
Investigating the Feasibility of Volumetric

Billboards in Games

by

Rashid Bhamjee, BSc Computer Science

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

(Interactive Entertainment Technology)

University of Dublin, Trinity College

August 2011

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Rashid Bhamjee

August 29, 2011

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Rashid Bhamjee

August 29, 2011

Acknowledgments

I would like to thank my supervisor John Dingliana and everyone who helped me during

this project.

Rashid Bhamjee

University of Dublin, Trinity College

August 2011

iv

Investigating the Feasibility of Volumetric

Billboards in Games

Rashid Bhamjee

University of Dublin, Trinity College, 2011

Supervisor: John Dingliana

Real time applications typically render simplified versions of distant or unimpor-

tant objects to create scenes that appear more detailed than they actually are. Such

objects might be rendered using low resolution polygon meshes or 2D images, called

billboards. Volume rendering is a technique usually found in the domain of medical

imaging but has recently been proposed for use in interactive entertainment applica-

tions. Volumetric billboards is a technique described by Decaudin and Neyret in which

volumetric representations of objects are used for simplified rendering. With recent

advances in GPU speeds, on board memory, and programmable pipelines, real time

volume rendering is possible.

The feasibility of using volume billboards in games is investigated by implementing

a volume and polygon rendering application. Volumes are evaluated against polygonal

v

meshes in terms of rendering performance and memory usage. Considerations for a

practical implementation of the technique and integration into a polygonal rendering

pipeline are discussed.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Background . 1

1.1.1 Level of Detail Rendering . 1

1.1.2 Volume Data . 2

1.2 Motivation . 3

1.3 Contributions . 4

1.4 Dissertation Layout . 4

Chapter 2 State of the Art and Related Work 6

2.1 Volume Rendering . 6

2.1.1 3D Slice Based Techniques . 7

2.1.2 Ray Casting . 8

2.1.3 Empty Space Removal . 9

2.2 Impostors . 10

2.2.1 Billboards . 10

2.2.2 Billboard Clouds . 11

2.2.3 3-View Impostors . 11

2.2.4 Volumetric Billboards . 12

vii

2.3 Mesh Voxelisation . 12

2.4 Level of Detail . 14

2.4.1 Polygon Mesh Level of Detail 16

2.4.2 Automatic Mesh Simplification 16

Chapter 3 Implementation 17

3.1 Technologies Used . 17

3.2 Scene Objects . 18

3.3 Model Loading and Rendering . 19

3.4 Volume Rendering Pipeline . 20

3.5 GPU Prism-Plane Intersection . 22

3.6 CPU Prism-Plane intersection . 23

3.7 GPU Volume Compression . 24

3.8 Slicing Rate . 25

3.9 Slicing Optimisation . 26

3.10 Volume Generation . 27

3.11 Errors With Flat Opaque Surfaces . 28

Chapter 4 Evaluation 30

4.1 Test Setup . 30

4.2 Volume and Mesh Performance . 30

4.3 Volumes on Screen . 32

4.4 Texture Switching Cost . 33

4.5 CPU vs GPU Implementation . 34

4.6 Volume Memory Requirements . 35

4.6.1 GPU Storage . 35

4.6.2 Disk Storage . 37

Chapter 5 Conclusions 39

5.1 Future Work . 40

Appendix A Appendix 41

A.1 Vertex Program . 41

A.2 Fragment Program . 41

viii

A.3 Geometry Program . 42

Appendices 41

Bibliography 44

ix

List of Tables

4.1 Disk space required for a set of test volumes. 38

x

List of Figures

1.1 Level of detail example . 3

2.1 Object space vs image space slicing . 7

2.2 Proxy geometry box. 8

2.3 Volume empty space removal. 10

2.4 GPU mesh voxelisation overview. 14

3.1 Scene in the volume billboards system. 18

3.2 Polygonal and volumetric scene objects. 19

3.3 Slice polygon winding order. 24

3.4 Undersampling, ideally sampling, and oversampling a volume 26

3.5 Volume generation from polygonal models. 29

3.6 Shimmering artifacts. 29

4.1 Volume vs triangle rendering performance. 31

4.2 Number of pixels a volume projects to. 32

4.3 Rendering performance for a number of distant volumes. 33

4.4 Texture switching overhead. 35

4.5 Performance of CPU and GPU volume slicing. 36

4.6 Performance of CPU and GPU volume slicing when no sliced polygons

are rendered. 36

4.7 GPU memory required for volumes and meshes. 37

xi

Chapter 1

Introduction

Volume billboards are an image based representation of three dimensional objects pro-

posed by Decaudin and Neyret[1] as an alternative to polygonal meshes. Such a rep-

resentation could be useful as a replacement for low resolution meshes and two dimen-

sional billboards commonly used to render simplified versions of complex objects. This

chapter introduces the concepts of level of detail and volume rendering which lead on

to the motivation behind this dissertation and the contributions made.

1.1 Background

1.1.1 Level of Detail Rendering

Rendering scenes in real time involves a compromise between the complexity of the

rendering and the time it takes to produce the final image. When rendering a large

number of objects on screen at once, performance can be significantly increased by

drawing less detailed versions of objects at certain times. The metric used to decide

when to use a simplified version of an object is application specific. Making the choice

based on distance to the viewpoint is just one metric that could be chosen. Such a

choice is made since distant objects will map to fewer screen pixels than when they

are viewed up close, and might not be as important in their contribution to the overall

scene. This allows for a less detailed version of the same object to be rendered and

appear very similar to how the more detailed would.

This is referred to as level of detail. Simplified versions of an original object are

1

commonly referred to as impostors. The term impostor conventionally refers to a 2D

representation of a 3D object. In this report, we use the term impostor to refer to

any simplified representation of an object. There are many different techniques used

for representing and generating impostors; some common approaches are discussed in

section 2.2.

How different levels of detail for a single object differ depends on how the object

is represented and rendered. For polygonal meshes, a simplified version of the mesh

is created or automatically generated with the goal of representing the surface of the

original mesh as accurately as possible using fewer vertices, reducing the the amount of

data that gets sent through the rendering pipeline. Simplification is not restricted to

geometric approaches and can involve anything that requires less work to be performed.

For example, using a less detailed shading model can speed up the fragment shader

and using smaller textures can improve texture fetch speeds by allowing better cache

coherency.

1.1.2 Volume Data

Volumetric data is used to represent discretely sampled data in three dimensional

space. The data stored is arbitrary and depends on the desired use of the volume. A

volumetric dataset used for rendering can be thought of as the 3D analog of a 2D image.

The volume data consists of a regular three dimensional grid of sample points, and can

be visualised as a stack of 2D images. Each sample point is called a voxel, similar to an

image, where each sample point is called a pixel. Volume rendering is used in medical

imaging to visualise the results obtained from body scans and is also used in offline

visual effects to represent phenomena such as smoke or water. The information stored

in each voxel is determined by the rendering technique used, for example, it might be

useful for voxels to store colour and normal information. Different volume rendering

techniques are discussed in section 2.1.

2

Figure 1.1: The top row shows three level of detail representations of the same
scene. The left image contains the most detailed objects and has a total of 4356
vertices, the middle image uses 1092 vertices, and the right image uses 258 vertices.
The bottom two images show the difference between the full detail rendering and the
level of detail renderings. Both simplified rendering show differences around the edges
of smooth shapes. Shading differences cannot be seen in the middle image, while the
most simplified representation shows noticeable differences on the torus.

1.2 Motivation

The introduction of programmable stages in modern graphics processing unit (GPU)

pipelines make it possible to implement rendering techniques other than rasterisation

that take advantage of the GPU’s parallel architecture. Volumetric billboards relies on

a fast plane/prism intersection algorithm that can be implemented using the GPU’s

geometry shader. With the increase in GPU speeds, real time volume rendering for

distant objects may be a better alternative to discrete polygonal mesh level of detail.

It has been shown that volume billboards can be created from meshes and rendered in

real time. The question of whether there are benefits to integrating volume billboards

3

into a game’s level of detail system should be answered.

1.3 Contributions

This dissertation aims to investigate whether volumetric billboards could be used as

impostors in games as a replacement for low resolution polygonal meshes. Only static

impostors are considered as voxel animation is still an open research topic. Specifically,

the following topics are discussed:

• Implementation of a volume billboard system to visualise polygonal models and

volume billboards as described by Decaudin and Neyret:

– This includes detailed information extrapolated from related literature on

how to implement such a system.

• Considerations to be taken into account for a practical implementation:

– The number of triangles a volume is equivalent to based on rendering time.

– Choosing a slicing rate when multiple volumes with different voxel sizes are

in the same scene.

– Details a level of detail metric should take into account when deciding to

switch to a volumetric impostor.

• Evaluation of volume billboards against polygon meshes in terms of:

– Determining when the performance of volume rendering is better than a

polygonal mesh.

– Memory usage during rendering.

1.4 Dissertation Layout

The remainder of this dissertation is organised as follows:

Chapter 2 reviews related work and both seminal and state of the art literature on

the topics of level of detail, impostors, volume rendering, mesh simplification,

and mesh voxelisation.

4

Chapter 3 discusses implementation of the volume billboards system. Details are

given on how the system was implemented. Issues and considerations that arose

are highlighted.

Chapter 4 evaluates the performance of the system and compares the rendering speed

of volume billboards against polygonal meshes. Memory usage during rendering

and offline storage is discussed and contrasted.

Chapter 5 discusses the conclusions drawn from the implementation and evaluation

and summarises the results obtained. Possible future work is mentioned.

5

Chapter 2

State of the Art and Related Work

2.1 Volume Rendering

Volume rendering creates a two dimensional visual representation of a volumetric data

set. Volume data consists of a uniform three dimensional grid of samples, where each

sample stores some data required for rendering, such as colour and normal information.

Each sample is referred to as a voxel, which can be thought of as a volumetric (3D) pixel,

or volume element. Polygonal techniques represent objects by modeling the object’s

surface, while voxels easily allow the modeling of interior details. Techniques such

as texture mapping are used to create the illusion of additional details and geometry

in rasterisers. In a voxel based renderer such techniques are not required as each

voxel primitive stores its own rendering related information, at the expense of a larger

memory overhead [2], but allows voxels to be the basic building block used to create

scenes.

Recent research shows that it is possible to render large voxel data sets in real time

on current consumer hardware [2, 3]. In terms of performance, voxels could be used as

an alternative to polygons, but other limitations such as large memory requirements

and inefficient animation techniques are areas which still need further research for

voxels to be viable for large, dynamic scenes. The following sections outline some

techniques used to render static volume data in real-time.

6

2.1.1 3D Slice Based Techniques

Slice based volume rendering produces a visualisation of volumetric data by rendering

a number of textured polygons using rasterisation [4, 5, 6, 7, 8]. Volume data is stored

in a three dimensional texture which allows for trilinear interpolation between samples.

Modern GPUs provide fast 3D texture access and filters [9].

Figure 2.1: The left image shows a 2D visualisation of object aligned slices being
taken through square proxy geometry. As the camera rotates about the volume, the
slices become parallel to the viewing direction. The right image shows view aligned
slices being taken through the same volume. Image from [5].

Proxy geometry (e.g. a box) is used to represent the volume’s bounds. Texture

coordinates are assigned to the geometry’s vertices to create a mapping between the

proxy and the volume data. There are two main ways in which a volume can be sliced:

viewport aligned slices parallel to the view plane can be taken through the volume’s

proxy geometry, or object aligned slices can be taken through the proxy geometry. Each

approach gives a number of polygons to render. When taking viewport aligned slices,

view aligned planes must be computed and clipped to the proxy geometry based on

the geometry’s current transform. Object aligned slices are easier to compute, but give

poor visual results when not looking perpendicular to the slicing direction. To alleviate

this issue, multiple sets of object aligned slices may be taken and the set which provides

the best rendering for the current viewpoint chosen. In the case of rectangular proxy

geometry, a set of slices can be taken aligned with each of its six faces. It is possible

to use a set of 2D textures with object space slicing instead of a single 3D texture but

7

Figure 2.2: A box used as proxy geometry with two camera aligned slices p1, and p2.
All rendered volumetric data must be contained within the box’s bounds. Image from
[8].

this prevents taking advantage of hardware trilinear interpolation.

The texture coordinates for a slicing polygon are computed based on where the

generated slice intersects the proxy geometry. Each slice takes its interpolated colour

and any other required rendering information from one or more 3D textures. The

volume is then rendered by drawing each slice from back to front to get correct blending

results.

Typically, simple proxy geometry would be used, as many plane intersections must

be performed against it to generate the slices for rendering. In interactive applications,

slices and polygons would have to be generated each time the volume is rendered since

slice polygons are generated based on both the camera and volume transforms.

Major performance problems occur when the volume data required to render an

image is too large to fit into texture memory. In such a case, the volume would have

to be split into smaller sub-volumes which can fit into memory, and each sub-volume

rendered individually. Such an approach incurs expensive memory transfer to the GPU

and requires padding each chunk to get correct interpolation results across chunk seams

[7].

2.1.2 Ray Casting

Rendering of volumetric data using ray casting involves casting rays from the camera,

stepping along each ray into the volume data, and evaluating a rendering equation at

8

each sample point [7]. Each ray can be evaluated independently, making ray casting

an embarrassingly parallel rendering algorithm. Ray casting is much more flexible

than slice based approaches, and can be efficiently implemented on modern GPUs

using shader programs. The algorithmic complexity for ray casting is based more on

the quality of the final image produced (image based) rather than the data set used

(object based) [7]. Empty space can be skipped on a per ray basis and each ray can

be terminated early when it reaches a predefined opacity or hits an occluder.

The data structure the rays are cast into can be stored on the GPU in a compact and

efficient representation. Crassin et al. [3] used an octree where each leaf contained a

small 3D grid of voxels. This provided a good representation for scenes with large areas

of contiguous volume data or empty space but is not ideal when voxels are sparsely

distributed. Laine et al [2] focused on rendering extremely detailed scenes where the

view frustum could potentially include several gigabytes of volume data. A sparse

octree where each leaf contained a single voxel was used to provide quick traversal

and empty space skipping. It is possible to stream small chunks of voxel data into

memory as required, and dynamically update the rendering data structures on the fly.

Hierarchical tree representations, such as sparse octrees, allow level of detail rendering

and coarser approximations to be rendered while fetching voxels from memory [3].

2.1.3 Empty Space Removal

Volume data is likely to contain a non-trivial amount of empty space. This can reduce

the performance of some rendering algorithms which treat all space within a volume

equally, such as the slice based algorithm described in section 2.1.1. The idea behind

empty space removal is to improve performance by breaking up a volume into multiple

smaller volumes to reduce the overall amount of empty space [10]. Depending on the

rendering algorithm used, the ratio of space removed to the the number of additional

volumes generated must be controlled to get optimal efficiency since an additional

volume could produce overhead greater than the removed empty space.

The algorithm described by Vidal [10] works well in the general case, but due to it

only performing local optimisation, it cannot remove the space inside an object (e.g.

a hollow cube). Using global optimisation, at the cost of additional computational

complexity, the internal empty space could be removed.

9

Figure 2.3: A volumetric data set divided up into multiple sub-volumes to remove

areas of empty space. Approximately 75% of the original volume’s space is removed

and 7 volumes generated. Rendering time is approximately 3 times faster. Image and

results by [10].

2.2 Impostors

Impostors are simplified representations of an original object and are used when render-

ing the object in full detail is not necessary (e.g. due to being far from the viewer), or

when a detailed representation cannot be rendered fast enough [11]. View-independent

impostors use the same data regardless of the view while view-dependent impostors

are only valid for a subset of possible views. While view-dependent impostors might

provide quicker rendering than view-independent alternatives, either multiple impos-

tors must be precomputed and loaded/stored in memory or generated on the fly when

the view changes.

2.2.1 Billboards

Billboards are used to efficiently render distant objects by rendering a small number of

textured quadrilaterals instead of a more detailed polygon mesh. In the most simple

form it consists of a single textured quad. Billboards can be aligned to always face

the camera and is typically done when representing an object using a single quad. An

10

object may have multiple single view-dependent billboards to represent it from a set

of different view directions [12, 11]. While billboards are typically extremely fast to

render they are only suitable for rendering small, extremely distant objects since they

do not provide an accurate representation of an object, lack suitable parallax effects,

and lack accurate depth information.

2.2.2 Billboard Clouds

A simplified representation of a mesh is created using a set of view-independent bill-

boards [13]. The billboards are created by computing a set of planes that represent

a mesh’s geometric shape to within a defined error bound, and are textured project-

ing mesh triangles onto the billboard cloud. The number of billboards is significantly

smaller than the number of triangles in the original mesh but each billboard must be

uniquely textured. Such a representation has many artifacts when viewed up close and

is intended to represent distant objects while maintaining an approximate geometric

shape, parallax, and dept information.

2.2.3 3-View Impostors

3-View impostors are represented by three views of the object stored as textures, which

are used to construct a volume to intersect view rays against [14]. Unlike billboard

clouds, the memory usage per impostor is bounded. The created impostors are view

independent, but are only useful for rendering objects at a distance. Since the rendering

performance is based on the number of pixels an impostor covers, performance can get

worse than using the object’s true geometry for close views. Each rendered pixel is more

expensive to generate compared to using textured polygons as the pixel’s view ray must

be intersected with the 3-view geometry. A major limitation of the technique is the

inability to represent complex objects such as trees. 3-View impostors greatly improve

rendering performance but lack a comparison against other impostor techniques that

provide a similar level of detail.

11

2.2.4 Volumetric Billboards

Volumetric billboards are image based representations of three dimensional objects [1].

The aim of the technique is to render complex and translucent objects. The technique

can be used for object level of detail, volumetric texturing (e.g. rendering fur over the

surface of a mesh), and rendering of volumetric models (e.g. clouds, trees, fur) which

would require a large number of polygons to represent. Such data can be produced, for

example, by voxelising a polygonal representation of an object. This approach solves

some visual problems commonly associated with billboards: incorrect parallax effects,

popping on level of detail transition (e.g. when transitioning from a mesh to a billboard

representation of a model), translucency, and correct depth interaction with the rest

of the scene.

The volume data is stored in a 3D texture and can be efficiently rendered on modern

GPUs. Hardware MIP-mapping reduces aliasing and ensures smooth transitions as

view distance changes. Due to the 3D representation and rendering of the billboards,

correct parallax effects and depth interaction with other scene objects, both volumetric

and polygonal, is achieved. As a volumetric object is stored in a 3D texture, memory

consumption for this technique is quite high and may significantly limit how applicable

volumetric billboards are in practise.

A volumetric billboard is represented by one or more cells. A cell is a prism and can

be arbitrarily placed in a scene. Prisms were chosen as they can be efficiently sliced

for rendering and can be used to apply volumetric texturing to a triangular mesh. The

triangles on the surface of a mesh can be extruded to create prisms that cover the

surface. Typically, billboards of objects are boxes which can be made by using two

cells.

2.3 Mesh Voxelisation

Mesh voxelisation is the process of converting a polygon mesh into a volumetric rep-

resentation. This process is necessary when importing polygonal assets to be used in

voxel rendering. Surface voxelisation generates voxels that follow the surface of a mesh,

while solid voxelisation generates voxels that are inside a mesh [15]. Techniques exist to

perform GPU accelerated voxelisation of meshes in a relative short time. For meshes

12

typically found in interactive applications, voxelisation could be performed when a

scene is loaded or possibly on a per frame basis, depending on the number of triangles,

mesh properties, and desired volume size [16].

GPU based voxelisation algorithms usually involve creating a bounding box (the

volume) around a mesh, and projecting and rasterising the mesh’s triangles to a view

plane. An orthographic projection maps the rendered triangle to a plane of the volume’s

box. The rasterised triangle’s pixel coordinates and depth information can be examined

to determine which voxel in the 3D bounding volume it maps to. This process is

illustrated in figure 2.4. Depending on the algorithm, constraints may be applied to

the input mesh such as it being water tight and having no internal geometry, to gain

performance advantages.

Zhang et al. [17] presented a GPU based conservative voxelisation algorithm (all

voxels the mesh intersects are correctly recognised), but this approach is slower than

other less accurate hardware accelerated algorithms. Schwarz et al. [15] perform fast

GPU accelerated surface and solid conservative voxelisation without using the hardware

rasteriser. Their custom rasteriser runs at speeds comparable to the hardware’s built

in rasteriser while providing more flexibility.

13

Figure 2.4: Pipeline for performing mesh voxelisation on the GPU. An orthographic

projection is used to project a triangle to a plane on the volume’s bounding box. The

triangle is rasterised and the voxels it passes through obtained from its pixel and depth

information. Image by [17].

2.4 Level of Detail

Level of detail (LOD) is a general term that refers to reducing the complexity and the

work done by various stages in the rendering pipeline. This leads to faster rendering

by doing less work at the expense of a worse final image. By reducing the level of

detail on certain objects, more can be rendered in a scene. Which LOD to use for an

object is chosen by a LOD algorithm. Common approaches include taking into account

distance from the viewer, number of pixels the object will project to in the final image,

or the object’s importance. Level of detail can also be used to ensure a scene gets

rendered within a certain time limit; object complexity can be automatically reduced

until the desired frame rate is achieved. Geometric level of detail involves using a

coarser representation of an object’s geometry. LOD doesn’t just apply to objects in

14

the scene, but anything that can have its complexity changed such as post processing

image space techniques, final image resolution, shadows, etc. There are two main

categories of LOD algorithms: discrete and continuous [18].

In a discrete LOD algorithm there exists a finite number of LOD representations for

an object. Simply changing an object’s LOD between frames can cause visual popping.

In the case of geometric objects, blending can be used to help smooth the transition

[19]. A linear blend between two LODs over a short period of time or any other metric

is used but requires rendering the two LOD objects to blend between. In practise

this is not a huge issue as only a small number of objects will be transitioning at any

time. Another used technique, called alpha LOD, is to only have one representation

of an object and to fade it out based on a metric [18]. The objects slowly gets more

transparent and is not immediately obvious to the user. Eventually the object will

be fully transparent and the object does not have to be rendered any more. The

downside to this technique is that the fully detailed object has to be rendered until

it has completely faded out and the user may notice the object turning transparent.

The first problem can be avoided by switching between simplified representations of

the object, perhaps also using LOD blending, but may introduce popping.

In continuous LOD algorithms new LODs for an object are generated as required.

For geometry, geomorphing is one possible algorithm that uses a number of discrete

object representations with the connectivity between their vertices maintained allow-

ing vertices to be interpolated between LODs [20]. This avoids popping but requires

more computation than the discrete alternative and may result in the object notice-

ably morphing. Subdivision surfaces involve having a low resolution control mesh and

recursively dividing it according to some rule. Recent GPUs have programmable tes-

sellation hardware. Tessellation is the process of splitting a polygon into multiple

polygons. Displacement mapping is a technique that uses a texture map to define the

height a point should be displaced from the surface or a mesh. By combining GPU

tessellation and displacement mapping, meshes with high geometric detail can be pro-

duced by sending a low resolution mesh to the GPU, having it dynamically tessellate

it based on a LOD metric, and using displacement mapping to create more detailed

geometry [9]. By combining GPU tessellation and displacement mapping, meshes with

high geometric detail can be produced by using a low resolution mesh. This process

involves getting the GPU to dynamically tessellate the low resolution mesh based on a

15

LOD metric, and using displacement mapping to perturb the extra triangle’s vertices

to create more detailed geometry [9]. Certain fractal and procedural generation tech-

niques fall into this category as they can be re-evaluated as required to produce the

exact detail required.

2.4.1 Polygon Mesh Level of Detail

Many real time applications use multiple versions of a model that are chosen to be

rendered at run time based on a level of detail algorithm, such as distance to the viewer.

Since the simplified model contains fewer vertices and (possibly) smaller texture maps,

it can generally be rendered faster than the original mesh. These models can be created

manually but there are also automatic methods that aim to simplify meshes.

2.4.2 Automatic Mesh Simplification

The goal of mesh simplification is to provide a mesh with fewer polygons than the

true geometry while trying to preserve the overall geometric appearance as much as

possible. This particular research area has been studied in depth and many suitable

methods currently exist [21]. Decimation methods involve eliminating vertices, edges,

and triangles based on given criteria. The approach described by Schroeder [22] removes

vertices based on distance or angle metrics and fills in any holes produces. Vertex

clustering based approaches replace groups of vertices with a single one but does not

preserve topology or details. Wu et al. [23] added global feature preservation to

quadratic error metric based simplification.

Research has also been done for commonly used special case meshes. Real time

optimally adapting meshes were designed for real time mesh simplification in terrain

rendering [24, 25, 26]

GPU tessellation has been used to generate a more detailed mesh from a simpler

one and can be used when the original mesh doesn’t contain enough detail in the

final image. Details can be added to a mesh using displacement mapping, and view-

dependent geometry created on the fly as the mesh is rendered [9].

16

Chapter 3

Implementation

This chapter describes the implementation of the volume billboards system. The sys-

tem is capable of loading and rendering polygonal models and volumetric billboards as

described by Decaudin and Neyret, and incorporates a simple distance based level of

detail metric. The process of creating a practical implementation using current graph-

ics API specifications is detailed, something missing from previous works. Decaudin

and Neyret define an optimal slicing rate but some extra considerations that must be

taken into account when rendering multiple volumes with different voxel sizes are dis-

cussed. A separate tool was created to generate volume data from polygon models and

is based on previous works.

3.1 Technologies Used

The language chosen was C++ and the OpenGL API is used for rendering. GLSL

is the OpenGL shading language which allows user code to be executed at certain

stages in the GPU’s pipeline. Various other utility libraries were chosen and used to

accomplish functionality unrelated to the main system.

The Simple and Fast Multimedia Library (SFML) provides an abstraction layer on

top of a number of operating systems for tasks common to interactive applications.

SFML was used for window and OpenGL context creation, receiving keyboard input,

performance timers, and text rendering.

The Configurable Math Library is a mathematics library intended to be used in

17

games and graphics applications. It provides a fast templated implementation of math-

ematical operations and structures commonly required by such applications. The li-

brary was used in the system for vector and matrix operations as well as some useful

utility operations, e.g. clamping variables to within a legal range.

The Boost project provides a large set of libraries for use in C++ programs. Specif-

ically Boost was used for file system access, command line argument processing, smart

pointers, and string manipulation.

Figure 3.1: A scene from the volume billboards system. All objects are rendered using
volumes.

3.2 Scene Objects

An object in the system represents a single visual entity in a scene and it is capable

of being rendered using either polygonal models or volume billboards. Internally, an

object stores a transformation matrix, a list of meshes, a list of volumes, and a LOD

metric. The LOD algorithm chooses a single volume or mesh from an object’s lists for

rendering. The system uses a LOD metric that is based on the object’s distance from

the viewpoint. A LOD base class is defined and allows specific metrics to be imple-

mented by inheriting the base class and implementing the required virtual functions.

All scene objects are loaded when the application is started. Objects are defined

in external YAML files, a data format designed to be human readable, allowing the

18

properties of scene objects and level of detail algorithms to be changed easily. A C++

YAML parsing library, yaml-cpp, is used to read the object files.

Figure 3.2: A scene with a volumetric object (left car) and a polygonal object (right
car).

3.3 Model Loading and Rendering

Common model file formats such as Collada, Autodesk’s 3ds Max, and Wavefront

object files have large non-trivial specifications and can be complicated to parse. The

Open Asset Import Library is an open source C and C++ library for reading various

model formats into its own internal representation an application can more easily use.

Only a subset of the data typically associated with a model is required by the system.

Specifically vertex positions, normals, texture coordinates, and texture data are used

for rendering.

A mesh represents a set of triangles that can be drawn on screen and must store a

list of vertices, a list of indices, and a single material. A vertex defines a single point

in 3D space and some additional data associated with that point. In addition to a

point, a vertex stores a normal vector used for lighting, and texture coordinates. Each

element in the indices list is an index into the vertex list. Three indices represent a

single triangle which implies the index list must always be a multiple of three. A mesh

can be rendered by iterating over the list of indices three indices at a time, using the

three indices to index into the list of vertices, and using the vertices to draw a triangle.

Index and vertex lists are used since a single vertex can be shared by many triangles.

A material defines the surface appearance of the mesh’s polygons by storing colour and

19

texture information. Textures used by materials are cached and reused so the same

data is not loaded and stored multiple times.

Since a mesh can only have one material and a model may use multiple materials,

a model is represented using a list of meshes. Once a model has been loaded its data

is never modified by the system allowing a model to be cached and reused by multiple

scene objects. A scene object’s transform is used to uniquely position, orient and scale

a model before it is rendered.

3.4 Volume Rendering Pipeline

A volume billboard is a 3D texture bounded by a box created using two prisms. A

volume stores a 3D texture id, a transform to position it in the scene, and a bounding

box for slicing optimisation. All volumes are assumed to be 2 × 2 cubes with the

transform holding a scale that defines their actual size in the scene. By assuming a

fixed base size the same vertex data can be used by every volume.

The stages in the system’s rendering pipeline can be divided up into two sections.

The first deals with loading and initialising volumes which happens at application

start up, though this could potentially also happen intermittently as an application

is running to load and unload volumes as required. The second section deals with

what must be done per frame to render volumes and polygon meshes together. The

initialisation stages are as follows:

1. Buffers are created for rendering volume prisms. Each volume uses the same

vertex and index buffers along with a unique transform to place it in the world.

The buffers need to be created only once and do not need to be modified during

rendering.

2. When a volume is required its data is loaded from a file produced by the mesh

voxelisation tool. First, the volume’s dimensions are read and from this infor-

mation the number of mipmap levels and the number of colours in each mipmap

can be determined. Colour data is then read into a temporary buffer on the

CPU. When a colour is read its red, green, and blue components are multiplied

by its alpha component (referred to as premultiplied alpha) to simplify the blend

20

equation and avoid artifacts when the volume is being magnified 1 and the GPU

interpolates between colour samples[27, 28, 29]. The colour data is then uploaded

to the GPU as single byte red, green, blue, and alpha values, meaning each voxel

requires 4 bytes of memory when uncompressed. The volume’s bounding box is

then set and its transform is created using the scale read from the volume file.

Volume data is cached and can be shared between multiple scene objects.

Once the rendering buffers are initialised and one or more volumes have been created

the data can then be used for rendering a scene in the following way:

1. All polygonal models should be rendered first. This fills the depth buffer so

volumes can be correctly clipped against rendered polygonal data on a per pixel

basis. When rendering translucent polygons, the depth buffer should not be

updated since any intersecting volume should be visible through the polygon.

2. All volumes to be rendered in the frame are gathered. This step may involve any

world space culling the application decides to implement. The current system

does not perform any volume culling and assumes all volumes are visible.

3. Data required for the slicing optimisations discussed in section 3.9 are computed.

4. Each slice is drawn by iterating over the list of volumes, and issuing a draw call

using the prism vertex and index buffers. The geometry shader can then read

a volume’s two prisms as GPU primitives to intersect the current slicing plane

with. Before a draw call is issued, a volume specific GPU state must be set. The

volume’s 3D texture must be bound and the volume’s transform matrix must be

set correctly so the volume appears at the correct size. The actual transform set

should be a complete modelview matrix, including the volume’s transform and

the object that positions it in the scene. For each slice, the GPU must be told

about the camera space z-coordinate of the current slicing plane. Volumes are

sliced back to front to ensure correct blending. When using premultiplied alpha

the blend equation for correct back to front rendering of translucent objects is:

colourout = 1 × coloursource + (1 − alphasource) × colourdestination

1Texture magnification occurs when individual pixels in a texture map to multiple pixels on screen.
Similarly, texture minification occurs when multiple pixels in a texture map to one pixel on screen.

21

where colourout is the final computed colour, coloursource is the colour sampled

from a volume’s 3D texture, and colourdestination is the current framebuffer colour

at the current pixel.

5. The vertex shader transforms the prism’s vertex positions into world space.

6. The geometry shader then performs the prism/plane intersection and outputs a

polygon if an intersection is found. The process is described in more detail in

3.5.

7. The pixel shader samples the currently active 3D texture and outputs the source

colour the graphics library will use with the specified blending equation.

3.5 GPU Prism-Plane Intersection

Prism/plane intersection is performed using a GPU’s geometry shader. A geometry

shader receives a single primitive as input and can output zero or more primitives.

The input and output primitive types do not have to be the same but the number of

primitives output is limited by a particular implementation.

The intersection algorithm used is described in [1] and [30] and has been modified

to run using version 3.30 of GLSL. While the prism/plane intersection algorithm is

detailed, no information is given about how the rest of it should operate within a

complete volume billboard renderer. This section details the issues that had to be

solved when integrating the algorithm into the volume billboards system. A code

listing of the GLSL shaders created can be found in appendix A.

To perform an intersection test the geometry shader must have access to a volume’s

prism, transform matrix, projection matrix, and the current slice distance from the

camera. The GPU primitive with the maximum number of vertices is the triangle

with adjacency information, requiring six vertices, and allows processing a prism in the

geometry shader. Using this primitive twice, all 12 vertices of a volume’s two prisms

can be sent to the GPU at once using index and vertex buffers. The same buffers with

a unique transformation matrix are used for each volume.

Prism vertices are required to be in camera space for the intersection test. This

transform is done in the vertex shader which gets executed before the geometry shader.

22

Since vertices output by the intersection algorithm are in camera space they must then

be transformed into screen space using the projection matrix before being emitted from

the geometry shader.

Once an intersection between a plane and the edges of a prism have been found,

texture coordinates for mapping the volume’s texture to the rendered polygon must

be computed. This can be done using linear interpolation with texture coordinates

assigned to the vertices of each intersecting edge found. The amount to interpolate by

is computed by finding how far along an edge a slice intersects.

t = (zslice− p0.z)/(p1.z − p0.z)

In the above equation zslice is the z coordinate of the current slicing plane, p0 and p1

are the vertices of an edge the plane intersects, and t is the amount to interpolate by.

The interpolation amount will always be in the range 0 ≤ t ≤ 1 since interpolation is

only done along edges that have an intersection with the slicing plane. All coordinates

are in camera space with the z-axis pointing in front of the camera.

The output polygon from an intersection test contains between three and five ver-

tices which the original algorithm rendered by emitting up to three triangles from the

shader. GLSL only allows points, line strips, and triangle strips to be output from the

geoemtry shader. The implementation outputs a triangle strip primitive with up to

five vertices; three for the initial triangle and up to two extra points to draw up to

the maximum of three required triangles. The resulting polygon from a prism/plane

intersection is always convex so triangle strips can be used without any special consid-

erations to the number of vertices required. The problem with emitting a triangle strip

is that the intersection test gives vertices in a counter clockwise winding order. This

is shown in figure 3.3 where each vertex of the polygon is numbered in the order it is

given by the algorithm. To create a valid triangle strip, the vertices must be emitted

in the following order: 1, 2, 0, 3, 4.

3.6 CPU Prism-Plane intersection

A CPU version of the prism/plane intersection algorithm was also implemented. This

allows the volume billboards system to run on older graphics hardware that supports

23

Figure 3.3: The left part of the image shows the winding order of a polygon found by
the prism/plan intersection algorithm. The right image shows the error when rendering
a triangle strip by using the vertices in order. To produce the correct polygon as a
triangle strip vertices 1,2,0 must be submitted first to create the initial triangle, then
vertices 3 and 4 are submitted to create the remaining two triangles.

3D textures but lacks a geometry shader. The same concepts described in the previous

section are used to integrate it into the main system. In immediate mode OpenGL an

application submits vertex information to the graphics library when it draws an object,

rather than creating buffers in GPU memory. The polygons created by the intersection

algorithm are rasterised using immediate mode. All matrix and vector operations

required by the algorithm are done using the optimized configurable math library.

Results on the performance of this version compared to the GPU implementation can

be found in section 4.5.

3.7 GPU Volume Compression

Graphics cards offer built in S3TC texture compression with on the fly decompression

allowing more texture data to be stored in GPU memory and can help increase cache

performance[18]. The disadvantage of the S3TC algorithms is that the compression

scheme is lossy but in practise this loss in quality is surpassed by the memory reduction

and performance gained. There are five variants of the compression algorithm available

on recent hardware: DXT1, DXT2, DXT3, DXT4, and DXT5. For volume billboards

DXT5 is the ideal choice as it supports a compressed and interpolated alpha channel.

The other variants can also store alpha but DXT1 only stores a 1 bit alpha which

24

cannot be used for translucency. DXT2 and 3 store a 4 bit alpha component per pixel.

One of the properties of S3TC algorithm is that the compression ratio is constant

meaning the exact number of bytes any texture will require can be determined. RGBA

colour data using DXT5 compression offers a 4:1 compression ratio.

The S3TC algorithm works by dividing the image into blocks of 4× 4 pixels. Com-

pression and decompression of each block is handled independently of any others. The

colour components of the original texture are compressed to 64 bits of information.

Two 16 bit RGB color values are computed based on the original colours in the block.

During decompression two more colours are created by interpolating the stored 16 bit

colours. The interpolation is linear and the generated colours are evenly spaced in the

interval [colour0, colour1]. Each of the 16 pixels in a block stores a 2 bit number that

corresponds to one of the four colours. Alpha is stored in an additional 64 bits by

storing two 8 bit alpha values and a 3 bit index per pixel. Unlike the colour lookups,

the index is used to choose a predefined function that operates on the stored alpha

values and best approximates the original value.

3.8 Slicing Rate

The slicing rate is defined by the distance between each successive slice taken through

all rendered volumes. The rate is not constant and should be adjusted based on the

current camera projection and volume mipmap levels. Ideally one slice should be

taken per slab of voxels in world space. Decaudin and Neyret suggest the slicing plane

is stepped along the camera’s z-axis in steps the size of one world voxel and suggest the

slicing rate could be reduced as a way to increase performance. Mipmapping is taken

into account to ensure the volumes aren’t needlessly oversampled. This approach works

well when the voxels in all the currently visible volumes are the same size, but since

volumes can be transformed arbitrarily, each can potentially have a different world

voxel size. Therefore the slicing rate must be more carefully chosen based on all visible

volumes and will result in either oversampling or undersampling volumes.

When translucency is involved, different sampling rates will produce a different

number of slices per volume. If the alpha contribution is not scaled, when blended

together, more slices will result in a more opaque object, while fewer slices will result

in a more translucent object. For views where the volume is being magnified, volumes

25

representing opaque objects with thin surfaces might need the sample rate increased

to avoid slicing interpolation artifacts. When minifying volumes, the hardware inter-

polates between mipmaps to sample a value that corresponds to roughly one pixel in

the frame buffer. Since the sample rate is dynamically adjusted based on this, po-

tential oversampling is only possible when volumes are magnified. The alpha values

for each volume mipmap are correct, and the slicing rate is ideal (approximately one

slice per stack of voxels) therefore alpha compensation does not need to be done under

minification.

Aside from varying alpha values, oversampling does not produce any artifacts in

the final image, while undersampling produces noticeable slicing artifacts as can be

seen in figure 3.4. Ideally, the sampling rate should be at least the size of the smallest

world space voxel if undersampling is to be avoided.

Figure 3.4: A volume sliced at different sampling rates. The left volume is undersam-
pled by taking slices twice the ideal distance apart causing noticeable slicing artifacts to
appear. The middle volume is sliced at the ideal rate with the slicing planes one voxel
apart. The right volume is oversampled by slicing at twice the ideal rate producing a
slightly smoother image. Oversampling makes translucent parts of the volume appear
more opaque as the alpha component of the voxels has not been scaled to compensate
for the increased number of slices.

3.9 Slicing Optimisation

The slicing plane is stepped perpendicular to the camera and intersected with all vol-

umes. If a volume is completely in front or behind the current slicing plane the prism/-

plane test finishes and does not render a polygon. There are two easy optimisations to

consider: skipping the slicing plane over space with no volumes, and only testing the

plane against a subset of volumes it could potentially intersect. Decaudin and Neyret

26

suggest partitioning visible volumes into a number of slabs, however, our implemen-

tation takes a different approach based on the idea that volumes will only be used as

distant representations of objects.

Before any slicing takes place, all volumes to be rendered are traversed and the

prism vertices that are closest and furthest from the camera are found and stored per

volume. Volume slicing is started at the furthest point and ends at the closest point

found. This skips all empty space between the camera and the nearest volume, and all

space after the furthest volume. Empty space between volumes is not skipped over at

once but the intersection test will not be run for any volumes when the slicing plane is

in such a region. Before running the prism/plane intersection algorithm on a volume,

a check is done to make sure the plane’s z coordinate is within the volume’s minimum

and maximum distance from the camera. If it is not, a slice cannot intersect the volume

and the intersection test can be skipped completely. Further optimizations were not

considered as it is assumed that volumes are being used to render distant objects and

that they all lie in roughly the same region.

3.10 Volume Generation

A separate tool was developed to create volume data from polygonal meshes. GPU

accelerated voxelisation tools work by rendering slices through a mesh using rasterisa-

tion and reading back the frame buffer pixels which represent voxel colours [17, 15].

This process is introduced and described briefly in section 2.3. The voxelisation tool

generates volumes as follows:

• A polygonal model is loaded and scaled to fit in a 1 × 1 cube. This simplifies

the camera positioning, slice size and increment distance, and pixel to voxel

calculations.

• An orthographic camera is placed in front of each of the cube’s six faces (see

figure 3.5).

• The framebuffer resolution is set to the desired volume resolution so that one

pixel represents one voxel.

27

• The near and far clipping planes are set to be the distance of one voxel apart,

and are stepped along the camera’s axis in single voxel increments. The clipping

planes ensure one slab of voxels are rendered at a time, effectively taking slices

through the model.

• Each time the planes are incremented the model is rendered filling the frame

buffer with colour information. During rendering backface culling should be

disabled otherwise only half the required colour information will be gatherd.

• The framebuffer is read back and the colour information stored.

The above process is repeated for each of the cube’s six faces giving six 3D arrays

of colour information. The arrays are then combined by averaging the colour values in

each to give the final volume information. Mipmaps are generated in using the same

process except the volume resolution is divided by two each time. Figure 3.5 illustrates

how the near and far planes are stepped along the model.

The implementation currently only handles volumes that are a power of two and

have the same width, height, and depth. A scale factor is stored along with the volume’s

dimensions and colour information so the volume’s proxy geometry can be scaled to

match the size of the original polygonal model when rendered.

Volumes are written to disk in a binary file format. The data written by the

voxeliser tool and read by the application is not compressed. Section 4.6.2 discusses

compression in relation to disk storage. The first three entries in the file are 4 byte

integer values representing volume’s width, depth, and height. The next entry is a 4

byte float representing the volume’s scale factor. The remainder of the file contains

colour information for each mipmap level. Each colour is stored using four 4 byte floats

representing red, green, blue, and alpha intensities respectively. Intensity values are

normalised to be between 0 and 1. Mipmaps are stored sequentially from largest to

smallest.

3.11 Errors With Flat Opaque Surfaces

When voxelising a polygonal model, an infinitely thin plane maps to one slice of voxels.

When viewing this part of a volume, to get the final colour at a particular sample point

28

Figure 3.5: When a model is voxelised it is scaled to fit inside a 1 × 1 cube and an
orthographic camera renders slices through it along each of the six cardinal directions
as illustrated in the left image. The middle and right images visualise the near a far
clipping planes, which are spaced one voxel apart, and get stepped through the model
in single voxel increments. The parts of the polygons between the current clipping
planes get rasterised into the framebuffer while others are discarded.

on a slice the graphics card will interpolate between the opaque voxels the surface is

mapped to and the surrounding transparent voxels. As the camera moves the position

of a slice intersecting the opaque voxels may change slightly causing the 3D texture’s

sample position to also change leading to different interpolation results. This appears

as a shimmering effect which can be seen as the camera moves. Figure 3.6 shows the

dark colour value from transparent pixels getting mixed in with the white voxels on a

surface.

Figure 3.6: Shimmering artifacts caused by moving slicing planes and bilinear texture
interpolation. Note the dark diagonal lines appearing along white roof of the car. When
the camera is moved, new slicing plane orientation causes the dark lines to appear in
a different location.

29

Chapter 4

Evaluation

The question of whether it is useful to consider using volume billboards in games is

answered by using the implemented system to analyse performance and memory con-

sumption. The performance of volume and polygon rendering is compared to determine

when volumes might be used instead of polygonal impostors. From this information

we can derive approximately how many triangles a volume is equal to in terms of per-

formance. Memory usage during rendering is analysed and contrasted against what

meshes require.

4.1 Test Setup

The hardware used to perform the tests is:

• AMD Athlon 64 6400+ @ 3.2GHz.

• 6GB RAM.

• NVIDIA 8800GTS with 320MB GDDR3 RAM (96 stream processors).

• Linux (64 bit) using NVIDIA’s Linux driver.

4.2 Volume and Mesh Performance

The performance of rendering a mesh and a volume was measured to determine when

volumes should be used in place of meshes in terms of rendering speed. An object

30

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100 110 120 130 140

M
il

li
se

co
n

d
s

Triangle and Volume Performance

256^3 volume 128^3 volume 70000 triangles 35000 triangles 7500 triangles

0

2

4

6

8

10

12

60 70 80 90 100 110 120 130 140

M
ill

is
e

co
n

d
s

Distance

Triangle and Volume Performance

256^3 volume 128^3 volume 70000 triangles 35000 triangles 7500 triangles

Figure 4.1: The left chart shows rendering time for a meshes and volumes. The right
chart shows a more detailed result of the rendering times between a distance of 60 and
140 units from the camera. Volumes outperform the 7500 triangle mesh at a distance
of 80 and 105, when projecting to approximately 2252 and 1702 screen pixels.

was placed in the scene and rendering time was recorded as the camera moved away

from the object. 1283 and 2563 volumes and triangular meshes consisting of 7500,

35000, and 70000 triangles were used. Mesh performance is constant over distance

indicating its rendering speed is geometry bound. Volume performance is six times

worse than polygons up close when all screen pixels were filled by the volume. Figure

4.2 shows the number of pixels a volume projects to over distance at a screen resolution

of 1680×1050. From figure 4.1 it can be seen that volume performance scales inversely

to the number of screen space pixels a volume projects to.

1283 volumes outperform a triangle mesh with 7500 vertices at a distance of 80 from

the viewpoint, where the volume projects to 225×225 screen pixels. 2563 volumes only

become faster than the mesh at a distance of 105, a projection of 170×170 screen pixels.

This is caused by the larger volume having more voxels and therefore requiring more

slices to be taken when rendered. At a distance of about 135 the performance of both

volumes merges as the projected screen space approaches 1282. At this distance, the

size of the projection means the second mipmap level will be chosen for the larger

volume leading to it being treated as the 1282 volume is.

Since rendering can quickly become fillrate 1 limited, LOD algorithms that switch

between meshes and volume billboards should take into account the number of pixels

in screen space a volume billboard will end up projecting to. If the calculation was

1The number of pixels a graphics card can compute in a given time frame.

31

1680 x 1050

1254x 1027

720 x 720

385 x 385
260 x 260 200 x 200 162 x 162 136 x 136

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 20 30 40 50 60 70 80 90 100 110 120 130 140

P
ix

el
s

(t
h

o
u

sa
n

d
s)

Distance

Volume to Pixel Projection

pixels

Figure 4.2: The number of pixels a volume projects to based on distance to the
camera. Each volume used was a 1× 1 cube in world space. The screen resolution was
1680 × 1050.

based on distance alone then the resolution the application is running at will directly

affect performance as the number of pixels rendered will scale with the resolution.

Combined with the fillrate requirements of back to front rendering this will cause

fillrate limitations to slow down the application when it runs at higher resolutions than

its distance based LOD algorithm was designed for.

By observing the rendering time of a volume when one voxel maps to one pixel,

an approximate triangular equivalent can be found. From figure 4.1 and 4.2 a 1283

volume achieves this at a distance of 140. At this distance, the time it takes to render

the volume could be used to render approximately 2500 triangles. Similarly, a 2563

volume has an equivalent voxel to pixel mapping at a distance of 70, making it the

performance equivalent of approximately 21000 triangles.

4.3 Volumes on Screen

The number of volumes that could be rendered on screen at once was measured by ran-

domly placing 1283 volumes in front of the camera. Each volume projected to between

32

0

10

20

30

40

50

60

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

R
e

n
d

e
ri

n
g

ti
m

e
 (

m
ill

is
e

co
n

d
s)

Volumes

Volumes on Screen

Volume Rendering Time

Figure 4.3: Rendering performance for a number of distant volumes.

50×50 and 150×150 screen pixels causing volumes to be both magnified and minified.

Our results show that performance scales linearly based on the number of volumes

rendered. At a target frame rate of 30 (33 milliseconds per frame) approximately 300

volumes can be drawn.

4.4 Texture Switching Cost

Since one slice must be intersected with multiple volumes before the next slice is taken,

it is necessary to change some per volume GPU state for each prism/plane intersection.

This requires the application to issue one draw call per volume for each slice, giving a

total of number of volumes × number of slices draw calls to render all volumes. Each

volume may be using a different texture meaning the GPU’s texture state must be

set between each call. Constant texture switching is not always necessary. In the

case of volume texturing (e.g. fur rendering), many volumes use the same texture and

therefore require no switching. When rendering polygonal meshes, triangles using the

same texture are grouped together in batches. Due to the fact that volume billboards

are being used to represent distinct objects, each volume will likely require different

33

texture data.

The performance of using the same texture for a number of volumes versus switching

textures between each volume was measured. The camera was positioned so no pixels

were drawn allowing the application and geometry shader performance to be measured

without the results being hidden by fillrate costs. The results in figure 4.4 show that

texture switching reduces performance by an average of 51% compared to using the

same texture.

It would be beneficial if as few textures as possible were used to reduce the switching

frequency. Sorting volumes within a slice by texture can help reduce the number of

switches required if the slice intersects multiple volumes using the same texture. If all

volumes used the same texture, the texture switching overhead would be eliminated.

A single virtual texture could be used to store all volumes in a single texture [31].

Depending on the number and sizes of volumes required, creating a virtual texture

may waste some memory due to empty texture blocks. If all volume textures are the

same size, then the virtual texture can be divided into equally sized sub textures which

can be updated individually. Different size textures would cause some complications

when updating the atlas. Frequent swapping of volumes of different sizes may cause

holes of empty space to appear in a similar fashion memory fragmentation which may

require a form of periodic memory compaction and updating the texture coordinates

of all volumes as appropriate.

4.5 CPU vs GPU Implementation

The CPU implementation outperformed the GPU for our test scene. Figure 4.5 shows

the performance of both implementations measured by rendering an increasing number

of volumes. The CPU implementation was an average of 2.64 times faster.

The performance of just volume slicing was measured by positioning the camera

so that no slice polygons were rasterised. From figure 4.6 the GPU is consistently

faster than the CPU leading to the conclusion that the performance difference must

lie somewhere else in the pipeline. While the exact cause of the performance difference

hasn’t been determined, a potential candidate is that the OpenGL driver may be

batching polygons when submitted using immediate mode while the geometry shader

may cause the pipeline to stall or be flushed each time it’s run.

34

0

10

20

30

40

50

60

70

80

90

100

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600

R
e

n
d

e
ri

n
g

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Volumes

Texture Switching Overhead

same texture alternating texture

Figure 4.4: Milliseconds per frame to render all volumes using the same texture against
different textures. GPU texture state must frequently be changed when volumes use
different textures resulting in a 50% drop in performance.

4.6 Volume Memory Requirements

Memory is discussed in two categories: GPU memory usage when rendering volumes

and disk space required to store the volume data.

4.6.1 GPU Storage

Volume memory requirements are predictable and based on the size of the 3D texture

required to represent the volume rather than the complexity of the data. A 1283

uncompressed RGBA (8 bits per component) texture would require approximately 9.15

megabytes of memory for the texture and all its mipmaps. Using DXT5 compression the

memory requirement is reduced to approximately 2.3 megabytes. A 2563 compressed

volume would require around 18.25 megabytes of memory, reducing the number of

possible volume billboards in memory by a factor of eight. Moving up to the next

power, a 5123 would require nearly 150 megabytes when compressed. On current

hardware, it would seem reasonable to use many 1283 or a few 2563 volumes. A GPU

35

0

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

R
e

n
d

e
ri

n
g

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Volumes

GPU vs CPU Volume Slicing

GPU CPU

0

0.5

1

1.5

2

2.5

3

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

Volumes

Relative Performance

CPU Relative to GPU

Figure 4.5: Performance difference between the CPU and GPU version of the volume
slicing algorithm. The left graph shows rendering time in milliseconds for a number of
volumes. The right graph shows the speed gain of the CPU version.

0

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

R
e

n
d

e
ri

n
g

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Volumes

Chart Title

GPU CPU

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

Volumes

CPU Relative to GPU

CPU Relative to GPU

Figure 4.6: Performance difference between the CPU and GPU version of the volume
slicing algorithm when no sliced polygons are rasterised. The left graph shows the ren-
dering time in milliseconds for a number of volumes. The right graph shows the speed
of the CPU implementation relative the to GPU. This indicates that for performing the
prism/plane intersections the CPU implementation is approximately 0.65 times slower.

with 1GB of video memory, as is common on current consumer hardware, could store

approximately 445 volumes.

Figure 4.7 compares volume and mesh memory requirements. It is assumed mesh

vertices are uncompressed and all textures are compressed at a 4:1 ratio as is common

using the S3TC algorithms. A 1283 volume uses as much memory as 100,000 vertices

with position and normal data. Meshes are typically paired with a number of texture

maps. In addition to a colour texture, normal maps and specular maps are often used to

achieve detailed shading computations. However, the next power of two sized volume,

2563, requires as much memory as mesh with 100,000 vertices and four 20482 texture

maps.

36

0

1

2

3

4

5

6

7

100000 90000 80000 70000 60000 50000 40000 30000 20000 10000 0

M
e

m
o

ry
 (

m
eg

ab
yt

es
)

Triangles

Triangle and Volume Memory Consumption

mesh memory (position + normal) mesh + 1024 texture mesh + 2048 texture 128^3 volume

Figure 4.7: GPU memory required for storing volumes and meshes. Memory required
for a volume is based on the size of the volume data while the memory for a mesh
varies depending on the number of vertices and texture maps it requires.

4.6.2 Disk Storage

The system uses volumes with colour information stored in an uncompressed form.

Each colour consists of 4 floating point values between 0 and 1 representing the red,

green, blue, and alpha intensities. While such a representation was useful for the

test system, in practise, major spacing savings can be made on disk storage. Volume

data could be compressed using a GPU compression algorithm discussed in section

4.6.1 and loaded directly into graphics memory. However, this will only achieve a 4:1

compression ratio and cause more data to be read from disk compared to a better

compression scheme. It may be quicker to read smaller files from slow disks, or optical

media in the case of games consoles, and decompress the data on the CPU.

Better space savings can be obtained by compressing the texture using a standard

image compression algorithm. Table 4.1 shows the uncompressed and compressed

sizes for a number of test volumes. Volumes were compressed using the lossless PNG

compression algorithm. A volume and its mipmaps were split up into 2D slices and each

slice saved separately. At run time, the images must be decompressed and assembled

back into a 3D texture. It is assumed that a volume only stores colour information in

32bit RGBA format as is commonly used for game art. A high compression ratio is

37

Volume Size Uncompressed PNG % Reduction Model Size (zip)
fir tree 1283 9362.2KB 158.6KB 1.7% 1466.0KB
tree 1283 9362.2KB 189.7KB 2.0% 1754.5KB
police car 1283 9362.2KB 175.5KB 1.9% 398.7KB
van 1283 9362.2KB 286.0KB 3.0% 4713.1KB
fir tree 2563 74898.3KB 1045.3KB 1.4% 1466.0KB
tree 2563 74898.3KB 1086.3KB 1.4% 1754.5KB
police car 2563 74898.3KB 1106.5KB 1.4% 398.7KB
van 2563 74898.3KB 1525.9KB 2.0% 4713.1KB

Table 4.1: Disk space required for a set of test volumes. The uncompressed size is
compared against PNG compression showing between 97% and 98.6% space savings
for our test data. For comparison the size of the source model data is show using zip
compression.

achieved reducing storage to 1.5% to 3.0% of the original uncompressed colour data.

This can be attributed to the fact that many volume slices consist of large areas of

space containing the same colour. Depending on the nature of the data, compressed

sizes may vary. The size of the original model data was compressed using DEFLATE

(zip). It can be seen that for 1283 volumes storage requirements are less than the

models in all cases. Volumes can be stored using a relatively small amount of space

even for large volumes and as such disk space storage is unlikely to be an issue for

modern media.

38

Chapter 5

Conclusions

We have shown that volume billboards can outperform polygonal meshes with perfor-

mance based on the number of pixels a volume will project to. The number of triangles

in the mesh a volume is intended to replace should be taken into account.

Since performance scales inversely to the number of pixels rendered, it is only

possible for volumes to outperform meshes when they map to relatively few pixels.

Therefore, volumes can be used as an alternative to meshes but only for very distant

representations. Volume billboards could be used in addition to other LOD techniques,

with volumes used for lowest levels. A level of detail metric used with volumes should

take into account the screen resolution and the number of pixels a volume will project

to in order to avoid fillrate limitations which causes the framerate to drop at high

resolutions. During rendering, volumes did not use less memory than polygonal meshes,

with even a small 1283 volume requiring as much memory as a textured mesh with

50,000 vertices. Disk storage space can be reduced using PNG compression. While

compression results vary, storage space required was relatively small and comparable

to the original model data.

The volume billboards system implemented highlighted some implementation de-

tails missing from the academic literature and considerations to take into account

when attempting to integrate volume billboard rendering into a polygonal pipeline.

Care must be taken when choosing the slicing rate for multiple volumes to ensure un-

dersampling doesn’t occur and oversampled volumes don’t become overly opaque. The

slicing algorithm presented in previous works can be implemented in a current shading

39

language with only some minor modifications.

5.1 Future Work

There are still areas which need to be researched to help determine how to use volume

billboards in interactive applications. While it is practical to use volumes in certain

situations perceptual tests should be performed to help uncover ideal values for various

metrics. We have seen when volumes can outperform triangle meshes but the question

of quality between each type of impostor was not tested. It would be useful to perform

a study of how volumetric impostors compare against traditional polygonal impostors

in terms of perceived image quality and to investigate which types of objects benefit

most from volumetric representations.

Transitions between volume mipmap levels is done using hardware bilinear interpo-

lation but transitioning polygonal objects to volumes is something that has not been

discussed. It would be useful to evaluate the application of current LOD blending

techniques to volumes to ensure smooth level of detail.

There was a noticeable performance difference between the CPU and GPU imple-

mentations of the slicing algorithm. The exact cause of the difference in performance

has not been determined. Modern GPUs provide new facilities to speed up rendering

such as building lists of GPU commands from multiple threads[32]. Another possible

improvement might be to reduce the required state changes when performing slicing

on the GPU. Texture switching could be reduced or eliminated using virtual textures.

Such techniques could be investigated to help create a more efficient volume rendering

pipeline.

40

Appendix A

Appendix

A.1 Vertex Program

1 # version 330

2

3 in vec3 in_pos;

4 in vec3 in_tex;

5

6 out vec3 tex_coords;

7

8 void main()

9 {

10 gl_Position = vec4(in_pos, 1.0);

11 tex_coords = in_tex;

12 }

A.2 Fragment Program
1 # version 330

2

3 uniform sampler3D tex;

4

5 in vec3 in_pos;

6 in vec3 tex_coord_fp;

7 layout(location = 0) out vec4 out_color;

8

9 void main()

10 {

11 out_color = texture(tex, tex_coord_fp);

12 }

41

A.3 Geometry Program
1 # version 330

2

3 layout(triangles_adjacency) in;

4 layout(triangle_strip, max_vertices=5) out;

5

6 uniform mat4 modelview;

7 uniform mat4 projection;

8 uniform float z_slice;

9

10 in vec3 tex_coords[];

11

12 out vec3 tex_coord_fp;

13

14 vec4 pts[6];

15 vec4 outv[5];

16 vec3 outt[5];

17 int indices[5] = int[](1, 2, 0, 3, 4);

18 int num = 0;

19

20

21 void intersect(int k0, int k1)

22 {

23 float t = (z_slice - pts[k0].z) / (pts[k1].z - pts[k0].z);

24 outv[num] = projection * mix(pts[k0], pts[k1], t);

25 outt[num] = mix(tex_coords[k0], tex_coords[k1], t);

26 num++;

27 }

28

29 void main()

30 {

31 /*

32 * Transform points to camera space.

33 */

34 for(int i = 0; i < 6; i++)

35 {

36 pts[i] = modelview * gl_in[i].gl_Position;

37 }

38

39 float z0 = pts[0].z;

40 float z1 = pts[1].z;

41 float z2 = pts[2].z;

42 float z3 = pts[3].z;

43 float z4 = pts[4].z;

44 float z5 = pts[5].z;

45

46 float s[3];

47 s[0] = (z_slice-z0) / (z3-z0);

48 s[1] = (z_slice-z1) / (z4-z1);

42

49 s[2] = (z_slice-z2) / (z5-z2);

50

51 float s0 = (z_slice-z0) / (z3-z0);

52 float s1 = (z_slice-z1) / (z4-z1);

53 float s2 = (z_slice-z2) / (z5-z2);

54

55 if((s[0] < 0.0 && s[1] < 0.0 && s[2] < 0.0) || (s[0] > 1.0 && s[1] > 1.0 && s[2] > 1.0))

56 return;

57

58 for(int k = 0; k <= 2; k++)

59 {

60 int kr = (k+1) % 3, kl = (k+2) % 3;

61

62 if(0.0 <= s[k] && s[k] <= 1.0)

63 {

64 intersect(k, k+3);

65 }

66 else if(s[k] < 0.0)

67 {

68 if(s[kl] >= 0.0) intersect(k, kl);

69 if(s[kr] >= 0.0) intersect(k, kr);

70 }

71 else

72 {

73 if(s[kl] <= 1.0) intersect(k+3, kl+3);

74 if(s[kr] <= 1.0) intersect(k+3, kr+3);

75 }

76 }

77

78 for(int i = 0; i < num; i++)

79 {

80 gl_Position = outv[indices[i]];

81 tex_coord_fp = outt[indices[i]];

82 EmitVertex();

83 }

84 EndPrimitive();

85 }

43

Bibliography

[1] P. Decaudin and F. Neyret, “Volumetric billboards,” Computer Graphics Forum,

vol. 28, no. 8, pp. 2079–2089, 2009.

[2] S. Laine and T. Karras, “Efficient sparse voxel octrees – analysis, extensions, and

implementation,” NVIDIA Technical Report NVR-2010-001, NVIDIA Corpora-

tion, Feb. 2010.

[3] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels : Ray-guided

streaming for efficient and detailed voxel rendering,” in ACM SIGGRAPH Sym-

posium on Interactive 3D Graphics and Games (I3D), (Boston, MA, Etats-Unis),

ACM, ACM Press, feb 2009.

[4] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,” in Proceedings

of the 15th annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’88, (New York, NY, USA), pp. 65–74, ACM, 1988.

[5] T. J. Cullip and U. Neumann, “Accelerating volume reconstruction with 3d texture

hardware,” tech. rep., Chapel Hill, NC, USA, 1994.

[6] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic

reconstruction using texture mapping hardware,” in Proceedings of the 1994 sym-

posium on Volume visualization, VVS ’94, (New York, NY, USA), pp. 91–98,

ACM, 1994.

[7] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. Engel, Real-time

Volume Graphics. Natick, MA, USA: A. K. Peters, Ltd., 2006.

[8] R. Fernando, GPU Gems: Programming Techniques, Tips and Tricks for Real-

Time Graphics. Pearson Higher Education, 2004.

44

[9] M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation (Gpu Gems). Addison-

Wesley Professional, 2005.

[10] V. Vidal, X. Mei, and P. Decaudin, “Simple empty-space removal for interactive

volume rendering,” J. Graphics Tools, vol. 13, no. 2, pp. 21–36, 2008.

[11] P. W. C. Maciel and P. Shirley, “Visual navigation of large environments using tex-

tured clusters,” in Proceedings of the 1995 symposium on Interactive 3D graphics,

I3D ’95, (New York, NY, USA), pp. 95–ff., ACM, 1995.

[12] S. Gernot, “Image-based object representation by layered impostors,” in Proceed-

ings of the ACM symposium on Virtual reality software and technology, VRST ’98,

(New York, NY, USA), pp. 99–104, ACM, 1998.

[13] X. Décoret, F. Sillion, F. Durand, and J. Dorsey, “Billboard clouds,” Tech. Rep.

RR-4485, INRIA, Grenoble, June 2002.

[14] A. Hardy and J. Venter, “3-view impostors,” in Proceedings of the 7th International

Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction

in Africa, AFRIGRAPH ’10, (New York, NY, USA), pp. 129–138, ACM, 2010.

[15] M. Schwarz and H.-P. Seidel, “Fast parallel surface and solid voxelization on gpus,”

ACM Trans. Graph., vol. 29, pp. 179:1–179:10, December 2010.

[16] E. Eisemann and X. Décoret, “Single-pass gpu solid voxelization for real-time

applications,” in Proceedings of graphics interface 2008, GI ’08, (Toronto, Ont.,

Canada, Canada), pp. 73–80, Canadian Information Processing Society, 2008.

[17] L. Zhang, W. Chen, D. S. Ebert, and Q. Peng, “Conservative voxelization,” Vis.

Comput., vol. 23, pp. 783–792, August 2007.

[18] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering 3rd Edition.

Natick, MA, USA: A. K. Peters, Ltd., 2008.

[19] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney, Level of Detail

for 3D Graphics. New York, NY, USA: Elsevier Science Inc., 2002.

45

[20] H. Hoppe, “Progressive meshes,” in Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’96, (New York, NY,

USA), pp. 99–108, ACM, 1996.

[21] P. Cignoni, C. Montani, and R. Scopigno, “A comparison of mesh simplification

algorithms,” Computers & Graphics, vol. 22, pp. 37–54, 1997.

[22] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle

meshes,” SIGGRAPH Comput. Graph., vol. 26, pp. 65–70, July 1992.

[23] Y. Wu, Y. He, and H. Cai, “Qem-based mesh simplification with global geom-

etry features preserved,” in Proceedings of the 2nd international conference on

Computer graphics and interactive techniques in Australasia and South East Asia,

GRAPHITE ’04, (New York, NY, USA), pp. 50–57, ACM, 2004.

[24] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.

Mineev-Weinstein, “Roaming terrain: real-time optimally adapting meshes,” in

Proceedings of the 8th conference on Visualization ’97, VIS ’97, (Los Alamitos,

CA, USA), pp. 81–88, IEEE Computer Society Press, 1997.

[25] M. Hesse and M. L. Gavrilova, “An efficient algorithm for real-time 3d terrain

walkthrough,” in Proceedings of the 2003 international conference on Compu-

tational science and its applications: PartIII, ICCSA’03, (Berlin, Heidelberg),

pp. 751–761, Springer-Verlag, 2003.

[26] M. White, “Real-time optimally adapting meshes: terrain visualization in games,”

Int. J. Comput. Games Technol., vol. 2008, pp. 12:1–12:7, January 2008.

[27] T. Porter and T. Duff, “Compositing digital images,” SIGGRAPH Comput.

Graph., vol. 18, pp. 253–259, January 1984.

[28] A. R. Smith, “Image compositing fundamentals,” tech. rep., 1995.

[29] A. R. Smith, “Alpha and the history of digital compositing,” in Microsoft Technical

Memo 7, 1995.

[30] H. P. A. Lensch, K. Daubert, and H.-P. Seidel, “Interactive semi-transparent vol-

umetric textures,” in VMV, pp. 505–512, 2002.

46

[31] M. Mittring and C. GmbH, “Advanced virtual texture topics,” in ACM SIG-

GRAPH 2008 classes, SIGGRAPH ’08, (New York, NY, USA), pp. 23–51, ACM,

2008.

[32] Microsoft, “Introduction to multithreaded rendering in direct3d 11.” http://

msdn.microsoft.com/en-us/library/ff476891(v=VS.85).aspx, August 2011.

Retrieved August 27th 2011.

47

http://msdn.microsoft.com/en-us/library/ff476891(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff476891(v=VS.85).aspx

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Background
	Level of Detail Rendering
	Volume Data

	Motivation
	Contributions
	Dissertation Layout

	Chapter State of the Art and Related Work
	Volume Rendering
	3D Slice Based Techniques
	Ray Casting
	Empty Space Removal

	Impostors
	Billboards
	Billboard Clouds
	3-View Impostors
	Volumetric Billboards

	Mesh Voxelisation
	Level of Detail
	Polygon Mesh Level of Detail
	Automatic Mesh Simplification

	Chapter Implementation
	Technologies Used
	Scene Objects
	Model Loading and Rendering
	Volume Rendering Pipeline
	GPU Prism-Plane Intersection
	CPU Prism-Plane intersection
	GPU Volume Compression
	Slicing Rate
	Slicing Optimisation
	Volume Generation
	Errors With Flat Opaque Surfaces

	Chapter Evaluation
	Test Setup
	Volume and Mesh Performance
	Volumes on Screen
	Texture Switching Cost
	CPU vs GPU Implementation
	Volume Memory Requirements
	GPU Storage
	Disk Storage

	Chapter Conclusions
	Future Work

	Appendices
	Appendix Appendix
	Vertex Program
	Fragment Program
	Geometry Program

	Bibliography

