. If it can't produce content

of a high enough quality to be used in games, it could be a way of rapidly prototyping

levels. This is important in games as levels need to tested excessively to ensure their

pacing is correct. It could also be a light weight tool suitable for consumers to use as

consumer generated content has proved to be a successful method of expanding game

content.

With the speci�c purpose of being using in games, it could incorporate other things

into the procedure that could aid other areas game development. For example it could

generate a navigation mesh along with the geometry that could aid path-�nding for

computer controlled agents. Utilizing the compression capabilities inherent in proce-

dural techniques, the data size of the levels would be signi�cantly smaller than those

created using traditional tools. This would help ease the growing demands on storage

and facilitate faster downloads of downloadable content which is now quite common.

The need for optimisations is an important thing within the games industry and some

procedural techniques can be easily adapted into level-of-detail algorithms.

This research will also give insight into whether procedural techniques are a viable

alternative for creating game content. Advantages and disadvantages of such a com-

prehensive system will be investigated and if the approach is suited to certain content

more than others.

2

1.3 Document Outline

The remainder of this thesis is structured as follows:

Chapter 2 provides a brief background to some of the topics related to this research

Chapter 3 contains a review of research done in various areas that are relevant to

the topic of this thesis. It includes a description of multiple types of procedural

generation methods for terrain, ecosystems and urban environments.

Chapter 4 introduces a novel approach to level authoring that is aided and extended

by some procedural methods described in the previous chapter.

Chapter 5 describes the development of a system that implements the approach pre-

sented in the previous chapter. Individual components are detailed and the rea-

sons for their exact implementations are speci�ed.

Chapter 6 Evaluates the system developed on the basis on its original goals. The

e�ectiveness of elements integrated into the approach are also investigated.

Chapter 7 Concludes this report and discusses the overall results of the project and

details �ndings discovered during its production. Future work is also suggested.

3

Chapter 2

Background

2.1 Procedural Techniques

�Procedural techniques are code segments or algorithms that specify some characteristic

of a computer-generated model or e�ect. For example, a procedural texture for a

marble surface does not use a scanned-in image to de�ne the color values. Instead, it

uses algorithms and mathematical functions to determine the color.� [25]

Procedural techniques were originally used to generate textures and became an

active area of research on their own when they were �rst used to create realistic 3D

textures in [20]. Procedural techniques have since been exploited as vital tools for

creating realistic graphics in applications ranging from movie special e�ects to computer

games. They have most successfully been applied to the animation and simulation of

natural phenomena such as fog, �re, water, and atmospheric patterns [8].

There is also an inherent compression capability when using procedural approaches.

Rather than explicitly specifying and storing all the complex details of the content being

generated, they are abstracted into functions or algorithms that form a procedure.

Storage savings are gained as the details are no longer explicitly speci�ed but implicit

in the procedure. The game .kkrieger [27] impressively demonstrated this fact by

creating a game which only uses 97,280 bytes of storage, whereas if it were made using

conventional techniques it is speculated the it would require around 200-300 MB.

4

2.2 Level geometry

The level geometry in today's games is usually stored as a �xed model. Although this

is wasteful it is currently acceptable due to the large storage capacities available. It

is admissible to acknowledge this will not always be the case. In the previous decade

games have progressed beyond the capabilities of numerous storage devices as CD's

and DVD have been superseded by Blu-ray [2]. The hard disk drive capabilities of

the current generation of game consoles are also being used extensively for installing

additional game content. Utilizing the compression aspect of procedures, procedural

approaches to content generation could be used to ease these demands on storage.

The predominant use of procedural methods lately has been the generation of var-

ious forms of geometry. There has been numerous research papers on the procedural

generation of terrain, cityscapes, dungeons and interiors. Also real-time and o�ine

generation of teleological and ontogenetic content has both been explored. These tech-

niques have yet to be accepted into mainstream game development as they possess a

number unreliable traits. Giving more control to an algorithm to produce the content,

means less control is given to the author. This severely limits the creativity of the

author to whatever the procedural techniques allow. Algorithms that employ stochas-

tic elements contain potential risks for developers as they can produce content that

maybe un�t for consumer consumption. Also the ability of capturing emotion within

the output is something which has remained unexplored.

Despite these weaknesses, procedural geometry has been used on occasion very

successfully within games. For example SpeedTree has been utilized extensively for

the supply of vegetation to multiple games. The 5,000 square miles of terrain within

the game Fuel [7] is entirely procedurally generated at runtime, as it would impossible

to store it as a �xed model. A similar but ultimately more extreme approach to

geometry is being used in In�nite [4]. Entire galaxies are created procedurally where

the user is capable of seamlessly traveling from planet to planet uninterrupted by load

times. This is possible because the procedural terrain can have the natural ability to

be reproduced at desired resolutions. This allows an adaptive Level-of-detail to be used

to ensure player immersion is not lost with the interruptions of loading screens.

5

2.3 Structuring level design

Traditionally the structure of levels within games is entirely linear. This is approach has

many advantages. It allows the developers to dictate the players experience throughout

the level with a high degree of control. By guiding them along a set path they can trig-

ger dramatic scripted events and ensure that the player is in the best place to witness

them. It is simple to design and simple to use as players know instantly the direction

they're meant to traveling. Because of its simplicity this method is usually deployed

within fast paced games where the challenge of navigating levels is secondary to other

challenges within the game. The one main drawback of this approach is that it greatly

reduces the replayability of the game. Because of the linearity, the challenge of the

game becomes a memory exercise. Games have tried branching paths and storylines

to positive e�ects but they are time consuming to construct. The best approach for

achieving non-linearity, is to create open-world designs or randomly generated struc-

tures.

Open-world maps add another dimension to gameplay where the player can tactfully

decide how to proceed through a level and approach its problems. Because of this, this

method is usually deployed in games that promote strategic gameplay. This approach

requires careful planing on behalf of the developers because if it is not implemented

correctly it can ultimately have a negative e�ect on the game. This can happen when

developers spend too much time creating this extra content they don't have time or the

means to make this extra space as interesting or interactive as a smaller more compact

space.

So far only dungeon based levels and expansive open world terrain have been ex-

plored procedurally within games. The dungeon based attempts have been criticized

for being repetitive and dull. This is likely due to the generation algorithm being re-

stricted to containing only a limited number of prefabricated objects. Because of the

vast amount of content that can be produced by procedural methods, especially when

it comes to terrain, there is an expectancy for it to be used in open world applications.

Detailed levels can be produced however giving all of the content a context or a purpose

has been a problem and therefore may only suit a limited number of genres.

6

2.4 Gameplay

Gameplay can be describe by either emergent or progressive. Emergence is found in

games that have developed numerous robust and logical systems that leads to player-

unique solutions to situations in the game that developers didn't anticipate. Types of

games where emergence is normally found are usually strategical inclined. Progressive

is more common and is found in linear games, where the player behaves according to

how the designers expected by using the game mechanics the way they were intended.

Usually the levels include a number of highly scripted events to provide the best user

experience.

Recently there has been experiments using procedural content in an attempt to

fabricate the players experience. The content generated ranges from simple quests to

the quantity of enemy combatants. Results suggest the generation of entire quests to

be too ambitious and yielded negative response. However the generation of smaller

challenges such as the amount and type of enemies that engage the player in particular

areas was far more successful. This is because the repetition of smaller challenges is

acceptable whereas in the repetition of quests the player does not get the feeling that

progress has been made, which should be part of the reward.

Another advantage of generating the smaller challenges procedurally, is that there

is the possibility of scaling di�cult to adapt to the players skill. These approaches are

an attempt to remove the predictability present in linear games.

2.5 Storytelling

Narrative experiences within games has almost solely been expressed in a linear fashion.

It was suspected that this linearity was reducing the replayability of campaigns within

games. Attempts at creating stories with branching elements have been used but only in

rare occasions. This is probably because of the di�culty in creating intricate storylines.

This is has become a realisation within the games industry and so other strategies have

been used increase replayability without creating multiple branching storylines. These

include dynamic gameplay as mentioned brie�y in the previous section and the option to

playing through campaigns cooperatively with other players. It has also been problem

for procedural generators to achieve content that is in keeping with the accompanying

7

narratives.

2.6 Interface

One of the overlooked aspects of designing a comprehensive procedural generation

system is de�ning a user interface that allow users to intuitively manipulate the user-

accessible parameters of the procedure, so that they can have better control over the

outcome. This is vital because generally developers have ideas for content, usually in

the form of concept art, and want certain aspects present in the eventual outcome.

This is where most procedural systems fail to produce good content, as developers lack

desirable control to structure the outcome.

The interfaces for managing procedural data are often either custom implementa-

tions for a speci�c project and often do not exist outside of the code itself, requiring

designers using the system to have programming knowledge. Procedural methods may

produce a lot of content quickly. However the quality of the content is usually de-

�ned by how well developed the procedure generating it is. Therefore the output of

under-developed procedural methods are more than often uninteresting both in terms

of gameplay and visuals, and produce repetitive results.

Procedural interfaces must minimize programmer involvement and be �exible enough

to e�ectively control the outcome of generated content. This is necessary as content

may have to comply to certain criteria to be usable. Another reason to incorporate a

friendly interface, is that consumer produced content is recently becoming a popular

method of adding more content to games, therefore it is not unlikely that the end users

to the system may be consumers that are unfamiliar to technical development tools.

8

Chapter 3

State of the Art

3.1 Generation Systems

3.1.1 Procedural Vs. Manual Modeling

For modeling content for games there are two opposing approaches. There is the tradi-

tional method of manual modeling and the considerably less used procedural approach.

Software that specialises in manual modeling such as Autodesk's 3ds Max or Maya,

focus on providing a comprehensive toolset that allow users to model almost anything

their imaginations can visualise. This is undeniably the greatest asset for this type

of modeling but ultimately the root of all its negative aspects. The tools although

comprehensive can take a lot of e�ort to learn and are incredibly intimating for new

users due to their clustered and complex interfaces. Such tools have been used within

the games industry for a majority of the previous two decades and have since grown to

become quite expansive, encompassing a variety tools that aid animation and rendering

as well as modeling. However they are still laborious and repetitious in use and require

specialized 3D modeling skills to be utilized to their full potential. Currently these trade

o�s are considered worth taking but it is becoming somewhat of a concern within the

games industry as it is becoming incredibly expensive to produce content in this way.

This is due to the time it consumes produce the content in the vivid detail that is

expected by today's consumers. Using this approach it is possible to de�ne every point

within terrain, and the position and properties of every object within the landscape.

This gives designers absolute control but depending on the size and complexity of the

9

intended content, it can require an excessive amount of time to create and memory to

store.

Procedural approaches are on the opposite side of the spectrum where they are less

developed and therefore less used within the games industry. Their strengths are the

speed and quantity in which they can produce content. Also they have small memory

footprint as they are only stored as code. The largest issue impeding procedural meth-

ods from being used in games is the lack of control they o�er users. The outcome is

entirely limited to how well developed the procedure in use is. Also procedures typi-

cally only produce one type of content, be it �ora, terrain or buildings. However when

they are combined successfully they can produce some incredibly compelling content

and can save the designers from a lot of tedious work specifying details.

Manual modeling tools have been developed to the a point where the only restric-

tion on the output, is the creativity of the designer. However their increasing costs

are making procedural methods a promising approach but are ultimately too under-

developed to become an alternative. To further the use of procedural methods, the

procedures used will have to become incredibly dynamic and �exible, removing their

limitations or at least making them more transparent.

It is possible to facilitate the strengths of both by using a combination where the

designers are allowed the freedom to specify aspects of large portions of the content an

allow procedural methods enhance these into a detailed model saving the designer from

any tedious and repetitive tasks. Parametrization of the procedural functions would

allow designers to accurately specify details within the generated content and allow

more creative freedom. It is this type of approach that is used within this project.

3.2 Procedural Geometry

3.2.1 Procedural Terrain

To date there is a lot of research on the procedural generation of terrain because due

to is complexity and vastness it would be incredibly laborious to create manually. Also

some simple techniques that generate terrain can produce realistic results. There are

two types of approaches for generating terrain, teleological and ontogenetic.

The teleological approaches focus on creating realistic results through the simulation

10

Figure 3.1: Simple Fractal Image

of real-world physical phenomena. As to be expected, these approaches achieve a

high level realism, however they are incredibly computationally expensive to perform.

Contrary to this approach is ontogenetic modeling which does not rely on physically

accurate calculations to produce its outcome but is in fact based on no more than visible

morphological features. This approach is generally preferred because it is quicker to

generate as multiple iteration may have to be preformed before a desired outcome is

achieved.

A very common approach to generating ontogenetic terrain, is through using fractal

geometry. Fractals are �a geometrically complex object, the complexity of which arises

through the repetition of a given form over a range of scales.�[25]. Fractals posses

dialated symmetry where the object is invariant under change of scale. For example,

a small part of a cloud looks like a larger part, but only qualitatively, not exactly. An

example of a fractal can be seen in �gure 3.1 and example fractal terrain in �gure 3.2.

Key algorithms for generating fractal terrain are demonstrated in [13, 26].

Simulating various forms of erosion upon a base terrain model is a common approach

to adding an extra layer of realism and detail to terrain. Erosion techniques have

been researched by for almost two decades with Musgrave et al[16] describing one of

11

Figure 3.2: Sample Terrain Generated from Fractals

the �rst algorithms for visually simulating terrain erosion. Typically erosion dissolves

material from steep slopes and transports it downhill where it is then deposited at

lower inclinations. The result tends to make steep slopes even steeper, and �atten

out low-altitude terrain where the transported material is deposited. This is exactly

the e�ect achieved by Chiba et al [6] which simulates the forces caused by running

water on the terrain surface. The water is approximated by particles and a simple

collision detection algorithm is used to simulate the erosion. These approaches are

however quite expensive to calculate and therefore unlikely to be used in games or

any other media in which terrain may be generated at runtime. For such cases, there

are less physically accurate methods that achieve acceptable results. For example the

research in [18], applies certain optimisations to pre-existing algorithms for thermal

and hydraulic erosion, to achieve suitable eroded terrain within acceptable times.

Although the methods described in this section produce realistic terrain, in most

cases such results would be unsuitable for use within games for anything more than a

scenic backdrop. This is because they lack fundamental aspects, such as a navigable

paths, which are necessary for typical games in which players must traverse the terrain

in some manner. [18] attempted to ease this problem by generating terrain with more

�at areas, however this approach lacks the ability to add speci�city to this feature

which would enable designers the control to produce more usable terrain. It is clear

that more input form the designer is required to produce usable content but for this to

12

become a viable approach there must also be a generation process that can take this

input and produce suitable terrain.

Generated terrain may be represented in many formats once generated. Most com-

mon of these is as a height-map which is a two-dimensional grids of elevation values.

Most of the methods in this section work exclusively with height-maps. This is mainly

because of their simplicity and ease of use.

3.2.2 Sketched Terrain

This is a relatively new approach to generating terrain and certain features held within.

The idea is that the user provides a generative system with sketched based inputs such

as splines, which are in turn interpreted by a procedure that will produce some sort of

3D output.

One of the more successful implementations of such a system can be seen in [9].

Here users can control the placement and shape of landforms without sacri�cing realism.

This system enables users to draw a silhouette, spine and bounding curves of hills and

mountains and may embed other landforms such as river or canyons. With a sketching

interface users can interactively create or modify landscapes that include varied and

complex landforms. An example of the input and output of this system can be seen

in �gure 3.3. This method appears to be a very natural and intuitive approach and

provides superior control over the output compared to the parameter manipulation of

the methods in the previous section.

A more recent exploration of this approach can be seen in [23] where not only terrain

is produced but also vegetation, urban districts and roads. This research comes closer

than any previous research towards a framework that may be suitable for developing

usable content for games. This is because it does not focus on one aspect of the content,

such as the terrain, but incorporates other aspects which usually co-exist with the

terrain. It also combines these aspects in a user friendly manner enabling non-specialist

users the ability to create interesting content quickly. It has two main interaction

modes: landscape mode, where users de�ne ecotopes including elevation ranges and

terrain roughness; and feature mode, in which elements like rivers, roads, and cities

are placed on the above landscape. The procedural sketching facilities described here

provide designers with the productivity gain of procedural methods, while still allowing

13

Figure 3.3: Terrain Sketching
[A] the user sketches a silhouette curve. [B] A matching landscape is created by surface
deformation with noise propagation.

for �ne user control. Although this research describes a framework which incorporates

multiple procedural techniques it does not specify which ones it uses or which ones

work best with this framework.

3.2.3 Ecosystems

Generating ecosystems is usually the �rst step after generating terrain to add detail to

the environment. This involves two things: the generation of the various plant life that

will be contained within the terrain; and the distribution and placement of this plant

life. The complexity of natural scenes makes them not only di�cult to render, but also

to specify. The challenge stems from the visual complexity and diversity of possible

modeled scenes. Fortunately this is one area procedural methods are considerably well

equipped for as it would be extremely tedious to model and place every plant form

within a scene.

The distributions of plant life is a complex phenomena which is the result of a

staggering amount of variables which include soil chemistry, local climate, botanical

history and competition with other plants within the area. Calculating each of these

factors would likely result in an accurate, however this is unnecessary as plausible

results can easily be achieve through rather simple methods. In �gure 3.4 you can

see the distribution of trees based on an algorithm de�ned in [10], were the slope and

14

Figure 3.4: Plant Distribution based on Slope and Altitude

Figure 3.5: Plant Distribution using Size and Proximity Constraints

relative height of the terrain determined the placement of the trees. To simulate the

competitiveness between plant life, found where larger plants dominate the resources

in its area, proximity constraints are simply placed to prevent other plant life being

placed too close. This method was purposed in [12] and an example can be seen in

�gure 3.5. There are also some other natural entities, such as stones, which can use

similar distribution algorithms as plants.

L-systems or Lindenmayer systems have been central to plant geometry modeling

since they were �rst used together in [21]. The central concept of L-systems is that of

rewriting, which is a technique for de�ning complex objects by successively replacing

15

Figure 3.6: L-System Example

Figure 3.7: Plant Generated form L-System

parts of a simple initial object using a set of rewriting rules or productions. For an

example using strings, say we have the initial string �A�, where we use the production

rules (A � AB) and (B � A). In �gure 3.6 we can see the results of these production

rules after n iterations. This simple concept is expanded upon to create complex plant

structures such as the one in �gure 3.7.

3.2.4 Urban Modeling

The modeling of such environments is usually undertaken in two steps. The �rst to

generate a suitable road networks and the second is to populate the remaining space

with various buildings.

16

Figure 3.8: Frequent Road Patterns

[19] introduces an e�cient way to procedurally model complete cities. Natural

looking road networks are �rst constructed using context-sensitive L-systems. Using a

small set of statistical and geographical input data the generator can produce realistic

results. This input data, represented in various maps for population density and land

gradients, provide the context-sensitive L-system with vital information. Using the

input data roads can be attracted to areas of high population density or avoid moun-

tainous areas. Another important goal during road generation is the compliance with

the dominant patterns in that area. These patterns are demonstrated in �gure 3.8.

Once the road networks have been de�ned the remaining space is usually subdivided

into lots which will eventually contain buildings or parks. [15]describes a novel shape

grammar approach for the procedural modeling the exterior of buildings with high

visual quality and geometric detail. The context sensitive shape rules allow the user to

specify hierarchical shape descriptions therefore incorporating a high level of control

which is usually absent in procedural methods. This method can be used to model

a wide variety of building geometry, ranging from skyscrapers to sub-urban homes

provided the users can provide accurate design rules. A case study was carried out

were the ground plans and �gures of selected building types from the excavation site

at Pompeii were used to abstract 190 design rules. These were then used to model the

complete city including the streets and placement of trees.

Such work could be used in a multitude of games. Its �exibility and control could

easily provide game designers with the means of creating in�nite worlds should they

wish to do so.

17

3.3 Level Representation

During the production of games, the levels present within them often go through many

representations before they are produced in the full 3D or 2D graphical outputs the con-

sumers will ultimately view them as. Commonly the �rst representations are sketches,

concept art and then whiteboards. After these, production of the �nal level begins and

is usually constructed in a manner that aids its �nal form.

For example, with 2D games that use a tile-based layout, designers often start out

with an empty 2D grid, be it square, hexagonal or triangle. They then choose from a

discrete set of tiles which can be considered as building blocks and place them onto a

grid structure. Each tile may also posses properties which e�ect gameplay making this

a very e�cient way of building interactive content. However the restrictions of the grid

make this approach unattractive for many 3D games as its di�cult to achieve realistic

organic structures such as landscapes.

A geometric/freeform approach is usually used to construct such structures as it

imposes very little restrictions on the designer. This is a common approach for nearly

all 3D games. The only drawback of this method, is that it is usually takes consid-

erable time constructing level geometry as tools can be incredibly complex requiring

experience to use e�ciently and get good results.

Graph structures are sometimes used to represent dungeon levels within games.

With this approach nodes commonly represent rooms or junctions and edges represent

corridors. This abstract approach is interesting as you can provide additional data to

the nodes and edges which can e�ect how they are �nally illustrated or in the case of this

research, generated. If nodes could represent homogeneous areas such as terrain and

urban districts and edges represent roads, rivers or other linear features, this structure

could be used to specify large amounts of geometry with minimal input. Because of

the 2D restriction, altitude data will have to be supplied to nodes and edges to aid

with the generation of a 3D output.

3.4 Gameplay

In this section we examine how the geometry within a level can e�ect gameplay. This

is important because when procedurally generating geometry, there may be things we

18

can tweak to aid certain gameplay elements. The most common gameplay element

associated with procedural content is replayability. This is a direct implication of

the randomness that is usually contained within most procedural approaches. The

objective with randomly constructed levels is to remove the predictability which is

commonly found in static levels upon replay. A common approach to dungeon level

generators is to create a set of prefabricated elements, that are consistent with the

game's narrative and randomly construct levels from these elements. However, even

though the level structure is random, the individual prefabricated elements aren't and

eventually become repetitive themselves. The technique of this method is reasonable,

but its downfall is the limited number of prefabricated elements which still have to be

constructed by hand. Approaches which are capable of creating random levels that are

consistent with narratives are being researched, with such works like [17] using the the

users actions within the game environment aiding the procedural content generation

process.

The di�culty of a level may be signi�cantly in�uence by the terrain. For example

in driving simulation games or any other game were land transportation is a large part

of gameplay. Within these games, the ability of the player to successfully navigate

the terrain can be hindered if the terrain is di�cult to traverse or has an unconven-

tional design that confuses players. Also elements of smaller areas of the level may be

strategically placed to promote certain gameplay tactic like the approach in [5]. The

placement of these elements could be written into a procedure and then easily reused

when generating extra content.

3.4.1 Drama and Immersion

Using procedural methods to create drama and immersion is an unexplored area of re-

search but recently has been used to great e�ect in the survival horror game Left4Dead

[3]. The entity known as �AI Director� within its engine procedural generates enemy

populations whenever necessary to either increase or decrease the player's emotional

intensity. This enables players to have di�erent experiences during each gaming session

and removes most of the predictability found in static games.

The game also employs various environmental and atmospheric e�ects to add addi-

tional drama and immersion[14]. These include using �lm techniques for adding details

19

to dark settings and manipulating lighting to enhances moodiness and suspense with

the objective of creating dark, scary cinematic environments. Although in this case

the atmospheric e�ects are achieved by shaders, they could easily be incorporated into

a procedural level generator. For example generating levels that strategical place or

limit the number of light sources.

In�nity: Quest for Earth uses procedural geometry extensively, generating entire

galaxies of planets in which users are free to travel to and from seamlessly. This is

possible as the planets are procedurally generated at runtime at varying resolutions

depending on the users proximity. This is important as the players experience is never

interrupted during gameplay by loading screens and therefore maintaining immersion

within the game[28].

20

Chapter 4

Design

The approach taken for this project was to �rst decide on a suitable abstract level in-

frastructure. This should be �exible enough to allow a user to easily construct variable

3D environments. Its abstract nature would streamline the toolset for modi�cations

and could be extensible to produce more varied types of 3D environments. The in-

terface is then assembled around this and must enable users to intuitively construct a

description of a 3D environment.

The next major component of the project is the procedural generator. Its purpose

is to produce a 3D model which conforms to the description outlined by a user through

the interface.

4.1 Abstract Level Representation

The structure that the user will create and modify to produce their 3D level will be a 2D

graph. Users should �nd this easy to relate to as it represents a top-down view of the

eventual 3D environment. Within the graph, nodes will represent homogeneous areas

such as terrain and urban districts. Edges will represent roads, rivers or other linear

features. In this research the eventual output is an exterior 3D environment, however

it is possible to extend the system to also produce interior environments where edges

represent corridors and nodes represent rooms and junctions.

Because of the 2D restriction, altitude data will have to be supplied to nodes and

edges to aid with the generation of a 3D output but because the structure is suitably

21

abstract users can specify large amounts of geometry with minimal input.

4.2 Interface

As the abstract level representation resembles a graph, the primary interface will in-

corporate graph editing functionality. Secondary interface elements will be contextual

depending on the selected component, be it an edge or a node.

4.2.1 Graph Construction

Su�cient graph editing tools must be implemented to allow the user to easily create

and modify a graph structure.

This will mean users must have the ability to create nodes and edges where every

edge must connect two nodes. Users may also remove edges and node. When a node

is removed, any edges incident upon it must also be removed. When users select a

node or edge, they must be highlighted and the secondary interface elements must be

displayed to allow the user to edit the properties of the selected graph component.

4.2.2 Secondary Interface Elements

As the level representation is abstract, to be able to further de�ne the level, additional

properties must be added to the nodes and edges.

4.2.2.1 Edges

As stated earlier, edges represent linear structures. The user will able to specify what

linear structure the selected edge represents as this will have rami�cations during the

procedural enhancement stage.

The most powerful editorial feature of edges is the ability to de�ne the inclinations

of the terrain which lay either side of the edge. Although this may seem simple it

provides a great deal control to the user. This enables a user to place vast chasms,

steep mountains or �at planes on either side of the edge. As currently the user is

only viewing the abstract level representation, it is important provide visual aids to

the users when de�ning properties that have large impacts on the end result such as

22

the inclinations. Therefore there should be a small graphic to inform the user how the

properties will e�ect the outcome. This will allow the user to control the output with

more accuracy.

By altering the edge's �Path Variance� property, the user can specify how much the

eventual path will deviate. Supplementary to this is the property �Width Variance�.

This will control the intensity of the deviance. These are interesting controls as one

could use them to in�uence the di�culty within of a game. This could be true for

action games where the player would have to endure a longer path if the path and

width variance properties were set appropriately. This could also be true for driving

games.

4.2.2.2 Nodes

Nodes have a number of properties available to edit. Most of these relate to altitude

as the graph is in 2D. Here the user may specify the maximum and minimum altitude

of the surrounding terrain. Also the altitude of any edges which are incident upon the

node may be speci�ed. These altitudes can be viewed on small graphic to aid the user

when altering them. The user can also specify the size of the area surrounding the

node in which these properties e�ect. This should also represented visually.

It should also be possible to state if the area of land represented by the current node

is attached to the main land mass. If the node is de�ned as detached, it will become

a separate land mass i.e. an island. This feature could be used by the user simply for

aesthetic reasons but could also be used to add platforming gameplay to the eventual

level.

The user can also specify if the node hosts an urban environment. When selecting

this property the user should also be able to specify how organised the additional roads

within the urban area will be generated.

The user may also specify the vegetation density of the area occupied by the node.

This should also e�ect urban areas. For example, a small density may represent trees

planted along the sidewalks whereas a large density could be use to simulate a desolate,

possibly abandoned environment which has been overgrown with various plant life.

23

4.3 Procedural Enhancement

The 3D model must be generated with the intention of it being used within a game.

Therefore the generator must enforce conformity's such as ensuring de�ned paths are

navigable and possibly promote replayability by adding random segments. Realistic

environments must be achievable but considering games can be very creative, unrealistic

results should also be achievable.

However, before the output can be generated any con�icts that may be present

within the graph must be resolved. An example of such is intersecting edges which

may be solved by creating bridges.

The output of this stage should be a 3D environment. To represent the terrain, a

height map will be constructed. This is a very common method for representing terrain

as it is very portable. This is due to the fact that it can saved as an image. Other

elements within the 3D environment such as vegetation, bridges and urban buildings

will be represented by individual 3D models.

4.3.1 Resolving Graph Con�icts

The �rst step in resolving con�icts will be detecting them. The main con�ict which

will require resolving is intersecting edges. There should be two possible outcomes to

intersecting edges, a crossing or a bridge. Also, edges that are incident upon urban

districts should be connected to the end of a suitable road that is generated within the

urban zone.

4.3.2 Generating Terrain

The �rst thing to do when generating terrain is to separate the land masses so that any

nodes that are de�ned as detached generate separate terrain. As stated previously the

terrain will be stored as a height map, which is an image where every pixel represents

an altitude. The generation process for this height map will entail parsing the pixels

of the output and calculating their height values. This will include �nding the nearest

edge or node, then using its proximity, inclination and altitude to determine height.

24

4.4 Additional Details

These are the details implied through the non graph interface. These specify details

to be contained in or around the nodes and edges. For example, de�ning a node as

an urban area implies there is an internal road network and buildings. These details

e�ectively give meaning to the components of the graph speci�ed by the user.

4.4.1 Vegetation

As shown in the previous chapter, de�ning vegetation models is an expansive area of

research, therefore an external library that generates vegetation models will be used

[11]. This open source project uses L-systems to generate tree structures based on

de�ned pro�les. These pro�les specify the type of tree structure to generate. The

project also allows users to create their own pro�les by using XML �les to de�ne them.

Using this library all that is left to be determined is the positions within the gener-

ated map to place the vegetation models. This should be done by generating a density

map like the one in �gure 3.5. This will be based on the vegetation density value

de�ned within the nodes contained in the graph. The higher this value is, the smaller

the proximity between the distributed vegetation, thus producing a denser outcome.

Also vegetation will be restricted from being placed on terrain that has a steep slope

much like the approach taken in[10].

4.4.2 Urban Road Networks

As seen in the previous chapter, it is a popular method to use L-systems to generate

road networks. However because of the graph structure used in the rest of the map, a

similar approach should be used for the urban zone. Also any edges that are incident

upon the urban node should be treated appropriately. For example, edges that are

de�ned as roads should be connected to a suitable road on the boundaries of the urban

zone.

25

4.4.3 Buildings

The procedural generation of buildings is also a very large and active area of research.

And because building models are dependent on the period of game setting it would

be unrealistic to incorporate an expansive procedural modeling component for this

project. Therefore the buildings generated here will e�ectively be place holders.

26

Chapter 5

Implementation

Two main components comprise the system which is purposed in this research. The

�rst of which is the graph editor described in the previous chapter which allows users

to construct a level description of outdoor 3D environment. This consists of basic

graph editing tools with additional options to supply detail to the nodes or edges. The

second component is the procedural generator which evaluates the data provided and

produces the 3D out model.

5.1 Interface

As stated in the previous chapter, the abstract representation the user will be using

is a graph. An example of which can be seen in �gure 5.1. In �gure 5.1 there are six

nodes, one of which is selected and therefore highlighted in orange while the others

remain gray. There are also four edges represented by the blue and yellow lines.

5.1.1 Graph Editor

To the right of the application display window, the graph editing options are displayed.

These consist of �Create Node�, �Create Edge�, �Select� and �Remove� with the currently

selected one highlighted in orange.

Adding nodes is as simple as clicking anywhere within the graph editing window.

However nodes have an exclusion zone around them, preventing other nodes being

added on top of them.

27

Figure 5.1: Example Graph

To add an edge, the user must �rst click on a node. Once this is done a temporary

edge is added from the selected node to the cursor position. To cancel this the creation

of this edge, the user may click the right mouse button. To complete the creation of

an edge, the user must click on another node.

To select a node, the user simply clicks on the desired node. It will then be high-

lighted and the �Node Options� panel will appear below the graph editing window.

When a node is selected it may be dragged to a new position and any edges that are

incident upon it will be automatically updated.

To select an edge the user must click near the center point of the edge which

is highlighted in yellow. This makes selecting edges easier when there are multiple

overlapping edges. The select edge will be highlighted and the �Edge Options� panel

will be displayed below the graph editing window.

Removing nodes and edges is done similarly to selecting except a second click is

necessary to con�rm the deletion. When a node is deleted, any edges that were incident

upon it will be deleted also as edges must connect two nodes.

5.1.2 Node Options

When a node is selected, the �Node Options� panel will be displayed. Here the user

can specify data relating to the selected node.

28

Figure 5.2: Altitude Visual Aid

The user can edit the various altitude options by using the appropriately labels

slider. While altering these values, the user may observe a graphical aid next to the

sliders indicating the data they are specifying. You can see this graphical aid in �gure

5.2 where the altitude being speci�ed is indicated by the horizontal orange line.

To the right of this panel there is another slider labeled �Area�. This indicates the

e�ect of the various properties associated with the selected node. When this property

is being altered there is also a visual aid shown on the graph to help the user accurately

select their desirable area.

Above this there are two checkboxes labeled �Urban Area� and �Attached�. When

�Urban Area� is selected, another checkbox appears allowing the user to specify the

type of road network to generate for the urban area. Vegetation density can also be

speci�ed on this panel.

5.1.3 Edge Options

When an edge is selected, the �Edge Options� panel will be displayed. Here the user

can specify data relating to the selected edge.

The most powerful options available on this panel are inclination sliders. These

sliders specify the slope of the terrain which exists either side of the selected edge.

To bene�t the user, two visual aids are present when editing these options. The �rst

is an added line drawn on the graph next to the selected edge. Depending on which

inclination is being edited, the added line will be drawn on the appropriate side. The

second visual aid is next to the sliders and can be seen in �gure 5.3. where the

inclinations are labeled �A� and �B�. This graphic represents a cross section of the

29

Figure 5.3: Inclination Visual Aid

eventual edge and accurately depicts the slope of the terrain at either side of the edge

depending on the values of the inclination sliders.

Within this panel the user can also specify the type of edge. The user can select

from �Road�, �Path�, �Land� or �River�. These each have unique e�ects when the edge

is being procedurally enhanced.

Located to the right of this panel is the �Path Variance� and �Width Variance�

sliders. As described in the previous chapter, these sliders control the amount of

meandering bends present on the edge and the extremity of these.

5.2 Procedural Enhancement

Using the minimal data provided through the various nodes and edges, it is now possible

to procedurally enhance these into a fully 3D environment. Before the terrain can be

generated, the graph most be prepared.

5.2.1 Graph Enhancements

To enable the user to go back and tweak their graph after viewing the output, a copy

of their graph is made before it is enhanced and its con�icts resolved.

The �rst con�icts resolved are intersecting edges. Once they are detected, they are

handled di�erently depending on their type and altitude. For instance if one edge is

a river and the other is a road, two new nodes will be created either side of the river

and the road edge will be split into two. Upon rendering the 3D environment, a bridge

will be generated over the river and between the two new nodes. If however the two

intersecting edges were both roads and the altitude of the two edges at which they

30

Figure 5.4: Urban Road Generation

crossed is within a small threshold, instead of a bridge, a crossing will generated. This

involves creating one new node at the crossing, removing the existing edges and adding

four new ones to replace these. The properties assigned to the new nodes and edges

during these procedures are derived from the adjacent nodes and removed edges.

Road networks for urban nodes must also be generated. As mentioned in the previ-

ous chapter, it may be more practical to used a similar structure to the graph instead

of implementing a context sensitive L-system such as the one in [19]. The approach

taken in this research is rather simplistic but e�ective as it generates a structure which

is easy to manipulate and use.

The �rst step is create a sub-graph consisting of a basic grid of edges and nodes as

seen in part A of �gure 5.4. The grid size should be based of the area property of the

urban node. In part B of �gure 5.4 any nodes that are beyond the radius of the urban

node are removed. This gives the network a slightly more natural feel. In part C of

�gure 5.4. you can three edges which are incident upon the urban node. These edges

are snapped to �t the grid like seen in part D of �gure 5.4. And �nally any edges that

do not lay on the three edges incident, may be selected at random to be removed. This

is also to give the output a more natural feel.

There is also an optional process which can be selected from the �Node Options�

panel called �Distort�. If selected, an additional process is added to road generation

procedure. This basically takes every node within the sub-graph representing the urban

zone and displaces it by a random amount along the X and Y axis. This is to mimic

less organised road networks.

One of the bene�ts of using a sub-graph structure within urban zone is that you

can also apply the procedures for creating bridges if a river has been placed running

through the area.

It is at this point that various other details for the urban environment are de�ned.

31

As a detailed approach to procedural placement and modeling of buildings had already

been de�ned in [19, 15] a simplistic approach was implemented so that focus could be

placed on other features. Therefore only one building is placed in each block of the

urban zone.

Positions for parked vehicles were also generate alongside the roads. This simple

feature could be expanded to aid the generation of levels for multiple types of games.

For example many action games, feature a cover system1. We could alter the positions

of parked vehicle to ensure the player always has another position of cover to move to.

Other objects that could be added to urban areas include tra�c lights, bins, lamposts

or any other objects that which follow distinct patterns. For example lampost can

be places periodical along sidewalks while tra�c lights can be placed at every road

intersection.

As mentioned earlier, vegetation can also be placed within urban environments.

It was planned that this could range from a few trees placed neatly along the side

walks to a completely overgrown scenario. However the later proved to to be very

unrealistic because of the limited set of structures that could be generated using the

L-trees library. If it were possible to create vegetation structures that grew alongside

buildings and walls maybe the result would look more realistic.

In non-urban areas, edges must be replaced by fully de�ned paths before terrain

generation can begin. This is done in a few steps. First the edge is split up into a

number of segments. The number of segments is determined by the �Path Variance�

property of the edge. The higher the value of this property the more segments gener-

ated. Each segment has a random amount added or subtracted from it. This prevents

the edge being evenly segmented which would yield an unnatural result. The next

step generates one point for each segment and randomly places it to a side edge. The

distance from these points to the edge is determined be �Width Variance� property of

the edge. The higher the value of this property the greater the deviance from edge.

If we were to join up these positions now with a straight line we would simply get a

zig-zag pattern. To ensure a smooth and natural output Catmull-Rom interpolation is

used.

1http://en.wikipedia.org/wiki/Cover_system

32

5.2.2 Terrain Generation

The terrain generated will be represented as a height map. Height maps are usually

stored as textures and are a very common way to represent terrain and therefore will

aid integration into other possible components of game engines. For example, most

physics engine are capable of taking height maps and generating appropriate collision

meshes.

Within the three colour channels of the height map image i.e. RGB, each will hold

unique data to aid the visualisation of the eventual 3D terrain. The red channel will

hold the altitude data. The green channel will hold property data i.e. river, road,

terrain, etc. Incorporating these types of properties into the output will aid the terrain

rendering process as they could be used to specify speci�c textures to be used. The

blue channel will hold a value that will determine how much the altitude provided in

the red channel can change. This is important when considering post-procedures that

alter the surface of terrain to add detail and realism. For example users may want to

apply erosion procedures such as those de�ned in [16], but they may want certain areas

of the terrain such as roads or urban zones, to remain una�ected by the procedures.

For these areas to remain una�ected, the value within the blue channel should be

zero. This value increases as we move further away from roads and urban zones. This

is to gradually introduce the e�ect to the area. This implementation doesn't apply

any erosion procedures but does subject the terrain to ridged multifractal noise. This

adds visual details to the terrain without compromising the structural integrity of the

de�ned paths.

This value is also limited to the di�erence between the maximum and minimum

de�ned altitudes of the area. This is to allow the user more control over the surrounding

terrain. For example if the user wished to create �at planes such as the ones often

found in dessert areas, they would specify the maximum and minimum altitude to

be of similar altitude. The user can specify mountainous terrain by de�ning a large

di�erence in the minimum and maximum terrain altitude.

The edges within the users graph will be the largest factor in the generation of the

terrain. Their meandering paths will be carved into the terrain making them the most

prominent features. This is justi�ed as these are the areas the players will most likely

see the most. The main in�uences on the terrain generation are the altitude of the

33

Figure 5.5: Terrain Generation

path and its inclinations. To calculate the altitude for a given pixel within the height

map, we must �rst �nd the closet point on the path of the closet edge. The altitude

of this point is then calculated by using the �Path Altitude� properties of the nodes

at either end of the edge. If a pixel is within the radius of a path, it is assigned the

�Path Altitude� value. This is labeled �C� in �gure 5.5. To either side of a path, its

inclinations are used to de�ne the altitude of the terrain. This can be seen under labels

�B� and �D� in �gure 5.5. The terrain will continued to be sloped according to the

inclinations until either the maximum or minimum altitude is reach. These areas are

labeled �A� and �E� in �gure 5.5. The same terrain with noise applied to it can be seen

in �gure 5.6.

5.2.3 Vegetation Distribution

This is represented by a density map like the one in �gure 3.5 which is determined

through the �Vegetation Density� value de�ned within the nodes contained in the

graph. The higher this value is, there is an increased possibility of larger trees and

the proximity between the distributed vegetation is reduced, thus producing a denser

outcome. Once the density map is generated, it is compared to the users graph. Areas

in which urban zones, rivers and roads exist are removed form the density map.

During the initialisation of vertices's for terrain visualisation, the positions within

34

Figure 5.6: Terrain with Noise Applied

the density map are compared again. This time it's to the slope of the terrain. The

slope can easily be determined by calculating the dot product of the normal of the

nearest vertex and the unit Y vector (0,1,0). If the slope is greater than a de�ned

threshold, vegetation is removed from this area. There is also an altitude threshold

where vegetation can only be place above a minimum altitude, which may represent

sea level, and below a maximum.

5.3 Random sub-graphs

Thus far the user can exercise a lot control over the resulting output. Unfortunately the

generation process does not incorporate much randomness into the outcome. Therefore

if this approach was used to create game levels, they would not promote replayability.

This would be a missed opportunity as graphs are very �exible structures and there

are multiple ways to incorporate random additions to them.

Graph grammar is one such way of expanding graphs. A graph grammar is de�ned

as a tuple (A, P) where A is a nonempty initial graph and P is a set of graph grammar

productions [22]. Much like the productions within L-system, graph grammar produc-

tions take either a single node or a graph and replace it with graph. Graph grammars

35

usually fall into two categories based on how productions are applied. These are al-

gebraic node replacement systems and algorithmic node replacement systems. Both

approaches are described in [24].

5.3.1 Replacement Procedure

In this research we will use an algorithmic node replacement systems to generate ran-

dom subgraphs within the user de�ned graph. We will e�ectively parse the user's graph

and replace certain nodes with small randomly generated subgraphs. Nodes that are

eligible for replacement must not be urban nodes and have at least two edges incident

which are either roads or paths. The properties of the nodes and edges contained within

the subgraphs will be determined from the properties of the node being replaced and

the edges incident upon it. This allows for the overall consistency and structure of users

graph to remain intact. Therefore if the users graph was designed to accommodate a

speci�c narrative, this will not be compromised.

The procedure in this research �rst creates a subgraph consisting of two nodes and

an edge connecting them. Edges incident upon the node being replace will be redirect

to one of these two nodes. The edge connecting these two new nodes is then subdivided

into a number of edges. The number of edges is determined from the �Area� property of

the node being replaced. With each subdivision an extra node is added to the subgraph

to connect the new edges.

The nodes within this current linear structure will now each be put through a

random graph grammar production. Available graph productions are shown in �gure

5.7. These productions are not exact as the smaller nodes may be randomly placed

on the opposing side of the dashed edge. It is possible to de�ne further more complex

productions or procedurally create the whole graph using a graph grammar similar to

the one described in [1].

The �nal step to applying these subgraphs is to check for con�icts and resolve them.

36

Figure 5.7: Graph Grammar Productions

37

Chapter 6

Evaluation

This research proposes and implements a procedurally aided approach for producing

game content, speci�cally 3D exterior environments. Based on high-level user input in

the form of a graph, this work in its current state provides automated terrain generation

using a number of procedural methods. This resulting in an extremely quick way to

create vast 3D exterior environments. While always keeping in mind ways to aid

game development, the project incorporates a number of features to aid the rendering,

navigation and further modi�cation of terrain. To ensure the content generated can be

used within games, paths which are key to player progression through the level remain

unobstructed throughout the various processes.

Central to the success of this approach was the adaption of a suitable abstract in-

terface which would allows users created and design descriptions of 3D environments.

This interface had to be �exible enough for it to be used for multiple types of envi-

ronments and as it has been used for interiors in the past, here it is applied it exterior

environments which contain natural elements. Users can exercise su�cient control

through the minimal interface which is simple to use and easy to understand. The can

allow non-specialist personnel like consumers to e�ectively use the system.

As graphs are very malleable structures, they can be easily modi�ed or extended. To

enable this system to promote replayability, which has become increasingly important

aspect to games, random subgraphs were introduced. Although there are a limited

number of graph grammar productions the concept of adding random areas which

38

remain consistent with the surrounding designed structure, is very useful.

Although the procedural enhancement system ful�lled its purpose of integrating

multiple procedural techniques into a coherent and useful output, its design does not

promote expansion. For example, as demonstrated in Chapter 3, there are multiple

procedures available for multiple content types. As games are very creative forms of

media, users should not be restricted to using one process. The ability to select indi-

vidual procedures for speci�c purposes would be ideal. However this may be unlikely

as for the various procedures to be integrated into one system and compatible with

others, their outputs and parameters would have to be standardised. This would also

be necessary if a coherent and consistent interface was to be used.

However, the system implemented successfully integrates an number of procedural

techniques which would be su�cient to successfully use the system to quickly prototype

levels. This is a very desirable quality as it would enable faster testing and modifying

iteration cycles during development.

39

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This research presented a novel approach to the creation of 3D virtual worlds that

integrates a variety of procedural techniques while incorporating elements to aid game

development into the procedures. Through a simpli�ed interface, users can de�ne and

control a minimal data set. The data can then be procedurally ampli�ed to provide

a fast and intuitive way for both experts and non-specialist designers to create vast

virtual 3D environments. By allowing users to interact with an abstraction of the

eventual output the design process is streamlined.

As the area of game development is a hugely creative area, their development tools

must be extremely �exible and be capable of producing not just realistic results. It

is for this reason procedural tools won't be used mainstream for quite some time but

this research represents, if only on a small scale, that procedural methods can be

�exible and a high level of control can be exercised over them. This allows users to

get good results in a fraction of the time it might take to manually model the same

environment. Therefore it is probable that we will see an ever increasing presence of

procedural methods within content generation.

40

7.2 Future Work

Although this research was relatively successful there exist a number possible improve-

ments that would make it more productive and feature rich.

With the introduction of subgraphs it could be possible for the user to specify huge

amounts of geometry and still get incredibly �ne detail. For example a graph hierarchy

could exist where the highest tier represents a continent, but as the users speci�es lower

tiers of subgraphs the area represented is reduced to a point where the nodes and edges

could represent rooms and corridors within a building.

If the framework was modi�ed and several optimisations were done, such as imple-

menting the geometry generation algorithm on the GPU via geometry shaders, it could

be possible to view the output in real-time while editing the graph.

The obvious extension to the system would be to incorporate more generation meth-

ods such as erosion, increasing the variance of achievable outputs. However, when the

algorithms are integrated into the interface, �nding adequate parameters to standardise

each method would be tedious.

7.3 Closing Thoughts

As for procedural methods becoming an alternative to manual modeling, this still

remains unlikely. However this research brings it closer to a possibility. The advantages

of procedural modeling are obvious in the speed and quantity they can produce results.

And with this research a signi�cant level of control is added. Unfortunately it still

comes down to the desires of the users. If they require complete control over their

3D environments to ensure the success of there game, they have no option but to use

manual modeling.

Also when creating complex procedures to generate content, one must weigh to

complexity to the procedure to the amount of content that will ultimately use the pro-

duce. Although procedural methods may produce results quickly, time is still required

to design and implement them well.

Because of the increasing demands in virtual world modeling, it is essential to

further develop both forms of modeling and hopefully bridge the gap between them. In

41

doing so we could provide designers with the productivity gain of procedural methods,

while still allowing them to exercise a �ne level control. This research achieves this on

a small scale but represents clear step towards making procedural techniques suitable

for a variety of applications within game development.

42

Appendix

...

43

Bibliography

[1] Adams, D., and Mendler, S. M. Automatic generation of dungeons for com-

puter games, 2002.

[2] Blythe, D. Directx futures. In MS Meltdown (2005), 3D Application Research

Group ATI Research, Inc.

[3] Booth, M. Replayable cooperative game design: Left 4 dead. In Game Devel-

oper's Conference (2009).

[4] Brebion, F. In�nity: Quest for earth, 2010.

[5] Bungie. Environment design. Pressentation, 2008.

[6] Chiba, N., Muraoka, K., and Fujita, K. An erosion model based on velocity

�elds for the visual simulation of mountain scenery. Journal of Visualization and

Computer Animation 9 (1998), 185�194.

[7] Codemasters. Fuel, 2009.

[8] Deusen, O., S. Ebert, D., Fedkiw, R., Musgrave, F., Prusinkiewicz, P.,

Roble, D., Stam, J., and Tessendorf, J. The elements of nature: Interactive

and realistic techniques. In Siggraph (2004).

[9] Gain, J., Marais, P., and Straÿer, W. Terrain sketching. In I3D '09:

Proceedings of the 2009 symposium on Interactive 3D graphics and games (2009),

ACM, pp. 31�38.

[10] Hammes, J. Modeling of ecosystems as a data source for real-time terrain ren-

dering. In DEM '01: Proceedings of the First International Symposium on Digital

Earth Moving (2001), Springer-Verlag, pp. 98�111.

44

[11] Klasker, A. Xna procedural ltrees. Open Source Project, 2009.

[12] Lane, B., and Prusinkiewicz, P. Generating spatial distributions for mul-

tilevel models of plant communities. In In: Proceedings of Graphics Interface

(2002), pp. 69�80.

[13] Miller, G. S. P. The de�nition and rendering of terrain maps. In SIGGRAPH

'86: Proceedings of the 13th annual conference on Computer graphics and inter-

active techniques (1986), ACM, pp. 39�48.

[14] Mitchell, J. Connecting visuals to gameplay at valve. InMontreal International

Game Summit (2008).

[15] Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L.

Procedural modeling of buildings. In SIGGRAPH '06: ACM SIGGRAPH 2006

Papers (2006), ACM, pp. 614�623.

[16] Musgrave, F. K., Kolb, C. E., and Mace, R. S. The synthesis and rendering

of eroded fractal terrains. In SIGGRAPH '89: Proceedings of the 16th annual

conference on Computer graphics and interactive techniques (1989), ACM, pp. 41�

50.

[17] Nitsche, M., Ashmore, C., Hankinson, W., Fitzpatrick, R., Kelly, J.,

and Margenau, K. Designing procedural game spaces: A case study. Tech.

rep., Georgia Institute of Technology, 2006.

[18] Olsen, J. Realtime procedural terrain generation. Tech. rep., University of

Southern Denmark, 2004.

[19] Parish, Y. I. H., and Müller, P. Procedural modeling of cities. In SIG-

GRAPH '01: Proceedings of the 28th annual conference on Computer graphics

and interactive techniques (2001), ACM, pp. 301�308.

[20] Perlin, K. An image synthesizer. In Siggraph (1985), vol. 19.

[21] Prusinkiewicz, P., and Lindenmayer, A. The algorithmic beauty of plants.

Springer-Verlag New York, Inc., 1990.

45

[22] Rekers, J., and Schürr, A. A parsing algorithm for context-sensitive graph

grammars. Tech. rep., 1995.

[23] R.M. Smelik, T. Tutenel, K.J. de Kraker, and R. Bidarra. Interactive

creation of virtual worlds using procedural sketching. In Eurographics (2010).

[24] Rozenberg, G., Ed. Handbook of graph grammars and computing by graph trans-

formation: volume I. foundations. World Scienti�c Publishing Co., Inc., 1997.

[25] S. Ebert, D., Musgrave, F., Peachey, D., Perlin, K., and Worley, S.

Texturing and Modeling A Procedural Approach. Morgan Kaufmann, 2003.

[26] Smith, A. R. Plants, fractals, and formal languages. SIGGRAPH Comput.

Graph. 18, 3 (1984), 1�10.

[27] .theprodukkt. .kkrieger. Breakpoint 96kb game winner, 2004.

[28] Wilkinson, O. Flavien Brebion. Online Interview, 2009.

46

