
Progressive Volume Rendering using WebGL and

HTML5

by

Lisa Tumbleton, B.Sc. Computer Science

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2011

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Lisa Tumbleton

August 31, 2011

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Lisa Tumbleton

August 31, 2011

Acknowledgments

Firstly I would like to thank my parents for the support they’ve given me for the past

twenty four years; my dissertation supervisor and course director John Dingliana for

his advice and guidance throughout the course; my IET classmates and the alumni

from previous years for making the last twelve months a great experience and all my

other friends and family for their patience and friendship.

Lisa Tumbleton

University of Dublin, Trinity College

September 2011

iv

Progressive Volume Rendering using WebGL and

HTML5

Lisa Tumbleton

University of Dublin, Trinity College, 2011

Supervisor: John Dingliana

Volume rendering has been a research topic of great academic interest since it’s

emergence with the introduction of medical scanners such as Computed tomography

(CT) in the 1970s. The data gathered allows medical practioners to visualise both

the internal and external structure of their patients. The use of volume data has

been adopted since in other fields to assist with the simulation of materials and fluids.

Previously visualising this data was only possible using powerful computers with third

party three dimensional (3D) rendering software installed, consequently limiting the

amount of client computers that were capable of running the applications.

This dissertation proposes a method to display volume rendering through a modern

web browser using HTML5 and WebGL exclusively. This eliminated the need for

additional non-standard plugins or software and consequently made the application

v

universally accessible to the average computer user.

Current state-of-the-art methods for volume rendering are analysed and one ap-

proach is adapted to work in WebGL based on contemporary limits and capabilities of

WebGL enabled browsers. Emphasis is placed on giving the user a volume rendering

application that is compliant with the customary use of the browser environment. To

this end, a method is proposed to load in the volume data progressively so that the

application does not appear to freeze and unintentionally give clients the perception

that the web page has failed to load. Secondly, this paper will examine the use of hard-

ware accelerated rendering techniques to improve the features and multidimensional

cognitive perception of the volume information (particularly cutting slices and realistic

gradients) with the use of the OpenGL Shading Language (GLSL).

The outcome will be a volume rendering application available over the internet

which is capable of real-time interactive frame rates. Furthermore, the user will have

the ability to instantaneously change the visual appearance of the data by manipulating

various display properties available through the user interface (UI) on screen.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Concepts of Volume Rendering . 2

1.2 History and development of web browsers 3

1.3 Motivation . 5

Chapter 2 Background and Related Work 7

2.1 Volume Rendering . 7

2.1.1 Indirect Volume Rendering . 8

2.2 Direct Volume Rendering . 9

2.2.1 Splat Based Volume Rendering 10

2.2.2 Texture Slice Based Volume Rendering 10

2.2.3 Ray Casting Volume Rendering 13

2.3 Web GL: History and Technologies . 14

2.3.1 The advancement of browsers 14

2.3.2 HTML 5 . 15

2.3.3 Web GL . 15

vii

Chapter 3 Design 17

3.1 Requirements . 17

3.2 System Over View . 17

3.3 Data Loading Technique . 18

3.3.1 The Problem . 18

3.3.2 Solution . 19

3.4 Volume Renderer . 20

3.4.1 Our Approach . 20

3.5 Enhancements . 21

3.5.1 Volume Clipping . 22

3.5.2 1D Transfer Function . 22

3.5.3 Phong Lighting through Iso Surface Extraction 23

Chapter 4 Implementation 26

4.1 Web Worker . 26

4.1.1 Web Worker Initialisation . 26

4.1.2 Loading the data . 27

4.1.3 Parsing the Data and Creating the First Stacks Texture Files . 29

4.1.4 Creating the Perpendicular Stacks Textures 29

4.2 Rendering the Volume . 30

4.3 Enhancements . 31

4.3.1 Volume Clipping . 31

4.3.2 Transfer Function . 32

4.3.3 Phong Lighting though Iso Surface Extraction 32

4.3.4 UI and User Controls . 34

Chapter 5 Evaluation 35

5.0.5 Performance Results . 36

5.0.6 Visual Results . 39

5.0.7 User Interface . 41

Chapter 6 Conclusions 42

6.1 Future Work . 43

viii

Appendix A Application Screen Shots 44

Bibliography 47

ix

List of Tables

5.1 Google Chrome Performance Table (Desktop) 36

5.2 Mozilla Firefox Performance Table (Desktop) 37

5.3 Laptop Performance Results for Google Chrome 38

5.4 Laptop Performance Results for Mozilla Firefox 39

x

List of Figures

1.1 Nexus Web Browser (WorldWideWeb browser) 3

1.2 Netscape Navigator browser 1994 . 4

1.3 Google Chrome browser . 4

1.4 Usage of web browsers 2005 - 2011 . 6

1.5 Browser Usage from WikiMedia, June 2011 6

2.1 Indirect Volume Rendering [1] . 9

2.2 Engine block, Splat Based Volume Rendering [2] 10

2.3 Shear-Warp Parallel projection [3] . 11

2.4 3D Texture Volume Rendering of 512 X 512 X 64 skull [4] 12

2.5 3D Texture Slicing Volume Rendering [5] 12

2.6 Ray Casting Volume Rendering [6] . 13

3.1 Web Worker Data Loader . 19

3.2 2D texture stacks taken from [7] . 21

3.3 2D Texture Stacking Volume Clipping from [7] 23

3.4 Example of 1D transfer function used in application (pink for flesh, white

for bone) . 24

3.5 Image representing the sampling of the six neighbouring voxel values [8] 25

3.6 Normal Vector Equation [9] . 25

4.1 Graphic of 2D Texture Stacks from [10] 30

5.1 Chrome and Firefox Comparison Graph using Desktop 38

5.2 Chrome and Firefox Comparison Graph using laptop 39

5.3 Noise generated from on the fly gradient calculations 40

xi

A.1 Application Screen Shot . 44

A.2 Application Screen Shot, with Phong shading 45

A.3 Application Screen Shot, with clipping plane 45

A.4 Application Screen Shot, with Phone shading and multiple clipping planes 46

xii

Chapter 1

Introduction

This dissertation will contain six main chapters.

The chapter listing is as follows:

1. Introduction.

2. Background and Related Work.

3. Design.

4. Implementation.

5. Evaluation.

6. Conclusions.

In the introductory chapter, the basic concepts of volume rendering will be explained

in detail. The current applications of volume rendering and its potential future uses

will also be discussed. A brief overview of WebGL will then be given. This will include

a short section on the current state of the internet. Following this, the motivation and

goals behind the dissertation will be outlined.

The background and related work chapter will outline various methods for volume

rendering techniques detailed in previously published papers. Following this, modern

advances in the graphical illustration of the aforementioned volume renderings will be

discussed. Lastly, since WebGL is a relatively new technology a small selection of

papers speculating over the potential future applications of WebGL shall be analysed.

1

Draft of 2:08 am, Wednesday, August 31, 2011 2

The chapter covering the design aspects of this dissertation will outline the func-

tionality required by the system. It will detail the features of the application and the

approaches that were taken to achieve them.

The fourth chapter will discuss the implementation of the core system. It will de-

scribe in detail how the previously designed system was constructed. The architecture

of the system will be defined along with the algorithms and technology employed.

Chapter 5 will review the application based on the initial goals and evaluate the

end results acquired. The system will be judged under different headings such as

performance and visual output.

In the last chapter, conclusions will be drawn about the application. We will

discuss and review the proposed system based on the original aims of the dissertation

and theorize future additional features or modifications that could be adapted by the

application.

1.1 Concepts of Volume Rendering

The term volume rendering was first coined concurrently, in academic papers by authors

Drebin, Carpenter and Hanrahan [11] and Levoy[9] in 1988. The term volume rendering

has come to mean a method by which the content of a substance and its distribution

is manifested in a manner intelligible to the eye without the use of any pre-constructed

geometric surfaces that were created to represent the data.

The three dimensional data sets that are employed to represent volumes consist of

items called ”voxels”. A voxel is a portmanteau word, meaning that it is a blend of

several words to create one new word. In this case, voxel comes from the idea of a

volume element or volumetric pixel. As a pixel represents a point on a two dimensional

(2D) image, a voxel depicts information at a position in a 3D grid. Each voxel will

then contain information about itself. For example it could contain a scalar value to

represent the density, or a vector to describe the normal of the volume at that point.

The greater the amount of voxels in the grid, the higher the resolution of the volume

will be, e.g., where a picture might have 128 x 128 pixels, a volume could have 128 x

128 x 128 voxels.

Voxels first arrived in the early 1970’s with the inception of Computed Tomography

(CT) or Computed Axial Tomography (CAT) scanners. This technology, which is now

Draft of 2:08 am, Wednesday, August 31, 2011 3

commonplace in the majority of hospitals, produces computer generated images of the

internal and external structures of objects by taking x-rays at different locations and

converting the results into a 3D dataset.

Over the years, volume rendering has become a very important technology in rela-

tion to medicine (for internal visualisation), to science (for the simulation of substances

e.g. fluid) and to the entertainment industry (for reproducing cinematic effects such

as smoke or water).

1.2 History and development of web browsers

Web browsers are software applications that allow computer users to view web pages

hosted over the internet. The first web browser was created in 1991 by Tim Berners-

Lee [12]. It was originally called ”WorldWideWeb” but was renamed later to ”Nexus”

to avoid any confusion between the software and the World Wide Web.

Figure 1.1: Nexus Web Browser (WorldWideWeb browser)

It wasn’t until 1993 and the release of one of the first graphical web browsers that

a large increase in web use was seen. This browser called Mosaic, was developed by

the National Center for Supercomputing Applications (NCSA) at the University of

Illinois. Mosaic was the first browser capable of displaying images inline with text, in

older browsers images where opened in seperate windows. Marc Andreessen, one of the

creators of Mosaic, then started his own company and released the Netscape Navigator

browser in 1994, which quickly became the most popular browser at that time with

90% of all web traffic.

Draft of 2:08 am, Wednesday, August 31, 2011 4

Figure 1.2: Netscape Navigator browser 1994

In 1995, Microsoft released the Internet Explorer browser, bundling it with their

Windows operating system. Internet Explorer quickly became the dominant web

browser. This release marked the start of the ”browser war” which remains ongoing.

Other notable releases include Opera released in 1996, Apple’s Safari browser re-

leased in 2003, Mozillas Firefox in 2004, and most recently Googles Chrome in 2008.

Since the infancy of the internet its user base has grown consistently. The current

estimation of internet users is 2,095,006,005 which is 30% of the world population [13].

Figure 1.3: Google Chrome browser

As browsers have grown more sophisticated over the years so too has the language

to display webpages. HTML which stands for HyperText Markup Language was first

Draft of 2:08 am, Wednesday, August 31, 2011 5

specified in 1990 by Tim Berners-Lee (the aforementioned creator of Mosaic). It has

gone through much iteration since and is, as of August 2011, in the development stage

of its fifth version, referred to as HTML5. The important feature of HTML5 to note

is that this version aims to improve the language while being designed to make it

easier to add multimedia and graphical content on the web without having to resort

to proprietary plugins or APIs (Application Programming Interface).

The new feature that will be examined in this dissertation is the HTML5 canvas

element. This element allows for the use of WebGL inside web pages. WebGL is a

software library that allows for the generation of 3D graphics within a browser with

WebGL capabilities. It extends upon the Javascript programming language and there-

fore can be used without the use of plugins. WebGL is an API that is based closely

on the OpenGL ES 2.0 standard API. OpenGL is a 3D graphics interface that can

be used a wide set of platforms whereas OpenGL ES is a smaller subset of OpenGL

specifically created for the use on embedded system such as phones and mobile devices.

WebGL is a recent advancement in technology; the specifications for version 1.0 only

being released in March 2011.

1.3 Motivation

To date, volume rendering, has been only been accessible to a small subset of computers

users. This is mainly due to the non standard software that must be installed to run

the rendering applications thereby limiting the number software users to those with

technical backgrounds to operate and install the programs.

The aim of this dissertation is to investigate the use of WebGL to make volume

rendering accessible to the average user with a modern internet browser. [7] presents a

tool for volume rendering in the browser using Java and the Virtual Reality Modelling

Language (VRML) however this means that the user must install extra software for

it to run. WebGL allows for the rendering of 3D objects in the browser devoid of

any additional software making it accessible to all internet users with WebGL enabled

browsers.

Currently as of August 2011 there are three browsers available offering WebGL

capabilities. These are Google’s Chrome browser, Apples Safari browser and Mozillas

Firefox browser. It should be noted that recent statistics acquired about the current

Draft of 2:08 am, Wednesday, August 31, 2011 6

state of the web show that the most commonly used browser is Microsofts Internet

Explorer which offers no WebGL support. Even more interesting though is the obvious

trend which can be seen in statistics taken from over the past few years which show that

smaller web browsers are growing in popularity while Internet Explorer is consistently

losing its clients, meaning more people are switching over to WebGL enabled browsers

every year.

Figure 1.4: Usage of web browsers 2005 - 2011

Figure 1.5: Browser Usage from WikiMedia, June 2011

Chapter 2

Background and Related Work

2.1 Volume Rendering

Volume Rendering is the term usually given to describe the visualisation of 3D datasets.

Originally these 3D datasets where used to describe items of a scientific nature e.g.

magnetic resonance images (MRI), and since their invention finding appropriate ways

to visually represent this data has been an important area of research.

Even though modern volume rendering has many different uses, e.g. the simulation

of clouds by Harris et al [14] these varying modern day uses face the same problems

as the datasets for medical imaging, how to accurately portray a 3D volume within a

2D space. Albeit an accurate visualisation of the 3D information is a more important

requirement from the medical imaging stand point as a physician may need to form a

diagnosis from the information displayed to them and as such they need to know that

said information is trustworthy. A good example case is given in the start of Stytz et

al. [15] where it tells of how a patient with intractable seizure activity is admitted to a

major hospital for treatment. As the first step to finding out the cause of the ailment,

the hospital orders a MRI on the patient and collects 63 image slices of the patients

head. By observing the 2D images obtained from the MRI an abnormality cannot be

observed. A 3D model of the MRI study however, reveals an irregularity that was not

apparent in the cross-sectional MRI views.

There are two main bottlenecks that volumetric rendering faces. These are process-

ing the significant amount of data in each volume (medical MRIs are typically between

7

Draft of 2:08 am, Wednesday, August 31, 2011 8

2mbs and 35mbs in size) and allowing for the manipulation of the resulting image in

real time.

Volume datasets also suffer from added complexity since there is no single accepted

file format. Many different types of information storage appear in modern computer

graphics, to cater for all these various formats separate data loaders must be imple-

mented. A file format used frequently is Dicom [16] Dicom is the Digital Imaging

and Communications in Medicine Standard and was developed for use with medical

imaging devices.

Various methods for volume rendering have been developed over the past few

decades to display the 3D data to the user through a range of different programming

languages. Each method has its own advantages and drawbacks.

In the next, section I shall describe the different techniques used to display volumes

on modern computing systems. These techniques can be separated into two different

sections; indirect and direct volume rendering.

2.1.1 Indirect Volume Rendering

Indirect Volume Rendering is where the system for displaying the volume data doesn’t

have access to the original volume information. The system is supplied with a post-

processed version of the volumetric data, usually a polygonal model of the data. The

3D model is generated by extracting surface information from the original volume

data. Then it is up to the system to render the model on screen to the user. This

was one of the earliest forms of volume rendering proposed. As computer hardware

improved more methods of direct volume rendering were introduced. Models created

from indirect volume rendering are used extensively in modern surgery simulators to

create a graphical representation of the locale in which the surgery will take place.

An early technique by Keppel [17] creates contours to be constructed from the data

but errors arise in this method when multiple contours are located on the same slice.

A later paper [1] builds on this technique while also presenting a general solution to

the problem where a surface must be constructed over a set of cross-sectional contours.

Another early approach (similar to the volume rendering used in the modern game

Minecraft by Swedish creator Markus Persson) divides the 3D space into cubes of equal

sizes by three orthogonal sets of parallel planes e.g. along the x, y and z planes. This

Draft of 2:08 am, Wednesday, August 31, 2011 9

Figure 2.1: Indirect Volume Rendering [1]

approach was developed by Herman [18] the model surfaces are then created from

rendering these cubes and the cubes gradient is determined from the neighbouring

voxel information.

In 1987 Lorensen et al. proposed a new way to extract the surface geometry called

marching cubes [19]. This method creates models of constant density surfaces using a

divide and conquer approach to calculate the connectivity of surfaces between slices. It

generates each connection between triangles be examining 8 neighbouring voxels from

two adjacent slices (4 from each slice). The algorithm then determines the surface of

each cube out of a possible 256 types of intersections and once complete moves on to

the next cube.

There have been many advances within the area of indirect volume rendering, a

researcher named Marc Levoy of North Carolina University has made many similar

contributions to volume rendering including using points to display volume data [20]

and extracting geometric primitives from volume data [9].

A more recent contribution by Kobbelt et al. [21] extends upon Lorensens marching

cube algorithms and an enhanced distance field representation to extract models of

finer detail. In their paper, they present a well known fandisk dataset that has been

recreated to a approximation error of below 0.25

2.2 Direct Volume Rendering

Direct volume rendering differs from indirect volume rendering in that when it renders

the volumetric data, it does so by retrieving rendering data straight from the 3D

Draft of 2:08 am, Wednesday, August 31, 2011 10

dataset and doesn’t involve the use of precompiled polygonal geometric structures. It

is the most widely used form of volume rendering since it allows for various additional

elements including animation and improved rendering of voxels. I shall discuss the

main varieties of direct volume rendering in the rest of this section.

2.2.1 Splat Based Volume Rendering

Splatting is a well-known technique for volume rendering. It, like the shear-warp

method (described later), trades accuracy for increased speed. It was first proposed in

1990 by Westover [22]. It is performed using a forward mapping rendering algorithm

to display volumes data in a 3D grid regardless of the volumes spacing along the x, y

and z planes. An improvement on this technique was proposed in 1991 by Laur and

Hanrahan [2] where a progressive refinement algorithm for volume rendering using a

pyramid like volume representation is fitted with a octree. The octree is then drawn

using a set of splats, or footprints. The splats themselves are small simple polygons

drawn using Gouraurd shading to increase efficiency during render time.

Figure 2.2: Engine block, Splat Based Volume Rendering [2]

2.2.2 Texture Slice Based Volume Rendering

2D Texture Stacking Volume Rendering

2D texture stacking is a volume rendering method that utilises modern graphics hard-

ware and transparency rendering to illustrate the volume. It does so by mapping values

from the volume information on to textures that are bound to polygonal planes. Three

Draft of 2:08 am, Wednesday, August 31, 2011 11

stacks are generated to represent each axis. Each stack is made up of various texture

mapped planes. To generate correct transparency values the planes are sorted and then

rendered in back to front order. This methods major advantage is that it’s fast and

efficient but can have some inaccuracies when viewing the image at extreme angles.

An example of it in use can be seen in [7].

Shear-Warp Volume Rendering

Shear-Warp Volume Rendering was first proposed by Cameron and Undril [21] and

then popularised by Lacroute et al. [3] in 1994. The algorithm in the paper describes a

method that is based on a factorization of the viewing matrix into a 3D shear parallel

to the slices of the volume data, a projection to form a distorted intermediate image

and a 2D wrap to produce the final image. The algorithm is relatively fast but suffers

less accurate sampling and a potentially worse image quality. This method can be

optimized using run length encoding, which is where sequences of data in which the

same value occurs consecutively can be stored as a single data value and count.

Figure 2.3: Shear-Warp Parallel projection [3]

3D Texture Volume Rendering

3D Texture based volume visualisation is a rendering method which utilises graphics

hardware that supports 3D textures. With the advent of very fast texture mapping

hardware in modern computers, volume rendering techniques which implement texture

Draft of 2:08 am, Wednesday, August 31, 2011 12

mapping have become an important area of research. One well known method was

introduced by Cabral, Cam and Foran in 1995 [4]. It allows for the rendering of 2D

slices of 3D volume data and real time interaction with that data. The general idea

is that the volume data is interpreted as a 3D texture and that the 3D texture map

is understood as the trilinear interpolation of the volume dataset at a point within its

boundaries. The 2D planes which lie parallel to the viewing plane are then textured

by trilinearly interpolating across the 3D texture within the volume.

Figure 2.4: 3D Texture Volume Rendering of 512 X 512 X 64 skull [4]

Different methods to speed up the 3D texture mapping process have been developed

since the methods inception. One such example can be found in a paper by Westermann

and Ert [5], in this paper they introduce the concept of clipping geometries by means

of stencil buffer operations. The paper also demonstrates a way to map volume data

to spherical domains.

Figure 2.5: 3D Texture Slicing Volume Rendering [5]

Draft of 2:08 am, Wednesday, August 31, 2011 13

2.2.3 Ray Casting Volume Rendering

3D texture based volume rendering mentioned above has some disadvantages when

it comes to representing large datasets of volume information. The overhead can be

quite large since computations must be made on all voxels in the space even though

a significant number of these voxels might not contribute to the final image. For each

fragment a ray of sight is cast through the volume sampling the colour at each slice until

the ray leaves the volume. It is an image order algorithm which calculates the colour

of a 2D pixel from a 3D volume. The implementation can be quite costly however and

because of this ray casting in real time simply wasn’t possible over a decade ago.

Figure 2.6: Ray Casting Volume Rendering [6]

With the advancement in the processing abilities of GPUs, ray casting in real time

became a reality and in 2003 Kruger and Westermann [23] released a paper describing

how to implement it on the GPU.

Ray casting is made more efficient by several optimisation methods. Early ray

Draft of 2:08 am, Wednesday, August 31, 2011 14

termination is a optimisation technique commonly used and was first described by

Whitted in[24]. This optimisation is based on the idea that once a ray samples infor-

mation from an opaque object, or has passed through enough semi-transparent objects

that the opacity of the ray stabilises, then the ray doesn’t need to continue any further

into the volume and can be terminated.

Recent important advances in the optimisation of ray casting volume rendering

methods can be seen in two papers [25] and [26]. In the GigaVoxels paper [26] proposed

by Crassin et al. they detail an approach to rendering large volumetric datasets using an

adaptive data representation depending on the current view and occlusion information

alongside a efficient ray-casting rendering algorithm. In the second paper, on efficient

sparse voxel octrees [25] Laine and Karras propose a new compact data structure for

storing voxels and a efficient algorithm for performing ray casts using the new voxel

structure.

2.3 Web GL: History and Technologies

Up until recently, content on the internet has usually been a generally 2D experience.

It was invented about twenty years ago to connect different nodes using hypertext

(which would be standardised as HTML later on) to share reports and information

from databases. 3D experiences have been achieved in online games and applications

since but this is usually through the utilisation of 3D collaboration programmes that

can be used as plugins in browsers. As such, the use of 3D in web browsers is usually

confined to specific, non-mainstream uses.

2.3.1 The advancement of browsers

The first browsers were only capable of rendering plain text in HTML form from

the internet. It wasn’t until 1993 when the US National Center for Supercomputing

Applications released the first browser capable of displaying images and text called

Mosaic [27]. Javascript is a type of browser scripting language that was invented to

allow the user to interact with the content feature on the pages.

Features and capabilities of browsers have been continuously growing and since

then several attempts of bringing 3D objects to internet browsers have been proposed

Draft of 2:08 am, Wednesday, August 31, 2011 15

including VRML (Virtual Reality Markup Language) in 1994, X3D a xml based file

format for representing 3D graphics developed by the Web3D consortium in 1997 and

universal 3D technology proposed by the 3D Industry Forum in 2003 which works in

most browsers via a plugin.

Using plugins in browsers have many disadvantages. They are only supported on a

limited number of platforms and are heavily dependent on the company that created

them. Plugins can easily crash bringing the internet browser to a halt or have security

vulnerabilities.

2.3.2 HTML 5

HTML 5 is the new internet standard that is being currently implemented in the latest

versions of modern browsers such as Googles Chrome, Mozillas Firefox and Apples

Safari browser. One of the main goals or HTML5 is to minimise the need for plugins to

display multimedia content or ideally, remove the need for them completely. HTML5

has the ability to cater for video, sound, 2D and 3D graphics amongst other improve-

ments. One of the most important new features HTML5 introduces is the Canvas

type element[28]. Developers can use the canvas element in regular HTML pages to

implement 2D graphics or 3D graphics without the use of plugins.

2.3.3 Web GL

Web GL is a lightweight software library that uses Javascript to implement OpenGL.

ES 2.0 commands[29]. OpenGL ES is a subset of Open GL that has been designed for

embedded devices such as smart phones and PDAs. This allows for the 3D information

drawn in the canvas element to be compatible not only with browsers on desktops but

on small mobile devices too. Open GL and Open GL ES are published by the Khronos

Group which is consortium consisting of companies that deal with graphical hardware

and software such as Nvidia, Sony and Intel.

Even though Web GL is a massive improvement on what has been available through

the browsers before it does have some disadvantages including resource loading limits,

security limitations and event handling limitations, more information on these topics

are presented by Borsos [30]. Another disadvantage is that since Web GL is based

upon Open GL ES it does not include 3D textures (3D textures are only available in

Draft of 2:08 am, Wednesday, August 31, 2011 16

Open GL ES through an extension). This means that the 3D texture volume rendering

technique listed in section 2.2.1 cannot be used with Web GL to display volume data.

Chapter 3

Design

The aim of this system is to produce a volume rendering application that is usable

through a WebGL enabled browser at real time rates without any additional third

party software. The main inputs of the software will be the volume data to be drawn,

textures representing various 1D transfer functions and rendering variables modifiable

by the user.

3.1 Requirements

The application is required to display to the user the rendered image of the volume

data and a graphical user interface (GUI) for the user to interact with the volume

through. Since this software will be run through the browser it must be implemented

in such a way to avoid any pages freezing which can in turn cause the browser and all

other open tabs to freeze.

3.2 System Over View

The system can be broken down into various elements. The following sections will

describe each of these elements in greater detail. The core parts of the application

are the data loader and the volume renderer subsystems. The loading subsystem

section is responsible for the progressive transfer of the volume data from the server

to the application on the local client machine. The volume rendering system will use

17

Draft of 2:08 am, Wednesday, August 31, 2011 18

a variation of a technique described in the state of the art that has been optimised to

work for WebGL as well as utilising GLSL pixel shaders available through WebGL to

improve the visual illustration of the data.

3.3 Data Loading Technique

Finding a quick and reliable way of loading in the data for volume rendering is a

very important aspect of any volume rendering application. The importance of data

loading in this system is even greater emphasised since the clients browser needs to

retrieve the data from the server and download it to the local machine. The speed of

the download is also governed by the speed of the clients’ internet connection; a low

download bandwidth will guarantee the user a slower download.

3.3.1 The Problem

The biggest obstacle which we’re faced with is based around how browsers and javascript

work in general. Up until very recently it was impossible to have multi-threading within

websites. Prior to 2009, Javascript could only emulate multi-threading using techniques

like the asynchronous calling of methods.

In a single threaded program, if the thread spends too long trying to complete a

certain task the application can appear to freeze. When this happens in Javascript, it

means the web page that’s being displayed is no longer responsive. Since interactivity

is a key element to browsing the internet, the majority of browsers have a timeout

limit when pages become unresponsive. Once the timeout limit has been reached the

browsers will display an unresponsive script warning and give the user the option of

”killing” or stopping the script. The main advantage to this feature is to give the user

the option to stop badly written code, for example an infinite loop written in Javascript

will mean the browser freezes and the page never loads completely.

The time out limit is different for each browser since its set by the developer. With

Firefox the default value is 10 seconds [31]. This presents an obstacle that must be

overcome since ideally the user of the application must be able to interact with the

web page while it’s loading without receiving warning messages from the browser itself

about the validity of the code.

Draft of 2:08 am, Wednesday, August 31, 2011 19

3.3.2 Solution

In order to solve the problem of the application freezing during load, our approach

utilises a new browser element called web workers. Web workers allow the application

to run Javascript scripts in the background of the system. These threads run indepen-

dently from the main thread and therefore do not interfere with the user interface of

the application.

In our application, a web worker will be spawned to load in the volume data files

from the server while the main thread deals with the user interaction. This means that

the user will be able to modify the volume data in real time as the files are loaded in

and that the browser will never inform the user that the page has become unresponsive.

Figure 3.1: Web Worker Data Loader

Currently not all web browsers offer support for web workers, fortunately though

all the browsers which support WebGL also support the web worker. Currently as of

August 2011, the current list of browsers that support web workers are Chrome, Safari,

Firefox, Opera and the Android OS. Although Safari for iOS 4 (iPhone 4 OS) does not

Draft of 2:08 am, Wednesday, August 31, 2011 20

support them, they will be supported by iOS 5.

3.4 Volume Renderer

Choosing the right technique for rendering the volume is a very important task. It must

be an accurate and fast system which is compatible with the current limits of WebGL.

As mentioned in the state of the art section 2.3.3, one of the limits of WebGL is that it

does not support 3D textures. This automatically means rendering the volume using

3D textures isn’t possible.

Another approach that was looked at was rendering using ray casting, but since ray

casting on the CPU is extremely costly and ray casting on the GPU is only possible

with the support of 3D volumes, this method was abandoned.

3.4.1 Our Approach

Out of the remaining choices for rendering the volume, we chose to use the 2D texture

stack approach. Splat based volume rendering can be less accurate and the shear warp

algorithm is known to cause artefacts when the viewing angle is near 45 degrees relative

to the slices of the data. This application by Engel and Ertl [7] using Java and the

Virtual Reality Modelling Language (VRML) uses a similar rendering approach.

The volume datasets used in our application are taken from the Stanford volume

data archive [32]. The sets from this repository are regularly used in similar papers as

test data. The datasets are stored in such a way that there’s a separate file for each

slice perpendicular to the slice direction. Each file contains no header and is formatted

using 16 bit integers in Mac byte ordering.

The web worker from the previous section loads the files concerned with the dataset

being displayed. Every time the worker receives a data file, it parses it from 16 bit

integers into an array of floats which are then sent to the main thread. Since the data

is stored in Mac byte ordering, it’s parsed as big endian. Endianness refers to how the

bytes are ordered, little endian files store the least significant byte first whereas in big

endian files, the most significant byte is stored first.

When the main thread receives the array of data values from the worker, it adds

the values to the 3D volume data array and creates a texture using this information.

Draft of 2:08 am, Wednesday, August 31, 2011 21

These textures are then bound to the corresponding polygonal planes and used as

texture maps. Once all the files are loaded in and their corresponding plane textures

are generated, the web worker than creates arrays containing the isosurface information

of the slices from the other two perpendicular axes. These arrays are then sent to the

main thread in a similar manner. The application then takes the information from

these arrays and generates the textures for their corresponding planes.

Figure 3.2: 2D texture stacks taken from [7]

The application then chooses which of the three axes stacks to render based on

which ones orientation is closest to that of the viewing screen. This means that the set

of stacks being drawn will never be more than 45 degrees away from the orientation

of the screen. At draw time each texture mapped primitive from the stack is then

rendered on screen in back to front order using appropriate alpha blending parameters

to correctly display the transparency of the textures.

When the volume rotates in world space, the stack is replaced according to the new

relative screen orientation.

3.5 Enhancements

This section will look at the design of various visual enhancements that we’ve imple-

mented in the application. These extra features were chosen to enhance the usefulness

of the application while keeping computational costs low.

Draft of 2:08 am, Wednesday, August 31, 2011 22

3.5.1 Volume Clipping

Cutting planes also known as slice planes are a very helpful feature when it comes to

visualising a volume. They allow the user to clip sections of the volume they don’t want

visualised. Three different cutting planes are implemented in the application which can

be moved using HTML5 input sliders in the UI on the web page. Each slice plane lies

parallel to one of the three axes, either x, y and z. When the user modifies the position

of these planes the application receives notification and updates the display.

When plane objects are created they are each given a position attribute which stores

the location of the center of the polygonal plane. When using a clipping plane that

is parallel to the slices currently being rendered, slices that are above that position

are considered to be hidden by the slice plane and aren’t rendered. Slices that are

perpendicular to the cutting plane are displayed correctly by passing two separate

variables to the GLSL shader.

The GLSL shaders used to render the volume data store these two variables as

uniform floats. The two variables correspond to the position of the two clipping planes

positioned on axes perpendicular to the current slice axis. The two positions are scaled

down to correspond to values from 0 to 1. This is done to correspond with texture

mapping coordinates which are always valued from 0 to 1. When each slice is rendered,

the fragment shader (or pixel shader) compares the texture position of that fragment

to the position of the clipping plane. If the texture coordinate is less than the clipping

plane position variable then the opacity of that fragment is set to 0, giving the user

the impression that fragment has been cut off.

This method allows the application to have fast volume clipping from multiple cut

planes at the same time since the majority of the work is computed on the GPU in the

GLSL shader.

3.5.2 1D Transfer Function

Transfer functions are a key element for illustrating the separate materials and sub-

stances that make up the volume being displayed. It performs the essential task of

surface classification, allowing the user to view the structure of large objects where

all the voxels contain similar values. For example, a transfer function can be created

to clearly illustrate separate bone and muscle material in the human body. It allows

Draft of 2:08 am, Wednesday, August 31, 2011 23

Figure 3.3: 2D Texture Stacking Volume Clipping from [7]

for the mapping of colours to corresponding iso values extracted from the isosurface.

A vast amount of research has gone into the automatic generation of transfer func-

tions and also into developing intuitive user interface widgets to create and manipulate

transfer functions but these are considered out of the scope of this dissertation.

This application presents the user with three previously made transfer functions to

choose from using the UI on screen. Each transfer function is a texture of 256 pixels

wide that is passed into the pixel shader through a texture sampler uniform variable

and an associated texture channel. The texture has a width of 256 to account for every

variant of the isosurface density value, since the isosurface values are 8 bit numbers and

therefore restricted to values between one and 256. The transfer textures are generated

from .png files containing red, green, blue and alpha channels.

When it comes to the transfer texture, it was decided it was best not to make any

all-or-none decisions about which material is present at that isovalue so gradients are

used when moving from one classifier colour to another. As stated in [33], having exact

threshold limits can introduce unwanted artefacts in the final image so our approach

avoids this.

3.5.3 Phong Lighting through Iso Surface Extraction

The Phong lighting model was developed by Bui Tuong Phong at the University of

Utah as part of his dissertation that was published in 1973 [34]. The Phong shading

model involves the generation of the objects diffuse color using the light direction vector

and the normal vector of the fragment to be shaded. Once the GLSL shader has these

two vectors, computing Phong shading is a relatively easy process.

Draft of 2:08 am, Wednesday, August 31, 2011 24

Figure 3.4: Example of 1D transfer function used in application (pink for flesh, white
for bone)

fragColor = (l · n) ∗ textureColor (3.1)

Equation 3.1 shows the basic equation for calculating the diffuse color of a fragment

where fragColor is the final output color of that fragment, l stands for the normalised

light vector, n describes the normalised normal vector at that location and textureColor

is the corresponding fragments color retrieved from the texture map.

Since the volume dataset only supplies the application with isovalues for each voxels

density, extra computations must be completed to estimate the normal vector at each

voxel. In [9] Levoy desribes a equation to calculate each voxels normal which will be

implemented in our application. This equation takes the values from the current voxels

surrounding six neighbours and examines the difference of the values between them i.e.

the gradient of the change.

Figure 3.6 shows the equation created by Levoy [9] to calculate the normal vector.

Where 5f(xi) is the approximated normal vector.

Draft of 2:08 am, Wednesday, August 31, 2011 25

Figure 3.5: Image representing the sampling of the six neighbouring voxel values [8]

Figure 3.6: Normal Vector Equation [9]

Chapter 4

Implementation

This system uses a combination of HTML, CSS, Javacsript and WebGL. Two helper

files for WebGL have been included in the project. The first file is a WebGL utilities

Javascript file made by Google and available from Khonos [35]. This file includes

functions to initialise the WebGL and to check if a browser’s WebGL compatible.

The second file is also a Javascript file available from the Google code site [36] which

efficiently handles matrix and vector operations.

4.1 Web Worker

As mentioned in section 3.3, a web worker is spawned to load the volume data into the

application progressively without freezing the application. In this section, the details

of how the data is loaded, parsed and used to generate the textures shall be discussed.

4.1.1 Web Worker Initialisation

To initialise the web worker thread the application calls the Javascript worker construc-

tor and passes in the name of the Javascript worker file, in this case DataLoader.js.

This web worker file must be located in the same folder as the HTML file. It is impor-

tant to note that the worker thread does not have any access to the DOM. The DOM

or Document Object Model is the convention for interacting with the different elements

on a web page. Since the worker has no access to the DOM, it must communicate with

the main thread through a messaging system.

26

Draft of 2:08 am, Wednesday, August 31, 2011 27

After creating the worker in Javascript, a function is set to the ”onmessage” at-

tribute of the worker. This means that a function will be called in the event the worker

passes a message to the main thread. Finally, a message is sent to the worker to inform

it to start its tasks. This start up message contains a JSON object which contains the

file path to the files which the worker has to load and the quantity of these files. JSON

which stands for JavaScript Object Notation is a text based standard for exchanging

data.

1

2 var worker = new Worker("DataLoader.js");

3

4 worker.onmessage = function (event) {

5

6 switch (event.data.type) {

7 case "print":

8 console.log(event.data.message); //For

printing debug information since the worker

has no access to the console

9 break;

10 case "makeTexture": // Worker has sent values to

generate a texture - pass these values onto

appropiate function

11 CreateTextureFromWorkerArray (....);

12 break;

13 }

14 };

15

16 worker.postMessage ({ filePath: "head/CThead.", fileAmount:

numberOfFiles }); // starts the worker

4.1.2 Loading the data

In the web worker file there is an on message function for when the main thread sends

the worker a message. When the worker receives a message it triggers the file loading

Draft of 2:08 am, Wednesday, August 31, 2011 28

system. The worker uses the information passed in the message to load in the correct

data files. To give the user a more visually complete dataset while loading, the files

are accessed using a divide and conquer approach. The first files downloaded are the

ones whose index is divisible by half the amount of files, then a quarter, then a 8 and

all the way down to files that are divisible by one. When the data contained in the file

is returned, it is sent to a function to handle the data which then sends it on to be

parsed.

1

2 onmessage = function (event) {

3

4 for (var i = 0; i < fileAmount; i++) {

5 if (i % Math.round(fileAmount /2) == 0) {

6 client = new XMLHttpRequest ();

7 client.onreadystatechange = handler;

8 client.open("GET", "volumedata/" + pathName + (i +

1), false);

9 client.overrideMimeType(’text/plain; charset=UTF -16

BE BOM’); //Load is as 16 bit Big Endian

10 client.send();

11 }

12 }

13 for (var i = 0; i < fileAmount; i++) {

14 if (i % Math.round(fileAmount /4) == 0 && i % Math.

round(fileAmount /2) != 0) {

15 // XMLHttpRequest

16 }}

17

18 for (var i = 0; i < fileAmount; i++) { // loads in all files

that have been skipped by the dividing algorithm

19 if (i % Math.round(fileAmount/fileAmount) == 0 && i %

Math.round(fileAmount /2) != 0 && ...) {

20 // XMLHttpRequest

21 } }

22 return; }

Draft of 2:08 am, Wednesday, August 31, 2011 29

4.1.3 Parsing the Data and Creating the First Stacks Texture

Files

After the message handler is called and no error was reported then the file data is

passed on into another function. One of the functions main tasks is to parse the data

and insert it into a 3D array which contains information about all the voxels in the data

set. The other major responsibility of this task is to pass arrays containing texture

information about the main axes textures to the application.

4.1.4 Creating the Perpendicular Stacks Textures

When all the volume files have been downloaded and the 3D array is complete, the

alternate axes textures are then computed. This takes place in the worker thread as

well. Both axes textures are created at the same time using three nested for loops.

Two arrays of pixel data are computed. Each array has a length which is equal to

the number of files by the relative resolution of the data volume data. For example

with the skull data that is 113 slices of 256 x 256, the output texture array for the

alternative axes are 113 by 256.

1 for (var k = 0; k < 256; k++) {

2 for (var i = 0; i < fileAmount; i++) {

3 for (var l = 0; l < 256; l++) {

4 pixels1[i][l] = volumedata[i][k][l];

5 pixels2[i][l] = volumedata[i][l][k];

6 }

7 }

8 postMessage ({ type: "makeTexture", direction: "

Xdirection", pixelData: pixels1 , textureIndex: k });

9 postMessage ({ type: "makeTexture", direction: "

Ydirection", pixelData: pixels2 , textureIndex: k });

10 }

Draft of 2:08 am, Wednesday, August 31, 2011 30

4.2 Rendering the Volume

As mentioned earlier in the design section, the application renders the volume using the

2D texture stacking approach. When the user first loads up the web page, the HTML

body element triggers a Javascript function which starts creating the application. After

setting up some basic settings for the web application, the Javascript code will call the

function to create the planes for each axes.

Figure 4.1: Graphic of 2D Texture Stacks from [10]

Each plane has various attributes associated with it including the central position

and the texture that should be mapped to it. The primitives are sorted and drawn in

back to front order. To draw the volume correctly the depth buffer must be disabled

and the WebGL blend function enabled. This allows for the overlapping of different

planes without obscuring the planes that are further away from the viewing plane and

the correct blending of the rendered alpha values. The blend function parameters are

set to the source alpha and one minus the source alpha.

A variable is used to keep track of the current state and which of the stacks to

draw. This variable is changed when the orientation of the view plane becomes greater

than 45 degrees off the orientation of the stacks being rendered.

Originally when only one stack had been created during the implementation phase,

back to front rendering of the polygonal primitives was accomplished used the quick

sort algorithm. It became apparent however that when all the stacks are created the

quick sort algorithm could be replaced by a computational less expensive method. The

technique involves reversing the stack array if it’s being rendered from the opposite

Draft of 2:08 am, Wednesday, August 31, 2011 31

direction of where it was previously displayed from. For example, if a stack was being

viewed from the top down and the camera position moved to be viewing the stack

from the bottom up then the stack order would be reversed, consequently reversing the

order it’s drawn in.

4.3 Enhancements

In this section, the application enhancements discussed earlier in chapter 3.5 shall be

described. A detailed description of their implementation shall be provided alongside

example code snippets from the application.

4.3.1 Volume Clipping

To implement the volume clipping described in section 3.5.1. a combination of CPU

and GPU methods are used. First, when drawing the texture stack, the application

looks at the slice plane that is parallel to the stack being drawn. If the position of the

cutting plane is greater than the position of the slice to be drawn then that slice can

be drawn. If the slice lies at a position greater than the cutting plane, then the slice

isn’t drawn.

For clipping planes that are perpendicular to the slices being rendered then two

uniform variables are passed to the GLSL shaders.

1 gl.uniform1f(shaderProgram.cutPlane1Uniform , perpSlice1);

2 gl.uniform1f(shaderProgram.cutPlane2Uniform , perpSlice2);

The shader receives these variables and uses their values to decide which volume

fragments should be drawn. Since the variables passed in are resized based on the

clipping planes position relative to the volume, to equal a value between zero and one,

they corespond directly to the UV texture mapping coordinate of the volume planes to

be drawn. The shader then sets the opacity value of every fragment that is positioned

before the clipping planes position to be zero, consequently rendering them invisible.

Draft of 2:08 am, Wednesday, August 31, 2011 32

1 if(TextureCoord.s < perpSlice1 || vTextureCoord.t < perpSlice2)

2 {

3 Color.a = 0.0;

4 }

4.3.2 Transfer Function

The transfer function is created by inputting three separate texture files, one for each

example of a transfer function. The user may choose which one to use through the user

interface on screen. The transfer function texture selected is then bound to a texture

channel (in this case channel one). A uniform integer representing the texture channel

from which to access the transfer function texture is then sent to the GLSL shader.

1 gl.activeTexture(gl.TEXTURE1);

2 gl.bindTexture(gl.TEXTURE_2D , transferfunctionTexture);

3 gl.uniform1i(shaderProgram.transferUniform , 1);

The GLSL fragment shader retrieves the appropriate colour from the transfer func-

tion texture using a 2D texture lookup. The alpha value of the texture to be drawn

corresponds to the density of the volume at that pixel. It is this alpha value that is

used as the position variable for the 2D texture lookup.

1 vec4 transferColor = texture2D(transferSampler , vec2(alpha ,

0.0));

4.3.3 Phong Lighting though Iso Surface Extraction

This section describes the implementation of the Phong lighting method detailed in

section 3.5.3. It calculates each fragments normal vector by examining the values of

the six neighbouring voxels.

There are two possible ways of implementing the normal calculations. Technique

one involves processing all the gradients at once and storing them in the red, green

Draft of 2:08 am, Wednesday, August 31, 2011 33

and blue channels of the texture. This methods advantage is that the gradients only

need to be estimated once but as a result the method is inflexible and not suited for

animated voxels. Technique two is implemented by calculating gradients on the fly

utilising the GPU. The advantage to this method is that it takes up less CPU time

and is animation friendly.

Calculating gradients on the fly was the variation chosen to be implemented in this

application. The GLSL shader calculates the x and y gradients by sampling the alpha

at various positions in the current slice texture.

1 g1.x = texture2D(uSampler , vec2(vTextureCoord.s - sampleSize ,

vTextureCoord.t)).a;

2 g2.x = texture2D(uSampler , vec2(vTextureCoord.s + sampleSize ,

vTextureCoord.t)).a;

3 g1.y = texture2D(uSampler , vec2(vTextureCoord.s, vTextureCoord.

t - sampleSize)).a;

4 g2.y = texture2D(uSampler , vec2(vTextureCoord.s, vTextureCoord.

t + sampleSize)).a;

The z value in the normal vector is calculated using additional textures. Where

the x and y normals lie on the texture to be drawn; the z values needed are located in

the textures of the planes that are scheduled to be drawn before and after the current

plane. This is accomplished by passing in the before and after textures to be drawn by

binding them to the second and third texture channels. Both integer uniforms referring

to the texture channel to sample from are then passed into the GLSL shader.

1 gl.activeTexture(gl.TEXTURE2);

2 gl.bindTexture(gl.TEXTURE_2D , slices[current - 1]. texture);

3 gl.activeTexture(gl.TEXTURE3);

4 gl.bindTexture(gl.TEXTURE_2D , slices[current + 1]. texture);

5 gl.uniform1i(shaderProgram.previousTextureUniform , 2);

6 gl.uniform1i(shaderProgram.nextTextureUniform , 3);

The GLSL file then calculates the z values in a similar way to the x and y values; the

main difference being that the values are sampled from different textures. The current

Draft of 2:08 am, Wednesday, August 31, 2011 34

fragments normal gradient is then created by normalising the the vector equaling the

next gradient vector minus the previous one.

1 g1.z = texture2D(nextTexture , vec2(vTextureCoord.s,

vTextureCoord.t)).a;

2 g2.z = texture2D(previousTexture , vec2(vTextureCoord.s,

vTextureCoord.t)).a;

3 normal = normalize(g2 - g1);

4.3.4 UI and User Controls

The UI is implemented using a combination of HTML5 and CSS. The general layout

of the site is generated using the 960 grid system [37]. The 960 grid system is a

collection of CSS files that are free to use which help web developers rapidly prototype

site layouts.

The menu on the page is created using HTML5 input devices such as sliders and

check boxes. Each input element has a Javascript method attached to it. Should the

value in the input change then the Javascript function is called to update the relative

parameters to the new value.

Chapter 5

Evaluation

This chapter will present testing results from running the application described in the

paper. The object of this dissertation was to create an in browser web system to

display 3D volume data to the average internet user without the use of any additional

plugins. This system allows the user to clearly view the volume while presenting the

user with various options to manipulate the display of the volume to enhance the users

understanding of the dataset.

As one of the aims of this dataset is to enable the average user to view the volume

all the results are tested on two computers. One is a average household laptop Dell

Inspiron 1520, with the following specifications:

• Windows 7 E 32 bit.

• Nvidia GeForce 8600 GT Graphics Card, 256MB of VRAM.

• Intel Core Duo CPU, T7500 2.2 Ghz processor.

• 3.5GB RAM.

The other computer that the application will be tested on is a top of the range

modern desktop PC the Dell Precision T3500, with the following specifications:

• Windows 7 Enterprise 32 bit.

• Nvidia Quatro FX 580, 512MB of VRAM.

35

Draft of 2:08 am, Wednesday, August 31, 2011 36

Table 5.1: Google Chrome Performance Table (Desktop)
Iteration Number Download Time Frame Rate Texture Generation
1 12.682 38 fps 21.998
2 8.454 39 fps 17.908
3 8.173 34 fps 17.526
4 8.218 29 fps 17.383
5 8.902 34 fps 18.367
Average 9.286 43.8 fps 18.636

• Intel x86 Core Duo CPU, T7500 2.6 Ghz processor.

• 4GB RAM.

The WebGL enabled browser installed on both computers for testing was Google’s

Chrome Version 13.x and Mozilla’s Firefox 6.0. Both browsers are the newest stable

releases of the software. The application was not tested using the Safari browser as a

result of the fact that Safaris WebGL is only supported on Mac computers with the

Snow Leopard Operating System (OS X 10.6).

5.0.5 Performance Results

The following results are taken from test runs of five iterations from the Chrome and

Firefox browser tested on the modern desktop. The internet connection used had a

download speed of 93mbps (mega bytes per second) and a upload speed of 25.84. Table

5.1 details the results of the test for the Chrome browser, while table 5.2 presents

the results of running the application through the Firefox browser. The cache of each

browser was emptied before running each test to ensure there was no error in calculating

the download times. The last column represents the averaged results.

Chrome overall gives a excellent performance, but it is interesting to note there is a

obvious difference in efficiency between the two browsers. Currently, Google’s Chrome

has a reputation for being the fastest browser and the results confirm this. Where

Chrome maintains an average fps of 34.8, Firefox only executes at a average of 15.6

fps. That means that Chrome performs on average at more than twice the frame rate

of Firefox. This is clearly noticeably during testing.

Draft of 2:08 am, Wednesday, August 31, 2011 37

Table 5.2: Mozilla Firefox Performance Table (Desktop)
Iteration Number Download Time Frame Rate Texture Generation
1 26.896 19 fps 31.748
2 26.032 13 fps 31.056
3 27.024 17 fps 32.017
4 26.236 13 fps 31.095
5 34.081 16 fps 38.893
Average 28.0718 15.6 fps 32.294

This is possibly due to a difference between how the two browsers work. In Firefox,

there is a single process for each window; if a window has multiple tabs open then they

all become part of the one process. In Firefox, if one tab freezes due to a lengthy task,

all other tabs stall with it. Google’s Chrome handles its web pages quite differently,

opening multiple processes for each window depending on the amount of tabs currently

open.

Similar rates are also seen in the other categories. Where Chrome takes a average

of 9.2858 seconds to download and parse 113 files (14.1MB) over a 93mbps internet

connection, Firefox takes 28.0718 seconds over the same connection. This is a increase

of almost 20 seconds, a substantial time difference when it comes to browsing the

internet.

The graphs also show a large difference in the time it takes for each browser to

generate all the textures, 18.6364 for Chrome and 32.9638 for Firefox. Although this

is inclusive of the amount of time taken to download the files so Firefox consequently

takes a much longer time then Chrome automatically.

Figure 5.1 illustrates the main differences between Firefox and Chrome. It shows

Chrome to consistently be the better browser for viewing the application, although

these results do not match the current state of the web. As shown in figure 1.5,

Chrome (as off June 2011) only has 16.5% of the browser usage whereas Firefox is the

more popular browser at 25.4%.

The next set of performance tests ran was using the Dell laptop to test the system on

a average modern day laptop. This is considered an important test since the part of the

motivation of this dissertation was to enable the average user to utilise the application.

These tests were carried out over a DSL internet connection with download speeds of

11.45 mpbs and upload speeds of 0.62 mbps.

Draft of 2:08 am, Wednesday, August 31, 2011 38

Figure 5.1: Chrome and Firefox Comparison Graph using Desktop

Tables 5.3 and 5.4 detail the results of testing the application on the Dell laptop

with both browsers. Evident in these graphs are similar patterns to the tests carried

out on a top of the range desktop with a high speed internet connection. The results

again demonstrate that the Google Chrome browser gives a much better performance

when running the application than the Firefox browser. Although the download speeds

are much slower on the laptop, this was expected since the laptop was tested on a

slower internet connection. The user interface remained interactive throughout all

tests and there were no unresponsive browser warnings issued. These test results show

Table 5.3: Laptop Performance Results for Google Chrome
Iteration Number Download Time Frame Rate Texture Generation
1 31.951 44 fps 54.259
2 32.266 49 fps 53.499
3 37.775 40 fps 60.003
4 30.927 44 fps 50.647
5 29.9 44 fps 50.046
Average 32.564 44.2 fps 53.6908

Draft of 2:08 am, Wednesday, August 31, 2011 39

Table 5.4: Laptop Performance Results for Mozilla Firefox
Iteration Number Download Time Frame Rate Texture Generation
1 81.975 12 fps 88.515
2 74.597 13 fps 81.159
3 54.635 9 fps 61.563
4 53.262 11 fps 60.182
5 60.35 11 fps 67.229
Average 64.964 11.2 fps 71.73

that the application is suitable for real time use with both browsers, although better

performance is achieved with Google Chrome.

Figure 5.2: Chrome and Firefox Comparison Graph using laptop

5.0.6 Visual Results

In this section the visual appearance of the volume will be evaluated.This is an im-

portant aspect of the application as rendering the volume without artefacts and in a

manner which allows the data to be understood correctly are paramount considerations

Draft of 2:08 am, Wednesday, August 31, 2011 40

in medical and scientific fields.

The overall appearance of the volume is satisfactory to the aim of the application.

It clearly illustrates the volume being displayed and gives the user multiple options

to enhance the visuals depending on their requirements. However, there are various

features that could possibly be improved upon.

The gradient, when turned on, can be noisy. This is due to how it’s rendered on

the fly i.e. rendered during run time. If the gradients were generated at load time into

the red, green and blue colour channels of the volume this would allow for a smoothing

algorithm to be used on the colour channels of the texture to filter out the noise.

Figure 5.3: Noise generated from on the fly gradient calculations

Another concern is the flicker of textures that can be observed when switching from

one texture stack to another. This is a rendering problem inherent in volume rendering

through 2D texture stacking. Very slight visual shifts can be observed when the angle

passes the threshold limit for the current texture stack and the new, more appropriate

stack is drawn.

Draft of 2:08 am, Wednesday, August 31, 2011 41

5.0.7 User Interface

The user interface is intuitive and allows the user to easily edit rendering variables. It

presents the user with several parameters that can be modified to allow the user to see

the volume, or certain sections of the volume, as they require.

Customisable parameters provided include three slider input bars to edit the posi-

tion of the clipping planes, two slider bars to manipulate opacity settings, a checkbox

item for activating or deactivating the gradient and a graphical button system for

choosing the current pre-set transfer function. To rotate the volume the client can use

either the mouse or the W, A, S and D keys on the keyboard as input.

Chapter 6

Conclusions

In this dissertation, an application for progressive volume rendering was proposed. The

main aim was to present a system that could work in modern web browsers. This is

achieved by utilising HTML5 and WebGL in WebGL enabled browsers. The volume

data to be rendered is downloaded to the local desktop from the server, where the data

is then transformed into textures representing the volume and rendered on screen.

The system proposed in the dissertation accomplish these aims in full. The main

challenge presented in the application was the implementation of the volume renderer

using data files that needed to be progressively streamed in from a server online. Not

only is the system capable of loading in the data, but it also does so maintaining a real

time frame rate while presenting the user with a UI they which allows them to modify

the display of the volume instantaneously.

Presently, WebGL is still in the development stage of its first version and itis im-

portant to note that it is not yet supported on all the major browsers. However, when

WebGL is supported as standard in browsers, a volume rendering application such as

the one presented in this dissertation could be a valuable tool in medicine and science

alike, for examining and dissecting various 3D volumes.

42

Draft of 2:08 am, Wednesday, August 31, 2011 43

6.1 Future Work

Volume Data Compression

The application could be improved with the use of a method of compression for the

volume data. Methods like those mentioned in [38] and in [39] help to shrink the

size of the storage needed for the volume infomration, making it more efficient and

consequently speeding up the transmission of the volume data over the internet.

Sampling Rates / Level of Detail

The application could be further improved with the possibility of level-of-detail volume

rendering. Methods similar to those listed in [40] could be examined to allow the use

of adaptive sampling of the data. Potentially providing a method to load in larger

datasets that otherwise would be too CPU intensive to store.

Different Rendering Techniques

Research into different volume rendering methods adaptable for WebGL could be ex-

tended. The possibiility of using the splatting method in [22] or the Shear-Warp method

in [3] should be investigated.

Region Selecting

Another area of research that could be examined is the generation of region selection

when using 2D texture stacks. Although there has been some research into region

selection in 3D textures [41] and polygonal representations of the data [41] not much

research has gone into the implementation of these methods with 2D texture stacking.

Rendering Techniques

Futher research to benefit the application could include the examining of rendering

techniques such as edge detection [42] and curvature shading [43] to enhance the visual

representation of the data.

Appendix A

Application Screen Shots

Figure A.1: Application Screen Shot

44

Draft of 2:08 am, Wednesday, August 31, 2011 45

Figure A.2: Application Screen Shot, with Phong shading

Figure A.3: Application Screen Shot, with clipping plane

Draft of 2:08 am, Wednesday, August 31, 2011 46

Figure A.4: Application Screen Shot, with Phone shading and multiple clipping planes

Bibliography

[1] H. Fuchs, Z. Kedem, and S. Uselton, “Optimal surface reconstruction from planar

contours,” Communications of the ACM, vol. 20, no. 10, pp. 693–702, 1977.

[2] D. Laur and P. Hanrahan, “Hierarchical splatting: A progressive refinement algo-

rithm for volume rendering,” in ACM SIGGRAPH Computer Graphics, vol. 25,

pp. 285–288, ACM, 1991.

[3] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp factorization

of the viewing transformation,” in Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pp. 451–458, ACM, 1994.

[4] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic

reconstruction using texture mapping hardware,” in Proceedings of the 1994 sym-

posium on Volume visualization, pp. 91–98, ACM, 1994.

[5] R. Westermann and T. Ertl, “Efficiently using graphics hardware in volume ren-

dering applications,” in Proceedings of the 25th annual conference on Computer

graphics and interactive techniques, pp. 169–177, ACM, 1998.

[6] M. Levoy, “Efficient ray tracing of volume data,” ACM Transactions on Graphics

(TOG), vol. 9, no. 3, pp. 245–261, 1990.

[7] K. Engel and T. Ertl, “Texture-based volume visualization for multiple users on

the world wide web,” in 5th Eurographics Workshop on Virtual Environments,

pp. 115–124, Citeseer, 1999.

[8] C. J. da Cruz Ramalhao, “Painterly stylization of real-time volume rendering,”

2010.

47

Draft of 2:08 am, Wednesday, August 31, 2011 48

[9] M. Levoy, “Display of surfaces from volume data,” Computer Graphics and Ap-

plications, IEEE, vol. 8, no. 3, pp. 29–37, 1988.

[10] O. Hendin, N. John, and O. Shochet, “Medical volume rendering over the www

using vrml and java.,” Studies in health technology and informatics, vol. 50, p. 34,

1998.

[11] R. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,” in ACM Siggraph

Computer Graphics, vol. 22, pp. 65–74, ACM, 1988.

[12] T. Berners-Lee, “The worldwideweb browser,” tech. rep., W3 Schools, 2011.

http://www.w3.org/People/Berners-Lee/WorldWideWeb.

[13] “World internet users and population stats,” tech. rep., Miniwatts Marketing

Group, 2011. http://www.internetworldstats.com/stats.htm.

[14] M. Harris, W. Baxter, T. Scheuermann, and A. Lastra, “Simulation of cloud

dynamics on graphics hardware,” in Proceedings of the ACM SIGGRAPH/EU-

ROGRAPHICS conference on Graphics hardware, pp. 92–101, Eurographics As-

sociation, 2003.

[15] M. Stytz, G. Frieder, and O. Frieder, “Three-dimensional medical imaging: algo-

rithms and computer systems,” ACM Computing Surveys (CSUR), vol. 23, no. 4,

pp. 421–499, 1991.

[16] S. Horiil, F. Prior, W. Bidgood, C. Parisot, and G. Claeys, “Dicom: an introduc-

tion to the standard,” Dispońıvel na WWW, URL: http://www. dicomanalyser.

co. uk/html/introduction. htm. Último acesso em, vol. 20, 2002.

[17] E. Keppel, “Approximating complex surfaces by triangulation of contour lines,”

IBM Journal of Research and Development, vol. 19, no. 1, pp. 2–11, 1975.

[18] G. Herman and J. Udupa, “Display of 3-d digital images: Computational foun-

dations and medical applications,” Computer Graphics and Applications, IEEE,

vol. 3, no. 5, pp. 39–46, 1983.

Draft of 2:08 am, Wednesday, August 31, 2011 49

[19] W. Lorensen and H. Cline, “Marching cubes: A high resolution 3d surface con-

struction algorithm,” ACM Siggraph Computer Graphics, vol. 21, no. 4, pp. 163–

169, 1987.

[20] M. Levoy and T. Whitted, “The use of points as a display primitive,” Tech.

Report85-022, University of North Carolina at Chapel Hill, 1985.

[21] L. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel, “Feature sensitive surface

extraction from volume data,” in Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pp. 57–66, ACM, 2001.

[22] L. Westover, “Footprint evaluation for volume rendering,” ACM Siggraph Com-

puter Graphics, vol. 24, no. 4, pp. 367–376, 1990.

[23] J. Kruger and R. Westermann, “Acceleration techniques for gpu-based volume

rendering,” 2003.

[24] T. Whitted, “An improved illumination model for shaded display,” Communica-

tions of the ACM, vol. 23, no. 6, pp. 343–349, 1980.

[25] S. Laine and T. Karras, “Efficient sparse voxel octrees,” in Proceedings of the 2010

ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pp. 55–63,

ACM, 2010.

[26] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels: Ray-guided

streaming for efficient and detailed voxel rendering,” in Proceedings of the 2009

symposium on Interactive 3D graphics and games, pp. 15–22, ACM, 2009.

[27] S. Ortiz, “Is 3d finally ready for the web?,” Computer, vol. 43, no. 1, pp. 14–16,

2010.

[28] “Html5 specification, canvas section,” tech. rep., W3 Schools, 2011.

http://dev.w3.org/html5/spec/Overview.html.

[29] “Web gl specification,” tech. rep., Khronos Group, 2011.

https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-

spec.html.

Draft of 2:08 am, Wednesday, August 31, 2011 50

[30] A. Borsos, “Webgl as an alternative to platform-specific 3d apis,” 2010.

[31] “Script run time,” tech. rep., MozillaZine, 2011. http://kb.mozillazine.org.

[32] “Stanford volume data repository,” tech. rep., Stanford Computer Graphics Lab-

oratory, 2011. http://graphics.stanford.edu/data/voldata/.

[33] E. K. F. DREBIN, ROBERT A. and D. MAGID, “Volumetric three-dimensional

image rendering: Thresholding vs. non-thresholding techniques,” Radiology,

vol. 165, no. 1, p. 131, 1987.

[34] B. Phong, “Illumination for computer-generated images.,” tech. rep., DTIC Doc-

ument, 1973.

[35] G. Inc., “Webgl utilities helper,” tech. rep., Khronos Organisation, 2011.

https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/sdk/demos/common/webgl-

utils.js.

[36] Tojiro, “glmatrix-0.9.5.min.js,” tech. rep., Google, 2011.

http://code.google.com/p/glmatrix/.

[37] N. Smith, “960 grid system,” tech. rep., 2011. http://960.gs/.

[38] J. Fowler and R. Yagel, “Lossless compression of volume data,” in Proceedings of

the 1994 symposium on Volume visualization, pp. 43–50, ACM, 1994.

[39] K. Nguyen and D. Saupe, “Rapid high quality compression of volume data for

visualization,” in Computer Graphics Forum, vol. 20, pp. 49–57, Wiley Online

Library, 2001.

[40] M. Weiler, R. Westermann, C. Hansen, K. Zimmermann, and T. Ertl, “Level-of-

detail volume rendering via 3d textures,” in Proceedings of the 2000 IEEE sym-

posium on Volume visualization, pp. 7–13, ACM, 2000.

[41] T. Yoo, U. Neumann, H. Fuchs, S. Pizer, T. Cullip, J. Rhoades, and R. Whitaker,

“Achieving direct volume visualization with interactive semantic region selection,”

in Proceedings of the 2nd conference on Visualization’91, pp. 58–65, IEEE Com-

puter Society Press, 1991.

Draft of 2:08 am, Wednesday, August 31, 2011 51

[42] J. Canny, “A computational approach to edge detection,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, no. 6, pp. 679–698, 1986.

[43] M. Hadwiger, C. Sigg, H. Scharsach, K. B

”uhler, and M. Gross, “Real-time ray-casting and advanced shading of discrete

isosurfaces,” in Computer Graphics Forum, vol. 24, pp. 303–312, Wiley Online

Library, 2005.

