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Animating realistic human motions plays an important role in the game and movie

industries. Motion capture provides a reliable way for acquiring realistic motions.

However, motion capture data has proven to be difficult to modify, which limits the

utility of motion capture in practice. We propose to investigate ways for making the

motion capture data reusable so that new motions can be generated.

This paper provides a motion graph based system for synthesizing realistic motions.

The motion graph is a directed graph where edges are pieces of motions and nodes

are points for joining edges. First of all, various motions are chosen from the motion

capture database as the input. Then a motion graph is constructed by splitting original

motion streams and building transitions between similar poses. Similar poses are found

by evaluating similarity metric. Transitions, which are also motion clips, are made

by linearly interpolating original motion pieces. Finally, a branch and bound search
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algorithm is applied to extract an optimal “GraphWalk” satisfying user requirements.

We show the practical application of this system to path synthesis, which is to

generate new motions along paths. Also, we show the interactive control over the

motions with the help of graphical user interface, including changing motions between

different types, drawing paths and setting directions for the character to follow.
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Chapter 1

Introduction

Character animation has gained its weight in today’s game and movie industries, among

which human animation is the most challenging task because of its complex motions

and emotions. From the primitive key-framing animation, developers have introduced

many ways trying to create realistic human motions. Recently, motion capture has

proven to be a reliable way to accomplish this task. With multiple sensors attached

at certain places on an actual human body, it captures the real motion data and then

translates the data onto a digital model for reconstruction. Motion capture is now

popularly used by game developers and movie producers.

However, motion capture is limited in more common applications, as the data has

proven to be difficult to modify and editing techniques only apply small reliable changes

to a motion. Imagine that if the motion capture database can not provide sufficient

similar motions required by users, then there is no choice but to capture more data.

The motion capture is a complex and time consuming process, and its devices may

not be available. Motion synthesis is then developed to make the motion capture

data reusable by generating new motions. Also it enables the dynamic synthesis of

motions and the interactive control of three-dimensional avatars. Due to these features,

motion synthesis is now a popular technique for human animation in game and movie

industries.

One goal of motion synthesis is to generate new motions desired in practical ap-

plications while retaining the realism of motion capture. Motion graphs built from

motion capture data have emerged as a promising technique, in that it can generate
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long motions while preserving the original motion data as much as possible.

The motion graph is a directed graph that contains edges and nodes. Edges present

motion clips both from original motion data and transitions that are automatically

created by linearly interpolating original similar motions. Nodes are the points joining

relative edges. This simple graph structure allows editing original motion streams

by splitting them, inserting nodes, and then creating transitions between the newly

inserted nodes. In order to generate new motions, a GraphWalk is performed by

traversing the graph, appending one edge after another. Therefore, motions can be as

long as possible, and also can be whatever we want as long as sufficient original data

is provided.

To generate good quality motions, the motion graphs should be with good quality,

which indicates good connectivity and smooth transitions. A well connected motion

graph requires as many transitions as possible, to ensure more choices when searching

the graph for desired motions. Nonetheless, keeping the smoothness of transitions

may exclude certain number of potential transitions. Balancing these two criteria has

proven to be difficult according to current research.

1.1 Goal

The objective of our project is to synthesize realistic human motions using motion

graphs. Mainly, we try to accomplish three tasks. The first is to obtain the original

motion data from the database which is stored in BVH files. The .bvh is a file format

that records the skeleton hierarchy information and the motion data. It represents a

skeletal human body and a motion clip with certain number of frames. Thus certain

processing including parsing the BVH file and interpreting its data is required.

Second comes to the construction of good quality motion graphs. To detect can-

didate transitions, we use similarity metric combined with the idea of point cloud

window, which takes into account both the static posture difference and motion dy-

namics difference. We also takes different thresholds in similarity metric when dealing

with some different motion types. We apply common linear interpolation and spherical

linear interpolation to keep the smoothness of transitions. Finally, the motion graph

is pruned to be a strongly connected component.

The final task requires a graph search policy to search motions through the graph
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that satisfy user requirements. We use efficient branch and bound search method

generally. Also a quick step-first search is embedded to ensure quick transitions between

different motion types.

With graphical user interface, we intend to apply our framework to path synthesis,

that is generating motions following the paths. We implement user interactive control

over motions by drawing paths, setting directions and choosing different motion types

to perform.

1.2 Document Outline

The structure of this document is as follows:

• Chapter 2 reviews the related work in the area of motion synthesis, as well as

character animation.

• Chapter 3 provides an overview of the framework design, including system tasks

and graphical user interface.

• Chapter 4 describes the system implementations in details.

• Chapter 5 presents the result motions generated from our framework, and eval-

uates the performance.

• Chapter 6 draws an conclusion of the current project and set directions for future

exploration.
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Chapter 2

State of the Art

This chapter gives an overview of the related research. Section 2.1 introduces briefly

different methods to create character animations. Section 2.2 illustrates the three main

techniques for motion synthesis. Section 2.3 focuses on the techniques of motion graph

based synthesis, and gives detailed published algorithms aiming at constructing good

motion graphs for practical use. Section 2.4 follows section 2.3, and further introduces

the methods of motion search through the motion graph for generating final motions.

Section 2.5 gives an overview of the software related in character animation. Section

2.6 draws a summary of state of the art and gives a brief introduction of techniques in

this paper.

2.1 Character Animation

In computer animation, a human body is usually treated as a rigid skeleton that drives

a deformable skin. To create an animated character, one has to model the skeleton

geometry and create motion specifications for character actions [1, 2, 3]. The motion

specifications are the translation values of the root joint of the skeleton and the rota-

tion values of all other joints over time. Generally, there are four methods to create

animations: key-frame animation, procedural animation, behavioural animation and

motion capture.

Key-frame animation is a traditional method, where key poses are first specified

and then in-between motions are generated by interpolating the key frames. Computer
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techniques automate the second process using spline interpolation [4, 5, 6, 7]. This

method gives artists the ultimate control over every detail of the motion. However, it

is one of the most time consuming methods, considering the production of key frames

that yield convincing physics and achieve desired effects.

Procedural animation method produces animation by running a physically based

simulation of the entire system. Compared with key-frame animation, less degree of

control is allowed, but less time consumes and higher degree of realism can be achieved.

There are two main approaches proposed: kinematics simulation and dynamics simu-

lation. Kinematics directly manipulates body joints and segments without considering

its mass and forces acting on it. This approach mainly relies on bio-mechanical knowl-

edge and combines forward and inverse kinematics for computing motions [8, 9, 10].

Unlike kinematics, dynamics studies the motion by applying the forces to the body

with mass. One popular way is controller-based dynamics that uses controllers to con-

trol the joints during simulation [11, 12]. While this control-based approach require a

user to specify a large number of control parameters, which resulting a difficult task,

the space-time constrained optimization approaches stand out [13], by optimizing a

physically-based objective function to yield motions satisfying physics constraints and

user specifications.

In behavioral animation, the animation is generated by modeling and simulating the

mental process of character. The behavior is specified in terms of intents and goals.

Goals are the results of animation, while intents are in turn driven by these goals.

In order to satisfy intents, the character needs a motion model to control its own

locomotion. Additionally, the character uses a virtual sensor to sense the environment

and the result of its own actions, thus setting up a feedback control loop. The most

popular application of behavioral animation is animating groups [14], which is to specify

individual member to animate a group.

Motion capture has been recently developed and popularly used for generating

animations. It is a process of recording motion data directly from live performers for

an approximate skeletal hierarchy and then translating the data onto a digital model for

character reconstruction. Thus, the animation generated by this method is extremely

realistic, as probably some motion details can be acquired. However, it consumes effort

to capture the data considering the availability of devices, the complexity of capture

process and the quality of performers’ actions. So further processing has developed
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into a research area for reusing the motion capture database to generate new motions,

called motion synthesis.

In summary, different method applies to different requirement. Key-framing enables

animators to artistically control over characters. Procedural animation produces phys-

ically realistic characters quickly. Behavioral animation is used to animating group

behaviors regardless of high precision of an individual character. Motion capture is

specially used when physically realistic motions are strictly desired and the motions

can be acted out by skilled performers. Besides, motion capture database can also be

reused.

2.2 Motion Capture Based Synthesis Techniques

As mentioned before, motion capture to generate motions is largely limited by the

availability of devices, the complexity of capture process and the quality of perform-

ers’ actions. To make it widely applicable, the motion capture data needs to be made

re-usable. Thus, motion synthesis is developed to generate new motions with exist-

ing motion capture database, which also enables the control over motions to meet

the user specifications. Generally, motion synthesis involves three stages: obtaining

user requirements, searching database and generating motions. Research work in mo-

tion synthesis can be divided into three categories: multi-target interpolation based

synthesis, model construction based synthesis and motion graphs based synthesis.

2.2.1 Multi-target Interpolation Based Synthesis

Multi-target interpolation based synthesis refers to the interpolation among a set of

example motions. Bruderlin and Williams [15] introduced this method with dynamic

time-warping to blend between motions, and displacement mappings to alter motions

such as grasps. In addition, multi-resolution filtering method is applied to gener-

ate variations of a motion [15], by separating frequency bands of a motion and then

adjusting gains of the different bands. For example, increasing the gain of the high fre-

quency band produces jittery motions while increasing the gain of low frequency band

creates exaggerated motion. In another way, Perlin [16, 17] replaced high frequency

components with random noise and used noise functions to simulate personality and
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emotion in existing animation.

Motions can be parameterized. Rose et al. [18]. They proposed a verbs/adverbs

system to realize motion parameterizations. Verbs are used to represent parameter-

ized motions, and adverbs are used for the parameters that control verbs. To create

new verbs, interpolation is applied among similar motions with the use of radial basis

functions to generate variations. Then the verbs are combined with other verbs to

form a verb graph by linearly blending smooth transitions between them, resulting

in a substantial repertoire of expressive behaviors. Besides, this system requires in-

verse kinematics constraint key-frames as input. This parameterization system allows

convenient modifications of motions in real time and enables interactive control over

motions.

Desired motions can be linearly interpolated directly from a subset of examples [19].

However, to increase the precision of the selection of data subset, Wiley and Hahn [19]

resampled the motion data to a regular rectangular or cylindrical grid of the parameter

space, and new motions can then be synthesized by traversing the sampled grid in the

desired order and interpolating between motion samples corresponding to these grid

points.

As mentioned above, the quality of motion interpolated largely depends on the ex-

ample motions chosen, so one prerequisite of the method is synchronization of motions,

which is that the motions should be aligned in global position and rotation, they should

have similar cadence and length and they should have similar constraint frames. Early

effort used manual input which is not efficient. Kovar and Gleicher [20] proposed a

novel data structure, named registration curve, which encapsulates the relationships

involving the time, local coordinate frame and constraint states of an arbitrary number

of input motions. This method can expand the class of motions that can be successfully

blended automatically.

2.2.2 Model Construction Based Synthesis

Another popular approach to motion synthesis is to construct statistical models. The

inspiration of this method is the fact that there are correlations among numerous

features of the data. For example, a point characterized by a particular time and

frequency band will depend upon points close to it in time in other frequency bands.
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Pullen and Bregler [24] modeled the correlations with a kernel-based representation of

the joint probability distributions of the features. Then the synthesis is initiated by

sampling randomly from the probability distributions and completed by an iterative

technique to maximize the probability of occurrence of each value.

State machine learning is a prominent approach in statistical model based motion

synthesis. Brand and Hertzmann [25] demonstrated an HMM (hidden Markov model)

derived scheme, called style HMM (SHMM), to learn and generate style variations in

motions. The motions captured data here is processed by constructing abstract states

which each represent entire sets of poses. They introduced a cross-entropy optimization

framework that makes it possible to learn SHMM from a sparse sampling of unlabeled

style examples. The generated SHMM is used to synthesize the final motion.

The combination of PCA (principle component analysis) and K-means clustering

can also be contributed to motion synthesis to construct local linear models. Hodgins

et al [26] preprocessed the motion database by splitting it into smaller motions rep-

resenting low dimensional data, then converting the segments to high dimensionality,

and reducing them by PCA and clustering using K-means. Thus the database becomes

a hierarchy of clusters of motions segments which can be represented as local linear

models. Proper local model is then found to be used for generating a motion.

2.2.3 Motion Graphs Based Synthesis

Motion graph is a newly developed method and has emerged as a very promising

technique for automatic motion synthesis for both interactive control applications [27]

and for off-line sketch-based motion synthesis [27, 21, 29, 30, 31]. A motion graph is

constructed by extracting a set of motion clips from database according to user re-

quirements and then building transitions between all similar motion frames. Finally,

new motions are created by a traversal in the graph. The motion graph is constructed

with nodes, representing motion clips, and edges, representing transitions. The inspi-

ration of constructing motion graphs came from a simple idea to synthesize motions by

cutting and pasting parts from various motion clips in database together. Thus, this

method can preserve original motion as much as possible, which means details from

captured motion can be less probably lost. In addition, it is an intuitive method for

novice to start the research in motion synthesis.
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2.3 Motion Graphs

Considering the simple graph structure, ability to generate long motions while preserv-

ing as much original motion as possible, and fully automatic solution to motion syn-

thesis problems, motion graph has been popularly developed and used by researchers,

especially by novices. However, there are two fundamental issues that should be taken

into considerations. One is that to generate good quality of motion, the motion graph

should be well connected and the transitions built should be smooth. But actually

achieving both criteria simultaneously is difficult, because good connectivity requires

transitions between less similar poses from different behaviors, while transitions be-

tween very similar poses from similar behaviors will result in new motions with good

quality. The other is the selection of motions for constructing motion graph. In or-

der to construct a motion graph, a subset of motions is selected from large database

according to real application. On one hand, a small size of motion graph constructed

is easier for fast search for desired motions. On the other hand, the motion graph

needs to contain enough data to ensure good quality of transitions and to satisfy user

requirements. Based on these issues, researchers have developed several solutions.

2.3.1 Motion Graph Construction

The standard motion graph [21] used similarity metric to find similar poses as candidate

transitions and then linear blends to create smooth transitions. The similarity metric

is represented by distance function, which means the smaller the value of distance

function is, the more similar the poses are. Most distance functions are based on

Euclidean distances [27, 21]. While the use of linear blends may violate the constraints

in original motion, Kovar and Gleicher [21] correct this by using constraint annotations

in the original motions.

Blending techniques are popular for creating smooth transitions [18, 27, 21, 33].

However, some issues should be taken into account: the alignment of motions, the

length of blending window and the value of blending weights. Another way to create

quick transitions is proposed by Ikemoto et al [32]. They first split the motions into

short segments which are then clustered into groups based on similarity. Then similar

motion segments are found, after which the most natural transitions are searched among

all possible interpolations of these segments. Here, discriminative classifiers are defined
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to distinguish nature and unnatural motions.

Move trees is a variant of the stand motion graph, also called structured motion

graph, which is commonly used in game industries to generate human motion [34, 35].

Unlike standard motion graph, move trees uses FSM (finite state machine) to represent

all the motion clips as behaviors and define the logic transitions between the behaviors.

A search tree of states is built in the FSM. Motions are generated automatically by

a planning algorithm that performs a global search of the FSM for good transitions

and thus a sequence of behaviors that meet user requirements. The move trees can

produce motions with controlled motion quality and transition time in that the good

design of FSM allows all potential transitions needed for new motions, and captured

motion clips are optimized with manual work to ensure the transition quality. Thus

this technique is well-suited for real-time games.

There have developed several extensions for motion graph construction cooperating

with other techniques such as interpolations. The interpolated motion graph (IMG)

proposed by Safonova and Hodgins [31] is created by interpolating all possible poses

with matching contact patterns in the standard motion graph (MG). And the final

motion is created by searching the IMG for an optimal path that satisfies user specifi-

cations. The basic idea of IMG came from their intention to create synthesized motions

by an interpolation two time-scaled paths through a motions graph. The graph created

is much better with smaller search space and high quality, because it only contains nat-

ural poses and velocities from the original motions and the interpolation of segments

with matching contact patterns. However, the quality of IMG still depends on that of

MG, because only when MG contains quick and smooth transitions can IMG has good

transitions.

Safonova and Zhao [37] continued the work in optimizing motion graph, intending

to balance between graph connectivity and smooth transitions, when they developed

a well-connected motion graph (wcMG). Different from IMG, the wcMG directly add

quick and smooth transitions to MG, thus it uses exactly the same representation as

a MG. They achieved this by computing a set of interpolated poses from the original

poses before creating the graph from both original poses and a set of interpolated

poses. The pre-processed interpolated poses ensure the smooth transitions in motion

graph, while MG may have plausible transitions in that similar poses found not similar

enough to create transitions. Furthermore, a set of motions can also be computed
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in the pre-processing with different interpolation weights that will contain many more

similar poses allowed for transitions. Finally, the set of interpolated poses is reduced to

a subset by minimizing the interpolated poses number while guaranteeing the physical

correctness of the transitions and the connectivity of the original poses. The wcMG in

practice outperform MG in that it achieves better connectivity and smoother motions,

thus leading to more realistic visualization, and it requires no post-processing, which

saves time and effort.

Another extension of motion graph is called parametric motion graph introduced

by Heck and Gleicher [36]. The construction of the parametric motion graph (PMG)

differs from the standard motion graph mainly in the following two ways. While the

nodes in MG represent the motion clips from database, the nodes in PMG represent

entire parametric motion spaces that produce short motions through blending-based

parametric synthesis. The blending-based parametric synthesis generates any motion

accurately from an entire space of motions by blending together the examples from that

space. In addition, while the edges in MG are built as transitions between individual

motion clips, the edges in PMG encode valid transitions between source and destina-

tion parameterized motion spaces. Thus the edges encode the range of parameters of

the target space that a motion from the source space can transition to, and correct

transitions between valid pairs of the source and destination motions, which is solved

by a sampling based method. Based on the structure, PMG can efficient organize large

number of example motions that can be blended to produce final motion streams, and

allow interactive authoring controllable characters.

2.3.2 Selection of Motions

The other problem to be solved in motion graph construction mentioned above is the

selection of motions. In comparison, it has been found less solutions. Early effort was

mostly devoted to manual selection, which is manually selecting a subset of motions

from large database based on user requirements to construct motions graphs. However,

this has proved to be difficult for synthesizing a special motion and obey the automatic

concept of computing. A dynamic approach was proposed by Cooper et al [39] that it

uses active learning to identify which motion sequence the user should perform next

during capturing sessions, and then updates a kinematic character controller after
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each new motion clip is acquired. This active learning method helps automatically

identify specific tasks that the character controller may perform poorly, and thus avoid

the difficulty of manually determinations of which motions to capture. However, this

system does not make formal guarantees of being able to perform every task from every

start state. Some tasks may be impossible while others may have not been captured.

Kovar and Gleicher [22] introduced a method to automatically extract logically

similar motion segments from a large database and use them to construct a continuous

parameterized interpolation motion space. New motions are created for new parame-

ter values inside the space. To find the logically similar motions that are numerically

dissimilar, their search method employs a novel similarity metric to find close motions

and then uses them as intermediaries to find more distant motions. The novel distance

metric complement the standard one in that it analyzes the time correspondences of

the frames themselves. Whats more, the search method is not started from scratch

each time; instead a match web is pre-computed, which is a compact and efficiently

searchable representation of all possibly similar motion segments. Unfortunately, while

their work can generate motions for a particular behavior very well, it does not scale

to multiple distinct behaviors. And it doesnt make guarantees to satisfy user require-

ments.

To make motion graph more practically used, the selection of a subset of motions

needs to be simple and fully automatic for users, especially novices. Safonova et al [38]

cast the selection problem as a search for a minimum size sub-graph from a large motion

graph representing the motion capture database and propose an efficient algorithm,

called the Iterative Sub-graph Algorithm (ISA), to find a good approximation to the

optimal solution. They first select a small set of key motions that are required in real

applications but fail to generate a good motion graph because of lacking quick and

smooth transitions. Then additional motions in the motion database are found that

result in good connectivity between the key motions, while the size of the motion graph

is kept as small as possible. As mentioned in their work, this step corresponds to a

well-defined theoretical problem of finding a minimum size sub-graph from a very large

graph, which is a NP-hard problem but optimized approximately by employing ISA in

their work.
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2.4 Motion Search

After the motion graph is constructed, the next step is to search for the motions

required by applications. Generally, there are two main ways to solve this problem:

off-line search and on-line search. Existed on-line search methods are implemented

with reinforcement learning.

2.4.1 Off-line Motion Search

The off-line motion synthesis takes the predefined user requirements and searches a

motion graph with global search techniques for a motion meeting user requirements.

The quality of result motions also depends on the searching algorithms, and the effi-

ciency of the algorithm influences the efficiency of motion synthesis. Several algorithms

have been developed.

An early algorithm developed by Kovar et al [21] uses branch and bound to drive

the character to follow a sketched path. They cast the motion search problem to

finding an optimal GraphWalk from all possible GraphWalks. The GraphWalk is a

motion generated by placing edges in the graph one after another. The branch and

bound method can make this optimization process more efficient in that it reduces the

number of GraphWalks. However, it does not change the fact that the search process

is inherently exponential. Arikan et al [29] proposed another search method, based

on dynamic programming at several scales, to search for a motion with user specified

annotations.

A searching method, called A* algorithm, has been developed by Safonova and

Hodgins [31] as an efficient way for optimal or near-optimal solutions. For globally

optimal search, they developed two techniques that minimize the effort of search. The

first technique compresses the motion graph into a practically equivalent but much

smaller graph, by removing states and transitions that would not be part of an optimal

solution. The second computes an informative heuristic function that guides the search

towards states that more likely appear in an optimal solution.
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2.4.2 Reinforcement Learning

Unlike off-line search method taking predefined user specification, on-line search method

takes user input in real time. In Lee’s work [28], a pre-computation is provided to define

how an avatar moves for each control input and the avatar’s current state. During run-

time, their framework allows interactive control over motions for a set of control inputs

with least time cost. McCann and Pollard [41] introduced a model of user behaviours

integrated for better immediate control.

2.5 Software Overview

With the interest in developing 3D character animation, there have emerged multiple

software tools and APIs. Tools like Autodesk 3ds Max, Autodesk Maya, Autodesk Mo-

tionBuilder and Blender provide powerful 3D modelling, animation, rendering and com-

positing utilities. APIs typically like OpenGL and Direct3D, provide many commands

for 3D rendering. Lately, a new rendering engine called OGRE (objected-oriented

graphics rendering engine) brings a general solution for graphic rendering.

OGRE is written in C++ and supports APIs like OpenGL and Direct3D and op-

erating systems like Windows, Linux and Mac OS X. It is designed to minimize the

effort required for rendering 3D scenes, thus automatically accomplishes common re-

quirements like rendering the state management, spatial culling and dealing with trans-

parency. The main features of OGRE can be illustrated as follows:

• Support vertex and fragment programs along with custom shaders written in Cg,

DirectX9 HLSL, GLSL and assembler.

• Support multiple material techniques.

• Support texture files: PNG, JPEG, TGA, BMP, and DDS.

• Support flexible mesh data formats. Separate the concept of vertex buffers, index

buffer, vertex declarations and buffer mappings. Scene manager has support for

Progressive meshes (LOD) that is automatically or manually generated.

• Support sophisticated skeletal animation and flexible shape animation.
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• Scene graph based engine where nodes allow objects to be attached to each other

and follow each others movement. Support a wide variety of scene managers like

Octree, BSP.

• Has multiple shadow rendering techniques, both modulated and additive, stencil

and texture based.

• Has a compositing manager with a scripting language and full screen post-

processing for special effects such as HDR, blooming, saturation, brightness,

blurring and noise.

• Has a particle system with extensible rendering and customizable effectors and

emitters.

• Has content exporter tools for most 3D modelers including 3ds Max, Maya,

Blender, LightWave, Milkshape, Sketchup and more.

There also have developed multiple graphical user interface libraries, among which

CEGUI is popularly used by game developers. Written in C++, it provides windowing

and widgets for graphics APIs or engines where such functionality is not natively

available. Always, OGRE and CEGUI work together, and perform strong corporation

in animation applications.

2.6 Summary

The technique of motion capture to create character animation has stood out among

various techniques, as it can produce realistic animation reliably. However, it is lim-

ited by the incapability of modifying motion capture data, the availability of capturing

devices, and its time consuming capture work. Therefore, motion synthesis has been

developed to reuse the motion capture data for creating new motions. The most chal-

lenge of motion synthesis is how to create the motions as much realistic as possible.

Many different algorithms have been developed trying to create realistic motions while

keeping flexible interactive control over the motions, and they can be generally divided

into three categories: multi-target interpolation based synthesis, model construction
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based synthesis, and motion graph based synthesis. Motion graph has been popu-

larly used by researchers, especially by novices, because of the simple graph structure

and the ability to generate long motions while preserving as much original motion as

possible.

Based on the current research work in motion graphs, a framework is provided

in this paper, trying to construct good quality motion graphs and efficiently search

motions through the graph that meet user specifications. We take the classical motion

graph construction method introduced by Kovar [21], and implement branch and bound

search over the graph for an optimal solution. The optimization criteria is to approach

the path travelled by the character to the path specified by users as much as possible.

Finally, we intend to generate long motions that can follow the paths and change

between different motion types.

We use OGRE and CEGUI to help our graphical user interface (GUI) design.

OGRE mainly contributes to rendering the scene and CEGUI enables flexible user

interface design. We design the GUI to enforce interactive control over motions and

visualize the results.
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Chapter 3

Framework Design

This chapter gives an overview of the framework design, including the requirements,

system tasks, and a graphical user interface designed for the convenient interactive

control and visualization of our motion synthesis application.

3.1 System Tasks

Generally, there are three main modules in the system implementation: loading original

motion data, constructing motion graphs, and searching motions. In details, they can

be divided into six steps as follows:

1. Load original motions in BVH files from motion capture database, according

to motion loading configurations. The configuration tells which BVH files are

needed and what frames of the motion are loaded. It also defines the descriptive

information with certain labels to describe what the motion type is, like {run,

normal}, {walk, fast}, etc.

2. Construct the motion graph by splitting original motion streams and creating

transitions between similar poses.

3. Prune the motion graph, and then extract sub graphs. Each sub graph presents

one motion type.

4. Set user controls interactively with graphical user interface.
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Figure 3.1: System Design.

18



Figure 3.2: Rendering Window.

5. Search motions by traversing the motion graphs.

6. Save generated motions in BVH files.

Each step contains several sub-processes. The next chapter will describe how to im-

plement each task in details. Figure 3.1 presents the system tasks in a flow chart.

3.2 Graphical User Interface

In addition, we need a rendering window to display the motions performed by a charac-

ter for evaluation. Also, in the window, users should be able to set interactive controls

over the motions. Therefore, we design a graphical user interface with CEGUI in Ogre.

As mentioned in Section 2.5, Ogre is a powerful rendering engine and CEGUI is a pop-

ular GUI library, and their combination work makes our rendering window attractive.

Figure 3.2 shows a screen-shot of our rendering window.

The scene features are rendered using Ogre. The widgets, including push buttons

and check boxes, are designed with CEGUI.

• Push button. It will be fired under clicked, and the event attached to it then

will be executed. Push button is a useful widget that can help users control the

system tasks in real time. We put several push buttons here to set the tasks

including:
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– “Load Motions”: load motions from motion capture database. Execute step

1 in above system tasks.

– “Construct MotionGraph”: construct motion graphs from the loaded motion

data. Step 2 and step 3 will be accomplished.

– “Draw Path”: draw paths by dragging the mouse. It requires the character

to move following the path.

– “Set Direction”: set a direction by planting a point on the ground. The

direction is from where the character is to the point planted. It requires the

character to move towards the direction.

– “Result”: begin the motion search, and then display the current result mo-

tion once the search is finished.

– “Relay”: replay the motion. Because the motion may be generated step by

step with several user controls input in the middle, we can use this button

to replay it from the very start.

– “Reset”: reset the scene by removing all paths and direction points. Also

the current character stops moving and all the motions generated before are

deleted.

– “Save”: Save the motion generated currently in a BVH File.

– “Quit”: stop running and quit the rendering window.

• Check box. It is fired when got checked or unchecked from user input. Each box

represents one descriptive label. Users choose the type of motion to be generated

by clicking to check the corresponding boxes.
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Chapter 4

Implementation

This chapter provides a detailed explanation of how we accomplish the tasks described

in the last chapter. Figure 4.1 provides a class diagram illustrating the relationship

between tasks, and how each task contributes to the system. Below some classes will

be described in details.

4.1 Motion Load and Save

The input and output of the system are both BVH files which are downloaded from

CMU Graphics Lab Motion Capture Database [42]. But what is BVH? How does it

record the motion? How can we read the data from it, and how can the data been

interpreted for the practical use? The following gives the answers.

4.1.1 What is BVH File

The name BVH stands for Biovision hierarchical data. A motion capture services

company, called Biovision, developed this file format to provide the skeleton hierarchy

information in addition to the motion data. A BVH file contains two sections: hierarchy

and motion. In the hierarchy section, it provides the skeleton hierarchy of a human

body, as well as the local translation offsets of the root and the joints. In the motion

section, it provides the root’s global translation and rotation values, and the joints’

local rotation values relative to their parents. It perfectly defines a character’s motion.

However, it lacks a full definition of the basis pose (no rotation offset is defined).
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Figure 4.1: System Class Diagram

The data in this file can be read and written as file streams in C++ programming.

The only issue is that the data in the hierarchy section is recorded in a table format.

4.1.2 Parsing BVH File

An example BVH file is provided in Appendix A. The first section begins with the

keyword HIERARCHY. The next line starts with the keyword ROOT, followed by

the name of the root segment. A BVH file permits more than one hierarchy. Another

hierarchy is also denoted by the keyword ROOT. Following ROOT are the segments:

JOINT and End Site. The BVH format is a recursive definition. Each segment of

the hierarchy contains some data relevant to just that segment. Then it recursively

defines its children inside accolades.

Each segment has some data started by keywords OFFSET and CHANNELS.

Following OFFSET is the 3-dimensional vector (x, y, z). For different segments,

the data following CHANNELS varies. ROOT has six channels, providing global

translation (x, y, z) and rotation (x, y, z). JOINT only has three channels, defining

the local rotation relative to its parent. And End Site does not have any channels.

The order of the rotation channels appears strange, as it goes from z to y and finally

to x. In some files, the order varies for different segments. It may go from z to x and

finally to y. This order must be kept unchanged when parsing the hierarchy, because
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Figure 4.2: BVH Data Structure. SkeletonNode: root/joint node. It has po-
sition channels(positionChannel) and rotation channels(rotationChannel). Joint’s
positionChannel is null. type: indicates node type root/joint. In Channels,
channelBlockIndex: the place of the Channels in the list of channels in motion data;
value: 3D vector value (x, y, z) of the channel; types: the order of channel value
x, y and z. In BvhReader, hierarchy: a vector container containing all root/joint
nodes; channelV alues: an array(N ∗M) storing all channels in the motion data (N
is frame number, and M is Channels number in one frame); frameNum: total frame
number(N); frameDuration: sampling rate; channelSum: total channel number(M).

it should match the motion data provided in motion section.

The motion section begins with the keyword MOTION on a line by itself. This

line is followed by a line that uses the keyword Frames: and provides the number

of frames. On the next line is the Frame Time: indicating the sampling rate of

the motion data. In the example of Appendix A, the rate is given as 0.0083333 (120

frames a second). The rest is the actual motion data containing position and rotation

channels. Each line is just one sample(one posture), and the channel values appear in

the order as that in the hierarchy section.

To describe a motion from the BVH file, we mainly need a hierarchy data structure,

shown in Figure 4.2, and a motion data container. The hierarchy data structure should

enable keeping track of each joint’s parent. Also a mapping index is needed to map

the channels in the hierarchy to the channels in the motion data.
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4.1.3 Interpreting The Data

After extracting information from the BVH file, a motion can be represented. However,

BVH file only provides the global position and rotation of the root, and the local

rotations of the joints relative to their parents. We still need the global position of

each joint segment if we want to draw a character.

To calculate the position of a joint segment, first we create a transformation matrix

Ml from the local translation and rotation information. For any joint the translation

information will simply be the offsets as defined in the hierarchy section. The rotation

data comes from the motion section. For the root, the translation will be the sum of

its offset and its global translation from the motion section. Unlike other motion data

files, BVH does not account for scales. As BVH uses the Euler angle to represent the

rotation about an axis, we need to calculate the rotation by quaternion:

Q = QzQyQx (4.1)

where Qx, Qy and Qz are the rotations about the axis x, y, and z respectively, in

quaternion presentation. The order should be strictly followed, as quaternion multi-

plication is non-commutative. Using Ogre maths library, we can simply transform the

positional vector and rotational quaternion to transformation matrix. Once the local

transformation is created, concatenate it with the local transformation of its parent,

then its grandparent, and so on.

Mglobal = Mroot...MparentMl (4.2)

Because Ogre uses column vectors when applying matrix multiplications, the trans-

formation implemented by the matrices happens right-to-left. So in (4.2) the joint is

transformed first by Ml, then Mparent, ..., and finally Mroot. The order is vital since

matrix multiplication is not commutative.

The motion section in BVH contains certain number of frames. Each frame is a

posture represented with position and rotation channels. A posture stays unchanged if

we translate it along the floor plane or rotate it about the vertical axis. This is called

2D alignment transformation. After this transformation, only root global position and
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rotation Qold will be changed:

Xnew = Xold ∗ cos angle+ Zold ∗ sin angle+Xtrans (4.3)

Znew = −Xold ∗ sin angle+ Zold ∗ cos angle+ Ztrans (4.4)

Qnew = Qold ∗Q(y,angle) (4.5)

where (Xtrans, Ztrans) is the translation along the floor plane, and angle is the angle

rotated about the vertical axis. (Xold, Zold) is the original position of the posture on

the floor, and (Xnew, Znew) is the new one after the 2D transformation. Q(y,angle) is

the quaternion representing a rotation about the vertical axis by angle. Qold is the

posture’s original rotation and Qnew is the new one. The quaternion multiplication in

(4.5) indicates applying rotation Q(y,angle) to Qold.

4.2 Motion Graph Construction

We obtain the original motion clips by loading BVH files as the original data for motion

graph construction. In addition to the hierarchy and the motion data, a motion clip

can also be identified with descriptive labels describing what the motion is, like “walk”,

“run” and “jump”. The descriptive information is set in motion loading configurations,

see Section 3.1, and plays an important role in later motion search.

In general, the motion graph is a directed graph containing edges and nodes. Edges

are the motion clips and nodes are points joining edges. With the original motion clips

on hand, a motion graph is initialised with all these motion clips as edges and placing

two nodes at the beginning and at the end of each edge, see Figure 4.4. An edge in the

graph can be split, and then a node will be inserted to join the two split edges. Two

individual nodes can also be connected with a transition edge. Unlike original motion

clips, the transition is a motion clip that is created by linear interpolation of original

motions. Figure 4.3 shows the motion graph data structure.

In motion synthesis, creating a transition is one of the most difficult but important

tasks. For example, a character should perform a smooth transition from walking

to running, while this transition needs to take some time to keep realistic. Linear

interpolation is a commonly used method to keep this transition as smooth as possible.
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Figure 4.3: Motion Graph Data Structure. A graph contains multiple edges and nodes,
as well as descriptive labels describing what kinds of motions this graph includes. A
node is attached with incoming edges and outgoing edges, and an edge has a start node
and an end node. Also a node is numbered (index) for identification. In addition,
an edge is a motion clip that clipped from startFrameIdx to endFrameIdx of the
corresponding motion (mMotion). Also when an edge is made from transition, it has
a 2D transformation matrix (mTrans2D).

Figure 4.4: A trivial motion graph. (left) The motion graph is initialised with two
initial clips. (right) The edge can be split and a new node is inserted. A new edge
(transition) can be created connecting two individual nodes.
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It could keep both the features of walking and running while balancing them with a

factor. The following two sections provide our solution, including detecting candidate

transitions from original motion clips and creating transitions between them with linear

interpolation.

4.2.1 Candidate Transitions Detection

Smooth transitions should be created by linearly interpolating similar poses. Therefore,

detecting candidate transitions is detecting pieces of similar poses from original motion

clips. We use similarity metric to measure the similarity between poses.

The similarity metric is a distance function D(Ai, Bj), where Ai is the pose in ith

frame of motion A, and Bj is the pose in jth frame of motion B. The smaller this

distance value is, the higher the possibility to make a transition from Ai to Bj is. From

Section 4.1 we know that a skeleton pose is represented by positional and rotational

vectors of root and joints. Thus, to measure the distance function, we calculate the

squared Euler distances between corresponding roots or joints in the two poses and then

sum them up. However, a good distance function not only takes into account the static

posture difference but also the motion dynamics difference. Imagine, for example, that

two walking poses are said to be similar when only considering the former factor, but

one tends to step the left foot while the other tends to step the right foot. To address

this, we adopt the point cloud metric proposed by Kovar and his colleagus [21].

Here, we treat each root or joint on the skeleton as a point. Then points on the

skeleton of one pose compose a small point cloud. To calculate the distance D(Ai, Bj),

we consider the point clouds formed over two windows of frames of user defined length

L. One is formed by extracting L neighbour frames after Ai and the other by extracting

L neighbour frames before Bj, see Figure 4.5. The two windows of point clouds can

capture the motion dynamics bordered at one frame, as well as the global positions

of root and joints of all postures involved. The distance function sums up all squared

Euler distances between corresponding points, and a small distance value indicates a

high possibility to make a transition from Ai to Bj. The length of the transition edge

is the size of the window, therefore D(Ai, Bj) is affected by every pair of poses that

makes a pose in the transition edge. In practice, we define the window length L as one

third of a second.

27



Figure 4.5: Point Clouds of Two Poses. one bordered at the beginning of one posture
and other bordered at the end of the other posture. A similarity metric should also
consider the motion dynamics difference.

Before we calculate the distance function, we first need to make a 2D transformation

to Bj so that the two poses are aligned in the same coordinate system, as mentioned in

Section 4.1.3. To find an appropriate 2D transformation Tθ,(x0,z0) for Bj, we take into

account all points in the widows:

θ = arctan

∑
i ωi(xiz

′
i − x

′
izi)− 1∑

i ωi
(x̄z̄′ − x̄′ z̄)∑

i ωi(xix
′
i + ziz

′
i)− 1∑

i ωi
(x̄x̄′ + z̄z̄′)

(4.6)

x0 =
1∑
i ωi

(x̄− x̄′ cos θ − z̄′ sin θ) (4.7)

z0 =
1∑
i ωi

(z̄ + x̄′ sin θ − z̄′ cos θ) (4.8)

where ωi represents both the joint weight, telling how important the joint should be

considered, and the frame weight, telling how much the frame in the window affects

the result. ωi results from the multiplication of these two factors. We use Gaussian

function to weight the frames which taper off from Ai to the end of the window Bj.

Also we use joint weights in Table 4.1 which possibly optimized the result after most

tests. (xi,zi) is the global position of the point in the point cloud of motion A, and

(x
′
i,z
′
i) corresponds to the point of motion B. x̄ =

∑
i ωixi and the other barred terms

are defined similarly. Finally, the distance function is:∑
i

ωi‖pi − Tθ,(x0,z0)p′i‖2 (4.9)
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Table 4.1: Joint Weights for Calculating Distance Function in Simialriy Metric
Joint Hip(L/R) Knee(L/R) Ankle(L/R)
Weight 0.4 0.4 0.9

Joint lowerback Chest Chest2 lowerneck Neck
Weight 0.8 0.1 0.1 0.1 0.8

Joint Shoulder(L/R) Elbow(L/R) Others
Weight 0.4 0.2 0

where pi is one point in the point cloud window of motion A, and p′i corresponds to

the point of motion B.

In principle, we calculate the distance function for every pair of frames in the

original motion data. The result of comparing motion A with motion B is a 2D error

matrix, see Figure 4.6. To extract candidate transitions from the error matrix, we find

all local minima using the algorithm illustrated in Algorithm 1.

Actually, not all local minima in the error matrix indicate high-quality transitions.

A value can be treated as a local minima only if it is lower than its neighbours, but

the value itself may be high. Therefore, we need a threshold to extract those good

enough candidate transitions. To find an appropriate threshold, we should consider

the difference of two motions. If the two motions are close, like fast walk and slow

walk, the threshold needs to be low. Otherwise, it is high. We define a low threshold

and a high threshold to address this issue. Finally, good transitions are extracted from

similarity metric. At the same time, the 2D alignment transformation is also recorded

as we need to align motions when making a transition or appending one motion clip

to another, as the mTrans2D in motion graph data structure (Figure 4.3). We will

discuss this later.

Algorithm 1 Algorithm for Finding Local Minima in 2D Matrix

for all point Pi,j in 2D error matrix do
if V aluePi,j

> value of any point around Pi,j (3*3 neighbourhood) then
OutputV aluePi,j

= MaxV alue.
else
OutputV aluePi,j

= V aluePi,j
.

end if
end for
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Figure 4.6: 2D Error Matrix. The entry (i,j) is the similarity value that measures the
possibility of making transition from ith frame of motion A to (j + L− 1)th frame of
motion B, where L is the window length of point clouds. White values corresponds to
low distance function value (high similarity value). The local most white values imply
possible candidate transitions.

Figure 4.7: Make transitions between motion A and B. (left) Transition from motion
A to motion B. (right) Transition from motion B to motion A. If the transition is
from A to B, motion B should make a 2D transformation to align with motion A.
Otherwise, motion A makes the 2D transformation to align with motion B.

4.2.2 Transition Creation

If D(Ai, Bj) meets the requirement to be a candidate transition, then two transitions

can be created. Both transitions result from blending frames Ai to Ai+L−1 with frames

Bj−L+1 to Bj. The difference is that one is the transition from motion A to motion

B (the transition goes from Ai to Bj), while the other is from motion B to motion A

(the transition goes from Bj−L+1 to Ai+L−1), see Figure 4.7. The following describes

how to make a transition from motion A to motion B.

To start with, the frames in motion B need to make a 2D alignment transformation,

making sure that they are in the same coordinate system with the frames in motion

A, as mentioned in the end of Section 4.2.1. The transforming method is provided in
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Section 4.1.3. We use linear interpolation for blending frames, that is on kth frame

Ck of the transition C we perform common linear interpolation on root positions, and

spherical linear interpolation on rotations of root and joints:

PCk
= α(k) ∗ PAi+k

+ (1− α(k)) ∗ PBj−L+1+k
(4.10)

Qp
Ck

= Slerp(α,Qp
Ai+k

, Qp
Bj−L+1+k

) (4.11)

where PCk
is the root position on the frame Ck, and Qp

Ck
is the pth joint rotation.

Other barred terms are defined similarly. The interpolation factor α is computed as

follows in order to ensure it goes from 1 to 0 when k goes from 0 to L− 1:

α(k) = 2(
k + 1

L
)3 − 3(

k + 1

L
)2 + 1 (4.12)

Each original motion is labelled with descriptive information describing what the

motion is. When making a transition, its descriptive labels are the union of both orig-

inal motions’ descriptive labels LabelA ∪ LabelB. Therefore, in motion search(Section

4.4) we know that the transition edge contains both features of the original motions.

4.3 Pruning The Graph and Extracting Subgraphs

The motion graph constructed in Section 4.2 can not be used for motion search directly,

because it may have some deadends and sinks. A deadend is the node that does not

belong to any cycle in the graph, and a sink is the node that can only reach part

of the total numbers of nodes in the graph. These two kinds of nodes may probably

cause the motion search to be halted when no successor is found. An example of rough

motion graph is shown in Figure 4.8. So we need to extract a strongly connected

component(SCC), resulting in a motion graph where every node can reach to all other

nodes in the graph. We use the method proposed by Tarjan [40] to get SCCs for the

motion graph, see Algorithm 2, and then extract the largest SCC which contains the

most nodes.

Moreover, to make the motion search (Section 4.4) more efficiently, we extract

subgraphs from the motion graph, each subgraph contains one motion type with one

descriptive label set. Hence to extract a subgraph for a descriptive label set Label,
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Algorithm 2 Tarjan’s Strongly Connected Components Algorithm.

input: graph G=(V ,E)
output: set of strongly connected components (sets of vertices)

index:=0
S:=empty
for all v in V do

if v.index is underfined then
strongconnect(v)

end if
end for

function: strongconnect(v)
// Set the depth index for v to the smallest unused index
v.index:=index
v.lowlink:=index
index:=index+1
S.push(v)

// Consider successors of v
for all (v,w)in E do

if w.index is undefined then
//Successor w has not yet been visited, recursive on it.
strongconnect(w)
v.lowlink := min(v.lowlink,w.lowlink)

else if w is in S then
// Successor w is in stack S and hence in the current SCC
v.lowlink := min(v.lowlink,w.index)

end if
end for

// If v is a root node, pop the stack and generate an SCC
if v.lowlink = v.index then

start a new strongly connected component
repeat
w :=S.pop()
add w to current strongly connected component

until (w = v)
output the current strongly connected component

end if
end function
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Figure 4.8: A Rough Motion Graph. The motion graph is constructed from orig-
inal motion clips by splitting edges, inserting nodes and making transitions, where
(1, 2, 3, 4, 5, 8, 9, 10, 11) is the largest strongly connected component. (6) is a deadend,
and (7) is a sink.

we search edges that carry Label. Similarly, to avoid deadend and sink, we find the

largest SCC for the subgraph, the same work as that for the motion graph before. The

result subgraph must be part of the original motion graph, and not all edges and nodes

carrying the corresponding descriptive label set are included in the subgraph.

4.4 Motion Search

By this stage, we have got a motion graph and its subgraphs, each graph labelled

with descriptive information indicating what kinds of motions it contains. The next

stage is to perform a GraphWalk traversing the graphs for an optimal stream of edges

that meets user requirements. Then convert the GraphWalk to displayable motion.

Hence the contents in this section include: how to extract an optimal GraphWalk,

how to calculate optimization criteria for GraphWalk evaluation, and how to convert

GraphWalk to a displayable motion.

4.4.1 Extracting Optimal GraphWalks

As a motion graph is a directed graph, we can generate a continuous motion stream

randomly by appending edges one after another. Apparently, this is not what we want,

because we can not control where it goes. For example, a motion is performing walk

when suddenly it poses tending to jump and then poses back to walk. Thus, we need

a technique to extract an optimal GraphWalk from the motion graph that can yield a

realistic motion conforming to user specifications. The start node is randomly chosen.

We cast the extraction as a search problem, and use branch and bound to increase
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the search efficiency. An optimization criteria g(w, e), discussed in Section 4.4.2, is

supplied here to evaluate the additional error accrued by appending one edge e to the

existing GraphWalk w. To evaluate the motion search, we add a g(w, e) each time we

append an edge. The total error of a GraphWalk is:

f(w) = f([e1, e2, ..., en]) =
n∑
i=1

g([e1, e2, ..., ei−1], ei) (4.13)

where [e1, e2, ..., ei−1] is the existing GraphWalk when appending the edge ei. Because

each time we add an edge, the total error never decreases, g(w, e) is a non-negative

value. This is supplied as an important inspiration to apply the branch and bound

search.

When dealing with searching an optima through a directed graph, the naive solution

is step-first search which compares all possible completed GraphWalks for a best one.

However, this performs low efficiency, especially when a long motion stream is required,

as the number of GraphWalks will grow exponentially. Using branch and bound, we

can save much more time in that it can cull any branch incapable of yielding an

optima, see Figure 4.9. As mentioned before, f(w) never decreases when appending an

edge, thus we treat f(w) as the lower bound of f(w + e). f(w + e) indicates the error

accumulated by appending and edge e to the current GraphWalk w. During searching,

if we meet a node of which the lower bound is larger than that of the current found

optimal GraphWalk, the search is halted for the branch of that node and proceeds to

the next un-searched branch. Apparently, we need to keep track of current optimal

GraphWalk and store its lower bound.

Although we use branch and bound method, we can not change the fact that the

number of GraphWalk searched grows exponentially. Generating long motion stream

still costs large amount of time. We try to shorten the time by generating a GraphWalk

incrementally. At each step, we only extract an optimal GraphWalk of N frames using

Branch and Bound. Then only the first M frames of this GraphWalk can be retained

as part of the final optimal GraphWalk required, and the last retained node is chosen

as the start node for next branch and bound search. In practice, we set N = 90 (about
3

4
of a second), and M = 40 (about

1

3
of a second). We only allow the searched frame

number to exceed the parameter once and then finish the search process, as it can not
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Figure 4.9: Branch and Bound Search. f(n) is the lower bound which represents the
accumulated error of the GraphWalk reaching node n. Therefore the lower bound of
a child node is calculated by adding the lower bound of its parent with the additional
error g(w, e) accrued by appending the edge from its parent to itself. Given that
f(5) > f(9), f(6) > f(9), f(9) > f(12), and f(12) < f(8), the branch and bound
search order here is [1, 2, 4, 9, 5, 6, 3, 7, 12, 8], and the optimal result is [1, 3, 7,
12]. Because f(5) > f(9), we halt the search for the branch of node 5, the same with
node 8. Because f(9) > f(12), the GraphWalk [1, 3, 7, 12] replaces [1, 2, 4, 9] as the
current optimal one.

probably be the right N or M after appending an edge.

Moreover, in order to avoid the GraphWalk passing through different motion types,

we only allow searching for one motion type in a certain time duration. Thus, we extract

subgraphs from the motion graph (Section 4.3). To perform one type of motion, we

only search the subgraph G1 attached with corresponding descriptive label set(L1)

using branch and bound described before. When changing to a different type(L2), we

map the last node retained from searching G1 to the node in the large motion graph

G as the start node, and then start a step-first search in G. We complete any possible

GraphWalk that ends with an edge containing L2, and then find the shortest one

with the smallest number of frames, which indicates the quickest transition from the

previous motion type L1 to the current L2. Considering that the last node retained

from the shortest GraphWalk may not exist in the subgraph G2 of the current motion

type, we can not directly start a branch and bound search in that subgraph. So we

then start from that node to search G for the edges that only contain L2 until we meet

a node that exists in G2. Finally, we map that node to the node in G2 and begin a
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Figure 4.10: Process For Transition Between Two Motion Types. (up) Programming
design. (down) Extracted GraphWalk.

new branch and bound search. Figure 4.10 describes the transition process.

4.4.2 Optimization Criteria (Path Synthesis)

We need an optimization criteria to value g(w, e), the additional error accrued by

appending an edge to the existing GraphWalk, as well as a terminating condition for

motion search. Usually, this is user specified. To address this, we apply path synthesis,

generating motions following a path.

By drawing a path P with the user interface (Section 4.5), we collect the data of

that path P (vi, li), where vi is the ith point on the path and li is the arc length from

the start point to vi. The basic idea of path synthesis is that we make the actual path

P ′ travelled by the character most close to P , by evaluating the deviation of P ′ to P .

To compute g(w, e), we project the character’s root position v′ on the ground at

each frame, forming a piecewise linear curve. We compute the arc length l′(e,j) from the

start of path P ′ to v′(e,j) which is the root position at jth frame on edge e, and then

find the point v on path P of which arc length l is the same with l′(e,j). The point v is

computed by linear interpolating vi−1 and vi with the factor β:

β =
l′(e,j) − li−1
li − li−1

(4.14)

We compute the squared distance between v and v′(e,j), and then sum up the squared
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distances for all frames on edge e, resulting in the evaluation criteria g(w, e):

g(w, e) =
n∑
j=1

‖P ′(v′(e,j), l′(e,j))− P (v, l′(e,j))‖2 (4.15)

To calculate the global position v′(e,j) when appending the edge e to the current

GraphWalk, we need to apply a 2D alignment transformation to e, making sure that

they are in the same coordinate system. In addition, we need to keep track of the

information of last frame in the last edge of the existing GraphWalk for computing

g(w, e) of the current appended edge e, including the global root position and the arc

length from the start, as well as the accumulated 2D alignment transformation. We

will discuss the accumulated 2D transformation later in Section 4.4.3.

The terminating condition of GraphWalk extraction is that the total arc length

of path P ′ exceeds that of path P . Also, during branch and bound search process, if

the arc length of the current frame exceeds that of path P , the corresponding point is

mapped to the end point of path P .

In case, the character may stand still without an incentive to move forward, because

it can accrue zero error by staying there. To avoid this, we introduce a small amount

of forward progress γ on each frame. Therefore, we replace l′(e,j) in Equation 4.14 with

max (l′(e,j), l
′
(e,j−1) + γ). In practice, we set γ = 0.1.

4.4.3 Converting GraphWalk to Motion

After extracting an optimal GraphWalk, we are close to the end. One thing left is to

convert the GraphWalk to a continuous motion stream. As the GraphWalk consists

of edges which are pieces of motion, a motion can be generated by placing these pieces

one after another in the order as they are stored in GraphWalk. The only issue is

to place them at the correct position and orientation, which is why we need to record

the 2D transformation for each candidate transition detected (Section 4.2.1). In other

words, the frames should be aligned in the same coordinate system by applying a

2D transformation T as long as a GraphWalk contains one transition. Start from

the beginning of the GraphWalk, where T is identity, T is multiplied by a new 2D

transformation Ti each time exiting a transition edge. The frames on the next edge are

aligned with the current T .

37



4.5 User Interactive Control

One essential objective of motion synthesis is to generate new motions that meet user

specifications. With the graphical user interface designed, we allow interactive control

over motions by setting requirements, including selecting motion types, drawing path

and setting direction.

• Motion Type Selection: As described in Section 4.4.1, we only perform one

type of motion in a time duration to avoid the uncertainty that the motion

changes from one type to another. Therefore, we select one motion type labelled

with descriptive information displayed in the GUI. The choices of descriptive

information includes all motion types existed in the motion graph constructed in

Section 4.2.

• Path Drawing: When moving a mouse to draw the path, the point Pi is cap-

tured at each frame the rendering window runs. We capture the global position

vi of the point and then compute the accumulated arc length li by:

li = li−1 + ‖vi − vi−1‖ (4.16)

l0 is defaulted as zero. Then the data P (vi, li) is used in 4.4.2 for path synthesis.

• Direction Setting: This is similar to path synthesis. When a direction is set by

planting a point on the ground, a path is automatically drawn from the current

location of the character towards the point. The following processing is the same

as path synthesis.
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Chapter 5

Evaluation

This chapter presents some examples of result motions generated from our framework,

and provides details in the test and evaluation of system efficiency and performance.

5.1 Results

Generally, we show the results of changing the motion between different types, as well

as the application in path synthesis.

5.1.1 Transition Creation

To visualize the transitions created in motion graph construction, we load several

different motion types from the database and construct the motion graph. In runtime,

we control the character to change between different motion types. Figure 5.1 shows a

motion that is generated from the original motions including walk, run and jump. It

makes transitions from jump motion to walk motion and then to run motion. The FPS

in the picture is 15. From it we can see that the motion can change between different

types continuously with a high degree of smoothness.

5.1.2 Artifacts

In common sense, we know that real human motion usually contains foot-plants, which

are periods of time when a foot or part thereof remains in a fixed position. Imagine that
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Figure 5.1: Result motion Changing between Different Types.

Figure 5.2: Linear blends Caused Artifacts. (left) When the character makes transi-
tions from walking to running, the foot appears slipping in the red circle. (right) The
character changes from jump to walk, in the red circle foots are shown not planted in
fixed positions in the time duration.

when a character is walking, his left foot should be planted on the ground when the

right foot is stepping forwards. However, our result motions present a kind of artifact

that the foot is slipping when it ought to be planted, see Figure 5.2. This artifact is

caused by linear blending the frames when making transitions, as only low-frequency

changes are added to motions while high-frequency details are ignored. In the area of

motion editing, this artifact is called Footskate [23].

One published solution [21, 23] to the artifacts is to attach constraint annotations

to some frames, providing the information that whether the frame contains such a foot-

plant issue and how many frames this foot-plant lasts for. Then from the fixed foot
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Figure 5.3: Path Synthesis Result 1. The generated walk motion follows the path
specified ideally. There are three original motions: “walk straight”, “turn left”, “turn
right”.

positions, they used an IK solver to get other corresponding joint and root positions.

Another solution takes keytimes that specify periods during which inverse kinematic

constraints need to be enforced [18].

5.1.3 Path Synthesis

Path synthesis is an application to our framework that enforces user specifications

on motions by drawing a path. The generated motion is supposed to be as close to

the path specified as possible. Figure 5.3 shows an ideal result motion that perfectly

follows the path. It is generated from three original motions: “walk straight”, “turn

left”, “turn right”.

However, sometimes the path travelled by the character can not fit that drawn by

users well, because there is not enough original motion data to provide the appropri-

ate motions, see Figure 5.4. However, as our path synthesis tries to find an optimal

GraphWalk that fits the specifications, the motion shown in Figure 5.4 can finally find

a way to turn right in order to follow the path.

Similarly, when a direction is set for the character, it can move towards that direc-

41



Figure 5.4: Path Synthesis Result 2. The path travelled by the character does not fit
that specified by users well. The original motions only contain “walk straight” and
“turn right”.

tion as long as the original motion data contains the appropriate motions, see Figure

5.5.

5.2 Test

In this section, we test the performance of our framework under different sampling

rates of frames.

In motion graph construction, we use similarity metric for candidate transition

detection. We compare each pair of frames from the original motion database, which

is time consuming work. Therefore, we sample the original loaded data. However, the

framework performance including motion graph construction and motion search will be

influenced under different sampling rates. In order to evaluate this and find a suitable

rate for our framework, we test different sampling rates by evaluating the quality of

motion graph, as well as the time consumed in graph construction and motion search

respectively.

The BVH files [42] we use adopt the sampling rate of 120 (120 frames a second).

First we use three motions: “walk straight”(282 frames), “turn left”(650 frames), “turn

right”(400 frames). Table 5.1 compares five rates (120, 60, 30, 20, 15), among which

rate 120 and rate 15 can not finish the corresponding task in time. The other three

rates can result in almost the same motions shown in the bar chart (Figure 5.6).

Of course, the efficiency is affected by CPU speed, but we are testing in the same
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Figure 5.5: Set Direction For The Character. The character can walk towards the new
direction set. The original motions contain: “walk straight”, “turn left”, “turn right”.

Table 5.1: Sampling Rate Evaluation: Comparison of Time Cost
Rate(frames/sec) Time cost in graph construction(s) Time cost in motion search(s)
120 not finished in 1h /
60 500 5
30 65 60
20 15 330
15 12 not finished in 1h

Figure 5.6: Bar Chart of Table 5.1.
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Figure 5.7: Sampling Rate Evaluation: Comparison of Graph Size.

computer, so it does not influence the comparison in Table 5.1. In comparison, we can

see that high frequency of sampling will spend more time in graph construction but less

time in motion search, while low frequency shows the reverse performance. Because

higher sampling frequency (more frames) will cause more pairs of frames involved in

similarity metric, resulting in more time costs. In order to test the connectivity of

each motion graph (the largest strongly connected component retained from Section

4.3) under its corresponding sampling rate, we compare the numbers of nodes, edges

and transitions, see Figure 5.7. From the chart, we see that the lower the sampling

frequency is, the less nodes, edges and transitions the motion graph has, therefore

the smaller the motion graph’s size is. The percentages of the transition numbers

are similar. While lower sampling rate needs less time in motion graph construction,

the motion graph is not well-connected as there are less nodes and edges, resulting in

adding more difficulty to motion search. Besides, from Figure 5.6, we find a sampling

rate of 30 can balance the time costs in graph construction and in motion search well,

and the time is not that much also. Thus in our framework, we adopt this sampling

rate.

However, a low sampling frequency will certainly lose some details from the original

motion data, as the original BVH files from CMU library [42] take the rate of 120. To

address this, we compare our result under the rate of 30 with the result under the

rate of 120, see Figure 5.8. Actually, we can not see the difference apparently, the

transitions made under the two sampling rates appear nearly the same, except for the

artifacts caused by linear interpolation. However, we can not deny the fact that some
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Figure 5.8: Sampling Rate Evaluation: Comparison of Result Motions. (upleft)walk-
to-run motion under sampling rate 120. (upright)walk-to-run motion under sampling
rate 30. (downleft)walk-to-jump motion under sampling rate 120. (downright)walk-to-
jump motion under sampling rate 30.

original motion data will be ignored under low sampling frequency. In fact, we can find

other ways to improve the efficiency of motion graph construction, and at the same

time keep high frequency of sampling as it keeps more original motion data, which will

be a future exploration.
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Chapter 6

Conclusions and Future Work

In this paper, we have provided a framework for generating continuous, realistic, long

human motions automatically. This framework includes constructing a motion graph

that encapsulates connections among original motion clips, which are obtained from

BVH files of CMU library [42], and then searching motions through the graph that

satisfy user requirements. We apply the framework to path synthesis. Also a graphi-

cal user interface is provided for interactive control over motions and visualization of

results.

The result motions are continuous and highly realistic. They can make transitions

to any other motions with a high degree of smoothness, provided that there are similar

enough poses existing between the two transferred motions. In addition, they can follow

paths and directions specified by users as long as original motion data provides enough

motions. However, without the appropriate post-processing, the motions present ar-

tifacts caused by linear blending of frames. The typical one, called Footskate, is that

the foot slips on the ground while it needs to be planted. In future work, we will try

to use constraint annotations describing which frames contain such a foot-plant and

how long this constraint lasts for. The fixed foot positions on the ground are then

used in post-processing to compute other joints and root positions with an IK solver.

Another idea without post-processing can also be taken into consideration that uses

inverse kinematic constraints in the linear interpolation process.

Another bottleneck of our framework is the time consumed in detecting candidate

transitions for motion graph construction. This process compares each pair of N frames
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in the original motion clips chosen from database and therefore involves O(N2) oper-

ations. However, the fact is that only a few candidate transitions exist in the large

database. In future work, we can explore a way to divide the motion clips into different

categories based on their contract information with the environment, like foot touching

ground, hand hanging up, etc. Then in similarity metric, we only compare those frames

in the same categories to speed up the candidate transition detection.

Moreover, our framework manually chooses the required motions from database.

We can take a further step in the exploration to automatically choose appropriate

motions from a large database.

Finally, due to the controllable feature of graph structure, in principle, we can

generate motions following more user requirements. Therefore, in future work, we can

develop more applications above path synthesis.
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Appendix A: An Example of BVH

File

HIERARCHY

ROOT Hips

{
OFFSET 0.000000 0.000000 0.000000

CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation

JOINT LHipJoint

{
OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

...

End Site

{
OFFSET 0.000000 -0.000000 1.112490

}
...

}
JOINT RHipJoint

{
OFFSET 0.000000 0.000000 0.000000

CHANNELS 3 Zrotation Yrotation Xrotation

...

End Site

{
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OFFSET 0.000000 -0.000000 1.112490

}
...

}
...

}
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Appendix B

Affixed is a disc containing the source code and a video for the project, as well as some

related files.
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