
Solving Diffusion Curves on GPU

by

Jeff Warren, B.A. (Mod)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

Interactive Entertainment Technology

University of Dublin, Trinity College

September 2010

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Jeff Warren

September 13, 2010

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Jeff Warren

September 13, 2010

Acknowledgments

I wish to thank Daniel Sýkora for his input as a supervisor, both in proposing such an

interesting idea and providing advice and help whenever possible.

I would also like to thank John Dingliana for kindly agreeing to proof read my

report at short notice, and for his excellent mentoring throughout the course of the

past year.

Jeff Warren

University of Dublin, Trinity College

September 2010

iv

Solving Diffusion Curves on GPU

Jeff Warren

University of Dublin, Trinity College, 2010

Supervisor: Daniel Sýkora

Many tasks in computer graphics and vision produce a large sparse system of linear

equations which typically requires a large amount of CPU time to be solved. Process-

ing images which contain “diffusion curves” is one such example of this category of

systems. Recently various GPU based solvers have been proposed allowing real-time

processing and feedback for diffusion based images, however they have been closed

systems which cannot be expanded and developed further. To mitigate this, we pro-

pose a linkable library which can be used by third party applications to easily abstract

and solve diffusion curves, using available GPU hardware in a computer system. This

allows applications which can provide feedback to artists working with large images,

at unintrusive speeds. Both CPU and GPU based algorithms are provided, allowing

support of legacy hardware. The library can also be compiled to run natively on 32

and 64 bit operating systems.

Using modest hardware, the users of such an application can edit and develop multi

megapixel images at processing speeds in excess of 10 frames per second.

v

Contents

Acknowledgments iv

Abstract v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

Chapter 2 Background 5

2.1 Caches . 6

2.2 CPU . 10

2.2.1 Pthreads & Workload Scheduling 12

2.2.2 OpenMP . 14

2.3 GPU . 16

2.3.1 The CUDA Programming Library 17

2.4 CELL Broadband Engine . 19

2.5 Branch Prediction . 21

2.6 Diffusion Curves . 22

Chapter 3 Previous Work 25

Chapter 4 Implementation 27

4.1 Algorithms . 29

4.1.1 Naive Algorithm . 30

vi

4.1.2 Hierarchical pyramid . 36

4.1.3 Variable size stencil . 40

4.2 Example program . 42

4.3 Linking the Library . 43

Chapter 5 Optimisation 45

5.1 CPU . 45

5.2 GPU . 47

5.2.1 The parallel reducer . 48

Chapter 6 Experimental results 52

Chapter 7 Conclusions & Future Work 58

Bibliography 61

vii

List of Tables

6.1 Acceptable Convergence Thresholds . 55

6.2 Naive load balancing methods on a 1MP image (4 threads) 55

6.3 Load balanced CPU (4 threads) & GPU on a 1MP image 56

6.4 Load balanced CPU & GPU on a 1MP image 56

6.5 Load balanced CPU & GPU on a 1MP image 56

viii

List of Figures

1.1 Gradient based optical illusion . 3

2.1 A direct mapped cache . 7

2.2 Associative cache . 8

2.3 The MESI cache coherency protocol . 9

2.4 A 4-datum wide SIMD arrangement (Image released under GFDL). . . 11

2.5 GeForce 8800 CUDA implementation 18

2.6 Overview of multiple kernel execution on a CUDA device 19

2.7 The CUDA memory hierarchy . 20

2.8 Poisson’s Equation . 22

2.9 An example set of diffusion curves, sketched freehand. 23

2.10 The final image after diffusion has been applied to the set of curves given

in Fig. 2.9 . 24

4.1 Dirichlet boundary conditions. Grey indicates unconstrained pixels. . . 28

4.2 Neumann boundary condition example. 29

4.3 A flowchart detailing how the naive diffuser processes images on CPU . 35

4.4 The diffusion library with the pyramid optimisation applied 36

4.5 The basic downscaling concept is depicted. 38

4.6 The original iteration (left) and the variable stencil iteration (right) . . 41

5.1 Static and work-unit based workload division 46

5.2 The hierarchical pyramid algorithm’s behaviour, running on GPU . . . 49

5.3 Thread organisation techniques . 51

6.1 The input curve raster used for benchmarking 52

ix

6.2 The gold standard output image generated whilst benchmarking 53

6.3 Halo artifacts in an incorrectly thresholded image 54

6.4 Hierarchical pyramid algorithms on CPU and GPU 55

7.1 A modified version of the ladybird test image 59

x

Chapter 1

Introduction

Diffusion curves are a vector based primitive used for describing smoothly shaded im-

ages or subsections of images [1]. Generating a final displayable image from a set of

diffusion curves is a computationally expensive operation. This dissertation presents

an accelerated library capable of solving such images at real-time speeds, and explores

low level optimisation techniques in order to obtain the best performance possible on

both CPU and GPU style platforms.

In recent years, there has been a rising interest in general purpose computing on

non-CPU devices. Specifically, common GPU’s available in standard computers have

been successfully extended to enable high speed computation of non graphical work-

loads, though other experimental processors such as the Intel Larrabee and the IBM

CELL Broadband Engine have also been developed. There are a number of challenges

associated with developing applications suitable for this kind of hardware. Expressing

the problem in a way that can be solved in a parallelised fashion is crucial - many data

sets can be processed using algorithms which, while slower than their traditional linear

single threaded counterparts, enable the reduction or elimination of data dependencies

(which inhibit parallelism). As a result, processing the data can be often be completed

faster on multiprocessor hardware.

Another problem is that of adapting to the “stream processing” paradigm. In tra-

ditional approaches to programming, much of the complexity of the processing unit is

1

hidden and abstracted away from the programmer - caches, memory hierarchies, even

vectorisation can be ignored, often leading to a negligibly small impact on performance.

Conversely, stream programming requires careful and direct manipulation of the data

in order to achieve even barely acceptable performance - data and even code must be

manually loaded and unloaded, sometimes asynchronously. This requires the program-

mer to have a low level understanding of their target device in order to achieve desirable

results from their codebase. Stream processing is also still considered by many to be

in its infancy - it has only become reasonably popular since the turn of the century.

When targeting a GPU, for example, it is often unclear how future versions of the host

hardware will develop. Linear scaling of performance cannot be assumed, especially

with “problematic” algorithms which require a great deal of serialised execution.

This study presents a highly optimised solver for diffusion curves, with algorithms

suited for both standard CPU style hardware, in addition to stream processors such as

the GPU. While a version does not yet exist for the CELL Broadband Engine, a port

from the GPU algorithm would be trivial.

Perceptual experiments carried out in the field of psychology have long suggested

that the human biological image processing system does not simply measure intensity

- it is highly adaptable, capable of managing to glean useful input in a wide range of

brightness. Werner suggests that the brain measures local intensity differences rather

than intensity itself [2], a phenomenon which can be demonstrated by many well-known

optical illusions, including the one shown in Figure 1.1. As a result, some researchers

find merit in the idea of creating images or artwork by working directly in the gradient

domain, rather than the traditional approach of directly selecting colour intensities [3].

The greatest challenge when developing gradient domain image processing tools is

that any local modification to the image has potentially global implications. Converg-

ing the image to a stable solution is computationally expensive and requires a large

number of iterations. The complexity of the problem is directly proportional to the

resolution of the image - an image with twice as many pixels will require at least twice

as much computation to solve, in a best case scenario. Enabling constraints to interact

with distant areas of the image also presents a bottleneck (this can largely be over-

come by modifications to the algorithms, and is discussed later in the implementation).

2

Figure 1.1: A well known optical illusion demonstrating the gradient based method
which the human visual system is suggested to use. The grey bar across the middle
of the image has a constant intensity, however the varying shade in the background
misleads the brain.

High resolution gradient domain images have previously taken several seconds (or

even minutes for large rasters) to process. This has rendered the tools available for the

task unintuitive to the artists, who require low latency feedback in order to unconstrain

their creative expression. Many have expressed frustration at having to wait to see the

effects of their modifications. Previous slow CPU based implementation evaluations

have received a range of criticism, mainly centered around the long waits for feedback.

As users of the program are accustomed to working with image manipulation appli-

cations whose tools provide mainly local modifications, it is essential to provide up to

date results from a modification as quickly as possible in order to increase usability.

Previous studies have proposed accelerated, hierarchical integrators which calculate

the stable state of the image at high speeds [3, 4]. However, while their software is

readily available, the authors have not opted to release the source code, which means

developing additional novel tools for allowing the artist to express the curve set is

not currently possible. These versions are also implemented using shaders, which not

only reduces portability, but can prevent the algorithm from achieving the peak per-

formance possible by using stream processor interfaces. It also remains unclear how

the shader versions will scale to improve on future hardware - the implementation we

3

present attempts to reduce this ambiguity. A set of open libraries are provided - not

only could these be linked to by the existing artist tools provided by McCann et al,

but additional brushes and other methods of input can easily be added by someone

without an in-depth knowledge of the stream processing paradigm.

The presented work concentrates on understanding both the optimisation tech-

niques relevant to accelerating diffusion based algorithms, in addition to the benefits

an artist might enjoy by using a diffusion curve based tool set. A reusable library is

provided, and the potential future applications it could have are explored and analysed.

We also compare the library to other similar software for working with diffusion curves.

4

Chapter 2

Background

This section explores some of the aspects of hardware architecture with regard to op-

timisation of the codebase. An overview of CPU and GPU style platforms is provided,

with some commentary on the various systems of branch prediction, caching, and par-

allelism available. The algorithms implemented are also explored at a high level.

While Moore’s (revised) law states that computational processing power available

doubles every 18 months [5] (and along with it, memory capacity), problem size expands

to challenge these expanding resources. The solving of massive sparse linear systems,

such as those expressing a set of diffusion curves, is a problem which has only recently

become possible to solve in real-time.

November 2002 saw the release of the last Intel chip to obey Moore’s law via serial

clock speed increase [6]. With the 3GHz Pentium 4 launched, Intel found that transistor

power leakage began to grow rapidly as they attempted to fit more transistors onto

their chips [7]. The fastest retail Pentium 4 never exceeded 4GHz clock speed [8],

and Intel, along with other processor manufacturers, were forced to explore alternative

routes to obtain increased computational power in computer processors. Intel launched

a hyper threaded (HT) CPU, which allowed for non-simultaneous multithreading [6].

By duplicating areas of the CPU which store architectural state (5% of the die area [9]),

pipeline stalls due to branch misprediction, data dependencies, or cache misses would

allow another thread to be scheduled in more quickly than a non-HT implementation

would allow. Due to the low number of heavily multithreaded applications available

5

at the time, this approach flopped - the most processing power hungry applications

(such as 3D gaming) had no support for multithreading. In addition, the overhead

introduced by work splitting/synchronisation of data sets in non embarrassingly parallel

algorithms often cancelled out any improvements shown by HT. Computer systems

containing more than one independent processing unit were traditionally restricted to

professional applications - hosting, clustering, supercomputing etc. The large cost of

dual CPU systems, and lack of desktop applications designed to take advantage of them

prevented them from entering the consumer market. However as home computer users

became heavier multitaskers, and traditional approaches of simply raising clock speed

to improve performance failed, dual and quad core CPUs appeared on the market,

and quickly dropped in price to the point where it is now difficult to purchase a home

computer without more than one execution unit.

2.1 Caches

Processing units execute instructions far more quickly than they can be fetched from

main memory. A processor which had to wait for each instruction to be loaded from

main memory would be massively underutilised. However, over the course of a pro-

gram’s execution, it can be observed that a very high percentage of memory accesses are

to the same memory addresses, repeatedly. This is referred to as “temporal coherency”.

To take advantage of this behaviour, processing units contain a cache hierarchy, usually

with 2-4 levels [7]. The further from the CPU the cache level is, the larger and slower

to access it is likely to be.

Associativity is also important. Associativity level indicates the number of cache

entries where a given memory location can be stored. With a 1-way cache (known as

direct mapped) each memory location can only be cached in one location in the caching

unit. Each entry in the cache (or, cache line) services many main memory addresses.

This is usually determined using a LSB bit masking technique. If a program repeatedly

accesses two memory locations which map to the same cache entry in a direct mapped

cache, there will be a high number of cache misses, as the locations would need to be

repeatedly read in from main memory. Increasing the degree of associativity improves

cache performance, but is more costly to implement, as more locations need to have

their address tags checked during each lookup. A policy needs to be introduced to

6

Figure 2.1: A direct mapped cache (associativity level of 1). Each address in main
memory maps to one possible cache entry. This can cause cache thrashing/repeated
misses if locations 0 and 5 are read alternately by the executing program. Direct
mapped caches are however easier to implement in hardware than highly associative
caches.

decide which of the possible cache entries will be overwritten with the new entry, e.g.

Least Recently Used, pseudo Least Recently Used [10].

For multi-core systems, cache coherency protocol is necessary. In a single core com-

puter, the CPU knows that the most up to date copy of a given memory address is

going to be in the cache, or if it isn’t cached, in main memory. When two CPU’s

are concurrently executing instructions, it is possible that a CPU can read a memory

location which is out of date - because the other CPU could have just executed an

instruction which modified the location. Cache coherency systems alleviate this prob-

lem, by maintaining the state of a cache line. One such example would be the MESI

protocol [11]. A cache entry in the MESI system can be in 4 states.

• Invalid: the entry in this cache is not valid, as it has been written to by another

7

Figure 2.2: Cache with associativity level of 2. Each address in main memory maps to
one of two possible cache entries. A replacement policy must be implemented for this
to function (e.g. timestamping and Least Recently Used replacement). This makes
better use of the cache space, since a program accessing locations 0 and 4 repeatedly
will not result in as high a frequency of cache misses (the two pieces of data will
likely be written into cache locations 0 and 1). Due to the extra storage needed for
a replacement policy’s data, this is more difficult to implement in hardware. Higher
levels of associativity also introduce their own setback - in order to check for a cache
hit or miss, extra cache tag entry comparators are required; each possible map-to cache
location must be checked concurrently in hardware for each memory access.

CPU.

• Exclusive: this CPU is the only CPU to have a cache entry for this location.

The entry matches the main memory’s version (i.e. it is “clean”).

• Shared: Main memory and other CPU’s may have a copy of this location. All

copies match, the entry is clean.

• Modified: Only the current CPU’s cache has the latest version of this memory

location. The entry is “dirty”.

State transitions are initiated by observed bus reads/writes on the shared bus, and

by internal processor reads/writes. The cache coherency protocol stores the state of

each cache entry, and when a matching address is observed to be accessed by the

8

Figure 2.3: A state transition diagram for the MESI cache coherency protocol. For
each cache entry, a 2 bit state representing which of the four states the cache line is in
(Modified, Exclusive, Shared, Invalid). Transition is made between states via passive
observation of the bus, and active reads/writes by the processor. BW and BR indicate
writes and reads by other processors via observing the bus , respectively. PW and PR
indicate active reads and writes to memory locations by the current processor. S and
S indicate a shared/not shared operation.

processor, or another external processor the state is manipulated accordingly. Many

protocols for this task require 4 states, which results in 2 bits to be stored for each

cache entry. Protocols such as MESI allow for coherent caching to occur. This also

enables different processors to cache different, potentially partially overlapping sets of

memory locations. Fig. 2.3 shows a complete state transition diagram for the MESI

protocol, though others are also in wide use (e.g. Firefly).

Repeated modification of memory addresses stored on the same cache line by dif-

ferent CPU’s in a multiprocessor system causes repeated cache invalidation. It is im-

portant to note that the memory addresses (and associated variables) being modified

by different processors need not be the same for this undesirable effect to occur; if two

variables are compiled to exist in two aligned memory addresses, they may reside on

the same cache line.

9

By understanding precisely how caches work, it is possible to tune algorithms such

as those in the diffusion curve solver to perform optimally. In particular, multi datum

cache lines provide for a speed increase if temporal locality can be exploited wherever

possible.

2.2 CPU

General purpose CPUs tend to be feature packed - large caches, complex branch pre-

diction and advanced pipelining make them very easy to achieve high performance on

without needing to hand tune a codebase to target them.

SIMD

SIMD (Single Instruction Multiple Data) refers to computer processors with multiple

Arithmetic Logic Units (ALUs) which execute the same instruction on multiple data

simultaneously. The advantage provided by this architectural design is as follows: pre-

viously, a loop which needed to add 2 arrays (of length N) values into a destination

array of the same length would have taken N iterations. This equates to N add oper-

ations in addition to N branches. SIMD extensions allow M data to be added to M

data by four separate ALUs, meaning that N/M iterations of the loop are required. In

practice this results in a massive speed-up for certain algorithms - particularly various

kinds of multimedia processing.

Figure 2.4 shows a typical SIMD configuration - one instruction is executed on 4

pieces of data. Currently the majority of computer processors supporting SIMD exten-

sions cater for 4 pieces of single precision data per operation (with some caveats). Some

also provide support for manipulation of two double precision data together. There

are plans to extend this to allow cooperation of 8 ALUs in the future.

In theory, SIMD can speed up the execution of an algorithm by a factor of 4. In

some cases, even greater speed-ups may be attained. SIMD instructions take heavy

advantage of the design of data caches. As most caches consist of sets of cache lines

which contain multiple data, cache efficiency is raised. In addition to this, for SIMD

implementations to yield any useful speed-up, operands must be loaded from aligned

10

Figure 2.4: A 4-datum wide SIMD arrangement (Image released under GFDL).

data locations - i.e. for 4x4byte operands, the memory address of the first must be

evenly divisible by 16. Cache lines are loaded in the same fashion.

However, SIMD also has disadvantages. Since flow control is restrictive, if different

pieces of data in a block need to be treated differently, the algorithm needs to be

executed strictly serially. The result is that only embarrassingly parallel algorithms

have much to gain from SIMD; applications like parsing and branch-heavy decoding

are unsuitable. Other disadvantages include the facts that since SIMD requires extra

registers and additional ALUs, they require more floorspace on CPU dice, and also

consume more power, resulting in chips being more expensive to manufacture and

operate.

Stream processing such as that offered by CUDA represents a middle ground be-

tween strictly SISD processors and SIMD extensions - the thread warps are not unlike

a SIMD instruction operation on multiple data, yet since they consist of collections

of lightweight threads, there is additional flexibility in that per thread branching is

possible.

11

2.2.1 Pthreads & Workload Scheduling

Pthreads, or POSIX threads, are a useful interface allowing programmers to create

multi-threaded applications, capable of executing on many physical cores in a computer

simultaneously [12]. This allows us to take advantage of the full amount of computa-

tional horsepower available, essential in applications such as the one presented. While

Pthreads are primarily designed for UNIX systems, a port of the library to Win32

exists [13]. It was selected over the native Windows threading library to discourage

lock-in - the diffusion library, in its current form, can easily be compiled for Windows,

OSX, Linux and Unix based operating systems.

Parameters required for the worker threads must be passed in via a struct pointer,

as indicated in Listing 2.1. While writing threading models yourself does allow for more

fine tuning of exactly how the threads behave, the human effort required to rewrite the

code and integrate it with C++ libraries is significant, and prone to error. OpenMP

directives tend to be far quicker and more elegant to add, although the abstraction can

lower performance in some cases.

When writing our own threaded versions of algorithms, a method for partitioning

up the workload is necessary. There are three appropriate methods for implementing

workload splitting for the purposes of this library.

• Static - The image is statically split into 4 equally sized areas, and a worker

thread is assigned to each one.

• Work units - The image is split up into a large number of work units. Worker

threads are then activated when work becomes available. They compete to com-

plete allocated work units, until no more remain.

• Temporal - The image is tentatively split into 4 equally sized areas. An iteration

is performed, and timings are measured by each. Using the time results from

iteration N, the image is repartitioned to give more area to the threads that

finished ahead of the slowest.

For problems where the work load tends to be evenly spaced, a static scheduler

is sufficient. Static scheduling is also far easier to implement without introducing

12

Listing 2.1: A simple demonstration of POSIX threads.

1
2 #include <pthread.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <assert.h>
6
7 #define NUM_THREADS 5
8
9 void *TaskCode(void *argument)

10 {
11 int tid;
12
13 tid = *((int *) argument);
14 printf("Hello World! It’s me , thread %d!\n", tid);
15
16 /* optionally: insert more useful stuff here */

17
18 return NULL;
19 }
20
21 int main (int argc , char *argv [])
22 {
23 pthread_t threads[NUM_THREADS];
24 int rc , i;
25
26 /* create all threads */

27 for (i=0; i<NUM_THREADS; i++) {
28 printf("In main: creating thread %d\n", i);
29 rc = pthread_create (& threads[i], NULL , TaskCode , (void *) &i);
30 assert (0 == rc);
31 }
32
33 /* wait for all threads to complete */

34 for (i=0; i<NUM_THREADS; i++) {
35 rc = pthread_join(threads[i], NULL);
36 assert (0 == rc);
37 }
38
39 exit(EXIT_SUCCESS);
40 }

situations where concurrency problems can happen - thread starvation, data collisions,

and deadlock. Uneven workloads require work unit creation or temporal redistribution

of work to maximise CPU usage.

13

The diffusion solver’s iterations run in a constant time - there are no areas of the

image which take significantly longer to process than others. Constraints are quicker -

but in the average rasterised diffusion based image, the number of constrained pixels is

a very low percentage of the total pixel count, so this becomes negligible. Using work

units and temporal shifting also requires more locking and calculation, which does

introduce another cost. A static scheduler for the diffusion portion of the calculation

is provided, along with a basic work unit splitter.

2.2.2 OpenMP

OpenMP is a API which supports multi platform shared memory multiprocessing

in C/C++ (and Fortran) [QUINN 2003]. It consists of a set of compiler directives

and background libraries which allow for semi automatic parallelisation of a program.

Clauses exist for:

• data scoping - indicating variables as shared, and creating per-thread private

versions

• synchronisation - critical sections, which may only be executed by one thread

at any one time, and atomic sections, which must be completely executed or not

executed at all

• scheduling - division of a large work set into work chunks, for load balancing

across many worker threads

• conditional parallelism - use of an if statement to only parallelise if certain

conditions are met (e.g. a sufficiently large data set size)

• initialisation, reduction - management of initial values of per-thread private

variable copies, and automatic combination of their incremental results

Using simple #pragma directives referring to loops and sections in a C/C++ pro-

gram which can be parallelised, optimal or near-optimal speed-ups can be realised.

The alternative of implementing pthreaded portions is time consuming and usually

more error prone. It also creates a larger bulk of code which is then more difficult to

maintain, something we wish to avoid in a library intended to be as open to fine tuning

14

Listing 2.2: An OpenMP enabled code example. A parallel set of threads execute the
contents of the #pragma omp parallel code section, each with a private copy of th id.
The library function omp get thread num() acquires the thread number, which is used
to report to the user. A barrier clause prevents threads from advancing beyond a point
until all have reached the barrier. Only a single thread is permitted to print the total
thread count, also acquired from a library function call.

1
2
3 #include <omp.h>
4 #include <iostream >
5 int main (int argc , char *argv [])
6 {
7 int th_id , nthreads;
8 #pragma omp parallel private(th_id)
9 {

10 th_id = omp_get_thread_num ();
11 std::cout << "Hello World from thread" << th_id << "\n";
12 #pragma omp barrier
13 if (th_id == 0)
14 {
15 nthreads = omp_get_num_threads ();
16 std::cout << "There are " << nthreads << "threads\n";
17 }
18 }
19
20 return 0;
21 }

as possible. If an additional algorithm being added to the library requires not only a

serial implementation, but a pthreaded optimised version too, the code base rapidly

moves towards unmanageable. OpenMP is easy to control, in addition to these other

advantages. Since the clauses are merely compiler directives, disabling the OpenMP

compile flag results in the code being treated as serial. The advantage here is that the

same codebase can be deployed and compiled on a non-OpenMP capable system with-

out any special cases or extra programming allowances required. Extra scope begins

and ends which mark OpenMP sections do not affect the program’s structure and are

ignored. Environment variables may need to be set in order to instruct OpenMP as to

how many threads it should execute. This upper limit may be reached due to larger

limits set by the #pragma directives. Though OpenMP is a very powerful library

which enables high performance parallelism without major code changes, there are dis-

15

advantages. Only recent compilers support OpenMP, particularly versions which are

not yet available in OS package distribution systems. Fortunately the implementation

with the various versions of Visual Studio available is well established and reliable, and

as Windows is the primary target platform of this project, OpenMP was considered

stable and fast enough to use.

Listing 2.2 shows a code example of an OpenMP enabled program. A parallel

section with a private variable is exemplified, in addition to two OpenMP library

calls. Thread IDs can be used in order to force parts of the algorithms to only be

executed by certain threads. Barriers ensure that a multi part algorithm in which the

second portion requires the first to be completely executed in order to proceed can be

parallelised safely.

2.3 GPU

Originally, graphics hardware was non-programmable - there was a fairly rigid static

pipeline provided for generating 3D graphics, which was not very flexible. However,

eventually programmable processors known as shaders were added, which allowed game

programmers to add dynamic, more realistic effects to their games. This allowed a re-

laxation of many games seeming too similar - since effects are now programmed by

different teams, in slightly different ways, products have a more unique feel to them.

In addition to this, ways were found to exploit these programmable processors to ex-

ecute algorithms which were not graphical in nature. While originally this relied on

expressing algorithms as a set of shaders (a difficult task to complete and debug), soon

additions were made to the devices to enable general purpose algorithms to run more

easily [14]. Access to caches, and differentiating between constant, shared and register

categories of memory explicitly also meant that programmers were then able to achieve

throughput closer to the theoretical maximum of the target devices. NVIDIA pushed

the “Compute Unified Device Architecture” (CUDA) which they themselves had de-

veloped [15]. Later, AMD/ATI along with NVIDIA promoted a more open framework,

known as OpenCL, for programming algorithms targeting GPUs [16]. OpenCL imple-

mentations are however young, at time of writing the toolchains for devices have been

available for many devices for less than six months. As OpenCL is young and has little

to offer that CUDA does not, CUDA was selected as a platform for the GPU based

16

algorithms in the diffusion curve solver.

2.3.1 The CUDA Programming Library

CUDA presents the programmable vertex and pixel processors of the GPU using a

single-program multiple-data (SPMD) model. The user passes code to the device in

the form of a kernel, which is uploaded and executed. An extremely high number of

lightweight threads are spawned by the kernel, and scheduled to run in parallel on

the available hardware. This is similar to the SIMD constructs available on modern

CPU’s capable of vector processing, such as Intel’s SSE and the PowerPC’s AltiVec

technologies. CUDA, however, allows for limited branching within the kernel, permit-

ting different threads to diverge and execute independently. This should be avoided

wherever possible, however, as it forces a fallback to serial execution of the divergent

portions of an algorithm. CUDA also provides a more complete set of instructions

than other vector capable processors - for example, exposing bilinear interpolation

implemented in hardware.

CUDA organises its lightweight threads into user defined subsections. These execute

in groups (when the scheduler permits) on partitions of the hardware. Algorithms are

often bottlenecked by the fact that the latency associated with loading a memory

location is high, compared to the kernel’s execution time. CUDA effectively hides this

by scheduling hundreds (or thousands) of loads, which allows the memory bandwidth

bottleneck to be overcome. Threads block based on data availability, and are allowed

to execute only when the data they are dependent upon becomes available.

The artificially unified shaders are used to execute a user’s kernels in a stream

processing fashion. The processors support single precision floating point numbers,

and have also had integer support added to cater for GPGPU applications. In current

generations of NVIDIA graphics cards, the streaming multiprocessors are clustered to-

gether in groups of 8, which are used to execute an instruction on a group of threads.

This is known as a warp; a set of threads are warped from one state to the next. Warps

are organised into thread blocks, which all run on the same set of streaming processors.

Each thread has access to a register file accessible by just that thread. Threads

grouped into a thread block all have access to a piece of shared memory. Threads

17

Figure 2.5: An overview of the GeForce 8800 implementation of the CUDA environ-
ment. 128 streaming processors are grouped into partitions of 8. Pairs of partitions
share a local texture and data cache.

cannot access the shared memory owned by a different thread block. All threads

can access global memory and exchange information via it, however it is significantly

slower than accessing the local shared memory and register file. There is also a cached

constant memory area, which cannot be modified at runtime. Register access is the

fastest, however the register file only supports an extremely limited amount of space

(32-64KB). Thus register conservation is important to avoid register spill.

Shared memory is the next fastest to the register file, yet is significantly slower

and smaller. It is invaluable for any application which requires data sharing between

threads in a given block.

Global memory comprises the rest of the memory, and is large and slow by compar-

ison. The exact amount varies from device to device, and even from vendor to vendor.

The 8800 family of GPUs typically have 320MB, however newer generations of graphics

adapter have seen upwards of 1GB of high speed, GPU only memory. Global memory

can be read and written to by any thread, and the latency in accessing it is the rea-

son why GPU stream programming requires such vast amounts of threads to achieve

18

Figure 2.6: An overview of multiple kernel execution on a CUDA device. While multiple
kernels can be loaded into memory, only one may be executed at any one time. If
functionality of two components is required to be executed concurrently, it is necessary
to combine functionality into a single kernel.

optimal throughput. When a thread accesses memory locations, it stalls pending the

availability of the locations (i.e. the scheduler only allows the thread to proceed if

all locations have been loaded). Thousands of pending operations allows saturation of

both memory bus and streaming multiprocessor throughput [17].

Multiple kernels may be loaded into the memory of a single device at the same time,

however only one can be executed at any given time. Sharing data between kernel runs

is costly, hence functionality is, if possible, combined into a single kernel.

Accelerating an application using CUDA depends on identifying algorithmic bot-

tlenecks and implementing the program model such as to reduce their effect. This

involves careful structuring and ordering of user defined kernels to ensure that all the

streaming processors are executing at peak performance. Strict management of data

access patterns (to fit into the limits imposed by the memory hierarchy) are essential.

For memory throughput intensive programs such as image registration, this latter issue

of memory management is key to obtaining good speed-up.

2.4 CELL Broadband Engine

Sony’s Cell Broadband Engine is another computer processor designed with the stream

processing paradigm. A master processor, known as the Power Processor Element

19

Figure 2.7: The CUDA memory hierarchy. Threads in a thread block each have their
own private registers/local memory, and can share data via the shared local block
memory. Global memory is uncached, but writable by all threads anywhere in the
thread grid. Constant and texture memory are cached, yet not writable by the device
during kernel execution, thus less useful for data throughput bottlenecked algorithms.

(PPE), uses a number of Synergistic Processor Elements (SPEs) to achieve computa-

tional throughput possible of rivaling a small cluster [18]. The PPE is capable of dual

threaded execution (Simultaneous Multithreading), while both the PPE and the SPEs

are capable of data level parallelism. The SPEs are SIMD only (any SISD code will

be converted into SIMD by the compiler) and are fully managed by their PPE host

threads.

IBM chose to match the SPE clock frequency to a high figure along with that of

the PPE, reducing complex intercommunication problems. In order to achieve this

while minimising floorspace on the die (thus minimising cost and maximising silicon

yield), architectural complexity was reduced. Register renaming and highly efficient

branch prediction were thus deprioritised. Branch misprediction thus causes a lengthly

pipeline stall and associated performance penalty.

While a port of the GPU based diffusion curve solving algorithms to the CELL

would have been quite direct, due to time constraints it could not be considered within

the scope of this dissertation. It is also unlikely that the performance would have been

able to meet or exceed that provided by a modern GPU - the CELL has been on the

20

market for five years without any performance enhancement or upgrades, and plans to

build a better, 32 SPE version of the processor have been shelved by IBM.

2.5 Branch Prediction

A branch in a computer program is a conditional statement which allows for flow control

in instruction sequences. A branch will, conditionally or unconditionally, indicate which

is the next instruction that shall be executed. Conditional branches are of interest in

the area of high performance code optimisation, as they can greatly affect the runtime

of a set of instructions. if and while statements, and their derivatives are the high level

language constructs which resolve down to branching. Conditional branching can cause

delays in a processor’s execution pipeline. When a CPU has a multi stage pipeline,

many instructions can be at various stages of execution simultaneously. However,

when we have a conditional branch in a program (i.e. an instruction which redirects

the execution sequence based on a condition), the processor does not know which

instruction will be executed next, causing a pipeline stall.

Modern processors perform speculative execution - the processor assumes that a

branch will, or will not be taken, and begins to execute subsequent instructions [19]. If

the processor’s assumption regarding the branch was correct, a costly pipeline stall is

avoided. If the processor was incorrect, the partially executed instructions are flushed

from the pipeline, causing a stall.

Avoiding branches by writing algorithms in such a way that branch predictors are

either encouraged to be accurate, or that some branches can be eliminated, can provide

a noticeable speed-up. This is explored in the implementation of the diffusion curve

solver. Notably, on GPU hardware, where we are dealing with less feature packed

processors, branch predictors are not present. This means that branching should be

avoided even more so than on CPU based code. In addition to this, stream processors

suffer additional heavy penalties where flow control of grouped threads diverges. A

branch statement which causes different threads to take different paths can require a

full serialisation of each thread, although this has been improved upon since the first

generation of GPGPU capable devices.

21

Figure 2.8: Poisson’s Equation - a partial differential equation which takes this form
in a two dimensional Cartesian system

2.6 Diffusion Curves

As mentioned in the introduction, diffusion curves are a vector based primitive used

for describing smoothly shaded images or subsections of images [1]. A diffusion image

through a plane partitions it into two half-spaces, defining different (or sometimes the

same) colour(s) on either side. The colour may vary along the curve - but more impor-

tantly, a blended transition between the curve and any other curves can be generated.

If, along a row of pixels in one direction towards the edge of a rasterised diffusion

image, there are no closer curves or curve subsections with a different colour intensity,

we might expect that row to all take the value of the curve.

Given a set of diffusion curves, the final image is constructed by solving a Poisson

equation whose constraints are specified by the set of gradients across all diffusion

curves [1]. We also have the added advantage of being able to apply operations to

diffusion curves usually associated with other vector based primitives - for example,

keyframing, if the objective was to build an application which stored animation as a

changing set of diffusion curve based images. Also, storing diffusion curves as pure

vectors means that the resolution of the final image is not bounded - the curve set can

be rasterised at many wildly different resolutions and then solved. Although this is

not of immediate importance with regard to the library presented, it is worthwhile to

remember. Our library merely solves an already rasterised set of pixel constraints -

other functionality would be the responsibility of the host application.

If the constraints presented by being limited to expressing an image or animation

in the gradient domain are acceptable, there are also other benefits. Storing an image

or animation in vector format is extremely efficient - size is dependent more on the

complexity of the image than its resolution/quality. Though most imaging systems

currently favour raster based techniques, vector graphics still remain popular - Flash

animations, and the SVG format (Scalable Vector Graphic) are two examples.

22

Figure 2.9: An example set of diffusion curves, sketched freehand.

Artists can create these images by simply sketching in freehand, or alternatively, by

tracing lines over an existing image. An example of the former technique’s curve set,

and the resulting output, can be viewed in Figures 2.9 and 2.10 respectively. Libraries

also exist which can extract features out of existing images, effectively automating the

conversion of a standard image to a diffusion curve based image.

Despite their advantages, most software which supports creation and editing of vec-

tor graphics has limited or no support for adding colour gradients, which are desired

by many artists. Realistic shadows, pleasing shading, and even the famous airbrush

technique are based on colour diffusion - and can be represented by a set of diffusion

curves. Tool support can be greatly improved - existing software can take extremely

long time periods to allow the perfection of a diffusion vector based image by a human

artist.

Orzan et al, in their research with artists, found that using diffusion based tools has

a notable benefit [1]: an artist can sketch an image using black on white lines - colour

can be added later. The colour can be easily changed at any point, without requiring

extra human effort, and the colours at the side of each line can specified to be tightly

knit, or have a large gap between them. Again, this can be tweaked for curves, or sets

of curves, at diffuse time - the user can easily experiment with their image in ways that

conventional raster based software simply cannot facilitate.

23

Figure 2.10: The final image after diffusion has been applied to the set of curves given
in Fig. 2.9

In addition to this, the majority of significant colour variations in an image tend to

be caused by hard edges [20]. Marr and Hildreth note that complex shading effects can

be reconstructed using a number of edges, and that an entire image can be encoded

with trivial loss using a set of edges [21]. Using established edge detection algorithms,

existing images can be converted into vector based diffusion images, ready to be highly

compressed in a format immune to further loss. They are highly desirable if future

scaling may be required. This has been investigated by Orzan et al [1], though we

focus on previously rasterised representations of diffusion curves.

24

Chapter 3

Previous Work

In this section we examine several existing relevant implementations of solvers which

take advantage of the additional computational capacity provided by GPU devices.

Jeschke et. al. presented a new Laplacian solver for minimal surfaces [4] - i.e. sur-

faces which have a mean curvature of zero in all regions, excepting some fixed boundary

conditions. Firstly, they provide a robust rasterization technique to transform contin-

uous boundary values (diffusion curves) to a discrete domain. Secondly, and more

relevant to this study, they propose a variable stencil size diffusion solver that solves

the minimal surface problem. They detail a proof that their system will converge to

a mathematically correct solution for a given set of input data, and demonstrate that

it is at least as fast as commonly proposed multigrid solvers, but much simpler to

implement. It also works for arbitrary image resolutions, as well as 8 bit data. Exam-

ples of robust diffusion curve rendering are provided, demonstrating where their our

curve rasterisation and diffusion solver implementation eliminate the strobing artifacts

present in previous methods, such as those of Orzan et al [1].

Given a set of boundary points, the associated minimal surface can be found by

solving an equation which minimises the Laplacian of the solution (i.e. modifies the

surface to have the required mean curvature of zero globally), while maintaining the

defined boundary points. The diffusion solver is capable of converging simple sets of

boundary volumes in an image in as few as eight iterations.

McCann & Pollard also completed some research, concentrating more on the area

25

of gradient domain painting (i.e. tools associated with manipulating images based on

diffusion curves). Gradient domain painting allows artists to paint in the “gradient

domain” - a line or curve can be drawn, and a gradient on either side can be resolved

seamlessly into the rest of the image. This results in a novel style of output, and is very

rapid to use. However, resolution of these complex systems is very computationally

expensive, and hence a GPU based solver is used to allow for faster processing. Many

iterations can be performed in real time, allowing an artist to see the brush strokes

they make resolve and integrate into the rest of the image over many iterations. On a

slower, CPU based system, the time interval would be so great that it would not appear

as an animation. However, with the massive parallel power provided by a GPU, this

can be processed in real-time on multi megapixel canvasses.

McCann & Pollard introduce a powerful, gradient painting brush and gradient

clone tool, as well as an edge brush designed for edge selection and replay [3]. Their

implementation on GPU enables an artist to manipulate the surface in a gradient-

oriented fashion in real-time. These brushes, coupled with special blending modes,

allow users to accomplish global lighting and contrast adjustments using only local

image manipulations e.g. strengthening a given edge or removing a shadow boundary.

26

Chapter 4

Implementation

An overview of the algorithms used, in addition to the techniques used to accelerate

the library, is given in this chapter. Details of how to link against the library inside

Windows, along with a description of the example program provided with the codebase

are also below.

We provide two versions of the library: one which implements Dirichlet boundary

conditions, and another which implements Neumann boundary conditions. The differ-

ence between these two methods can be easily put: Dirichlet places constraints upon

pixels, and Neumann places constraints upon boundaries between pixels.

As can be seen in Figure 4.1, certain pixels are given a value and constrained, so

that they can only contribute to surrounding pixels, and will not vary across iterations.

Discontinuities are introduced by rasterising two parallel (not necessarily straight) lines

of constraints. There may or may not be a space between - this can be implemented by

the user’s software. A small gap is often used as it adds a pleasing blend between the

two lines, while maintaining the discontinuity’s visual effect. A Dirichlet based system

is straightforward to process.

The alternative of Neumann is subtlely different. Since boundary conditions are

implemented upon pixel edges rather than pixels themselves, we need a 4 bit mask for

each pixel on the image, to mark the top, bottom, left, and right as constrained (or

not). A fully constrained pixel (in the Dirichlet style) will have all four boundaries

27

Figure 4.1: Dirichlet boundary conditions. Grey indicates unconstrained pixels.

constrained; i.e. an iteration cannot accept a contribution from any surrounding pixel.

When processing a pixel at (x,y) we only consider the boundaries on that pixel - if a

boundary is not set, we do not need to check the corresponding side of an adjoining

pixel to see if it is bound. Boundaries are treated as one way. To introduce a discon-

tinuity, a parallel row of pixels have the boundaries facing each other set. This allows

more flexibility than the Dirchlet system - we can introduce a discontinuity without

forcing either side to a specific colour value.

Figure 4.2 shows an example of Neumann constraints. A discontinuity near the

base of the image is introduced, without a constrained colour near it. We would expect

a resulting converged image to be fully red - however, the algorithm would need to

“flow” the source colour around through the small unconstrained gap on the bottom

right of the system, and along through to the bottom left. The notable disadvantage of

Neumann boundary conditions is that there are a lot more conditions to check for every

pixel, in every iteration. The overall algorithm, using Neumann boundary conditions,

is noticeably slower than when using Dirichlet boundary conditions. The advantage

offered is slim, and the added cost arguably outweighs this. As convergence speed

is regarded as one of the more important portions of the research into this area, the

28

Figure 4.2: Neumann boundary condition example.

Dirichlet model is treated as the primary choice for implementation. The Neumann

version of what is otherwise an identical codebase remains useful for the purposes

of a performance comparison. During implementation, the changes made to switch

from Dirichlet to Neumann conditions were extremely low down, in portions of the

code which have been very precisely fine tuned by hand. For this reason, it was more

sensible to extract a disjoint version of the library to cater for Neumann conditions;

attempting to maintain a unified library added complexity, and reduced performance.

Neumann boundaries proved to perform particularly poorly on the GPU, the reasoning

behind this is explained in the implementation section.

4.1 Algorithms

There are three main techniques used to solve a set of diffusion curves. We assume that

a target resolution has already been selected, and that the curves have been rasterised

to a template image accordingly. Firstly we examine the most simple naive case, and

then apply the other optimisation techniques.

29

4.1.1 Naive Algorithm

We attempt to solve for the steady state of the system, i.e. a heat equation at a time

where the system has stabilised, and energy is no longer moving through it. If we are

at iteration n in a diffuse operation, the value for a pixel at position x,y is given by the

following equation:

4*(V[n+1]x,y) + V[n]x−1,y + V[n]x+1,y +V[n]x,y−1 +V[n]x,y+1 = 0

At the boundary of an image, however, there is an issue - the out of bounds value

cannot be used. We can solve this by omitting the contribution of that pixel and scal-

ing the equation accordingly.

Effectively, we are using a first order integrator by forward Euler method. This

means that the error introduced will be O(dt2). While a good second order integrator

could converge the image with O(dt4) for only twice the work, we are only interested

in the final result - thus the forward Euler method is acceptable.

The values of each colour channel associated with a given pixel must be processed

individually. In addition to this, there is an unfortunate caveat: values must be cal-

culated using floating point arithmetic. The loss of precision that results from using

integer arithmetic for solving these equations introduces significant error, which causes

the final converged result to be incorrect. Extra overhead is introduced by the re-

quirement to split and merge the colour channels - however this is unavoidable for a

high quality solution. The diffusion library uses an abstract class for representation of

images: the DiffusionImage class. Concrete classes named DiffusionImageInt and Dif-

fusionImageFloat are provided. The DiffusionImageInt class can be used to calculate

these low quality results for the Naive diffuser algorithm, but has been superseded by

the other, more highly optimised methods.

A basic naive function for a diffusion iteration for a single pixel is shown in Listing

4.1. Input images are stored by the library as an array of 32 bit integers. This is a

useful method of storing them for several reasons: firstly, most hardware systems per-

form 32 bit data transfers. If we were to store a rasterised image as an array of single

30

characters, we could not guarantee that the compiler would transfer in this optimised

fashion. The majority of compilers will be able to detect these circumstances with

the correct combination of counters declared constant - however, explicitly forcing the

processor to behave in this way is highly desirable in situations like this, where we

want to guarantee a potential speed-up is being compiled.

A diffusion image may consist of simple monochrome pixels, or potentially 24/32

bit colour. 24 bit colour is most common - images with 32 bits (4 bytes) used to store

each pixel generally use the fourth channel for storing transparency values. Generating

a gradient of transparency is not commonly used by artists, thus we do not use this

extra byte for each pixel. If transparency support is required at a future stage, it is a

trivial addition - however it adds a 20% calculation overhead to each iteration.

The remaining byte is left unused. As such, the data is converted from a packed

form, which would be the usual method of inputting it, to an unpacked, aligned ver-

sion. This allows for easy 32 bit data transfers without the need for masking and

shifting instructions. It makes the reintroduction of alpha channel processing a trivial

matter, and there are also implications for cache performance and cache coherency

protocols. In modern computer processors, particularly GPUs (but there is still an

impact on CPUs, e.g. when using vector extensions) “aligned” memory transfers are

preferable. Optimisations are built into the hardware which allows faster data transfer

operations to be performed where the memory addresses in question are aligned to

even, 32 bit boundaries. Specialist processors like the CELL Broadband Engine, fur-

thermore, require 128 bit aligned boundaries. Where unaligned transfers are possible,

a performance penalty may be introduced. Certain compilers will purposely place data

at appropriately aligned boundaries (e.g. Visual Studio 2005 and later), but others de-

mand compiler directives to be wrapped around declarations, and even then these may

be ignored (certain versions of gcc/g++). This avoids the need for compiler specific

directives which may be disobeyed, or disrupt other compilers.

There is a further implication which comes into play when using packed data on

multicore systems. As described in the background session, multi-core processors need

to use a cache coherency protocol, in order to prevent mismatched/out of date memory

31

locations from being cached (i.e. if processor 0 updates a memory location, and this

is not flushed out to main memory before processor 1 reads it, processor 1 could read

an out of date version from its own private cache). Cache entries are stored as lines

of aligned memory addresses, often 16 or 32 bytes (4 or 8 single precision data). A

modification of a location inside the cache will switch it away from being shared (other

processors will see this via snooping on the bus). However, the entire cache line will

be declared invalid, requiring it to be flushed back out to main memory if another

processor core wishes to modify it (or at least into a slower, shared high level cache).

Packed data which does not consist of 4 byte groupings will, therefore, cause some

pixels to straddle multiple cache lines. This will not have a very noticeable effect on

a single threaded CPU implementation of the diffusion algorithm, however when the

algorithm is load balanced across multiple CPUs, it will cause an increase in cache

misses, causing a decrease in performance which outweighs the benefit of being able to

keep more pixels inside the level 1 cache. Unpacked data has a larger advantage when

applied to the GPU versions of the algorithms. There was also an interest in keeping

both CPU and GPU versions of the algorithms closely knit. Different components of

the CPU and GPU algorithms could be used together during development for testing,

verification and debugging purposes. Using this pattern of development for this hy-

brid CPU/GPU based library proved invaluable for progression through the project’s

lifecycle.

Listing 4.1: The basic implementation of a single pixel diffusion iteration.

1
2 void DiffusionImageFloat :: DiffuseFunc(int x, int y)

3 {

4 // if the pixel is a constrained pixel , simply copy it and return

5 if(constrained[y*IMAGE_WIDTH + x] == true)

6 {

7 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 1] = imageFloat [(y*IMAGE_WIDTH

+ x)*4 + 1];

8 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 2] = imageFloat [(y*IMAGE_WIDTH

+ x)*4 + 2];

9 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 3] = imageFloat [(y*IMAGE_WIDTH

+ x)*4 + 3];

10 return;

32

11 }

12
13 int pixcount = 0;

14 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 1] = 0;

15 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 2] = 0;

16 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 3] = 0;

17
18 //left

19 if(x > 0)

20 {

21 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 1] += imageFloat [(y*

IMAGE_WIDTH + x - 1)*4 + 1];

22 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 2] += imageFloat [(y*

IMAGE_WIDTH + x - 1)*4 + 2];

23 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 3] += imageFloat [(y*

IMAGE_WIDTH + x - 1)*4 + 3];

24 pixcount ++;

25 }

26
27 //right

28 if(x < (int)IMAGE_WIDTH - 1)

29 {

30 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 1] += imageFloat [(y*

IMAGE_WIDTH + x + 1)*4 + 1];

31 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 2] += imageFloat [(y*

IMAGE_WIDTH + x + 1)*4 + 2];

32 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 3] += imageFloat [(y*

IMAGE_WIDTH + x + 1)*4 + 3];

33 pixcount ++;

34 }

35
36 //up

37 if(y > 0)

38 {

39 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 1] += imageFloat [((y-1)*

IMAGE_WIDTH + x)*4 + 1];

40 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 2] += imageFloat [((y-1)*

IMAGE_WIDTH + x)*4 + 2];

41 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 3] += imageFloat [((y-1)*

33

IMAGE_WIDTH + x)*4 + 3];

42 pixcount ++;

43 }

44
45 //down

46 if(y < (int)IMAGE_HEIGHT - 1)

47 {

48 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 1] += imageFloat [((y+1)*

IMAGE_WIDTH + x)*4 + 1];

49 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 2] += imageFloat [((y+1)*

IMAGE_WIDTH + x)*4 + 2];

50 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 3] += imageFloat [((y+1)*

IMAGE_WIDTH + x)*4 + 3];

51 pixcount ++;

52 }

53
54
55 // calculate the averaged values and store.

56 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 1] /= pixcount;

57 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 2] /= pixcount;

58 imageFloat2 [(y*IMAGE_WIDTH + x)*4 + 3] /= pixcount;

59
60 }

With the conversion to using per-channel single precision floating point numbers,

another layer is added to the diffuser’s process. Any application for manipulating the

curves will still provide integer data - so, for every diffuse, the data set will need to

be converted to floating point values, and then back to integers. This overhead comes

into play when comparing performance with other implementations, and is discussed

in the Evaluation section.

Listing 4.1 contains a basic naive implementation for a per-pixel diffusion using

Dirichlet boundary conditions. Dirichlet boundary conditions place per-pixel con-

straints - if a discontinuity is required, we rasterise two sets of parallel constrained

pixels appropriately. Surrounding pixels are averaged and written to a buffer, which

is then swapped in when the entire iteration has been calculated. We use a disjoint

buffer for two reasons. Firstly, if a pixel at (x,y) was calculated and written out, then

34

the input at pixel (x+1, y) would have a surrounding value from the current iteration

as an input, rather than the last iteration. This would gradually introduce a sweeping

and increasing error, from the top left of the image down to the bottom right (as this

is the order in which all of these algorithms proceed through the diffusion curve based

rasters).

Figure 4.3: A flowchart detailing how the naive diffuser processes images on CPU

Secondly, unlike many implementations, the library presented features an adaptive

feedback approach to converging the images. Rather than simply applying the algo-

rithm for N iterations, where N is a number which appears to give reasonably high

quality results across a variety of images with differing complexity, a difference calcu-

lation is performed. Since the iteration method used results in us having iteration N

in the image buffer, and iteration N-1 in the back buffer, we can perform a per-pixel,

per channel comparison, and reduce it to calculate a global difference estimation.

Using this reduction we can:

1. greatly increase the speed of diffusing images with a simple, easily processed set

of constraints.

2. reprocess complex images rapidly as incremental constraints are added/removed/edited

35

by the artist.

3. vary the quality/speed trade off of the image by convergence threshold variation.

Parallelising a reduction is reasonably straightforward on fat core CPU-like proces-

sors, but provides something of a challenge on a stream processor such as a GPU.

4.1.2 Hierarchical pyramid

While the naive implementation is correct and will eventually come to a suitably con-

verged solution, it has a large disadvantage. Pixels which are very far away from a

constraint (yet are destined to converge to a 100% weighted value of said constraint)

will take many, many iterations to converge. This means that an image using the

method may take as much as minutes to converge. With relation to our method of

calculating convergence, there is an additional issue: using the naive algorithm, rate

of convergence tends to fluctuate. Since the library waits for the rate of change of the

global difference to fall beneath a specific value, this makes it very difficult to select

an ideal constant for the threshold.

Figure 4.4: The diffusion library with the pyramid optimisation applied

We can greatly accelerate the algorithm by applying a classic hierarchical pyramid

technique to the iteration process. Pyramid approaches to image processing algorithms

are a classic method of acceleration, and have been used for many radically different

36

varieties of problem [22]. To apply the pyramid algorithm, we downscale the rasterised

source set of constraints, each time reducing the resolution by a factor of 4. At the

lowest resolution, we apply the naive diffusion algorithm, until we detect convergence.

Once this occurs, the pixel values are upscaled back to the higher resolution version.

This process continues until we are back at the full resolution.

Figure 4.4 shows the modifications to the system in order to accommodate the hi-

erarchical pyramid of images. When a diffusion operation is invoked on an image, a

stack is used to store the various levels of the pyramid. These downscaled versions

are generated immediately - the constraint markers are left unchanged at each level

during processing. Pixel values are overwritten each time a child level of the pyramid

converges, however storing them is sensible as they are needed regardless to generate

their own child levels - generating a complete image set, each from the base image

would be equally or more expensive.

At the lowest resolution, our generated representation of the image will converge,

and be upscaled back up to its parent once the global difference calculator’s results in-

dicate that it is time to do so. The sample application supports redrawing the various

levels of the pyramid if required, to demonstrate the process. This process continues

until the top level image reaches a final solution, at which point the data is passed

back out to the host application for display and further manipulation by the user.

The major advantage of this is that a constraint is permitted to affect distant pixels

a lot more quickly. In line with other image processing algorithms which use hierar-

chical pyramid techniques, this fashion of speed increase does not result in a different,

incorrect/lower quality solution. Even if a low resolution image’s pixel converges to

a value which is majorly polluted when compared with what the final, full resolution

components should be, this is not of great concern. When upscaled, the value will

become closer and closer to the correct final value. In addition to this, as a polluted

value arising from surrounding pixels will be an average of the correct values for its

“sub pixels” once upscaled.

37

Figure 4.5: The basic downscaling concept is depicted.

Cautious and Greedy scaling approaches

Two approaches were experimented with for the downscaler. These will be referred to

as the cautious and greedy approaches within this report.

These two techniques are for dealing with downscaled constraints. Downscaling by

a resolution factor of 4 means we can simply use nearest neighbour for snapping the

new pixel values to - useful, since we want the algorithm to be as computationally

cheap as possible, and bilinear/trilinear/antrisophic filtering forces a trade off between

slowdown and error introduction. However, constraints can cause a problem - how do

we handle cases where a pair of constraints map to the same pixel downscaled? For

regular pixels, simply averaging them will suffice - as already referenced, an average,

when upscaled, will diffuse back to have the correct colour channel intensities, and

more rapidly than if the pixels were omitted from the operation. Constraints are less

straightforward to handle.

One option is to simply ignore constraints which cause this problem. The diffu-

sion library will run very slowly if this approach is used, and thus it was eliminated

before reaching the benchmarking section. As the image gets repeatedly downscaled,

constraints become increasingly contented, leading to more and more of them being ig-

nored. The constraints which are left behind will then give too much of a contribution

to the pixels which do manage to have their value converged - when later upscaling to

a higher resolution, they need to be fully reiterated, rendering the pyramid technique

38

worthless.

Another way of handling overlapping constraints is to average the contributing con-

straints, and/or unconstrained pixels. Unconstrained pixels would be considered from

the second lowest resolution, as the lowest resolution would fill some upscaled pro-

posed values to reiterate. Experiments showed that across the range of test images,

the resulting values (for passing into the upscaler) were globally closer to the converged

values of the next layer on the pyramid in every case.

Additional improvements were shown by using a “greedy” approach to downscaling.

If any of the four parent pixels were constrained, the child pixel will take on the value

of the parent alone, with no averaging. If two parent pixels of differing colour intensity

are contributing, then an average is calculated. For the same reason as described above,

averaging of two constraints provides a compromise - the child pixel’s contribution to

unconstrained pixels brings them closer to the final, top level converged solution. The

implications and results of choosing a greedy approach are discussed in the evaluation

section.

In cases where no parent pixels are constrained, then a simple blind average can

be taken. This case is separated out as once it is identified, the calculation itself is

branchless, allowing a speed-up, particularly on the GPU port of the algorithm.

The constrain status of a downsampled pixel is set to true if any parent pixel is

constrained, in all of the techniques described above.

This project concentrated on the Dirichlet version of the library, however as men-

tioned, the Neumann boundary condition version is also provided. Downscaling con-

straints in a Neumann system is a far more complex operation than in a Dirichlet

system. As mentioned above, the optimally performing solution for constraint down-

scaling was to simply constrain the child pixel if any of the 4 parent pixels was a

constraint. Since Neumann constraints tend to form channels along which colour val-

ues are forced to flow, we need to treat the consolidation of these 16 parent constraints

very carefully in order to generate sensible child constraints. The optimal method must

be internally greedy, and externally cautious. The relevant constraints can best be vi-

sualised as a two thick set of corresponding side constraints, shaped as a + symbol,

39

with a one-thick enclosing border. As with Dirichlet downscaling, we take an average

value from the colour values as appropriate, or override using constraints contained.

Constraints in the + are all ignored - the grouping of four pixels is internally greedy.

On each external side of the square of 4, we have two potential constraints. If either

of the two on a given side of the parent square is set, then the corresponding child

side must be set. Unfortunately this blocks some circumstances where a diffuse out

this side would converge the system towards a final solution more rapidly, but other

configurations would result in an unwanted colour leak which would diverge the current

level of the pyramid’s solution away from the required high level steady state.

Upscaling

The upscaling portion of the pyramid algorithm is more straightforward. The upscaler

operates upon the source image, and the higher resolution parent image. It is impor-

tant to note that an upscaled image is not generated directly from the low resolution

source - while the nearest neighbour colour data could be generated without error,

there would be a loss of resolution with regard to the constraint indicators. Upscaling

from child image back up to parent image is implemented identically in Dirichlet and

Neumann boundary systems, as the constraint values are effectively disregarded during

the upscaling process.

4.1.3 Variable size stencil

Jeschke et al propose a variable size stencil to accelerate the convergence process [4].

The main reason for the slow convergence of the system is that a constrained colour

cannot move quickly from one area of the image to another. Using the naive method,

an image N pixels wide will take at least N-1 iterations for a constraint on one side to

affect pixels at the far side. The hierarchical pyramid overcomes this, however the is-

sues described above involving constraint downscaling make it inefficient in many cases.

Jeschke et al suggest a more efficient approach that uses a a pre-generated radius

map, which operates in a similar fashion to the existing naive integrator. The difference

can be seen in Figure 4.6. While the naive diffuser will only consider immediately

40

Figure 4.6: The original iteration (left) and the variable stencil iteration (right)

surrounding candidates, the variable stencil method allows us for sampling of further

away pixels. Before the diffusion mapping begins, a distance map is used to calculate

the how far from each pixel the samples used can be taken.

Generating this map requires a per pixel seek operation - the distance is different

for every pixel, and not strictly related to the position of the pixel in the image space.

A pixel can only look out as far in any direction as the distance to the closest constraint

or edge to it. The distance traveled in each direction must be identical for Jeschke’s

proof of correctness to remain valid [4].

Another feature of this variation that Jeschke et al require is that the distance each

pixel seeks must be reduced via one of a number of strategies, each iteration. This

library has been unable to reproduce their results despite implementing their method

as specified, even with any the given shrinking approaches. While the speed increase

is substantial, our resulting images yield artifacts from an unknown cause. Thus we do

not attempt to compare this with our other, fully functional algorithms.

Previous papers have not, however, noted that the above techniques could easily be

integrated, and would potentially result in another speed increase. Jeschke et al report

that their solver will converge to a pleasing solution in as few as 8 iterations. If we were

to apply the variable stencil to the hierarchical pyramid algorithm (i.e. on each level of

the pyramid) this could lead to some interesting potential speed increases - especially

with large multi-megapixel images containing a lot of tightly packed constraints.

41

4.2 Example program

A non-functional requirement of the diffusion library was a complete separation and

explicit boundary between the image processor itself and the frontend program. Thus

a separate but lightweight example program was required to allow easy testing of the

library with regard to quality of feedback, correct operation, and usability. For display,

the well-known Simple DirectMedia Layer (SDL) was used. It is readily available in

a 32 bit library, and it was also possible to compile a 64 bit library for use with this

project. The SDL is also open source and cross platform, which further facilitates

support of multiple architectures and operating systems.

The SDL allows us to draw a simple window on our screen, and write pixels into a

screen buffer for display. Pixel values are progressively added (this can also be paral-

lelised if required) and the screen is “flipped” to switch from the last displayed frame

on screen to the next. As the name suggests, it is very easy to work with. SDL also

provides input listeners, allowing for keyboard and mouse controls.

The L key is bound to (re)loading the image file in use from disk. Esc can be used

to terminate the program elegantly. SDL’s blocking threads are also used to enable

waiting on the user. Otherwise, the program would have to a) be forced into spawning

and terminating a worker thread, which in itself may contain sub threads, or b) use

constant polling, which generally uses 100% of a CPU core. Both are sub optimum

solutions. Without needing to write a more complex threading interface at the top

level, the example program simply blocks waiting on user input. When the image is

edited (i.e. some more constraints are added freehand by the artist) the diffuser is acti-

vated. It will spawn/unblock its own CPU threads, or initiate a GPU based algorithm,

converge, then return to the program. The library itself is designed asynchronously;

the frontend handles the diffuse as a roughly evenly timed set of equal work chunks.

Again, the frontend can use this to poll for further user input, and append additional

constraints to an already-in-progress diffusion operation. Designing the library in this

way was intended to increase quality of feedback to the artist - rather than making a

change to the image, and the entire application locking itself from further input until

it is converged, additional curves can be added without the need to wait.

42

A set of worker functions exist in the library in order to handle mouse movement,

mouse click, and keyboard operations. Application behaviour is defined within these

functions. The application will wait for input (thus blocking the diffuser) until the user

makes an action. If an action is already underway, the SDL input devices are polled for

further input. This can be done cheaply while cooperating with the asynchronous na-

ture of the diffusion library’s operations. By combining polling and waiting techniques

in this fashion, a lightweight application resulted which can be used to obtain pure

benchmarks from the library without results being offset by frontend based overheads.

Loading pre-existing images is supported in addition to freehand sketching on a

blank canvas. Several image formats can be imported, including JPEG, PNG, BMP,

GIF and TIFF. The DevIL open source image support library is used to perform

these tasks. Despite a non-ideal state machine style non Object Oriented interface, it

provides reliable functionality for importing all of the mentioned image formats across

many platforms. It is also one of the few free use libraries which provides compilable

code for 32 and 64 bit operating systems - given the goal of allowing the whole project

to run on both of these options, DevIL was the obvious choice.

4.3 Linking the Library

The libraries provided (Dirichlet and Neumann) can both be used in the same fashion

by external, more fully featured programs than the example provided. This can be

achieved in one of two ways: 1) the library code can simply be inserted into a project

as-is, and 2) the diffuser can be linked to as a normal class within the project. How-

ever, this is not recommended; the code base provides a precompiled Dynamic Link

Library (DLL) for each version, which can be used at runtime by external programs.

This is preferable - as it is the purpose of a DLL to be shared on a system and used by

potentially more than one program. In addition to this, compiled binaries of dependent

programs are smaller, thus easier and cheaper to distribute, than if the codebase were

to be directly integrated (this is equivalent to using a static library).

Newer versions of the library can also be distributed independently - which means

43

any tools developed for it would not need to be upgraded providing the interface

remains the same (and there is no reason why it would not). A programmer can

use the set of header files available, as well as the compile-time library which indicates

information about the compiled code inside the DLL. The DLL can either be distributed

with a final application, or installed separately on end users’ computers. Since the

different diffusion techniques all inherit from a common class and provide an identically

behaving set of functions (as far as the application is concerned), a single abstract

diffuser pointer can be inserted. Then, depending on the hardware available, the

application can instantiate one of the high performance diffusion classes. Checking for

GPU support can be done with the CUDA library, and if a suitably versioned compute

able device is present in the system (computer version 1.0 is acceptable for the GPU

diffusers) then an attempt at executing the GPU code can be made. As many users

have suitable hardware, but do not install the necessary CUDA drivers, this may fail.

If the CUDA device is not set up correctly, or one is not present, the application can

then simply fall back to a single or multi-threaded CPU algorithm.

44

Chapter 5

Optimisation

This chapter focuses on exploring the methods used to accelerate and parallelise the

algorithms, beyond the scope of the description in the implementation chapter. A sim-

ple pair of parallel lines representing a discontinuity was used during the optimisation

process. This was acceptable as the improvements in runtime scaled similarly to those

of the ladybird curve set used in the experimental results chapter.

5.1 CPU

While using SIMD extensions was a planned option for the CPU version, it was not

implemented due to the time constraints of the development period. In addition to

this, the main scope of the project was to provide highly optimised GPU versions of the

algorithms - the CPU versions, while otherwise optimised, are mainly for comparison

and present as a legacy fallback.

Two custom multithreaded versions of the algorithm were implemented using the

Win32 Pthread library. A 64 bit binary of this library has been successfully compiled,

but is not yet publicly available - thus while these algorithms will function correctly

in a compiled 64 bit version of the diffusion library, they are disabled in the source

code at present. Parameters shared between the threads, as well as private exclusive

variable memory spaces, are allocated and packed into structs, which are then passed

in as pthread creation parameters for later use. The threads lock and wait until the

45

diffusion library is allocated work, at which point the threads will be unlocked and can

run their worker functions, re-locking upon completion.

Figure 5.1: Static and work-unit based workload division

The first of these uses a static splitting technique. As each atomic unit of work

(i.e. an iteration on a single pixel) takes roughly the same amount of processor time to

complete, partitioning the image space into equal areas is a viable method of work load

balancing. If an image has M rows, and the host machine has N processor cores, then

we will create N threads - each with M/N rows from the image to process. A collection

of master and slave mutexes are used to ensure that the threads remain synchronised

correctly. A persistent pool of threads is also used - spawning and destroying threads

creates some amount of overhead in the operating system’s kernel, and for an optimised

algorithm it is desirable to eliminate this.

The second custom implementation again uses the pthread interface, allowing the-

oretical 32 and 64 bit versions across Windows and Unix based operating systems to

be compiled without changes to the source code. It divides the work up into a large

number of disjoint work units, a quantity far greater than the number of threads. A

thread pool takes work units from a mutually exclusive locked list, and processes each

of them. When there are no work units left to process, the threads sleep and wait for

the next batch of work. While a simple concept, ensuring that there is no possibility

for thread starvation or or deadlock presents a small challenge.

A third method, referred to as “temporal load balancing” functions by performing

46

a tentative static split, and then adjusting boundaries on successive iterations based

on how quickly the previous divisions terminated and finished. This takes advantage of

the fact that uneven loads tend to take the same amount of processing time to calculate

a given area on an image. This was not implemented as it was felt that the algorithm

could not outperform either of the other two previously mentioned.

These custom workload dividers were implemented for the naive diffusion technique

only, however they could easily be applied to the hierarchical pyramid versions con-

tained within the library. A separate OpenMP based version was also added. This

consisted simply of adding a parallel for directive to the main loop which iterates over

each pixel. As OpenMP yielded similar/better results than the better of the two cus-

tom implementations, in addition to taking a tiny fraction of the time to add to the

library, only an OpenMP version of the hierarchical pyramid algorithm was created.

5.2 GPU

A GPU kernel was defined, based on the CPU version of the naive algorithm. As

detailed in the CUDA section of the background chapter, a single kernel is executed

in a massively concurrent fashion by thousands of threads. These threads each have

their own high speed register file, exclusive to them and inaccessible outside of the

thread. The contents of these registers are lost unless they are saved back to device

memory upon thread termination. Threads are grouped into thread blocks, which have

access to a shared memory accessible only by threads in the block. Again, data stored

in the shared memory is lost if it is not written back to device memory before every

thread in the block terminates. It is slower than the register file, but significantly faster

than main memory. Typically if a piece of memory needs to be accessed repeatedly

by different threads in the same thread block, caching it in shared memory is worth

considering. Shared memory is small (in the order of a few kilobytes on current CUDA

devices) yet its low latency makes it worth using.

A lot of helper functions were necessary for calculating information such as the

number of thread blocks, and the thread count of each thread block. While important

to the library, their implementation is not worth exploring. CUDA .cu files contain C

47

code with extended functionality and syntax specific to CUDA. The NVIDIA C Com-

piler (nvcc) is invoked upon them, and will compile/translate the relevant portions of

the code. When complete, nvcc will call your standard C compiler (in our current

configuration, the Visual Studio 2008 C++ compiler).

The DiffusionImage class was altered so as to contain a pointer to memory on the

GPU device for storing the image. Upon creation of an image object, this memory is

allocated on the CUDA device - across many iterations, reallocating the memory can

only introduce a performance penalty, thus it is avoided. Unfortunately nvcc does not

support any kind of C++ or objectified input, so the GPU versions of the diffusion

algorithms act as little more than intelligent wrappers for global functions. In porting

the naive algorithm to the GPU, a number of steps were taken. Firstly, simply the

diffusion code was ported. For each iteration, the image had to be loaded (already in

float format) to the GPU’s memory. The grid of threads would then execute, calculat-

ing the result and writing it back out to the GPU’s DiffusionImage backbuffer. Upon

completion, the back and current buffer pointers are swapped, as on the CPU. The

results then had to be loaded back to main memory to perform the global difference

calculation, which is a reduction operation.

The difference calculator function was then implemented directly on the GPU. This

is beneficial for a number of reasons - not only can the GPU outperform the CPU if

we make a highly hand tuned version of the summater, but the need to copy the

new iteration back out to main system memory is eliminated. Now, for each diffusion

operation, only two memory transfers are required - providing a measurable speed

increase.

5.2.1 The parallel reducer

Typically summating a large number of values is a function suited to a serial processor.

Implementation on a GPU is difficult; since to obtain high performance we must di-

vide a workload over thousands of threads. However, the NVIDIA CUDA programming

manual refers to an example of a similar technique - a massively parallel reduction. By

adding a similar algorithm, an extremely high performance convergence calculation on

48

device was realised.

A fully unrolled, templated reduction is provided. Essentially we generate a number

of similar kernels which can be used to consolidate values down by half until eventually

there is a single value left, representing the total global difference for the iteration.

Since the front and back image buffers are kept on the GPU device, there are no mem-

ory loads to contend with. Certain areas of memory have to be declared volatile to

prevent the compiler from reordering store operations, which would disrupt the result

and introduce error. For versions of the template which are for consolidating the final,

small amounts, the shared memory allocated must be rounded up so as to not allow

the threads to go out of bounds (empty values will be consolidated, but this is a moot

point with regard to performance).

Figure 5.2: The hierarchical pyramid algorithm’s behaviour, running on GPU

In order to further accelerate the process, consider that if we have an N*N reso-

lution image, the number of values needing to be consolidated will be 3*N*N, taking

into account the three channels. The naive diffuser is already optimised so as to make

maximum use of fast register storage, avoiding the wait times for data to be streamed

in from main memory where possible. The colour channels are stored here in register

49

- thus consolidating them into one floating point difference value per pixel and writing

that out to a buffer (which is then passed to the templated reducer) we gain another

speed increase. The solution NVIDIA provide has been modified to accept non power-

of-two quantities of values. Experimental evidence suggests that this change does not

cause a slowdown at all for the system sizes relevant to the diffusion image solver - in

fact, when compared with the alternative of buffering the array with trailing 0 values,

it performs favorably. The use of constants and templating in the code allows for a full

unrolling of the code by the compiler, amounting to an efficiency increase to roughly

1.2x.

In addition to these kernels, two additional ones for upscaling and downscaling

images within the GPU memory have been added. Investigating clever caching and

unrolling strategies here is unfortunately not worthwhile; downscaling will always re-

quire 4 reads from, and one write to device memory. These memory transfers are

unavoidable. Upscaling can of course place the value into a register before writing it

out four times to memory, and this is used in code. In addition to these points, the

Neumann version of the downscaler must be mentioned. Due to the fact that 16 input

constraints are involved instead of 4 per output pixel are used to construct the down-

scaled constraints, a lot of potential branches are introduced. If we have N threads,

and half do take a branch while the other half do not, these two sets must be exe-

cuted serially - if the block of code inside the conditional took M time, then with the

branch taken they could take up to 2*M time with an alternative branch. In a best

case scenario, many threads will stall. This leads to the Neumann boundary condition

downscaler performing quite poorly on a GPU.

The diffuser function was revisited. It is heavily bound by memory latency - by

using shared memory inside thread blocks, it was possible to create a cache of repeatedly

accessed values, avoiding duplicate loads from slow device memory.

Initially images were split into work units as in the top of Figure 5.3. Images were

split into rows, and each row would be processed by one or more thread blocks, depend-

ing on the width (there is a hard limit of 512 threads per thread block in current CUDA

devices). In this case, it becomes immediately obvious that pixels sampled to the left

and right will overlap within the thread block, this data can be cached. However, by

50

Figure 5.3: Thread organisation techniques

rearranging the area of the image processed by a thread block to be square, we max-

imise this overlap. 16x16 blocks (256 threads per block) yielded good performance, so

these dimensions were hard coded into the kernel. A piece of shared memory of 18x18

size (a 1 pixel border is required to facilitate edge pixels) is introduced. Threads begin

by loading one element to shared memory (two for border threads) and then stall until

all data has been loaded. Then they proceed as before, except referencing the faster

shared memory cache instead of slow device memory. Note that a syncthreads()

function might be here in other circumstances - however the final if statement in the

diffusion function effectively introduces a synchronisation barrier.

Caching to shared memory in this fashion reduced the runtime of the entire diffusion

process by 30%.

51

Chapter 6

Experimental results

When benchmarking the various combinations of diffusion algorithm and upscalers /

downscalers, it was important to find a common ground with the resulting images. Due

to the nature of the first downscaler function, for example, the speed of propagation

of colour across large distances in the image was not as great as with the improved

version.

Figure 6.1: The input curve raster used for benchmarking

Therefore, it will take more iterations for the image to converge towards a pleasing,

acceptable solution - and more importantly, the convergence rate will be different. Our

system depends on calculation of a global difference between each (overlapping) pair of

successive iterations - this value is used to test for convergence. An ideal image using

52

a given algorithm combination requires a different convergence rate threshold to all

other combinations.

Figure 6.2: The gold standard output image generated whilst benchmarking

Approaching the problem by guessing values for the convergence threshold is un-

acceptable - we want to be able to globally vary output quality across all algorithms.

To generate a set of suitable convergence thresholds, a “gold standard” of output was

generated, suited to the example curve raster shown in Figure 6.1. Next, all bench-

marks described below were run, effectively creating a search space by varying the

convergence threshold in a sensible range. The reason for using this method may not

be immediately clear - a seemingly easier method would be to simply iterate until the

image falls below a certain global difference when directly compared with the gold

standard - then this threshold could be used. However, this would not function well

when using the hierarchical pyramid algorithm, because convergence thresholding is

used at every level on the pyramid. We would need to generate a gold standard version

for each level, and even then, differing thresholds on the various levels of the pyramid

would potentially allow a faster convergence to an ideal solution.

Figure 6.3 shows an example of an incorrectly selected threshold - areas of the image

which are not close to the constraints influencing them heavily remain uncoloured.

The results for this are radically different. As can be seen in Table 6.1, the naive

53

Figure 6.3: Halo artifacts in an incorrectly thresholded image

algorithm requires a far lower threshold - the further from constraints a pixel is, the

slower it will be to be influenced by said constraints. Thus it follows on that the thresh-

old for constraint convergence would be lower in order to produce a fully diffused image.

With these figures established, benchmarks were run on the various algorithm combi-

nations in the library. Each was run 20 times, and the average time was calculated.

Although the runtime variation was trivial, we set aside the “warm-up” (see page 57)

periods for CUDA and OpenMP. Firstly, experiments were executed upon the different

algorithms with a fixed image input resolution.

The figures in Table 6.2 show that the OpenMP algorithm achieves the fastest per-

formance, though it is quite close to the custom static load balancer. For this reason,

the custom load balancers were not reused for testing with the hierarchical pyramid

technique - OpenMP for the CPU version is sufficient, and significantly easier to im-

plement.

The versions of the hierarchical pyramid algorithms were also benchmarked on both

CPU and GPU for a 1MP image. These results can be seen in Table 6.3.

Using the hierarchical pyramid with the initial version of the downscaler yields a

speed increase by a factor of almost 3. However, when we switch to the alternative

version of the downscaler (which will set a child pixel to constrained if any parent

pixel is constrained) the huge potential to increase speed is revealed. The improved

54

Algorithm Acceptable threshold
Naive 0.2

Pyramid & Downscaler 1 1.0
Pyramid & Downscaler 2 50.0

Table 6.1: Acceptable Convergence Thresholds

Algorithm Convergence Time
CPU Naive 706.760 sec

CPU Naive (Static load balancing) 329.842 sec
CPU Naive (Work unit load balancing) 333.211 sec
CPU Naive (OpenMP load balancing) 325.202 sec

Table 6.2: Naive load balancing methods on a 1MP image (4 threads)

downscaler allows the image to converge to a gold standard quality of solution with

a speed increase of almost 60x, compared with the previous downscaler. When this

was fully ported to GPU (i.e. with downscaler, upscaler, global difference calculation

and hierarchical pyramid diffuser all done on GPU), the image is converged in 0.167

seconds on an NVIDIA Geforce 8800GT.

Figure 6.4: Hierarchical pyramid algorithms on CPU and GPU

Also provided in Figure 6.4 are the performance results of the CPU and GPU

implementations of the hierarchical pyramid algorithm, with varying image resolution.

Table 6.4 lists the results from the fastest CPU and GPU implementations of the naive

55

Algorithm Convergence Time
CPU Hierarchical pyramid (OpenMP) with downscaler 1 117.347 sec
CPU Hierarchical pyramid (OpenMP) with downscaler 2 0.512 sec
GPU Hierarchical pyramid (8800GT) with downscaler 2 0.167 sec

Table 6.3: Load balanced CPU (4 threads) & GPU on a 1MP image

Algorithm Convergence Time
CPU Naive (OpenMP) 325.202 sec

CPU Hierarchical pyramid (OpenMP) with downscaler 2 0.512 sec
GPU Naive 56.554 sec

GPU Hierarchical pyramid with downscaler 2 0.167 sec

Table 6.4: Load balanced CPU & GPU on a 1MP image

and hierarchical pyramid algorithms.

Graphics adapter Convergence Time
NVIDIA GeForce 8800 GT 0.167 sec
NVIDIA GeForce GTX 460 0.080 sec

Table 6.5: Load balanced CPU & GPU on a 1MP image

Some experimentation with other GPUs was attempted, limited by availability. The

results are shown in Table 6.5, and indicate that the careful structuring of the GPU

based algorithms with regard to thread warp size, the library should scale to perform

well on future GPUs, taking advantage of extra compute horsepower which may be

available. Unlike many GPGPU implementations, our code should not require hand

optimisation to get the best performance out of future GPUs.

Jeschke et al benchmark their implementation at roughly 20 frames per second [4].

We use their test input for our own benchmarks (see Figure 6.1), in order to be able to

compare our results with theirs more directly. While ours does not quite match that,

there are some hidden overheads which should be taken into account, which are not

present in Jeschke’s system. Firstly, for display (or potentially writing out to file) we

load our converged image back off the GPU device into main memory. Jeschke et al

do not do this - instead they render to a texture, and display it directly. CUDA mem-

ory transfers take what would be a significant portion of time in an algorithm which

56

completes one convergence in such a small amount of time. In addition to this, their

benchmarks consist of moving a set of constraints slowly around within the bound-

aries of an image (demonstrated in the video accompanying their work). Since they

are keeping the image on GPU, and reiterating with the starting point of a previously

converged image which has simply been moved slightly, their image will be far quicker

to converge. This is because large areas of the image will already have the correct

convergence colour from the beginning of the frame - our benchmarks run freshly from

a strict set of constraints only, with no previous iteration to work from. The results

are based on a benchmark reflecting a flexible system - Jeschke et al were able to sacri-

fice some flexibility in favour of increased performance, as they were building a closed

system suitable to their own tool set only.

Many GPU based algorithms suffer from the CUDA “warm-up” phenomenon . The

first time a kernel is executed on the device, some driver optimisation is performed,

calculating where thread blocks should be assigned on the GPU for future iterations

[23]. This takes a significant amount of time - it can be in the order of seconds for our

library, because due to the templated nature of the reduction algorithm, it effectively

results in a large number of different kernels, all of which must be warmed up. How-

ever, this is not a problem for us - since programs using the library will be running the

algorithms repeatedly, we can nullify this warm-up time by priming the device via a

test call.

OpenMP also has a warm-up penalty - threads in OpenMP are not initialised

until the first algorithm or portion of the code which uses them is executed. For

long running programs, this can also add an overhead in the order of a few seconds

to the runtime [24]. Therefore a warm-up call is also performed before recording

benchmarking runtimes on the OpenMP based CPU versions. The custom schedulers

initialise and suspend their worker threads when the library is loaded, so a warm-up is

not necessary for them when testing.

57

Chapter 7

Conclusions & Future Work

The library presented by this work is capable of solving diffusion curve based images

at high speeds, thus enabling real-time feedback to the artist. Similar projects have

provided tools for editing these images, however most of these have focused partially or

wholly on the tools for expressing the curves that make up the image. This library seg-

regates the diffusion functionality into an easy to use dynamic link library, which can

now be used by application developers to implement fully featured design tools without

having to implement their own diffusion algorithms. Existing image manipulation soft-

ware such as PhotoShop could also be extended using the library, via a plugin interface.

Currently, it is only possible to compile a 32 bit binary of the library using a 32

bit operating system, and a 64 bit binary using a 64 bit operating system. This is a

limitation of the CUDA API and libraries provided - 32 and 64 bit support are mutu-

ally exclusive, and depend on the installed development environment. However if the

NVIDIA C compiler and associated libraries are adapted to support cross compiling,

the library and project setup will not require modification.

By taking advantage of available GPU hardware, and also supporting multi-core

CPU hardware, we provide a robust library capable of executing on a variety of differ-

ent computer architectures and operating systems. It will also scale to take advantage

of future devices which provide greater numbers of stream processors, and be capable

of diffusing even larger resolution rasters in the shortest time possible.

58

Figure 7.1: A modified version of the ladybird test image

Future work could include a port of the library to the OpenCL system, which would

enable suitable ATI and Intel graphics adapters to run the algorithms, rather than just

NVIDIA hardware. Support for systems containing multiple GPUs would also be pos-

sible - suitable hardware was not available for testing this during the development

process. The library may also be capable of scheduling the workload over multiple

GPUs which have different computational capabilities, while maximising device usage.

The variable stencil could be repaired, providing increased performance.

Jeschke et al also apply some postprocessing effects to soften the sharp edges that

can result from the diffusion process [4]. While the images produced by this library

are appealing, the addition of a blur effect and other postprocessing options is also

a potential area for future development. Our library in its current form has some

simple options for remapping and clamping the values of already rasterised curves -

some simple adjustments to an existing set of curves can be used to quickly produce

alternative outputs. An example of this is shown in Figure 7.1.

As already mentioned, the goal of this project was to create a reusable library. A

future project based around developing a new set of tools which could link against it

59

would be a worthwhile undertaking. The creation of a new set of tools for expressing

images as diffusion curves could easily build on this existing work - while some tool sets

already exist [3], it is noted that additional brushes, and higher level tools could be

advantageous. This could also focus on the processing of existing images - expressing

photographs or conventional cartoons is possible [4], but tools which allow tracing of

features could greatly improve the artist’s efficiency. Showing a preview of the current

output and a per-pixel difference measurement alongside original image would have

obvious advantages. Detecting curves in an existing image, and then allowing the user

to edit these as vectors rather than as a raster would also be an interesting area to

explore.

60

Bibliography

[1] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and D. Salesin, “Dif-

fusion curves: a vector representation for smooth-shaded images,” in SIGGRAPH

’08: ACM SIGGRAPH 2008 papers, (New York, NY, USA), pp. 1–8, ACM, 2008.

[2] H. Werner, “Studies on contour: I. qualitative analyses,” The American Journal

of Psychology, vol. 47, no. 1, pp. 40–64, 1935.

[3] J. McCann and N. S. Pollard, “Real-time gradient-domain painting,” ACM Trans.

Graph., vol. 27, no. 3, pp. 1–7, 2008.

[4] S. Jeschke, D. Cline, and P. Wonka, “A gpu laplacian solver for diffusion curves

and poisson image editing,” ACM Trans. Graph., vol. 28, no. 5, pp. 1–8, 2009.

[5] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings

of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[6] I. Corporation, “Intel pentium 4 processors 3.06 ghz product specification and

information.,” Intel Processor finder, vol. SL6SM–SL6S5, 2002.

[7] J. Warren, “Adaptive multi-core sorting generator,” Final Year Project, 2009.

[8] I. Corporation, “Intel pentium 4 processors 3.8 ghz product specification and

information,” Intel Processor finder, vol. SL8Q9, 2006.

[9] D. Koufaty and D. T. Marr, “Hyperthreading technology in the netburst microar-

chitecture,” IEEE Micro, vol. 23, no. 2, pp. 56–65, 2003.

[10] J. T. Robinson and M. V. Devarakonda, “Data cache management using frequency-

based replacement,” SIGMETRICS Perform. Eval. Rev., vol. 18, no. 1, pp. 134–

142, 1990.

61

[11] I. Corporation, “Mesi protocol on l1 and l2 caches for write protect (wp) memory.,”

Pentium Pro Family Developer’s Manual, vol. 1, 2004.

[12] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads programming. Sebastopol, CA,

USA: O’Reilly & Associates, Inc., 1996.

[13] M. May, “Pthread benefits and annoyances experiencied parallelizing a sparse grid

based numerical library,” tech. rep., Department of Computer Science, Technische

Universität München, 1999.

[14] M. Bailey, “Using gpu shaders for visualization,” IEEE Computer Graphics and

Applications, vol. 29, pp. 96–100, 2009.

[15] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide, 2007.

[16] Khronos OpenCL Working Group, The OpenCL Specification, version 1.0.29, 8

December 2008.

[17] P. Bui and J. Brockman, “Performance analysis of accelerated image registration

using gpgpu,” in GPGPU-2: Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units, (New York, NY, USA), pp. 38–45, ACM,

2009.

[18] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Ya-

mazaki, “Synergistic processing in cell’s multicore architecture,” IEEE Micro,

vol. 26, no. 2, pp. 10–24, 2006.

[19] D. W. Wall, “Speculative execution and instruction-level parallelism,” tech. rep.,

WRL Technical Note TN-42, 1994.

[20] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal

Society of London. Series B, Biological Sciences, vol. 207, no. 1167, pp. 187–217,

1980.

[21] J. J. Koenderink and A. J. van Doorn, “The internal representation of solid shape

with respect to vision.,” Biol Cybern, vol. 32, pp. 211–216, May 1979.

62

[22] S. Connelly and A. Rosenfeld, “A pyramid algorithm for fast curve extraction,”

Computer Vision, Graphics, and Image Processing, vol. 49, no. 3, pp. 332–345,

1990.

[23] NVIDIA, NVIDIA CUDA Programming Guide 2.0. 2008.

[24] J. Bull, J. Enright, and N. Ameer, “A microbenchmark suite for mixed-mode

openmp/mpi,” in Evolving OpenMP in an Age of Extreme Parallelism (M. Mller,

B. de Supinski, and B. Chapman, eds.), vol. 5568 of Lecture Notes in Computer

Science, pp. 118–131, Springer Berlin / Heidelberg, 2009.

63

