
Investigating Octree Generation for Interactive

Animated Volume Rendering

by

David Reilly, B.Sc. in Computer Science

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

August 2011

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

David Reilly

August 30, 2011

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

David Reilly

August 30, 2011

Acknowledgments

I’d like to thank my supervisor John Dingliana for all his help and guidance throughout

the project, and also throughout the year. I would also like to thank my fellow class-

mates for helping me get throughout the year and getting through those late nights.

I’d also like to thank my family and friends for their great support throughout the

whole year, it is greatly appreciated.

David Reilly

University of Dublin, Trinity College

August 2011

iv

Investigating Octree Generation for Interactive

Animated Volume Rendering

David Reilly

University of Dublin, Trinity College, 2011

Supervisor: John Dingliana

Volume rendering is a huge field which has received heavy research for its use in

domains such as medical imaging, physics simulations and special effects for use in films.

A big problem within the volume rendering field is rendering animated volumetric data

at interactive rates, due to the large information sets associated with the data.

A commonly used approach to optimise volume rendering is to use octrees, but

it has not fully been shown how this can be done for animated data, in particular

physically based animations or user-defined deformations.

This dissertation investigates the use of octrees in the field of volumetric rendering

and analyses their use in the rendering of animated volumes in interactive scenes.

Certain octree optimization approaches are investigated with the view to reduce the

overall time required to generate an octree at interactive rates. Furthermore, the

dissertation studies the generation of octrees over a number of frames, progressively

v

drawing the octree as it is generated. Multiple threads are utilized to achieve faster

octree generation. This dissertation also investigates methods to adapt an octree for

modifications made to the volumetric data.

To evaluate octrees for animated volumetric rendering, this dissertation will analyse

the performance of octree generation during run-time, including the advantages and

disadvantages of certain optimizations, and conclude how applicable octree generation

at interactive rates is for animated volumetric rendering.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Concepts . 2

1.2 Challenges . 4

1.3 Motivation and aims . 5

1.4 Dissertation Layout . 9

Chapter 2 Related Work 10

2.1 Volume Rendering Techniques . 10

2.1.1 Indirect Volume Rendering . 11

2.1.2 Direct Volume Rendering . 12

2.2 Animated Volume Rendering . 18

2.2.1 Encoding . 18

2.2.2 Transfer Functions . 19

2.2.3 Animated Sparse Voxel Octrees 20

2.3 Octrees . 20

Chapter 3 Design 23

3.1 Development Plan . 23

vii

3.2 File Manager . 24

3.3 Volume Renderer . 25

3.3.1 GPU Ray Casting . 25

3.3.2 CPU Ray Casting . 26

3.3.3 Transfer Function . 26

3.3.4 Pre-Recorded Volume Animation 26

3.4 Octree . 27

3.4.1 Octree Generation . 28

3.4.2 Progressive Octree Generation 31

3.4.3 Octree Rotation . 32

3.4.4 Visualizing the Octree . 33

3.5 Volume Deformation . 33

3.6 User Friendly Interface . 33

3.7 Software Development Methodology . 34

Chapter 4 Implementation 35

4.1 File Manager . 35

4.2 Volume Renderer . 35

4.2.1 GPU Ray Casting . 36

4.2.2 CPU Ray Casting . 37

4.2.3 Transfer Function . 37

4.2.4 Pre-Recorded Volume Animation 38

4.3 Octree . 38

4.3.1 Subdividing Octree Node . 39

4.3.2 Breadth-First Octree Generation 40

4.3.3 Depth-First Octree Generation 41

4.3.4 Progressive Octree Generation 41

4.3.5 Octree Rotation . 43

4.3.6 Visualizing the Octree . 44

4.4 Volume Deformation . 45

4.5 User Friendly Interface . 46

4.6 External Libraries . 46

4.6.1 OpenGL . 47

viii

4.6.2 GLUT and GLUI . 47

4.6.3 glext.h . 48

4.6.4 vmath . 48

4.6.5 Boost Library . 48

4.6.6 Cg Shading Language . 49

Chapter 5 Results & Evaluation 50

5.1 Volume Renderer . 50

5.2 Octree Generation Results . 52

5.3 Progressive Octree Results . 53

5.3.1 Results for Volume size 413 . 55

5.3.2 Results for Volume size 643 . 55

5.3.3 Results for Volume size 2563 . 56

5.4 Octree Rotation . 59

5.5 Overall Evaluation . 59

Chapter 6 Conclusion 62

6.1 Future Work . 63

6.1.1 Optimizations to GPU RayCaster 64

6.1.2 Investigate Potential Solutions to Rotation Errors 64

6.1.3 Octree Adaptation . 64

6.1.4 Octree Generation on the GPU 65

6.1.5 Implementation within a Game 65

6.1.6 User Perception Tests . 65

Appendices 67

Bibliography 68

ix

List of Tables

1 Acronyms commonly used in the text. 67

x

List of Figures

1.1 A cube volume divided into voxels [1]. 2

1.2 An example of a voxel model of a teapot at a low resolution (662 voxels),

left, and at a high resolution (7,474 voxels), right. 3

1.3 Existing games that implement Voxel Rendering. 6

2.1 Ray casting volumetric data [2]. 13

2.2 Subdividing a model into an octree [3]. 14

2.3 The steps involved in the Shear-Warp volume rendering technique are

shear, project and warp [4]. 15

2.4 Three dimensional textures [5]. 17

2.5 Storing an octree generated on the CPU in a 3D texture for use on the

GPU, using a quadtree (2D equivalent of an octree) and a 2D texture

for illustrative purposes [3]. 22

3.1 Subdividing data into an octree to a depth of level 2 [6]. 27

3.2 Subdividing a quad-tree (two dimensional version of an octree) using

breadth-first approach. The numbers on the nodes indicate the order in

the nodes are subdivided. 29

3.3 Subdividing a quad-tree (two dimensional version of an octree) using

depth-first approach. The numbers on the nodes indicate the order in

which these nodes are subdivided. 30

4.1 Rotating the octree (left) and errors introduced by rotating an octree

(right). The green rectangles highlight overlapping nodes, while the blue

square highlight gaps between nodes. 44

xi

4.2 Visualizing the subdivision process of the bonsai tree, size 2563. 45

4.3 Octree generated for a deformed volume, where only 50% of the volume

along the x axis is rendered. 46

4.4 The user friendly interface with the application allowing the user to

generate, rotate and visualize octrees and change settings within the

application. 47

5.1 Comparasion between volumes rendered with Voreen and our implemen-

tation. 51

5.2 The octree generation times for the bonzai volume (2563) using breadth-

first, breadth-first with recursion and depth-first. 52

5.3 Results for progressive octree generation for volume size 413. 54

5.4 Results for progressive octree generation for volume size 643. 57

5.5 Results for progressive octree generation for volume size 2563. 58

5.6 The times, in milliseconds, taken to rotate octree of different depths for

different volumes. 59

xii

Chapter 1

Introduction

Volume Rendering is an alternative approach to triangle-based rendering, which is used

in fields such as medical imaging, geophysics, fluid dynamics, image processing, and

more recently in special effects for films to represent fuzzy objects such as clouds and

smoke. The recent success of games such as Minecraft R©(Mojang) and Crysis R©(Crytek,

Electronic Arts), which used voxels for it’s terrain engine, have also brought attention

to volume rendering in games, with some voxel engines built specifically for games such

as the Atomontage engine [7].

Despite great advances in volume rendering, as demonstrated from recent research

by Crassin et al. [8] and Laine and Karras [9], implementation of volume rendering in

interactive entertainment has been limited to a small number of commercial games and

independent games. One of the reasons for the limited use of volume rendering is the

difficulty associated with rendering animated volumes. Animated volume rendering at

interactive rates is currently the subject of heavy research, and is a major stumbling

block for the use of volume rendering in interactive entertainment such as games, with

current implementations strictly for static objects only, such as terrain.

This introduction chapter will first give a general introduction to the concepts

relevant to the work in this dissertation. This will allow for full appreciation of the

challenges involved in animated volume rendering, which are discussed next. Following

this, the aims and motivation of this dissertation are presented, followed by the layout

of the dissertation.

1

Figure 1.1: A cube volume divided into voxels [1].

1.1 Concepts

Volumetric data is an array of voxels (short for volume picture element), in three-

dimensional space. Voxels, generally organized in a regular three dimensional grid allow

for easy access and storage, are cuboids that typically have a scalar value associated

with them (see Figure 1.1). They are used to represent three-dimensional objects

by combining many voxels together (millions are required for complex objects) (see

Figure 1.2). By increasing the resolution of the volume, the voxels will become smaller

and less noticeable, making the object look less blocky (voxels can become smaller than

the pixels used to present them). As mentioned, voxels have a scalar value associated

with them, they do not have positional information, instead this is derived based on

the position of the voxel relative to other voxels within the volume.

To help visualise and understand volumetric data, consider a two dimensional im-

age. A two dimensional image consists of an array of pixels (picture elements), which

store the colour information for the image. A volumetric data set can be considered as a

collection of two-dimensional images stacked on top of each other, with each voxel con-

sidered as a three-dimensional pixel representing a scalar value calculated by sampling

the local area surrounding the voxel.

Volume rendering is a set of techniques that project the three-dimensional volu-

metric data onto a two-dimensional plane, the view plane. There is a vast number of

volume rendering techniques used to achieve this, such as volume ray casting. An in-

depth discussion on the popular volume rendering techniques can be found in Chapter

2

Figure 1.2: An example of a voxel model of a teapot at a low resolution (662 voxels),
left, and at a high resolution (7,474 voxels), right.

2. Animated volume rendering involves applying these volume rendering techniques to

animated volumetric data. Similar to the concept of animations in films, an animated

volume is a collection of volume datasets, who typically have the same dimensions.

As mentioned, voxels typically only store scalar values, no other information is

generally stored in the volume data set, including colour information, allowing the

voxels to represent various properties such as bone density or fluid velocity. In order to

represent the volume in colour, a transfer function is required to map the scalar values

to colour values.

Another concept discussed in this dissertation is an Octree. An octree is a spatial

sub-division hierarchy that sub-divides data (in this case, volume data) into eight

sections, which can be further subdivided (octrees are also used in other areas such as

collision detection and physics, but this dissertation is only concerned with octrees for

volume data). The purpose of octrees in volume rendering is to reduce the computation

required during sampling the volume. Volume data can contain a lot of empty voxels

which do not contribute to the rendered volume. An octree only stores non-empty

voxels, resulting in the renderer only sampling filled voxels, and not wasting time

sampling empty voxels.

The final concept discussed in this dissertation is multi-threading. Multi-threading

is when an application (or process) has multiple threads running, where each thread

has a set of instructions and stack memory. All threads run independently of each

other, but have access to the data stored on the heap for that application. Why would

an application require multiple threads? Applications can perform tasks that require

3

a number of clock cycles before the task is complete. When this happens, the rest of

the application has to wait for the task to complete before continuing with other tasks.

This may be acceptable for applications where there is no user-interaction or where

performance does not matter, but for other applications, especially computer and video

games, this wait is unacceptable. An example of this would be a web browser. If your

web browser was downloading a file, without multi-threading, you would be unable

to search the internet or view websites until the file was finished downloading. As

far as the user is concerned, the browser would freeze when it is downloading a file.

To prevent the user from waiting, multi-threading is used (in fact, some modern web

browsers use multiple processes). By using multiple threads, your application can set

specific tasks (such as downloading a file) to a thread which executes separately from

the main application, meaning the application can continue performing other takes

(like opening a new website) while the thread performs it’s own task, without slowing

down the main application. As a result, great performance gains can be achieved using

multi-threading.

1.2 Challenges

The size of animated volumetric data is a major challenge for rendering with interactive

rates. In most state of the art engines, a single voxel requires at least 1 byte of memory.

With a volume resolution of 2563, this requires 16 MB of space. With today’s push

for high definition within interactive entertainment, such a resolution would not be

appropriate. Instead a more suitable resolution would be 5123, which results in 128

MB of space required. To achieve an animation at 30 frames a second, that would

require 30 volumes, resulting in 3.75 GB of space needed to store the data, just for a

1 second animation. An appropriate animation length, a 3 second animation, would

require 11.25 GB. With modern graphics cards generally capable of storing memory

between 512 MB to 1024 MB, such data cannot be stored on the GPU. The CPU

also has a limited amount of memory, with the current limit being 192 GB on the 64-

bit Windows 7 Professional operating system, although commonly most systems can

only have a maximum of 4 GB (the limitation on existing 32-bit Windows operating

systems).

As mentioned previously, volumes are spatially sub-divided, commonly with an

4

octree, to reduce computation during rendering. For animated volume rendering, this

requires an octree for every frame of the animation. Using the previous example of

a 3 second animation at 30 frames per second, this would require 90 octrees, further

adding to the amount of memory consumed. Another option is to reconstruct or to

build a new octree during the animation. Currently, the preferred approach is to create

an octree for every frame or to load in the octrees from external files, both during pre-

processing. This approach is appropriate for recorded, pre-set animations such as a

character walking or running. However, for physically based animations or user defined

deformations which feature heavily in modern games, this approach is not applicable.

Instead, reconstructing the octree for each frame is needed, however the construction

of an octree is a time consuming process, even more-so for high resolution volumes.

1.3 Motivation and aims

The motivation behind this project is the implementation of animated volumes in

interactive entertainment technologies, including both pre-recorded fixed animations

as well as physically based animations and user defined deformations. This would

allow for fully complete volume rendering engines to be used in the development of

interactive entertainment technologies without the use of any polygon-based rendering

engines to perform specific tasks, such as character animations, enabling games to be

built entirely from voxels.

Volume rendering with voxels have many advantages over traditional triangle-based

rendering. They are a more natural representation of objects, as voxels can be treated

as the atoms that make up the object. As a result, voxels are suitable for representing

natural details such as rocks, cliffs and caves. In fact, this is the primary use for voxels

in modern games such as Crysis R©(Crytek, Electronic Arts), which implemented voxels

to create overhangs, something that is not possible using height maps with triangle-

based rendering, in the games terrain. Another great advantage of voxels for interactive

entertainment is its use for destructible environments, which has become popular in

modern games such as Red Fraction R©(Volition Inc, THQ) and Battlefield 3 R©(EA

Digital Illusions CE, Electronic Arts). For example, blowing a hole in a wall simply

requires removing the relevant voxels from the wall. Performing a similar task for

triangle-based rendering is a lot more complex, requiring cutting holes in polygons and

5

(a) Comanche R©by NovaLogic featured
voxels for rendering.

(b) Voxels used for grass in Delta Force 2
R©by NovaLogic.

(c) Voxels used for the terrain in Delta
Force 2 R©by NovaLogic.

(d) Minecraft R©by Mojang implements
voxels.

Figure 1.3: Existing games that implement Voxel Rendering.

building the geometry behind it while setting up the new texture coordinates. Voxel

rendering commonly incorporates an octree to reduce rendering costs. With this octree,

level of detail also comes at no extra cost, as the rendering engine can traverse the octree

to an appropriate depth based on the distance the volume is from the camera. This

means that, in theory, you can have unlimited geometry detail in a scene (limited by

available system memory). Voxels also allow for complete texturing, where each voxel

can be assigned a different colour without requiring a large number of textures, which is

6

the main source of memory usage for current triangle-based rendering engines. Volume

rendering is also ideal for representing real world phenomena such as smoke, fire and

clouds, which cannot be easily represented using triangle-based rendering techniques.

Instead, these phenomena are represented using particle systems in modern games.

Particle systems are not ideal, as the particles, usually point sprites, can intersect with

scene geometry resulting in artefacts that ruin the illusion.

These advantages of volume rendering and voxels over traditional triangle-based

rendering have not gone unnoticed by the interactive entertainment industry, with a

number of video games taking advantage of voxel rendering. Most notably, the Delta

Force R©series (Delta Force 1 and Delta Force 2) and the Comanche R©series (see

Figure 1.3a), which was the first commercial flight simulation game rendered using

voxels (in fact this game used a more restrictive definition of voxels, where the voxels

were 2D bricks as the engine was not a 3D engine, but a 2.5D engine), both developed by

NovaLogic who used voxels in a number of their games. Delta force 2 R©exploited voxels

for generating landscapes and environments, including grass which was implemented

to allow players to take cover (see Figure 1.3b), in the game world with practically

unlimited draw distance, which was a major feature for the game involving sniping

enemies from a distance. This was achieved by tiling the base terrain of a level in all

directions, allowing the game to feature levels that exceed the size of most levels in many

games to this day, despite having been released in 1999 (see Figure 1.3c). Voxels are

heavily used to generate game worlds and allow the user to build and destroy objects,

including the game world, in the recently successful game called Minecraft R©(Mojang)

(see Figure 1.3d). The use of voxels in games has not been strictly limited to terrain

generation. Command & Conquer: Tiberian Sun R©and Command & Conquer: Red

Alert 2 R©(both developed by Westwood Studios and published by Electronic Arts)

used voxels to render some of the game’s units (such as vehicles) and buildings. Blade

Runner R©, also by Westwood Studios used voxels to render characters and some objects

in the game.

It is clear that the games industry can and want to use volume rendering for de-

veloping their games. However, for volume rendering to be universally implemented

by modern interactive entertainment, it is important that it can perform physically

based animations. There is an increasing number of games released every year, such

as Grand Theft Auto 4 R©(Rockstar North, Rockstar Games), Red Dead Redemp-

7

tion R©(Rockstar San Diego, Rockstar Games) and Star Wars: The Force Unleased

R©(LucasArts), where character and object animations are physics-based, using engines

such as Havok R©and Euphoria R©, and not pre-recorded animations. The popularity

of such engines is no surprise as games strive to make believable, immersive game

worlds, realistic and believable animations are a must, where characters react to the

game terrain and user interactions through physic-based animations, instead of playing

pre-scripted animations formed in 3D animation software or motion capture.

This dissertation is aimed at investigating the use of octrees in animated volume

rendering, performing an analysis of certain optimizations to octrees to reduce compu-

tation time in interactive scenes. Furthermore, the use of dedicated threads for octree

generation will be investigated and evaluated to determine how applicable octree gen-

eration is to interactive scenes. This will include progressive octree generation, where

the octree is drawn as it is being subdivided, with interactive rates. The main aims

are:

• Investigate the length of time required to generate an octree to specific depths

(for example, depth 1 to depth 8).

• Study the performance of octree generating over a series of frames, rendering

each level as it is built.

• Investigate the implementation of dedicated threads for progressive octree gen-

eration.

• Study and investigate possible approaches to adapt the octree, instead of recon-

structing the octree.

• Develop a prototype application for volume rendering and octree generation at

interactive generation. The application should implement multiple threads and

progressive octree generation. Furthermore, the application should have a user

friendly interface and provide the user with options to modify the volume data,

generate a new octree and also visualize the octree. The application should be

platform independent where possible, only using platform specific code when

required.

8

• Evaluate octree generation for animated volumes and it’s applicability to inter-

active entertainment technologies

1.4 Dissertation Layout

This dissertation report is organised in the following structure:

The introduction, just covered in this chapter, introduces the most relevant concepts

related to this work, with a brief description of each concept. Following, the challenges

in the field of animated volume rendering were introduced. The motivations behind

this research and application developed as a result was explained in detailed, with the

aims outlined.

The next chapter gives a brief revision of related work performed in volume ren-

dering, animated volume rendering and octrees, presenting the numerous approaches

developed to implement these concepts.

After the chapter on related work, the design of the system is introduced. This

chapter introduces the development plan for this dissertation and also breaks the system

down into it’s relevant components, and explains the functionality of each component,

the options and decisions made when designing the system.

Next, a chapter on the implementation is presented. This chapter provides a de-

tailed description of how each component in the application was constructed based on

the design of the application.

The application is then evaluated by presenting and analysing the results obtained

from the application.

The final chapter will present the conclusions reached based on the application

evaluation, and suggest possible future work that is related to this dissertation.

9

Chapter 2

Related Work

Volume rendering and animated volume rendering have been researched in great depth,

which has resulted in a wide variety of techniques to render volume data. Octrees

have received similar attention with regard to the volume rendering domain and other

domains such as collision detection. This chapter will discuss and review related work

in the following fields:

• Volume rendering techniques.

• Animated volume rendering.

• Octrees.

2.1 Volume Rendering Techniques

There is vast array of volume rendering techniques researched in this field, and a

detailed discussion on these techniques will follow. It is important to discuss the various

rendering techniques available to determine what are the advantages and disadvantages

of these techniques, and which is most appropriate for this dissertation.

Volume rendering can be divided into two categories, direct volume rendering and

indirect volume rendering, and much work has been researched in both fields. A brief

discussion will be had on indirect volume rendering, before discussing direct volume

rendering in depth as it is more relevant to this research.

10

2.1.1 Indirect Volume Rendering

Indirect volume rendering techniques transform volume data into a different domain,

generally into a set of polygons representing the surface of the volume. This can then

be rendered with existing polygon rendering techniques to produce an image of the

volume.

A common indirect volume rendering technique is the marching cubes algorithm,

first presented by Lorensen and Cline [10] which creates a surface from the volume data.

A cube is created from a total of eight neighbouring voxels which is then compared

to the surface of the volume to calculate an index. This index is used to determine

polygonal representation of the volume based on a pre-calculated table. The algorithm

not only outputs the vertices of the polygonal representation of the volume, but also its

normals. There are several cases where holes can appear in the final image, which was

later improved upon by extensions to the algorithm such as in Kobbelt et al’s research

[11].

Kobbelt et al. [11] present an extended marching cubes algorithm and enhanced

distance field representation which increases the quality of the final triangle mesh,

resulting in an approximation error below 0.25%.

A common technique implemented for medical applications prior to the marching

cubes algorithm was contour tracing. This approach consists of a four step process

which involves:

• Take a 2D slice of the volume and traverse adjacent pixels to find closed contours,

forming polylines.

• Based on iso values, identify structures.

• Connect contours from adjacent slices that represent the same structure, and use

them to form a triangle

• Finally, render the created triangles.

There are many algorithms to implement contour tracing, such as that proposed

by Yan and Min [12], which could be adapted for use with volumetric data.

11

2.1.2 Direct Volume Rendering

Direct volume rendering renders every voxel in a volume directly without transforming

the volume to a polygonal representation or other domain. This section will discuss

common volume rendering techniques such as shear-warp and splatting, with particular

attention given to ray casting as it is most relevant to this research.

Ray Casting

Ray casting is a common technique for volume rendering which has been used for many

years [13]. With this technique, rays are created for each pixel and traced from the

camera (or eye point) into the volume (see Figure 2.1). The volume is sampled at

discrete positions along each ray and, using a transfer function, the data obtained at

each position is mapped to colour values. These values are accumulated to form the

final colour for the pixel. Ray casting can be costly and achieving interactive rates for

large data-sets was impossible for many years as it was only performed on the CPU.

The graphics processing unit (GPU) has became very powerful with advanced func-

tionality such as dynamic looping in recent years. With this new powerful processing

unit, it has become possible to implement ray casting on the GPU to achieve interactive

rates [1].

Kruger and Westermann [5] exploit the features of the GPU, such as the ability to

render to texture targets, per-fragment texture fetch operations and texture coordinate

generation, to render volume data via ray casting on the GPU with improved perfor-

mance. They apply acceleration techniques to further increase performance, such as

early ray termination, where the ray is terminated once an opacity threshold of the

accumulated pixel value has been met or a selected iso value is reached. They also

implement empty-space skipping, where regions are checked to determine if they are

empty while sampling and skipped if that is the case.

Extending on from this, Scharsach [14] implement a process called hitpoint refine-

ment. Once the opacity threshold has been exceeded, the ray is stepped backwards

up to 6 times to find the position where the threshold is met. This provides up to 64

times more accurate results than the original estimation. Also introduced is interleaved

sampling and the ability to fly-through the rendered volume, which was previously not

possible [14].

12

Figure 2.1: Ray casting volumetric data [2].

Spatial Sub-Division During volume rendering, a large portion of the volume does

not contribute to the final image, as a result of occlusion or due to being outside the

camera’s field of view. While using ray casting, ray intersection tests are required to

determine which parts of the volume to render. The time taken to do these intersection

tests can be reduced by spatial sub-division.

Spatial sub-division divides the volume space into sections, which can be further

sub-divided for more detail (see Figure 2.2). Each section is represented as a bound-

ing volume. These can be sub-divided to 8 equally sized bounding volumes, which

combined equal the size of the parent section. As a result, if a ray does not intersect

the parent section, then it cannot intersect the children of that section. This reduces

the number of ray intersection test performed, and therefore increases performance of

volume rendering. This can be achieved by using a tree data structure such as binary-

space partitioning trees and octrees, however discussion will be limited to octrees for

this section.

Gobbetti et al. [15] note that when rendering, the entire volume does not need to

be in memory. They organize the data in a spatial sub-divided octree, where empty

13

Figure 2.2: Subdividing a model into an octree [3].

space can be skipped while ray casting. The octree contains nodes which point to

bricks, which are voxel grids of a set size M3, or indicate empty space. All the bricks

are grouped in a 3D texture, referred to as the brick pool, on the GPU. At all times, it

is ensured that all leaf nodes visible from the current view point are in the brick pool.

The CPU also has the same data structure which is used to perform modifications to

the data structure and these changes are then sent to the GPU. The CPU streams any

required data that is missing to the GPU. When rendering, rays are traversed through

the octree using an algorithm similar to kd-restart [16], which is normally implemented

for real-time ray tracing.

Crassin et al. [8] extend the work done by Gobbetti to achieve better quality and

performance. To improve on the previous work, they reduce the number of pointers to

one pointer per node in the octree by storing all nodes in a 3D texture, the node pool.

This is organized into blocks of nodes and allows for all children of a node to be stored

in one of these blocks. By using the 3D texture, it takes advantage of texture caching

on the GPU. Crassin et al. [8] also determine the correct level of detail in the shader

while performing ray traversal, and do not need a data structure unlike Gobbetti et al.

[15].

A similar approach to Crassin et al. [8] is presented by Laine and Karras [9] [17].

They introduce a compact data structure for storing voxels, including geometry and

shading data for each voxel. The data is divided into contiguous areas of memory called

blocks. For each block, information on the topology of the octree, the geometrical shape

of the voxel and shading properties of the voxel is stored. When a ray hits geometry, a

shader is executed based on the shading properties stored in the geometry’s respective

block.

14

Figure 2.3: The steps involved in the Shear-Warp volume rendering technique are shear,
project and warp [4].

The result is efficient sparse voxel octrees capable of voxel representation that are

competitive with triangle based representations. While not as accurate (such as ren-

dering corners and edges), it contains unique colour and normal information for each

voxel, allowing unique geometry to be represented at high resolutions.

Due to the ever increasing power of the GPU, and the simple yet flexible tech-

nique that is ray casting on the GPU, ray casting will be a popular technique for the

foreseeable future in volume rendering.

Shear-Warp

Shear-warp is a popular algorithm first introduced by Cameron and Undrill [18] and

later by Lacroute and Levoy [4] to produce various views of a volume at interactive

rates. In this algorithm, the volume is sliced, or sheared at multiple positions (see Fig-

ure 2.3). These samples remain parallel to each other, however their relative positions

change. Using this approach, if one was to look directly at the volume (where only

the front of the volume was visible), after the shearing process, the side of the volume

15

would also be visible. The samples are projected onto an intermediate image. Due to

random sample positions during shearing, the intermediate image after projection can

be distorted, and so this is warped to produce the correct image. Each voxel position

is transformed onto the projection plane by a simple rotation and projection.

Lacroute and Levoy [4] note that this technique is ”more than five times faster”

than a raycaster for datasets of size 1283, and ”more than ten times faster” for datasets

of size 2563. However the image results are of lesser quality than that produced by

ray casting and incorporating zooming with acceptable results is problematic. This

algorithm is also slower if large parts of the volume contain voxels of low opacity.

Wu et al. [19] present a hybrid approach of both shear-wrap and ray casting. The

volume is sliced just like in the shear-wrap approach. Then rays are cast through

the image plane and samples taken at the intersection with each slice. The approach

does not warp the image, unlike the shear-warp method. Wu et al. note that this

method requires the image to be separated into a number of partitions to avoid rays

that diverge and become almost parallel to the slices of the image. This effects the

number of passes required for rendering, one pass per partition.

Splatting

Splatting is a technique introduced by Westover [20] to perform fast volume rendering,

at the cost of some quality. With this technique, the volume elements are projected

onto the viewing plane, which Westover describes as ”like a snowball” [20], which

are integrated into 2D images called footprints. The projection is approximated by

a Gaussian splat, based on the colour and opacity of the voxel. The footprints are

then composited on top of each other in a back-to-front manner based on the camera

orientation to produce the final image.

This is a fast technique for volume rendering, and is capable of running on low end

graphics cards. However, the quality of the final rendered image is lower than that

produced by ray casting, and results in fuzzy, blurry images.

Further improvements to splatting were proposed by Laur and Hanrahan [21], who

implement a splatting algorithm based on a pyramidal representation of the volume.

This differs from Westover as a set of footprints are built for each level of the pyramid.

Recently more work has been done on splatting by McDonnell et al. [22], who present

16

Figure 2.4: Three dimensional textures [5].

subdivision volume splatting. They ”demonstrate that splatting in particular is the

ideal subdivision volume visualization algorithm”.

Three Dimensional Textures

Three dimensional texture based volume rendering is another method for volume ren-

dering which was introduced by Cabral et al. [23] and Wilson et al. [24]. Three

dimensional texture based volume rendering is where 3D textures are slices of a tex-

ture block which have been sliced in a back-to-front order with planes oriented parallel

to the viewing plane [5]. For each slice, the 3D texture is sampled and the result

blended with the pixel colour in the colour buffer [5] (see Figure 2.4). It is possible to

render the slices orthogonal to the viewing plane due to the trilinear interpolation that

is available on the GPU.

Westermann and Ertl [25] extend volume rendering with 3D textures by exploiting

pixel textures for volume rendering in spherical domains, possible due to the pixel

texgen extension in OpenGL.

Three dimensional texture based volume rendering produces images of reasonable

quality at interactive rates.

Direct Volume Rendering Recap

This section has discussed some of the direct volume rendering techniques that are

commonly used. There are a number of other volume rendering techniques such as

17

wavelet volume rendering [26] [27] and fourier volume rendering [28] [29] which have

not been discussed in detail however.

2.2 Animated Volume Rendering

Visualizing animated volume data is an important ability for scientists to study time-

varying phenomena. Another application for it has arisen in recent years in computer

and video games, with the number of games utilizing voxels increasing. Visualizing

animated, or time-varying, volume data is problematic due to the large dataset that is

associated with it. The volume data itself can be quite large, such as in static volume

data, however this needs to be repeated for each time-step of the animation, which

can be thousands of time-steps [30]. There has been a lot of research dedicated to

this field, with a number of techniques presented to achieve interactive visualization of

time-varying volume data.

2.2.1 Encoding

Encoding is one such technique which reduces the volume dataset size through compres-

sion, therefore reducing the amount of memory required to store the dataset, making

it possible in some cases to store the data as a texture on the GPU, and also allowing

it to be stored in main memory [30].

One implementation of encoding is to separate the time dimension from the spatial

dimensions by extracting the differential information between sequential time steps

[31], this technique also incorporates ray casting. Shen and Johnson [31] note that this

technique has limitations if the changes in elements exceed over 50%. Additionally,

the data must be browsed from the first time step [30]. Ma and Shen [32] use scalar

quantization with an octree and difference encoding to achieve compression. They

exploit the spatial and temporal coherence to fuse neighbouring voxels into macro

voxels if they are similar. They also merge two subtrees if they are consecutive and

identical to reduce space and increase rendering speeds. They use a ray casting volume

renderer to render the first tree, and then only render modified trees in subsequent

time-steps. Sohn et al. [33] use a block-based wavelet transform, which is also used for

image compression, to compress isosurfaces and volumetric features while maintaining

18

minimal image degradation. The volume is decomposed into small blocks which are

only then encoded. To reduce space, only significant features of the volume are encoded.

Another approach to encoding is to treat the data as 4D data with the use of an

extended octree, 4D tree, where time is the fourth dimension [30]. Linsen et al. [34]

introduced 4
√

2 subdivision with quadrilinear B-spline wavelets. Ma [30] notes that the

characteristics of the data should determine if we should treat the data as 4D data.

If the resolutions of the temporal and spatial differ greatly, they should be then be

separated due to the difficulty in locating temporal coherence [35].

Shen et al. [35] introduce a time-space partitioning (TSP) tree for temporal and

spatial coherence, allowing the user to adjust error tolerances for trade off in image

quality and rendering speed. The TSP tree is similar to an octree, however each node

in the tree is a binary tree which represents the difference time span for that voxel,

thus reducing the amount of data required for rendering.

2.2.2 Transfer Functions

A transfer function assigns RGBA values to voxels to determine how they are repre-

sented visually, and so is a major aspect of rendering the volume. They can be used

for both static and animated volume rendering, however, there is no single accepted

transfer function for time-variant data, with a number of various approaches proposed

[36].

Ma [30] notes that for time-varying volume data, the transfer function needs to

identify features of regular (feature that moves steadily through the volume), periodic

(features that appear and disappear over time) or random patterns in the time-varying

data.

Jankun-Kelly and Ma [37] discuss various ways of generating transfer functions, as

well as studying when multiple transfer functions are needed including how to capture

the time-varying data in as few transfer functions as possible. They find that time-

varying volume data that have a regular structure can be rendered with a single transfer

function.

19

2.2.3 Animated Sparse Voxel Octrees

While sparse voxel octrees are suitable for efficient volume rendering of static objects

[9], the structure of the octree makes them unsuitable for animation. Each node in the

octree does not contain position or orientation information, instead this information

is determined by the position of the node in the octree. This results in a lack of an

organized hierarchy which can be exploited for animation (such as toes connected to a

foot, which is connected to a leg etc.). Therefore, animating a model would require an

octree for each frame of the animation. This approach results in large amount of data,

well beyond current hardware memory limitations.

Bautembach [38] introduces animated sparse voxel octrees and presents examples

of rotation and skinning. Rotating voxel octrees are achieved by traversing the octree

to the leaf level, computing every nodes minimum and maximum vectors on the fly

based on the nodes current position within the octree. A rotation matrix is then

applied to every leaf node by determining the node’s centre position and rotating it.

This approach introduces visual errors, but these are negligible given a high sampling

rate. Bautembach notes that this approach can be applied to every rigid and non-rigid

transformation, however different procedures are required for different transformations

in order to maintain the model’s proportions. An example of this is provided where

a simple formula is used to adapt the size of the voxels in order to prevent holes in

a skinned model animation. To create the animated voxel octree, Bautembach, D.

[38] takes an animated model, in triangle mesh form, from another standard storage

format, and creates a compressed octree upon initialization. The Nodes in the octree

are stored sequentially as if they were traversed by breadth-first search. For each frame

of the animated model, another octree is created based on the original.

While this approach achieves animated voxels, it is only suitable for pre-recorded

animations, and so rag-doll animations, for example, would not be possible.

2.3 Octrees

So far, discussion of octrees has been related to volume rendering, however octrees

are used in other fields such as collision detection, and as a result has received heavy

research outside of the volume rendering domain. This research is still very relevant

20

for volume rendering.

Octrees have traditionally been implemented on the CPU, however the GPU has

become a powerful processing unit, and is now used extensively for rendering, such as

the previously mentioned GPU ray casting techniques. However, if rendering is now

taking place on the GPU, the octree on the CPU needs to be accessed by the GPU if

it is to be integrated with the renderer.

Pharr and Fernando [3] store an octree created on the CPU in a 3D texture called

the indirection pool. The indirection pool is subdivided into indirection grids, which

are cubes of 2 x 2 x 2 pixels (referred to as cells). Each indirection grid represents

a node in the octree. The cells in each indirection grid represent the nodes children

in the octree (see Figure 2.5). The RGB values of the cell can contain nothing if the

corresponding octree node is empty or it can contain:

• data if the child node is a leaf

• or the index position of another indirection grid if the child node is not a leaf

node.

The alpha value of the cell indicates what type of data is stored in the RGB com-

ponent of that cell. An alpha value of 0 indicates the cell is empty, a value of 0.5

indicates the cell contains an index position, and a value of 1 indicates data is stored.

This texture is then uploaded to the GPU and stored in texture memory, for access by

the fragment shader. To find if a point is within the tree, a lookup function is called

which starts at the root node (at texture coordinate [0, 0, 0]), and successively visits

all nodes that contain the point until a leaf node is found.

Madeira and Lewiner [39] present an octree search structure for the GPU based

on a hash table. To take advantage of the parallel structure of the GPU, their search

algorithm treats all search locations and octree depths independently of each other.

They also introduce a parallel version of their optimized search algorithm, allowing for

efficient searching of a single point at any time in the octree.

Ganovelli et al. [40] introduce a bucketTree where the leaves of an octree data

structure contain primitives inside the corresponding box, which is referred to as a

bucket. The primitives stored in the buckets can be vertices, polygons or even volume

data. This is made possible as the bucketTree views the object as a soup of primitives.

21

Figure 2.5: Storing an octree generated on the CPU in a 3D texture for use on the
GPU, using a quadtree (2D equivalent of an octree) and a 2D texture for illustrative
purposes [3].

At every time step of a simulation or animation, the primitives are assigned to the

correct buckets.

Gu and Wei [41] implement octree ray casting on multi-core CPUs to achieve parallel

optimization of an octree. The octree is optimized to exclude redundant data and to

skip empty voxels to reduce storage and computation. Computation is further reduced

with the implementation of the octree with multi-core CPUs, reducing the computation

time associated with the octree and ray casting.

22

Chapter 3

Design

The main research areas of this dissertation can be divided into two areas; the first

is volume rendering at interactive rates; the second research area is progressive octree

generation at interactive rates. The goal of this dissertation is to create an application

that implements both these research areas, and to produce technical results which can

be evaluated, with particular attention given to progressive octree generation, in terms

of performance and applicability to interactive entertainment technology.

3.1 Development Plan

The development process plan for this dissertation is divided into the following:

• Research existing volume rendering techniques, animated volume rendering and

octree generation.

• Design an application to incorporate volume rendering and octree generation

(including progressive octree generation) with a user friendly interface.

• Implement the application, using cross-platform compatible code where possible

so the application can be used on multiple operating systems, based on the design

outlined in the previous step.

• Using the application, evaluate the implemented volume renderer and octree

generation.

23

Research into existing volume rendering techniques, animated volume rendering

and octree generation has been discussed in depth in Chapter 2, with the knowledge

gained in this research applied while designing the application. The application is

divided into the following components:

• File management component to load volume data from external files and also

store data to external files.

• Volume renderer component to display the volume to the screen.

• Octree component used to generate octrees. The octree will also be incorporated

with the volume renderer.

• A user friendly interface.

The following sections will discuss the design of each of these components.

3.2 File Manager

The File Manager component is responsible for loading volume data into the application

from external files. The application must be capable of reading volume data, regardless

of the volume data dimensions and spacing. The application should be capable of

loading 8-bit and 16-bit volumetric datasets. The datasets will be loaded from binary

files, or .RAW files, which are a common storage format for volume datasets and are

freely available on websites such www.volvis.org. The loaded data should then be

stored in an array, which can be used to create a texture.

Furthermore, the file manager will be responsible for writing data to external files,

in particular octree information for specific volume datasets. Subdividing a volume

with an octree can take a number of seconds to complete, depending on the depth of

the tree and the resolution of the volume. This subdivision will occur every time a new

volume is loaded into the system. Instead of generating the same octree for a volume

every time it is loaded, the octree should be stored to an external file. This file can

be loaded into the system when loading new volume data, reducing the loading time

of the application. This also allows octrees for pre-recorded animated volumes to be

loaded into the application. It is important to note that the octree will only be loaded

24

from a file when a new volume is loaded and initialized, it will play no part in the

progressive generation process.

3.3 Volume Renderer

The Volume Renderer is responsible for displaying the volume data-set on screen.

This involves implementing a volume rendering technique, many of which have been

discussed in detail in Chapter 2. For this dissertation and research project, ray casting

has been chosen. There are numerous reasons as to why ray casting was chosen over

other techniques.

The fundamental reason for choosing ray casting is that the technique allows for

optimum usage of spatial sub-division hierarchies, such as octrees, which can be in-

corporated into the raycaster without much code adaptation. Since octrees are a core

research topic for this dissertation, this rendering technique is an appropriate choice.

An additional reason for using ray casting is it provides the best balance in terms

of image quality and processing speeds. This was not always the case however. Tradi-

tionally, to perform ray casting at interactive rates required top of the range CPU’s.

An example of this is Outcast R©, a computer game released in 1999 by Appeal and

Infogrames, which used ray casting to render the environments. This provided im-

pressive visuals, but a top of the range CPU was necessary to be capable of running

the game at interactive frame rates. With the introduction of the GPU, and it’s ever

increasing processing power, it is now possible to perform ray casting on the GPU,

with significant speed boosts over the CPU.

3.3.1 GPU Ray Casting

Ray casting will be performed on the GPU to achieve the best possible frame rates.

This will require the volume data to be loaded into a three dimensional texture and

passed to the GPU. Furthermore, the transfer function will also need to be passed

to the GPU as a texture so the colour information can be mapped to the volume

data in the fragment shader. Additionally, the volume should be rendered with diffuse

shading and with a simple ambient light. More complex lighting algorithms could be

implemented, such as Phong [42] or Blinn-Phong [43], however this is beyond the scope

25

of this dissertation.

The volume renderer should be capable of extracting iso surfaces from the volume

also. This is a common feature of volume rendering used to analyse three dimensional

data in greater detail; for example removing the skin layer of a volume representing a

human head, so the skull is revealed for a clearer inspection.

3.3.2 CPU Ray Casting

A CPU raycaster will also be implemented as a measure against the GPU raycaster,

demonstrating the difference in both performance and image quality between both

implementations. The CPU raycaster will incorporate the CPU generated octree to

reduce rendering costs.

3.3.3 Transfer Function

Transfer functions map colour information to volumes, as volumetric datasets do not

store any colour information. These transfer functions can be complex, implement-

ing mathematical algorithms such as the Fourier transform to produce sophisticated

functions, in particular to volumes relating to velocity fields and fluids. However, such

implementations are beyond the scope of this dissertation, where the application of

a transfer function is to simply render volumes with colour. As a result, this appli-

cation will apply simple one dimensional transfer functions, which are saved to a one

dimensional texture for use on the GPU.

3.3.4 Pre-Recorded Volume Animation

The application should be capable of rendering pre-recorded volume animations loaded

in from an external file, enabling the application to support both forms of volume ani-

mation, pre-recorded and physically based or user-defined deformations. These anima-

tions are simply a set of volumes, rendered one after another sequentially. Rendering

animated volumes, that is pre-recorded animated volumes, is an area that is currently

heavily researched with a number of approaches being proposed and investigated, such

as compression of the animated data [44], to aid in rendering animated volumes at

interactive rates.

26

Figure 3.1: Subdividing data into an octree to a depth of level 2 [6].

It is important to note that this dissertation is focussed on using octrees for user-

defined deformations or physically based animations, and not on pre-recorded animated

volume rendering. With this in mind, this application will be capable of only render-

ing small animated volumes, both in volume resolution and animation length. Large

animated volumes, such as the example presented in section 1.2 (page 4) of a 3 second

animated volume of resolution 5123, will not be possible due to the large amount of data

associated with such datasets which require optimizations for rendering at interactive

rates. The implementation of these optimizations is not possible for this application

due to the time constraints opposed on this dissertation.

3.4 Octree

The octree component will be responsible for subdividing volume data into an octree on

the CPU. An octree is a spatial sub-division hierarchy that sub-divides the volume data

into nodes. A node represents a part of the volume, storing a value which represents

the average of all the voxels within that area of the volume. This node can be further

27

subdivided into 8 more nodes (hence the name octree), which represents a smaller area

of the volume, and therefore stores more accurate information about the volume as

there are less voxels within the node (the value stored in a parent node represents the

average of all the child nodes)(see Figure 3.1).

In this application, the octree will be a pointer-based octree, that is each node in

the octree has 8 pointers which point to its child nodes. Alternatively, a node’s child

pointers can be empty if that node is not subdivided. Each node in the octree should

store as little data as possible. This data includes:

• The 8 pointers to the child nodes.

• The three dimensional position of the nodes centre.

• The nodes width.

• A boolean flag to indicate if the node is subdivided (i.e. contains children) or

not.

• An average of the volumes voxel data that is located inside the node.

3.4.1 Octree Generation

Octree generation involves creating a root node that encompasses the volume, and then

subsequently subdividing the node into eight new nodes, which are also subdivided and

so on. This subdivision should continue until a desired tree level is reached or until each

node presents only one voxel. To prevent unnecessary processing and memory usage,

empty voxels are ignored, resulting in nodes being created only if all the voxels within

the node are not empty. Further optimizations are applied to the octree generation

process to reduce computation time. These optimizations are as follows:

• For a node to be created, the voxels it encloses not only have to be non-empty,

the average of all the voxels must be above a certain threshold. This will prevent

nodes being created for areas of the volume that have a very low opacity and do

not contribute to the final rendering, saving both computation and memory.

28

Figure 3.2: Subdividing a quad-tree (two dimensional version of an octree) using
breadth-first approach. The numbers on the nodes indicate the order in the nodes
are subdivided.

• When subdividing a node, a check will be made to see if the average voxel values

for the soon to be created child nodes are the same. If this is the case, this means

that the average value of each of the child nodes, that are to be created, will be

the same as the parent node. As a result, the node will not be subdivided as the

children of that node would not contain any more detailed information that the

current node already provides.

Two different approaches will be implemented to generate the octree, breadth-first

and depth-first. This will allow for a comparison between the performance of the two

approaches, determining which is the faster approach, if any, for the generation of

octrees at interactive rates.

Breadth-First

Generating an octree with breadth-first results in the octree been divided level by level,

that is level 2 of the octree is not subdivided until level 1 is fully subdivided first (see

Figure 3.2).

29

Figure 3.3: Subdividing a quad-tree (two dimensional version of an octree) using depth-
first approach. The numbers on the nodes indicate the order in which these nodes are
subdivided.

Furthermore, two implementations of this approach will be used, the first a re-

cursive implementation, the second a non-recursive implementation. The decision to

include two implementations of this approach is due to the desire to achieve the best

performance possible when generating the octree. Recursive implementations are ef-

fective, but they have overheads associated with stack management. By performing

both implementations, they can be evaluated to determine which, if any, provides the

best performance.

Depth-First

Depth-first subdivides one node as far as possible before backtracking to subdivide the

rest (see Figure 3.3). How far a node is subdivided is based on the maximum allowed

depth of the octree, the number of voxels a node represents (if the current number is 1,

further subdivision is unnecessary) or if the average voxel value is below the previously

mentioned threshold. As a result, one side of the octree is completed before moving

onto the next. This approach is not suitable for progressive octrees, as levels are not

fully completed before moving onto the next, meaning the octree cannot be drawn as

it is subdivided as only parts of each level will be visible. However, it is useful to

determine which approach is faster, breadth-first or depth-first.

30

3.4.2 Progressive Octree Generation

Progressive octree generation should generate an octree during run-time while main-

taining interactive rates. This should take advantage of the previously mentioned

octree generation implementations. Three forms of progressive octree generation will

be implemented. These are:

• Progressive octree generation on the application’s main thread.

• Implementing a dedicated thread for the generation process.

• Implementing multiple dedicated threads.

The progressive octree generation will incorporate the breadth-first approach to

generating the octree. This will allow for the octree to be drawn while it is still being

subdivided. For example, if level 5 is currently being subdivided to create level 6, with

breadth-first this means that levels 1, 2, 3, 4 and 5 are all completed, and so can be

displayed. This will be important, as generating the octree will potentially take seconds

(for large volumes), and instead of drawing nothing while the octree is created, it is

better to show feedback to the user, demonstrating the current progress.

Main Application Thread

The application’s main thread is responsible for everything else, such as rendering and

updating application states. It is important that the octree generation does not cause

the main thread to slow down. As a result, the progressive octree generation should be

the last operation performed on the main thread after the draw call. This will allow

for an approximation of how much time was spent on the current frame, and how much

time can be spent generating the octree before the frame rate drops below the desired

level. Once the progressive octree generation has exceeded this time limit, it should

stop the generation and resume in the next frame.

For example, if the desired frame rate of the application is 60 frames per second,

that means each frame can take a maximum of 16.6666 milliseconds to complete. If one

frame has performed all updates and draw calls within 10 milliseconds, this means there

is 6.6666 milliseconds left to perform operations if needed, in this case to progressively

generate an octree. When generating the octree, a timer will be used to determine

31

how much time has been spent so far. Once this time has exceeded the allocated time,

6.6666 milliseconds in this case, it should stop the generation and resume in the next

frame.

This requires the ability to stop the generation of the octree, storing the current

stage of the generation process and resuming from the same point the next time it is

called.

Single Dedicated Thread

A dedicated thread will be created for the sole purpose of generating the octree. This

will allow for the progressive octree generation process to be abstracted from the main

application’s thread, allowing the dedicated thread to utilize all it’s available resources

to generate the octree as quickly as possible.

Multiple Dedicated Threads

Multiple dedicated threads will also be implemented for generating the octree, 9 threads

to be precise. The first thread will be used to initialize the octree, copying volume data,

setting the dimensions and creating the root node of the tree. This thread will also be

responsible for subdividing the root node, creating potentially eight child nodes and

setting the octree depth level to 1. This thread will then create a new thread for each

of the root node’s children which are not empty. These threads will subdivide their

assigned node, using breadth-first traversal, down to the desired maximum tree level or

until further subdivision is not possible. This will result in potentially 8 threads working

separately to subdivide the same octree to the desired level, without interrupting the

main application.

It is important that these threads are loosely coupled, and do not depend on access-

ing shared information. Otherwise, locks will be required to prevent multiple threads

from accessing the same data at the same time. These locks, while very important for

concurrency control, can reduce the efficiency of threads.

3.4.3 Octree Rotation

The user will have the ability to rotate the volume, which will invalidate the octree for

that volume. Instead of rebuilding the octree, the octree will be adapted by rotating

32

it, based on the implementation described by [38], where the center of each node in

the tree is rotated about the origin, in a similar to how the volume is rotated.

3.4.4 Visualizing the Octree

The application should be capable of visualizing an octree. This will be achieved by

rendering 12 lines to create a wire-frame for each node. When evaluating the perfor-

mance of octree generation, the octree visualization implementation will be disabled

to get a true performance measure.

3.5 Volume Deformation

The focus of this dissertation is progressively generating octrees for volume deforma-

tions or physically based volume animations. To demonstrate how applicable progres-

sive octree generation is, it will be important to allow the user to modify the volume

data on the fly. Therefore, the application must be capable of allowing the user to

adjust the volume data that is used for generating the octree. A simple approach will

be undertaken to achieve this. The user will be capable of setting what percentage of

the volume data should be used for creating the octree. A clipping plane will be used to

clip the appropriate area of the volume based on a user defined percentage value. For

demonstrative purposes, a single clipping plane will be used to clip the volume along

the x axis. For example, with a volume of size of 643, if the user determines to clip 50%

of this volume data, that will result in the octree been generated for voxels between

[0, 0, 0] and [32, 64, 64] of the volume. This is a simple approach for user-defined

deformations, but is suitable for testing progressive octree generation.

As previously mentioned, the user will be capable of rotating the volume, invali-

dating the current octree. This is another simple form of volume modification that is

appropriate for this application.

3.6 User Friendly Interface

The application will provide the user with a user friendly interface, to allow for modifi-

cations to system variables and adjustments to the display settings. The user interface

33

should allow the user to:

• Generate an octree at the press of a button.

• Set the depth at which the octree should be subdivided to.

• Determine which approach to generate the octree with, breadth-first or depth-

first.

• Determine whether the octree should be generated on the application’s main

thread, a single thread or using multiple threads.

• Switch octree visualization on or off, and set which level of the octree to visualize.

• Enable and disable isosurface extraction, and setting which isosurfaces to extract

from the volume.

• Set what percentage of the volume should be used when generating the octree

(as part of the user volume modification system). Adjusting this value will au-

tomatically re-generate the octree.

• Enable and disable rotation of the volume.

3.7 Software Development Methodology

The project will adopt the Agile development process called SCRUM [45]. This de-

velopment methodology is effective for quickly developing and testing applications,

allowing for changes and fixes to be applied to the application quickly and easily with

ease. Weekly sprints are used to designate tasks to be completed within the time

allocated for this dissertation.

34

Chapter 4

Implementation

This chapter will discuss the implementation of the application based on the system

design set out in the previous chapter. The implementation of each component is

discussed, followed by a brief discussion on the external libraries used in the application.

4.1 File Manager

The volume data is stored in the binary format as a .RAW file. Loading the data into

the application involves reading the binary data and storing it in an array. This array

is then used to create a three dimensional texture of the volume for use with the GPU

raycaster. The array type is determined by the volume data. If the volume data is 8

bit, then the data in the array is of type GLubyte, whereas GLushort is required for

16 bit volume data.

Storing the octree to an external file involves creating two files. The first file is a

header file with information regarding the octree, such as it’s centre, dimensions and

depth. The second file stores the actual octree. The approach used to store the octree

to an external file is described by Pharr and Fernando [3].

4.2 Volume Renderer

Once the volume is loaded into the application, it can be integrated into both the GPU

and CPU raycaster. A discussion regarding the implementation of these follows.

35

4.2.1 GPU Ray Casting

As the focus of this dissertation is on octree generation for volume rendering, and

considering GPU ray casting is a well researched topic that is used frequently [1] [5]

[14], it was decided that if possible, an existing implementation would be used as

opposed to writing it from scratch. As a result, the GPU ray casting code is based on

the tutorial by Hayward [46]. An additional fragment shader is created for isosurface

extraction. This is to prevent the GPU from performing unnecessary checks to see

if isosurface extraction is enabled within the raycaster, as the user has the option to

enable or disable it.

As previously discussed, ray casting involves casting a ray for each pixel and tracing

it from the camera into the volume, sampling the volume at discrete positions along

the ray. To cast the ray into the volume, the ray needs to be defined first, that is, the

ray’s origin and direction need to be determined. To do this, the coordinates of the

volume’s bounding box need to be obtained. This can be achieved by rendering the

front and back buffers, where the colours represent the coordinates of the bounding

box, storing each buffer to a texture using multi-pass rendering. These textures are

then passed to the GPU raycaster, along with the three dimensional volume texture,

and used to create a ray for the current pixel. The ray’s origin is the coordinates from

the front buffer, while the direction of the ray is determined by subtracting the back

buffer from the front buffer.

Samples of the volume data are then taken along the ray at discrete positions, based

on the step size. A sample involves a texture look-up on the three dimensional volume

texture, using the ray’s 3D position as the look-up coordinates. For each sample, front

to back compositing is performed to blend the colour value obtained from the current

sample with the colour value obtained from the previous sample. Following this, the

ray’s position is advanced based on the step size passed to the fragment shader and the

ray’s direction. Once the ray’s position is advanced, a check is performed to determine

if the ray is outside the volume. If the ray is outside the volume, no more samples are

taken and the current pixel colour is obtained from all previous samples and is returned

from the fragment shader. Otherwise, the volume is sampled at the ray’s new position.

Early ray termination is implemented by checking the opacity of the current pixel

value after each sample. If the opacity is above a certain threshold, for example 0.95,

36

then no more samples are taken and the colour obtained from all previous samples is

returned from the fragment shader.

4.2.2 CPU Ray Casting

The CPU raycaster integrates the octree into the rendering progress. For each pixel, a

ray is cast into the scene in the direction the camera is looking at. For each ray, a ray

to cube intersection test, as described by de Bruijne [47], is performed with the root

node of the octree. If the ray is found to intersect the root node, further intersection

tests are performed with the children of the root node. This process is repeated until

a leaf node is found. Using the average voxel value stored in each node, the transfer

function is sampled to get the colour for that node, which is then stored in an array,

and later rendered to the screen. Further optimizations to the CPU raycaster were

beyond the scope of this dissertation, as were improvements to the rendering quality as

the purpose of this implementation is to determine whether significant improvements

in performance can be gained from using a GPU implementation.

4.2.3 Transfer Function

The transfer function implemented in this application is a simple 1D texture. As

each voxel contains a scalar or density value that ranges from 0 to 255, the width of

the texture is 256 allowing for a colour to be mapped to each possible scalar value.

The transfer function can be created using any image editing software, however this

application created the transfer function based on the implementation by Hayward [48]

where cubic splines are used to give greater control over the function.

Integrating the transfer function into the raycaster involves performing a texture

look-up on the transfer function. As the transfer function is a 1D texture, the texture

is looked-up using the alpha component of the colour value (which represents the

voxel’s scalar or density values) obtained from sampling the volume data. This is then

integrated with the compositing blending, and returned from the fragment shader,

drawing it to the screen.

37

4.2.4 Pre-Recorded Volume Animation

Basic pre-recorded volume animation is achieved by loading in each frame of the ani-

mated volume into an array, where each frame is stored in a separate .RAW file. An

octree is required for each frame of the animation. If an octree for each frame already

exists in an external file, these files are loaded into the application and used to create

the octrees for all the frames. Otherwise, each octree is generated during the pre-

processing stage of the application when the volume data is loaded. The application

updates the current frame of the animation and draws the appropriate volume that is

associated with the current animation frame.

4.3 Octree

The octree is created on the CPU and consists of node objects. Each node contains as

little information as possible to reduce memory usage. Therefore, a node only contains

its width and centre position, a flag indicating if the node is subdivided or not, 8

pointers to child nodes which are by default set to zero, and finally the average value

of all the voxels the node represents.

Due to the structure of the node object, that is each node has pointers to child

nodes, the octree object is only required to store the root node. Storing other nodes in

the octree class is not necessary, as they can be accessed via the root node. Also stored

in the octree is the volume data in a three dimensional array. This data is required to

subdivide each node. A possible implementation was to store the array of voxels that

each node of the octree encloses within the node object. However by simply storing

the voxels in the octree, each node in the tree can easily access the data. Furthermore,

because the volume data is stored in a three dimensional array, traversing voxels only

relevant to a node can be easily done based on the node’s minimum and maximum

coordinates, derived from the node’s centre and width.

The root node of the octree is created based on the 3D coordinates of the volume’s

centre and the dimensions of the volume. The width of the node is set to the maximum

volume dimension. For example, for a volume of size 128 x 64 x 256, the width of the

node is set to 256, as the octree should enclose the entire volume while maintaining

a cube shape (that is, the height, width and depth are all equal). The average voxel

38

value for the root node is found by traversing the entire volume data and calculating

the average value.

4.3.1 Subdividing Octree Node

To subdivide a node, the voxels within that node need to be traversed, as previously

mentioned. Since the voxels are stored in a three dimensional array, traversing only

the voxels within the node is a simple procedure. The minimum and maximum coor-

dinates of the node is found based on the node’s centre and width. These minimum

and maximum coordinates are then used to loop through the three dimensional array,

starting at the minimum coordinate and ending at the maximum coordinate.

Once the node’s voxels can be accessed, each voxel is sampled, taking the voxel’s

density value and accessing the transfer function to get the alpha value associated with

that voxel. The transfer function stores RGBA values to map colours to the density

of a voxel, but, for subdividing the node, only the alpha value is required, the RGB

components can be ignored. The minimum and maximum vectors for each of the 8,

soon to be created, child nodes are calculated, and used during sampling to determine

which child node the current voxel will be assigned to. While sampling the voxels and

determining which child node they will belong to, the average alpha value is calculated

for each child.

Once sampling is complete, two checks are performed to determine if the child nodes

provide more detailed information of the volume than the parent node. The first check

involves determining if the average alpha value for each of the child nodes are the same.

If they are the same, this indicates that they have the same alpha value as the parent

node and as a result no further detailed information will be obtained by subdividing

the current node. Hence the parent node remains a leaf node and the child nodes are

not created. Otherwise, if the alpha values are not the same, each of the child nodes

are created if the average alpha value is above a specified threshold. This check ensures

that nodes are only created for voxels that contribute to the final rendering, because if

a node’s average alpha value is below the threshold, assuming an appropriate threshold

value is set, then the alpha is so low it is unlikely to contribute to the rendering of the

volume and therefore can be ignored.

39

4.3.2 Breadth-First Octree Generation

The main technique used in this application to generate the octree is the breadth-first

approach, as this allows for the octree to be drawn as it is generated for the progressive

octree implementation. Breadth-first octree generation involves subdividing, using the

subdivision approach previously discussed, the root node, creating potentially 8 new

child nodes. These child nodes are then subdivided, creating new nodes which are

subsequently subdivided. This results in the octree been built level by level.

Two implementations of breadth-first octree generation are implemented, a recur-

sive and a non-recursive approach, as outlined in the application design to determine

which, if any, provide the best performance for octree generation.

Recursive Breadth-First Traversal

The recursive implementation of breadth-first involves calling a subdivide function,

passing the octree’s root node. This function checks if the node is already subdivided.

If it is not, the node is subdivided and the function returns. Otherwise, the subdivide

function is called for each of the child nodes. This function is capable of subdividing

one whole level of the tree. To completely subdivide the octree to the maximum level,

a while loop is implemented where the subdivide function is called with the octree’s

root node. Once the max depth has been reach, or further subdivision is not possible,

the while loop ends.

Non-Recursive Breadth-First Traversal

For the non-recursive implementation, a queue is used to determine the nodes that

need to be subdivided next. The queue is created with the root node added initially. A

while loop is used to continually subdivide the octree until the max depth is reached or

no further subdivisions is possible. For each iteration of the while loop, the node at the

front of the queue is popped. If this node is already subdivided, then it’s children are

pushed to the back of the queue. Otherwise, the node is subdivided and it’s children

are pushed to the back of the queue. This results in the octree’s nodes being subdivided

in the order they are created without recursively calling a function.

40

4.3.3 Depth-First Octree Generation

Another approach to generating an octree is by using the depth-first approach outlined

in the design section. This is achieved by first subdividing the root node, potentially

creating 8 new child nodes. The first child node is then subdivided, creating more child

nodes, with the first of these nodes subsequently subdivided. This process continues

until the max tree depth is reached. At this point, the process goes back up one level

and subdivides the next child (see Figure 3.3 for the order of node subdivision). This

process is repeated until all nodes are subdivided to the max level.

4.3.4 Progressive Octree Generation

As discussed in design, progressive octree generation is performed over three different

implementations, using the main application thread, a dedicated thread and multiple

dedicated threads. This application uses the boost library, discussed in section , to

perform threading in C++.

Main Application Thread

The main application thread is responsible for running the application, updating states

and rendering. As a result, when the thread is generating the octree, it cannot update

states, respond to user input or render objects as it is waiting for the generation

process is complete, the application essentially becomes unresponsive while generating

the octree. To maintain interactive rates, it is therefore important to limit the amount

of time spent generating the octree for each frame. A naive implementation would

be to use a pre-set amount of time, where each frame spends a set amount of time

generating the octree. However, a more adaptable approach would be to base it on

the time spent on the current frame. The aim is to achieve 60 frames per second,

a standard frame rate in computer and video games. This means each frame has

approximately 16 milliseconds to perform all operations for that frame. By performing

the octree generation at the end of every frame, it can be determined how much time

has been spent so far for the current frame, and therefore how much time is available

for generating the octree before the frame exceeds an execution time of 16 milliseconds.

For example, if all operations for a frame took 10 milliseconds, then 6 milliseconds are

41

available for generating the octree.

Octree generation is performed with the breadth-first technique using recursion. As

the octree is generated over multiple frames, it is required to interrupt the generation

process and resume it during the next frame. In order to achieve this, a queue is imple-

mented in the octree, and used in a similar approach to that outlined in section 4.3.2,

non-recursive breadth-first traversal. The queue maintains the list of nodes that need

to be traversed. The node at the top of the queue is popped and removed from the

queue. If the popped node is a leaf node, it is subdivided, otherwise the node’s children

is traversed. If each child is a leaf node, they are subdivided, otherwise each child is

pushed onto the back of the queue. This ensures that the queue has a list of nodes that

are required to be traversed before the octree is fully generated. After a node is popped

from the queue and the steps just outlined are performed, a check is made to ensure

that the time spent subdividing the node has not gone over the allocated time. If it

has, the generation process is stopped, otherwise the process continues with another

node popped off the front of the queue. When the queue is empty, this indicates that

a level has been fully generated. If further subdivisions is possible, the rootnode is

pushed into the queue and the process repeated.

By using the queue, the generation process can resume in the next frame by popping

the node at the front of the queue. However, a disadvantage is that the generation

process cannot be interrupted during the subdivision of a node, only before or after a

node is subdivided. As the subdivision process is the most time consuming part, this

can result in the generation process over-running it’s allocated time while subdividing

a node, affecting the frame rate of the application. This can be taken into account by

subtracting a set amount of time from that allocated to the octree generation.

Using this approach, the octree is generated over several frames. A state is kept to

maintain the current depth of the tree, using it to draw the octree while the current

level is subdivided to create the next level.

Single Dedicated Thread

Another approach is to use a single dedicated thread to generate the octree. This

allows the main thread to continue updating and rendering the application while the

dedicated thread is generating the octree, using breath-first. As the octree is generated

42

on a separate thread from the main application thread, no time limitation is associated

with the generation process, the thread continually subdivides the octree until it is

finished. Once the generation of the octree is complete, the thread finishes executing.

Multiple Dedicated Threads

The multiple thread implementation separates the generation process across a number

of dedicated threads, in this case up to 9 threads. The first thread creates the root node

and subdivides it, creating potentially 8 new nodes. Then it creates a new thread for

each of the child nodes. These threads are assigned to subdivide the specified node to

the desired depth or until no further subdivisions are possible using the breadth-first

technique. As a result, each thread is responsible for subdividing one octant of the

octree.

When using multiple threads, it is important to ensure that no two threads try to

access an object at the same time, as this can result in concurrency issues. With this

implementation, these concurrency issues are avoided as each thread is assigned to only

subdivide one octant of the tree, and as a result a node will only ever be accessed by

one thread.

4.3.5 Octree Rotation

Rotating the octree involves rotating the centre of each node around the origin. Despite

rotating the octree, the nodes of it are still axis aligned (see Figure 4.1). However

this introduces errors into the octree representation of the volume (see Figure 4.1).

These errors include gaps between nodes and nodes overlapping each other. The gaps

between the nodes will cause holes and an inaccurate representation of the volume

when the octree is rendered. Furthermore, the overlapping nodes will cause rays to hit

multiple nodes during ray casting, resulting in more intersection tests and an inaccurate

rendering of the volume.

Bautembach [38] dealt with such problems by scaling the nodes to cover the empty

space for an animated model. Nodes around areas where two bones meet were selected

to be scaled as this is the area where gaps are most likely to occur. Implementing a

similar technique is not possible with standard animated volumes, as no bones exist.

Instead, a distance check between the nodes is needed to accurately determine if scaling

43

Figure 4.1: Rotating the octree (left) and errors introduced by rotating an octree
(right). The green rectangles highlight overlapping nodes, while the blue square high-
light gaps between nodes.

is required, and to which nodes. Such distance checks are expensive, and the cost of

performing them would negate the benefit of rotating the octree instead of rebuilding

it.

4.3.6 Visualizing the Octree

To visualize the octree, a wire-frame of each node within the octree is created during

subdivision, and stored in a vector container allowing for the user to visualize different

levels of the octree, see figure 4.2.

The visualization information is stored in a separate object in the main thread.

This required the use of mutexes for the multiple threaded implementation, as it is

possible for more than one thread to access the vector container, to read or write data,

at the same time. A mutex is a synchronization mechanism used to ensure only one

thread accesses common resources at a time. When a thread enters a section of code

enclosed by a mutex, it locks that mutex, unlocking the mutex when it leaves. When

another thread attempts to access the same code and the mutex is locked, the thread

is denied access and is forced to wait until the mutex is unlocked before proceeding.

This can slow down the generation of the octree as threads are forced to wait for other

threads to complete. However a real world application, such as a game, would not

44

Figure 4.2: Visualizing the subdivision process of the bonsai tree, size 2563.

require octree visualization, and so such mutexs would not be required.

4.4 Volume Deformation

To demonstrate the use of progressive octrees at interactive rates, the user is given the

ability to deform the volume. The deformation approach implemented specifies what

percentage of the volume to render. That is, if 100% is selected, the whole volume

is rendered, if 50% is selected then half the volume is clipped along the x axis (see

Figure 4.3). When the volume is deformed, the volume’s octree is invalidated and is

required to be rebuilt. If the volume is deformed again while the octree for the previous

volume state is not complete, the generation process is interrupted and restarted with

the new volume information.

Interrupting the octree generation process involves setting the octree’s maximum

depth to 0. This is because a thread, using boost threads, cannot be killed instantly.

Doing so would be unsafe as the memory and resources it is using would be not be

deleted. Instead, a thread will end when it has completed it’s task or is interrupted, at

certain pre-defined points set up by boost. During the octree generation process, the

current depth of the tree is checked against the maximum depth of the tree regularly.

Therefore, setting the octree’s max depth to 0 is a quick way to ensure the thread

finishes executing the octree generation process. This can result in multiple threads

running however, where the old thread for creating the old octree has not finished

executing before the new thread is started.

45

Figure 4.3: Octree generated for a deformed volume, where only 50% of the volume
along the x axis is rendered.

4.5 User Friendly Interface

Using GLUI, a user friendly interface is created to allow the user to adjust settings

and generate octrees. Among the options available to the user, as seen in figure 4.4,

is a slider to allow the user to quickly deform the volume, as discussed in section 4.4.

Furthermore, the user can determine which octree implementation to use and to what

level to generate the octree to, change the generation type (i.e. breadth-first) and

rotate the octree. The user can also visualize the octree, specifying the level of the

octree to visualize.

4.6 External Libraries

The application is built using C++ and the OpenGL 2.1 graphics library. The appli-

cation implements a number of external libraries and toolkits, such as GLUT, GLUI,

glext.h, vmath, Boost library and the Nvidia Cg shading language, and was developed

on Windows 7 using Visual Studio 2010 Professional, both by Microsoft. Followed

is a brief description of these libraries and toolkits and their use within the system.

46

Figure 4.4: The user friendly interface with the application allowing the user to gener-
ate, rotate and visualize octrees and change settings within the application.

Libraries that are cross-platform were chosen where possible to meet the design goal

of cross-platform compatibility.

4.6.1 OpenGL

OpenGL (Open Graphics Library) is an API developed by Silicon Graphics Inc. for

2D and 3D computer graphics. It was chosen over DirectX, a competing graphics API

by Microsoft for the Windows operating system, as it is a cross-platform API allowing

OpenGL programs to run on different operating systems without requiring code to be

adapted. OpenGL version 2.1 is employed in this application.

4.6.2 GLUT and GLUI

GLUT (OpenGL Utility Toolkit) is a set of utilities that interfaces with the operating

system to create windows, read keyboard inputs and mouse controls and to draw basic

primitives such as cubes. This utility is used within this application to render the main

window and read commands in the form of the mouse and keyboard. GLUT version

3.7 is used in this application.

GLUI (OpenGL User Interface Library) is a user interface library in C++ based on

47

the functionality of GLUT. It provides quick and easy access to create UI buttons, drop-

down menus, spinners, check-boxes and radio buttons. This library is implemented to

create a user friendly user interface for the user to change parameters in the application

such as the depth of the octree and options to visualize the octree. GLUI version 2.36

is used in this application.

4.6.3 glext.h

Glext.h is a header file with opengl extensions and constants defined for use in OpenGL

1.2 code. It is required to implement 3D textures, which are used in this application,

in OpenGL 1.2 and OpenGL 2.0. Glext.h is designed for all operating systems, making

the application more adaptable to different operating systems without requiring major

code changes.

4.6.4 vmath

vmath is a set of Vector and Matrix classes for C++ designed for use in computer

graphics. It contains built in functions to create Vector3 which are used extensively

throughout the application. Furthermore, the library supports Vector2, Vector4, Ma-

trix3, Matrix4 and Quaternions. A Vector3 is a class that is used to store 3D vectors,

which is commonly used for storing 3D coordinates. Vector2 and Vector4 are 2D and

4D implementations of Vector3. Matrix3 stores a 3 x 3 matrix which can be used

for matrix multiplications and transformations, while the Matrix4 class stores a 4 x

4 matrix. Quaternion class is used to represent a quaternion, another approach for

achieving rotation instead of using matrices. Including the vmath library allowed time

to be focused on the core aspects of the project, without needing to create these Vector

classes. The version included in this application is vmath version 0.9.

4.6.5 Boost Library

Boost library is a set of c++ libraries available for free and proprietary software

projects. It contains over 80 different libraries to extend C++ functionality. The

library is designed to be cross-platform allowing for its use in both Linux and Win-

dows which makes it ideal for the application developed as part of this research. The

48

purpose of boost for this research project is for the use of threads, which are not part

of the current C++ standards. Boost version 1.47 is used in this research project.

4.6.6 Cg Shading Language

Cg is implemented to support shaders which are used by the volume rendering pipeline.

Cg is a high-level shading language that incorporates programmable vertex and pixel

shaders on the GPU. It was developed by Nvidia in collaboration with Microsoft and as

a result it closely matches the syntax of Microsoft’s HLSL. This similarity with HLSL

is the core reason for using Cg instead of GLSL, OpenGL’s shading language, as we

have prior experience with HLSL. The version of Cg included in this application is Cg

version 2.0.

49

Chapter 5

Results & Evaluation

This chapter will evaluate the quality and performance of the implemented volume

renderer and how successful the implementation of progressive octree generation was

including octree rotation, with the objective to achieve progressive octree generation at

interactive rates which can be applied to physically-based volume animations or user

defined deformations.

This chapter will first evaluate the implemented volume renderer, before presenting

result of the progressive octree generation implementation, including octree rotation.

Finally, the chapter will end with an overall evaluation on the implementation based

on the results presented previously. All tests were performed on an Intel Xeon W3520

CPU at 2.67GHz with 3.00GB RAM and on an NVIDIA Quadro FX 580.

5.1 Volume Renderer

Renderings from the GPU raycaster implemented are compared to equivalent render-

ings from a state of the art volume rendering engine, the Voreen Volume Rendering

Engine [49]. The renderings are of the same volume data and use the same transfer

function. Due to only simple lighting being implemented in this research, lighting in

Voreen was disabled to compare both renderings under the same lighting conditions.

As can be seen in figure 5.1, the implemented simple raycaster matches the quality of

Voreen’s simple raycaster, with Voreen producing slightly higher quality renderings.

The application ran at an average of 60 frames per second for a volume of 643,

50

(a) Nucleon volume rendered with Voreen. (b) Nucleon volume rendered with our im-
plementation.

(c) Fuel volume rendered with Voreen. (d) Fuel volume rendered with our imple-
mentation.

Figure 5.1: Comparasion between volumes rendered with Voreen and our implementa-
tion.

and an average of 20 frames per second for a volume of size 2563 at a resolution of

800 x 600. However, the application’s frame rate reduces the closer the camera gets to

the volume, as more rays are hitting the volume as a result. Although certain obvious

optimizations were implemented for the raycaster such as early ray termination, further

optimizations were beyond the scope of this project and we refer the reader to [5] for

more information on such optimizations. Integrating the octree into the raycaster

would also significantly increase rendering performance.

These results show that simple GPU ray casting can produce quality renderings

51

Figure 5.2: The octree generation times for the bonzai volume (2563) using breadth-
first, breadth-first with recursion and depth-first.

at interactive rates. The CPU ray caster, however, performed significantly worst than

the GPU raycaster, as expected, averaging 2 frames per second for the nucleon volume

(413), 2.5 frames per second for the fuel volume (643) and 1.5 frames per second for

the bonsai volume (2563).

5.2 Octree Generation Results

For evaluating the generation times between the different approaches, i.e. breadth-first

using recursion and without recursion, as well as depth-first, tests were performed on

the main thread during pre-processing of the bonsai volume (2563). The progressive

octree generation implementations were not used to gather these results as an accurate

timing, without taking rendering and updating the application into account, on each

approach was needed to gauge which is the best, if any. The results show that no par-

ticular implementation is better, with the differences between each approach negligible

(see Figure 5.2). The timings for the recursive and non-recursive implementation of

breadth-first show that neither approach offers significant gains over the other.

These results demonstrate that breadth-first is a suitable approach to generate the

octree progressively, not only in terms of the ability to draw each level as it is generated,

52

but also due to depth-first offering no significant gains in performance.

5.3 Progressive Octree Results

Evaluation of the progressive octrees involved performing progressive octree generation

for three different volume sizes, 413, 643 and finally 2563. For each test, the volume

was subdivided to a maximum of 7 different levels, levels 1 to 7 or until the maximum

depth of the tree is reached, that is each node in the tree represents only one voxel.

These tests are performed using the main thread, a single dedicated thread and multiple

threads, 9, for generating the octree. The results of each test are broken into 3 parts:

• The time taken to completely generate the octree.

• The average frame rate (fps) of the application during the octree generation

process.

• The minimum fps of the application during the octree generation process. This

is noted as the aim is to achieve octree generation at interactive rates. While

the average fps for the generation process may be high, it is possible that the

application is drastically slowed down for a small amount of time during the

generation process, making the application not interactive for that duration. The

aim is to achieve a consistent 60 frames per second.

While performing the tests, the application was rendering the volume been subdi-

vided, with the camera located approximately 150 units from the volume. Furthermore,

octree visualization is disabled as it is used only for debugging purposes, and would

not be implemented in a real world application.

It is worth noting that an interactive application would be performing several other

tasks as well, such as physics calculations and AI calculations. Such tasks are not taken

into account for these tests. This is to get accurate results for octree generation as an

individual task. With these results, it can be determined if full integration into a game

is possible, or if further optimizations are required before hand.

53

(a) Time taken to progressively generate octree to specific depths.

(b) Average fps during the progressive octree generation.

(c) Minimum fps during the progressive octree generation.

Figure 5.3: Results for progressive octree generation for volume size 413.

54

5.3.1 Results for Volume size 413

For a volume size of 413, the results (see Figure 5.3a) show that the use of multiple

threads have no advantage over a single thread for small volume sizes. In this case,

the time spent setting up the threads and managing them negates the benefit of using

multiple threads. However, for an octree depth of 5, multiple threads complete the

octree generation process in the same time as the single thread (35 milliseconds), which

indicates that multiple threads become beneficial over the use of single threads for low

depths on these small volumes. The main thread implementation took the longest time

to generate, as expected, requiring an additional 98 milliseconds more than then single

and multi-threaded implementations.

The results for the frame rate of the application throughout the generation pro-

cess (see Figure 5.3b and 5.3c) shows the application’s fps remained consistent for all

threads, maintaining an average fps of 60, with the main thread reaching the lowest

fps of 51 for a tree depth of 5. While this is below the goal fps of 60, it is acceptable

for interactive applications.

Further subdivision beyond depth 5 is not necessary for this volume, as a depth of

5 results in each node representing only one voxel, therefore the use of multiple threads

have no advantage over single threads for volumes of this size.

5.3.2 Results for Volume size 643

For a volume size of 643, the multi-threaded implementation, requiring 49 millisec-

onds, was only 4 milliseconds faster than the single-threaded implementation for a tree

depth of 6 (see Figure 5.4a), providing a speed increase of 8% over the single-threaded

implementation, and over 400% faster than using the main thread.

The performance of the application (see Figure 5.4b and 5.4c) remained at 60 fps

for the single and multi-threaded implementations. However, despite having an average

of 55 fps, the main-thread slowed the application’s performance to a minimum fps of

50, again below the desired threshold of 60 fps. This can be prevented by adjusting the

time given to generate the octree each frame, by increasing the pre-determined amount

of time deducted from the time left in the current frame, as discussed in section 4.3.4.

However, it is not possible to guarantee the generation process will not overrun its

allocated time without the ability of interrupting the subdivision of a node.

55

It is worth noting that a volume size of 643 is a reasonable size for volumes to

represent objects and items in games, however a higher resolution would be required

for main characters.

Once again, a depth of 6 for this volume is the maximum depth the tree can go,

when each node represents one voxel.

5.3.3 Results for Volume size 2563

Generating an octree for this large volume, while possible at interactive rates, is not

suitable due to the generation times reaching and exceeding several seconds (see Fig-

ure 5.5a). The main thread implementation took the longest time, as expected, requir-

ing over 9 seconds to generate to a depth of 7. Furthermore, the frame rate dropped to

0 while generating the octree on the main thread, making the application unresponsive

during the generation process.

As expected, the multi-threaded implementation generated the octree the fastest,

over 2 times faster than the single-threaded solution. However these timings are not

acceptable for interactive applications. Despite the multi-threaded implementation

generating faster, like the previous results, generating the first level takes longer than

the other implementations. This is because subdividing the root node can only be per-

formed by a single thread, and therefore the remaining eight threads serve no purpose.

By simply not creating these threads, the generation time would be reduced, matching

that of the single-threaded implementation. Subdividing the children of the root node,

that is generating level 2, takes significantly less time as demonstrated by the multi-

threaded timings as the eight additional threads are implemented, where generating

level 2 only took an additional 12 milliseconds, compared to the 1.15 seconds needed to

create level 1. Compared to the single-threaded, which took 98 milliseconds to generate

level 1, and an additional second to generate level 2, the benefits of multi-threading in

terms of speed is significant.

Furthermore, the processing of such large volume data over 8 threads drastically

impacted the performance of the application (see Figure 5.5b and 5.5c). Despite main-

taining an average of 55 fps, the application hit a low of 15 fps during the generation

process, whereas the single-threaded solution only hit a low of 55 fps, maintaining a

consistently high frame rate.

56

(a) Time taken to progressively generate octree to specific depths.

(b) Average fps during the progressive octree generation.

(c) Minimum fps during the progressive octree generation.

Figure 5.4: Results for progressive octree generation for volume size 643.

57

(a) Time taken to progressively generate octree to specific depths.

(b) Average fps during the progressive octree generation.

(c) Minimum fps during the progressive octree generation.

Figure 5.5: Results for progressive octree generation for volume size 2563.

58

Figure 5.6: The times, in milliseconds, taken to rotate octree of different depths for
different volumes.

5.4 Octree Rotation

The results for rotating the octree show that significant time is saved compared to

building the octree (see Figure 5.6). For low depths of 1 to 3, the time taken to rotate

the octree were negligible, with accurate timings difficult to gather as the time taken

was less than 1 millisecond. While rotating the octree saves significant time, over 25

times faster compared to some of the progressive octree generation results, errors are

introduced into the octree representation of the volume (see Figure 4.3), which are

difficult to solve efficiently.

5.5 Overall Evaluation

From these results, we can see that progressive octree generation using breadth-first

traversal at interactive rates is achievable for small volumes, however larger volumes

are currently not possible, with long generation times, exceeding seconds, required to

fully generate the octree to low depths. It is worth noting that while a volume size of

643 is relatively small compared to the standard sizes of existing volumes, such a size is

59

more than appropriate for use within video games, and is of a high enough resolution to

represent game objects and units. Furthermore, medical and visualisation applications

typically render a single object at high resolutions. In games, it is likely that several

small volumes are rendered instead of a single large volume.

Furthermore, the single-threaded implementation produces the octree consistently

faster than the multi-threaded solution for small volumes, with the exception of the 643

volume where the multi-threaded implementation is 4 milliseconds faster at a depth

of 6. However, multiple-threads provide the best solution for large volumes in terms

of speed, but at a cost of consistent frame rate. The single-threaded implementation

produced the most consistent frame-rate of all the implementations. This is important

to note, as a game is likely to have several threads running for various tasks such as

physics and AI. Therefore, adding 9 additional threads for generating the octree will

impact the overall system performance, as using multiple threads have costs associated

with them, such as context switching where the CPU stores and restores a state when

switching between threads and processes on the same CPU.

An interesting point worth noting is that the size of the volume is not necessarily

the deciding factor for the length of time required to the generate the octree. In the

fact, the most significant impact the size of the volume has is the time required to

subdivide the root node, as it requires all voxels in the volume data to be traversed.

What impacts the octree generation time is the number of non-empty voxels in the

volume, which requires more nodes to be created and subdivided. For example, a

volume of size 5123 would take a significant time to subdivide the root node, as all

134,217,728 voxels have to be traversed whether they are empty or not. However, after

the root node is subdivided, further subdivisions require traversing only the voxels that

are associated with the node. Since nodes are only created for voxels that contribute

to the final rendering, large sections of empty voxels are skipped reducing the number

of voxels traversed as the octree is subdivided further.

Rotating the octree is a quick way of adapting the octree for a rotated volume.

However, the gaps and overlays formed as a result mean that rotating the octree no

longer represents the volume accurately, and multiple voxels will be sampled more than

once when the octree is integrated with the raycaster. A naive solution to this would

be to rotate the octree if the angle of rotation for the volume is below a threshold. This

results in an acceptable amount of errors in the octree, that is, gaps between nodes and

60

overlapping nodes. However, once the angle exceeds the threshold, the entire octree is

rebuilt. Regardless, these results show that significant time can be saved by adapting

the octree instead of rebuilding it, and that this area is worth further research.

61

Chapter 6

Conclusion

For this dissertation, we proposed to investigate octree generation for interactive an-

imated volume rendering, presenting an approach to progressively generate an octree

for the rendering of physically-based animated volumes or for user-defined volume de-

formations. The main research area of this dissertation was to investigate progressive

octree generation over several frames, rendering the octree as it is being generated, at

interactive rates and to implement it in a user-friendly application that allows the user

to modify volume data during run time, requiring an octree to be progressively built.

Furthermore, an approach to adapt the octree was implemented in the form of rotating

an existing octree, a process used instead of rebuilding the octree when the volume the

octree represents is rotated.

The implementation of the progressive octree generation was done using three ap-

proaches, one using the main application’s thread, the second using a dedicated thread

created by the main application, and the third using multiple dedicated threads, in

this case 9. The implemented approaches were tested and the results indicated that

progressively generating octrees at interactive rates is possible for small volumes (while

these volumes are small, such as 643, compared to the standard size of volumes, this

size is more than suitable to represent objects within a game). Larger volumes, such as

2563, are not currently possible as the generation times exceed one second to generate

an octree beyond a depth of 1.

Furthermore, the single-threaded implementation provided the best overall results

for small volumes in terms of both generation times and application frame rates. The

62

multi-threaded approach generated the octree faster than the other 2 approaches for

large volumes. Interestingly, for the large volume, 2563, the application maintained

a more consistent frame-rate for the single-threaded approach, only reaching a low of

55 frames per second while generating the octree to a depth of 7, whereas the multi-

threaded approach reached a low of 15 frames per second. While the generation times

for the single-threaded approach were over a second longer than the multi-threaded

approach, these results show that the single-threaded approach maintains a more con-

sistent frame-rate, and is the best option for applications where a consistent frame rate

is more desirable than generation speed.

Results showed that implementing the breadth-first approach to progressively gen-

erate the octree is a suitable approach, with no significant gains to be achieved in terms

of generation times by using depth-first instead.

Additionally, results demonstrated that adapting the octree by rotating it can save

significant time, compared to rebuilding the octree for a newly rotated volume. In

some cases, the time taken to rotate the octree was negligible, below 1 millisecond.

However, problems presented with this approach demonstrate the limitations with this

technique and highlight the need for further investigation into possible solutions.

We are pleased with the results achieved from the progressive octree implementa-

tion, and the resulting application that allows the user to modify volume data and

subsequently generating a new octree progressively, demonstrating that this is appli-

cable for interactive applications, games in particular where small volumes would be

more likely to be used than large volumes, and can be implemented for user-defined

volume deformations at interactive rates.

6.1 Future Work

Despite the work done in this research project, there is still further work which we

would like to undertake in this area, and these are outlined in this section. These have

not been implemented in this research project because they were either beyond the

scope of this dissertation or due to time constraints.

63

6.1.1 Optimizations to GPU RayCaster

As previously mentioned, certain optimizations such as early ray termination have been

implemented for the GPU raycaster in this research project. However, there are many

more optimizations that can be applied to increase the performance of the renderer.

We would like to implement some of these optimizations presented by Kruger and

Westermann [5]. Furthermore, we would like to successfully incorporate the CPU

octree with the GPU raycaster, implementing the octree texture approach presented

by Pharr and Fernando [3], where the octree is stored in a three dimensional texture

and uploaded to the GPU. Integration into the GPU raycaster involves performing

texture lookups on the octree texture with the position of the current ray during the

ray casting process. This would vastly increase rendering performance as it can be

determined quickly if a ray is going to hit the volume or not.

6.1.2 Investigate Potential Solutions to Rotation Errors

As highlighted in Figure 4.3, the errors introduced by rotating the octree limit the

benefits of octree rotation. A naive solution of performing distance tests between each

node was proposed, but such an implementation would be slow for volumes subdivided

to low levels of depths such as 6, 7 or 8. The benefits of rotating the octree instead of

rebuilding are very significant, and so we feel further investigation into this problem is

warranted.

6.1.3 Octree Adaptation

As demonstrated by the octree rotation results, modifying an existing octree is much

more time efficient than rebuilding the octree from scratch. This could be extended

further to only recreate parts of the octree. By detecting the locations of changes to

a volume, it can be determined which nodes are no longer valid. This would allow for

affected nodes of the octree to be rebuilt, while non-affected nodes can be maintained

as they are, reducing the time required to re-adjust the octree for the newly modified

volume.

64

6.1.4 Octree Generation on the GPU

The GPU has fast become a powerful processor, with modern GPU’s experiencing a

rapid increase in performance on a yearly basis. As a result, the performance of the

GPU is well beyond that of the CPU. This has led to the GPU being used for performing

computationally expensive operations which are traditionally performed on the CPU.

We would like to benefit from the GPU processing power by generating the octree

on the GPU, based on the implementation presented by Goradia [50], taking advantage

of the high performance of the GPU to reduce the construction times of the octrees.

6.1.5 Implementation within a Game

The evaluation tests were performed on our application which was designed purely for

rendering volumes and generating octrees. For real-world use, progressive octrees would

be integrated to a large application, such as a game, which would also be performing

various processing intensive tasks. For example, a game would be required to process

collision detection, physic simulations, AI calculations, network processing and so forth

for every frame. Many commercial games perform so many operations every frame that

they are unable to reach 60 frames per second, but instead aim for 30 frames per second.

For future work, we would like to integrate progressive octree generation into a

game application which performs many of the operations mentioned above, such as

physic simulations and AI. This would enable an analysis and evaluation into the

use of progressive octree generation in a real world application, highlighting potential

problems that may be associated with integration within a game.

6.1.6 User Perception Tests

The fundamental aspect of the research is drawing an octree as it is being generated

at interactive rates. This results in the octree depth level 1 being displayed while

level 2 is being generated, and so forth. It is important to test how user’s perceive

this transition from one level to the next and to check if the delay between drawing

each level is noticed by the users, determining what are acceptable generation times

before the transition from one level to the next is noticed by the user, and how such

transitions affect the overall user experience.

65

For such tests, it would be important to set up an interactive application, such

as a short game, where the user can interact with volumes, such as modifying and

deforming the volume. This would make the results obtained from the tests applicable

to animated volume rendering in computer and video games.

66

Appendix

Acronym Definition
CPU Central Processor Unit
GB GigaByte
GLSL OpenGL Shading Language
GLUI OpenGL User Interface Library
GLUT OpenGL Utility Toolkit
GPU Graphics Processor Unit
HLSL High Level Shading Language
MB Mega Byte
RGB Red Green Blue
RGBA Red Green Blue Alpha

Table 1: Acronyms commonly used in the text.

67

Bibliography

[1] K. Engel, M. Hadwiger, J. Kniss, A. Lefohn, C. Salama, and D. Weiskopf, “Real-

time volume graphics,” in ACM Siggraph 2004 Course Notes, pp. 29–es, ACM,

2004.

[2] V. Visualization, “Ray casting.” http://www.volviz.com/images/

VolumeRayCastingWithRay2.png [Retrieved 20-August-2011], 2011.

[3] M. Pharr and R. Fernando, “Gpu gems 2: Programming techniques for high-

performance graphics and general-purpose computation,” 2005.

[4] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp factorization

of the viewing transformation,” in Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pp. 451–458, ACM, 1994.

[5] J. Kruger and R. Westermann, “Acceleration techniques for gpu-based volume

rendering,” in Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 38,

IEEE Computer Society, 2003.

[6] Wikipedia, “Octree — wikipedia, the free encyclopedia.” http://en.

wikipedia.org/w/index.php?title=Octree&oldid=416514939l [Retrieved 20-

August-2011], 2011.

[7] Atomontage, “Atomontage engine.” http://www.atomontage.com/ [Retrieved

26-August-2011].

[8] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels: Ray-guided

streaming for efficient and detailed voxel rendering,” in Proceedings of the 2009

symposium on Interactive 3D graphics and games, pp. 15–22, ACM, 2009.

68

[9] S. Laine and T. Karras, “Efficient sparse voxel octrees,” in Proceedings of the 2010

ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pp. 55–63,

ACM, 2010.

[10] W. Lorensen and H. Cline, “Marching cubes: A high resolution 3d surface con-

struction algorithm,” ACM Siggraph Computer Graphics, vol. 21, no. 4, pp. 163–

169, 1987.

[11] L. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel, “Feature sensitive surface

extraction from volume data,” in Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pp. 57–66, ACM, 2001.

[12] L. Yan and Z. Min, “A new contour tracing automaton in binary image,” in

Computer Science and Automation Engineering (CSAE), 2011 IEEE International

Conference on, vol. 2, pp. 577 –581, june 2011.

[13] M. Levoy, “Display of surfaces from volume data,” Computer Graphics and Ap-

plications, IEEE, vol. 8, no. 3, pp. 29–37, 1988.

[14] H. Scharsach, “Advanced gpu raycasting,” Proceedings of CESCG, vol. 5, pp. 67–

76, 2005.

[15] E. Gobbetti, F. Marton, and J. Iglesias Guitián, “A single-pass gpu ray casting

framework for interactive out-of-core rendering of massive volumetric datasets,”

The Visual Computer, vol. 24, no. 7, pp. 797–806, 2008.

[16] D. Horn, J. Sugerman, M. Houston, and P. Hanrahan, “Interactive kd tree gpu

raytracing,” in Proceedings of the 2007 symposium on Interactive 3D graphics and

games, pp. 167–174, ACM, 2007.

[17] S. Laine and T. Karras, “Efficient sparse voxel octrees–analysis, extensions, and

implementation,” 2010.

[18] G. Cameron and P. Undrill, “Rendering volumetric medical image data on a simd-

architecture computer,” in Proceedings of the Third Eurographics Workshop on

Rendering, pp. 135–145, 1992.

69

[19] Y. Wu, V. Bhatia, H. Lauer, and L. Seiler, “Shear-image order ray casting volume

rendering,” in Proceedings of the 2003 symposium on Interactive 3D graphics,

pp. 152–162, ACM, 2003.

[20] L. Westover, “Footprint evaluation for volume rendering,” ACM SIGGRAPH

Computer Graphics, vol. 24, no. 4, pp. 367–376, 1990.

[21] D. Laur and P. Hanrahan, “Hierarchical splatting: A progressive refinement algo-

rithm for volume rendering,” in ACM SIGGRAPH Computer Graphics, vol. 25,

pp. 285–288, ACM, 1991.

[22] K. McDonnell, N. Neophytou, K. Mueller, and H. Qin, “Subdivision volume splat-

ting,”

[23] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic

reconstruction using texture mapping hardware,” in Proceedings of the 1994 sym-

posium on Volume visualization, VVS ’94, (New York, NY, USA), pp. 91–98,

ACM, 1994.

[24] O. Wilson, A. VanGelder, and J. Wilhelms, “Direct volume rendering via 3d

textures,” tech. rep., Santa Cruz, CA, USA, 1994.

[25] R. Westermann and T. Ertl, “Efficiently using graphics hardware in volume ren-

dering applications,” in Proceedings of the 25th annual conference on Computer

graphics and interactive techniques, pp. 169–177, ACM, 1998.

[26] M. Gross, L. Lippert, R. Dittrich, and S. Haring, “Two methods for wavelet-based

volume rendering,” Computers & Graphics, vol. 21, no. 2, pp. 237–252, 1997.

[27] L. Lippert, Wavelet-based volume rendering. PhD thesis, SWISS FEDERAL IN-

STITUTE OF TECHNOLOGY ZURICH, 1998.

[28] B. Lichtenbelt, Fourier volume rendering. Hewlett-Packard Laboratories, Techni-

cal Publications Dept., 1995.

[29] A. Entezari, R. Scoggins, T. Moller, and R. Machiraju, “Shading for fourier volume

rendering,” in Proceedings of the 2002 IEEE symposium on Volume visualization

and graphics, pp. 131–138, IEEE Press, 2002.

70

[30] K. Ma, “Visualizing time-varying volume data,” Computing in Science & Engi-

neering, vol. 5, no. 2, pp. 34–42, 2003.

[31] H. Shen and C. Johnson, “Differential volume rendering: A fast volume visualiza-

tion technique for flow animation,” in Proceedings of the conference on Visualiza-

tion’94, pp. 180–187, IEEE Computer Society Press, 1994.

[32] K. Ma and H. Shen, “Compression and accelerated rendering of time-varying

volume data,” in Proceedings of the 2000 International Computer Symposium-

Workshop on Computer Graphics and Virtual Reality, pp. 82–89, Citeseer, 2000.

[33] B.-S. Sohn, C. Bajaj, and V. Siddavanahalli, “Feature based volumetric video

compression for interactive playback,” in Proceedings of the 2002 IEEE symposium

on Volume visualization and graphics, VVS ’02, (Piscataway, NJ, USA), pp. 89–96,

IEEE Press, 2002.

[34] L. Linsen, V. Pascucci, M. A. Duchaineau, B. Hamann, and K. I. Joy, “Hierarchical

representation of time-varying volume data with ”4th-root-of-2” subdivision and

quadrilinear b-spline wavelets,” in Proceedings of the 10th Pacific Conference on

Computer Graphics and Applications, PG ’02, (Washington, DC, USA), pp. 346–,

IEEE Computer Society, 2002.

[35] H.-W. Shen, L.-J. Chiang, and K.-L. Ma, “A fast volume rendering algorithm for

time-varying fields using a time-space partitioning (tsp) tree,” in Proceedings of

the conference on Visualization ’99: celebrating ten years, VIS ’99, (Los Alamitos,

CA, USA), pp. 371–377, IEEE Computer Society Press, 1999.

[36] H. Pfister, B. Lorensen, W. Schroeder, C. Bajaj, and G. Kindlmann, “The transfer

function bake-off (panel session),” in Proceedings of the conference on Visualization

’00, VIS ’00, (Los Alamitos, CA, USA), pp. 523–526, IEEE Computer Society

Press, 2000.

[37] T. Jankun-Kelly and K. Ma, “A study of transfer function generation for time-

varying volume data,” in Volume graphics 2001: proceedings of the joint IEEE

TCVG and Eurographics workshop in Stony Brook, New York, USA, June 21-22,

2001, p. 51, Springer Verlag Wien, 2001.

71

[38] D. Bautembach, “Animated sparse voxel octrees,” March 2011.

[39] D. Madeira, A. Montenegro, E. Clua, and T. Lewiner, “Gpu octrees and optimized

search,”

[40] F. Ganovelli, J. Dingliana, and C. OSullivan, “Buckettree: Improving collision de-

tection between deformable objects,” in Proc. of Spring Conference on Computer

Graphics SCCG00, vol. 11, Citeseer, 2000.

[41] J. Gu and S. Wei, “An octree ray casting algorithm based on multi-core cpus,”

in Computer Science and Computational Technology, 2008. ISCSCT’08. Interna-

tional Symposium on, vol. 2, pp. 783–787, IEEE.

[42] B. Phong, “Illumination for computer generated pictures,” Communications of the

ACM, vol. 18, no. 6, p. 317, 1975.

[43] J. Blinn, “Models of light reflection for computer synthesized pictures,” in Proceed-

ings of the 4th annual conference on Computer graphics and interactive techniques,

pp. 192–198, ACM, 1977.

[44] D. Nagayasu, F. Ino, and K. Hagihara, “Two-stage compression for fast volume

rendering of time-varying scalar data,” in Proceedings of the 4th international

conference on Computer graphics and interactive techniques in Australasia and

Southeast Asia, November, Citeseer.

[45] K. Schwaber, Agile project management with Scrum, vol. 7. Microsoft Press Red-

mond (Washington), 2004.

[46] K. Hayward, “Volume rendering 101.” http://graphicsrunner.blogspot.com/

2009/01/volume-rendering-101.html [Retrieved 26-August-2011], 2009.

[47] R. de Bruijne, “ray/aabb intersection.” http://pastebin.com/PCmvDFK [Re-

trieved 26-August-2011], 2011.

[48] K. Hayward, “Volume rendering 102.” http://graphicsrunner.blogspot.

com/2009/01/volume-rendering-102-transfer-functions.htm [Retrieved 26-

August-2011], 2009.

72

[49] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen: A rapid-

prototyping environment for ray-casting-based volume visualizations,” Computer

Graphics and Applications, IEEE, vol. 29, pp. 6 –13, nov.-dec. 2009.

[50] R. Goradia, “Gpu-based adaptive octree construction algorithms.” http://www.

cse.iitb.ac.in/~rhushabh/publications/octree.pdf [Retrieved 26-August-

2011].

73

