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Procedural Generation of Large Scale Gameworlds

Eoghan Carpenter
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Supervisor: Mads Haahr

Gameworlds for modern video games are ever increasing in scale and detail, requiring

more and more resources to create this content. The ability to procedurally generate

this content allows the creation of gameworlds of such high detail and fidelity in terms

of textures, models, characters and other content that they would be impractical to

create manually. The procedural generation of this high detail content is already well

established in the industry, however less work has been done in the field of generating

and managing vast gameworlds.

There are several challenges to creating very large game worlds and this dissertation

will focus on two of these. The first problem is being able to produce far more content

than could be physically stored in memory but doing so in such a way as to only generate

what is needed at a given time in order to minimize cpu and memory utilization. The

second problem to be addressed is the need to be able to generate content that conforms

to larger structures without the need to generate those larger structures themselves.

This dissertation will present the design, implementation and evaluation of a general
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prototype framework that will allow for the procedural generation of arbitrarily sized

gameworlds using a system of spatial subdivision whilst allowing for the creation and

maintenance of high level structure at low levels of granularity.

To evaluate this framework in action it will be used to procedurally generate galax-

ies containing on the order of hundreds of billions of stars organized into a commonly

found galactic structure. Evaluation will then be carried out on the framework’s abil-

ity to generate content visually consistent with larger structures at differing levels of

granularity. The framework will also be evaluated based on it’s performance in terms

of memory and cpu usage whilst generating these galaxies.
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Chapter 1

Introduction

The term Procedural Generation refers to the practice of creating content, often for

the production of media, by using algorithms rather than by using manual methods of

creating this content. In terms of the game industry this content can cover a number of

different products including; 3D models, textures, game levels, sounds and animations.

The use of randomness combined with controllable parameters allows the process of

procedural generation to produce a large amount of this content, whilst still maintaining

a greater or lesser degree of variation in order to avoid repetition.

Procedural generation has been used in video game production for many years. The

seminal title, Elite [4], used procedural generation to create 8 ’galaxies’ each containing

256 planets for the player to explore. In recent years procedural generation is widely

used in production and middle-ware products like 3D Studio Max, Adobe Photoshop

as well as packages like SpeedTree and Terragen.

1.1 Advantages

As video games continually increase in size and complexity in terms of the volume of

content which is expected, as well as the expected fidelity of that content, procedurally

generated content is becoming increasingly useful. Many of the environments used

in games have become so large as to make manual creation of all content simply too

resource intensive. It is impractical for an artist to create a 3D representation of an

entire forest and over use of duplication of content can often be quite apparent to
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the player, resulting in decreased gameworld fidelity and player immersion. In this

case, being able to procedurally generate an arbitrary number of different trees is

advantageous.

Similarly, the amount of storage space required to save all this data can quickly

become problematic, particularly in the case of console games where such space is

limited to what can be fit onto a disc. Procedural generation is in some cases capable of

being executed at run-time, meaning that only the algorithms, which are comparatively

small, need to be stored but can be used to create more content then could be stored

on more media.

Additionally, with the advent of interactive 3D graphics software for internet browsers

such as WebGL and the increasing popularity of browser games, the ability to send pro-

cedural generation algorithms to the client and locally generate game content rather

than transmitting content directly is very advantageous. This can be seen in the

browser game Minecraft [5] which uses procedural generation techniques for single

player levels.

For the game industry, procedural content generation offers a unique opportunity.

That is that the gameworld itself can be tailored by input from, or derived from the ac-

tions of, the user. This means that there is the potential there to create a substantively

different gameworld for each user and for each play through. This idea is explored by

Nitsche et al. [2].

1.2 Disadvantages

Although the benefits of algorithmically generating content are apparent, there are

some trade-offs which need to be made.

Even with the use of randomness, procedurally generated content can often produce

results with little apparent variety. This can be offset with the use of parameters which

enable a degree of artist control over the end results. However, as the scope of variety

increases it can be harder to ensure desired results and avoid unpredictable behaviour.

For this reason, the algorithms themselves which are used for procedural generation

can often be very difficult to create. Trying to abstract the generation of content into

a series of procedures is often an unintuitive process and when increasing the numbers

of artist tunable parameters, ensuring stable and believable results can be a difficult
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task.

Furthermore, savings in terms of storage space is offset by the need for more pro-

cessing required for these algorithms to run. In computer games, processing time is

as much at a premium as storage, so increasing usage for procedural generation will

reduce the cpu budget for other tasks like physics simulation and Artificial Intelligence.

1.3 Types of Procedural Generation

The field of procedural generation is a broad one. There exists many methods and tech-

niques, and some of these are better suited than others to particular content types. The

following is a brief description of some of the more widely used procedural techniques:

1.3.1 L-Systems

Simply put, L-systems (Lindenmeyer Systems) are a string of characters from some

user defined alphabet and a set of production rules. A production rule is a function

which will modify a string A into a new string B (A and B being ordered tuples) and

the L-System iteratively makes this modification to the string based on the production

rules.

This method is commonly used for the procedural generation of plants. Lluch et al.

[6] provide an example of this in their work on multi-resolution plants and trees, in this

case using ’axioms’ and ’productions’. When a production is applied to the axiom, a

new derived chain results. For example, an axiom contains the details required for the

representation of a branch on a plant. One production will generate two children (new

branches) and another will halve the length of the branch for these children. Further

more the production can be bounded by constraints after which the iteration will stop,

in this case suitable bounds may be a minimum branch length or a maximum number

of children.

1.3.2 Grammars

A grammar is a set of formation rules in a formal language used to generate strings.

These rules generate strings in accordance with the grammar’s syntax, but the resulting
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string has no inherent meaning. In this way, L-Systems can be described as a particular

kind of grammar. In Instant Architecture, Wonka et al. [7] use a combination of

a shape grammar (a grammar in which rules are applied to shapes rather than to

strings) and a split grammar (one which includes operations to split these shapes into

meaningful chunks). By using a large database of grammar rules they were able to

model a variety of designs from this single rule set rather than attempting to construct

a grammar for each model.

By iteratively splitting a shape (such as a building’s facade) into smaller shapes

according to rules which would allow for the creation of window and door shapes (for

example) they were able to construct a huge variety of differing building designs.

The system could also be easily extended as Larive et al. have shown [8]. In this

paper they applied a similar split technique to ’walls’ rather than shapes allowing them

to choose production rules based on the type of wall being split (Abstract walls, Wall

Panels, Bordered Walls, Extruded Walls etc). This enabled them to achieve an even

greater degree of control over, and variety in, the buildings being generated.

1.3.3 Fractals

Ebert [9] explains techniques for using fractals and multi-fractals to generate content

like clouds, mountains and others. He describes a fractal as being ”a geometrically

complex object, the complexity of which arises through the repetition of form over a

range of scales” [9, p. 431]. In particular Ebert uses a fractional Brownian motion

(fBm) type of fractal to generate content. These can be used to generate a type of noise

(similar to Perlin noise) which is fractal in nature, i.e. they will generate a required

granularity of detail over any scale by adjusting the spatial frequency of peaks within

the noise generated and the amplitude of the noise. The fBm is characterized by its

’power spectrum’ which charts how the frequency and amplitude are related.

1.4 Current Challenges

As has been stated, there has already been much work done in the field of procedural

content generation. However, the majority of this work has been focused on high detail,

high fidelity content production and tends to be very result specific. Much of this work
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is also proprietary and not available for public use. This means that it is often the case

that the organization of processes is non-standard and the code is often not reusable.

Little work has been done at addressing these issues of standardization and reusability,

which with the increasing use of procedural content generation in games, will become

increasingly problematic.

The two main challenges which will be addressed in this dissertation are:

• Generating ’Structure’ at varying levels of detail which will be consistent with the

overall structure of the generated content, and doing this at run-time. The term

’structure’ in this sense is used to denote the data or visuals produced by the

procedural generation at a particular level of detail which must conform to that

produced at other levels of detail. For example, an algorithm for generating build

interiors must be able to produce a room which will ’fit’ with other structures

within the building, doors must line up with hallways, the room cannot overlap

with stair-wells etc. Some methods of procedural generation do this inherently, for

example fractal based generation, but this remains a difficulty for other methods.

• The second challenge for this dissertation will be minimizing the overhead used

in terms of memory and processor utilization. Although procedural generation

can grant huge benefits, it must still be capable of running within an environment

where these resources are strictly budgeted.

1.5 Goals

This dissertation will attempt to create a software architecture capable of addressing

the challenges outlined in section 1.4. In order to evaluate the success of this archi-

tecture, it will be used to create a procedural galaxy generator and evaluated by the

following criteria:

1. The architecture should be capable of imposing structure, as defined in the pre-

vious section, upon any resulting procedurally generated gameworld.

2. The architecture must be capable of generating the required content whilst itself

remaining as light weight as possible in terms of memory usage and processing
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time. By doing this it should be capable of being used within a resource tight ap-

plication, such as a computer game, to create and manage large scale gameworlds

without unduly increasing resource usage.

3. The architecture should provide a template for the organization of procedural

generation algorithms which is flexible enough to be used in a variety of situations,

which is extensible and capable of being used with other systems.

1.6 Document Roadmap

The remainder of this dissertation will be divided in the following sections:

• Chapter 2 will review a selection of the literature on the topic of procedural

generation, specifically how it pertains to the goals of this dissertation.

• Chapter 3 will analyse the methods and techniques used in this literature in order

to design and present a general architecture for procedural generation and the

framework which implements it.

• Chapter 4 will examine the creation of the procedural galaxy generator developed

using the proposed architecture.

• Chapter 5 will evaluate the framework and the resulting prototype galaxy gener-

ator and assess their success at achieving the stated goals.

• Finally, Chapter 6 concludes the project, puts its results in context and identifies

areas of future work.
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Chapter 2

State Of the Art

Procedural content has been around for some time. Marshall et al. [10] developed a

system for procedural generating large terrains in 1980. The original Elite [4] computer

game procedurally generated ’galaxies’ consisting of 256 stars in 1984. As such the field

is already well established, in particular for generating things like terrain, textures,

sounds, buildings and foliage. However, the specific challenges of this dissertation relate

more to the control and organization of generated data rather than its generation. This

is something which has not been nearly as well explored and as such there is a limited

amount of existing literature. As a result, the following sections will examine the

techniques used in a selection of papers to address the challenges outlined in section

1.4. In Chapter 3 these techniques will be examined in order to design the general

architecture for procedural content generation.

2.1 Dynamic Landscape Generation using Page Man-

agement

Danaher [11] in 2002 proposed a novel system for maintaining large amounts of gener-

ated terrain using a page management method which he refers to as ’the spherical offset

method’. To maintain a terrain around the user, the system divides the terrain into

a series of blocks referred to as pages each of which contains procedurally generated

terrain based on a height-map, and which can then be displayed as required. Thus

as the user moves about the landscape new pages are created and added as required
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rather than reproducing the entire scene around the user.

The management of these pages is based on a spherical page wrapping approach.

The overall terrain is composed of ’submaps’ and as the user approaches the border of

one submap a tessellated (to prevent discontinuity) neighbour can be generated and

added to the map, with submaps no longer visible being removed. By using this method

far more efficiency could be obtained than with older methods, as the ’map’ was no

longer centred on the user and so only needed to be updated as the user approached

a border rather then on a continuous basis. Furthermore as an edge was approached

three new submaps could be generated and replace three existing submaps within the

map, ensuring a limitation on memory usage.

2.2 Real-time generation of ’pseudo-infinite’ cities

Greuter et al. [12] in 2003 proposed a system to generate what they describe as

’pseudo-infinite’ cities. This was capable of procedurally generating buildings (includ-

ing basic interiors) on the fly and as needed by the user. The shape of these buildings

is determined by their location, ensuring that if the user returns to the same area the

same buildings will be generated.

The system uses a method of view frustum filling similar to that used to clip scenes

in a typical 3D application. In this case the view is filled with procedurally created

geometry rather than pre-built models but this allows the deletion of geometry which is

not visible, allowing the application to maintain roughly constant memory usage. The

frustum is filled with 2D square tiles to determine visibility and generates buildings

based on these tiles. Although this allows for very quick calculation and generation, the

drawback with this method is that the layout of the city will remain in an unrealistic

grid pattern.

Once these tiles are calculated, the positions of the tiles are passed through a

hashing function based on Wang’s [13] 32bit Integer Hashing Function, where they

are hashed with a global ’citySeed’, in order to generate a seed to be used for the

pseudo-random number generator whilst generating that particular tile. This allows

adjacent tiles to be significantly different from each other whereas without this hashing

step, similar locations would result in recognisably similar content being generated.

Of particular interest is the methods used by Greuter to minimize usage of and
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maximize efficiency of memory for this application. As the system is inherently a ’lazy

evaluation’ system, only areas currently visible to the user need to be maintained. In

order to achieve this, a least recently used (LRU) caching policy was adopted. This

cache performs three main tasks. Determining if a particular item is in the cache,

determining the least recently used item and inserting new items. To implement this a

combination of the C++ standard library’s doubly linked list (std::list) and balanced

tree (std::map) structures were combined. The list is ordered by access time and

the map provides a fast index into the list. This indexing provides an increase in

performance of queries from O(n) to O(log n). The overall container itself is organized

by key value pairs. The key is the integer identifier for a particular building and the

value is the data for that particular building (including the OpenGL display list for

the building, hence avoiding the need to re-generate the geometry at each update).

The map can then be used to look up entries in the list based on this key. By using

this system it becomes quite easy to control how long items are stored by specifying

a maximum time to live for entries and to control memory usage by specifying the

maximum capacity of the LRU structure.

2.3 Persistent Realtime Building Interior Genera-

tion

Hahn et al. [1] extended the ideas of Greuter above in order to generate building

interiors during runtime which allow a seamless walk-through of the building using

only a fraction of the memory which would be required for the entire building, and thus

provides an interactive environment that is much larger than the available memory and

much larger than a developer would be capable of creating manually in a reasonable

amount of time.

In order to achieve this, building interiors are divided into two types of region:

• Temporary Regions, which are regions of space where generation can occur, rep-

resented by axis aligned bounding boxes.

• Built Regions, which are the final visible product of the generation process. These

hold the geometry needed for rendering and collision detection as well as any
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visible objects placed within the building.

In this case, lazy generation of the building interior can be exploited to a high

degree due to the natural occlusion of such a scene. Under normal circumstances this

would cause the order that the regions are generated to be dependent on the path

taken through them, resulting in different buildings being created by taking different

paths. In order to avoid this problem, the generated interiors must be independent of

this order. To achieve this, a top-down approach is used allowing temporary regions

to be created independently of the path of the user and any other regions. Because of

this, regions can be generated in any order and will not affect the final outcome.

Variation is achieved using a pseudo-random number generator (PRNG) with an

independent seed for each region. To calculate the seed for a given region, the midpoint

of the region and a global seed are used in a similar fashion to that used by Greuter

[12]. The three coordinates of the midpoint are rounded to the nearest integer and

then hashed with the global seed to create a new seed for that region.

The top-down hierarchical approach used in this work is as follows:

• Building Setup. The initial seed for the building is used to generate features

which will affect multiple floors of the building (stairwells, elevators etc) as well

as features which will affect global aspects of the building like the textures to be

used.

• Floor Division. This stage divides the building into uniformly distributed floors,

using a binary subdivision method.

• Hallway Division. These hallways are constructed by dividing regions around

other rectangular regions into either straight or looping hallway regions. This

will continue until a region reaches the minimum size allowed for a room cluster.

• Room Cluster Division. The regions found between hallways are then divided into

rooms. This is dependent on ’portals’ coming into the region, and will continue

until a valid divider cannot be found or until there is one portal for each room.

• Built Region Generation. This is the final stage of the generation process in

which a visible region is created. The geometry is created based on the bounding

box boundary and the portals are attached to this.
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As can be seen, a similar top-down approach may be capable of addressing the

problem of achieving structure throughout a procedurally generated system outline in

section 1.4.

Memory is managed in Hahn’s by using a generation tree, providing a history so

that the generation process can quickly be reversed. Each node of the tree represents

a past step in generating the building interior and contains an axis aligned bounding

box, a region type and connections to its parent and one or more children. Each leaf

on the tree also represents a region of the building which allows quick access into the

needed parts of the tree when regions are deleted and efficient point locating. This

point locating allows the system to quickly find which region a given point lies within

(by the axis aligned bounding boxes) in logarithmic time.

Memory usage is limited by deleting built regions when they are no longer needed.

When a region is deleted, the system moves recursively up the tree until the largest

subtree is found which does not contain any built regions and which can be replaced

by a single temporary region. Further, the caching system is based on a Least Recently

Used system similar to that described by Greuter.

Finally the paper also describes a system for allowing persistent user changes to

the generated content, storing changes made in a hash map and allowing them to be

retrieved when a given region needs to be regenerated.

2.4 Designing Procedural Game Spaces: A Case

Study

Nitsche et al. [2] present a game prototype, called Charbitat, which attempts to

integrate procedural space generation with gameplay, resulting in a game in which the

player creates the gameworld as they play through it. In order to provide a scalable and

consistent gameworld the environment is split into large tiles, each of which contains

its own seed value for procedural generation of terrain. This terrain is then mixed with

global landscape features (rivers, lakes etc) in order to ensure continuity and populated

with premade assets (items, creatures etc). The seeds used for these tiles are dependent

on player specific choices. The actions of the player influence the seed values and hence

influence the generation of the gameworld. For this reason the gameworld cannot be

11



generated in its entirety from an initial seed as is the case in the papers described above,

and a given world must therefore have all the seeds and the positions of the tiles they

refer to stored individually. For this reason, the memory usage goes from O(log n) as

in the case of Hahn’s [1] buildings which are generated from a single seed, to O(n).

Clearly, this method for gameworld generation is not well suited for large gameworlds

but does present an interesting approach to the creation of a gameworld that an ideal

software architecture should be able to cope with. Although this dissertation is not

focused on maintaining persistence in procedurally generated gameworlds, this style

of gameworld generation and the problems of creating a software architecture which

supports it will be discussed in chapter 3.
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Chapter 3

Architecture Design and

Implementation

As can be seen in Chapter 2, there are many ways of procedurally generating content

that may be used in a computer game. This presents the problem of designing an

architecture which will be able to cope with different methods of procedural generation

in an organized way. In Section 3.1 some of these issues will be examined in an effort

to create an architecture which is flexible and general enough to incorporate these

different methods. In Section 3.2 an architecture will be described which it is proposed

will be capable of meeting the challenges described in section 1.4

3.1 Design Issues

3.1.1 Determinism

Procedural content generators are capable of generating both deterministic and non-

deterministic content. That is to say that they can generate content which will be

identical each time it is created or which will be different each time it is created.

This issue is addressed by Hahn et al [1] when discussing the generation of building

interiors. In this case it was required that the building layout be constant despite the

path that a user would use to walk through the building, hence despite the order of

generation. In order to address this issue the authors implemented a top-down system

which would spatially divide the building into separate, independent regions any of
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which could be generated independently of any others. This necessitated the creation

of a minimal amount of data for the entire building beyond what was immediately

required for the currently generated region but this overhead was minimal enough to

be practically maintained while ensuring order independent generation.

Figure 3.1: The top-down spatial subdivision of a building. Hahn et al. 2006 [1].

By comparison, Nitsche et al. [2] implemented a game world which would be unique

to the path taken by the user when exploring that world and so creating a differing

world at each play through. To achieve this, they implemented a tile system for the

game world such that the world would be created in discrete 500 by 500 metre areas.

Each of these tiles would be assigned a seed as the player entered them and would be

generated on the fly as needed, and where the seed would determine the layout and

content of that tile. The seeds would be determined by the actions of the player, in

this case the player choosing a path based on Taoist elements, and the generation of

new tiles would reflect the choices of the player. Hence the system would eventually

achieve a list of seeds and locations for the tiles but which would be dependent on the
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path chosen by the player and so different at each play through.

Figure 3.2: Path independent tiles. Nitsche et al. 2006 [2].

The architecture should be able to account for both the circumstances described

above. The more limiting factor here is the need for order-independent generation as

with Hahns buildings so its seems logical that the architecture is built around a similar

top-down tree structure.

Although this can be done straightforwardly in a situation like that described by

Hahn, such a design is a little bit less intuitive when applied to that of Nitsche’s path-

dependent game world. In this case, generation works from the root out according to

the path the player follows. This can still be accounted for using the tree pattern in

a slightly more abstract fashion. An example of how this might work can be seen in

Figure 3.3, where the tree is still based on a spatial subdivision technique but this time

is grown in line with the players exploration of the world. This can result in a lot of

nodes on the tree covering empty space, however these nodes do not need to have any

content generated for them so the overhead will not need to be too costly. This does

point to the idea that any kind of general architecture must be capable of growing on

the fly and having differing depths at different sections of the tree.

15



Figure 3.3: Using a top down architecture to represent a path-dependent game world.
As the player moves through the world, the depth of the tree grows dynamically.

3.1.2 Lazy Evaluation

As stated in Chapter 1.5 this dissertation is concerned with the creation of large scale

gameworlds. As such, it is quite possible that more content could be generated than

could ever be held in memory at once. For this reason, the architecture should be

capable of generating only what is needed at a given time. This strategy of limiting

what is generated is referred to more generally as ’lazy evaluation’.

Greuter et al. [12] were able to achieve this for their ’pseudo-infinite’ cities by

limiting generation to a frustum representing the users point of view. The procedural

generation of buildings in these cities was based up the location on a grid of those

buildings and only buildings whose location was with the frustum were generated,

and were generated from the apex outward. As buildings were generated they were

added to a Least Recently Used (LRU) list which would handle memory management

by removing buildings no longer required. The combination of these two techniques

would mean that the memory usage of the system could be readily capped by limiting

the size of the LRU list and would ensure that only content which was visible would

ever be generated.
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Hahn et al. [1] used a different strategy for memory management which was

integrated into their tree pattern procedural generation. In this case, the architecture

lends itself naturally to lazy evaluation. By dividing up the building spatially down to

the point where nodes on the tree represent individual rooms, the authors were able to

easily determine which rooms were required for visualizing the scene at any time and

only generate these rooms. Since this system was also purely deterministic (order of

generation independent), any rooms which had been previously generated but which

were no longer required could easily be discarded and regenerated at a later point.

3.1.3 Structure

The idea of structure in this sense is a slightly abstract one. It refers to the need to

generate procedural content for a given point in the game-world which will ’fit’ with the

rest of the game world. For example, if generating a room in a building, it should be

ensured that doorways will be shared with other rooms or corridors, windows should be

shared with outside walls and the room should not overlap other rooms. The difficulty

in this is generating this data without generating unneeded data from surrounding

portions of the game world, ensuring a room will not overlap with other rooms without

needing to generate those rooms.

Again, Hahn et al. [1] were able to address this with the tree pattern that was

used for generating the buildings. The spatial subdivision strategy began with a single

bounding volume which covered the entire building. This was then subdivided through

a series of discrete steps which would assign both space and purpose to the child nodes

being generated. First, building wide spaces like elevator shafts and stair wells were

assigned. Next the space would be split into individual floors and within these floor

wide spaces like hallways would be assigned. This process would continue down until

individual spaces represented individual rooms, each of which would fit well with the

surrounding rooms.

Although this solution provided the ability to represent larger structures at the

point of generation, the process taken of dividing and assigning space is a rigid one

specific to this particular context. As such it would not be reusable in another game-

world and is not by itself flexible enough to be re-tasked. In order to be capable of

achieving the same results but in a flexible enough way to be applied to a variety of
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situations, this principle of assigning purpose at different levels of the tree will need

to be generalized such that subdivision/assignment rules can be implemented at any

point of the generation algorithm.

3.1.4 Scalability

The subject of this dissertation is the procedural generation of large scale game worlds.

As such, the ability of the resulting architecture to scale to an ideally, arbitrary size,

and to be efficient and practical in doing so, is a crucial one.

Greuter et al. [12] were able to generate pseudo-infinite cities which would meet the

requirement of being scalable and as the buildings generated were dependent purely on

their position this process was also efficient. However, this system did not account for

any kind of structure to the city above individual buildings laid out in a grid pattern,

i.e. each building depended solely on its position rather than any surrounding features.

Nitsche et al. [2] used an architecture which simply used a list to store generated

tiles for their game-world. Furthermore, as these tiles were dependent on the user’s

path through the world they could not be reliably regenerated if they were discarded.

At the least some situational data needed to be kept for every tile generated. This

means that the system would grow linearly as the player progresses and as such scales

poorly.

Hahn et al. [1] used a tree structure for their building generation. Tree structures

generally offer good scalability, however this ability to scale was in this case limited by

the steps of assigning purpose to space. A building could be made to arbitrary size,

but would still follow the same pattern of building to floor to room, just with more

nodes at each level of the tree.

From examining these cases, it seems apparent that a good system for achieving

scalability is the tree structure. This is a data structure which handles scaling efficiently

and practically. However, to avoid the rigidity of Hahn’s approach, the tree should be

generalized in order to deal with a variety of situations from spatial subdivision to more

abstract situations. In other words the type of tree used in a given situation should be

driven by the specifics of that situation rather than by the design of the architecture.

For example, specifying a Binary Tree in the architecture would make little sense in

the case shown in Fig 3.3 where a 9-Tree would be more applicable.

18



For this reason, the termination of growth of such a tree must also be addressed in

any architecture. It may be desirable to have different circumstances under which the

tree will be terminated and content generated, at different points in the same tree. As

such, the the architecture should be able to support this.

3.1.5 Randomness

As stated in Chapter 1 one of the greatest advantages of procedurally generated content

is its ability to generate a degree of variety in its results. A procedural tree generator

would be of limited use if it only produced a single tree repeatedly. For this reason,

randomness is essential to procedural generation, the parameters of the generated con-

tent must be in some part dependent on a random value to achieve variety. However,

as discussed in Section 3.1.1 in many cases determinism is also a prerequisite, i.e. the

system should be able to produce variety, but the same content must be reproducible

if necessary.

To achieve this a pseudorandom number generator (PRNG) should be used by

the architecture. These generators will always produce the same sequence of random

numbers for a given seed. By using such a system, as long as the seeds are preserved or

determined in a reliable fashion and the steps taken in producing the content are carried

out in the same order, the resulting content should be identical while still supporting

the requirement for variety.

This can be seen in the pseudo-infinite cities of Greuter et al. [12] where the seeds

for each building were based on the buildings location and so the same building would

always be reproduced at a given location, but a different building could be generated

at each location.

It is therefore an important aspect of the architecture used in this dissertation to

allow for tight control of both the seeds and the pseudorandom number generation

process to ensure both variety and determinism in any implementation.

3.2 Proposed Architecture

Based on the requirements and analysis from the previous section, an architecture was

designed to address all these issues. Fig. 3.4 shows a overview of the main parts of
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Figure 3.4: Diagram of the proposed architecture.

this architecture, which is based around a tree structure. Generally speaking, the tree

data structure provides a scalable and efficient pattern for data representation and

management. Tree structures are widely used throughout computer science subjects

and common examples include the Octree and the Binary Spatial Partitioning tree.

In most cases the particular type of tree used is based on the implementation specific

requirements. In this case, the architecture is designed to be as general and flexible

as possible so instead an N-Tree structure was chosen. This is a tree which does not

have a fixed number of children for each node, nor a fixed depth. This introduces some

extra complexity during programming as the number of children or the depth can vary

across the tree so care must be taken to ensure valid operations.

Each node in the tree contains its own pseudorandom number generator (PRNG).

Although this creates slightly more overhead in terms of memory usage compared to

using a single PRNG for the whole tree, it does make it more straightforward to ensure

that random numbers can be generated in a controlled and predictable way, i.e. there
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is no chance of one node changing the order of number generation of another node and

the pseudorandom number generators do not need to be constantly reseeded. It also

allows for the easy changing of random number generation methods without the need

to alter any other code and allows different random number generation methods to be

used at different points in the tree if there were such a requirement.

Each node may also contain up to one feature. The feature is the work horse of this

architecture and will contain the logic for procedural generation, handle the placing

of structure in the tree and contain the code for node subdivision and subdivision

termination in the subtree below it. This means that features can appear in any part

of the tree (although the root node must contain a feature) and these will impose the

structure referred to in section 1.4 upon all nodes below it, unless they too contain

a feature. In other words, when a call is made to a node to carry out procedural

generation on a particular node, if that node does not contain a feature itself, a search

is carried out up the tree until a node with a feature is found and the generation

code of that feature is used. This is depicted in Fig. 3.5. In this case a hypothetical

’Generate()’ function is called for the node at the bottom of the tree. Since this node

does not contain a feature of its own, a search is done back up the tree until a feature

is found to carry out the procedural generation, in this case Feature2.

This approach allows the imposition of structure over the tree in a similar manner

to that used by Hahn et al. [1] but to do so in a much more flexible way. It should

be noted that any given node in the tree may be associated with only a single feature

which is a limitation of this architecture.

3.3 Creating the Framework

With the architecture designed as in section 3.2 it is now possible to implement this

architecture into a framework. This was done using the C++ programming language,

although any similar object oriented language could be used such as Java or C#. To

achieve this framework, interface classes were created for each of the elements of the

architecture which specify the minimum required parameters and functionality for the

architecture to operate. These interfaces are INode, ITree, IFeature and IPRNG and

the following sections will describe them in detail.
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Figure 3.5: Using the feature for procedural generation calls.

3.3.1 INode

The tree nodes used in any application of this framework can be customized by the

user but must implement the INode interface to integrate them with the rest of the

framework. The following is a list of properties of the INode interface and the virtual

functions which must be overridden.

INode* m parent this is a handle to this node’s parent node (this will be null for

the root node) and this is stored to enable the application to walk up the tree.

vector〈INode*〉 m children this is a vector containing pointers to any child nodes

associated with this node. The vector reflects that this is an N-Tree and may

have a variable number of children.

IFeature* m feature each node may have a handle to up to one IFeature implemen-

tation. The IFeature interface is explained in section 3.3.3.

int m depth this is the depth of the node within the tree, i.e. the number of steps

that must be taken down the tree from the root node in order to reach this one.

This value is used in conjunction with the IFeature.
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IPRNG* m prng this is a handle to the Pseudo Random Number Generator for this

node. The IPRNG interface is explained in section 3.3.4.

IFeature* GetFeature() this is a function which must be overridden to return the

IFeature that is to be applied to this node. If this node does not contain a feature

it should search up the tree until an IFeature is found and return this. By design

there must always be at least one IFeature implemented in the tree at the root

node so that this function may always be able to return a value.

3.3.2 ITree

The ITree interface is the basic control structure for the tree architecture. The following

is a list of properties and virtual functions associated with it.

INode* m currentNode this is a handle to the node which is currently active, i.e.

being split, generated, visualized etc.

ITree(long seed) this is the constructor for the tree structure which accepts an initial

seed used for the root node.

void NextLevel(int child) this function sets the m currentNode to point at the se-

lected child of the current node.

void PreviousLevel() this function sets the m currentNode to point at the parent

of the current node.

void Prune() this function prunes the tree at the currently selected node removing

all unnecessary data.

void Generate() this function calls the procedural generation algorithms on the cur-

rently selected node.

3.3.3 IFeature

The IFeature interface is the implementation of the feature element of the architecture.

An implementation of this interface will contain the logic for procedural generation,

handle the placing of structure in the tree and contain the code for subdivision and
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subdivision termination. The following is a list of properties of the IFeature interface

and the virtual functions which must be overridden.

int m ownerDepth this is a record of the depth down the tree that the INode this

IFeature is associated with is placed. This is used to calculate the relative depth

of a particular node in the subtree which is used for the generation of procedural

content and structure.

void GenerateChildren(INode* node) this function generates children for the given

node. This would include assigning a seed value and any other implementation

specific parameters for the children such as dimension information for a spatial

subdivision scheme. It is important to note that this does not generate any

content for the system, but only handles the splitting of the tree.

void GenerateChildren(INode* node, int child) this is the same as the above

but handles the generation of a single particular child.

void GenerateLeaves(INode* node) this function contains the code for procedu-

ral generation of the final content. For example, in a building interior generator,

the leaf nodes may each account for one room. This function would then handle

the generation of these rooms.

void Generate(INode* node) this function is slightly more abstract in nature, but

handles the generation of data which is not the final data. An example of this

in use will be seen in Chapter 4 where the distribution of stars in a galactic

feature is estimated in order to give the impression of structure at different levels

of detail without generating the individual stars themselves. In the case of a

building generator, this may give a simplified, estimated layout of the room or

rooms contained in the given node.

void Terminate(INode* node) this function contains the logic for terminating the

subdivision of nodes and generating the final content. This logic is again imple-

mentation specific but an example would be terminating splitting when a single

node contains a single room in a building interior generator.

The idea of placing all the procedural generation code into the IFeature class may

seem to be counter intuitive but doing so grants several advantages.
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• It provides a single place and format for all procedural content logic rather than

having unformalized logic distributed throughout the system.

• It allows for structure to be placed at any point throughout the tree and at any

scale. In the case of a world generator, these structures could take the form

of continents, oceans, deserts, cities, forests etc. As the size and position of

these structures will be variable, placing them at any point in the tree allows

the programmer to impose structure similar to that used for splitting space into

floors, hallways and rooms used by Hahn et al. [1] but to do so in a much more

flexible way.

• In many cases, the final content generation will be dependent on the nature of

the structure that it is a part of. The content generated at the leaves of a desert

structure will be significantly different to those of a city structure. By placing

this content generation logic here it associates this structure and the resulting

procedural content generation logic together in a single location.

3.3.4 IPRNG

Each node contains its own instance of an IPRNG (Interface Pseudo Random Number

Generator) implementation. The IPRNG interface has the following properties and

virtual functions.

long m seed the seed of the node the IPRNG is associated with. Although this is

duplicated data from the node, it was felt that having a copy here would mean

that the IPRNG would not need to be continuously referring back to its owner

node to access this value.

void Reset() this function resets the IPRNG implementation back to its initial state,

in effect reseeding itself. This allows for the regeneration of data for a particular

node deterministically.

long GetNext() this returns the next pseudo random number produced by the IPRNG.

In practice this function should use a template data type so as to be configurable

to the specific implementation.

25



Chapter 4

Galaxy Generator Design and

Implementation

In order to demonstrate the architecture and framework described in the previous

chapter and to enable their evaluation against the goals stated in section 1.4, it is

necessary to create an application which utilizes this framework for the generation of

large scale gameworlds. It was decided to implement a procedural generator for a

realisticly sized galaxy to do this. Such a generator should be capable of creating a

galaxy containing on the order of hundreds of billions of stars in order to demonstrate

the scalability, efficiency and consistency of generation with this framework. The rest

of this chapter will describe the creation of this galaxy generator. Section 4.1 will cover

the parameters and design choices used for the creation of a galaxy. Section 4.2 will

detail the specifics of how the application fits the described framework and how the

eventual stars and planets are generated.

4.1 Procedural Generation of Galaxies

Galaxies exist in many forms, regular, irregular, spiral, barred spiral, dwarf etc. One

of the most recognisable of these galaxy types is the spiral galaxy such as that shown

in Fig. 4.1 and of which our own Milky Way is an example. For this reason it was

chosen to use the described framework to procedurally generate spiral arm galaxies of

this type and of a similar scale. The Milky Way is estimated to contain somewhere
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between two hundred and four hundred billion stars. For this application it was chosen

to use the figure of three hundred billion stars. This many stars should show the ready

scalability of the framework though it should be noted that the framework is intended

to be capable of generating much larger gameworlds than this.

Figure 4.1: Pinwheel Galaxy, Europe Space Agency & NASA.

In order to represent structure in this galaxy, three implementations of the IFeature

interface will be used. These are described in detail in the following subsections.

4.1.1 GalacticFeature

This IFeature represents the structure of the galaxy as a whole and will always be asso-

ciated with the root node of the tree. The Generate() function of this implementation

will contain code for the visual estimation of the shape of the galaxy as a whole. This

visual estimation will consist of a central bulge of stars at the core of the galaxy and

four spiral arms radiating out from this core. As well as this, the feature will contain

the necessary logic for dividing the space up and assigning it to its children. In this case

the feature is limited to creating galaxies of the same four armed structure. Although

using different seeds will result in different content being generated this structure will

remain the same. This is not a limitation of the framework or architecture and there

is no reason why an application with randomized structure could not be used.
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4.1.2 SpiralArmFeature

Spiral arms are regions of stars which extend from the centre of spiral galaxies and

which resemble spirals. These arms tend to contain younger hotter stars, as well as

smaller galactic features such as open clusters. To represent this spiral arm structure

the SpiralArmFeature will use a simple spline for the curve of the arm. This curve can

then be used for calculating the distribution of stars at this point in the tree and for

nodes in the subtree.

4.1.3 ClusterFeature

The ClusterFeature will be used to represent the Galactic Bulge at the centre of the

galaxy. This bulge is a large, tightly packed cluster of older, cooler stars found in the

centre of most spiral galaxies. To represent this structure the ClusterFeature will use

a radial distribution system for the distribution of stars at this point in the tree and

for nodes in the subtree.

4.2 Creating the Application

4.2.1 Subdivision

The most obvious way of subdividing this kind of tree is to do so using spatial subdivi-

sion techniques. Octrees are a common tree data structure used for recursively dividing

three dimensional space into eight octants. This can be seen in Fig. 4.2. Although this

method does allow for the efficient splitting of space, it does not account for structures

in that space. In other words, to use this method directly would result in structures

like spiral arms being divided across multiple sections rather than wholly in a sin-

gle section. This would make the process of estimating shape and the distribution of

stars in these sections considerably more difficult. For this reason the GalacticFeature

subdivides itself into five children, each of which wholly contains another structure,

one ClusterFeature and four SpiralArm features. This splitting method is depicted in

Fig. 4.3. Doing this makes the process of representing shape in the subtrees of these

features considerably more straightforward. The ClusterFeature and the SpiralArm-

Feature themselves divide on the octree pattern although if there were other features
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situated below these on the tree they could use their own subdivision methods. One

of the advantages of using this architecture is this ability to implement different sub-

division techniques which are appropriate to the structure at different points in the

tree.

Figure 4.2: Splitting of three dimensional space in an octree. Zhang & Xu, 2006 [3]

Figure 4.3: A galaxy being spatially divided into 5 children.

4.2.2 Tree and Node Implementations

This demonstration project uses one implementation of the ITree interface, MyTree,

and two implementations of the INode interface, MyNode and SSNode (Solar System

Node). The following sections will describe how these implementations work and how

they extend the interfaces for this project.
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MyTree

The MyTree class implements the virtual functions described in section 3.3.2. Addi-

tionally it contains the following two project specific functions.

MyTree(std::string address) This is an additional constructor for the tree structure

which will enable it to generate a specific galaxy to a specific level of detail using

an address in the form of a string. An explanation of the address system can be

found in section 4.2.4.

std::string GetDisplay() This function gathers information about the current node

and tree state including the number of stars in this node, the number of nodes

active in the memory amongst other things in the form of a string for display

purposes.

MyNode

The MyNode implementation of the INode interface is the node class used throughout

the tree with the exception of the final leaves. As well as implementing the functionality

of the INode as described in section 3.3.1 the following properties and functions have

been added to support 3D spatial partitioning and other projects specific requirements.

MyNode(long seed, std::string address) This additional constructor allows for

the passing of both seed and address values during the creation of nodes for

the tree.

void Draw() This is an additional function used for visualization of the galaxy. More

details can be found in section 4.2.6.

double m numStars This tracks the numbers of stars contained in the volume rep-

resented by this node.

Vector3D m centre The 3D spatial coordinate for the centre of the nodes volume.

double m height, m width, m length The dimensions of the space bounded by

this volume.
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SSNode

The SSNode is used for the leaves on the tree and contains the finally generated data

for this application. It should be noted that the choice to terminate the division of

the tree at this point was purely a design choice. In another application, there is no

reason why subdivison could not carry on down to individual stars, planet or beyond

using a solar system or planet feature to alter subdivision at this point. As well as

implementing the virtual functions of the INode interface the SSNode also contains a

vector of pointers to Star objects. Each SSNode can have between one and three stars

to represent unary, binary and trinary solar systems.

4.2.3 Pseudorandom Number Generation

The implementation of the IPRNG interface, MyPRNG, uses a Linear Congruential

Generator originally written by Gardner [14]. A linear congruential generator is a well

established method for generating pseudorandom numbers. In it can be represented

by the equation:

Xn+1 = (aXn + c)(mod m)

where Xn represents a value in the sequence of pseudo random numbers (X0 be-

ing the seed value), a is a multiplier constant, c is an additive constant and m is

the modulus. Gardners algorithm provides a fast an efficient method of generating

pseudorandom long values with a period of 2147483647. This period is limited by the

constraints of the ’long’ data type in C++ but is sufficient for the application to be

evaluated against the stated goals in section 1.5, albeit with a degree of repetition of

seeds (in this case approximately 129 stars will share each unique seed). This is not a

limitation of the framework or architecture and we could easily substitute this simple

PRNG with another pseudorandom number generation algorithm using a larger data

type.

Additionally, the following functions were implemented for the MyPRNG class for

use in this implementation.

double GetNextScaled() This generates a pseudorandom number scaled between 0

and 1;
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double GetNextSkewed(double min, double max, double factor) This gener-

ates a pseudorandom number between min and max which is weighted toward

the min value. This is achieved using the formula:

Xr =
Xfactor

n

Xfactor−1
max

where Xr is the resultant skewed pseudorandom number, Xn is a regularly gen-

erated pseudorandom number, Xmax is the maximum value that X can have (the

size of LONG MAX in this case) and factor is an arbitrary power used to control

weighting.

4.2.4 Tree Navigation

The tree begins with a single root node which represents the galaxy as a whole. The

user is provided with a user interface to enable them to navigate the tree. This is

further explained in section 4.2.5. When the user selects the Generate button on the

user interface the generate function for the currently selected node is called. If this

node has not reached the termination point the node will be subdivided and the child

nodes created according to the applicable IFeature (if the current node does not have

an attached feature a search up the tree will be carried out until an IFeature is found).

The user will then be presented with a choice of children to trace down the tree. When

the user presses the Go Down button the selected child will become the currently active

node in the tree. In the case that children have not yet been generated, this will result

in a call to the Generate function first and the first child will become the current node.

Similarly, when the user pressed the Go Up button the parent of the current node

will become the current node, moving back up the tree.

While navigating the tree up or down the tree will prune itself such that all that is

kept in memory is a chain of parent-child nodes from the current node to the root node.

By doing this it is ensured that there will only be a number of nodes in memory equal

to the depth within the tree of the current node, unless the user has manually called

for generation of child nodes at the current node. Likewise, these manually generated

nodes can be removed by pressing the Prune button.
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Addressing

The project also implements an addressing system which allows the rapid generation of

a galaxy to any level of detail using a string based address. Every node in the tree is as-

signed a unique address upon creation. This address consists of a string containing the

seed used for the root node of the galaxy followed by a series of numbers corresponding

to the indices of the children that must be generated to reach the node with the specified

address, delineated by full stops. For example the address 12345.1.2.3.4.5.6.7.1.2.3.4.5

refers to a leaf node in the galaxy with the seed 12345 (in this case the address refers

a node with a single star, three planets and it can be inferred from the length of the

address that the node’s depth will be 12).

4.2.5 User Interface

Figure 4.4: The user interface implemented for the demonstration project.

Fig. 4.4 shows the user interface created for this demonstration project. The

user interface was created using GLUI User Interface Library [15]. The UI provides

functionality for navigating the tree to any level of detail as well as for manipulating the

visualisation of the galaxy and entering the address of a particular node. Furthermore,
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this user interface provides information about the tree including the number of nodes,

features, stars and planets which are currently in memory and the seed and address of

the current node as well as the seeds for any children which have been generated for

the current node.

4.2.6 Visualization

The galaxy is visualised by drawing points in 3D space in order to represent the distri-

bution of stars according to the structure of the applicable IFeature. Clearly it is not

practical to calculate or display the positions of three hundred billion stars so represen-

tative points must be generated heuristically. When a galaxy is created or the current

node is changed, a call is made to the Draw function of the current node. This function

will find the IFeature applicable to this node, searching up the tree if necessary and call

the Draw function of that feature, passing itself as a parameter. The draw functions

for each of the features implemented will be described in more detail below.

ClusterFeature In the case that the current node is at the same depth as the Cluster

Feature the points generated will be randomly distributed about the centre point

of the cluster at a distance d, where 0 〈 d 〈 r and r is the radius of the cluster.

The distance d will be selected using the GetNextSkewed() function described in

section 4.2.3 ensuring that a higher density of points will be generated closer to

the centre, reflecting the distribution of stars in a cluster. This can be seen in Fig.

4.5. In the case that the node is not at the same depth as the ClusterFeature the

closest point of the current nodes volume to the centre of the cluster is calculated

and a distribution is done from this point. The skewing of these points is affected

by the difference in depth between the current node and the ClusterFeature such

that the distribution of points becomes more even the further apart the two are

and therefore the smaller a volume the current node is representing.

SprialArmFeature In the SpiralArm feature, structure is achieved using a series

of points to create a spline in order to represent the curve of the spiral arm

itself. When calculating the distribution of points throughout a given volume

the start and end points of the spline are found within the volume of the current

node. A point is chosen along the spline, skewed toward the start of the spline
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Figure 4.5: Visualization of the ClusterFeature.

in order to decrease the density of the stars towards the root of the arm. A

second point is then chosen slightly further along the line and this is then used

to calculate a vector in the direction of the spline at that point. This vector is

turned 90 degrees in the plane of the galaxy, in a random direction and a new

skewed number is generated in order to determine how far along this rotated

vector the point will appear. Finally the point is displaced in the y direction,

again skewed toward the spline. This gives a distribution of stars which is denser

toward the root of the arm and denser the closer to the spline it appears as can

be seen in Fig. 4.6. As the difference in depth between the current node and

the SpiralArmFeature increases, a higher proportion of stars within the volume

are placed purely randomly throughout the volume to reflect the loss of larger

structure at smaller and smaller scales.

GalacticFeature In this application, the GalacticFeature is hard coded to represent

the cluster and spiral arms below it in the tree using similar methods to those

described for these feature above. The number of points to be drawn is split

evenly between each of the features so they will all be readily apparent. The

reason for doing this is that a realistic representation of the distribution of stars

would heavily favour the bulge at the galaxy core and so a very large number of

points would be required in order for the arms to be visible. The results of the
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Figure 4.6: Visualization of the SpiralArmFeature.

GalacticFeature visualization can be seen in Fig. 4.7.

Figure 4.7: Visualization of the GalacticFeature.

Solar Systems As this application generates data down to the individual solar sys-

tem level it was not practical to visualize these by the same method as other

parts of the system for reasons of scale. As such, the SSNode class has a differ-

ent implementation of the Draw() method which handles the drawing for solar

systems directly rather than through the IFeature as in other cases. This draw

function is a simple visualization of the stars and their planets (if the planets
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have been generated) in this solar system. This drawing is not to scale but does

represent the differences in scale based on the star or planets mass. An example

of this visualization can be seen in Fig. 4.8.

Figure 4.8: Visualization of a Solar System.

4.2.7 Stars and Planets

The focus of this dissertation was the creation and maintenance of large scale game-

worlds. However, it was necessary to create content at the bottom of the tree for evalu-

ation purposes. As such, the project defines classes for stars and planets. Although this

information is not used within the project it does reflect the kind of information which

might be produced for use in a game such as mass, radius, temperature semi-major

axis, inclination etc as well as information used for generating data and tree opera-

tions such as pointers to planets owned by a star, pointers to pseudorandom number

generators and seeds.
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Chapter 5

Evaluation

In this chapter the galaxy generator presented in Chapter 4 will be used to evaluate the

framework and the underlying architecture presented in Chapter 3 against the Goals

stated in 1.4. A number of different strategies for evaluation were required to do this.

Section 5.1 will demonstrate the proof of concept for the architecture’s ability to

create the structure as required by Goal 1. This will be done with the use of screen-

shots of the project in action demonstrating the usage of several features at different

levels of the tree.

Section 5.2 will measure the memory and processor usage for this project. These

measurements will be used to show how well the system meets the performance and

scalability requirements of Goal 2 and be used to infer performance in a hypothetical

computer game.

Section 5.3 will analyse the architectures generality and how well it can be adapted

for use in other projects as required by Goal 3.

5.1 Visual Structure

This section demonstrates the proof of concept of the systems ability to heuristically

generate visual data at any point in the tree which would be consistent with the larger

system. In order to achieve this, a simple point drawing system was developed in order

to represent the distribution of stars within the volume of space bounded by the current

node on the tree as described in section 4.2.6.
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Chapter 4 explains how the system uses a series of classes derived from the IFeature

interface which handle these heuristics for nodes at that depth or below. For this

evaluation the IFeature classes that will be used are the GalacticFeature class, the

ClusterFeature class and the SpiralArmFeatureClass.

5.1.1 GalacticFeature

The GalacticFeature class has functionality to draw a representation of the galaxy

as a whole, in this case a central cluster to represent the galactic bulge and four

spiral arms radiating out from this. In this implementation the shape of the galaxy

is fixed to represent these substructures but uses similar code for drawing as these

substructures for consistency. As each child node of the root node of the tree will itself

have an IFeature implementation there is no requirement for the GalacticFeature class

to estimate structure at lower levels of the tree, this will be handled by those features

in the child nodes. The resulting galaxy produced can be seen in Fig. 5.1.

5.1.2 ClusterFeature

The ClusterFeature class represents a globular cluster of stars. This is a roughly

spherical collection of stars with increasing density toward the centre of the cluster.

The ClusterFeature distributes the points which represent the stars randomly about

this centre point, weighting the random numbers towards the centre. At levels of the

tree below the level of the ClusterFeature, this distribution from a central point is still

apparent but as the difference in levels increases the weighting of the random points

placed is reduced to show that at smaller and smaller scales this structure will be less

apparent and the stars will seem more evenly distributed. This can been seen in Fig.

5.3 where (a) shows the visualization at the same level of the tree as the ClusterFeature,

(b) is the representation at one level below the feature and (c) shows the distribution

of stars at five levels below the feature and so the weighting of the distribution toward

the centre (the upper left corner in this case) is significantly reduced.

39



Figure 5.1: A galaxy with central cluster and four spiral arms.

5.1.3 SpiralArmFeature

A spiral arm is a region of stars which extends in a spiral fashion from the central

bulge of a galaxy and which tapers as the distance from the centre increases. They are

a common feature of both spiral and barred-spiral galaxies. In the SpiralArmFeature

class this shape is represented through the use of a spline. Points to represent stars

are placed randomly within the volume but weighted to be denser towards the root

of the arm and denser from the spline outwards in order to mimic the structure of a

spiral arm. At the tree depth where the SpiralArmFeature appears, these points are

distributed along the entire length of the spline. At depths below that of the feature,

this distribution occurs only along the portion of the spline which intersects the cur-

rent nodes volume. Additionally as this difference in depth increases a proportionately

larger amount of points are placed randomly throughout the volume to show the ap-

parent loss of structure at smaller and smaller scales. The results of this can be seen
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in Fig. 5.4. Fig 5.4 (a) shows the representation at the same depth of the tree as the

SpiralArmFeature, (b) shows the distribution at one level removed from the feature

and (c) shows the distribution at two levels removed where the loss of structure is

becoming apparent.

5.1.4 Visual Structure Summary

As has been shown in the preceding sections, the project and the underlying architec-

ture do meet Goal 1’s requirement to impose structure at different levels of the tree.

However, some limitations of both the project and the architecture are apparent.

Firstly, the heuristically generated points are unique to that level of the tree. This

means that smooth transitions between different levels of detail are not provided by

this project, resulting in some ’popping’ as the tree is navigated. This is a limitation

of the project itself rather than the architecture and could be addressed in another

system.

Secondly, the architecture is limited to using only a single feature to generate struc-

ture for a given node on the tree. This makes it difficult to have the blending of two or

more structures within a gameworld. In this case a kind of desirable blending would

be along the border between the central cluster and the spiral arms. As is, the archi-

tecture is limited to situations where structures can be wholly contained in a single

volume without overlap.

5.2 Performance

Goal 2 of this dissertation requires that the architecture provides a framework which

will minimize the usage of both memory and processor time while being able to support

the creation of large scale game worlds. To evaluate its performance in this respect,

the demonstration application will be measured by these criteria and the architectures

performance in a hypothetical computer game will be inferred.

5.2.1 Memory Usage and Scalability

Table 5.1 shows the memory usage of the classes used for this implementation. The

project also produces 300 billions stars with the assumption that any given star will
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Class Size (bytes)
MyNode 160
SSNode 120
MyTree 1
ClusterFeature 8
GalacticFeature 80
SpiralArmFeature 16
MyPRNG 12
Star 56
Planet 64

Table 5.1: Memory usage for classes in the implementation.

have an average of 5 planets about this. From this it can be said that a naive approach

to producing a similar galaxy, where all these stars and planets are precalculated and

stored in memory would require approximately 102TB’s of memory.

By comparison, if it is assumed that the distribution of stars is even throughout

the galaxy, the subdivision of the tree will end at a depth of 11, with 55 stars active.

This will result in a total of 12 MyNodes, 27 SSNodes (assuming an average of 2 stars

per solar system), 95 MyPRNG’s, 2 Features, and 55 Stars active in memory. From

the table we can calculate that the memory usage at this point would be 9.25kB.

To generate a single solar system assuming it contained 2 stars with 5 planets each

would require 13 MyNodes, 1 SSNode, 15 MyPRNGs, 2 Stars and 10 Planets and 2

features for a total of 3.05kB.

Assuming a non-uniform distribution of stars, as would be the case in a realistic

representation of a galaxy, in the worst case a single node will contain 400 solar systems

each with a single star. This worse case will still require 12 MyNodes, 400 SSNodes,

412 MyPRNGs, 400 stars and 2 features in memory for a total of 75.47kB.

In a hypothetical test case where each leaf node on the tree contained 400 stars as

in the case above we can estimate that if the depth of the tree reached 22, the tree

would be capable of supporting 29.5× 1021 stars, more than the number of stars in the

universe which is estimated to be 9 × 1021 and doing so would require approximately

56kB to store the tree down to an individual leaf node.

Finally, the graph in Fig. 5.2 shows the scalability of the framework by plotting

the memory usage of this project against that of a naive approach. In this case the
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Figure 5.2: A graph showing the memory usage of this framework against that of a
naive approach as the scale of the gameworld increases.

naive approach would be to create each star individually, at 56 bytes per star. This

results in a linear increase of memory usage. By comparison, the method used in this

dissertation achieves far better results. In this case the curve was calculated by adding

the initial overhead of maintaining the tree and feature objects and then assuming a

growth pattern in which each leaf node contains a single solar system which, in turn

contains a single star at a total cost of 348 bytes per star. Even when using this

worst case scenario for tree subdivision it can be seen that the tree framework used

for this project will become more memory efficient than the naive approach when the

gameworld grows beyond 13 stars.
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Operation Time Taken (milliseconds)
Moving down a level of the tree 〈 1
Moving up a level of the tree 〈 1
Pruning the tree 〈 1
Generate a galaxy from address 16
Generate visualization for GalacticFeature 31
Generate visualization for ClusterFeature 〈 1
Generate visualization for SpiralArmFeature 62

Table 5.2: Execution time for common operations.

5.2.2 CPU Usage

The test machine used to capture the results shown in Table 5.2 was a Windows 7 PC

with a 2.1GHz dual core processor and 3GB of ram. Table 5.2 shows the execution time

in milliseconds for some of the common operations involved in this implementation. In

many cases the execution time was too small to be accurately measured being less than

1 millisecond. A brief description of what is involved in these operations follows.

Moving down a level of the tree This operation requires the children to be gener-

ated for the current node, seeds for them generated and assigned and the space

divided amongst them. Following this a child is selected as the new current node

and the other children are removed from memory. This operation assumes that

children had not already been generated.

Moving up a level of the tree This operation involves moving the current node to

point at its parent and then pruning all information below this point on the tree.

Pruning the tree This operation involves removing all data below the current node

on the tree. This can be other nodes of type MyNode, nodes of type SSNode or

Planets about stars. In all cases execution time was less then 1 millisecond.

Generating a galaxy from an address In this case an address was supplied for the

leaf node of a galaxy. The galaxy was generated and the tree traversed to the

leaf node in an average of the time indicated.

Generate visualization for GalacticFeature This operation represents the time

taken to generate the 4000 points used to visualize the galaxy as a whole.
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Generate visualization for ClusterFeature This operation represents the time taken

to generate the 4000 points used to visualize the cluster at any level of the tree.

Generate visualization for SpiralArmFeature This operation represents the time

taken to generate the 4000 points used to visualize the spiral arm at the highest

level. As the tree is subdivided down from this level the execution time drops

significantly, falling below 1ms at 3 levels below that at which the feature appears.

From these figures we can now examine the costs of some of the actions which may

be common place in a computer game implementation of this project.

Travelling It would almost certainly be required that a player would require the ability

to travel between star systems in any game implementation. As the player moves

between the volumes described by a single node, it is necessary to step back up

the tree a sufficient amount to generate the neighbouring volume. In a worst case

scenario, the entire tree must be walked up and back down again if the player

were to pass through the centre of the galaxy. However the cost of stepping up

are down the tree is less than 1 ms. In this worst case scenario, this would require

24 such actions to walk the entire tree and so would still take less then 24ms.

Teleporting A common gameplay feature in space based games is the ability to tele-

port to different parts of the gameworld. This action could be represented using

the address finding scheme implemented for this project. In this case the player

could teleport to any part of the gameworld in 16ms.

Searching Another desirable feature in a computer game maybe the ability to search

for a particular kind of star or planet. This is a function not addressed by this

architecture and so a brute force search would be necessary.

5.2.3 Performance Summary

The figures from the preceding sections show that the architecture and the galaxy

generator based upon it meet the requirements stated by Goal 2. The architecture has

been shown to be able to support very large gameworlds and to do so with minimum

cpu and memory usage although it does not reflect all the requirements that a game

implementation may require of it.
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5.3 Generality

The last of the goals stated in section 1.4 was that of creating a software architecture

and accompanying framework which were general and flexible enough to be used in a

variety of applications. Generality is a difficult concept to measure. Ideally, a series of

different applications would be developed using this framework to evaluate its perfor-

mance in this way, however building more than one application was beyond the scope of

this dissertation. It should be noted that the architecture is itself a generalization and

extension of the approach described by Hahn et al. [1] for the procedural generation

of buildings. The framework should therefore be capable of generating buildings in this

fashion. Additionally, the application developed for this dissertation for the procedural

generation of galaxies shows that the framework is flexible enough to be used in a very

different context.

Finally, it should be noted that the architecture itself is language and platform

independent and an implementation of the architecture could easily be created for

another system
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Figure 5.3: The estimation of structure at different levels of the tree for the Cluster-
Feature. (a) is at level 1, (b) is at level 2 and (c) is at level 3.
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Figure 5.4: The estimation of structure at different levels of the tree for the SpiralArm-
Feature. (a) is at level 1, (b) is at level 2 and (c) is at level 5
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Chapter 6

Conclusions

In Chapter 1 we saw that procedural content generation is popular through the games

industry for meeting the increasing high requirements for detail and fidelity in modern

gameworlds. Despite this there is still a lack of standardization of structure and logic

for procedural content generation and this is what this dissertation sought to address.

Several challenges to such a task were also identified, namely, the ability to impose

structure upon procedurally generated content, meeting the severe hardware utilization

requirements required for games and the need to standardize the approaches used for

this type of content.

A selection of the literature available in this field was reviewed to assess some of

the methods and practices used for procedural content generation and their ability

to address the challenges described above. From this analysis a software architecture

was proposed and presented which was intended to provide a system for standardiz-

ing the structural logic for procedural generation in a manner which was still flexible

and general enough to be integrated with other applications, specifically with game

applications.

To evaluate this architecture and the framework implemented from it, an applica-

tion was developed to procedurally generate realistically sized galaxies. This would

demonstrate the flexibility, scalability and generation logic of the architecture.

This application was then evaluated for its ability to overcome the stated challenges

and meet the stated goals. Its memory and processor usage were measured to demon-

strate its ability to be integrated in a resource scarce environment and its ability to
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handle the kind of functionality which would be desirable in a game. The ability to cre-

ate structure at multiple levels of detail was visually demonstrated and the generality

of the architecture and framework were critically examined.

6.1 Future Work

There remain several limitations for this architecture and challenges to procedural gen-

eration which remain unaddressed in this dissertation. The following sections outline

a selection of these which may be investigated in the future.

6.1.1 Time

The challenge of creating procedural content which evolves over time is not something

which is planned for in the presented architecture. It is made especially challenging in

this context as the architecture assumes that any structural aspect of the gameworld

may be wholly contained by a single feature object. If there is the requirement that

structural features merge, separate or overlap over time this will present great difficulty

to the architecture as is. This difficulty is compounded by the application’s use of

spatial subdivision techniques for the splitting of the gameworld into discrete volumes.

In a changing system, the tree would need to be continuously regenerated over time

to reflect changes in the gameworld and this is clearly not ideal. It may be worth

investigating whether or not the architecture could be adapted in order to meet this

temporal challenge and be used for procedurally generating gameworlds which evolve

over time.

6.1.2 Popping

As shown in 5.1 the application developed for this dissertation heuristically generated

visual data to represent the structure of the galaxy. This was limited to creating

a new visualization for each node of the tree independently of any other and as a

result there was a lack of continuity when transitioning from one level of detail to

another. As the selected node of the tree was changed there was distinct ’popping’ of the

visualization. That is to say that it was apparent to the user when new visualizations
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were being generated and that these visualizations were only loosely related to one

another. Implementing a system which could address this issue could be explored.

6.1.3 Feature Merging

A limitation of the architecture is that each node may only have one feature applied

to it at any given time. This works well when the structures of the gameworld are

well delineated, such as in the case of a building were rooms are clearly separate from

each other. However, in a more organic setting, like a landscape generator, this makes

the blending of regions problematic. The intuitive response would be to investigate

whether it is feasible to adapt this architecture such that a node could be subject to

multiple features at once, and whether the influence of features could be weighted over

the volume of a node to create smooth transitions between features.

6.1.4 Integration

This architecture was designed and implemented with a view to being extensible. It

would be worth attempting to combine this application for the procedural generation

of galaxies with other applications, using the presented architecture, in order to create

a higher fidelity large scale gameworld. A good candidate would be the project for the

procedural generation of planets created by Hayes-McCoy [16].
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Appendix

Attached is a disc containing the source code for the Framework and Galaxy Generator

implemented for this dissertation.
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