
Real-Time Wrinkles For Expressive Virtual

Characters

by

Rowan Hughes, B.Sc.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2011

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Rowan Hughes

August 30, 2011

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Rowan Hughes

August 30, 2011

Acknowledgments

To Antoinette, for your ceaseless understanding and support. To my parents for always

believing in me, even when I didn’t. To all of my fellow masters candidates, all of whom

helped drag me kicking and screaming through a gruelling academic year. I would also

like to thank my supervisor, Rachel McDonnell, for all of her help and ideas throughout

the course of this dissertation.

Rowan Hughes

University of Dublin, Trinity College

September 2011

iv

Real-Time Wrinkles For Expressive Virtual

Characters

Rowan Hughes

University of Dublin, Trinity College, 2011

Supervisor: Rachel McDonnell

This thesis presents a method to both add realism and to enhance user perception

of emotional states of virtual characters through the addition of fine details, such as

wrinkles and furrows. We also attempt to add realism to the characters by leveraging

state of the art methodologies in skin rendering.

In our implementation we build on the previous work by Dutreve, Meyer and

Bouakaz[1]. The method uses a small set of reference poses which are compared with

the current pose at run time in order to produce a set of similarity metrics. Wrin-

kle maps are then blended and applied according to these metrics. Pose evaluation is

carried out using the mesh skeleton’s bone, or ”virtual muscle”, transformations. Skin-

ning blend weights are then used in order to associate rendered fragments and reference

poses. Blending of the wrinkle maps builds on the work by Oat. [2] through the use

of dynamically created mask data with a partial-derivative normal mapping method.

v

The technique described is both efficient in terms of computation as well as storage

costs and can easily be inserted into a conventional real-time skinning based animation

pipeline. We also describe a method to extend the technique into other domains, with

particular reference to the small scale wrinkles formed on clothing around articulated

joints of virtual characters.

Realistic skin rendering techniques have taken a dramatic leap forward over the past

number of years and our technique leverages some of the most recent advancements in

the field, specifically the work done by Jimenez et al.[3, 4], Penner and Borshukov[5]

and dEon et al.[6], in order to create a more realistic virtual character.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 3

1.3 Dissertation Outline . 3

Chapter 2 Background and Related Work 5

2.1 Motion . 6

2.1.1 Wrinkle Maps . 6

2.1.2 Wrinkle Masks . 6

2.1.3 Dynamic Wrinkle Weights . 7

2.1.4 Beyond Normal Maps . 9

2.1.5 Alternate Wrinkle Methodologies 9

2.2 Appearance . 10

2.2.1 The BRDF/BSSRDF . 11

2.2.2 Texture Space/Screen Space Diffusion 11

2.3 Screen Space Ambient Occlusion (SSAO) 13

2.4 Real-Time Wrinkles in Video Games 13

2.5 Summary . 14

vii

Chapter 3 Design 15

3.1 Plan . 15

3.2 Requirements . 16

3.3 Tools & Assets . 17

3.4 Methodology . 18

3.5 Perceptual Validation . 18

3.5.1 Participants . 18

3.5.2 Stimuli . 18

Chapter 4 Implementation 19

4.1 Overview . 19

4.2 Implementation Framework . 19

4.2.1 Menu . 20

4.2.2 Camera . 20

4.2.3 Debug . 20

4.3 Motion . 20

4.3.1 Skeletal Pose Evaluation . 20

4.3.2 Wrinkle Masks . 22

4.3.3 Wrinkle Map Blending . 24

4.3.4 Beyond Facial Wrinkles . 26

4.4 Appearance . 28

4.4.1 Skin Rendering . 28

4.5 Summary . 31

Chapter 5 Evaluation 32

5.1 Performance Evaluation . 32

5.1.1 Facial Wrinkles . 32

5.1.2 Clothing Wrinkles . 34

5.2 Perceptual Evaluation . 35

Chapter 6 Conclusions 38

6.1 Summary . 39

6.2 Future Work . 39

6.2.1 Tessellation . 39

viii

6.2.2 Generalisation . 40

6.2.3 Incongruent Areas of Influence 40

Appendices 42

Bibliography 44

ix

List of Tables

5.1 Performance, in frames per second, of various configurations of the facial

wrinkles algorithm. 33

5.2 Performance, in frames per second, of the joint evaluation algorithm. . 35

x

List of Figures

2.1 Photographs from the 1862 book Mecanisme de la Physionomie Humaine by

Guillaume Duchenne. Through electric stimulation, Duchenne determined

which muscles were responsible for different facial expressions. 5

2.2 Title character from Drake’s Fortune series, by Naughty Dog, rendered with

and without wrinkle maps. 6

2.3 Left: Dynamically defined mask zones based on skinning weights. Right:

Artist defined wrinkle mask texture. 7

2.4 Left - “Squash” and “Stretch” wrinkle maps. Right - Two wrinkle mask tex-

tures representing eight, four per texture, independently controllable wrin-

kling regions. 8

2.5 Visual representation of technique described in [1]. At runtime, each pose

of the animation is compared with the reference poses, bone by bone, and

skinning influences are used as masks to apply the bones poses evaluation.

Wrinkle maps are blended on the GPU allowing rendering of the current frame

with dynamic wrinkles. 8

2.6 Render of a human head model with a diffuse BRDF (Lambertian). 11

2.7 Top: d’Eon and Luebke’s [6] algorithm blurs high-frequency details in texture

space. The image sequence shows the initial rendered irradiance map and two

blurred versions. Bottom: Jimenez et al. [3] screen-space implementation

where the blurring is applied to selected areas directly on the rendered image. 12

2.8 Visual comparison of the texture-space and screen-space rendering pipelines

in order to simulate sub-surface scattering in human skin. We can instantly

see the obvious performance benefits associated with the screen-space rather

than texture-space implementation. Diagram from [3] 13

xi

2.9 Real-Time wrinkles as generated by the Crysis engine. Their method only

works when animations are driven through the use of morph targets. 13

3.1 Left: Skinning weights associated with our mesh as authored in 3ds max.

(Weights associated with any one vertex must always add to 1) Right: Wrin-

kles were authored using the Mudbox toolset 17

4.1 High level diagram of our rendering pipeline. 19

4.2 Reference pose models as rendered from 3ds max. 21

4.3 Visualization of the wrinkle masks generated by our system. Left: Mostly

Stretch influence, bright green indicates full stretch pose inf. Right: Mostly

Squash influence. 22

4.4 Left: Graph of Dutreve et al. modulation function θ(x). Right: Graph

plotting our revised modulation function. 23

4.5 Left: Effect with and without real-time wrinkles, displayed using a simple

Lambertian reflectance model. 25

4.6 Right: Tangent-space normal map. Left: Partial derivative normal map . . . 25

4.7 Screen capture of wrinkles around hinge joints (knees) and a ball and socket

joint (waist) rendered on a virtual character. 28

4.8 Sum-of-Gaussians Parameters for Three-Layer Skin Model. 30

4.9 Character as rendered using our skin rendering implementation. 31

5.1 Graph modelling performance with increasing scene complexity. 34

5.2 Graph modelling average user response to observed emotion under various

shader permutations. All answers considered. 36

5.3 Graph modelling average user response to observed emotion under various

shader permutations. Answers considered only on correct categorical recog-

nition. 36

6.1 Images rendered of sphere using texture mapping, normal mapping and dis-

placement mapping . 39

6.2 Wrinkle map incongruence due to facial bones moving in opposite directions. 41

xii

Chapter 1

Introduction

Compelling facial animation is an extremely important and challenging aspect of com-

puter graphics. Both games and animated feature films rely on convincing characters to

help tell a story and an important part of character animation is the characters ability

to use facial expression. Without even realizing it, we often depend on the subtleties

of facial expression to give us important contextual cues about what someone is saying

to us. For example, a wrinkled brow can indicate surprise while a furrowed brow may

indicate confusion or inquisitiveness.

Much important work has been accomplished in this field allowing artists much more

control over the more subtle aspects of facial animation. Real-time wrinkle techniques

have been successfully used in a number of modern AAA video game titles, notably the

Crysis and Drake’s Fortune series. In the original pioneering work Oat [2] describes a

technique for artist controllable wrinkles. This technique involves compositing multiple

wrinkle maps using a system of masks and artist animated weights to create a final

wrinkled normal map that is used to render a human face. Jimenez et a.l [7] extended

upon this technique producing staggering results both through the introduction of a

number of key optimisations to the original system and also through the addition of

some state of the art skin rendering techniques. Their work clearly shows that modern

real-time graphics techniques for the rendering of virtual characters are beginning to

overcome the uncanny valley [8]. While not yet at the point of total photo-realism it

is not difficult to envision that gap being bridged in the near future.

The goal of this thesis is to implement these techniques and explore the possibility

1

of driving our system through the use of data readily available from the character being

rendered, that is the current position of its underlying skeletal structure.

1.1 Motivation

The current state of the art, as previously mentioned, provides extremely impressive

results [7]. Their technique drives the system through the examination of triangle de-

formation [9] post and pre-skinning. This technique can only be used with a morph

target based animation pipeline. We investigate the possibility of extending this sys-

tem, with all of the associated skin rendering techniques, and apply it to a traditionally

skinned mesh. In order to achieve this we must derive a new way of obtaining weights

with which to blend in the models associated wrinkle maps. In this work we build

upon the technique as described by Dutreve, Meyer and Bouakaz [1] in order to drive

the wrinkle weights system.

Our technique, like previous techniques, is heavily dependent on the quality of the

assets being employed. One notable problem with using skinning weights as drivers

for blending in wrinkle masks is that it is quite common for blend weights associated

with a bone not to be attached to regions on the mesh that should wrinkle if the bone

moves. We examine the possibility of associating masks in the place of skinning weights

in order to overcome these problems, this also has the benefit of allowing total artistic

control over the display of wrinkles on the mesh.

In summary while it is not always necessary, or indeed desired, to convince the

observer that they are viewing a real character it is always desirable to convey to the

observer the current emotional state of the virtual character. One of the main issues

that can cause emotional disconnections between observer and character is lack of facial

expression on the part of the virtual character. Through implementation and extension

of the original technique we will look to create a more convincing connection between

observer and virtual character. This will be achieved through the addition of real-time

wrinkles to virtual characters animated through a traditional skinning based pipeline.

2

1.2 Goals

The primary goal of this dissertation is to implement an application that can add

emotional information, through the addition of facial wrinkles and furrows, to a virtual

character, animated using skinning. We expect that this will add to a users perception

of the emotional states of said virtual characters.

The secondary goal is to investigate whether the technique is applicable in domains

other than facial wrinkles.

The tertiary goal is to experiment with optimisations and extensions to the tech-

nique looking both at the wrinkle techniques and also experimenting with the state of

the art in skin rendering in order to produce a more convincing result and a technique

suitable to be used in a real-time environment.

Finally, we wish to ensure that the implementation performs well and the overhead

of running it is not prohibitive. If this can be achieved, algorithm optimisations are

investigated to extract the best performance, as measured by frame rate.

1.3 Dissertation Outline

This dissertation is laid out as follows:

Chapter 2 : Background and Related Work describes the problem domain

specifically related to real-time wrinkles and an overview of the main techniques that

can be used to model this phenomenon. This chapter also contains some basics regard-

ing some of the other techniques used in order to create a more visually realistic virtual

character such as skin rendering techniques, screen space ambient occlusion, etc.

Chapter 3 : Design presents a high level view of the design and requirements of

the system and the implementation plan.

Chapter 4 : Implementation describes the basic implementation, the applica-

tion framework to host the technique and provides user manipulation functions and

test scenarios.

Chapter 5 : Evaluation describes the output of the algorithm with reference to

three specific areas, perceptual evaluation, performance and comparisons with previous

work.

3

Chapter 6 : Conclusions summarises the work and main results in the thesis

and presents ideas for future work to improve upon the current implementation.

4

Chapter 2

Background and Related Work

During the latter half of the 19th century, a French neurologist name Guillaume

Duchenne performed a series of experiments that involved applying electrical impulses

to his subject’s facial muscles with the aim of identifying the muscles of the face respon-

sible for various human expressions [10]. One of the more surprising results of these

experiments was that the most subtle of differences in facial expression can express very

disparate emotional states. For instance, a genuine smile utilizes not only the muscles

of the mouth, but also that of the eyes and so the difference between a sarcastic smile

and a genuine smile differs physically in a very subtle, but very important way.

Figure 2.1: Photographs from the 1862 book Mecanisme de la Physionomie Humaine by

Guillaume Duchenne. Through electric stimulation, Duchenne determined which muscles

were responsible for different facial expressions.

While a good deal of research over the past number of years has focused on adding

realistic real-time wrinkles to virtual characters, it is only very recently that we are

5

seeing these techniques being introduced into modern applications such as video games,

etc. These techniques are almost exclusively based on work originally described by Oat

[11]. In this chapter, we will look at this technique in more detail, the other major

work and breakthroughs that have been seen in this field, and briefly some of the other

techniques implemented by this dissertation to create more expressive and realistic

virtual characters.

2.1 Motion

2.1.1 Wrinkle Maps

Bump maps and normal maps [12] are well-known and widely used techniques to add

small surface details to otherwise far less detailed surfaces through the storing of surface

normals, in tangent space, in a texture. These techniques are widely used in real-time

applications to add surface detail to human faces. The use of static, artist created

maps have one major drawback, however, in that they do not accurately represent the

dynamic surface of a human face, they only “fit” the pose for which they were drawn.

Figure 2.2: Title character from Drake’s Fortune series, by Naughty Dog, rendered with and

without wrinkle maps.

6

In [13, 1, 14, 11, 7] we are introduced to the idea of wrinkle maps. Wrinkle maps

in these cases are standard bump maps, that is an artist generated texture containing

the encoded wrinkle patterns for a given model.

In order to create the appearance of wrinkles on an animated mesh in a real-time

environment, these wrinkle maps are blended into the image based upon some weighting

scheme, discussed in detail later. The weighting scheme uses some scalar range, i.e.

from [-1,1], [0,1], etc. In [11] two wrinkle maps are used; one representing a stretched

pose and one representing a squashed pose, with a blend value of 0 indicating that

the wrinkle map(s) do not at all contribute to the final rendered image and -1 or 1

indicating that the squash/stretch wrinkle maps contribute totally to the final rendered

image respectively. The technique described in [7] expands upon the scheme in [11]

and allows for the use of any number of wrinkle maps. In this case, wrinkle weights

are no longer blended between negative and positive values indicating which of two

wrinkle maps to use, instead a range of [0,1] is used for each desired wrinkle map.

2.1.2 Wrinkle Masks

Wrinkles on a character’s face must be independently controllable and therefore the

wrinkle maps must be broken up into multiple regions. In order to achieve this goal,

a mask (or indeed multiple masks) is used. In [11, 7, 13] among others, the authors

make use of wrinkle masks which are stored as simple 2D textures. For each desired

independently controlled region, a texture channel is used in order to store a scalar

value representing the area of control. In [7], we see that the authors define eight

independently controlled wrinkle regions and so two textures are used to achieve this.

Any number of masks can be used with this methodology.

In the above cases, we are dealing with artist defined masks in order to define

wrinkle zones. These masks are created by artists based on the desired regions where

they wish for wrinkles to appear. However, if we look at the work in [14], we can

see that the masks are dynamically created through the use of skinning weights which

determine where wrinkle zones occur on the mesh. This methodology will be described

in more detail in the implementation section.

7

Figure 2.3: Left: Dynamically defined mask zones based on skinning weights. Right: Artist

defined wrinkle mask texture.

2.1.3 Dynamic Wrinkle Weights

In order to effectively use our technique in a dynamic real-time environment we must

have some method in which to determine which areas of the wrinkle maps to display

and calculate the weight of the contribution, if any, for any particular pixel. Different

methodologies have been suggested in this regard and one of the main drivers be-

hind this, outside aesthetic or performance factors, is the fact that different animation

techniques require different methodologies.

In [11], two very different techniques are described in order to achieve this feat. The

first is performance driven, where an actor is filmed performing a scene, and weights

for wrinkles were generated through the use of facial recognition software. This works

quite well for scripted scenes but is not suitable for most other scenarios, for example,

in conjunction with real-time motion capture. The second method described (derived

from Microsoft’s Sparse Morph Target Demo [9]) involves computing, using a geometry

shader, the wrinkle weights based upon the deformation of the triangles on the mesh

before and after skinning. The area of each triangle on the mesh is calculated before

and after skinning and the resulting differences are used to approximate squashing or

8

stretching. This technique is effective when using blend shape \morph target type

animation.

Figure 2.4: Left - “Squash” and “Stretch” wrinkle maps. Right - Two wrinkle mask textures

representing eight, four per texture, independently controllable wrinkling regions.

The techniques described in [1] and [14] describe a very different methodology in

determining wrinkle weights. They require that the character mesh be connected to one

or more bones with a convex combination of weights. A number (two in these cases) of

reference poses for the character are stored by this system and are compared at every

frame against the current pose. These reference poses are highly pronounced poses that

would result in a very strong wrinkle contribution, that is the maximum squash and

stretch pose. Each desired bone is compared at every frame with the reference pose(s)

on the CPU. Once influences have been calculated for each bone in the model these must

be related to vertices on the mesh in order to determine influence on a per-vertex level.

Importantly, by doing this on a per-bone basis it allows for independently controlled

regions achieving similar results as the texture based techniques. The resulting set of

influences are then sent to the GPU in order to determine the final wrinkle weight used

for wrinkle map blending.

It is worthy of note that in all the techniques described above it is necessary to

make a decision on how to blend in any additional normal maps. Simply blending

maps would result in an overall loss of detail. The wrinkle map/s should contribute in

addition to the base normal map. For this reason, it is not possible to simply average

the maps and achieve a desirable result. In all of the above described techniques the

following method was used to overcome this issue, that is the degree to which a normal

is ”bumpy” is defined through the z component with the direction of the bump being

encoded in the x and y components. The directional components are simply blended

giving the desired direction but the z components are multiplied which leads to an

9

Figure 2.5: Visual representation of technique described in [1]. At runtime, each pose of the

animation is compared with the reference poses, bone by bone, and skinning influences are

used as masks to apply the bones poses evaluation. Wrinkle maps are blended on the GPU

allowing rendering of the current frame with dynamic wrinkles.

increase in detail derived from the two maps rather than a flattening out. This can be

written mathematically as:

~WN = normalize(W.x+N.x,W.y +N.y,W.zN.z) (2.1)

where ~WN is the final normal, W is the normal provided by the blending of wrinkle

maps and N is the normal of the base normal map for the mesh.

2.1.4 Beyond Normal Maps

Although in the papers outlined above all of the techniques used normal maps in order

to simulate wrinkles this leaves room for considerable experimentation with alternative

types of mapping beyond simple normal mapping. There are many techniques that

could be considered in this regard such as Parallax Occlusion Mapping [15] and Re-

lief Texture Mapping [16]. Some experimentation with these particular methods was

carried out for the purpose of this dissertation, providing decidedly mixed results with

the overall added cost in terms of computation not proving cost effective in terms of

increased realism.

One of the issues with using normal maps is that fact that the underlying geometry

is not changed and thus the model’s silhouette remains unchanged despite the presence

of wrinkles. While this may not be an issue with small scale wrinkles on the forehead

10

it could be with larger wrinkles, such as jowls, especially if robust collision detection

is required.

2.1.5 Alternate Wrinkle Methodologies

The use of wrinkle map textures only forms one of the methodologies used to create

animated wrinkles, although it is notably by far the most common. Other solutions

exist, primarily the techniques involve some form of vertex displacement [17, 18, 19].

In [17], wrinkling is achieved through the use of length-preserving geometric con-

straints along with artist placed wrinkle features at locations on an animated mesh

where wrinkling is desired. This method relies heavily on the underlying tessellation of

the mesh in question, as the geometry is being displaced in order to model the wrinkles.

Therefore a sufficient degree of tessellation is required in order to achieve the desired

result, that is the finest degree of wrinkling required.

In [18], we are introduced to a method to add wrinkles to the face of a virtual

character. The actual wrinkling is simulated in much the same way as [17]. The work

is worthy of note, however, as it outlined the individual wrinkle areas that were then

adopted as “mask” areas in future work.

In [20], the authors introduce a new and novel approach to the generation of dy-

namic, high resolution wrinkles, on a simulated cloth mesh during run time. The

method works by attaching a higher resolution mesh to the base mesh and allowing

the vertices of the attached, or wrinkle, mesh to deviate from their attached positions

within a constrained range. The shape of the attached mesh is determined using a

static solver, originally described in [21], and the look of the wrinkles can be user

defined and tweaked. This forms an interesting new approach to adding wrinkles to

surfaces in real-time and may be interesting to see if the scheme can be used in order

to create expressive wrinkles for human faces.

2.2 Appearance

Although the main thrust of this thesis was involved in the addition of wrinkles to a

skinned mesh, we were very interested in creating a highly realistic virtual character. In

order to achieve this, some state of the art methodologies in the field of skin rendering

11

were leveraged. In the following section, we will briefly outline the main work upon

which our skin shading implementation is based.

Human skin is a complex surface to render in a perceptually believable manner.

The main source of this difficulty stems from the fact that skin exhibits a property,

as do most non-metallic materials to varying degrees, known as subsurface scattering.

Subsurface scattering is a mechanism of light transport in which light penetrates the

surface of a translucent object, is scattered by interacting with the material, and exits

the surface at a different point. Skin has an added level of complexity in that it is a

heterogeneous material. Heterogeneous materials scatter light differently depending on

the part of the material that they are passing through. Therefore, in the case of skin

a number of light scattering stages must be modelled in order to produce a visually

accurate result.

2.2.1 The BRDF/BSSRDF

The Bidirectional Reflection Distribution Function (BRDF),models the interaction be-

tween light and surfaces. The BRDF describes the ratio of reflectance along the output

vector with respect to the irradiance of the incoming light vector. Common examples

of BRDFs that are used in computer graphics today include the Blinn-Phong specular

model [22], the Gouraud diffuse model [23], and the Oren-Nayar diffuse model [24].

The BSSRDF, or Bidirectional Surface Scattering Reflection Distribution Function,

was introduced by Nicodemus [25] to describe the relationship between the incidence

flux and outgoing radiance at a point on a surface primarily taking into account subsur-

face scattering within the material. The BSSRDF is a generalised form of the BRDF

previously described in that the point of light incidence and radiance can be different.

Mathematically it is described as:

dLo(xo, ~ωo) = S(xi, ~ωi, xo, ~ωo)dΦ(xi, ~ωi) (2.2)

where Lo is the outgoing radiance in the direction ~ωo at the point xo and Φ(xi, ~ωi) is

the incidence flux in the direction ~ωi at the point xi. Resolving the outgoing radiance

involves solving this using a double integral over both surface area A and incoming

12

Figure 2.6: Render of a human head model with a diffuse BRDF (Lambertian).

directions 2π resulting in:

Lo(xo, ~ωo) =

∫
A

∫
2π

S(xi, ~ωi, xo, ~ωo)Li(xi, ~ωi)(~n.~ωi)dωiA(xi) (2.3)

It should also be noted that the BRDF is a special case of the BSSRDF, where the

light enters and exits a surface at the same point. Further details are described by

Jensen et al. [26].

2.2.2 Texture Space/Screen Space Diffusion

Texture space diffusion is a technique first developed by Borshukov and Lewis while

creating the CG footage for the movie ”The Matrix Reloaded” [27]. It primarily works

on the observation that one of the more stand out features of subsurface scattering is

an overall softening or blurring of the object to be rendered. The technique unwraps

the mesh and calculates irradiance in texture space, this texture is then diffused in

texture space using a simple parameterised approximation. The irradiance texture and

13

the diffused texture/s are then combined to form the final result which produces a final

rendering that displays some of the translucency that we associate with skin. This

technique only modelled a dipole approximation of light diffusion, however, and so left

room for considerable improvement.

Figure 2.7: Top: d’Eon and Luebke’s [6] algorithm blurs high-frequency details in texture

space. The image sequence shows the initial rendered irradiance map and two blurred ver-

sions. Bottom: Jimenez et al. [3] screen-space implementation where the blurring is applied

to selected areas directly on the rendered image.

d’Eon and Luebke [6] significantly improved on this technique by developing a multi-

pole diffusion technique, to simulate scattering in multi layered materials. As in [27]

this was achieved through the use of sum of Gaussians approximation, using separable

1D convolutions. The results here produced images comparable in quality to some of

the original offline techniques as described by Donner and Jensen [28] in a real-time

environment. However, this technique does have a number of serious drawbacks not

least that a large part of the algorithm must be performed for each character in the

14

scene.

In more recent research, Jimenez et al. [4] translated the light diffusion from tex-

ture to screen space. By applying the technique in screen space rather than texture

space a number of key optimisations are attained. Firstly, a number of typical GPU

optimisations are reintroduced such as back-face culling and viewport clipping. Sec-

ondly, a large amount of the algorithm only has to be computed once rather than on

a per model basis. These optimisations vastly improved the performance of d’Eon and

Luebke’s technique, while achieving comparable rendering results. Again, they applied

the convolution kernel using the same six 1D Gaussian convolutions as in d’Eon and

Luebke’s research, combining them with a weighted sum in a second pass. A matte

texture is also stored on rendering of models in order to ensure that convolution in

screen space only occurs over the desired regions of the image.

Further research was carried out by Jimenez et al. [4] that further optimised upon

this algorithm and extended the technique to incorporate real-time translucency. In-

corporating translucency was outside the scope of this dissertation.

Figure 2.8: Visual comparison of the texture-space and screen-space rendering pipelines in

order to simulate sub-surface scattering in human skin. We can instantly see the obvious per-

formance benefits associated with the screen-space rather than texture-space implementation.

Diagram from [3]

2.3 Screen Space Ambient Occlusion (SSAO)

Ambient occlusion is a shading method used in 3D computer graphics which helps add

realism to local reflection models by taking into account attenuation of light due to

occlusion. Ambient occlusion attempts to approximate the way light radiates in real

15

life, especially off what are normally considered non-reflective surfaces. Mittring et

al. [29] introduced the idea of screen-space ambient occlusion, a GPU based approach

which approximates the effect in a computationally efficient manner capable of running

in real-time. SSAO was implemented in this project in order to determine the effect it

would have on the overall perceptual realism of the rendered character.

2.4 Real-Time Wrinkles in Video Games

Real-time wrinkles in video games are a very modern development. All of the current

methods used by the video game industry in order to produce this effect are based

upon the texture based approach as pioneered by Oat [11].

Figure 2.9: Real-Time wrinkles as generated by the Crysis engine. Their method only works

when animations are driven through the use of morph targets.

Morph target, or blend shape, animation is a very popular modern animation tech-

nique. A number of expressions for a character model are constructed by artists and

these shapes are then interpolated to create the desired animations. At this point,

we believe that all of the current implementations of real-time wrinkles in current

16

video games rely on this type of animation in order to be rendered rather than more

conventional skinning techniques.

2.5 Summary

This chapter has given an overview of the current state of the art in real-time wrinkles

and described the major concepts and ideas associated with these techniques. A brief

overview of the skin rendering techniques that were implemented as part of this project

was also outlined.

Texture based approaches to rendering real-time wrinkles is a very powerful and

yet very simple concept that has already become popular, and remains an important

area of research in modern video games as the industry strives for ever greater degrees

of realism for virtual characters.

17

Chapter 3

Design

This chapter aims to provide an understanding of how the project was designed and the

tools which were necessary in order to build the system. We also discuss the overriding

identified project requirements, the tools and procedures that were used in order to

generate suitable assets and finally the proposed perceptual evaluation tests.

3.1 Plan

The plan for this dissertation was broken down into three distinct areas, described as

follows:

1. Investigation: A comprehensive literature review was necessary in order to fully

understand the state of the art in the area. In depth investigation into those

techniques that were to be built upon was conducted in order to understand fully

the benefits and drawbacks of these solutions as well as to understand where

improvements could be made. Finally, investigations were carried out to deter-

mine where disparate techniques could be brought together in order to achieve

the desired final result.

2. Implementation: During the build phase, it was necessary to outline all of the

various stages of development of the rendering technique itself as well as all of

the various additional components that would be needed both for user control

over the rendering system and debugging. These were broken up as follows:

18

(a) Camera and camera control system.

(b) Menu system allowing dynamic modification of shader parameters.

(c) A number of solutions were required to be built in order to precompute some

of the textures required for the algorithm to work (e.g. Beckmann specular

map, precomputed skin map, etc.).

(d) Debug viewer allowing intermediate steps in the rendering pipeline to be

visualised.

(e) Benchmarking framework to capture performance data.

3. Validation: Create tests in order to validate both the perceptual advantages of

the technique and overall rendering performance of the implementation.

3.2 Requirements

1. The overriding requirement of this dissertation is to produce a technique capa-

ble of rendering real-time wrinkles on a traditionally skinned mesh both in a

computationally efficient and a perceptually valid manner.

2. The second requirement is to explore the possibility of utilizing the technique

in domains other than facial wrinkles, more specifically the feasibility of the

technique in rendering the small scale wrinkles visible around the clothing near

the articulated joints of virtual characters is to be investigated.

3. The third requirement is to implement a modified screen-space diffusion algorithm

as described by Jimenez et al.[3] in order to render human skin in a perceptually

realistic manner. Optimisations and extensions to the existing technique are also

to be investigated.

4. The final major requirement is to ensure that the algorithm produced runs sat-

isfactorily compared with the existing implementations and if possible to try to

improve upon the existing work in this regard.

19

3.3 Tools & Assets

The algorithm was built using the following combination of programming tools:

• C#

• XNA 4.0

• HLSL

• .X model file

• Visual Studio 10 (2010) development environment

Two three dimensional human character models were provided in a 3ds max model

format for use in this dissertation. The models were provided by Trinity College

Dublin’s GV2 research group. In order to successfully use these assets for the pur-

poses of this project it was first necessary to extract the head portion of the mesh

along with its associated texture assets. It was then necessary to construct a skeleton

for the head and skin the model appropriately. At this point a number of animation

sequences were constructed both in order to allow visualisation of the wrinkles in run-

time and to allow for perception testing. In order achieve these aims the 3ds max

studio tool-set was used.

In order to create the wrinkle maps the deformed head model, that is the model at

it’s most extreme animated positions, were exported to Autodesk’s Mudbox modelling

toolset. In Mudbox the fine wrinkle details were created and the final wrinkle maps

were exported as textures from this program.

It must be noted that this technique relies very heavily on the quality of the under-

lying assets in order to achieve the desired result. A complete set of artist generated

assets would, realistically, be needed for deployment of this technique in an industrial

environment.

3.4 Methodology

A loose agile methodology was used in order to develop the project. Agile development

entails breaking the project up into stages or sprints with a specific time frame. These

20

Figure 3.1: Left: Skinning weights associated with our mesh as authored in 3ds max.

(Weights associated with any one vertex must always add to 1) Right: Wrinkles were authored

using the Mudbox toolset

stages are further broken into individual smaller tasks again with a specific time frame.

This methodology ensures that at the end of each stage a fully working system is in

place upon which to build the next iteration.

3.5 Perceptual Validation

A user study was conducted in order to determine the effect that the addition of fine

details, i.e. wrinkles, that appear and deform with a mesh during animation has to a

viewers perception of the emotional state of the virtual character.

3.5.1 Participants

Six volunteering participants (five male, four female) took part in the experiment, all

of the participant being unaware as to the experiments purpose . All of the subjects

had experience with computer graphics and all reported normal or corrected to normal

vision. The age of the participants ranged from 20 to 32.

21

3.5.2 Stimuli

The test consisted of 48 test stimuli (video clips). Two clips were produced for four

different emotional states (Disgust, Happiness, Anger, Sadness), both with and without

wrinkles and also with different types of skin shader applied. The final video contained

repeated clips and the clip order was randomised. Participants were asked the following:

• Identify the emotional state of the character.

• Rate the intensity of the perceived emotion on a scale of 1 - 7.

22

Chapter 4

Implementation

In this chapter, we give an overview of the main algorithms and techniques that were

implemented as part of this dissertation.

4.1 Overview

We aimed to construct an efficient technique for the display of perceptually realistic

real-time wrinkles on a traditionally skinned mesh. In order to realise this aim some

additional work from other from fields, particularly in the area of skin rendering, was

leveraged. In addition to the construction of the application a number of new opti-

misations were implemented and tested in order to improve the final result. Fig 4.1

shows a high level diagram of our rendering framework.

4.2 Implementation Framework

In order to test, debug and validate the algorithm as well as provide a user interface

that would allow anybody to intuitively work with the system an application framework

was constructed. The various components of this framework are described below.

4.2.1 Menu

A user menu was implemented in order to allow a user to both manipulate individual

shader parameters and switch various features on and off in real-time during application

23

Figure 4.1: High level diagram of our rendering pipeline.

execution. This greatly speeds up the debugging process as various parameter values

can be tested without having to reload the application at each stage.

4.2.2 Camera

A first person camera allows for the free positioning of the camera in the scene. The

camera is primarily designed to be mouse driven with orbiting, panning and zooming

being controlled via the various mouse buttons. The camera can also be manipulated

however following the typical first person gaming conventions; the keys w, s, a, d for

movement and mouse for free looking. The scheme enables the user to view the model

from any point in the scene.

4.2.3 Debug

In order to allow the viewing of intermediate stages of the algorithm, a number of

panels are displayed on the right hand side of the screen. These panels are capable

of displaying all of the textures stored in the various render targets created during a

rendering pass. This feature proves a good tool for debugging purposes and to allow

24

viewers to understand the stages in the compositing of the final image. The images

that are displayed in these panels can be changed via the use interface.

4.3 Motion

4.3.1 Skeletal Pose Evaluation

As mentioned previously, in order for texture based wrinkle approaches to work, a set

of wrinkle weights or coefficients are needed to drive the wrinkle animations. In this

case, these weights are determined by comparing skeleton bone positions at run time

with a set of reference poses.

Figure 4.2: Reference pose models as rendered from 3ds max.

The algorithm that was implemented was closely based on the technique described

by Dutreve et al.[1]. In this implementation, two reference poses were used, representing

the maximum stretch and squash positions of a virtual characters face, for comparison

purposes. At run time, a set of pose influences are calculated for every desired bone

on the CPU. A very important advantage of running comparisons and calculating the

influences sets at the bone level rather than at the pose level is that it allows for the

automatic determination of different areas of interest, assuming the model is skinned

correctly. Multiple reference poses can therefore automatically be composited together

allowing for a greater range of emotional states from a very limited number of poses.

Influence for any arbitrary pose Pk for the bone Bi at any frame f is defined by the

following equation

25

IPk
(Bif) =

0 if ~BiPo = ~BiPk

αifk if 0 ≤ αifk ≤ 1

0 if αifk < 0

1 if αifk > 1

with

αifk = min

(
1,max

(
0,

(~Bif − ~BiPo) · (~BiPk
− ~BiPo)

||(~BiPk
− ~BiPo)||

))
(4.1)

where · represents the dot product and ||..|| represents the Euclidean distance.

This algorithm works through the determination of the size of the segment between

the orthogonal projection of ~Bif onto the segment [~BiPk
, ~BiPo].

This algorithm is run for every desired bone against each of our reference poses. At

this point we are left with a complete set of wrinkle weights which can be passed as an

vector array to the GPU, in order to drive the system.

4.3.2 Wrinkle Masks

Once the wrinkle coefficients have been derived we must use some methodology in order

to associate them with specific areas on the mesh upon which we want the wrinkles to

appear. There are two alternate approaches in this area which one can take, for the

purposes of this dissertation both were implemented and compared with one another

in order to determine relative performance.

Dynamic Masks

The quality of the skinning of the mesh is critical to the success of this technique.

Wrinkles and expressive details are fundamentally related to facial deformations in

that wrinkles form due to facial movement, we can assume that a similar relationship

exists for mesh deformations. Mesh deformation in skinning animation is tied to the

underlying skeletal structure of the mesh and how these bones are then attached to

individual vertices. Assuming the model has been skinned correctly we can associate

26

skinning weights and pose influences using the following equation which calculates

influence of the pose Pk for the vertex vij with skinning weight wij at frame f as

Influence(vjf , Pk) =
n∑
i=1

(λji × θ(IPk
(Bif))) (4.2)

where Influence(vjf , Pk) is clamped to range [0, 1], θ(x) represents a modulation

function and λij = 1 if wij > 0 else λij = 0. This equation was proposed in a more

recent work, again by Dutreve et al.[14], that improves upon the original equation in

that wrinkles become more pronounced during the animation in a way that is coherent

with how real wrinkles appear due to bone deformation on a human face.

Figure 4.3: Visualization of the wrinkle masks generated by our system. Left: Mostly Stretch

influence, bright green indicates full stretch pose inf. Right: Mostly Squash influence.

Modulation Function

The modulation function mentioned above allows us to alter the way in which wrinkles

are blended into the mesh. A simple linear blending, according to bone displacement,

does a reasonably good job of simulating the appearance of wrinkles but through the

use of a simple non-linear modulation function we can generate a more realistic blend-

ing of wrinkles. Dutreve et al.[14] suggested the following modulation function in

order to intensify the blending of wrinkles as bone positions neared their maximum

27

displacements.

θ(x) =
cos(π(1 + x)) + 1

2
(4.3)

while this does provide a subtlety more accurate solution we found that this function

does not fully capture the true nature of how wrinkles appear due to bone displacement.

Through observation, it was noted that the intensity of the appearance of wrinkles has

two separate peaks rather than the one peak simulated by Eqn. 4.3. In order to create

an appropriate quadratic function to represent the curve the Mathematica 8 was used.

A set of data points were selected to approximate the desired curve. Using the inbuilt

Mathematica function FindFit on the dataset, a quadratic formula (equation 4.4) was

produced. This was transcribed in to HLSL and added to the application. We found

that the following equation, which models the two separate peaks, observable in wrinkle

appearance, provided a better overall result.

2.62235x− 4.87773x2 + 3.26168x3 (4.4)

Figure 4.4: Left: Graph of Dutreve et al. modulation function θ(x). Right: Graph plotting

our revised modulation function.

Texture Masks

Another method for associating wrinkles with areas on the mesh is to store areas of

influence in a texture. Each area of influence takes up one color channel per texture,

therefore one texture can define up to four areas of influence. One advantage to using

this technique is that due to it’s simplicity, these masks can easily be authored by

28

an artist in a very timely fashion. If the skinning weights on a mesh do not match

correctly with the desired areas of influence it is a far more time consuming task to fix,

it is also not desirable to alter artist skinning.

In order to cater for the eventuality that skinning weights do not cover the desired

areas, as well as to analyse relative performance, testing was carried out as to whether

we could still used the bone derived weighting coefficients with masking textures and

obtain the desired result. Upon passing the pose influence data to the GPU an extra

channel is set aside to store the bone index, thus these indices can be used in order

to associate weighting coefficients and mask areas. For the face, two separate texture

masks are used to outline eight areas of wrinkle influence.

As mentioned earlier, using this technique means that the artist has more control

over the areas of influence. In addition to this, some redundancy can be removed from

the system. Bones that may be closely related both in position and in their relative

skeletal movements may be grouped together as one using mask areas, this means that

the number of bones that have to be analysed in order to achieve the desired result is

reduced.

One major drawback, however, is the need for a certain amount of hard coding on

both the application and GPU side. Bones must be explicitly associated with mask

areas, which is not ideal.

4.3.3 Wrinkle Map Blending

Now that the information required for blending in our wrinkle maps has been obtained,

we must have some way of associating these weights with the wrinkle maps and blending

these maps with the mesh’s underlying normal map.

The base normal map of any character mesh often encodes many important fine

details such as pores, scars, blemishes, etc. In the blending of our normal maps, we do

not want any of this data to be lost. For this reason, a simple blending of maps is not

suitable as this would result in an overall loss of surface detail. In order to prevent this

from happening, we blend the maps in the following fashion:

~n = normalize(~w0.xy + ...+ ~wn.xy +~b.xy, ~w0.z × ...× ~wn.z ×~b.z) (4.5)

where ~n is the final normal, [~wo, ..., ~wn] represents the associated wrinkle maps and

29

finally ~b is the models base normal map. This works as the direction of a bump in

a normal map is entirely encoded in the x and y components, a straight blending for

these components gives us the correct new bump direction. The magnitude of the

bump is stored in the z component and the lower the value of z, the greater the bump

magnitude. A simple blending here would lead to an overall “flattening out” of the

bump, through the use of a multiplication here we decrease the z component and end

up with a result that retains the surface detail in the fashion desired.

Figure 4.5: Left: Effect with and without real-time wrinkles, displayed using a simple

Lambertian reflectance model.

Partial Derivative Normal Maps

While the above methodology worked quite well, in the work outlined by Oat et al.[7] an

alternate scheme was put forward that provided better quality wrinkles and better over-

all performance. Partial Derivative Normal Maps (PDN), first proposed by Acton[30],

provide a way to improve performance by having fewer instructions required in order

to reconstruct the normal vector. PDN maps were computed from tangent space nor-

mal maps using a simple pixel shader. Conversion is performed through the use of the

following functions:

n′x =
nx
nz

n′y =
ny
nz

At runtime, reconstruction of a single partial-derivative normal n′ to a tangent-

space normal n̂ is completed as follows:

30

n = (n′x, n
′
y, 1),

n̂ =
n

||n||

At this point, blending of the various maps (base, stretch and squash in our case)

consists of summing their x and y components followed by a normalization step.

Figure 4.6: Right: Tangent-space normal map. Left: Partial derivative normal map

4.3.4 Beyond Facial Wrinkles

We were interested to determine if we could extend our technique to other domains than

simply facial wrinkles. One area that stood out as an obvious candidate was virtual

character clothing. Oat [2] describes a technique for generating such wrinkles. His

technique derives wrinkle weights through the examination of triangle deformation post

and pre skinning, calculated using a DirectX 10 geometry shader. This technique was

not suitable for our implementation, as our chosen application framework only contains

support for shader models 1.0 through 3.0. As geometry shaders were introduced with

shader model 4.0 they could not be utilized as part of this dissertation. A scheme

that derived wrinkle weights through the use of bone positions similar to our facial

wrinkling technique was desired.

On examining the problem, an immediate observation was the fact that articulated

joints on human virtual characters come in two distinct varieties; the hinge joint and

31

the ball and socket joint. Each joint type requires a different solution in order to derive

effective blend weights.

Hinge Joint

The hinge joint is a type of synovial joint in the human body, it is also the simplest of

it’s class in terms of range of movement. The major hinge joints in the human body

are the knee and elbow joints.

The hinge joint proves an easy case to solve for as it has a very restricted range of

movement, being essentially 2D in nature. Hinge joints rotate on a single plane and

within a β to 180 ◦ range where β ◦ represents the joints minimum angle of extension.

Maximum wrinkling should occur as the angle between the two bones approaches β.

The following simple equation determines the influence weight, αij, for the hinge

joint involving the bones Bi and Bj and maps the result to the (0, 1) range:

αij = min

(
1− (~Bi · ~Bj)

1− cos(π − β)
, 1

)
(4.6)

where ~Bi and ~Bj are the normalized directions of the bones at the joint.

Wrinkles at hinge joints appear on both the inner and the outer side of the joint.

As the joint extends, the wrinkles on the outer side of the joint become more visible

and those on inner side become less so. In order to achieve this effect we simply use

1− αij as a wrinkle coefficient for the inner side of the joint.

Now that we have derived wrinkle coefficients, we must associate them with areas

on the mesh. The texture mask technique described in Section 4.3.4 is used in order

to accomplish this. Skinning weights are not useful in this case as these longer bones

(forearm, calf, thigh, etc.) are associated with far larger areas on the mesh than those

upon which we require wrinkles to appear.

Ball & Socket Joint

The other type of joint we solve for is the ball and socket joint, i.e. the pelvis, shoulder,

etc. This type of joint prove a more challenging task to derive wrinkle weights for, as

the range of movement is far more extensive than that of simple 2D joints, such as the

hinge joint.

32

Our solution breaks the rotation into two separate rotations. If one takes the case

of the pelvis, we need to know how far the spine has bent and in which direction.

Determining how far the spine has bent is a simple task, we use the formula as seen

above, (Eqn. 4.6), to determine joint rotation. To derive a metric for the direction of

rotation we take the position of the spine bone and project it into a plane perpendicular

to the pelvis. A rotation weight, φ, is then derived from the dot product of the spine

direction and the forward vector of the pelvis. The degree to which the spine is bent is

used as the wrinkle coefficient, however, it still must be associated with an area on the

mesh. In order to determine this area we use φ in conjunction with the spine bone’s

position.

The texture masking technique is again used. In this case, the texture contains four

channels representing the front, back, left and right areas of the waist, with a good

degree of overlap in this case to facilitate the animation. We derive our final wrinkle

blend value, α, using the following values:

α =

mf × w if φ > 0.75

mb × w if φ < −0.75

ml × w if φ > −0.75 && φ < 0.75 && γ < 0

mr × w if φ > −0.75 && φ < 0.75 && γ > 0

where mf , mb, ml and mr are the masking channel values, w is the weighting

coefficient value and γ represents the x co-ordinate value of the spine bones position

on the projected plane with respect to the pelvis (the forward vector of the pelvis

representing the z-axis).

It is worthy of note that the same technique, used here for ball and socket joints,

can be used to add wrinkles to pivot, saddle and condyloid joints without any changes,

other than the adjustment of threshold parameters.

The technique as described provides a robust general solution to add realistic wrin-

kles to hinge joints. The solution provided for ball and socket joints is not as general-

izable and while still an effective technique, requires a degree of manual adjustment in

order to achieve the desired result.

33

Figure 4.7: Screen capture of wrinkles around hinge joints (knees) and a ball and socket
joint (waist) rendered on a virtual character.

4.4 Appearance

Our technique at this point allowed for some very convincing wrinkle effects. A stated

goal, however, was to create a technique capable of rendering perceptually realistic

wrinkles on virtual characters. To achieve this end, a skin rendering technique as well

as ambient occlusion was implemented in order to achieve a more realistic final result.

The implementation of these elements will be outlined briefly in the following section.

4.4.1 Skin Rendering

The skin rendering technique implemented as part of this dissertation follows method

as described by Jimenez et al. [3] quite closely, with only minor changes. The technique

can be broken down into the following stages:

1. Render Shadow Maps

34

2. Render Scene & Specular Map

3. Run Convolution Passes

4. Combine Results

5. Bloom

Shadow Maps

If using point lights, the scene’s depth map is rendered from the perspective of each

light in the scene. If using directional lights only, then the depth is rendered from the

camera’s perspective only. It is critical that depth maps be stored in a linear fashion

so that they can be used to perform kernel correction later in the pipeline, this can be

easily achieved by diving the depth’s output z value by the far clipping plane distance.

The depth maps are also used to perform the ambient occlusion pass which will be

described in further detail in the next section.

Render Scene & Specular Map

Multiple render targets are used to capture the scenes lighting. The first pass calculates

all incoming light, excluding specular, and renders the scene. This forms the base image

that will be convolved in the next phase as well as the final combination pass.

The Phong specular model [31] is by far the most widely used model in modern

graphics applications, however, we improve upon this through the use the Kelemen/Szirmay-

Kalos specular model [32]. The technique approximates the physically based Tor-

rance/Sparrow model [33] through the use of a precomputed texture, representing the

Beckmann distribution function. It then uses the Schlick/Fresnel approximation [34]

in order to calculate the specular BRDF in a real-time, inexpensive manner.

Convolution

This stage approximates the multi-pole diffusion profile of skin through the use of a

sum-of-Gaussians approach. A diffusion profile, in this context, provides an approx-

imation of how light scatters upon entering a highly scattering material, in our case

human skin. Light, upon entering skin, is scattered in a highly isotropic fashion [28].

35

The diffusion profile allows us to model how light emerges from a material as a function

of the distance from the point at which the light enters the material. Scattering is also

highly color dependant, with red light scattering much further than green and blue

light.

d’Eon et al. [6] found that six Gaussians were needed to match were needed to

accurately match the three-layer model for skin described by Donner [28]. For this

screen-space implementation we convolve the image using the same six Gaussians as

d’Eon et al., see Fig. 4.8.

As we are working in screen space the size of the convolution kernel must be mod-

ulated with regard to depth and gradient. The deeper the pixel is in the image or the

greater the the gradient in the depth map, the narrower the kernel should be. The

following simple formulas, introduced by Jimenez et al. [3], caters for both of the these

situations:

sx =
α

d(x, y) + β · abs(∇xd(x, y))
, sy =

α

d(x, y) + β · abs(∇xd(x, y))
(4.7)

where d(x, y) is the depth of the pixel in the depth map, α indicates the global

subsurface scattering level in the image, and β modulates how this subsurface scattering

varies with depth gradient. The operators ∇x and ∇y compute the depth gradient,

and are implemented on the GPU using the functions ddx and ddy, respectively.

Figure 4.8: Sum-of-Gaussians Parameters for Three-Layer Skin Model.

36

Combine

At this point the convolved images are now combined to simulate the sub-surface

scattering effect. Each of the convolved scenes had an associated variance, that is the

size of the Gaussian kernel used in the convolution. These images are then multiplied

by the RGB profiles outlined in Fig. 4.8 depending on their associated variance and are

linearly summed. At this stage the result is combined with the previously calculated

specular component.

Bloom

The final stage in the skin rendering process is the bloom filter. The bloom filter first

applies a threshold to the scene image to extract bright colours. The extracted image

is then convolved using two separable 1D Gaussian convolution kernels. Finally, the

images are composited to extract the final result.

Figure 4.9: Character as rendered using our skin rendering implementation.

37

4.5 Summary

This chapter presents a practical, real-time technique to add wrinkles to a traditionally

animated virtual character as well as the fundamentals of the appearance enhancing

techniques used.

The benefits of bone based wrinkle coefficient derivation can be combined with

masking techniques in order to drive the system, which may prove a more attractive

solution to potential users due to the increased level of artist control.

Bones provide a powerful tool in the generation of meaningful wrinkle coefficients

due to their inherent relationship to the underlying mesh. It is demonstrated that

techniques, similar to that used for facial wrinkles, are capable of being utilized in

other domains with minimal changes.

38

Chapter 5

Evaluation

In this section we will present the results and findings of our evaluation procedure.

The algorithm is evaluated from both a performance and perceptual standpoint.

5.1 Performance Evaluation

Carrying out a technical evaluation is an important task for any new piece of software.

It allows developers to identify bottlenecks and other performance issues that may exist

within a system. It can also prove a useful tool in identifying areas where there is room

for fundamental improvement and optimisation. All performance evaluation tests were

carried out on a machine with an Intel Xeon 2.67 GHz processor, an Nvidia GeForce

GTX 560 Ti GPU and 4.00 GB DDR2 RAM.

5.1.1 Facial Wrinkles

Table 5.1 details the performance benchmarks of the facial wrinkles application, in

frames per second (FPS). The data was obtained through the rendering of a scene using

three directional light sources, a depth map resolution of 512 x 512, 3080 triangles per

head and the final image being rendered at a resolution of 1280x800. The test consisted

of rotating an animated head around the Y axis at a constant rate. The tests were run

for 60 seconds and the frame rate sampled.

As we can see from the results in table 5.1, the addition of the wrinkles themselves

is extremely fast, reducing overall performance by only 2.8% in our setup. Our use

39

Run Test Parameters FPS
1 Basic Diffuse Lighting & No Wrinkles 2942
2 Basic Diffuse Lighting & Wrinkles (Skinning Weights) 2860
3 Basic Diffuse Lighting & Wrinkles (Texture Masks) 2843
4 Basic Diffuse Lighting & Wrinkles & 1 Depth Pass 2694
5 Basic Diffuse Lighting & Wrinkles & 2 Depth Passes 2476
6 BSSRDF Lighting & Wrinkles 490
7 BSSRDF Lighting & Wrinkles $ SSAO 308

Table 5.1: Performance, in frames per second, of various configurations of the facial
wrinkles algorithm.

of a number of early out clauses in the vertex shader together with the use of partial

derivative normal maps did not even register on our test rig. They did however show

a very small increase in performance in a much lower specification test machine. With

this said, however, we are only rendering one model with a limited number of bones

in a simple scene, these performance optimisations could prove very beneficial when

rendering more complex scenes.

We can also see that the use of dynamic masks slightly outperforms the texture

mask implementation. Though for our application this proved to be the case, one big

advantage the texture masking approach has over using skinning weights is that it can

be used to group bones together. If optimisations are implemented in this area, then

as the number of bones scales upward this observed performance relationship would

likely be reversed.

In attempting to benchmark the calculation of pose influences, carried out on the

CPU, the performance impact proved negligible to the point that it could not be

measured on our test rig using a single character. This proved a surprising result,

and demonstrates the fact that bone-based wrinkle coefficient derivation is a viable

alternative to triangle analysis. Thus, the method shows it is capability of being used

as part of a technique to display wrinkles in a modern real-time application.

Looking again at the performance data we can see that the main cost of the al-

gorithm is in computing the BSSRDF. This is to be expected as a large number of

passes must be completed (six to twelve 1-D blur passes, one combination pass) in

order to compute the final lighting model. Performance can improved at this phase

40

Figure 5.1: Graph modelling performance with increasing scene complexity.

through limiting the resolution of the render targets, however this does lead to a slight

degradation of final image quality.

Finally, we examine how performance scales with increasing scene complexity (see

Fig. 5.1). In order to perform this test a scene was rendered with increasing numbers

of virtual characters displayed on-screen (1 head, 10 heads, 100 heads). For each

case, the scene was rendered once with wrinkles only and once with the screen-space

BSSRDF simulation and wrinkles. The tests were run for 60 seconds and the frame rate

sampled. Taking the case where we are not using the skin shading model, we observe

a near linear degradation (in fact it performs slightly better than this) in performance

with increasing scene complexity. This observed On type behaviour that our algorithm

exhibits is a desirable result and indicates that the algorithm does not have any major

flaws in its design.

With the addition of the skin shading lighting model to the equation, we can clearly

see the benefits of using Jimenez et al.’s screen-space skin rendering technique [3] over

it’s earlier texture space counterparts [27, 6]. As only one portion of the algorithm

is required to be performed for every model in the scene, the performance impact of

increasing scene complexity is minimised. In our test, the frame rate drops by 66% for

41

the rendering of 100 animated heads over just a single head.

5.1.2 Clothing Wrinkles

Table 5.1 details the performance benchmarks of the joint wrinkles application. The

data was obtained through the rendering of a scene using three directional light sources,

8290 triangles per character and the final image being rendered at a resolution of

1280x800. The test conditions were identical to those outlined for the facial wrinkles

performance test.

Run Test Parameters FPS
1 Render Scene 3777
2 Render Scene with Joint Wrinkles (2 Hinge, 1 Ball & Socket) 3771
3 Render Scene with Joint Wrinkles (100 Hinge, 50 Ball & Socket) 3702

Table 5.2: Performance, in frames per second, of the joint evaluation algorithm.

We can see that the performance impact of joint wrinkle weight evaluation for a

single character with two hinge joints and a single ball and socket joint is 0.16%. In

order to see how the algorithm would scale we ran the test again for a single charac-

ter with one hundred hinge joints and fifty ball & socket joints, under this scenario

performance impact figure rises to 1.99%

From these figures, it is reasonable to infer that the algorithm is more than suitable

to be incorporated in to a real-time application with little or no modification from a

performance standpoint.

5.2 Perceptual Evaluation

For the purposes of our perceptual evaluation, a simple test was designed in order to

determine the following:

• If emotional content, simulated in virtual characters, can be better portrayed

through the addition of expressive real-time wrinkles.

• Can this be further improved through the use of a realistic skin shading model.

42

A video was created containing forty eight, ten second, individual clips. The video

was shown to a representative group of users who were asked to answer a number of

questions based on the clips shown in the video.

In each clip a virtual character emotes happiness, anger, sadness or disgust. Taking

into account that we need to determine both the effects of wrinkles and a realistic skin

shading model, there exists a total of sixteen permutations. Each of these permutations

has an associated clip and is displayed at least twice in the video. Users were asked to

watch the video and perform the following tasks:

• Identify the virtual characters current emotional state.

• Rate the intensity of that emotion on a scale of 1 to 7. (1 := Almost no emotional

intensity perceived; 7 := Very strong emotional intensity perceived)

As we can see from the results (Fig 5.2, Fig. 5.3) the addition of wrinkles to

the character does appear to have an impact on user perception. The addition of

wrinkles consistently, across every emotion, lead to an increase in reported intensity.

The total average disparity in expressiveness averaged 1.3 points higher with wrinkles

than without, without factoring in categorical recognition errors.

This disparity varies quite widely across the emotions. The sadness animation

only displays quite subtle wrinkles, interestingly this is the emotion that had the least

average increase in reported expressiveness through the addition of wrinkles. We must

consider that the emotions being conveyed by the character are exaggerated expressions

and so a high reported degree of expressiveness would be expected. With that said the

18.6% reported increase in expressiveness through the introduction of wrinkles would

seem to be significant.

One other feature that became apparent, was that the addition of expressive wrin-

kles does not appear to have any impact on the categorical recognition of a virtual

character’s emotional state. Viewers made errors in categorical recognition with a sim-

ilar frequency, regardless of the presence of wrinkles or not. Categorical recognition

error averaged at 13% with anger and disgust the most frequently misjudged. This

finding would appear to ally with the findings of Courgeon et al. [35], though similarly

to that study we can not conclude with any certainty that wrinkles have no effect on

categorical recognition due to the limitations of our test.

43

Figure 5.2: Graph modelling average user response to observed emotion under various shader

permutations. All answers considered.

Figure 5.3: Graph modelling average user response to observed emotion under various shader

permutations. Answers considered only on correct categorical recognition.

44

The addition of a skin shader does not seem to offer any additional benefit in terms

of user perception. This is not completely surprising, however, as it has been observed

that visual realism is not the most important aspect in conveying expression in virtual

characters [36, 37].

Improvements

A number of key changes and extensions could be made to enhance the results of future

perception tests in this area:

• Only a male character was used, for a more complete test a female character

could also be displayed.

• Characters of various ages should be used, as age plays a key role in the appear-

ance of wrinkles.

• We show only one emotion at a time. This does not truly capture how people

emote in real scenarios. Through the use of motion capture technology one could

capture true data in order to drive the character animations. The use of this

kind of data could not only provide more realistic animations, allowing viewers

to better connect with the observed character, but could also allow the capture

of scripted scenes where the character emotes during the course of, for example,

a real conversation.

• A larger sample size of test participants.

We would suggest that the enhanced data that these changes could provide would

lead to better insight into the true effect that the addition of wrinkles has from a

perceptual standpoint.

45

Chapter 6

Conclusions

We have implemented a technique that renders real-time wrinkles on a traditionally an-

imated mesh utilizing additional data readily available from the model being rendered

(i.e., the current positional data of the underlying skeletal structure).

As shown in Chapter 5, bone-based wrinkle weight derivation is very fast. Both

facial pose evaluation and joint evaluation have a very minor performance impacts.

Initially it was feared that, as an additional loop was required to be performed in

the vertex shader for every bone to be examined for wrinkles, the performance of the

algorithm would become prohibitive as it scale. This did not turn out to be the case,

however, and the performance benefit of a number of early out clauses could only barely

be measured. Overall, this proves that the technique is quite capable of being inserted

into a modern, real-time application.

As an alternative to the use of skinning weights to create areas of influence for wrin-

kles, texture masking can be combined with bone-based weight derivation. This allows

artists more complete control over the effect and can be used to reduce redundancy in

the system.

We have demonstrated that the technique is capable of being used in disparate do-

mains, through the use of a similar technique to render wrinkles around the articulated

joints of virtual characters. This shows that at it’s core, our technique provides an

adjustable, extensible methodology to apply real-time wrinkles to an animated mesh

in a variety of domains.

46

6.1 Summary

The main goals of this thesis, as set out in Chapter 1, have been achieved. A method

has been outlined that can add emotional information, through the addition of facial

wrinkles and furrows, to virtual characters animated using matrix palette skinning.

We show that, with little modification, our technique can be used in other domains

than simply facial wrinkles. We further show that the benefits of bone-based wrinkle

coefficient derivation and the texture masking technique described by Oat [2] can be

brought together to provide a potentially attractive solution.

6.2 Future Work

We set out potential further improvements and extensions that could be made to the

technique.

6.2.1 Tessellation

With the introduction of Microsoft Direct3D 11 [38, 39] tessellation is now universally

supported across all hardware platforms designed for this generation and has become

a huge area of innovation in modern real-time graphics.

At it’s simplest, tessellation involves dicing a polygon into a number of smaller

polygons. On it’s own, this may not seem like a particularly powerful concept but

when combined with displacement mapping the possibilities open up rather quickly.

A displacement map is a texture that stores height information for a model. When

applied to a surface, the mesh’s vertices are displaced up or down based on the height

information in the map. Displacement mapping has been around for a long time but

has never really caught on, for the simple reason that in order for it to be effective, the

number of polygons that a mesh would have to contain would prove prohibitive. With

the advent of hardware tessellation this problem has been largely overcome.

One significant problem when using normal mapping is that the model’s underlying

silhouette is not changed by the technique. Normal mapping creates only the illusion

of “bumpy” surfaces, and is only truly partially successful in this. Through the use of

displacement mapping and hardware tessellation in the place of normal mapping, the

47

Figure 6.1: Images rendered of sphere using texture mapping, normal mapping and displace-

ment mapping

actual desired geometry can be displayed in real-time.

Our technique could certainly be extended through the use of tessellation to achieve

a more realistic final result. It may even be possible to re-examine some of the length

preserving techniques mentioned earlier, section 2.1.5, as a genuine solution to achieving

realistic real-time wrinkles.

6.2.2 Generalisation

As discussed in Section 4.3.4, our solution for ball and socket joints requires a certain

amount of user tuning for it to be successfully applied to a mesh. We believe that there

is a potential solution to the problem.

Our implementation utilizes static masks, stored as textures, to define areas of

influence on the mesh upon which wrinkles occur. With some careful setup, it may be

possible to move these mask areas in real-time, based upon joint orientation. Offsetting

of this sort is a simple operation to perform from a technical standpoint and may

provide a smoother, more convincing result.

The drawback here is that texture assets would have to be set up in a very specific

way. Generally speaking, areas that may be close to each other in 3D space may be

entirely disconnected in texture space. For any kind of mask offsetting solution to

work, texture masks would likely be required to be authored so that joint masking

areas remain close in both texture space and 3D space.

48

6.2.3 Incongruent Areas of Influence

As frequently mentioned, the quality of assets is critical to achieving the desired result.

Currently, if using two or more wrinkle maps that cover multiple areas of influence,

it is essential that wrinkle maps are set up so that they complement each other. One

issue that can arise if this is not the case is that, as bones move in opposite directions,

incongruent wrinkle areas can appear on the mesh. Looking at the image in Fig. 6.2,

we can observe this happening. This is a particularly extreme case, but demonstrates

the possible issues that could arise.

Figure 6.2: Wrinkle map incongruence due to facial bones moving in opposite directions.

It should be possible to solve this problem even in the case of uncomplimentary

wrinkle maps. One possible solution to this problem would be to compare adjacent

bones and ensure that if they are moving in opposite directions that only one wrinkle

map is sampled (i.e., the map associated with the bone who’s relative movement is

greater).

49

This solution has some major issues however. Firstly, there will still be an obvious

seam where the weight of the wrinkles drops from one area to another. Secondly, the

wrinkles that are formed, while providing a far better result than those in Fig. 6.2, may

not provide perceptually believable wrinkles. Finally, another degree of complexity is

added, which is never desirable.

Overall, it is far better to ensure that the initial, artist authored, wrinkle maps

complement each other so as to avoid this issue completely.

50

Appendix - Perception Test Form

51

Appendix - Perception Test Results

52

Bibliography

[1] Ludovic Dutreve, Alexandre Meyer, and Sada Bouakaz. Real-time dynamic wrin-

kles of face for animated skinned mesh. In Proceedings of the 5th International

Symposium on Advances in Visual Computing: Part II, ISVC ’09, pages 25–34,

Berlin, Heidelberg, 2009. Springer-Verlag.

[2] Christopher Oat. Real-time wrinkles. In Course 28: Advanced Real-Time Ren-

dering in 3D Graphics and Games, SIGGRAPH ’07, New York, NY, USA, 2007.

ACM.

[3] Jorge Jimenez, Veronica Sundstedt, and Diego Gutierrez. Screen-space perceptual

rendering of human skin. ACM Transactions on Applied Perception, 6:23:1–23:15,

October 2009.

[4] Jorge Jimenez, David Whelan, Veronica Sundstedt, and Diego Gutierrez. Real-

time realistic skin translucency. IEEE Computer Graphics and Applications,

30(4):32–41, 2010.

[5] Eric Penner and George Borshukov. GPU Pro 2, chapter Pre-Integrated Skin

Shading. AK Peters Ltd., 2011.

[6] Eugene d’Eon, David Luebke, and Eric Enderton. A system for efficient rendering

of human skin. In ACM SIGGRAPH 2007 sketches, SIGGRAPH ’07, New York,

NY, USA, 2007. ACM.

[7] Jorge Jimenez, Jose I. Echevarria, Christopher Oat, and Diego Gutierrez. GPU

Pro 2, chapter Practical and Realistic Facial Wrinkles Animation. AK Peters Ltd.,

2011.

53

[8] Jun’ichiro Seyama and Ruth S. Nagayama. The uncanny valley: Effect of realism

on the impression of artificial human faces. Presence: Teleoperators and Virtual

Environments, 16:337–351, August 2007.

[9] Microsoft DirectX 10 SDK Team. Sparse morph targets sample, 2007.

[10] Guillaume B. Duchenne. De l’lectrisation localise et de son application a la patholo-

gie et a la thrapeutique. 1855.

[11] Christopher Oat. Animated wrinkle maps. In ACM SIGGRAPH 2007 courses,

SIGGRAPH ’07, pages 33–37, New York, NY, USA, 2007. ACM.

[12] James F. Blinn. Simulation of wrinkled surfaces. SIGGRAPH Computer Graphics,

12:286–292, August 1978.

[13] Clausius Duque, G. Reis, Jos Mario, De Martino, and Harlen Costa Batagelo.

Real-time simulation of wrinkles.

[14] Ludovic Dutreve, Alexandre Meyer, and Sada Bouakaz. Easy acquisition and real-

time animation of facial wrinkles. Compututer Animation and Virtual Worlds,

22:169–176, April 2011.

[15] Natalya Tatarchuk. Dynamic parallax occlusion mapping with approximate soft

shadows. In Proceedings of the 2006 symposium on Interactive 3D graphics and

games, I3D ’06, pages 63–69, New York, NY, USA, 2006. ACM.

[16] Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba. Real-time relief

mapping on arbitrary polygonal surfaces. In ACM SIGGRAPH 2005 Papers,

SIGGRAPH ’05, pages 935–935, New York, NY, USA, 2005. ACM.

[17] Caroline Larboulette and Marie-Paule Cani. Real-time dynamic wrinkles. In

Proceedings of the Computer Graphics International, pages 522–525, Washington,

DC, USA, 2004. IEEE Computer Society.

[18] Ming Li, BaoCai Yin, DeHui Kong, and XiaoNan Luo. Modeling expressive wrin-

kles of face for animation. In Proceedings of the Fourth International Conference

on Image and Graphics, ICIG ’07, pages 874–879, Washington, DC, USA, 2007.

IEEE Computer Society.

54

[19] Yu Wang A, Charlie C. L. Wang B, and Matthew M. F. Yuen A. Fast energy-based

surface wrinkle modeling.

[20] Matthias Müller and Nuttapong Chentanez. Wrinkle meshes. In Proceedings of

the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,

SCA ’10, pages 85–92, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics

Association.

[21] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position

based dynamics. Journal of Visual Communication and Image Representation,

18:109–118, April 2007.

[22] James F. Blinn. Models of light reflection for computer synthesized pictures.

SIGGRAPH Computer Graphics, 11:192–198, July 1977.

[23] Henri Gouraud. Continuous shading of curved surfaces, pages 87–93. ACM, New

York, NY, USA, 1998.

[24] Michael Oren and Shree K. Nayar. Generalization of the lambertian model and im-

plications for machine vision. International Journal of Computer Vision, 14:227–

251, April 1995.

[25] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.

Radiometry. chapter Geometrical considerations and nomenclature for reflectance,

pages 94–145. Jones and Bartlett Publishers, Inc., , USA, 1992.

[26] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan.

A practical model for subsurface light transport. In Proceedings of the 28th an-

nual conference on Computer graphics and interactive techniques, SIGGRAPH

’01, pages 511–518, New York, NY, USA, 2001. ACM.

[27] George Borshukov and J. P. Lewis. Realistic human face rendering for ”the matrix

reloaded”. In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, New York, NY,

USA, 2005. ACM.

[28] Craig Donner and Henrik Wann Jensen. Light diffusion in multi-layered translu-

cent materials. ACM Transactions on Graphics., 24:1032–1039, July 2005.

55

[29] Martin Mittring. Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007

courses, SIGGRAPH ’07, pages 97–121, New York, NY, USA, 2007. ACM.

[30] Mike Acton. Ratchet and Clank Future: Tools of Destruction Technical Debriefing.

2008.

[31] Bui Tuong Phong. Illumination for computer generated pictures. Communications

of the ACM, 18:311–317, June 1975.

[32] Csaba Kelemen, Laszlo Szirmay-Kalos, and Lszl Szirmay-kalos. A microfacet based

coupled specular-matte brdf model with importance sampling, 2001.

[33] Kenneth E. Torrance and Ephraim M. Sparrow. Radiometry. chapter Theory for

off-specular reflection from roughened surfaces, pages 32–41. Jones and Bartlett

Publishers, Inc., , USA, 1992.

[34] Christophe Schlick. An inexpensive brdf model for physically-based rendering.

Computer Graphics Forum, 13:233–246, 1994.

[35] Matthieu Courgeon, Stéphanie Buisine, and Jean-Claude Martin. Impact of ex-

pressive wrinkles on perception of a virtual character’s facial expressions of emo-

tions. In Proceedings of the 9th International Conference on Intelligent Virtual

Agents, IVA ’09, pages 201–214, Berlin, Heidelberg, 2009. Springer-Verlag.

[36] Maia Garau, Mel Slater, Vinoba Vinayagamoorthy, Andrea Brogni, Anthony

Steed, and M. Angela Sasse. The impact of avatar realism and eye gaze control on

perceived quality of communication in a shared immersive virtual environment. In

Proceedings of the SIGCHI conference on Human factors in computing systems,

CHI ’03, pages 529–536, New York, NY, USA, 2003. ACM.

[37] Vinoba Vinayagamoorthy, Anthony Steed, and Mel Slater. Building Characters:

Lessons Drawn from Virtual Environments, pages 119–126. Cognitive Science

Society, 2005.

[38] Allison. Klein. Introduction to the direct3d 11 graphics pipeline. In Gamefest

2008, 2008.

[39] Kevin Gee. Direct3d 11 tessellation. In Gamefest 2008, 2008.

56

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Goals
	Dissertation Outline

	Chapter Background and Related Work
	Motion
	Wrinkle Maps
	Wrinkle Masks
	Dynamic Wrinkle Weights
	Beyond Normal Maps
	Alternate Wrinkle Methodologies

	Appearance
	The BRDF/BSSRDF
	Texture Space/Screen Space Diffusion

	Screen Space Ambient Occlusion (SSAO)
	Real-Time Wrinkles in Video Games
	Summary

	Chapter Design
	Plan
	Requirements
	Tools & Assets
	Methodology
	Perceptual Validation
	Participants
	Stimuli

	Chapter Implementation
	Overview
	Implementation Framework
	Menu
	Camera
	Debug

	Motion
	Skeletal Pose Evaluation
	Wrinkle Masks
	Wrinkle Map Blending
	Beyond Facial Wrinkles

	Appearance
	Skin Rendering

	Summary

	Chapter Evaluation
	Performance Evaluation
	Facial Wrinkles
	Clothing Wrinkles

	Perceptual Evaluation

	Chapter Conclusions
	Summary
	Future Work
	Tessellation
	Generalisation
	Incongruent Areas of Influence

	Appendices
	Bibliography

