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A System for Retargeting of Facial Motion

Captured Performance for Bone-deformable Models

Derek Foley

University of Dublin, Trinity College, 2012

Supervisor: Rachel McDonnell

We present a solution for retargeting facial motion capture for bone-deformable 3D

models. Currently bone-deformable models are used in the film and video game in-

dustries. The retargeting process however, is often performed manually and can be

time consuming. We were interested in attempting to design an application that could

add automation to the process as well as cater for arbitrary motion capture data and

3D models. There was not much available information on other systems for bone-

deformable retargeting. Much of the work to date involves expression matching using

blend-shapes, which are not applicable to bone-deformable models. Therefore we ex-

perimented with different approaches. We first experimented with ”displacement from

rest”. This approach involves determining the displacement of a marker from its rest

position and applying the same translation to a corresponding target bone. ”Displace-

ment from rest” however results in unwanted behaviour, presenting issues of mesh
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interpenetration and incomplete facial feature movement.

We present range-of-motion matching as a viable approach to retargeting. Range-of-

motion matching involves: determining the range-of-motion of a performance, specify-

ing equivalent range-of-motion for a target model and matching percentage movement

between the source and target ranges-of-motion.

The implemented system presents an approach to retargeting, respecting differences

in proportion and scale of the target compared to the source and avoiding mesh inter-

penetration and incomplete movement. Unlike other retargeting approaches, it does

not require a virtual representation of the source actor; retargeting can be preformed

directly from the motion capture data. Additionally the system is easy to use and

does not require much training. Finally it adds automation to a normally manual

bone-deformable retargeting process.
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Chapter 1

Introduction

This dissertation is concerned with facial motion retargeting from motion capture data.

Motion capture is a method of recording an actor’s performance for later use, poten-

tially for animating a 3D model. Motion retargeting is taking an actor’s performance

data and adjusting it for use with a differently proportioned 3D model.

This chapter will introduce the goal of the dissertation (section 1.1) and the moti-

vation for undertaking the dissertation topic (section 1.2). It will conclude with an

overview of the chapters, summarising their contents (section 1.3).

1.1 Goal

The goal of this dissertation was to provide a solution for transferring facial perfor-

mances (specifically from motion capture) to an arbitrary 3D model, using bone based

deformations. This solution would be provided as a C++ application taking facial

motion capture data and a 3D model and, successfully return an animation driven by

the motion capture data, adapted for the 3D model.

1.2 Motivation

Currently, motion capture is used heavily in the video game and film industries. Many

of the facial models used are bone-driven (bone-deformable). However, the retargeting
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process is often done manually using the source performance as a reference rather than

as a driver of the target model. This can allow for the animator to impart a certain

style to the animation, but it is also time consuming and requires the attention of an

experienced, highly skilled animation artist.

We were interested in investigating automation for this retargeting process and ad-

ditionally, to design a solution that could be used by a less experienced user. It was

felt an automated approach would be useful for handling a large set of diverse actors

as well as freeing up the animator for other work.

1.3 Dissertation Guide

• Chapter 1: Introduction

The current chapter. This chapter introduces the dissertation, discusses the mo-

tivations for undertaking the project and gives a reading guide for the remainder

of this document.

• Chapter 2: Background

Gives an overview of motion capture and retargeting. Discusses the work done to

date on facial retargeting and provides some discussion on possible adaptations

for this dissertation.

• Chapter 3: Design

States the goal of the built application as well as detailing requirements and lim-

itations of the design. It also discusses the methodology for the design decisions

and provides a listing of the tools and assets employed.

• Chapter 4: Implementation

This chapter details the stages of the retargeting application. It discusses the

steps necessary to prepare the marker data and 3D models, the profiling of the

marker data, the mapping of the markers to the model bones and retargeting of

the marker movement to the target model.

• Chapter 5: Results

Discusses the results of three approaches to facial retargeting: direct mapping,
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displacement from rest and range-of-motion matching. This chapter provides

images of each approach as they appear in the retargeting application.

• Chapter 6: Conclusion

Restates the goal of this dissertation and discusses how the implementation ad-

dresses them. This chapter also discusses limitations in the final application and

addresses issues that arose. It also provides a section on possible extensions to

the application including catering for stylised characters.

• Appendix A: TRC File

A sample .trc file, used in motion capture. This sample has been truncated for

brevity as full .trc files are typically large.

• Appendix B: Mapping File

An example of a marker-to-bone mapping file. It shows the format designed for

this application. The file also contains example bone range-of-motion specifica-

tions.

• Appendix C: Performance Range-of-Motion

This file details a range-of-motion performance for a motion capture actor.
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Chapter 2

Background

The goal of this dissertation was to investigate a solution for adapting the facial anima-

tions of an actor to a non-representative (not a virtual replica of the actor) bone-driven

3D model. This chapter will discuss work done to date and to what extent this work

can be adapted for use in the dissertation. Currently, the main body of research on

facial retargeting uses blend-shape models, which can require a skilled animator to

construct and could make them less suited to a bone-driven animation style. We will

discuss aspects of the blend-shape approach, as well as other approaches to facial re-

targeting, while also looking at retargeting techniques of whole body skeletons which

may fit better with bone-driven models. First, however, we will discuss some different

methods of human motion capture.

2.1 Human Motion Capture

2.1.1 Active Sensors

Marker based human motion capture techniques apply markers or sensors to key fea-

tures of the body. These techniques can use a variety of different marker types [27].

Markers can be both active and passive. Active markers, or sensors, send and receive

signals from a base system relaying information such as position, orientation and speed

of movement. Mechanical sensors are triggered when the actor bends a limb, sending

out a signal which reflects the configuration of the body part it is attached to. Ac-

celerometers can measure the acceleration of the attached body part. Electromagnetic
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sensors can relay information about position and orientation with regards to some mag-

netic field generated by a transmitter. Acoustic sensors operate in a similar manner to

sonar, relaying positional information on receipt of an audio signal. Finally, optic fibre

sensors are similar to mechanical sensors but can be noted separately due to the fact

that they are substantially less cumbersome.

While recent instances of these sensors can be quite fast and accurate, they require

the actor to be wired up in many cases making any complicated motions difficult to

capture.

2.1.2 Passive markers

The idea with passive markers is to capture human motion using information already

present in the scene (visible light, electromagnetic distortion) without the need to pro-

duce external signals. The difficulty arises in using a camera to convert a 3D scene into

a 2D image. The 2D image will present a lot of information and can lose information

concerning depth. Therefore markers are attached to the body to reduce the amount

of information to analyse. More recently, motion capture is done using reflective balls

attached to the body at key areas and a number of infrared cameras capture an actor’s

performance at different angles. The IR cameras can pick up the reflective markers

and the collection of different angles of the same scene allows 3D information to be

reconstructed. These reflective markers are less cumbersome than equivalent active

Figure 2.1: Example of passive marker motion capture [14]

sensors, in that the actor has full range of motion within the performance area. How-

ever, these markers can miss out on finer, subtle motions such as skin deformation, or

muscle flexion.
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2.1.3 Motion capture of faces

The set up for facial motion capture often has an actor wearing a number of reflective

markers on their faces placed upon highly motile areas of the face such as eyebrows,

eye lids, mouth etc. Face markers are often much smaller than those used for body

motion capture [11] [14] [23]. The actor is often seated in a smaller performance area

with cameras arranged in a tight half circle in front, although with higher resolution

cameras it is possible to capture both body and facial motion simultaneously. Markers

do not have to be reflective balls. Taking advantage of the fact that the actor does

not move and is always facing the same direction, reflective paint can also be used

for effective motion capture [6] [7]. Markers do not even have to be present at the

time of capture. Motion capture can also be performed on video/image analysis using

computer vision techniques to overlay markers on facial features in photographs/video

frames [13] [30] Markers do not have to be dots either. Na et al. [28] use a contrasting

stripe pattern to reveal fine facial details, such as wrinkles.

With improvements in camera hardware and facial analysis it is possible to perform

facial motion capture without markers. One way, as seen in figure 2.1, or by annotation

of video or images but also through improved body and face recognition techniques.

Vlasic [37] performs decomposition and compositing of faces using video frames, Beeler

at al. [5] rely on the repetitive nature of facial motion to produce anchor frames from

marker-less motion capture, which are then used to produce vertex accurate 3D models.

Weise et al. [39] [38] use Microsoft’s Kinect camera and in-built depth map extraction

to allow real-time puppeteering of a digital avatar.

2.2 Motion Retargeting

Retargeting is the process of adapting the animation of one character to one or more

other characters. Difficulties can arise when source and target differ in proportion

or underlying structure. Consider attempting to adapt a human walking animation

to another animal, or vice versa. Skeletal structures differ greatly in both size and

function, for example, many four-legged animal’s knees bend differently to a human’s.

Body retargeting can be a difficult process.
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Choi and Ko [12] performed body retargeting using inverse rate control which deter-

mines the changes in joint angle using the change in end effector position over time.

The calculation was done in real time allowing for interactive performance retargeting.

Dariush et al. [15] present a human to robot retargeting system (using the ASIMO

robot) that can operate in real-time and does not require a marker based motion capture

approach. The system uses only a depth map of the actor. The system can generate

robot joint movements while considering joint constraints, self-collision constraints and

balance constraints.

Gleicher [18] presents a retargeting system for adapting from one articulated char-

acter to another, with identical structure but differing segment lengths. The idea of

the system is to allow retargeting but to preserve interesting or unique characteristics

of the source motion by identifying these characteristics as constraints that must be

maintained in the retargeting. Hecker et al. [20] built a system designed to allow

retargeting of animations to unknown morphologies. The system was incorporated

into the video game Spore, which allowed players to design their own lifeforms with a

vast array of potential morphologies (Figure 2.2). Animations are designed and stored

Figure 2.2: Sample of user-created morphologies in Spore [20]

independently of morphology, preserving the structural relationship and style. At run-

time, the animation data is applied to the user-created morphology to produce a set of

pose goals which are in turn supplied to a robust inverse kinematic solver. The system

allows for the design of animations for creatures with vastly different skeletal systems

and morphologies. Hsieh et al. [21] introduce a system for retargeting animations to

different skeletal structures (specifically a dog and a human). Both source and target

skeleton are loaded in, the system constructs a combined skeleton with users assigning

bone correspondences. The target’s initial pose is then lined up with the source’s.

With the unified skeleton it is possible to transfer motion data from source to target.

7



Monzani et al. [33] had previously experimented with an intermediate skeleton in

order to allow easier retargeting of source motion capture data to a target avatar, how-

ever their focus was on structurally similar characters. Yamane et al. [40] focused on

bringing human recognisable motion and expression to non-human characters (anthro-

pomorphism). The system is presented as an alternative to key-framing using motion

captured human performance of the target character. The method used employs a

statistical mapping function learned from a set of character key poses and a physics

based optimisation to improve realism.

2.2.1 Retargeting of faces

Blend-shape mapping

There are a number of approaches taken for the adapting of facial animations to differ-

ent models [24]. Blend-shape mapping involves developing blend-shapes for the source

and target models and using different weights to apply target to source [30]. The in-

dividual blend-shapes can be based on the Facial Action Coding System [17]. This

method relies heavily on an artists ability to build these blend-shapes and requires

there to be an equivalent number of associated blend-shapes between source and tar-

get. However it can be useful in retargeting for models that are not of the same general

structure as the source.

Weise et al. [38][39] have been developing a system that allows a user to control the

facial expressions of a digital avatar in real time using their own performance. The

system uses the Kinect camera to capture user expression in both a 2D image and

3D depth map. Combined with a collection of generic blend-shapes, a user specific

blend-shape collection is produced. Then a combination of blend-shape weights and

previously learned animations are used to map the user’s performance to the digital

avatar. The rig uses only the Kinect camera, eschewing markers or 3D scanners to be

unobtrusive.

Curio et al. [14] use a combination of 3D scans of the actor’s face, acquired motion

capture data and the Facial Action Coding System [17] to retarget acted expressions

onto a morphable 3D model. The process works by matching semantically, an Action
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Unit with both an associated 3D scan and motion capture data and then weighting

the Action Units as necessary. Resulting basic expressions (angry, sad, etc.) become

linear combinations of different Action Units. Constructing the 3D face model involved

aligning each scan with that of a neutral scan using an Iterative Closest Point algorithm

and applying a control point network to the surface mesh. Individual Action Units were

combined and used within a single blend-shape to build blend weights. Motion capture

blend weights extracted in a similar manner using a least-squares fitting of two 3D

data sets.

Figure 2.3: Retargeting actor’s expressions to non-human characters [23]

Kholgade et al. [23] attempt to adapt human motions to non human characters

using parameter parallel layers. They employ three layers: emotion, speech and blink,

each focusing on a distinct facial action. Animation artists provide equivalent facial

motions for the target character; e.g. the artist decides how a crocodile smiles. Layers

are weighted and combined to produce the expected retargeted motion.

Orvalho et al. [8] begin with a generic face and allow an artist to deform it to

create a desired character. The expression blend-shapes defined for the generic rig

are then adapted to the deformed face. Chuang et al. [13] avoid constructing blend-

shapes for a source model and instead apply motion data direct to a target model.

The system uses video for its source acquiring potential blend-shapes and weights from

the video performance and then having and artist construct associated blend-shapes

for the target. The artist is free to design the look of the target with its animation

being driven by an actor performance. Song et al. [34] focus on retaining stylistic facial
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shapes and timing to emphasise the significant characteristics of the target model. They

construct a prediction model to match semantically corresponding blend-shapes. Then,

through combination Radial Basis Function, Kernel Canonical Correlation Analysis and

1D Laplacian motion warping, replaces stylistically important emotional sequences,

preserving the characteristics of the target model.

Geometry mapping

Some work has also been done using radial basis functions and geometric mapping in

place of blend-shapes, where the systems use a deformable mesh as both source and

target.

Na and Jung [28] use a deformable mesh to perform retargeting. At each frame,

feature points are extracted from an original mesh (constructed from image capture)

and converted into a base mesh for the actor. This base mesh is then applied to the

target mesh by consulting previously learned examples (Figure 2.4). The base mesh

is then subdivided further to produce a denser mesh and again applied to the target

mesh. The process continues to a specified density level. Vlasic et al. [37] allow the

Figure 2.4: Overview of base mesh subdivision[28]

manipulation of faces in video using multilinear models comprising: actor pose and

identity, viseme (mouth articulation) and expression. They show that the separation

of these attributes allows for individual variance and interoperability. Combinations of
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these attributes from different actors can be blended to create a composite result and

then reapplied to the video.

Style learning

Ma, Le and Deng [25] present a style learning framework that can build a constraint-

based Gaussian Process model from a small set of facial-editing pairs, which can then

be used to automate the editing of any remaining animation frames. Miranda et al.

[26] show a sketch based animation control interface, where an artist can use a canvas

to specify the curvature and position of different key features of the facial model.

2.3 Conclusion

As can be seen there are a number of different approaches to both human motion cap-

ture and the retargeting of human motion. Due to the nature of bone-driven models

and their ease of use, it would be useful to employ passive reflective markers for anima-

tion capture as the marker locations can be applied on the actor’s face exactly where

the model’s bones would be, making for simple mapping of data.

For facial retargeting, it may be possible to adapt the concept of Action Units and

the Facial Action Coding System [17] for use with bones to specify different expression

types for a source and target model and use computable weights to determine expression

combinations. It would be necessary to specify the different movement constraints of

the different models (for characters with non-human proportions). This however would

require constructing Action Units for every possible expression which may prove to be

too time consuming.

Alternatively it may be possible to select a smaller set of expressions displaying

maximum/minimum range of movement of each facial feature and interpolating target

bone positions based on the proportion to which the source feature has moved between

maximum/minimum extents.
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Chapter 3

Design

As was discussed in chapter 2, there are a number of different approaches to facial

motion retargeting. However, there is little literature available on facial retargeting

for bone-deformable models. With this in mind, the application will be experimental

and will investigate different possible approaches. Section 3.1 will state the aim the

application hopes to achieve. Section 3.2 will discuss the different constraints the

application will have to respect. Section 3.3 will define the design of the application,

certain assumptions concerning its use and the different approaches considered. Finally,

section 3.4 will describe the tools and assets employed to build the application.

Figure 3.1: High level overview of proposed application
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3.1 Application Goal

The goal of the application was to provide a black box executable that required only

performance data and a target model, and returned a retargeted animation for the

target model. In the course of building the application, different approaches to facial

retargeting would be considered and tested.

3.2 Requirements

As the application could potentially be added to a pre-existing performance capture

pipeline, it was necessary to adhere to certain requirements.

• Work directly from marker data.

The supplied motion capture data is taken from a number of different performance

sessions with a diverse group of actors of different age, gender, size, etc. Due to

this and with respect to the time frame of the dissertation, it would not be

possible to create a 3D model of each actor for use as a source model in facial

retargeting. It was then necessary to design an application that could retarget

directly from the performance data.

• Work with arbitrary performance data.

In addition to working from marker data, it would also be necessary to han-

dle different performance metrics, such as differences in performance length and

number of markers used.

• Map to arbitrary bone-deformable 3D model.

For the application to be useful as an automated process the user should not have

to rewrite and recompile the application to handle different 3D models. Therefore

it is necessary for the application to handle any human bone-deformable model

in a generic manner.
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Figure 3.2: Autodesk Face Robot suggested marker set up[1]
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3.3 Methodology

The application intends to take facial motion capture data and a 3D human model,

fit the data to the model and return a retargeted animation. We decided to use the

trace file (.trc, appendix A) format for the motion capture data. This format provides

similar fidelity to other motion capture formats (such as .c3d or .csm) and contains the

raw marker data and performance metrics. Additionally, the format is plain text so it

would be simpler to parse than a binary file. The parser will make use of the standard

C/C++ libraries for file I/O.

There are many variations on marker set up for facial motion capture. It was decided

early in the dissertation that it would not be possible to cater for every possible marker

variation. This application assumes marker set up and naming convention as shown

in figure 3.2. This marker set up is minimal, covering the major facial landmarks

(features). While the final application can handle any number of additional markers

and marker to bone mappings, it assumes this minimum set up (figure 3.2) and that this

naming convention is followed: FaceRobot marker Name, e.g. FaceRobot RForehead.

There are also a number of different bone set ups for 3D models. Instead of limiting

to one set up type, it was decided to use an environment that would treat model bones

similarly, regardless of model set up. To do this, we used the Ogre3D (section 3.4.3)

rendering environment, in conjunction with the OgreMAX plug-in for 3ds Max (section

3.4.2). The plug-in can export many 3D model types into an Ogre friendly .mesh.

For motion retargeting, it was decided to attempt to match bone movement with

the movement of a corresponding marker. As the range of facial positions could not

be known with arbitrary performance data, it was decided that the method for retar-

geting would instead scale the range-of-motion of the source performance to the range-

of-motion of the target model. The actor would perform a range-of-motion motion

capture (appendix C) to prime the application with a source range-of-motion. Then

an animator would specify the equivalent range-of-motion for the target 3D model.

The application would then take performance data from the source actor and the tar-

get 3D model and adapt the performance by mapping between the source and target
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ranges-of-motion.

3.4 Tools and Assets

This section will list the tools and assets employed in this dissertation. In addition to

the following entries, the application itself was written in C++.

3.4.1 Vicon Blade

Vicon Blade [36] is an application that handles many elements of motion capture. It

handles configuration of the performance space and actor set up (camera calibration,

actor T pose) as well as capturing good quality data. It is primarily used in this

dissertation for performance data pre-processing (sections 4.1.1, 4.1.2 and 4.1.3).

3.4.2 Autodesk 3D Studio Max

3D Studio Max [2] is a modelling environment used for creating and manipulating 3D

models. It can be used to apply different rendering effects as well as design and apply

different animations for 3D models. It is used in this dissertation to prepare and export

the 3D model as well as define the model’s limits (sections 4.1.4 and 4.1.5).

3.4.3 Ogre 3D

Ogre 3D [29] is an open source 3D graphics engine; a comprehensive collection of ren-

dering libraries for use with C++, OpenGL and DirectX. It is used in this dissertation

to animate 3D models with retargeted animation and render them to screen (sections

4.2, 4.3, 4.4, 5.1, 5.2 and 5.3).

3.4.4 Performance Capture Data

Performance data was provided by the GV2 [19] lab of Trinity College Dublin. This

data was provided in trace format (.trc) and is a common performance capture format

(appendix A). Supplied performance data closely follows the suggested placement

shown in figure 3.2.
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Figure 3.3: Marker data rendered with 3D studio max. Colours added for clarity.

3.4.5 3D Models

Two 3D human models (figure 3.4) were also supplied by the GV2 lab of Trinity College

Dublin. Both models represent average male and female body type, with differing

proportions and range-of-motion in the face.

Figure 3.4: Example 3D model as it appears in 3D studio max. Coloured protrusions
represent facial bones.
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Chapter 4

Implementation

Figure 4.1: Overview of the Retargeting Application pipeline

This chapter is concerned with the implementation of the retargeting application.

It will detail the steps taken in preparing the marker data and 3D models for use

in the application (section 4.1). The acquisition of important information from the

marker data and model mesh are detailed in section 4.2 as well as associating markers

to corresponding bones in section 4.3. Finally, the process of calculating new bone

positions and transforming the model bones to occupy those positions are detailed in

section 4.4.
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4.1 Pre-processing

Before entering data into the application it is necessary to perform some pre-processing

to prepare it. Section 4.1.1 details the steps necessary to separate overall body and head

motion from individual facial motion. In sections 4.1.2 and 4.1.3 we discuss common

methods employed in performance capture post processing, specifically the removal

of unwanted marker oscillation and filling in any missing data points, respectively.

Finally, in section 4.1.5, we discuss the process of specifying the allowable movements

of the model’s facial bones.

4.1.1 Remove Head Motion

This dissertation is concerned with the retargeting of facial motion. It is not guaranteed

that the performance data supplied will be free of extra motion, either from head

movement or from full body movement. It is therefore necessary to isolate facial feature

movement from all other motion, so that retargeting can be successfully applied.

To remove extra motion, we first locate a number of stable markers on the head.

Candidates should have, ideally, no independent movement; their perceived movement

can be attributed solely to head motion. Markers chosen for this implementation

were those surrounding the head, the nose bridge and tip (RForehead, RBHD, REar,

LForehead, LBHD, LEar, NoseBridge, NoseTip, in figure 3.2). BHD markers (not

visible in figure 3.2) are placed at rear of head, in line with Forehead markers). These

markers were considered to be the most stable.

With the stable markers chosen you can then use them to construct a rigid body.

The data from the first frame of the performance is used as a reference point. For

every subsequent frame the rigid body is reconstructed and compared with the rigid

body from the first frame. Any translation (change in position) or rotation (change in

orientation) the rigid body has undergone, for this frame, is reversed for all markers

in that frame.

Changes in position can be reversed by calculating the displacement of the rigid

body’s centre point (an averaging of marker positions) and removing that translation
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from the marker position. A change in rotation is reversed by determining the average

angle between first frame and current frame position of the rigid body, for each axis in

turn. A rotational matrix is constructed to correct for the changes in pitch, yaw and

roll (rotations about X, Y and Z axes, respectively) and applied to the marker vector.

Since the stable markers do not represent facial features, any movement they undergo

can be attributed to head motion. Reversal of these translations and rotations has the

effect of cancelling out head motion, thereby leaving the data with only facial feature

movement.

4.1.2 Filter Noise

With optical motion capture, a 3D scene is reconstructed from multiple 2D images

taken from cameras placed at different points in the performance area. During recon-

struction, the marker positions are calculated by referencing the 2D images, camera

positions and orientations. By knowing the camera configuration and set up it is pos-

sible to determine the depth of a marker from multiple 2D scenes. In this way, the 3D

position of the marker in the scene is calculated. However, this process is contained

between frames, there is no continuity kept between frames. Therefore, it is possible

for the marker to have subtly different 3D positions from frame to frame, independent

of any performance movement. This data artefact is called marker oscillation.

For fine features, such as the face or hands, these oscillations can present unwanted

motion, therefore it is necessary to lessen their impact or to remove them entirely.

This can be done by passing the data through a signal, or noise filter. Signal filters

are tasked with removing or lessening certain aspects of signal data, such as noise or

specific frequency intensities. One signal filter, the Butterworth filter [9], can poten-

tially smooth a signal and prevent deviation from a specified spline. This filter will

help minimise marker oscillation. The Butterworth filter is supplied with a threshold

and order value. The threshold value specifies the active range of the filter. Marker

values outside of this range are ignored. The higher the order of the filter, the greater

the smoothing applied. Care must be taken to choose an adequate threshold value and

filter order. Too low a threshold value will result in no appreciable change to the data.
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Too high, and you risk losing some viable performance. Similarly for the filter order.

Figure 4.2: Frequency response plot of a Butterworth filter[9]

For this implementation, the Butterworth filter was applied using a filtering script

within Vicon Blade (3.4.1).

4.1.3 Clean Marker Data

During performance capture it is possible for markers to become occluded from the

IR cameras. This can happen if the performer places their hands in front of their

face, or looks down at the ground, or has manoeuvred into a position that cannot be

captured by the cameras (outside focal range). When this happens the marker is lost,

or dropped, from the scene for the duration of the occlusion. The system does not

know where the marker is. This results in missing data points when later processing

the performance.
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For markers used to depict rigid bodies, such as a limb, other markers in the rigid

body can be used to determine the missing marker’s position for the relevant frame.

However, markers for the face do not necessarily contain an underlying rigid body.

Therefore a different approach is needed.

For a large number of missing data points, it may be necessary to recapture the

performance entirely. However, for small gaps (1 - 10 frames) it can be corrected

simply. First, cycle through the data and locate the frame(s) at which the marker has

dropped, it will appear as a blank spot in the data profile. The data for the missing

frames can be calculated by constructing a spline from the point the missing marker

was lost to the point it re-emerged, and using the spline to interpolate a position for

the new marker. This effectively plugs the hole in the data, ensuring the trajectories

are complete for the entirety of the performance.

4.1.4 Preparing Model

Before the 3D model can be used within the Ogre 3D environment it must be prepared

and exported using the OgreMAX plugin. It is necessary to first ensure that the

model mesh has an associated skeleton. Without a skeleton, it is not possible for this

application to perform bone manipulation. Similarly, if the facial mesh is not associated

with the facial skeleton, manipulation will not be possible.

Ideally, upon exporting the model with the OgreMAX plugin, there should be three

files: .mesh, .skeleton and .material all with the same prefix, or filename. The .mesh

file contains information primarily concerning the model’s geometry as well as pointers

to the associated skeleton and material files. The .skeleton file contains information

concerning the different bones of the model. It specifies bone names, bone hierarchy,

position, orientation and their effects on the mesh geometry. These are the bones that

will be manipulated within the retargeting application. The .material file specifies

different rendering effects to apply to the model. It is sometimes necessary to edit this

file to ensure the model is actually viewable in the retargeting application incorrect

values will not be recognised by the renderer. For this implementation, It was necessary

to change a vector of all zeros to an easier to see value, best results all white (a vector
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of all ones).

4.1.5 Specify Model Range-of-Motion

Specification of the model’s allowed range-of-motion is a crucial part of the pre pro-

cessing stage. Providing the model’s range-of-motion to the retargeting application

allows the application to perform successfully.

The specification process involves taking each bone in turn and manually adjusting

its position and orientation along the X, Y and Z axes. The user should manipulate

each bone to its minimum and maximum allowed positions in each axis. Once each

position has been reached, the user should record these values into a text file (Appendix

B).

The process can be time consuming as a high quality model can have a number of

bones to manipulate. The models used in this implementation required specification of

21 different bones each. Additionally, the specification process is subjective for the user.

It is up to the user to correctly define a good bone range-of-motion. However, once

the process is completed for the model and specified range-of-motion is satisfactory,

it need not be performed again. The range-of-motion for this model can now be used

with any performance data supplied to the retargeting application.

The specification process can be performed either within the retargeting application

(figure 4.3) or within modelling software, such as 3D Studio Max (3.4.2).

4.2 Profiling Data

With the performance data and model prepared, the next stage of the pipeline is to

import the data into the retargeting application and to parse out th relevant data. The

performance data is supplied to the retargeting application in TRC format (Appendix

A). This is one of a number of different performance capture formats and was chosen

for this implementation because the format can be read as plain text, thus making it

simple to parse.
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Figure 4.3: Specification process within retargeting application. Top pane provides
notable information for bone limit specification

The TRC file contains information on the performance metrics such as: frame rate,

scale, number of frames, number of markers. This information can be used to build

data structures in C/C++, as well as tailor the application for playback speed, camera

positioning, etc.

The TRC file also contains marker positions for each frame of the performance.

This data is saved in the Frame:xyz and Frame:frameNumber attributes, figure 4.4(B).

Frames for each marker are grouped together and stored in the MarkerNode:frames

vector attribute, figure 4.4(C).

4.2.1 Remove Hierarchical Motion

Once the marker data is in memory the application begins to remove hierarchical

motion. Hierarchical motion is any movement a marker undergoes that is a direct
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result of another marker’s movements. In the case of this implementation, it was

determined that the movement of the chin and jaw markers influences the position of

the bottom lip markers.

There is a biological hierarchy at work here where the position of a person’s bot-

tom lip can be influenced by the movement of their mandible (jaw bone). For this

implementation, the chin and jaw markers are driving the model’s mandible and are

therefore imparting some additional movement to the bottom lip. For the bottom lip

markers to effectively drive the model’s bottom lip bones, it is necessary to isolate their

movement from any hierarchical movement. Failure to isolate this movement will re-

sult it unwanted bottom lip movement, causing the lips to bend and part in unrealistic

ways and potentially causing skin tearing in the model.

One method that we considered for removing hierarchical motion was to create a

spring system between a marker and the parent marker causing extra motion. If the pull

on the spring went beyond a certain threshold, the translation of the parent marker for

that frame would be removed from the child marker. In this way, markers closer to the

parent marker would be effected by smaller motions more so than further markers, as

the spring would pull taught faster. Initial results were promising, however, it became

difficult to choose a threshold value that would work for arbitrary mouth movements.

The approach was abandoned in favour of simpler solution. It is believed that this

approach could still yield good results, but requires further investigation.

The approach eventually implemented was, rather than completely remove the parent

motion equally from all child markers, only a portion would be removed. The propor-

tion, or weight, of removal is based on the ratio between the perpendicular distance of

the child marker from the parent markers rotational axis versus, the absolute distance

between the two markers. This weighting has the effect of removing large amounts

of parent movement from child markers that are both close to the parent marker and

inline with the parent’s rotations. Conversely further away markers are less effected by

the parent markers motion and thus receive a small weight. While this approach does

lessen the impact of hierarchical motion, it can also cause some degradation in mouth

visemes. This can detract from the quality of the final retargeted animation.
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4.2.2 Determining Performance Range-of-Motion

With the hierarchical motion removed, each marker’s positional data is now indepen-

dent of any other marker. The next stage is to acquire the range-of-motion of the per-

formance. This is done simply by looping through the frame data and determining the

lowest and highest values reached for each axis (ModelNode:minX, ModelNode:maxX,

etc., figure 4.4(C)).

Knowing these values, the position of each marker at each frame is then checked for

what proportion of the full range of that marker it represents, for each axis (Frame:

proportionMovementX, etc., figure 4.4(B)), resulting in some value between zero and

one. Zero would indicate minimum position for that axis, while a value of one would

indicate maximum position.

Finally, the rest pose for the performance is acquired. Earlier implementations took

the average position of the marker for the entire performance to be the rest pose, how-

ever this resulted in some odd behaviour over time. It was eventually decided to simply

use the marker’s positions in the first frame as the rest position (ModelNode:startX,

etc., figure 4.4(C)). The reasoning being that the performer would be relaxed and their

face in a neutral expression at the beginning of the performance.

4.3 Mapping Markers to Bones

4.3.1 Importing Model

The model .mesh is imported into the Ogre environment as an Ogre:Entity and attached

to an Ogre:SceneNode. It is necessary to attach the model to an Ogre:SceneNode so

that it is actually rendered on screen. Creating an Ogre:Entity allows for instancing

of the model, however the model is only used once in this implementation, so the

instancing is not taken advantage of.

Upon importing the model .mesh, Ogre automatically loads the corresponding .skele-

ton and .material files. The .material file defines some rendering effects for the model

but is ultimately of little interest beyond ensuring the model is visible.
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The .skeleton file allows Ogre to acquire the skeleton associated with the model

.mesh. This allows the application to manipulate this skeleton and in turn, deform the

mesh.

4.3.2 Mapping

The retargeting application uses the mapping file (Appendix B) to acquire the bone

names. With the bone names it is possible to index the model skeleton and acquire a

pointer to the bone. The bone is set to manual control and stored as ModelBone:bone,

figure 4.4(A). Additionally the mapping file is also used to fill in the range-of-motion

for the bone, whether the bone movement is positional based or rotational based, and

the name of the marker driving that bone. The marker name is then used to find the

marker index.

Finally, the resting position of the bone is compared with the bone’s range-of-motion

to determine the proportion of the range the bones have traversed. This information

will be used later when moving the bones (Chapter 5).

4.4 Transforming Bones

The following actions are performed in the order specified; rotations are performed

before translations. When translating a bone to a new position, it is locked to that

position for that frame. The bone position will not update if a rotation is later applied.

This has the effect of stretching the model’s skin. For example, if a bottom lip marker is

repositioned and the jaw is then rotated to a point where the mouth should be open, the

skin will instead stretch over the distance. For this implementation, a bone’s movement

cannot be both rotational and positional based. The majority of bones in the model are

positional based. A change in their position results in an equivalent deformation in the

skin, whereas a rotation of these bones results in unwanted deformation. Rotational

bones, such as the jaw, operate in a different way; rotations correctly deform the skin.

27



4.4.1 Rotation

There is a simple calculation to determine the angle by which to rotate a bone by. The

retargeting application determines the angle between the vector of the driving marker’s

rest position with the vector of the current frame’s position. The associated bone is

then rotated by that amount.

The current implementation performs these rotations in reference to world space.

This was done for simplicity, however it may cause problems if head or body motion

is later reintroduced to the scene. One way to adjust for this would be to perform

rotations in the bone’s parent’s space. That should ensure any rotations undergone by

the head or body will be accounted for.

4.4.2 Position

The following list details the different methods used to determine a proposed translation

for each bone:

• Direct Mapping

The proposed translation is simply the corresponding marker’s position for that

frame. Translation is scaled to the model’s size.

• Displacement from rest

The proposed translation is calculated as the associated marker’s displacement

from its rest position for that frame. Translation is scaled to the model’s size.

proposedNewBonePosition = boneRestPos i t ion + (

currentMarkerPos i t ion − r e s t ingMarke rPos i t i on )

• Range-of-Motion Matching

The proposed translations is determined by measuring the percentage movement

of the corresponding marker with respect to its minimum and maximum positions

in each axis and applying the equivalent percentage movement for the bone.

Scaling is not necessary as the bone translation is calculated in the model’s scale.

boneRange = boneMaxPosition − boneMinPosition ,
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t r a n s l a t i o n = boneRange ∗ markerPercentageMovement ,

boneRest ingTrans lat ion = boneRange ∗
boneRestPercentageMovement ,

t r a n s l a t i o n = t r a n s l a t i o n − boneRest ingTrans lat ion

proposedNewBonePosition = boneRestPos i t ion + t r a n s l a t i o n

It is not enough to simply translate a bone by the proposed translation. Proceeding

in that way will result in unwanted translations by the bone. This is a result of

the proposed translation being multiplied into the different parent spaces and being

subjected to their changes in position and orientation. Because of this, the proposed

translation will be altered and, invariably, will not translate the bone to the desired

position.

It is therefore necessary to convert the proposed translation from world space values

to its parent’s space and additionally account for the bone’s orientation.

newBonePos = inve r s eParentOr i en ta t i on ∗ ( pa r entPos i t i on −
proposedNewBonePosition )

This chapter outlined the steps taken to implement the methodology discussed in

Chapter 3. The activities undertaken in the implementation result in the model un-

dergoing bone deformation in its face. The following chapter will present the results

of different retargeting approaches and will discuss the different advantages and disad-

vantages.
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Figure 4.4: Class diagrams. (A) ModelBone, (B) Frame and (C) MarkerNode
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Figure 4.5: Marker data displayed in retargeting application
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Chapter 5

Results

This previous chapter discussed the different steps the application performs in imple-

menting retargeting for bone deformable models. This chapter will now present the

results of different retargeting approaches and will discuss the different advantages and

disadvantages for each approach. Section 5.1 will show the results of direct mapping

(i.e. not performing retargeting) and is presented as a control case. Sections 5.2 and

5.3 present two different retargeting approaches.

5.1 Direct Mapping

Direct mapping simply takes the positions of the source performance markers and

directly applies them to the target model bones, every frame. No attempt is made

to adjust the motion for a differently proportioned model, or to scale the motion in

reference to the target’s range-of-motion. Figures 5.1 and 5.2 show the results of this

approach. Direct mapping is presented as a control and example of the importance of

retargeting.

Figure 5.1 shows a difference in proportion between the source actor and target

model, in this case the target model has larger proportions. This results in animations

tearing the facial mesh. Figure 5.2 shows both a difference in proportion and difference

in height. In this case, the source actor is taller than the target model. Direct mapping

will only result in good animations if both the source actor and target model are of the
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same proportion and dimension. The target model would have to be a virtual replica

of the source actor.

Figure 5.1: Example direct mapping, mismatch in proportion

5.2 Displacement from Rest

Displacement from rest was the first approach considered for retargeting. The idea

was to determine a marker’s displacement from some rest position and apply the same

translation to that marker’s driven bone. This approach would ensure that bone ma-

nipulation took the target model’s proportion into account. Figures 5.3 and 5.4 show

examples of displacement from rest.

Displacement from rest represents a substantial improvement over direct mapping

and can be applied to any arbitrary bone-deformable model. However, this approach

does not respect differences between source and target range-of-motion. This results

in issues where source motion does not map equivalently to target motion. Consider

figures 5.3 and 5.4, differences in source and target range-of-motion and resting position
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Figure 5.2: Example direct mapping, mismatch in proportion and height

lead to interpenetration of the top eyelid in both models as well as the mesh surrounding

the mouth, collapsing. Other issues can include:

• Eyes opening too wide/ closing too far

• Incomplete blinks

• Mouth opening too wide/ not wide enough

• Mesh collapse at different facial features

5.3 Range-of-Motion Matching

Range-of-motion matching was designed to deal with issues manifest in displacement

from rest (section 5.2). Range-of-motion matching involves determining the proportion

of movement a source marker has undergone with respect to its minimum and maximum

positions and scaling that motion for the target model. Scaled motion will ensure the
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Figure 5.3: Example displacement mapping (1)

target model’s driven bone will move the equivalent proportion with respect to its

minimum and maximum position. For example, if it is determined that a marker has

moved 30% of its full range, scaling will ensure the corresponding driven bone moves

30% of its full range, with the minimum position at 0% and maximum position at

100%.

Range-of-motion matching improves upon displacement from rest by ensuring retar-

geted motion respects the difference in range-of-motion between the source and target,

figures 5.5 - 5.8. Range-of-motion matching uses the bone limits specified in section

4.1.5 and appendix B to effectively clamp the model’s movements ensuring no mesh

tearing or mesh interpenetration.

However, some issues are still present. If the source performance does not represent

the source actor’s full range-of-motion then it is possible that the retargeted animation

will appear exaggerated and/or incorrect. This can be mitigated by ensuring the source

performance contains a range-of-motion motion capture take. This dissertation does
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Figure 5.4: Example displacement mapping (2)

present an outline for such a session (appendix C), however, a test session was not

recorded due to timing constraints.

An additional issue was noisy movement. Noisy movement presents as occasional

facial ticks on the model’s facial features. This can be due to noisy data or rounding

in range-of-motion movement. Again, this could be reduced by capturing a full source

range-of-motion, ensuring adequate signal filtering and care taken in specifying the

target’s range-of-motion.
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Figure 5.5: Example Range-of-Motion matching (1)

Figure 5.6: Example Range-of-Motion matching (2)
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Figure 5.7: Example Range-of-Motion matching (3)

Figure 5.8: Example Range-of-Motion matching (4)
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Chapter 6

Conclusion

The goal of this dissertation was to find a solution for retargeting facial performance

capture using 3D bone-deformable models. This implementation of a retargeting appli-

cation has achieved this goal. This implementation presents a solution for transferring

an actor’s facial performance to a 3D model.

Unlike current industry approaches to retargeting, this implementation retargets

directly from performance data and does not require an intermediate model (virtual

representation of source performer). This implementation has been shown to work with

two different 3D models and perform similarly on both. This implementation presents

a solution for retargeting and is a good first stage for further facial animation. For

bone-deformable models, facial retargeting is often done manually, using the source

model and performance for reference. This application introduces automation.

However, there are some limitations to this implementation. There is a large amount

of pre-processing required. While many of these pre-processing stages are already

present in a performance capture pipeline, the process of specifying the target model’s

range-of-motion (4.1.5) can be a potential bottleneck. The process may require some

training and is time consuming, however if done with care, need only be performed

once for that model.
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6.1 Further Work

This section will discuss possible extensions to the retargeting application.

6.1.1 Many-to-One Mapping

The current implementation allows for only one marker to drive one bone. While this

set-up is acceptable for markers that have a direct and obvious corresponding bone, it

can present issues where there is no clear mapping. For example, the suggested marker

placement (figure 3.2) presents three markers for the eyebrows, however the 3D models

only possess two, therefore one marker was omitted.

There is a similar situation where the top eyelid marker was moved off to one side

(to facilitate better capture) meaning this marker does not line up with the model’s

top eye lid bone.

With a many-to-one mapping it would be possible to allow multiple markers to drive

the model’s bones and additionally allow for weighted movement. This could present

as a more accurate retargeting application.

6.1.2 Exaggeration

Exaggerated motion can currently be handled by the retargeting application, if the

user specifies an exaggerated range-of-motion. However further steps would need to

be taken to ensure the retargeted animation appears smooth. Exaggerated motion

would allow for the user to emphasise certain areas of the source performance as well

as impart personal style on to the target character.

6.1.3 Stylised Characters

Stylised characters are models of non-realistic proportion, such as a ’cartoon’ character.

It is believed that the current implementation can cater only for humanoid character

proportions, however this theory has not been fully explored.
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Additional extensions could be made to handle non-humanoid characters (animals,

aliens, etc.) with largely different proportions and even differently placed and numbered

facial features.
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Appendix A

TRC File

*Truncated for brevity*

PathFileType 4 (X/Y/Z) C: / Users /Kenneth/Documents/

Media/Blade Motions/Blade Database/ D i s t i n c t / Actor 011 /

NT C001 face stab . t r c

DataRate CameraRate NumFrames NumMarkers

Units OrigDataRate OrigDataStartFrame

OrigNumFrames

120.000000 120.000000 5747 37 mm

120.000000 1 5747

Frame# Time FaceRobot LEar FaceRobot REar

FaceRobot RBHD

FaceRobot LBHD FaceRobot LForehead

FaceRobot RForehead

FaceRobot NoseBridge

FaceRobot REyebrowMid

FaceRobot REyebrowEnd

FaceRobot ROrbitalUpper

FaceRobot LEyebrowEnd

FaceRobot LOrbitalUpper

FaceRobot LEyebrowMid

FaceRobot LOrbitalLower
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FaceRobot LEyelidLower

FaceRobot LEyelidUpper

FaceRobot ROrbitalLower

FaceRobot REyelidLower

FaceRobot REyelidUpper

FaceRobot LNostr i lBulge

FaceRobot RNostr i lBulge

FaceRobot LNostr i lBase FaceRobot NoseTip

FaceRobot RNostri lBase

FaceRobot LLipUpperBend

FaceRobot LLipLowerBend FaceRobot LPuffer

FaceRobot LMouthCorner

FaceRobot Chin FaceRobot LJawEnd

FaceRobot RLipLowerBend

FaceRobot LipLower

FaceRobot RPuffer

FaceRobot RMouthCorner FaceRobot LipUpper

FaceRobot RLipUpperBend

FaceRobot RJawEnd

X0 Y0 Z0 X1 Y1 Z1

X2 Y2 Z2 X3 Y3

Z3 X4 Y4 Z4 X5

Y5 Z5 X6 Y6 Z6

X7 Y7 Z7 X8 Y8

Z8 X9 Y9 Z9 X10

Y10 Z10 X11 Y11 Z11

X12 Y12 Z12 X13 Y13

Z13 X14 Y14 Z14 X15

Y15 Z15 X16 Y16 Z16

X17 Y17 Z17 X18 Y18

Z18 X19 Y19 Z19 X20

Y20 Z20 X21 Y21 Z21

X22 Y22 Z22 X23 Y23
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Z23 X24 Y24 Z24 X25

Y25 Z25 X26 Y26 Z26

X27 Y27 Z27 X28 Y28

Z28 X29 Y29 Z29 X30

Y30 Z30 X31 Y31 Z31

X32 Y32 Z32 X33 Y33

Z33 X34 Y34 Z34 X35

Y35 Z35 X36 Y36 Z36

69 0.575000 65.159576 66.171432

15.247816 −76.412193 47.632626 6.911851

−79.004478 128.804001 45.082470

54.275093 136.327423 51.519245 75.941559

38.061611 84.781288 −83.445587

27.548832 78.596481 0.970357 −24.715738

27.590555 −8.233782 −27.019285

44.478756 −55.896584 −12.419032 44.910355

−27.735384 −26.665453 50.921490

51.147614 −3.921833 52.508968 29.199774

−20.229677 52.860306 9.546706

−24.999146 45.266834 52.284695 2.775834

4.464105 30.247187 −7.736007

15.985188 41.206886 −9.500063 27.747540

−47.909496 −9.882837 0.160335

−29.360344 −13.564362 13.675882 −42.462852

−14.583048 24.803570 15.914208

−23.474262 −8.087914 −11.492588 −24.297987

−9.297639 25.104740 −11.080055

−15.964125 3.769651 −44.088474 −4.035847

−20.335209 −16.140812 −15.149405

17.849983 −15.277853 −34.007057 17.233952

−10.720400 −51.508080 42.149166

6.482348 −38.048141 28.661116 −1.952248

−41.722755 2.370543 −12.838081
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−66.009285 12.886061 −3.606514 −78.276581

−13.453781 −16.271017 −49.038193

2.710675 −17.342730 −54.066006 −39.782635

−4.319119 −38.398796 −25.652632

−7.319777 −42.563065 3.551636 −24.251684

−30.088280 −12.676408 −20.432964

−31.695992 −8.327857 −5.181708 −79.523407

70 0.583333 65.175613 66.161156

15.264001 −76.405785 47.610046 6.909215

−79.001854 128.822540 45.094799

54.242695 136.347214 51.520615 75.955048

38.064037 84.776794 −83.419792

27.567476 78.584625 0.938395 −24.742249

27.579655 −8.221154 −27.034595

44.496651 −55.853851 −12.413730 44.910213

−27.739326 −26.649300 50.965534

51.129105 −3.919972 52.534393 29.227583

−20.247837 52.903664 9.549558

−24.981354 45.248436 52.268867 2.768425

4.480018 29.591827 −7.737854

16.208824 40.867828 −9.864295 27.456799

−47.882603 −9.889220 0.192612

−28.879553 −13.618629 13.656019 −42.156322

−14.825613 24.596436 15.956636

−23.498875 −8.059309 −11.792437 −24.479710

−9.216128 25.145437 −11.097833

−15.986203 3.795683 −44.075558 −4.013795

−20.354599 −16.161209 −15.144383

18.245113 −15.436312 −33.786003 17.272366

−10.724825 −51.448883 42.197533

6.487683 −38.026585 28.682522 −1.884929

−41.678383 2.397903 −12.866178

−66.007683 12.916308 −3.607146 −78.291641
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−13.412254 −15.439973 −48.977810

2.726758 −17.171577 −54.023342 −39.764339

−4.323125 −38.359692 −25.644598

−7.295519 −42.524879 3.568994 −24.227646

−30.055849 −12.771162 −20.487753

−31.659710 −8.316338 −5.189254 −79.526871

71 0.591667 65.181602 66.158516

15.266777 −76.406456 47.600159 6.898308

−79.019524 128.805679 45.102482

54.278175 136.321564 51.529922 75.928535

38.092472 84.759613 −83.425285

27.581642 78.595734 0.947296 −24.729851

27.576881 −8.243583 −27.015415

44.526043 −55.896664 −12.500847 44.936764

−27.709093 −26.628563 50.971474

51.113811 −3.932818 52.525814 29.210939

−20.250267 52.916359 9.545291

−24.986374 45.255932 52.208870 2.731902

4.472628 28.828150 −7.637617

16.099911 40.234291 −10.324544 26.839798

−47.842197 −9.926949 0.186543

−28.372131 −13.494765 13.909547 −41.740929

−15.350941 24.028603 15.976239

−23.512466 −8.060114 −11.504373 −24.315849

−9.284396 25.122972 −11.093363

−15.959808 3.781919 −44.076572 −4.065672

−20.344015 −16.160822 −15.146696

18.246716 −15.385559 −33.733089 17.259098

−10.694113 −51.414139 42.189125

6.528830 −38.019127 28.665339 −1.821316

−41.620518 2.387192 −12.893726

−66.016762 12.905455 −3.609861 −78.286194

−13.466356 −15.598643 −48.936272
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2.740660 −17.278048 −54.025784 −39.793350

−4.283241 −38.388016 −25.660337

−7.244686 −42.461117 3.557836 −24.211308

−30.051443 −12.849905 −20.470863

−31.686386 −8.310934 −5.213950 −79.524933

72 0.600000 65.147064 66.085281

15.238383 −76.150963 47.849556 6.965754

−79.094955 128.756775 45.071617

54.164555 136.343781 51.478710 75.943489

38.066120 84.757797 −83.447166

27.509970 78.616150 0.922314 −24.781300

27.601288 −8.251587 −27.045355

44.557922 −55.900978 −12.579547 44.934158

−27.707449 −26.651169 50.942852

51.065639 −3.956595 52.499340 29.215933

−20.305405 52.906292 9.517418

−25.024948 45.287971 52.130688 2.676298

4.499003 28.578207 −7.506136

16.407000 39.710125 −10.494969 26.098196

−47.790329 −10.023494 0.242722

−27.926001 −13.401171 13.965111 −41.120415

−15.431769 23.719435 16.019365

−23.565531 −8.024839 −11.569066 −24.411888

−9.238118 25.080254 −11.148741

−15.933424 3.774371 −44.113178 −4.019243

−20.383862 −16.258020 −15.127788

18.236740 −15.409441 −33.675014 17.254765

−10.760630 −51.361912 42.177345

6.482991 −37.991402 28.622181 −1.823055

−41.547390 2.373251 −13.016329

−66.010742 12.903170 −3.708434 −78.276527

−13.500454 −15.651444 −48.869656

2.745224 −17.508661 −54.054493 −39.767151
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−4.340452 −38.368904 −25.696848

−7.301236 −42.401859 3.568286 −24.279381

−30.009624 −12.629462 −20.395895

−31.752630 −8.323460 −5.343803 −79.525337
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Appendix B

Mapping File

BoneNames MarkerNames P o s i t i o n a l Rotat iona l

minX maxX minY maxY minZ maxZ

ROuterEyebrow FaceRobot REyebrowEnd true f a l s e

−0.050417 −0.0485669 1.69679 1.70139 0.10863

0.10978

RInnerEyebrow FaceRobot REyebrowMid true f a l s e

−0.0278134 −0.0251135 1.69831 1.70676 0.119968

0.122568

REyeBlinkBottom FaceRobot REyelidLower t rue f a l s e

−0.0341108 −0.0341108 1.67368 1.68658 0.110327

0.110327

REyeBlinkTop FaceRobot REyelidUpper t rue f a l s e

−0.0333584 −0.0333584 1.68446 1.69301 0.109511

0.109511

LOuterEyebrow FaceRobot LEyebrowEnd true f a l s e

0 .0470669 0.0507669 1.69509 1.70259 0.10863

0.10978

LInnerEyebrow FaceRobot LEyebrowMid true f a l s e

0 .0236134 0.0289134 1.69846 1.70626 0.119968

0.122568
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LEyeBlinkBottom FaceRobot LEyelidLower t rue f a l s e

0 .0341108 0.0341108 1.67368 1.68958 0.110327

0.110327

LEyeBlinkTop FaceRobot LEyelidUpper t rue f a l s e

0 .0333583 0.0333583 1.68446 1.69301 0.109511

0.109511

MMiddleEyebrow FaceRobot NoseBridge t rue f a l s e

−0.00050015 0.000699855 1.69392 1.70287 0.126331

0.126331

MNose FaceRobot NoseTip true

f a l s e −0.000500143 0.000699855 1.65275 1.65855

0.141839 0.141839

MUpperLip FaceRobot LipUpper t rue

f a l s e −0.00210015 0.00219985 1 .6178 1 .6222

0.129029 0.135479

MBottomLip FaceRobot LipLower t rue

f a l s e −0.0019501 0.00269989 1.60062 1.60917

0.129596 0.136496

MJaw FaceRobot Chin f a l s e

t rue 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

RCheek FaceRobot ROrbitalLower t rue f a l s e

−0.051924 −0.036874 1.64949 1.66564 0.110384

0.124737

RMouthCorner FaceRobot RMouthCorner t rue f a l s e

−0.0296512 −0.0248512 1.60667 1.61632 0.115975

0.124325

RUpperlip FaceRobot RLipUpperBend true f a l s e

−0.0181059 −0.0112059 1.61651 1.62171 0.128039

0.135189

RMouthBottom FaceRobot RLipLowerBend true f a l s e

−0.0169976 −0.0107476 1.60454 1.61139 0.126647

0.135524

50



LCheek FaceRobot LOrbitalLower t rue f a l s e

0 .035824 0.047774 1.65104 1.66279 0.110834

0.121384

LMouthCorner FaceRobot LMouthCorner t rue f a l s e

0 .0241012 0.0313012 1.60687 1.61797 0.115775

0.124475

LUpperl ip FaceRobot LLipUpperBend true f a l s e

0 .00990596 0.019006 1.61556 1.62336 0.126789

0.136089

LMouthBottom FaceRobot LLipLowerBend true f a l s e

0 .00930111 0.0183511 1.60469 1.61159 0.127024

0.134874

51



Appendix C

Performance Range-of-Motion
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Range of Motion - Face
 
Approximation
 

● Neutral
● Happy
● Sad
● Angry
● Scared
● Pain Grimace
● Surprised
● Confused
● Attentive
● Dismissive

 
Specific
 

● Mouth
○ Wide as possible
○ Purse lips
○ Big smile
○ Big frown
○ Bear teeth (top, bottom, both)
○ Roll Jaw

 
● Nose

○ Scrunch up
 

● Eye lids
○ Open eyes wide
○ Slow blink
○ Slow wink (both eyes)
○ Squint
○ Scrunch up (think pain grimace)

 
● Eyebrows

○ High as possible
○ Low as possible
○ Alternate (as best you can)
○ Roll eyebrows

 

Figure C.1: Performance Range-of-motion53
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