
Exploring the Educational Potential of Modern

Mobile Games

by

Daniel O’Byrne, B.A.(Mod)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

August 2011

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Daniel O’Byrne

August 30, 2011

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Daniel O’Byrne

August 30, 2011

Acknowledgments

I would like to thank my supervisor, Brendan Tangney, for his suggestions and advice

throughout the project. I would also like to thank Elizabeth Oldham and all of the

student playtesters who helped to evaluate the final two game applications. Finally, I

would like to thank Amy Davidson for all of her support, especially towards the end

of the project.

Daniel O’Byrne

University of Dublin, Trinity College

August 2011

iv

Exploring the Educational Potential of Modern

Mobile Games

Daniel O’Byrne

University of Dublin, Trinity College, 2011

Supervisor: Brendan Tangney

In recent years there have been increasing calls to utilise modern information tech-

nology for educational purposes, especially in subjects such as maths where perfor-

mance figures have been gradually falling. Game-based learning research has indicated

there is a huge deal of potential in using modern computer gaming technology for ed-

ucational purposes [1, 2, 3, 4], yet the educational computer games produced thus far

have been almost universally disappointing for a variety of reasons such as poor design,

lack of funding, educational unsuitability of certain gaming genres and an inability of

these educational games to compete financially with their entertainment counterparts

[5, 6, 3].

This research project aims to investigate the suitability of modern mobile platforms,

such as the iPhone and iPad, to the development and deployment of educational games.

v

It was decided to develop a set of educational mathematics games on Apple’s iOS

platform in order to explore this topic. A generic 2D game framework was first devel-

oped which utilised the iOS platform’s existing core libraries to provide a wide range of

higher level functionality commonly used by modern games. This framework enabled

the rapid development of two separate educational mobile games. These two games

were each based around a different input method (the touchscreen and the accelerom-

eter) and they each covered a variety of mathematical topics including number theory,

inequalities, fractions and algebra.

An exploratory case study was used to investigate both the quality and the educa-

tional merit of the two games developed. Data was collected from three sources to give

an element of triangulation to the results (feedback from an educational expert, feed-

back from young players and observations from the researcher). The participants in the

case study comprised of an opportunistic sample of children between the ages of eleven

and fifteen, and the data collection instruments included interviews and questionnaires

administered before and after the participants had played through the games.

The results gathered clearly show that the two games developed were both en-

joyable and educational. They also strongly indicated that modern mobile platforms

are extremely well suited to the development of educational games, due to both their

current technological capabilities and the current realities of the mobile marketplace.

vi

Contents

Acknowledgments iv

Abstract v

List of Figures x

Chapter 1 Introduction 1

1.1 Motivation . 3

1.2 This Report . 5

Chapter 2 State Of The Art 6

2.1 Introduction . 6

2.2 Educational Theories . 6

2.2.1 Behaviourism . 7

2.2.2 Cognitivism . 7

2.2.3 Constructivism . 8

2.3 Game-Based Learning . 8

2.4 Edutainment . 9

Chapter 3 Design 13

3.1 Deciding on a Platform . 13

3.2 Building a Generic Game Framework 15

3.3 Splitting Focus Between Two Games 17

3.4 Simple Game Design, Open for Expansion 18

3.5 Design of the Touchscreen Game . 19

3.5.1 Game Mechanics . 19

vii

3.5.2 Educational Content and Methodology 24

3.6 Design of the Accelerometer Game . 26

3.6.1 Game Mechanics . 26

3.6.2 Educational Content and Methodology 30

3.7 An Agile Approach . 30

Chapter 4 Implementation 32

4.1 A View Based Application . 32

4.1.1 UIView . 34

4.1.2 GameState . 34

4.1.3 gsMainMenu . 35

4.1.4 GLES GameState . 35

4.1.5 gsTutorialImage . 35

4.1.6 gsNumberTheoryLevel . 36

4.1.7 gsAccellerLevel . 36

4.2 The Resource Manager . 37

4.3 Particle Engines . 38

4.4 The Touchscreen Game . 39

4.5 The Accelerometer Game . 41

Chapter 5 Analysis 43

5.1 Evaluation Methodology . 43

5.2 Expert Review . 43

5.3 Testing on Students . 44

5.3.1 Sample Selection . 44

5.3.2 Ethics . 44

5.3.3 Session Procedure . 44

5.4 Expert Feedback . 45

5.5 Student Feedback . 46

5.5.1 Changes in Opinions . 46

5.5.2 General Feedback . 47

5.5.3 Touchscreen Game Feedback . 48

5.5.4 Accelerometer Game Feedback 49

viii

5.6 Discussion of Feedback . 49

Chapter 6 Conclusions 51

6.1 Results . 51

6.1.1 Was a Useful Educational Game Developed? 51

6.1.2 The Strengths of Modern Mobile Games 52

6.2 Criticisms . 54

6.2.1 Testing Sample . 54

6.2.2 Lack of Gameplay Testing . 54

6.2.3 Scope of the Mathematics . 54

6.2.4 Development Scope . 55

6.3 Future Work . 55

6.3.1 Expand the Existing Game Applications 55

6.3.2 ‘App Store’ Release . 55

6.3.3 Larger Scale Case Study . 56

Appendices 57

Bibliography 60

ix

List of Figures

3.1 Touchscreen Game - ‘Practice Level’ Screenshot 21

3.2 Touchscreen Game - ‘Basic Numbers Level’ Screenshot 21

3.3 Touchscreen Game - ‘Negative Numbers Level’ Screenshot 22

3.4 Touchscreen Game - ‘No-Addition Level’ Screenshot 22

3.5 Touchscreen Game - ‘Squares Level’ Screenshot 23

3.6 Touchscreen Game - ‘Fractions Level’ Screenshot 23

3.7 Touchscreen Game - ‘Algebra Level’ Screenshot 25

3.8 Accelerometer Game - ‘Basic Numbers Level’ Screenshot 28

3.9 Accelerometer Game - ‘Fractions Level’ Screenshot 28

3.10 Accelerometer Game - ‘Algebra Level’ Screenshot 29

4.1 Class Diagram of the Framework’s View Based Architecture 33

4.2 Main Menu Screenshot . 34

4.3 Touchscreen Tutorial Screenshot . 36

4.4 Accelerometer Tutorial Screenshot . 36

4.5 Victory Screen Screenshot . 40

x

Chapter 1

Introduction

Computer Games are now one of the major forms of entertainment worldwide, despite

only becoming commercially available in the 1970’s. Since the early days of games

such as ‘Pong’, computer games have been catering to a player base of ever increasing

size and diversity - resulting in an estimated 72% of American Households now playing

video games and with the average age of a ‘gamer’ being 37 [7].

The expectations of these players, and the technical capabilities of gaming machines,

have been increasing almost exponentially for years, and players have now come to ex-

pect their games to contain elements such as rich, highly detailed 3D worlds, advanced

gameplay mechanics and challenging AI. This in turn has resulted in a steady increase

in costs related to the development and publication of modern computer games. De-

veloping a game in the seventies generally involved only a few developers and took only

a few weeks to complete. Creating a modern computer game today on the other hand,

often involves the collaboration of hundreds of highly specialized individuals such as

artists, programmers and designers and the process can take anywhere from two to six

years.

A more limited version of these trends can be found in the subgenere of ‘mobile

gaming’. Mobile games are those played on portable handheld devices which generally

have much lower technical capabilities when compared to a PC or a home gaming con-

sole on account of their portable, battery powered nature. Traditionally the portable

market was cornered by machines such as the Nintendo GameBoy, Nintendo DS or

Sony PSP and these devices followed a similar increase in technical capabilities over

1

time mirroring their non-portable equivalents, if on a slightly smaller scale. They also

mirrored the marketing and distribution chains of those non-portable machines, result-

ing in those devices being primarily gaming devices and the games for them being sold

at relatively high prices - with the vast majority of the profit being split between the

retailer, the publisher and the console manufacturer.

Over the last five years however, there has been a radical shift in the mobile gaming

market due to the introduction of modern smartphones, such as the Apple iPhone and

those powered by Google’s Android platform. Mobile phones have had games devel-

oped for them for over a decade, but they were generally of a very poor quality when

compared with the games available for handheld consoles of the same time period.

Mobile phones also lacked a good marketing and distribution system for their games,

which prevented them from generating meaningful sales. The new generation of smart-

phones are extremely powerful however, and were designed from the start to act as

platforms for numerous different types of applications. Furthermore, their increased

internet functionality provides a perfect marketing and distribution platform for these

applications, such as games, especially when combined with centralised storefronts such

as the Apple ‘App Store’.

These new smartphones provide a platform capable of running games almost on par

with the dedicated handheld gaming consoles. Furthermore, the new storefronts enable

developers to deliver their content almost directly to their customers at a price of their

own choosing. This removes the retailer and publisher from the equation, leaving the

developer a much larger share of the profits. It has also resulted in a huge drop in

the price of these games, with the standard price point of gaming applications settling

for the moment on 99c, as opposed to the 40 Euros price point of games found on the

dedicated handheld gaming consoles like the Nintendo 3DS.

Over the last two years, tablet PC’s have also had a serious impact the mobile

market - providing even more technical capabilities and larger screens than the new

smartphones. Tablet PCs, such as the Apple iPad, are often based on the same op-

erating systems as the latest generations of smartphones which means it is extremely

easy to develop games for both simultaneously, or to port games from one to the other.

These tablet devices also have access to the same sort of online storefronts as the

smartphones. While it is still too early to definitively see what sort of long term effects

these devices will have on the games industry, gaming applications are by far the most

2

popular available and several games have achieved critical success on these new plat-

forms - for example, the game ‘Angry Birds’ has achieved over 200 million downloads

to date.

1.1 Motivation

As the games industry grew, so did the calls to utilise these new, emerging entertain-

ment technologies for educational purposes. Game-based learning research has repeat-

edly shown that games and gameplay have the potential to provide a superior learning

environment [8, 9, 3], yet almost all attempts to produce educational games have been

disappointing [6]. In many cases, this stemmed from a lack of sound learning peda-

gogies used in the design and development of the games, but another potential reason

for the lack of success of educational games comes from the pre-existing expectations

of players, based on their familiarity with entertainment based games.

Modern computer games are extremely engaging and a lot of fun to play, but

many of the most popular genres and gaming tropes aren’t necessarily well suited to

educational purposes - while first person shooter games can be fun to play for example,

it is difficult to use such a simplistic interaction style to deliver a meaningful educational

experience[4]. To some degree however, educational games need to compete with their

entertainment based counterparts and while it may not be possible for them to be as

‘fun’ as those games on account of their need to achieve an additional educational goal,

they need to come close and they also need to have equivalent production values.

The educational games market, while potentially quite large, has in reality proved

to be far smaller than the entertainment market. Poor sales of educational games

over the last 30 years has led to a serious decrease in available investment, which

in turn has led to a decrease in production quality when compared to entertainment

based games. The educational games industry, or ‘edutainment’ industry, was simply

incapable of meeting the huge investments required to make a top quality game once

those games started costing millions to produce. Despite these difficulties however, if

good educational games could be successfully developed, they could potentially have a

huge positive impact on the standards of education afforded to learners.

The emerging trends in the mobile gaming industry could potentially offer a renewed

hope for educational games. The production values and levels of fidelity expected of

3

mobile games, while high, are far lower than their console or PC equivalents. Many of

the mobile games being developed today are being developed by small teams of between

2 and 8 people as opposed to the hundreds needed for the production of a full scale

console or PC game. Also, the lower price point could enable educational games to

reach a far larger market and make them more palatable to players who would generally

prefer to get an entertainment title or who might not otherwise risk their money on

an unknown entity. This, combined with the higher percentage profit for developers

which comes from cutting out retailers and publishers could improve the profitability

of educational games.

On a more technical level, the user input methods afforded by the new mobile

devices might suit educational games far better than the controller or keyboard and

mouse set-ups used by traditional games. Touch screens can theoretically be used to

create more intuitive interfaces than can be created using more traditional input devices

(especially for younger learners and non-gamers). These interfaces could potentially

provide for deeper interaction as they allow users to naturally select and move things

very easily. The accelerometers found in many of the new devices is even easier to pick

up and use as it enable players to control elements of the game by simply tilting the

device in a given direction.

The goal of this project was to investigate the educational potential of these new

mobile devices, especially in light of the economic advantages they may present to

educational game developers. In order to achieve this, it was decided to develop two

educational games from scratch on one of these mobile platforms - in this instance

the Apple iOS platform. This involved first developing a basic 2D game framework

(which provided a simple API to perform common tasks such as playing a sound or

displaying a texture on the screen) and then utilising that framework to construct

the two educational games. It was decided to develop two games in order to explore

the main two types of input found in modern mobile devices separately - one game

was designed to be controlled using the touchscreen, while the other was designed to

be controlled using the accelerometer. Developing these games on the iOS platform

provided not only an insight into the challenges of mobile game development, but also

how it compared and contrasted with development for a traditional console or PC

game.

Once completed, these two games were given to an educational expert to get feed-

4

back on their educational merit. They were also extensively playtested with a number

of children between the ages of 11 and 15 years in order to determine their quality,

usability and to further evaluate their educational effectiveness.

1.2 This Report

This report will contain a review of the current state of the art in learning theory,

game-based learning and ‘edutainment’ as they relate to this project. Some of the

major learning theories and how they relate to game design will also be discussed.

Some of the major design decisions made during the course of this project will then

be explained, as will the reasoning behind them. This will be followed by a detailed

summary of the implementation and development of both the game framework and the

games themselves.

A detailed analysis of the project will then be presented. First the feedback from

an educational expert, as well as the results from an exploratory case study, will be

explained and analysed. An analysis of the project as a whole will then take place in

light of this feedback, focussing on both the educational merit and the overall quality

of the two games developed.

The conclusions drawn from these results, as well as the researchers own observa-

tions, will then be presented and a brief outline of the future work to be carried out

will be given.

5

Chapter 2

State Of The Art

2.1 Introduction

Education is becoming increasingly important as many nations, including Ireland, at-

tempt to become knowledge based economies [10]. An increased uptake in educational

standards, especially in science and technology subjects, is required to drive this shift

and maintain such an economy, yet recent trends show attainment in these core skills

is dropping [11]. Many theorise that the education system itself, which has remained

primarily unchanged since world war two, is flawed - either due to the lack of sound

pedagogical principles employed by the system [12] or due to the rise in expectations

from a new generation of multimedia learners (or ‘digital natives’), who’s exposure to

modern technology such as computer games have led them to expect a richer learning

environment than the traditional classroom situation can provide [13]. Modern edu-

cational technology, and modern computer games in particular, are seen by some as

potential solutions to this problem, but their impact has thus far been minimal for a

wide variety of reasons which will be discussed later in this chapter.

2.2 Educational Theories

In order for any piece of educational software to be truly successful, it must be based on

sound learning methodologies [14]. How people learn and how multimedia technology

such as computer games can best support learning is an area that has received a great

6

deal of study in recent years, with a number of unique and often competing theories

emerging on how humans learn and what conditions are best for learning.

2.2.1 Behaviourism

Behaviourism considers the reinforcement of positive learning behaviour with reward

or punishment and is easily implemented in a game world by rewarding a player for

demonstrating proficiency at a particular task - by completing a level for example.

While the implementation of reward systems in educational settings has been criticised

for reducing students’ intrinsic motivation in tasks once such rewards are removed [15],

the effectiveness of such reward based motivation has been repeatedly proven [16]

Virtual rewards of varying perceived value can also be used to encourage better

behaviour in a player. For example, if a player were tasked to create the number 10,

creating the equation 5 + 5 might grant the player 50 points while the equation 2 *

5 might grant them 200 points - since multiplication is a more advanced operation

than addition. In addition to this, the use of virtual rewards in a controlled virtual

environment, such as a computer game, can be completely controlled by the game

designer. This enables them to always be given fairly - removing a major potential

issue with the implementation of reward based educational systems in the real world.

Virtual rewards also never run out (though poor game design can still lead to a decrease

in their perceived value over time).

2.2.2 Cognitivism

Cognitivism is concerned with how best to achieve learning outcomes with consideration

towards human memory and how it works. It replaced behaviourism as the dominant

learning paradigm in the 1960s and is often concerned with the specifics of how learners

form mental models of the world in order to understand it. Topics from this area such

as cognitive load [17] and information processing theory are extremely important to

the design of all multimedia learning tools, as they can outline the optimum frequency

and format for the introduction of new material.

Cognitive theory research has also served to highlight the value of multimedia ap-

proaches to learning, through work such as Paivios Dual coding theory [18], which

7

displayed the effectiveness of using both visual and verbal mediums to transmit in-

formation. There has been a significant amount of research carried out in this area

recently, most notable by Mayer, who applied Paivio’s initial theories to a multimedia

learning environment, such as those that can be created by computer games [19].

2.2.3 Constructivism

The educational theory of constructivism proposes that learning is an active, con-

structive process, and as such the best situation for learning is one in which a learner

constructs their own solutions to problems [20, 21]. More recent work has indicated

that such learning is even more beneficial when it occurs in a group, where a social

component can help to reinforce learning and reflection [22]. Games and other multi-

media simulations are often touted as enabling such learning through the exploration

of virtual worlds or microworlds [23].

2.3 Game-Based Learning

It has been established that animals develop more rapidly through play [24] and the ab-

sence of such play can have a negative impact on the development of children [25]. The

concept of play though, has proven very difficult to define - with competing definitions

regularly being drawn [26, 27].

Game-based learning is based on the idea that games, through the directed use of

‘play’, have the potential to provide an excellent learning environment - one far better

than what most learners receive today. Games, especially modern computer games,

have several strengths which could make them ideal as an educational medium.

Good games are fun. While ‘fun’, like ‘play’, has proven difficult for academics

to satisfactorily define, the fact that millions of children worldwide play computer

games, of their own volition, is a testament to this fact. Games have been found to

be motivating and engaging for learners of all ages [8, 9] The traditional classroom

situation however, is rarely regarded by children as ‘fun’, with the experience more

often being described as ‘boring’ by today’s learners. Motivation is a key aspect of

effective learning and yet a lack of motivation is a major problem in education today.

Even if a child is initially motivated, such motivation needs to be sustained through

8

active involvement, feedback and reflection [9].

Modern computer games are clearly capable of sustaining a player’s motivation -

with many games taking tens, if not hundreds, of hours to complete. Many of these

games are also relatively difficult - yet they manage to encourage players to persevere

and attempt to find new solutions to problems long after most would have simply given

up in a classroom environment. Computer games also provide a safe environment in

which it is okay for the player to fail. In fact it is often expected that players will

fail at a task many times before finding the correct solution. This closely mirrors

the constructionist theories on learning and contrasts with the traditional classroom

environment, where children are expected to always be correct [28].

A great deal of research into game-based learning has been carried out over the past

few decades, with many extremely positive results emerging. Simulation games have

been successfully used to train advanced skills and tactics by the American military

and air force for example [29, 30].

Much of the work in the field aimed at younger learners (primary and second level)

has focussed on using commercially available entertainment based games to support

existing curricula objectives however, and this has met with varying degrees of success

[31, 5]. These studies involve taking off the shelf entertainment games (often strategy

games), either as they were originally sold or with some modification, and using them

in a school environment. While the results of these studies often indicate learning is

taking place, it is often not the specific types of learning that was initially desired

[31].The reason for this is that a great deal of time is ‘wasted’ learning how to play the

game itself or focussing on areas of the game that are entertaining but don’t contain

the desired educational content.

An obvious solution to this problem would be to develop specifically tailored educa-

tional games aimed at achieving specific educational goals. However the ‘edutainment’

games produced thus far have been extremely disappointing for a number of reasons

which will be discussed later in the next section.

2.4 Edutainment

The ‘edutainment’ industry became popular in the early 1990s as a huge influx of

educational software was developed which claimed to provide a ‘better’ way for chil-

9

dren to learn. Much of this software took the form of computer games, or contained

‘game-like-elements’, which claimed to make learning more ‘fun’. Unfortunately, little

to none of this software was developed using sound pedagogical principles, so the ed-

ucational component tended to consist of drill and test exercises and multiple choice

questionnaires poorly disguised with flashy graphics [6]. The gameplay elements of this

software were also extremely lacking - with the edutainment games being technologi-

cally far behind the blockbuster entertainment games available on the market at the

time, and with their gameplay often being repetitive, derivative and boring in nature.

The edutainment industry swiftly collapsed by the start of the new millennium,

as consumer interest in educational games lessened. Today, many educational games

and brands still exist, but they no longer directly compete with entertainment titles

like they once attempted. Instead, the educational games industry has become an

almost completely separate entity to the commercial games industry - with the target

demographic being parents and educational institutions rather than children (who have

proved to be far more likely to opt for an entertainment based game if given the choice).

This is a severely limited market compared to entertainment computer games [32].While

the graphics have improved, the basic gameplay and experience found in educational

games has remained the same for the past two decades with few exceptions.

Despite the seeming failure of educational games, the entertainment based games

industry has become incredibly successful in recent years. The games industry is esti-

mated to be woth approximately US$68 Billion globally [33] and is often seen to be one

of the main driving forces behind the advancement of commercial graphics hardware.

The variety of gameplay experiences have continued to grow and change in tandem

with advancements in hardware over the past two decades and computer games have

now diversified into a wide variety of genres catering to a wildly diverse global audience.

In theory, the advancement of the technology and techniques of the entertainment

games industry should enable for the creation of better, more successful educational

games, but there remain a number of significant challenges to the creation of good

educational games.

As computer games have grown and evolved, so too have children’s expectations of

them. What was considered an amazing game ten, or even five years ago, most likely

wouldn’t do well if newly released onto the market today. The expected graphical and

technical fidelity of a modern computer game is enormous, and in order to achieve this

10

fidelity, so are the development costs. Many modern computer games can take teams of

one hundred or more people, two to five years to create and can cost over one hundred

million euros to develop. Due to the comparatively small market for educational games,

it is unlikely one could raise even a fraction of this level of investment.

Cost isn’t the only obstacle faced by educational games however. For every great

game released, there are also a number of failures - game design is still considered by

many to be more of an art rather than a science [34] and many big budget entertainment

titles fail to achieve that hard to define state of ‘fun’. Developing a game that is both

fun and educational is even harder - while educational elements can be enjoyable, a

balancing act usually needs to be played between the amount of educational content

and the amount of pure entertainment placed into a game.

Another potential issue faced by educational games is that of input devices and

established gameplay mechanics. The main genres and gameplay mechanics found in

the games industry have evolved in part to fit the input devices provided by either

consoles (gamepads) or the PC (keyboard and mouse). Entertainment games just

have to provide a fun experience, so if something doesn’t translate well to the medium

or can’t be achieved easily with the input devices available, its simply isn’t used.

The most common gameplay elements are often encapsulated in game engines - which

can be re-used between games to reduce development time and costs significantly.

Educational games on the other hand need to achieve specific educational objectives

- which often require completely unique gameplay mechanics. When this requirement

is combined with the previously mentioned technological limitations it can severely

hamper a development team’s design freedom and increase the cost of developing good

educational games.

A new industry trend may help alleviate some of these issues however. In 2008

Apple opened the online ‘App Store’ in support of its increasingly popular iOS platform

(used for the iPhone, iPod Touch and iPad). The ‘App Store’ has proven to be hugely

popular amongst both developers and consumers, with over 250,000 apps released and

over 5 billion downloads as of September 2010 [35]. As these are portable platforms,

with limited hardware capabilities and screensizes, the expected fidelity levels of their

games are more easily achieved than games found on the current generation of dedicated

gaming hardware.

This has led to the development of gaming applications by small teams, often

11

numbering less than 10 people. Generally these platforms also offer more natural user

interfaces than many existing gaming platforms, with accelerometers and touch screens.

These features, combined with the fact that the ‘App Store’ also provides an extremely

low cost route to a growing global marketplace, could enable the development of good

educational games to become both viable and profitable.

12

Chapter 3

Design

This chapter will discuss some of the major design decisions and challenges this project

presented. Firstly, the choice of mobile platform on which to construct the game

application will be discussed and justified. The need to design a framework on which to

base the mobile games will be explained, as will the decision not to use one of the game

engines that are already commercially available. The reasoning behind the decision to

split the focus of the project between two separate games will then be given, and the

basics of each game design and how those designs evolved, will be discussed. Finally,

the software development methodology adopted for this project will be discussed, as

will the reasons behind its adoption.

3.1 Deciding on a Platform

A number of new operating systems and platforms have emerged to compete for the

growing mobile market. Amongst these, the main contenders are the iOS platform from

Apple, Google’s Android platform and the most recent addition, Microsoft’s ‘Windows

Phone 7’ platform. Blackberry and Nokia’s Symbian also control major shares of the

smartphone markets, however up until very recently the majority of their devices don’t

have the major technological advantages that the others have, such as touchscreens

and accelerometers.

The ‘Windows Phone 7’ platform is the newest to the market and apps can be

created for it using Microsoft’s XNA system. XNA has been around since 2006 and

13

can also be used to create games and applications for the PC and Xbox 360. The code

base and libraries used to create applications for the ‘Windows Phone 7’ platform are

almost identical to those used on the PC and Xbox, so there is an existing user base

and support structure to assist with development. The ‘Windows Phone 7’ platform

hasn’t yet managed to grasp a significant share of the mobile market however[36], and

the resultantly small user base prevents most developers from considering it as a viable

alternative to Android or iOS.

The Android platform was released by Google in 2007 and since then it has become

one of the dominant mobile operating systems on the market. One of the main reasons

for this is its open nature - the Android operating system is based on the Linux kernel

and its low costs and open source roots have led to a number of third parties using it

as an operating system in their own phones. While this has led to the huge adoption of

the Android operating system, with analyst expecting its market share to reach 50%

over the next year[36], it also presents developers with a number of issues. Android’s

share of the market is heavily fragmented, with a wide variety of different hardware and

potentially conflicting software adding considerable difficulties to the development and

testing of new applications. Furthermore, the Android ‘app’ market is also fragmented,

with a variety of competing online marketplaces making it more difficult to successfully

commercialise on and market new applications.

Apple’s iOS platform, which runs on both the iPhone and the iPad, is currently

ranked second in the smartphone market with between 15% and 20% of the market

share[36], but it is the clear leader in the tablet market with an estimated 68% of the

market share[36]. More importantly however, there is a single unified marketplace for

the iOS platform - the Apple App Store. While the vast majority of content on the

store is created by third party developers, Apple’s control ensures a certain minimum

standard of quality for the user experience provided by these applications. Apple

also completely controls the hardware on which the iOS platform runs, which means

developers can tailor their applications to the hardware’s strengths and limitations more

easily, and to a greater degree, than they can for Android devices. These advantages,

among others, have lead to the iOS platform far outperforming the others in terms of

application sales, controlling over 80% of the market revenue [37]. This has led most

mobile developers to view the iOS platform as the primary mobile platform despite the

Android’s superior smartphone market share. While this may change in the future, for

14

the moment it results in most mobile developers developing for the iOS platform first

and then porting their applications to other platforms at a later date.

The iOS platform’s libraries and applications are written primarily in objective-C,

Apple’s own derivative of the C language, though they can mostly also be written in C

and C++. While the iOS platform itself is relatively new, having only been released

in 2007, many of its libraries and core frameworks are from Apple’s Mac operating

system which means that the core codebase is actually quite mature and stable. Apples

development environment, Xcode, is also very mature and stable, and includes a wide

variety of useful tools and support software such as performance analysers and an iOS

simulator.

It was decided to develop this project’s applications for the iOS platform, primarily

for the iPad as the larger screen size opened up additional options in terms of game

design. Another advantage of the iOS platform is that the applications code for the

iPad and the iPhone are almost identical, making it possible to port from one to the

other. iOS development must be done on a Mac, as Apple’s development software is

designed to only run on their own operating system. While this would normally argue

against developing the project’s application for the iOS platform, a suitable Mac and

first generation iPad were available and provided for the project.

3.2 Building a Generic Game Framework

The iOS platform is extremely advanced when compared to the last generation of

mobile operating systems. It’s derived from Apple’s Mac OS X and has a wide selection

of core libraries to aid developers in the creation of new and unique applications.

Unfortunately, games are also very complicated and while the iOS libraries enable

developers to tap into the huge potential contained within devices like the iPad and

the iPhone, it does so at a very low level. Some common application types such as

user interfaces, image viewing and on-screen keyboards have high level support, but

this functionality is generally too restrictive for use in game applications.

For more advanced graphical applications, like games, the iOS platform supports

OpenGLES - a mobile version of the standard cross platform graphics library OpenGL.

For audio, OpenAL is supported and the platforms native objective-C language sup-

ports a wide range of data types used in the development of modern games. Good

15

game applications tend to be technically complex however, even if they appear rela-

tively simplistic, and they generally require more advanced functionality than these

libraries support ‘out of the box’, such as loading and displaying textures, displaying

fonts, generating particle effects and saving the gamestate when the application closes.

Game applications generally have a base engine or framework which supports this more

advanced functionality with a high level API.

A number of commercial game engines such as Unity3D[38] and Unreal[39] support

the iOS platform, however they tend to be optimised for existing game types such as

first person shooters or 2D platformers and can hamper the development of more unique

games specifically tailored to educational purposes. Many application developers create

their own game engines, either from scratch or based on existing code, and then use

these engines as the basis for a number of different games - improving and expanding

them to support whatever additional functionality is needed. This was the approach

adopted for this project as it would provide the advanced functionality needed, while

also enabling the engine to be kept relatively small and lightweight by not including

a huge range of features unlikely to be used for the projects own game applications.

It would also have the added effect of providing a more thorough insight into the

additional challenges facing developers who need to create their own engine from scratch

- as would most likely be the case for any developer who wanted to develop a series of

educational games.

The design of the project’s framework was based on the premise that any educa-

tional game would require at least three types of higher level functionality - the ability

to play sound, the ability to display a moving texture and the ability to display moving

text. This led to the development of Font, Texture and SoundEngine classes. Mobile

devices have far more stringent limitations in terms of processing power and memory

than PCs or consoles and the iOS platform lacks an automated garbage collector, so

memory must be managed manually. This necessitated some form of unified resource

manager to manage what assets were stored in memory at any given time, among

other issues. The resource manager class was designed with a class level instructor

- meaning only one instance of it would ever exist. Having a single unified resource

manager, which spanned across multiple levels and screens, helped alleviate a number

of potential memory management issues.

Other commonly needed game elements were added to the framework later in de-

16

velopment and these included a separate particle engine, a number of macros defining

useful functions such as random number generator and a number of commonly used

vector-math functions such as the dot and cross products.

3.3 Splitting Focus Between Two Games

Many modern mobile devices, including the iPhone and iPad, have multiple different

input methods. The two most common methods of interacting with the devices are

through the touchscreen or the accelerometer. In most applications the accelerometer

is primarily used to simply flip the screen and change its orientation between landscape

and portrait modes. Many gaming applications have made more thorough use of the

accelerometer however, by using it to take control of in game characters and objects.

While the accelerometer is more limiting than the touchscreen in many ways, it is

extremely easy and natural to use.

The touchscreen is the main input method used for the vast majority of applications

on modern mobile devices. It can be used to select an object or a group of objects, to

drag these objects around the screen and even to type (through the use of a virtual

keyboard). Like the accelerometer, learning to manipulate the touchscreen is very intu-

itive and easy to pick up - though applications based on it can be far more complicated

than those designed to be controlled by an accelerometer and as such can be harder

to use. The touchscreen can also be better suited to ‘selecting’ from or manipulating

a group of objects in a dynamic way than a game controller is, and this is behaviour

commonly desired in educational games.

Rather than focus on a single game, it was instead decided to develop two games.

One game would be designed to be controlled by the touchscreen while the other would

be designed to be controlled by the accelerometer. Basing each game on a different

control and input scheme enabled an investigation into which of the two input methods

younger learners preferred and found easier to pick up. Developing two different games

also lessened the effect the ‘game design’ would have on the feedback received from

educational experts and playtesters towards the end of the project with regards to the

educational potential of the platform as a whole.

By first developing a basic framework and then using that in the development of

the games, the decision to develop two separate games didn’t represent a decision to

17

double the amount of development work. When coupled with the fact that both games

were designed to use very similar artwork and game-mechanics, the second game could

be developed in a fraction of the time it took to develop the first.

3.4 Simple Game Design, Open for Expansion

The games found on the new mobile platforms tend to be far shorter and simpler than

their non-mobile counterparts for a number of reasons. This is partially due to the

smaller design team and development time afforded to mobile titles, but it is also a

reflection on the different circumstances users find themselves in when playing them - a

console or PC gaming experience can, and often does, involve gaming sessions of several

hours in length, while mobile games are designed to be played on the go, while travelling

or for short breaks only a few minutes long. To reflect this, the games developed for

this project were designed to be simple to just ‘pick up and play’ and contain levels

that could be completed in only a few minutes. Keeping the games simple was also

necessary to enable younger players to pick them up quickly.

While the core mechanics needed to be simple, the games themselves needed to

be open to expansion in the future. While it wasn’t necessary to develop the games

to a point where they could be released commercially on the App Store, they needed

to accurately reflect fully developed games so they could be properly evaluated. In

order to do this, they were designed with future features and expansions in mind, such

as additional levels, enemy types and power-ups, which restricted the potential game

designs to those that could be fleshed out into fully featured games rather than one off

novelties.

The limitations of having a single developer also featured heavily on the game

design. Certain elements were intentionally kept simple or added to ease the amount

of artwork and development time required. For example, all of the game objects were

restricted to spheres, as this simplified not only the collision detection code but also the

artwork as textures could simply be re-coloured to represent different objects. Particle

engines were also used extensively to provide much of the games graphical appeal. ‘

18

3.5 Design of the Touchscreen Game

The first game developed was the one designed around the touchscreen. The educa-

tional content was originally envisioned as being basic mathematical number theory,

but this was later expanded to also include algebra, fractions and squares.

3.5.1 Game Mechanics

As seen in Figure 3.1, the screen is broken into separate regions during the touchscreen

game. At the top of the screen is the menu bar. This allows players to exit to the main

menu at any time during a game, displays the current level being player and displays

the player’s current score. The bottom fifth of the screen contains the numbers and

mathematical operators currently available to the player. The rest of the screen is

taken up with the ‘playfield’, which contains the goal star the player must hit to win

the level as well as various enemies which move around on set paths blocking the

player’s progress.

The goal of the levels in the touchscreen game is for the player to reach the star at

the top of the screen. There are a number of ‘enemies’ blocking the players path to the

star however, and the player must generally destroy a number of these enemies before

it is possible to reach the star. The player can drag, or fling, a number of spheres

around the screen and these are used to clear a path. Enemies, the goal star and the

player’s spheres all have values displayed on them. Enemies and the goal star can only

be destroyed by hitting them with a sphere of the same value.

The player can manipulate the value of their spheres by using the mathematical

operators they have available in a given level. For example, a player could select a

sphere with a value of five, then select the multiplication operator and finally select a

second sphere with a value of three. This action would result in a new sphere, with

a value of fifteen being spawned and replacing the first operand in the operation (the

sphere with the value of five). The sphere used as the second operand in the operation

would disapear, to be replaced by a new randomly valued sphere after a few seconds.

The numbers made available to the player are always between one and nine (with

the exception of the negative numbers level, in which the numbers have a 50% chance

of being negative), so the players are forced to make use of the operators available to

the right of their numbers in order to create spheres with larger values. The values

19

given to newly spawning player spheres are assigned pseudo-randomly (less sevens are

spawned as they are harder to work since they are large primes).

While the numbers provided to the player and the values of the enemies all fall

within a particular range for each level, they are randomly generated within that range.

This gives all of the levels a very high degree of replayability, as players will almost

always find themselves having to use and generate different values. It was important

that the game support this sort of procedural level content in order to make it suitable

as a tool for learners to practice with.

While the player only needs to destroy enough enemies to get to the goal star, points

are awarded for every enemy the player destroys, so it is often in the players interest

to destroy extra enemies. To counter this however, the player looses points over time -

which serves to lend the game a sense of urgency. How many points the player gets per

enemy destroyed changes depending on the level, meaning players can be given more

time to generate more complicated numbers. The base score values have the player

receiving twenty points per enemy they destroy, but they lose one point per second

and an additional five points for every enemy they hit in error and fail to destroy. This

means players must hit a new enemy every twenty seconds on average, assuming they

make no mistakes, to get a score above zero - though most players would want to get

as high a score as possible and so would want a much higher average than that.

Seven separate levels were developed for this game and while they mostly have the

same enemy layout and behaviour patterns, the mathematical content for each level

is different. The enemies in each level are divided up into four rows, each of which is

twice the width of the screen. These rows move back and forth across the screen, in

a slightly similar vain to those found in the classic space invaders game - except that

these rows extend beyond the width of the screen, making the enemies in the centre

more valuable as they are on the screen longer than those at the edges. Each row moves

in the opposite direction to the row immediately below it, which prevents players from

making a permanent, stable path from the bottom of the screen to the star - at least,

not without destroying a large amount of enemies in each row.

While the design of the levels developed were loosely inspired by space invaders,

the game design as a whole is far deeper than that. A number of alternative level

layouts were prototyped and a huge variety of different levels could be created simply

by changing the enemy positions and movement patterns. Additionally, the game is

20

Figure 3.1: Touchscreen Game - ‘Prac-
tice Level’ Screenshot

Figure 3.2: Touchscreen Game - ‘Basic
Numbers Level’ Screenshot

open to expansion through different enemy types (such as enemies that can only be

destroyed by player spheres created using division or which were created using four or

more other spheres), powerups (enabling things like a blast radius when you destroy

an enemy, or spheres which destroy enemies with values close to their own rather than

having to exactly matching their own value) or indestructible obstacles on the map

such as walls, which would limit the range of player movement.

Practice Level

This level, as seen in Figure 3.1, is used to provide a basic introduction to the game.

Most of the enemies can be destroyed by the numbers already available to the player,

so players don’t need to use the operators much and they can afford to make mistakes.

The purpose of the level is not to test or improve the players mathematical abilities,

but to get them familiar with the games controls - especially if they haven’t used a

touchscreen device before.

21

Figure 3.3: Touchscreen Game - ‘Neg-
ative Numbers Level’ Screenshot

Figure 3.4: Touchscreen Game - ‘No-
Addition Level’ Screenshot

Basic Numbers Level

This level, as seen in Figure 3.2, is the first ‘proper’ level of the game. Here the

enemies’ values range from 0 to 64, so the player is forced to make use of the operators

in order to finish the level. The values found on the enemies increase successively with

each row as the player makes their way up the screen, requiring the player to perform

progressively more complex actions as they progress through the level.

Negative Numbers Level

This level, as seen in Figure 3.3, is similar to the previous level with the addition that

approximately half of the enemy values are negative. Player spheres, both those the

player starts with and those that re-spawn as the player uses them, also have a 50% of

being negative.

22

Figure 3.5: Touchscreen Game -
‘Squares Level’ Screenshot

Figure 3.6: Touchscreen Game - ‘Frac-
tions Level’ Screenshot

No Addition Level

This level, as seen in Figure 3.4, is also similar to the Basic Numbers level, except that

the addition operator has been removed. This level was developed after it was observed

that players had a tendency to over-rely on addition to get them through the game

(Some players would just continually add small numbers together to achieve almost

any large number). This level forces players to make more use of the more complicated

operators.

Squares Level

In this level, as seen in Figure 3.5, the enemy values are represented as squares (a

number to the power of two). This required players to not only be able to generate a

given number, but also to understand what squares are.

23

Fractions Level

In this level, as seen in Figure 3.6, the enemy values are represented as fractions. While

the bottom row of enemies is comprised mainly as common fractions in their simplified

forms, the fractions found in each row of enemies grow in complexity as players move

up the screen. While the fractions found in the upper rows can be quite complex, they

can all be simplified down to more basic fractions. Despite the fact that the enemies

are all fractions, the player is only given whole numbers to work with - forcing them

to create fractions on their own. This requires players not only to use the division

operator, but also to grasp that the line in a fraction represents division. Furthermore,

when the player creates a fraction, it is automatically reduced to its most simplified

form - forcing players to realise that a complex and simple version of a fraction can

have the same value (eg. 1/2 == 2/4 == 4/8). Generating player spheres with fraction

values was considered and tested as well, but having to deal with random fractions in

that way proved too difficult for most players.

Algebra Level

In this level, as seen in Figure 3.7, the enemy values are represented as simple algebraic

equations which the player must solve. The layout of the level is slightly different from

the others in that the enemies are much larger and, as a result of that, there are fewer

of them. This was necessary in order to fit the equations onto the enemies, as they

take up a lot more space that singular numbers or fractions. In order to destroy an

enemy in this level, the player must hit it with the value of the unknown variable of the

algebraic equation. The unknown variable found in each equation can be represented

by a number of different letters, highlighting to player the fact that the character used

to represent the unknown variable doesnt matter.

3.5.2 Educational Content and Methodology

As mentioned in the previous section, the educational content for the game was origi-

nally envisioned as being basic mathematical number theory, but it was later expanded

to also include squares, fractions and algebra. In the context of this project, basic math-

ematical number theory is taken to be number theory as it relates to young learners in

24

Figure 3.7: Touchscreen Game - ‘Algebra
Level’ Screenshot

late primary or early secondary education - effectively addition, subtraction, multipli-

cation, division and negative numbers. The touchscreen game was designed to provide

players with both a motivation and an opportunity to practice, experiment and become

more comfortable and familiar with these topics.

The gameplay encourages constructionist learning in that players are not asked

what an answer is to a given question, but are rather tasked with creating a particular

answer. There are always multiple ways to create a specific number given the numbers

and operators provided to the player in the game, especially considering new numbers

re-spawn as old ones are used. This allows players the freedom to come up with their

own solutions in order to win the game. The game also draws on the behaviourist

learning theories in its emphasis on score - with the potential for high scores being

used as a motivating factor and the fact that players continually loose points over time

acting to discouraging inactivity or hesitation.

At the same time, the score players receive at the end of the level is dependent on

25

both how many enemies they destroyed and how quickly they did so. This encourages

players to not only destroy additional enemies (effectively, generating more specific

numbers and getting more mathematical practice), but also to find more ‘optimum’

solutions to generating these numbers- for example, to generate a large number it is

generally quicker to use multiplication once rather than adding several small numbers

together)

As the game was designed around generating specific numbers, it lent itself very

well to extension in terms of the mathematical content covered. The core gameplay

mechanics still revolve primarily around basic number theory, but those numbers can

be used to tie into other areas of math such as algebra or even other areas of number

theory such as powers. New concepts could be covered by simply changing the format

of the enemy values, without requiring any major changes to the gameplay.

3.6 Design of the Accelerometer Game

The second game developed was designed around an accelerometer control scheme.

The accelerometer game was designed to be simpler and faster paced than the touch

screen game and to place the player in a more reactionary position. As mentioned

previously, the accelerometer generally offers less precise control than the touchscreen,

but it can be easier to pick up quickly on account of its simplicity (just tilt the device

in a specific direction). Development on the accelerometer game only began towards

the end of the project, so it was decided to develop only 3 levels, each dealing with a

different mathematical area.

3.6.1 Game Mechanics

The screen is broken into separate regions during the accelerometer game, in similar

vain to the touchsreen game. At the top of the screen is the menu bar which allows

players to exit to the main menu at any time during a game, displays the current level

and displays the player’s current score. On the bottom right hand side of the screen

there is a slider which can be used to adjust the games speed. The bottom of the screen

is taken up by a triangular pivot, under which is a value which changes as the game

progresses and two inequality signs.

26

Depending on the level, various values fall from the top of the screen and the player

is tasked to make them fall on the correct side of the pivot value. If they are less than

or equal to the pivot value, they should fall on the left and if they are greater than

the pivot value then they should fall on the right. Players can exert control on the

falling values by tilting the device left or right and the degree to which they tilt the

device determines the angle to which the values fall (they fall approximately towards

the ’ground’, so tilting the device at 45 degrees leads to them falling diagonally). The

sooner a player can figure out which side of the pivot a value should fall, the gentler

they can afford to rotate the device to achieve that outcome. Rotating more gently

lessens the potentially negative effect the device’s current tilt will have on the next

falling value when it appears(new values are timed to appear as soon as the last one

reaches the bottom of the screen to encourage this).

Players receive a set amount of points each time they successfully manage to drop a

value on the correct side of the pivot. The amount of points they receive is determined

jointly by the current level and the speed of the game. The speed of the game can be

increased or decreased in real time by using the touch screen slider on the right. This

allows the same game to be slowed down to accommodate younger or weaker learners,

or to be sped up to provide more of a challenge for older or more advanced learners.

The slider was added to the game not only to enable it to appeal to a wider audience,

but also to allow players to continuously challenge themselves as they got better at

a given level. The faster the game is running, the higher the potential score. As in

the touchscreen game, a player’s score is reduced steadily over time to give the game

a sense of urgency and push players to increase the game’s speed. Players also loose

points if they drop a value on the wrong side of the pivot point and this is done more

to discourage players from simply guessing all of the answers rather than to punish

players who make mistakes.

The values falling from the top of the screen are pseudo-randomly generated, so

each level provides the player with a slightly different challenge every time it’s played.

The replayability this offered was necessary not only to allow the game to be used as

a practice/study aid, but also because the levels tend to be quite short once a player

masters the mathematical content enough to increase the speed. The pivot point

values are also pseudo-randomly generated abd the value changes to a newly generated

number regularly. After a player drops a value on the correct side of the pivot for a

27

Figure 3.8: Accelerometer Game - ‘Ba-
sic Numbers Level’ Screenshot

Figure 3.9: Accelerometer Game -
‘Fractions Level’ Screenshot

third time, the pivot value is reset (along with the counter for the next reset). This

was necessary not only to make the game more dynamic and interesting, but also as

a counter to poorly selected pivot values by the pseudo-random generator. The pivot

values need to be random in order to allow replayability, but if they are too high or

too low in comparison to the falling values, then the game becomes too easy.

As with the touchscreen game, the final design of the accelerometer game was chosen

as it leaves a lot of room open for future expansion. Multiple falling values could be

dropped at the same time, additional pivots could be added (e.g. <2< <5<) and

special types of falling values could be added to the game such as bombs that need to

be destroyed, or values which fell at different speeds. These potential features weren’t

developed due to the projects time constraints, but they would be relatively simple to

add and would provide a variety of different experiences and challenges for users.

Basic Numbers Level

This level, as seen in Figure 3.8, provides a basic introduction to the game. The

falling values range between -10 and 10, as do the potential pivot values. Despite the

28

Figure 3.10: Accelerometer Game - ‘Alge-
bra Level’ Screenshot

relatively low rage of numbers, this level can prove quite challenging as players are

forced to evaluate inequalities between positive and negative numbers. This game also

acts as an introduction to the accelerometer game, much as the practice level does for

the touchscreen game. It was decided that the accelerometer game didn’t require a

separate practice level as the simplicity of its mechanics and control scheme made it

very easy to pick up quickly.

Fractions Level

In this level, as seen in Figure 3.9, both the pivot value and the falling values are

fractions. While the range of fractions is kept quite small (nothing smaller than tenths),

the fractions are purposely not simplified down into their least complex form. The

game aims to help players grasp the relative values of fractions when compared to

other fractions and their complex forms.

29

Algebra Level

In this level, as seen in Figure 3.10, the pivot value reverts back to a simple integer,

but the falling values are now simple algebraic equations. Players must drop the falling

algebraic equations on the correct side of the pivot point corresponding to the value of

the unknown variable. This level moves at a slower pace than the others to reflect the

increased difficulty most players have when solving algebra mentally.

3.6.2 Educational Content and Methodology

The educational focus of the accelerometer game is primarily concerned with inequal-

ities. Two of the levels focus on the inequalities of whole numbers, one of which

obfuscates the numbers within algebraic equations, while the third level focuses on

fractional inequalities. Players must master not only standard inequalities, but also

those between positive and negative numbers.

The focus of the accelerometer game was more heavily weighted towards gameplay

as opposed to education, in an effort to make the game faster paced. The game

expects players to already have at least a rudimentary understanding of inequalities and

provides them with an enjoyable practice tool to improve and test their understanding.

The game can be extremely fast paced, so audio and visual cues are used to keep the

player constantly aware of how well, or poorly, they are doing.

As with the touchscreen game, the accelerometer game draws on the behaviourist

learning theories in its emphasis on score - with the potential for high scores being

used as a motivating factor and the fact that players continually loose points over time

acting to discouraging inactivity or hesitation. The speed toggle also controls a score

multiplier, so players are constantly encouraged to push their abilities to get higher

scores.

3.7 An Agile Approach

Modern game development is an extremely difficult and complex task - even when the

game in question is ‘only’ a mobile application. While developing a game requires

a huge quantity of complex programming be completed, it also requires that a large

amount of time be put into a wide variety of other tasks such as art asset creation,

30

sound editing and level designing. Furthermore, unlike many other programming tasks,

games aren’t complete when they simply ‘work’ or ‘perform to specification’. Once a

game is playable, it has to be thoroughly playtested - not only to look for unforeseen

bugs and errors, but also to determine what is and isn’t ‘fun’. This playtesting almost

inevitably leads to numerous changes and redesigns, which themselves must then be

playtested - making the entire process not only extremely time consuming, but also

difficult to accurately schedule and plan for.

The project’s nature added even more time constraints than usual to the games’ de-

velopment, as additional time needed to be allocated for extensive testing and analysis

once the games were complete. Normally, this wouldn’t represent too much of an issue,

but only a single iPad device was secured for testing purposes. Having only a single

device meant that testing had to take place on an individual basis. The time of year

also complicated the testing phase of the project, with the project running primarily

through summer - a time when both primary and secondary schools were closed. This

prevented the testing from occurring efficiently in a centralised location and instead

required that the test subjects be sought out and travelled to individually.

In order to adhere to these time constraints, along with the inherent difficulties

involved in scheduling the development of a modern game, it was decided to adopt an

agile working methodology inspired loosely on SCRUM[40]. The time available to the

project split from the outset between dedicated development time and time reserved

for testing and evaluating the games developed. The development time was then split

into weekly SCRUM ‘sprints’, with the goal being that there would be a new, working

version of the code that could be playtested at the end of each sprint. The feedback

from these playtests would be addressed in the subsequent sprints and new features

were prioritised and added according to their ranking on informal weekly task lists.

31

Chapter 4

Implementation

The previous chapter explained some of the major design decisions made during the

course of this project and this chapter will describe the architecture of the resulting

application. The design of the view based state machine, which acts as a central control

mechanism for the application, will be described first. Then the resource management

system and the effects it had on the application’s memory management will be dis-

cussed. The particle engine, which was developed in an effort to provide a degree of

visual polish to the games while reducing the number of high level art assets needed,

will also be discussed. Finally, the implementation of each of the two games, and their

various components, will be described in detail.

4.1 A View Based Application

The application developed for this project, like many modern games, consists of a

number of clearly differentiated ’screens’, or ‘views’. These include; the main menu,

from which players can select which level they wish to start; the tutorial screen, which

explains the basic game mechanics to players; and the gamescreens themselves, in which

the player can actually play the various levels of the game.

Each of these screens is considered a separate game state, as they each represent

very different forms of player interaction. The functionality for each of these screens

is encapsulated in separate classes, though they all inherit a basic set of functionality

from a ‘gamestate’ base class, as seen in Figure 4.1. This gamestate class is an abstract

32

Figure 4.1: Class Diagram of the Framework’s View Based Architecture

class, and contains separate update and render methods, which each subclass must

implement. These gamestate classes must also implement a ‘changeState’ method,

which releases any system resources they may be using and allows for another gamestate

to take over.

These various gamestates are all controlled and managed by a GameStateManager

class. This class is essentially a state machine, which controls what gamestate is active

at any given time. The active gamestate is sent any relevant input from the user and

also controls what is displayed on the screen. This system works quite well on modern

mobile devices, where a single application usually controls the full screen and almost

all of the systems resources (as opposed to a desktop environment, where there can be

multiple applications open at any given time in separate ‘windows’).

As shown in Figure 4.1, the application consists of a number of separate potential

states, or views, each of which is a separate class and which make considerable use of

inheritance.

33

Figure 4.2: Main Menu Screenshot

4.1.1 UIView

UIView is a class from Apple’s UIKit framework which defines a rectangular area on

the screen and the interfaces for managing content in that area. It is designed to handle

the rendering and interaction of any content in its area at runtime. While the UIView

class provides only the most basic behaviour itself, it was designed to be subclassed,

acting as a basic building block for visual applications.

4.1.2 GameState

The GameState class inherits directly from the UIView class. The GameState class

isn’t intended to be instantiated, but instead adds a number of necessary functions that

all subsequent subclasses must have to enable useful polymorphism. These functions

include; Render(), which serves to unify each subclasses drawing function under a single

name; Update(), which takes in an increment value called ’delta’ and does performs

the same funtion for the subclasses’ updating functions; and init(), which provides an

initialisation function that takes in a pointer to the GameScreenManager class.

34

4.1.3 gsMainMenu

The gsMainMenu class was designed to act as the central hub for both game applica-

tions. To simplify the development process, both games were integrated into a single

application and the main menu grants players instant access to any level, from either

game, as well as access to each of the games’ tutorial screens. Most of the menu’s func-

tionality was developed using the iOS platforms interface builder, a visual software

development application that enables the creation of interfaces through a graphical

user interface. While the functionality behind the menu’s various buttons needed to

be added programmatically, using interface builder enabled the design and layout of

the menu to be developed very quickly. A screenshot of the games main menu can be

seen in Figure 4.2.

4.1.4 GLES GameState

The GLES GameState class inherits from the GameState class described earlier and

adds the functionality necessary to setup and support rendering through openGLES. It

adds, and implements, functions such as swapbuffers() and bindlayer() which are com-

monly used operations for an openGLES render step. It also adds the class method

setup2D(), which sets up all of the various environmental functions needed for open-

GLES (such as defining the camera and blend functions). The GLES GameState class

is not intended to be instantiated, but it adds a lot of extremely useful functionality

which is inherited by all of the gamescreens which use openGLES for rendering.

4.1.5 gsTutorialImage

The gsTutorialImage class represents a very simple gameState whose function is to

display information about a games’ basic mechanic. This information is stored as a

PNG image, which takes up the whole screen whenever this gamestate is active. The

only functionality the gamestate provides is to change transition back to the mainMenu

state whenever the screen receives a touch event. There are two instances of this class

in the application, one for each game. The touchscreen game’s tutorial can be seen in

Figure 4.3 and a accelerometer game’s tutorial can be seen in Figure 4.4.

35

Figure 4.3: Touchscreen Tutorial
Screenshot

Figure 4.4: Accelerometer Tutorial
Screenshot

4.1.6 gsNumberTheoryLevel

The gsNumberTheoryLevel class represents the primary gamestate for the touchscreen

game. It is far larger and more complex than the classes previously discussed as

it contains most of the overarching game logic for the touchscreen game. It fully

implements the render and update functionality required by the Gamestate class and

has a number of its own functions for initialising the game and updating its internal

logic. It also implements a number of advanced functions to handle the various touch

events which can be generated by player input.

4.1.7 gsAccellerLevel

The gsAccellerLevel class represents the primary gamestate for the accelerometer game.

It is quite similar in layout and functionality to the gsNumberTheoryLevel class, al-

though slightly less complex on account of the accelerometer games’ relative simplicity

when compared to the touchscreen game. This class also inherits from the UIAc-

celerometerDelegate class, as this is required for it to receive input from the accelerom-

36

eter.

4.2 The Resource Manager

As was previously explained, the iOS platform provides a huge amount of functionality

through its various native libraries, but this functionality is provided at a much lower

level than optimal for use in games development. It was clearly necessary to have

access to higher level libraries and APIs which built upon the low level functionality

provided by these core libraries when developing the projects’ two games. In order to

reduce development time, it was decided to adapt those readily available from other

sources rather than develop them from scratch.

It was decided that the three types of higher level functionality need were the ability

to play music and sound effects, the ability to load and display textures and the ability

to load a font and display text. Fortunately, this functionality is commonly needed

in the development of advanced iOS applications and as such Apple have provided

basic coding samples online which contain most of the required functionality. In 2008

Apple provided the development community with a glTexture class, which contained

higher level functions for loading and displaying textures using OpenGLES, and a

SoundEngine class, which provided higher level functionality for playing sound effects

and music using OpenAL. Samples of these classes, along with a glFont class which

makes use of the glTexture class in order to render text, are freely distributed for use in

the development of iOS applications from ‘iPhone Game Development’, by Paul Zirkle

and Joe Hogue [41].

The functionality provided by these classes was combined into a unified resource

manager. This not only made it simpler for the various GameStates to access the higher

level functionality, but it also simplified the process of memory management. The

Resource Manager was designed a singleton class, so there is only ever one instantiation

of it - with subsequent attempts to initialise it resulting in the return of a pointer to the

currently initialised version. This allowed the resource manager to manage the devices

limited memory resources independently of whichever gamestate was active. Additional

functionality was developed to supplement the resource manager as it became necessary,

or convenient, during the development process, such as functions to generate specific

types of random numbers and functions for advanced mathematical operations such as

37

the dot and cross product.

4.3 Particle Engines

Players expect a certain minimum standard of visual fidelity in modern games, even

mobile games, and this presented a potential problem for the project as there were no

additional funds available for the outsourcing of high quality artwork. The solution to

this problem, aside from choosing an aesthetically simple visual design, was to utilise

particle engines to provide a lot of the games’ visual attraction and polish.

The particle engine developed was designed to offer a large degree of variation and

options, so that it could fulfil a number of separate roles. These options included

the ability to set a particles colour, size, and transparency at both the beginning and

end of its lifespan (with the values changing linearly as the particle aged) as well as

a particle’s starting position, rotation speed and velocity. Particles can also be made

from any texture and can use a variety of different blending functions.

One issue with using particle engines is that they can end up using a lot of the

systems resources unless they are properly calibrated - especially on a mobile device

where there is less processing power available in general. To help alleviate this issue,

the particle engine was designed to use point sprites (essentially hardware accelerated

billboards that can be textured) rather than regular textures, as they are considerably

faster to render. In addition, the rendering is performed through the use of vertex arrays

and colour arrays, which allow the rendering of every particle in a given particle engine

to be performed using a single call to the OpenGLES API (an extremely expensive

action on some iOS devices).

In the accelerometer game, particles are used to provide a tail behind the falling

values and to draw the players eye when the pivot value is changed. In the touchscreen

game they are used to provide a ripple effect when an enemy is destroyed and an

explosion when the player succesfuly reaches the star at the top of the screen. A

particle engine also produces the dynamically moving starfield background found in

each game.

38

4.4 The Touchscreen Game

As was previously explained, the touchscreen game is primarily controlled by the

gsNumberTheoryLevel class. The functionality of the class can be roughly split into 4

areas - initialisation, updating, rendering and handling touch events (player input).

When the GameStateManager initialises the class, several data structures are cre-

ated to contain the various game objects used by the class, such as the enemies and

player values. Depending on the current level (which is stored as a value in the resource

manager and set whenever a player selects a level from the main menu), numbers, op-

erators and enemies are initialised with a variety of potential values. The exact values

are randomly generated to provide replayability, but they are generated from within

set ranges depending on the level. Four mutable arrays are used to store these game

objects; one for the enemy objects; one for the operator objects; one for the number

objects; and also one for projectile objects - which is a separate type of gameobject

that the player’s numbers are turned into once they are dragged, or flicked, up onto

the gamefield. Memory is also reserved for the levels various particle engines.

The class’ update method is quite compact, since each game object and particle

engine has its own update function and handles its own behaviour. In addition, the

players input is handled separately by the touch event functions, which are only called

when such an event occurs. In addition to calling the update functions of various game

objects, the main update function is primarily responsible for removing projectiles that

have left the game board and for handling the games collision detection.

Each enemy has its own collision detection function, which takes in a pointer to a

projectile, and is responsible for destroying both itself and that projectile if necessary.

Since there are generally only a few player projectiles active at any one time, the

complexity of the game’s collision detection checks are quite simple. The individual

enemy objects are grouped into ‘enemy rows’, which helps to further simplify collision

detection complexity by reducing the amount of overall checks needed - further checks

for a given projectile aren’t necessary once a collision has occurred.

The game objects in the game were designed to all be circles, partially in an effort

to simplify any collision detection algorithms, and the game’s collision checks were

originally accomplished through simple sphere-sphere intersection checks (one of the

simplest types of intersection checks to implement). This proved to be insufficient

39

Figure 4.5: Victory Screen Screenshot

however, as specifically targeted testing showed that the game was susceptible to the

classic ‘bullet through paper’ issue - it was possible to ‘jump’ through entire rows by

moving too fast for the updates time step to account for. Adopting a variable time

step would have proven too complicated given the development time available, not to

mention posing a potential system resource drain, so it was decided to instead adopt

a swept sphere approach to collision detection. This involved checking for collisions

through time by recording the previous position of each projectile and changing the

sphere-sphere collisions checks to line segment-sphere intersection tests.

The gsNumberTheoryLevel class’ render function is responsible for rendering the

entire game using OpenGLES. This task was simplified considerably by each game

object having its own render function. The main render function does contain the code

required to render the game’s backgrounds however, and the menu bar at the top of the

screen. There is also a separate sub-function designed to render a ‘victory’ screen (see

Figure 4.5), for when the player won the game. Whether or not this function is called

is controlled by a global ‘endGame’ variable which is set to true by the destruction of

the star at the top of the screen.

40

The iOS platform supports three basic touch events; touchesBegan, touchesMoved

and touchesEnded. The gsNumberTheoryLevel contains handles for each of these

events.

The touches began event is triggered when a new touch action is registered by the

device (i.e. when the player first touches the screen) and the relevant event handler

contains the code necessary to either re-select an active projectile that was previously

released, or to select a new number or operator from those available to the player. A

state machine is used to keep track of what effect such a selection should have - for

example selecting a new number when another number and an operator have already

been selected will result in that operator’s operation being carried out and a new

random number being spawned for the players use. A touchesBegan event can also

signify that the player has hit the menu button at the top of the screen and wishes to

leave the level.

The touchesMoved and touchesEnded events are both used to manage the player’s

active projectiles. Each touch event has a unique hash value, which remains the same

until the touch ends (the player removes that finger from the game). When a player

drags a number or projectile around the screen, that number is paired with the touch’s

hash value using a dictionary data structure and the projectile’s position is updated

to match the player’s finger’s position on the screen. When the touch event is ended,

that projectile is released and continues on its current course, allowing the player to

‘flick’ projectiles, rather than having to always drag them.

4.5 The Accelerometer Game

The implementation of the accelerometer game is intentionally very similar to that

of the touchscreen game. As was previously explained, the accelerometer game is

primarily controlled by the gsAccellerLevel class and it reuses a lot of the game objects

and functionality that was originally developed for the touchscreen game. As with the

touchscreen game, the functionality of the gsAccellerLevel class can be roughly split

into 4 areas - initialisation, updating, rendering and handling touch events (player

input).

When the GameStateManager initialises the class, a mutable array is set up to

store the falling values - which are themselves initialised with values according to the

41

current level. The accelerometer update interval is also set, as are a number of other

variables and functions - such as the timer which regularly reduces the players score.

The main update function decodes the accelerometer input and then calls the update

functions for the various game objects. This accelerometer input is then passed to each

active falling value, in order to update its new position relative to the angle the device

is currently tilted at. The update function also contains the collision response code,

which determines when a value reaches the bottom of the screen, and is responsible for

incrementing and decrementing the score and initialising a change in the pivot current

value.

As with the touchscreen game, the gsAccellerLevel class’ render function is respon-

sible for rendering the entire game using OpenGLES - a process simplified by the fact

that each game object has its own render function which can be called upon. The

main render function renders the game’s background and menu bar, as well as the

speed slider found on the right of the screen. There is also a separate sub-function

designed to render a ‘victory’ screen, for when the player has won the game. Whether

or not this function is called is controlled by a global ‘endGame’ variable which is set

to tru once the last falling value has reached the bottom of the screen.

While the accelerometer game, as its name suggests, was designed to be controlled

primarily by the accelerometer, it does make use of the touch screen for a few types of

input. The touchesBegan event is used to allow the player to select the menu button

at the top of the screen and to select the speed slider on the right, which grants them

control of the game’s speed and the associated score multiplier. The ‘touchesMoved’

event is used to track the movement of the speed slider and update the games current

speed accordingly.

42

Chapter 5

Analysis

This chapter outlines the approach taken in evaluating the two game applications

created during this project and the reasoning behind it. The methods of data collection

and analysis are described and an overview of the results is given.

5.1 Evaluation Methodology

The game application was evaluated with the aim of assessing its overall quality as well

as its effectiveness as an educational tool. With this in mind, feedback was sought from

two sources; children of the games’ target age and an expert in the field of mathematics

education.

As the game applications were designed to provide students with an interesting

and engaging way to interact with mathematical topics, rather than to explicitly train

them to pass some form of exam, the data collected from both sets of sources was of a

qualitative form.

5.2 Expert Review

The educational expert who evaluated the two game applications was Elizabeth Old-

ham, from the School of Education in Trinity College Dublin. She has been involved

in mathematics education for over 40 years and is extremely familiar with not only

the relevant educational methodologies and learning theories, but also with existing

43

multimedia educational tools and games.

5.3 Testing on Students

5.3.1 Sample Selection

An opportunistic sample of children meeting the age criteria was selected to take part

in the testing. This sample consisted of six children between the ages of eleven and

fifteen, comprising of three boys and three girls. All of the children had started second

level education and were either doing higher level mathematics or were in classes not

yet been segregated according to their level. Between them, the children all attended

different schools.

Ideally a larger selection of students would have been selected; however due to the

external time restrictions placed on the project (as explained in Section 3.7), the testing

period took place between mid July and mid August - a time when secondary schools

were closed for summer holidays. This prevented the more extensive testing which

could theoretically have been achieved by approaching a secondary school directly and

getting the support and permission of the relevant board of directors, teachers and

parents. Testing was also restricted by the fact that only a single iPad device was

available for testing purposes.

5.3.2 Ethics

Permission was sought from each participant’s parent or guardian before they took

part in the testing. It was explained to both the children and their parents that their

participation was completely voluntary and that any results would remain anonymous.

To avoid any unnecessary pressure, participants were informed that they could stop at

any time if they wanted to at the beginning of each session.

5.3.3 Session Procedure

Each participant was given access to the game application in a session generally lasting

slightly over an hour (the length of the session being determined by how long it took

the participant to finish every level in both games at least once). The game application

44

was installed on an iPad device which was taken to the most convenient private loca-

tion available for the participants - usually their own homes. All of the participants

completed their sessions individually.

During the session, participants were encouraged to play through the game on their

own, with assistance only being given when absolutely necessary. The aim of each

session was to play through the levels of each game in a set order (roughly according

to each level’s respective difficulty).

Before the participants were given access to either game, they were asked to fill

out a short questionnaire designed to ascertain their own opinions of mathematics and

their confidence in their own abilities with various mathematical topics covered by the

games (see Appendix). Once the session was finished, participants were asked to fill out

an almost identical questionnaire, the results from which could later be compared with

the original questionnaire to ascertain whether or not playing the game had affected

the participants opinions or confidences.

The after-session questionnaire also contained a number of additional questions de-

signed to gauge the participants’ opinions of the games themselves and to determine

their overall quality and usability. This after-session questionnaire was also accompa-

nied by a brief interview, where more probing questions were asked, with the aim of

more thoroughly exploring the feedback provided by the participants thus far.

5.4 Expert Feedback

The feedback received from the educational expert regarding the educational merit

of the two games was extremely positive. She felt that there was value to present-

ing educational material in the context of a game as certain game elements, such as

high scores and gradually increasing challenge, would provide additional motivation

for learners to improve their abilities. She also pointed out that the games would also

benefit from their own ‘novelty’ factor, as learners are not used to explicitly interacting

with educational topics such as mathematics within the context of a game.

The touchscreen game was regarded as being the stronger of the two games educa-

tionally, both due to its design and the depth to which it enabled the exploration of the

mathematical topics it covered. The educational expert liked the constructivist design

philosophy found in the game and felt that the way it allowed, and encouraged, players

45

to experiment with numbers and operators would be of great educational benefit to

them.

It was noted that the accelerometer game followed more of a ‘drill and test approach’

to education than the touchscreen game, in that the game mechanics focussed more on

getting the player to supply the correct answers than it did on getting the player to

explore the various mathematical topics. The expert pointed out that there was still a

place for such an approach in modern education and that the accelerometer game did

provide an example of it that was far more enjoyable and novel than most.

The expert also commented that there was a lot of potential for growth in the

game applications, especially the touchscreen game, both in terms of the breadth of

mathematical topics covered and in the design of the individual levels themselves.

The expert stated that she could see both games fitting in quite well with existing

mathematical curriculum and that they seemed to be of more educational benefit to

players than many of the edutainment games currently available.

5.5 Student Feedback

In this section the feedback received from the students who tested the game application

will be summarised and discussed.

5.5.1 Changes in Opinions

As was previously explained, all participants filled out a questionnaire (see Appendix)

both before and after playing through the two games and the results of these two ques-

tionnaires were compared in an effort to determine what effect, if any, playing through

the games had on the participants opinions about maths education and their own

mathematical abilities. Among other things, the questionnaires attempted to gauge the

participants’ confidences at various mathematical topics covered by the games (such

as fractions, multiplication and algebra), by asking them how strongly they agreed or

disagreed with statements like “I am comfortable working with division”. The pre and

post session questionnaires also contained more general statements such as “I am good

at maths”, “I need to practice maths more” and “educational games can aid learning”.

Any significant changes in the participants’ reactions to these statements before and

46

after playing through the two games clearly shows that their opinions and confidences

have been influenced by their experience with the games.

Significant changes were observed in the opinions of all of the participants who

took part in the study. Three participants became noticeably more confident in their

own ability to work with squares, while one participant was less confident afterwards.

Playing the game affected the confidences of all the participants in algebra, with half

becoming less confident and half becoming more confident (one became far more confi-

dent than before). Two participants displayed less confidence in their own abilities to

work with division after playing through the games. The confidence of three partici-

pants in regards to working with fractions and working with multiplication also changed

after playing through the games - with one participant growing more confident and two

growing less confident.

How the confidences of the various participants were affected after playing is less

important than the fact that playing the game did affect them. The myriad of changes

in opinion after playing through the two games shows that the games enabled the

participants to engage with the mathematical topics in a meaningful way.

After playing through the two games, the overall mathematical confidence of two of

the participants increased (shown by their feelings towards the statements “I am good

at maths” and “maths is difficult”). Two of the participants also felt that educational

games were more effective after playing through the two games (as shown by their

feelings towards the statement “educational games can help learning”)

5.5.2 General Feedback

All of the participants stated that they enjoyed playing both of the games, with half

preferring the touchscreen game and half preferring the accelerometer game. Several

of the participants clearly recognised the educational value of the games, expressing

statements like “I learned a lot playing through that level”, and they seemed pleased

with the fact that the game allowed them to learn in an enjoyable fashion. All of the

participants also stated that they would like the games, or other games like them, to be

integrated into traditional maths classes at their schools - or even used for homework.

They pointed out that ‘practicing with the game was a lot more fun than just doing

sums from the maths book over and over again’.

47

While all of the participants found at least some of the levels difficult due to their

mathematical content, they all found the games themselves easy to interact with and

play - though many of them needed to play through a level before fully grasping the

game mechanics. Several participants, especially those who didn’t normally play games,

noted that they liked how ‘simple’ it was to do things in the games. When questioned

further about this, they said that they found it very easy to ‘just touch and drag things

or tilt the iPad’.

All but one of the participants found the scoring system very motivating - making

statements like “I wanted to get the best score” and “I liked getting points for getting

things right”. The participant who wasn’t motivated by the score system was the first

one to be tested and she stated that she hadn’t noticed it until late into the game (The

score system is explained in the tutorial screen, but that hadn’t been available in the

version of the game tested by this participant).

5.5.3 Touchscreen Game Feedback

Half of the participants preferred the touchscreen game to the accelerometer game and

this half comprised of the older participants (they were also generally the mathemati-

cally stronger participants). The reasons given for preferring it were generally that the

game afforded them more time to think and plan things out than the accelerometer

game. Most of the participants said they found at least some of the touchscreen lev-

els challenging, and that they enjoyed the challenge. While most of the participants

needed to play through the practice level at least once before they grasped the basic

game mechanics, they all found the ‘controls’ very intuitive - several participants com-

mented on how easy it was to just touch something and drag it to where they wanted

it.

Most of the negative feedback aimed at the touchscreen game was in relation to the

mathematics found in certain levels. Several of the younger participants thought the

algebra and fractions level were very difficult, purely on the basis of their mathematical

content. All of the participants also found the ‘No-Addition Level’ (where the addition

operator had been removed) quite difficult, which may highlight an over-dependence

on the addition operator. Most of the participants had difficulties grasping some of

the concepts found in the fractions level - specifically, they didn’t realise that fractions

48

could be made by dividing whole numbers by each other (e.g. 1 divided by 3 is 1/3).

Some of the participants also found it difficult to grasp the basic game mechanics from

the tutorial screen alone - several of them opted to play through the practice level twice

to make sure they fully understood how the game was played.

5.5.4 Accelerometer Game Feedback

Half of the participants preferred the accelerometer game to the touchscreen game and

this half comprised of the younger participants. The accelerometer game was praised for

its fast pace and ‘fun’ gameplay. Many of the participants found controlling the game

through the accelerometer by tilting the device to be a very novel experience (having

little or no previous experience with accelerometer devices), though they generally

picked up the basic game mechanics within seconds.

As with the touchscreen game, most of the negative feedback aimed at the ac-

celerometer game was in relation to the mathematics found in the various levels. Many

of the older participants found the basic numbers level to be too easy (though they still

seemed to enjoy the gameplay). Conversely, most of the younger participants found

the algebra level, and in some cases the fractions level, to be too difficult.

5.6 Discussion of Feedback

The feedback received from the educational expert was primarily positive. She saw

immediate educational value to the games, as well as additional future potential if

they were to be further developed. She praised the educational merit of the touchscreen

game in particular, primarily for its constructivist approach to learning, and stated that

both games could be integrated well into the current mathematics curriculum.

The feedback received from the participants in the user study was also extremely

positive. All of the participants enjoyed playing the games and generally found them

very easy to interact with. The changes in participants’ opinions with regards to

their own mathematical abilities show that the game enabled them to interact with

the mathematical topics in a meaningful way. Several participants stated that they

‘learned something’ while playing through the games, further highlighting the games’

educational merit.

49

Most of the criticism directed towards the games was concerned with the math-

ematical content of specific levels. Some of the participants, especially the younger

ones, felt that the algebra and fraction levels in particular were “very hard”. Some of

the participants also had difficulty understanding how to play at first, which highlights

the need for a more comprehensive tutorial. The main cause of these criticisms can

most likely be attributed to a lack of age appropriate gameplay testing before the user

study was carried out. Any child who had previously playtested the games couldn’t be

used in the study without invalidating some of the results, so unforunately the major-

ity of the playtesting that occurred during development was undertaken by volunteers

outside of the target age group.

50

Chapter 6

Conclusions

The previous chapter explained how the games were evaluated and outlined the results

from that evaluation. This chapter draws some conclusions from those results and

highlights some criticisms of the project. The future work planned for the project is

then detailed.

6.1 Results

6.1.1 Was a Useful Educational Game Developed?

The only way to properly demonstrate the educational potential of modern mobile

games was to successfully develop and test one, and this project accomplished that.

Both of the games developed during the course of this project were shown to be enjoy-

able and to have educational merit.

The participants in the explorative case study all enjoyed the experience and while

they were split as to which of the two games was the most enjoyable, both of the games

were received positively. The accelerometer games was praised for its fast pace, while

the touchscreen game was appreciated for the challenge it provided.

The educational expert felt that both games had educational merit, especially the

touchscreen game, and the feedback and results recieved from the user study supported

this opinion. Playing through the games significantly altered the opinions and confi-

dences of all of the participants and many of the participants claimed to have learned

something though their interactions with the two games.

51

The participants all expressed a desire for such games to be integrated into their

existing mathematics classes - either to be used in class or for homework and revision

purposes. The participants preferred interacting with the various mathematical con-

cepts within the context of the game to the more traditional option of doing sums out

on paper and many claimed that the gaming elements like the score and audio cues

encouraged them to ‘work harder’ and to ‘get better’. The educational expert pointed

out that games like those developed could be integrated quite well within the existing

mathematics curriculum and would offer tangible benefits to learners.

6.1.2 The Strengths of Modern Mobile Games

The results and feedback received from the explorative case study, as well as the re-

searcher’s own observations during the development of the games, indicate that modern

mobile devices offer a number of strengths to the development and deployment of ed-

ucational games.

On a technical level, the newer generations of mobile devices boast graphical and

processing capabilites almost on par with those found in dedicated mobile gaming

consoles. These increased technical capabilities, coupled with the impressive software

development tools and supporting libraries now available to mobile developers, have

allowed for the development of far more complex and interesting mobile games (both

educational and entertainment based). As a result of these advances, the mobile games

now found on generic mobile devices such as smartphones and tablets rival those found

on dedicated mobile gaming consoles such as the Nintendo DS and PSP.

The interface methods available on the mobile platforms may prove to be of partic-

ular value to educational games. As the feedback from the case study showed, all of the

participants found it extremely easy to interact with the games and come to grips with

the game mechanics - even those who generally don’t play computer games. This can

be partially attributed to the input devices used - pointing at and dragging objects by

touching the screen, or even just tilting the device, represent far more intuitive actions

than pressing keys on a keyboard or pushing buttons on a controller. As educational

games are often aimed at very young students, who may not be very familiar with

computer games, interfaces that are easier to intuitively grasp and pick up quickly are

obviously of great benefit - the less mental effort expanded on understanding a control

52

scheme, the more available to focus on the main educational objectives of the game.

Touchscreens are also better suited to dynamically selecting objects on a screen com-

pared to a traditional gaming controller, and this is a very commonly desired action in

educational games (as seen when choosing numbers and operators in the touchscreen

game). While the evidence gathered doesn’t conclusively prove the advantages of the

mobile input methods, it is extremely suggestive.

The current realities of the mobile market could also prove to suit the development

and deployment of educational games quite well. As was previously touched on in

Section 2.4 and Section 3.1 of this report, the costs involved in developing a mobile

game are orders of magnitude lower than those involved in developing a traditional

console or PC title. Mobile development is traditionally performed in small teams

and over a short timescale, and this project demonstrated that a single individual

can develop a mobile game from scratch in only a few months - in stark contrast to

the multi-year development cycles, with team sizes in the hundreds, often required for

console and PC development. This lower cost model clearly benefits educational game

development, as the levels of investment available to educational games has generally

been far lower than that available to entertainment games, since educational games

haven’t traditionally sold very well. It is worth noting that while ‘casual’ PC games

can also be produced at low costs, they currently lack the centralised online storefronts

which make the mobile platforms a viable market.

Mobile applications are generally purchased on an online marketplace, which re-

duces the need for a publisher and increases the percentage profit share received by

the developers. The marketplace model also seems to encourage smaller, lower priced

games, which could also favor educational game development as consumers are more

likely to take a chance on an unknown property when it costs 99c than they are if it

costs 50 Euros. The smaller size and scope of mobile applications would also enable

the development of more tightly focused educational games, which could focus on a

single educational topic (like multiplication for example) for the entire game, and such

games could prove very useful in supplementing existing educational lessons.

53

6.2 Criticisms

6.2.1 Testing Sample

As was mentioned in the previous chapter, a larger sample size would ideally have

been used in the case study. The results taken from such a small sample of children

are not conclusive, though the fact that they all came from different schools increases

the strength of the sample selection. The close correlation in the feedback gathered

amongst the various participants also lends to the strengths of the results. Ideally the

game would have also been examined by a larger number of educational experts. In

both of these cases, the main factor preventing the use of larger sample sizes was time.

The project was completed within very strict time constraints and the games could

only be properly evaluated towards the end of the project, once they had reached a

suitable level of development. The evaluation stage of the project had to be completed

during July and August, a time when schools were closed for their summer holidays.

This, coupled with the fact that only a single iPad device was available for the evalua-

tion, resulted in each participant having to be evaluated individually, usually in their

own homes. The individual sessions were also quite time consuming, usually lasting

over an hour.

6.2.2 Lack of Gameplay Testing

While the development process of the game involved regular gameplay testing, little of

this involved children of the target age group. Any child who tested early builds of the

game couldn’t take part in the case study, as they could bias the results. As such, most

of the gameplay testing involved older children, or the researchers colleagues, and this

resulted in the mathematical content found in several of the levels being ‘too hard’ for

the younger participants in the case study.

6.2.3 Scope of the Mathematics

Another potential limitation of this project was the scope of the mathematics covered.

The mathematical topics were chosen in part because they were well suited to inclusion

in a game context (as shown by the researchers previous work [3]). This doesn’t neces-

54

sarily mean that other topics, both mathematical and otherwise, would also translate

well into some form of educational game. By the same token however, some educational

topics might be better suited to being used in a game.

6.2.4 Development Scope

One clear limitation of the games developed as part of this project was the fact that

they weren’t developed fully to the point of release. While it was felt that they were

developed sufficiently to investigate the research question, the games are relatively

feature poor in comparison to most commercial games - especially in relation to the

number of separate levels developed. The main obstacle to further development was

of course time - an estimated two months of additional development time would be

required to make the games ‘feature rich’ enough for commercial release, and the project

needed to be completed within strict time constraints.

6.3 Future Work

6.3.1 Expand the Existing Game Applications

One obvious area of future work would be to further expand the games developed thus

far. The designs of both games allowed for a number of additional features and levels

to be added if time allowed for it. Developing both games into fully featured products

would prove the potential of the full designs, and it would also allow for more data

to be gathered through a longer series of case studies (reflecting the expanded games’

increased length).

6.3.2 ‘App Store’ Release

Another potential area of future work, especially if the games were expanded with

additional features, would be to release them on the Apple ‘App Store’. An in-game

questionnaire could be integrated into both games, along with a number of other metric

tracking functions, in order to provide feedback from anyone who downloaded and

played them. While the feedback gathered from such a method probably wouldn’t be

as rich as that gathered from a personal interview, the potential sample size would

55

be enormous - most likely in the thousands. Unfortunately, the process of getting an

application certified and released onto the ‘App Store’ can take several weeks, so it

wasn’t feasible within the time restrictions imposed on this project.

6.3.3 Larger Scale Case Study

Regardless of whether the games were expanded or released on the ‘App Store’, there

would be a lot of value in conducting a larger scale case study based around the two

game applications - possibly in partnership with a school, or group of schools. The

larger sample size could provide much stronger results as to the educational value of

the two games.

56

Appendix A

57

58

59

Bibliography

[1] S. Higgins, “The logical zoombinis,” Teaching thinking, vol. 1, no. 1, 2000.

[2] K. Inkpen, K. Booth, S. Gribble, and M. Klawe, “Give and take: Children collab-

orating on one computer,” in Conference companion on Human factors in com-

puting systems, pp. 258–259, ACM, 1995.

[3] D. O’Byrne, “Mathplay - an educaional computer game,” Trinity College Dublin,

2010.

[4] D. O’Byrne, “Mathplay - lessons learned in the development of an educational

computer game,” Irish Symposium on Game Based Learning, 2011.

[5] S. Egenfeldt-Nielsen, “Beyond edutainment exploring the educational potential of

computer games,” future, 2005.

[6] Z. Okan, “Edutainment: is learning at risk?,” British Journal of Educational

Technology, vol. 34, no. 3, pp. 255–264, 2003.

[7] http://www.theesa.com/facts/index.asp, “Entertainment software association,”

Last Visited 15.08.2011.

[8] J. Kirriemuir and A. McFarlane, “Literature review in games and learning,” 2004.

[9] R. Garris, R. Ahlers, and J. Driskell, “Games, motivation, and learning: A research

and practice model,” Simulation & gaming, vol. 33, no. 4, p. 441, 2002.

[10] J. Houghton and P. Sheehan, “A primer on the knowledge economy,” 2000.

[11] O. Indicators, “Education at a glance,” 2009.

60

[12] M. Schwebel and J. Raph, Piaget in the Classroom. Taylor & Francis, 1973.

[13] M. Prensky, “Digital natives, digital immigrants part 1,” On the horizon, vol. 9,

no. 5, pp. 1–6, 2001.

[14] M. Oliver, “An introduction to the evaluation of learning technology,” Educational

Technology & Society, vol. 3, no. 4, pp. 20–30, 2000.

[15] R. Ryan and E. Deci, “When rewards compete with nature: The undermining of

intrinsic motivation and self-regulation.,” 2000.

[16] J. Cameron, W. Pierce, K. Banko, and A. Gear, “Achievement-based rewards

and intrinsic motivation: A test of cognitive mediators.,” Journal of Educational

Psychology, vol. 97, no. 4, p. 641, 2005.

[17] J. Sweller, J. Van Merrienboer, and F. Paas, “Cognitive architecture and instruc-

tional design,” Educational psychology review, vol. 10, no. 3, pp. 251–296, 1998.

[18] A. Paivio, Mental representations: A dual coding approach. Oxford University

Press, USA, 1990.

[19] R. Mayer, “Multimedia learning,” Psychology of Learning and Motivation, vol. 41,

pp. 85–139, 2002.

[20] J. Piaget and B. Inhelder, The child’s conception of space. Psychology Press, 1998.

[21] S. Papert, Mindstorms: Children, computers, and powerful ideas. Da Capo Press,

1993.

[22] A. Palincsar, “Social constructivist perspectives on teaching and learning,” Annual

review of psychology, vol. 49, no. 1, pp. 345–375, 1998.

[23] M. Minsky and S. Papert, Artificial intelligence: Progress report. Massachusetts

Institute of Technology, 1972.

[24] J. Byers, “Biological effects of locomotor play: getting into shape or something

more specific,” Animal play: evolutionary, comparative and ecological perspectives,

pp. 205–220, 1998.

61

[25] B. Bettelheim, “The importance of play,” The Atlantic, vol. 259, no. 3, pp. 35–46,

1987.

[26] J. Huizinga, Homo Ludens: A study of the play element in culture. J. & J. Harper

Editions, 1970.

[27] K. Salen and E. Zimmerman, Rules of play: Game design fundamentals. The MIT

Press, 2004.

[28] E. Medhus, Raising Children Who Think for Themselves. Atria Books/Beyond

Words, 2001.

[29] E. Page and R. Smith, “Introduction to military training simulation: a guide for

discrete event simulationists,” in Proceedings of the 30th conference on Winter

simulation, pp. 53–60, IEEE Computer Society Press, 1998.

[30] M. Prensky, “True believers: Digital game-based learning in the military,” Digital

game-based learning, 2001.

[31] R. Sandford, M. Ulicsak, K. Facer, and T. Rudd, “Teaching with games,” Com-

puter Education-Stafford-Computer Education Group, vol. 112, p. 12, 2006.

[32] E. Soloway, “No one is making money in educational software,” Communications

of the ACM, vol. 41, no. 2, pp. 11–15, 1998.

[33] PriceWaterhouseCoopers, Global Entertainment and Media Outlook: 2007-2011.

PricewaterhouseCoopers, 2007.

[34] C. Crawford, The art of computer game design. Osborne/McGraw-Hill Berkley,

1984.

[35] http://www.apple.com/pr/products/ipodhistory/, “Apple press info,” Last Vis-

ited 9.07.2011.

[36] Gartner, “Forecast : Mobile communications devices by open operating system,

2007-2014,” Gartner Inc., August 2010.

62

[37] IHS Inc., “Apple maintains dominance of mobile application store market

in 2010,” http://press.ihs.com/press-release/product-design-supply-chain/apple-

maintains-dominance-mobile-application-store-market-, Website last visited on

August 28th 2011.

[38] Unity Technologies, “Unity game engine,” http://unity3d.com/, Website last vis-

ited on August 28th 2011.

[39] Epic Games Inc., “Unreal development kit,” http://www.udk.com/mobile, Web-

site last visited on August 28th 2011.

[40] K. Schwaber, Agile project management with Scrum, vol. 7. Microsoft Press Red-

mond (Washington), 2004.

[41] P. Zirkle and J. Hogue, IPhone Game Development: Developing 2D & 3D Games

in Objective-C. Oreilly & Associates Inc, 2009.

63

