
Evolving Intelligent Agents

by

Blain Maguire, B.Sc.(Hons)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

August 2012

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Blain Maguire

August 29, 2012

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Blain Maguire

August 29, 2012

Acknowledgments

I would like to thank my supervisor Saturnino Luz for his guidance throughout the

project. I would also like to thank my close friends and family for their support.

Special thanks to the course director John Dingliana who in addition to providing

feedback has been remarkably helpful throughout the year.

Blain Maguire

University of Dublin, Trinity College

August 2012

iv

Evolving Intelligent Agents

Blain Maguire

University of Dublin, Trinity College, 2012

Supervisor: Saturnino Luz

There is no question that over the years computer games have become increasingly

more realistic looking due to numerous improvements in both hardware and software.

Commercial games from large studios especially continue to push the envelope in this

regard. Despite the increase in capability though, artificial intelligence in games has

yet to see such a considerably noticeable increase.

One of the areas which has some room for innovation is the actual process of actually

creating intelligent agents in games. While various libraries and frameworks exist to

make life a easier for developers, all too often, core agent behavior is still being hand

coded. Couple that with the fact that artificial players are often seen as an low on

the list of priorities in actually shipping a commercial game and it leaves much to be

desired.

It is the aim of this research project to explore the use of evolutionary computation,

itself a form of machine learning, in order to create agents which to a human observer,

appear intelligent. A series of computer games to use as a testbed have been developed

v

in order to evaluate the feasibility of this. Each of the games have a headless (no

graphics) mode which allow for less computational overhead when evaluating individual

agents. A framework for evolutionary computation was integrated and used for this.

Custom programming languages have also been developed for the agents, which allow

for game specific instructions relating to sensing and interacting with the various games.

Given sufficient time to evolve, agents completed the levels of all the various games.

Watching agents play, their behaviour appears intelligent. Encouraging results suggest

further potential research, from improving game bot behaviour to automatic testing of

levels in games.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Outline . 3

Chapter 2 Background and State of the Art 4

2.1 Introduction . 4

2.2 Modern Applications of Genetic Programming 5

2.3 Modern Theory of Genetic Programming 6

2.4 Alternatives and Comparisons within Machine Learning 6

2.5 Parallelism and Genetic Programming on Modern Hardware 7

2.6 Modifications and Extensions . 7

2.6.1 Compact Genetic Programming 8

2.6.2 Embedded Cartesian Genetic Programming 8

2.6.3 Probabilistic Incremental Program Evolution 8

2.6.4 Linear Genetic Programming 8

2.7 Potential Issues Arising Using Genetic Programming 9

2.8 Summary and Conclusions . 10

vii

Chapter 3 Approach 11

3.1 Key Early Decisions . 11

3.1.1 Deciding on how to Evolve Agents 11

3.1.2 Coming up with a Work Plan 11

3.1.3 Technical Decisions . 13

3.2 Design . 14

3.2.1 Design of the Games . 14

3.2.2 Design of the Agent Languages 16

3.2.3 Design of the Evolutionary Framework 17

3.2.4 A Data Driven Approach . 17

Chapter 4 Implementation 18

4.1 Overview . 18

4.1.1 High Level Architecture . 18

4.2 Integration of the Games with DEAP 20

4.3 Game Implementations . 21

4.3.1 Pathfinding Game Implementation 21

4.3.2 2D Platformer Game Implementation 24

4.3.3 3D Platformer Game Implementation 26

4.4 Agent Language Implementations . 28

4.4.1 Lisp-like Language Implementation 29

4.4.2 Basic-like Language Implementation 29

Chapter 5 Evaluation 41

5.1 Methodology . 41

5.2 Assessment of the Generated Agents 41

5.2.1 Quality of Agent Code . 41

5.2.2 Performance . 42

5.2.3 Robustness . 43

5.3 Assessment of the Games . 43

Chapter 6 Conclusions 44

6.1 Results . 44

6.1.1 Resulting Agents . 44

viii

6.1.2 Resulting Performance . 46

6.1.3 Resulting Finished Games . 48

6.2 Criticisms . 49

6.2.1 Level of Agent Intelligence . 49

6.2.2 Size of the Levels . 50

6.2.3 Language Design . 50

6.3 Future Work . 51

6.3.1 Co-Evolution . 51

6.3.2 Different Games . 52

6.3.3 More Robust Agents . 52

6.3.4 Integration with Games, Game Engines and Toolkits 53

6.3.5 Evolving Agents using Human Players 54

Appendices 55

Bibliography 56

ix

List of Tables

x

List of Figures

4.1 UML Class Diagram depicting the relationships for the main classes. . 19

4.2 UML Class Diagram depicting how the simulation class is structured. . 20

4.3 Early version of Pathfinder. No texturing yet. Food is represented as

bright green, agent is orange. Two different terrain types are present:

grass and concrete. Eating food yields a grass tile. Map is large because

there is no support for multiple maps yet. 21

4.4 The most recent version of the game showing texturing as well as support

for multiple maps. Character also does a walking animation when going

from one tile to the other. 22

4.5 View of the web based map editor. Level data could be copied from and

pasted in to the text box. 31

4.6 Screenshot of the 2D platformer running evolved agent code for that

particular level. Note the redundant code on the right. All that is

needed is to move right and jump if a collision occurs on the right. . . . 32

4.7 Another screenshot of evolved agent code running and completing a more

complicated level. 33

4.8 A screenshot of a prototype of the 3D game. Display on the left is for

the height fields and also to track where the agent has moved. The green

square is the goal. 34

4.9 A screenshot of the finished 3D platformer game. Notice the checkered

cube in the background, this is the goal. The enemy is patrolling in

front of, as if to guard it. There also pits which the player can fall into. 35

xi

4.10 A screenshot of in-game level editor for the 3D platformer. Click right

and left clicking the screen adds and remove blocks, allowing for the

creation of 3D level structures. 36

4.11 A screenshot of a procedural level. Showing hills of various sizes with a

base grass floor. 37

4.12 A screenshot of a procedural level. In this screenshot procedurally cre-

ated rooms are visible. 37

4.13 Overview of the language output pipeline. 38

4.14 Overview of the language input pipeline. 39

4.15 Generated program code for the Pathfinding game. The resulting be-

havior is for the agent to move forward in an anti-clockwise manner,

searching for food ahead. If it finds it, it moves towards it, otherwise it

keeps searching. 39

4.16 Generated program code for the 2D platformer. Redundant instructions

removed for clarity. The resulting behavior is that the agent moves until

it encounters an obstacle and then moves in the opposite direction. . . 40

4.17 Sample code showing the ability for the program to store information.

Programs can use ’lights’ to store data, simple boolean variables which

can be set on and off and read from. In this case the program is storing

whether or not it is colliding with something to the right or not. 40

4.18 Evolved agent code for a completed level for the 3D platformer. 40

xii

Chapter 1

Introduction

Over the past few decades computer games have become increasingly complex and

realistic looking over time, so much so that we have become accustomed to expecting

such increases with the release of new games. Graphics processing units have become

commonplace, their capabilities have grown tremendously over the years. Software

utilizing them has matured considerably, making it easier for developers to get the

most out of these devices. There also have been some notable advances such as the

use of procedural generation of terrain [1] and as well as man-made structures, which

assist in the actual creation of such realistic graphics, both in quality and quantity.

From the start of the latter half of the last decade, there has also been drastic change

in how we interact with computer games. The controller, the keyboard and mouse

may all be around for a long time yet, but certainly the possibilities for different,

more intuitive and immersive experiences have opened up. Starting with the Wii,

continuing on with the Kinect and the Move, these devices have brought with them a

drastic change in how we perceive how we can interact with games. Even on mobile,

multi-touch technology and various sensors such as accelerometers is making game

developers reconsider interaction with their games.

With these advancements in mind, given that a lot of games feature interactive

agents of some kind, it opens up new possibilities. It is arguable that for experiences

involving these agents to be highly entertaining that they need not exhibit a high

degree of artificial intelligence or autonomy. While this may in fact be quite true, it still

doesn’t rule out the possibility for great improvements in this area. Just like improved

1

graphics or interfaces may not necessarily be in and of themselves be necessary for

an entertaining game, they have no doubt provided value and nevertheless raised the

expectations of gamers over time.

It remains to be seen where exactly the area of agent artificial intelligence in games

could be drastically improved in the future, both in their quality and how they are

developed. There is no question that there certainly have been improvements over the

years. Open source and commercial solutions do exist already for common problems

faced by developers such as navigating multiple non-player characters around levels

simultaneously. This project does not seek out to solve or improve on any of these well

known problems regarding agents. Instead, the focus is more on how taking a very

different approach regarding the development of these agents can yield interesting and

promising results.

1.1 Motivation

In order to develop agent behavior for a specific game, development could entail a

mix of using various libraries or middleware which can be brought to bear on the

more common game specific problems. This is good for a number of reasons, the most

obvious being a saving on development time and costs. Certain assurances also come

with tried and tested code. For more specific things relating to agent behavior, such

as game specific strategies or personalities, it’s not unusual for such things to be coded

by developers themselves. High level programming languages are usually preferable in

these cases. It allows developers to spend more time focusing on the problems at hand

at a high level and avoid getting caught up worrying too much about the lower level

details. Optimizing for performance may still be a concern but it’s likely to be less of

a priority when compared with something which is more computationally expensive.

When we look at another area, like computer graphics for example, great tools and

software exist for enhancing the look and visual appearance of games. There is also a

good existing body of software available to create procedurally generated content and

it is being used to great effect in games. While procedurally generated content may

not trump that created by professional artists any time soon in every regard, it does

still provide utility in several ways. Procedurally generated textures can be used on

natural objects. Vast three dimensional scenic landscapes and urban environments can

2

also be generated procedurally and used as a base for artists to build on and improve

on. Ultimately, such procedural techniques save primarily on time and effort. Even

when time has been invested to create custom tools to do the job, creating additional

unique content can simply be a matter of tweaking parameters. Combine this with the

sheer scale of content which can be created in this manner and you have something

which is very powerful indeed.

With this in mind, in a similar vein, there is also the prospect of procedurally

generating agent logic and behavior, with a mind to similar benefits. This project will

seek to investigate how evolutionary computation in particular can be used to do just

that. Aside from the benefit of saving on development time, this project also seeks to

explore and highlight other potential benefits surrounding this technique which may

arise from using it. An ideal testbed for demonstrating what is capable, would be to

actually use some games and evolve various agents that can play them. This was one

of the primary aims of this project from the very beginning.

1.2 Outline

This document will start by providing some background to the technique which will be

used to evolve agents as well as providing a detailed review of some of the techniques

which are currently considered state of the art in this regard. The overall approach,

including key design decisions which were made for the project are explored as well

as the rationale behind them. This is then followed with a detailed review of the

important implementation details. Following on from this, an in-depth evaluation is

given on how the project itself was assessed. Finally some conclusions will be drawn

from what has been done, in light of results. Criticism and also possibility for future

work will also be discussed.

3

Chapter 2

Background and State of the Art

2.1 Introduction

Genetic programming (GP) is a form of evolutionary computation which has been used

extensively used throughout this project. The general idea is to evolve computer code.

Code can be represented in different ways. It can also be mutated or recombined.

Good solutions are selected based on one or more criteria which can be evaluated (by

means of a fitness function). Over time, better solutions emerge.

Its origins can traced back to the early 1950s. It began with Nils Aall Barricelli[2]

applying evolutionary algorithms to evolutionary simulations. There have been many

developments since then. This includes more formalization, new applications as well

as modifications and extensions. However, it’s worth pointing out that the fundamen-

tal principles of this evolutionary algorithm-based methodology and its biologically

inspired roots remain the same.

Various algorithms that might fall under the general category Genetic Programming

were described in the 1980s. The closest of these to what we might consider a modern

GP would be that of Cramer [3]. However it was the research of Koza [4] which defined

the field more clearly and established it as an important sub-field of evolutionary

computation. The type of GP which has arisen as a result has since been the archetype

and is still widely used to this day.

Grammars are a core structure for representation in the field of Computer Science

and they are widely used. It is no surprise then to find their use in GP. Initially this

4

grammar based approach formed only a small part of GP. This has since been expanded

on to where Grammatical Evolution is now one method which is widely applied. This

method brings us to Grammar Guided Genetic Programming (GGGP). A detailed

survey of this area alone is given by [5]. Research in the area is still on-going, for

example a recent new approach for generation of constants for evolutionary grammars

was taken by [6] in 2011.

Later in the 1990s the first fully-fledged systems would use this and this would

lead on to areas of research which are more current. It’s also worth pointing out that

research and development into this area continues to this day. For example in 2007,

Garcia et al [7] have shown an algorithm for generating grammars which does affect

the rate of convergence of GP on a solution which they used a real-world task of breast

cancer prognosis.

2.2 Modern Applications of Genetic Programming

As mentioned in the previous section, GP has found its way into cancer research. [8]

details some of the applications in that field.

In Koza’s Genetic Programming IV: Routine human-competitive machine intelli-

gence [9] he presents the application of GP to a wide variety of problems involving

automated synthesis of controllers, circuits, antennas, genetic networks, and metabolic

pathways.

The book describes fifteen instances where GP has created an entity that either

infringes or duplicates the functionality of a previously patented 20th-century invention,

six instances where it has done the same with respect to post-2000 patented inventions,

two instances where GP has created a patentable new invention, and thirteen other

human-competitive results.

A contest which is held yearly since 2004 at the Genetic and Evolutionary Compu-

tation Conference called the annual ”humies” awards for human competitive results.

This is in the same spirit as Koza’s book. Some notable entries for 2011 include evolving

a computer player for the computer card game FreeCell [10] which won that year.

5

2.3 Modern Theory of Genetic Programming

In Foundations of Genetic Programming [11] more mathematical and empirical analyses

of GP are given. The book Genetic Programming Theory and Practice [12], although

not strictly about theory, contains a lot of content from leading theorists on the subject

and ties it in well with topics in other fields such as biology (population genetics for

example) which may be of interest.

Holland’s Schema Theorem [13] is known as a more formal way of describing why

genetic algorithms work. Put simply, it works by describing how a sequence of binary

strings come to converge on a solution. Schema theory also exists for GP for variable

length strings [14].

Goldberg, Deb and Clark[15] have also talked about how noise/population variance

and population size affects the rate of convergence. In the paper they add noise to the

various functions such as fitness or selection and detail the results as well as parameters

such as the population size. A key stated conclusion is that at low population sizes

the genetic algorithm makes many errors of decision, and the quality of convergence is

largely left to the vagaries of chance.

2.4 Alternatives and Comparisons within Machine

Learning

A wide variety of alternatives to GP which could be applied on the same problem,

each with their own advantages and disadvantages. It’s also worth pointing out that it

isn’t the only means of creating programs by means of evolutionary computation. For

example, [16]presented a new technique for constructing programs through Ant Colony

Optimization.

A recent paper [17] which did a a comparative analysis of GP and Artificial Neural

Networks for metamodeling of discrete-event simulation (DES) models. The results of

the study showed that GP provides greater accuracy in validation tests. However it

is worth noting that GP was more computationally intensive during the metamodel

development stage.

6

2.5 Parallelism and Genetic Programming on Mod-

ern Hardware

There has been a lot of development in recent years getting GP to work on graphics

cards. The fitness function is often the most costly in genetic programming and ge-

netic algorithms. Research such as [18] which is in the direction of making is it less

expensive computationally is of great benefit. The cost incurred is on individuals and

any savings in that regard is multiplied by way of having to evaluate a population. The

ability to evaluate individuals in a given population in parallel also offers a tremendous

performance boost in that the time to reach the next generation is reduced as multiple

individuals are being evaluated in parallel. Langdon [19] and Harding [20] explore this

idea with practical implementations in detail.

Cartesian Genetic Programming [21], which first appeared in the early 1990s, differs

from the usual data structures which can be generated by grammars. Instead of using

the more typical tree-like data structure which branches out, the structure is more akin

to a two dimensional grid, with an entry-point evaluated left to right. Performing an

operation such as mutation would merely change the connectivity of the cells to each

other.

Such grids are often fixed in size, this can contain bloating of the data structure.

Because of its fixed size, it makes it ideal for use as a kernel in a GPU. This is covered

in detail in a paper by Harding [22]. Cartesian Genetic Programming is also suited for

FGPAs. Vasicek [23] mentions how a 30-40 times speed up can be reached using this

hardware over its optimized software equivalent.

Finally, Weimer [24] outlines a method of automatically finding software patches,

they were able to take advantage of mutlicore hardware, which has become more preva-

lent in recent years.

2.6 Modifications and Extensions

There are numerous variations that have emerged over the years. In this section, some

of the more prominent and recent are covered to give the reader an idea of what is

currently being used which differs from the more generic forms.

7

2.6.1 Compact Genetic Programming

The Compact Genetic Algorithm is an Estimation of Distribution Algorithm (EDA),

also referred to as Population Model-Building Genetic Algorithms (PMBGA), an ex-

tension to the field of Evolutionary Computation. The basic idea is that rather than

try to model the population in its entirety, a more simplistic model is used which is

based on probabilities. As the simulation runs, individuals are then evaluated and

the population as whole changes as now the distribution of the various probabilities

has changed. This is the basis for extensions such as the Extended Compact Genetic

Algorithm (ECGA). Such an approach is outlined by Sastry[25].

2.6.2 Embedded Cartesian Genetic Programming

Embedded Cartesian Genetic Programming (ECGP) extends Cartesian Genetic Pro-

gramming by reusing partial solutions. These are called chromosomes. ECGP is the

equivalent of putting blocks of code into functions or modules which can be called by

other GP program code. Further details of this are given in Walker [26]

2.6.3 Probabilistic Incremental Program Evolution

Probabilistic Incremental Program Evolution combines probability vector coding of

program instructions, population-based incremental learning, and tree-coded programs.

PIPE is efficient when a short run time of the generated programs is desired. An

example of this may be a program trying to find a way through a maze where it makes

sense to penalize programs which took longer to find the end of the maze. Such is the

example used in Salustowicz[27]

2.6.4 Linear Genetic Programming

Although the tree based variant is more common, Linear Genetic Programming (LGP)

is another possible way to represent program genotypes.

The structure is similar to that of a simple machine code language where flow starts

at the top and through the use of registers or conditionals, control flow moves up and

down a la jump operations. One argument in favor of using LGP is that because there

is no physical branching structure, there is less of a possiblity for large parts of the

8

code to become redundant or bloated as much. LGP, like TGP, also has parallelized

implementations on modern PCs and video game consoles [28].

Wilson [29] did a comparison between LGP and Cartesian Genetic Programming.

Differences between the two implementations are outlined. The most significant dif-

ference between them is each algorithm has a different means of restricting inter-

connectivity of nodes. The paper then does a benchmark between the two.

2.7 Potential Issues Arising Using Genetic Program-

ming

Genetic Programming being a subset of machine learning, also is subject to a lot of

the same common pitfalls such as overfitting. For example, when the fitness function

just uses a small set of examples and the population become skewed towards providing

good solutions which aren’t very robust.

The generated code from individuals, given enough size can sometimes be difficult

for a human to interpret. This may or may not be an issue however depending on

the needs of the person using these programs. Code bloat is the accumulation of code

which is unnecessary. An example of this would be in a tree representations which

continued to branch out grow and grow, containing code making no difference to the

overall fitness. If left unchecked, it can cause performance problems. Panait and Luke

explain this problem in more detail and propose some remedies to to it [30]. A more

recent paper [31] from 2009 suggests a more dynamic approach to dealing with it as

well as providing a review of existing solutions.

It’s also worth pointing out that code bloat isn’t just always a small amount at each

generation, as one might expect. Quadratic growth has been reported [32]. Whereas

it is possible to use something like a compiler at a later stage to reduce the generated

code/phenotype by optimizing it, code bloat accumulating as the GP is running is

likely to cause performance issues if left unchecked. The have been some interesting

means of reducing it. One proposal is to reduce bloat by giving preference to simpler

solutions which tend to generalize well on unseen data, in accordance with Occam’s

Razor [33]. The solution in question was for a network intrusion detection system.

9

2.8 Summary and Conclusions

It seems evident from the variety of examples given that genetic programming has a

wide range of applications, a lot of them having obvious practical benefit. It’s also

apparent that at least in some areas of application that the results are human compet-

itive.

It also seems that the field has come along since its early roots and methodologies

have become more formalized and literature around the theory has also grown and

continues to grow.

We have also seen that GP, like other forms of evolutionary computation, is highly

parallelizable and such implementations on modern hardware do exist and are in wide

enough use.

Modifications and extensions to the archetypal GP do exist and have their own

advantages and disadvantages.

No method is without some limitations or disadvantages and GP is no exception.

We have seen how problems like code bloat can be a serious problem even on mod-

ern systems and what techniques are currently being used to mitigate its effects on

performance.

10

Chapter 3

Approach

3.1 Key Early Decisions

3.1.1 Deciding on how to Evolve Agents

Having decided to use an evolutionary algorithm to evolve the agents, the first task was

in deciding on the specifics of how to do this. Seeing as the desired end result was to be

the equivalent to agent code, genetic programming seemed the most feasible way to do

this. From there, the agent code would need to be evaluated and evolved towards better

solutions. Running a game in its entirety, including displaying graphics and anything

which was not needed for the agents to run during the evolutionary simulation would

prove very costly in terms of performance and it was decided early on to try to avoid

doing this if possible.

3.1.2 Coming up with a Work Plan

It was decided to have a high level plan consisting of four main phases. Each phase

would build on work done previously.

Phase one would consist of researching, designing and implementing a very basic

genetic algorithm and game to go with it. The main emphasis of this phase was getting

up to speed with genetic programming and having a basic working prototype which

ran through the command line. One classic problem in genetic programming which

was chosen as a starting point is symbolic regression. That is, evolving mathematical

11

expressions which match a given equation. Programs are evaluated with a set of sample

data and the results are compared with the results of the same data on the given

equation. Programs which are closer in their numerical answers are favored over those

which aren’t. From there, a more interesting problem called the artificial ant problem

was considered. This entails evolving code which controls the movement patterns for

an ant on a 2D grid in search of food. It was found in Koza’s book and thought to

be a an ideal starting point for a game. Completing a project in a similar vein to this

would subsequently end the first phase.

Phase two was to start with adding a graphical component to the game which was

made. Running generated generated agents and periodically pausing the simulation to

look at a text based representation worked but it left much to be desired. This work

was done carefully, to ensure that the game could run from both the command line

for the evolutionary simulation but then also allowing a graphical mode for people to

actually play the game and also to see the agents behavior in action more clearly.

Phase three was to move from the previous turn (or discrete time) based game to

more of a ’real time’ game - that is more in line with modern games. The difference

would be something akin from going from a turn based strategy game to a real time

strategy game. Phase three would end with a game and some agents which demon-

strates that evolving agents for a real time game is possible. It was anticipated that

this might be quite different than work done in the previous phase. Large parts of new

game logic may have to be implemented as well as some unique challenges associated

with that would be encountered. So it was given it’s own phase for this reason.

Phase four was created in mind for a more polished real time game, adding extra

features to make it more like a typical game. 3D was considered an option at this stage

but it wasn’t deemed essential. What was more important was ensuring that the real

time game and the agents which demonstrated that this could really be used in fully

functional real time game. If time permitted, further polishing such as the addition of

3D graphics was then to be considered. Finally, during this phase results were to be

collected and work on this report could begin.

Agile development methodologies were also considered in the planning stages. Fea-

ture driven development was decided on to be the best fit as it was noticed that an

incremental addition of features would be required to get through each phase.

12

3.1.3 Technical Decisions

During planning and research a wide range of technologies were considered. Initially

this entailed high quality open source games, game engines and various toolkits. Among

these were both commercial and open source software. Unreal Tournament and a

modification of Quake III from Stanford University which is used in testing agents in

realistic scenarios called Urban Combat Testbed [34] were both considered. Each one of

these technologies and games had their own unique set of advantages and disadvantages.

Given all the possibilities, it was important to consider the project goals, plan, time

available and methodology when doing so. The project goals were carefully thought

about and after some reflection they were expressed as a set of software requirements.

These which would then aid with making key technical decisions.

Ultimately, it was decided at a high level, to start out small, with a working proto-

type first and then build on it incrementally. It’s important to remember that in the

early stages this project was very exploratory in nature and it was unclear how well the

technique may perform computationally and in the context of games. It was believed

that after there was a clear proof of concept in the form of a rapid prototype, more

ambitious aims could be realized.

Given the high level project plan, the chosen agile methodology and the time frame,

rapid prototyping was highly desired. In terms of deciding on a programming language,

this automatically favored high level languages such as Python, Ruby or Lua.

There was also a need for a graphical component to demonstrate the games, and

while many languages have capabilities for drawing graphics, the strong need for rapid

prototyping was key again. So in addition to providing graphics capability, any libraries

which accelerate development and abstract away low level functionality, particularly

with games in mind would be ideal.

The author’s experience has been with largely web development and desktop appli-

cations so it would be beneficial to use technologies which play to these strengths. The

possibility of using mobile platforms, while it was very much possible, it was not really

clear the benefit of spending time learning them would provide to the project and its

goals. Having the software work cross platform was desired, but it wasn’t necessarily

a deal breaker for technology which turned out of be highly suited to other needs.

Lastly, perhaps one of the most important choices was choice of framework or

13

library for use with the actual evolutionary algorithm, genetic programming. The

choice of going down this route, as opposed to coding this individually was to save

on development time, to get up and running quickly and also to get the additional

benefits of a good library. Additional features which provide added value with little

added development time were something to look out for.

Ultimately, an evolutionary computation framework called DEAP (Distributed Evo-

lutionary Algorithms in Python) was used [35]. The primary advantage of this frame-

work is that it incorporates a lot of the standard building blocks of evolutionary com-

putation, makes them easy to modify as well as having parallelism working out of the

box. Two other genetic algorithms frameworks in Python were considered, namely Py-

gene [36] and Pyevolve [37]. Pygene, while very easy to use, was pretty bare bones in

it’s support for genetic programming. Pyevolve was more customizable in this regard.

However, both frameworks left much to be desired in the way of getting parallelism

working without having to write boilerplate code, so it was for this reason I decided to

go with DEAP.

Python also has some mature and widely used libraries for creating games, notably

Pygame [38] and Pyglet [39]. The Python language itself also ticked other boxes such

as being high level and cross platform. So I decided to go continue with it throughout

other aspects of the project such as simple scripts for setting up and running the

simulations.

3.2 Design

3.2.1 Design of the Games

Using the feature driven development methodology, it was important to consider how

implementing a particular game feature might impact the games from a practical point

of view. It was important from an early stage to strike a balance between getting

close to what people would expect from a typical game and distilling things down to

important features which were valuable from purely an agent capability standpoint.

For example, it’s not unheard of in a wide variety of games across different genres to

provide a degree of customization of game characters. While certain aspects of this

can matter (namely non-aesthetic attributes), it was important not to invest a lot of

14

development time in this as it was not necessarily essential to providing an entertaining

and interesting simulation.

When considering game mechanics, it was very important to consider how they

might affect the gameplay overall and not just be added for the sake of making the

game more interesting. Another important thing to consider was how one or more

mechanics can be translated into some sort of heuristic function for use in evaluating

an individuals overall fitness. This is not necessarily a difficult thing to do, but the

reasoning behind thinking carefully about it will encourage thought about how that

particular feature might translate into adding value to the simulation. For example,

in a platform game, jumping adds a significant amount to the dynamics of the game,

whereas the ability for the character to duck may provide some value in terms for both

entertainment and the simulation, it’s clear that jumping would be worth prioritizing.

The ability of the evolutionary simulation to converge on solutions is not to be

ignored either. Lack of consideration for level design will lead to situations where

the agents can’t actually complete the level. This happened primarily early on in the

experimenting with procedurally generated levels. There were cases where a platform

couldn’t be reached in a platformer or a maze was filled with dead ends.

Pathfinding Game

The pathfinding game started off with similar gameplay to that of the artificial ant

simulation. It differs in several ways though. The end goal is not to collect all the

food on the grid but rather, food sustains the agents and not eating leads for enough

consecutive means they to die of starvation. The end goal was to reach a square

which would then trigger a victory condition. Numerous additions were added such

as different types of terrain which have their own unique movement/metabolism costs.

The agents therefore must strike a balance between reaching the end goal and also

finding food along the way. The final version of the game spans multiple maps and

when graphics and gamplay were added it had similar feel to a genre of games often

referred to as ’roguelike’.

15

2D Platformer

Moving a 2D grid towards a more ’real time’ game, it was decided that a 2D platformer

would provide an interesting dynamic and provide value in terms of both entertainment

and exploring agent capability. 2D platformers are also widely recognized due to a

number of popular commercial games like Super Mario Mario Brothers so it made for

an ideal testbed for illustrating the potential and capabilities for the project for real

time games.

3D Platformer

Keeping in mind that the fourth phase of planning entailed polishing and refining the

real time game, the 3D platformer is the direct result of this. It started out with

enhancing the existing code base for the 2D platformer. This included adding features

common to platformers such as hazard tiles, collectables and basic enemies. The final

step was to convert all of this to work in 3D. With the third dimension and 3D models

added it does look a lot closer to a modern game and ultimately like the 2D platformer,

the idea behind implementing it was to help illustrate the potential and capabilities of

what is possible.

3.2.2 Design of the Agent Languages

It was decided from an early stage that whatever type of language was used that it

ultimately would have to be translated into python code automatically, as that what the

various games would be coded in. Initially, a lisp-like language was used for the agent

behavior, particularly during the first phase of the project. This worked well, especially

since DEAP makes it easy to specify a language like lisp for genetic programming

because it is still very much the archetype for use in genetic programming.

However, it is also important to consider a potential target audience for this project,

namely game developers. It’s likely that not all game developers are intimately familiar

with the lisp language, so even at an early stage the possibility of using other languages

was also considered.

What was most important to consider in designing the agent languages was that it

be as high level as possible. This would reduce the overhead associated with having to

16

read generated code as it would be more desirable to read through generated code at

this level than at a lower level. Of course, it’s entirely possible that someone may not

really have a need for wanting to understand the generated code at all, but given the

exploratory nature of this project it was considered important.

3.2.3 Design of the Evolutionary Framework

Having chosen a framework it was important to have a good sense for how to integrate

it properly with the various games which were planned. Rather than take a top down

approach and come up with a design for how the framework could be integrated with

any game (such as explicitly designing an interface), a bottom up approach was decided

on. It was decided to focus on a working genetic programming problem and then a

very simple simulation with which would then be integrated.

The actual genetic programming problem for Symbolic Regression and the game

was a basic version of what would become the Pathfinder game. It was then decided

that once they were both working correctly to integrate the two together. A large top

down approach for design and integrating everything is also not very likely to be in-

keeping with agile methodologies either. As with rapid prototyping things can change

quickly, it was preferable to avoid any over-engineering, especially at such an early

stage.

With the approach which was chosen, it was to be expected that over time it

would come to be that work on actual integration code would arise based on need. In

accordance with feature driven development, it means that unless that this additional

work was directly related to contributing to new features a user of the system could

see - it was not given priority.

3.2.4 A Data Driven Approach

It was decided that during prototyping of all the games, great effort should be made to

ensure that a lot of the attributes in the games could be customized easily and tuned

using data (in the form of text files for example) rather than hard coding things into

the games. This allowed for a great deal of experimentation and aided in speeding up

the design process as well as the creation of levels.

17

Chapter 4

Implementation

4.1 Overview

The project can be seen as split up into three different parts, one for each game. Each

of these are then divided up into two parts. One is the main entry point for the

application and deals with setting everything up. This includes handling command

line arguments, loading any levels, save states or agent code. The second part relates

to the simulation. It contains everything needed to evolve the agents and uses the

DEAP library. The simulation part can be thought of as a module which is invoked

by the main module if the user of the system wants to evolve agents.

4.1.1 High Level Architecture

Figure 4.1: UML Class Diagram depicting the relationships for the main classes.

18

Figure 4.2: UML Class Diagram depicting how the simulation class is structured.

Keeping the Architecture Generic

During development of the first game a great amount of care was taken to ensure that

any parts of the code specific to a game, however small, were to be strongly avoided

in being included in part of the overall architecture. The creation of modules was seen

as key means of doing this. They were kept generic and abstract enough with a mind

to making it easier to reuse later. While it was a little extra work initially to do this

during development of the first game, it became especially valuable later. It made it

very easy to import relevant parts and only implementing exactly what was needed

around this on a per game basis.

Polymorphism

As stated earlier in the approach chapter, it was desired to try to establish a clear

separation of different things in the code depending on what was needed at run time.

For example, rendering graphics for when people played the game and then not ren-

dering any graphics for when the agents were being evaluated during evolutionary

computation.

Polymorphism is an object orientated programming technique which made doing

this a lot simpler. So in the stated example, a game object could inherit from a class

which contains a lot of common information. Where differences emerge, they can have

separate implementations. Something like drawing could be defined as a method but

how the drawing actually gets done can be up to that particular class to implement.

If the evolutionary algorithm was running, it could mean printing text out on the

command line under certain conditions (like a debug mode). If a player wanted to

actually play the game then this draw method would be drawing 2D or 3D graphics

instead.

19

4.2 Integration of the Games with DEAP

DEAP allows developers to implement their own fitness function which takes an indi-

vidual as a parameter and returns as fitness score. How the developer actually decides

to do that is entirely up to them. In all the games, the individual is a game agent

object, which has various attributes like the code associated with it and an a reference

to a Game class. What the evaluate function does in the case of the games is actually

start a new game by creating a new instance of that class. The parent game class has

the behavior of simply calling the update and draw methods until it finishes. When

it does finish it returns a score. This is then returned by the evaluate function as the

fitness of that individual.

4.3 Game Implementations

4.3.1 Pathfinding Game Implementation

Game Logic

Agents traverse a map represented as a 2D grid. This was originally represented as

text characters but then later with the addition of a graphics mode it can be displayed

as tiled grid of textures. The game is played in a turn based manner, with each update

corresponding to a particular move. With each step the agents use some of their

stamina. Figure 4.3 shows an early version of the game.

This is dependent on what tile they end up standing on as different tiles incur

different costs. Food tops up stamina. If an agents stamina reaches zero, the agent

dies and the simulation stops. A long term goal of the agents is to reach the end

square. Some squares are impassible, meaning agents have to navigate obstacles. A

later enhancement meant that agents can use doors to travel between multiple maps,

this is shown in Figure 4.4 which depicts the most recent recent version of the game.

Procedural Level Generation

Initially, levels were generated entirely randomly using the built in random library

which uses mersenne twister for the actual pseudo-random number generator for level

generation. When this was just two tile types, grass and concrete, the level was filled

20

Figure 4.3: Early version of Pathfinder. No texturing yet. Food is represented as bright
green, agent is orange. Two different terrain types are present: grass and concrete.
Eating food yields a grass tile. Map is large because there is no support for multiple
maps yet.

with grass with concrete tiles scattered throughout. The results of this technique

varied considerably. Functionality was added around the basic random scattering of

tiles. Probabilities could be given for the various tiles and the distribution of them all

added up to one. For example if 0.5 was specified for grass, then half the total tiles in

the map would be grass. If this number was kept constant then the only thing which

would change throughout each level is the location of the actual tiles, not the amount

of them. Various things like the amount of food per level could now be tweaked.The

results of this looked very similar to Figure 4.3. This was an improvement but it still

led to corner cases, for example food tiles trapped around concrete tiles which were

inaccessible or worse, a maze of which couldn’t actually be solved. A* Pathfinding was

used to carve out a path from the starting position to the exit. Tiles were shuffled out

of the way of this path. This ensured that there was always one solution to each level.

Fitness Function

Euclidean distance from the last recorded position of an agent to the end goal is used

in conjunction with the agents metabolism. One divided by the remaining metabolism

(plus a small amount) is multiplied with the distance when the simulation ends as

a heuristic. Having this work across multiple maps involves summing the euclidean

21

Figure 4.4: The most recent version of the game showing texturing as well as support
for multiple maps. Character also does a walking animation when going from one tile
to the other.

distances between doors. Using A* was considered for finding the ideal route, but

wasn’t used because the food locations were somewhat random and there was the

possibility that the ideal path did not have enough food nearby for the agents. Agents

got an additional bonus score for eating food. This helped distinguish those who

happen to get close to the goal simply by wandering with those who were getting close

to the goal but also on the lookout for food.

Web Based Level Editor

A HTML based level editor was developed in order to make constructing maps less

time consuming. Maps had different tile types, this was originally represented with

numbers in a text file. With the addition different terrain as well as various transition

and corner tiles to go with it, looking up numbers for the various tiles became quite

tedious. For larger maps as well it was hard to see what exactly things would look

like so time was being spent running the game to check. This is where the level editor

came in and it is depicted in Figure 4.5

The general idea was to use the DOM (Document Object Model) to create a 2D

grid of images on a webpage. These can then be changed by click and drag actions with

a cursor, almost in the same way a paint program works. Different tiles can be painted

on the grid with the mouse, changing the images and giving visual feedback. Changing

the tile to paint with is a matter of clicking sample tiles from a palette of possible tiles.

Support for keyboard and mouse was also added, as well as an eyedropper (ability to

22

Figure 4.5: View of the web based map editor. Level data could be copied from and
pasted in to the text box.

change current tile to paint with with one already on the grid). The application makes

use of a lot of Javascript to do all of this, inspecting page elements and updating things

accordingly. A text area was created for storing text relating to loading and saving.

Loading in a map file is as simple as pasting in the text into the text area and clicking

load to see it display. Clicking the save button will update the text area with whatever

contents is currently being displayed.

4.3.2 2D Platformer Game Implementation

Game Logic

Whereas the previous game was turn based, update function of the 2D platformer has

to continue to make changes to the state of the simulation even though the player or

agent hasn’t necessarily performed an action (due to things like gravity for example).

The solution to this was to first experiment with developing a simple 2D platforming

game which is shown in Figure 4.6. In using the Pygame library to control the character,

state information from the keyboard was polled on each game update. This is a typical

way of doing it in Pygame (and in Pyglet and many other libraries as well). It was

23

then realized that for agent control, instructions in the agents programming language

could then change this state accordingly. For example, an instruction to move right

would change the state of the keyboard so that the right key was now pressed down.

Figure 4.6: Screenshot of the 2D platformer running evolved agent code for that par-
ticular level. Note the redundant code on the right. All that is needed is to move right
and jump if a collision occurs on the right.

For the actual headless mode though, there was no need to use the clock object

provided with Pygame. This object is used to ensure that various methods like drawing

to the screen are called at specific intervals, which is useful for displaying animations

for example. Running without graphics though alleviates us of those concerns, and we

can call the update function to the simulation sequentially without any delays.

The actual platformer game logic is not overly complicated (it is not integrated

with a physics engine for example). The aim was to keep things simple and to try to

avoid the need for anything other than commodity hardware. The aim of the game is

exactly what one would expect from a typical platformer: go from one side of the level

to the other, reach the goal and avoid and obstacles or hazards in the process.

24

Figure 4.7: Another screenshot of evolved agent code running and completing a more
complicated level.

Fitness Function

The fitness function in this case was a simple matter of calculating the euclidean

distance from the character to the goal. If the agent dies the simulation is terminated

with the last known position used. Added penalties were considered for dying but it

turns out that distance was enough by itself to evolve agents which reached the goal. In

the case where there are multiple ways to get to the goal, and as agents were reaching

the goal (yielding a distance of zero), it was decided to add another factor which was

the number of game updates to reach the goal. These were simply multiplied together.

There were many cases during evolution where agents are being evaluated in the

simulation and they get stuck. Their code might be stuck in a loop walking and they

would be up against an obstacle and not actually going anywhere. A time limit based

on game updates was put on the simulation, as well as incurring a cost for agents which

went over it. Later, some improvements were added such as if the agents position hasn’t

changed for a large amount of game updates then abort the simulation, assuming it

will continue to be stuck and give it a high penalty. This improved performance but

there still are a lot more cases to consider (like if the agent got stuck in a loop jumping

or moving from side to side).

25

Live Display of Agent Code

During the transition to a real time game, a need arose to actually observe agent

behavior in the level and also have a visual debugger of the agent language. In the

previous game, being turn based, it’s possible to examine things carefully state by state

in one’s own time, with the generated agent code in a text file open going through it

step by step to examine it.

Whereas with the real time nature of this platformer, the agent can change its

behavior just as quickly as a human player would and levels were replayed just to see

the exact behavior multiple times. This was also during a time when I had decided

to work on a new language for the agents which resembled the basic programming

language. It was of great importance, primarily to aid with tracking down bugs.

The actual display itself was itself an added front end layer on top of the interpreter

which was written for the basic-like language in python. Properties such as the instruc-

tion pointer were used to highlight the current instruction and the various instructions

were all given icons and line numbers. This is all auto-generated from the given input

program and were for added clarity. It helped a great deal in troubleshooting during

development. Bugs could be in a number of places in the pipeline while it was still be-

ing developed and seeing the observed behavior alongside the actual program running

in real time made it faster to track down and fix things.

4.3.3 3D Platformer Game Implementation

Game Logic

The 3D platformer had the game set of goals in mind as the 2D one only with a mind

to making the simulation world more like a modern game rather than a retro one. For

this enhancement, a great deal of work was actually needed. The display code, game

logic like the collision detection and even the agent language all required large changes

of some kind to ensure that the transition to 3D was a success. Code was reused where

possible, and given the generic architecture, it was possible to get around to adding

changes specific to the 3D game rather than removing chunks of 2D game code which

wasn’t needed for example.

A prototype for the 3D platformer was developed, which used the same 2D grid

26

Figure 4.8: A screenshot of a prototype of the 3D game. Display on the left is for the
height fields and also to track where the agent has moved. The green square is the
goal.

representation only it became a height field. This is shown in 4.8. Instead of simply

being passable block or not, as was the case for the 2D platformer, a range could be

given and this was then rendered as a cubeboid shape which was of a certain height.

This would work but it would place limits on the kinds of maps which could be created.

For example, it wouldn’t be possible to have rooms with ceilings or windows in rooms.

Alternative methods of representing and drawing a 3D scene were then sought after.

The height field representation was modified to allow for multiple height fields

layered on top of each other. However it became tricky to actually create maps in this

way as it was not very intuitive as say editing a single 2D grid anymore, there now were

multiple grids of varying cell heights stacked on top of each other. It was eventually

scrapped in favor of a cube based representation. This added greater flexibility in terms

of what could be created over a single height field. It seemed like a logical progression

after multiple heightmaps to standardize the range at which the height could grow.

Cubes were easy to grasp in terms of a basic unit for 3D levels. With a standard size

it became easier to build things.

The part which took the most was actually the display related code. Rendering

things efficiently, turning on backface culling was just a starting point, dividing what

was displayed into chunks which loaded dynamically became preferable for large worlds.

Model loaders, animations for the models and stylized rendering of the blocks (based

on their neighbors) also took up some time.

27

Figure 4.9: A screenshot of the finished 3D platformer game. Notice the checkered
cube in the background, this is the goal. The enemy is patrolling in front of, as if to
guard it. There also pits which the player can fall into.

Fitness Function

A lot of the lessons surrounding the heuristic and convergence had already been learned

on the 2D version so it was a matter of keeping them in mind while developing the

fitness fuction for the 3D version. With The fitness function turned out pretty much

the same as the 2D platformer, with the added dimension included in the euclidean

distance calculation and also checking whether the agent has gotten stuck.

In-Game Level Editor

The 2D web based level editor wasn’t really good enough for editing large levels in

three dimensions, nor does text files with a grid representation do much better. Con-

verting the simple text file with numbered blocks into a format something a popular 3D

program like blender could read was considered. Implementing a very basic 3D editor

was then also considered. Then a moment of realization came when I was testing the

game, I already had a basic 3D editor, the game itself. Using the game itself made it

much easier to edit the levels with minimal cost in terms of development time. The

main task was figuring out where the nearest block in 3D space was relative to center

28

of the screen, also keeping in mind a threshold value for distance(avoiding accidentally

adding a block far away and not noticing it).

Figure 4.10: A screenshot of in-game level editor for the 3D platformer. Click right
and left clicking the screen adds and remove blocks, allowing for the creation of 3D
level structures.

For the in-game level editor, it was important that there was a clear distinction

between playing a level and editing one (so that players don’t accidentally edit the

level during play). So the concept of ’edit mode’ was implemented, allowing the player

to do things not normally allowed - like fly around the level (making it easier to build

levels also).

Procedural Level Generation

During the creation of the levels the possibility of procedurally generating the 3D levels

was explored. Ultimately, running a few tests on these large levels took a much longer

time to converge, making them less desirable for use in the actual final levels.

However the functionality is still there and can be used. Vast hills and valleys could

be created as shown in 4.11. These were not used in the final levels. However there

was high level functions to create boundary walls and floors using a few parameters.

These were used for the smaller levels, this is shown in Figure 4.8. Another example is

29

The procedural generation code saves on time and makes creating levels less tedious.

Figure 4.11: A screenshot of a procedu-
ral level. Showing hills of various sizes
with a base grass floor.

Figure 4.12: A screenshot of a proce-
dural level. In this screenshot procedu-
rally created rooms are visible.

4.4 Agent Language Implementations

Whenever an evolutionary simulation was completed, a way of persisting/saving these

agents was needed for later use to run in the game in graphics mode to actually observe

agent behavior. Initially this was just using serialization of python objects. While this

worked fine, for actually inspecting the agent code and showing it to others, a clearer

more readable output was desired.

The basic principle is to translate the generated agent python code into a simple

text file format which can then be read in and translated back into python code. A

key factor was making sure that this text file format was concise, easy to read and well

formatted. Simply dumping the resulting Python code to XML or JSON or similar

format would not make it concise.

Given that the programs in both languages already had structure, it was decided

to make the output file represent this structure in a meaningful way. The lisp-like

language would have brackets and nesting for expressions and the basic like language

as a sequence of instructions with new lines to separate them out. An overview of the

output pipeline is given in Figure 4.13

With these output formats decided on, it was then necessary to write a parser

and lexical analyzer for each language format, so that it could be translated back into

30

Figure 4.13: Overview of the language output pipeline.

python code and run inside a graphical game. This became the language input pipeline

and a high level view of it is shown in Figure 4.14

Figure 4.14: Overview of the language input pipeline.

4.4.1 Lisp-like Language Implementation

As stated in the background and state of the art chapter, a branching tree-like data

structure is the archetype of genetic programming. Running and evaluating programs

is then a matter of traversing this tree (with budding off into different branches based

on conditional statements). An additional factor in genetic programming in general is

the ease of use by which code itself can be treated as data.

The lisp language is well suited for both this kind of data structure and its ability

to pass code around as data. It is therefore not surprising then to see it in widespread

use in GP. DEAP has a branching tree data structure built in for genetic programming.

One can specify methods as nodes and terminals. These are python objects. Nodes

provide branching functionality by allowing more than one parameter to be passed in.

Ultimately, in a typical program, it results in a tree of nodes with terminals at the end,

running the program results in control flow starting in a root node and finishing in one

31

of the terminals.

0 (prog3 move_forward
1 (if food_ahead
2 move_forward
3 turn_left)
4 move_forward)

Figure 4.15: Generated program code for the Pathfinding game. The resulting behavior
is for the agent to move forward in an anti-clockwise manner, searching for food ahead.
If it finds it, it moves towards it, otherwise it keeps searching.

A lisp-like language was then constructed which was built on this, in such a way

that a subset of keywords and functions from the language as seen in Figure 4.15.

Prog2 is from the Lisp language, executing two items passed to two it in sequence.

’If’ is also from Lisp, evaluating the conditional and then executing either the second

or third item passed to it depending on whether it is true or not. Ultimately this all

translated into a system of nodes and terminals.

4.4.2 Basic-like Language Implementation

The basic-like language, although simpler in appearance and simpler to parse out, was

actually trickier to implement. An example of some code from the language is given in

Figure 4.16. A simple sequence of actions could be modeled as a chain of nodes which

have a terminal at the last instruction. In other words, a tree with no other branches

budding off it. However, a key instruction in the basic language is the goto statement.

This allows for jumping ahead or backward in the execution of the program by altering

which instruction is to be next. With this instruction, it’s possible to split code up into

different blocks as well as have certain behavior repeat continuously (perhaps until a

certain condition is met). However traversing a tree from the root to one of the leaf

nodes without turning back does not allow for cycles. A graph would allow this but

the underlying implementation was based on trees and didn’t have support for graphs.

To get around this problem, inheriting from the base genetic programming object

and then re-implementing the parsing code to work with graphs was certainly possible

and was considered. However this seemed unnecessarily complicated. A more elegant

solution emerged, using the genetic algorithms code as a base for implementing this

32

0 stop_left
1 start_right
2 wait 50
3 check collide_right
4 goto 6
5 goto 2
6 stop_right
7 start_left
8 check collide_left
9 goto 0

10 goto 6

Figure 4.16: Generated program code for the 2D platformer. Redundant instructions
removed for clarity. The resulting behavior is that the agent moves until it encounters
an obstacle and then moves in the opposite direction.

custom language. In the genetic algorithms module, all data for representing the

phenotype is represented as a list. This typically represents solutions to problems. In

the traveling salesman problem, a solution is the order in which the various cities are

to be visited for example. In the case of representing a basic language program, this

was a list of instructions. Instructions were kept simply as python objects with basic

properties with a mind to enhancing them later.

Evaluating an agent in terms of fitness now meant that the instructions would

be parsed out from the list and run in an interpreter. The interpreter acted as an

interface for the particular game. It kept track of important details such as the current

instruction, the state of any given inputs (whether the agent wants to move left or

jump for example). It also had a very simple form of memory which could be wrote to

and read from. Figure 4.17 has a sample of code which demonstrates it’s use.

An additional instruction called the ’check’ instruction is added. It takes a single

conditional function as a parameter (something which returns true or false). If the

condition is true, it executes the next instruction, if the condition is false, it skips over

the next instruction. This is shown in both Figure 4.16 and Figure 4.17.

The use of storing conditional variables have the potential to be used to keep track of

things. For example in Figure 4.17, the agent would jump if it collides with something

on its right but not only that, this specific event is captured as a true or false statement

which could be queried in other parts of the code, in this case it’s read from to determine

whether the agent should jump or not.

33

0 start_right
1 check light0
2 start_jumping
3 wait 50
4 stop_jumping
5 check collide_right
6 light_on light0
7 light_off light0
8 goto 1

Figure 4.17: Sample code showing the ability for the program to store information.
Programs can use ’lights’ to store data, simple boolean variables which can be set on
and off and read from. In this case the program is storing whether or not it is colliding
with something to the right or not.

Some adjustments were needed to make the basic-like language work in 3D, a sample

of this is given in Figure . The keys up and down had new meaning in 3D. Related

instructions were remapped to moving forwards and backwards in the world, on the

Z-axis, without triggering any jumping. Instructions to rotate the camera as well as

checking for collisions in the new dimension were also added.

0 start_up
1 rotate_x 15
2 start_right
3 wait 25
4 stop_right
5 wait 100
6 start_left
7 wait 200
8 start_jumping
9 wait 20

10 stop_jumping
11 rotate_x -15

Figure 4.18: Evolved agent code for a completed level for the 3D platformer.

34

Chapter 5

Evaluation

5.1 Methodology

Both the various games and their evolved agents were assessed in terms of their overall

quality as well as feasibility and effectiveness for demonstrating the capabilities of the

approach mentioned in this project. Various levels in each of the games were created

for both human players and agents to play in order to do this.

The actual evaluation itself was done incrementally and experimentally as the games

were developed in this way. In-keeping with the general idea of feature driven devel-

opment methodology, this was usually done after specific features were implemented.

5.2 Assessment of the Generated Agents

5.2.1 Quality of Agent Code

Code Legibility

The question of code legibility is an important one if the generated code is to be

used or modified at a later time by a developer. This may or may not be a factor

depending on the application. Remembering the analogy of procedurally generated

graphical content, sometimes it is desired for a professional artist to manually tweak

the content after it is generated. So it is entirely possible that an expert may want to

tweak the results generated. With this in mind, the best individuals from evolutionary

35

simulations of each of the levels of each of the games and assessed. This was done in

careful consideration with the possible drawbacks mentioned in the background and

state of the art, code bloat in particular.

Game Playing Ability

Samples of the various generated agents were taken and their behavior was observed

while playing the games and levels in question they were evaluated on during their

evolutionary simulation. The graphical versions of all the games have an ability to

load in program code and run it as if a player was playing. Samples of each of the

best agents from each of the levels were each loaded in to the games in this way and

their behavior was carefully observed and notes were taken of anything which may be

of interest later.

5.2.2 Performance

Convergence

As with any evolutionary algorithm, convergence of the individuals of a desired solution

is something important to consider. Various factors such as the selection method

for individuals and the implementation fitness function are all something to carefully

consider. This can be very much trail and error. Ultimately, experiments were done

to see what could be done to improve convergence on solutions. Variations in level

design and fitness functions were considered. Any noteworthy observations in actually

running and getting the solutions to converge are also worth reporting on during this

and it was kept in mind to record these throughout the project.

Generated Agent Performance at Run-Time

A benchmark was done in order to see if the generated agents had any noticeable

impact on the actual performance of the games themselves while they were running.

A sample of agents of different levels of fitness were taken in order to do this.

36

5.2.3 Robustness

Having the same agent play well across multiple levels is something to consider. Having

agents evolve on just one level runs the risk of them ’over fitting’ to that level and having

poor performance on other levels. Elements of randomness to the levels and assessment

across multiple levels was considered to address this issue.

5.3 Assessment of the Games

It’s important to ensure the games were playable and could actually be completed by

both a human player as well as the evolved agents. Careful testing of each level of

each of the games was done by both human players and the generated agents. Level

editors assisted greatly in speeding up this process as a great deal of experimentation

was done regarding level difficulty. It was also important to make sure the games

themselves weren’t completely trivial as well. Simple levels were first chosen both

to make sure human players got used to playing and also to assess the feasibility of

evolving agents in this way. This was to show proof of concept. The complexity of the

levels then increased to demonstrate that these games can be challenging to players

and that the agents could also complete the more challenging levels.

37

Chapter 6

Conclusions

6.1 Results

6.1.1 Resulting Agents

Given sufficient time to evolve, agents completed the levels of all the various games, so

in that sense, the project was a success.

Resulting Behavior

Watching the resulting agents play, their behavior appears intelligent. Agents avoid

obstacles as well as move in the direction of the goal they have to reach.

In the 2D games, agent behavior could very well be mistaken for human behavior.

In the 3D games, goals are completed but they don’t always have the same human-like

behavior. While the agents still reach the goal, some aspects of their behavior don’t

match up closely with how a human might complete the level. Often the resulting

agents don’t look at the goal they were trying to reach while walking towards it.

This is because of how the agent is able to navigate the environment. The controls

are standard to first person shooter games. It’s possible to strafe and walk indepen-

dently to where the character is looking. Since the agents weren’t getting any kind of

incentive to look at the goal while they approached it, very often they didn’t. A simple

way to prevent this would be to restrict the camera control code to always look straight

ahead in the direction the agent is moving. Another less restrictive way of doing this

38

would be to add some incentive for the agent to look at the general direction of the

goal by awarding an improvement in fitness for doing so.

These methods only need to be applied if making the agents behave more human-

like is actually desired. For example, if one was more concerned with using the agents

for testing to see whether or not difficult levels could be completed then ensuring

resulting behavior was human-like would not be a factor at all.

Resulting Code Legibility

As was expected, a certain level of redundant code was found in the generated agents.

This varied depending on numerous parameters. The main ones being the difficulty of

the level and the amount of subsequent generations the evolutionary algorithms ran for.

Some attempts were made to alleviate this. The primary and most simple way of doing

this was to place hard limits of how much the code could actually grow. This at least

stopped the problem from getting out of hand. However, it’s also worth suggesting that

one must not constrict too much. For example, if a level is particularly complicated,

placing a really harsh limit on the amount of growth can lead to situations where it is

actually impossible for the agents to converge on a solution.

Overall the resulting code was not particularly legible, even with size and growth

limits. It’s not trivial to factor in some sort of legibility heuristic into the fitness

function. Removing instructions which appear to do nothing as the simulation runs

can have unintended consequences. Sometimes redundant code can become useful

later and it’s hard to know what won’t become useful at a later stage and what will.

With the placement of limits at least, it was possible to understand what the code

actually does, after careful analysis. A first stage in analyzing the code was to look for

any instructions which are clearly redundant and remove them. This could actually

be automated as a post-processing stage. Again, going beyond removing the obvious

redundant instructions in an automated way is tricky and definitely not trivial. It would

take considerable time and effort to develop. It’s worth pointing out that ensuring all

generated code was perfectly legible to a human was not an explicit goal of the project

either but rather to see if the generated agents were up to the task of completing the

various levels.

39

Robustness

It was desired to have agents which didn’t have behavior which could be considered

rote learning or ’over fitting’ to a particular level. It was observed in a wide number

of samples that resulting agent code had specific instructions to move in certain ways

which were specific to a particular level. It was hoped that the actual instructions

pertaining to sensing would be used more in the levels. This was not the case in a lot

of samples taken. While disappointing upon discovery, steps were eventually taken to

try to reduce this effect.

In order to do this, a certain level of randomness was added to the levels. For

example in the platformer games it could mean changing the locations of platforms

or enemies. Evaluating the agents across more than one level also proved useful. It

allowed for them to generalize concepts like if an agent bumps into something it’s a

good idea to try to jump or change direction. It’s important to note that while these are

simplistic concepts to a developer or a gamer, the agents have to learn these concepts

without any guidance. It was shown that with a subset of levels, general strategies

like this could emerge. This at least hints that it is possible to come up with agents

which can perform well on unseen levels, given a sufficient number of different levels

with elements of randomness added to them.

6.1.2 Resulting Performance

Convergence Rate

The rate of convergence wasn’t a primary concern for the project, just that conver-

gence was in fact possible and achievable in a reasonable period of time. That was

more important. The reasoning for this is that it’s entirely possible to do a compu-

tationally heavy evolution of the agents prior to shipping a game or even have them

as downloadable content. With this in mind, some attention was given to convergence

at the beginning but it became less important once it was shown to be possible to

evolve agents which completed the levels in a reasonable period of time. It’s also worth

pointing out that while many different factors from tweaking various values all the way

to refining aspects of the fitness function could have been possible it’s important to

remember both the project goals and the timeframe.

40

Initially, tweaking of various parameters of the evolutionary simulation began with

the pathfinder game and then the 2D platformer. The 3D platfomer used the same

parameters as the 2D one. The levels were briefly play tested first to ensure that they

could in fact be completed by a human at least and then left to see if a solution could be

evolved. A population size of 500 was used with tournament selection and a mutation

rate of 2 percent. The actual mutation code was simple, it just changed one instruction

in some way. Cross-over was simple, just one point was used to swap code between

two agents. For more difficult levels the population size was increased to 1,000.

Ultimately, how long it took for a solution to emerge for a given level greatly

depended on the actual complexity and difficulty of the level itself. Trivial levels of

just walking from one side of the level to the other with little to no obstacles took

less than a few minutes. Whereas a larger level with hazards and more obstacles took

anywhere from a few hours to even a few days. Added randomness and multiple levels

multiplied the time needed to converge.

In the absence of any of the issues encountered, such as allowing enough game

updates during evaluation to complete the levels and making sure these levels could be

completed, convergence on solutions to the level was possible.

Resulting Run-Time Agent Performance

Assessing the performance of the agents started with various agents being evaluated

of different levels of fitness. After running a few samples it was clear that very little

impact in terms of performance was observed, regardless of what code was running.

Randomly generated individuals of large sizes were also tried but there was negligible

difference in terms of computational performance at run-time. Remembering that all

the graphical versions of the games have an option for loading in agent code and playing

it in a simulation, it was also decided to try out hand-coded infinite loops (multiple goto

statements in agent code repeating forever were tried). Again, no noticeable impact in

performance was observed.

This was due to the fact that for the update loop of all the games, a single instruction

was read and executed by the interpreter built into the games. This means that even a

large amount of code or repeating the same instructions will have little impact on the

game running smoothly.

41

Why is this of a concern? It was important to test such things during development

because a single agent which is able to ’lock up’ and get caught in a loop using lots of

computational resources is not only detrimental to the gameplay experience, but also

if this kind of thing happens during the evolutionary simulation it means that it will

never progress if such an agent is encountered. Such a bug may not even be with the

language specification itself but the implementation of it somewhere, for example all

that is required is for some function or method to never return and the whole thing

can ’lock up’ under certain circumstances. Although this particular issue was never

encountered during the project, great care was taken to avoid it from happening during

development.

6.1.3 Resulting Finished Games

The final versions of the three games are comparable in terms of their gameplay and

features to that of games which are commercially available. Obviously given the time

constraints of the project they could not have as high production values or polish to

them as their commercial counterparts but such things were not essential to achieve the

project goals anyway. Some effort was however made to at least make them somewhat

visually appealing which has been shown in the various screenshots of the games.

What is clear is that the games themselves have enough gameplay features and

mechanics to be considered part of a particular known genre and leave little doubt

as to whether or not they could be considered games. The pathfinding game can be

considered similar in its gameplay to what is often termed a ’rogue-like’ (this genre

gets its name based on a text based exploration game called Rogue). The platformers

have the kind of things one would expect in a typical platform game, platforms, pits,

enemies and so on. This genre is also very well established at this stage so they do

make for a useful testbed in terms of applicability of the approach taken in this project.

42

6.2 Criticisms

6.2.1 Level of Agent Intelligence

The resulting agents code is not that large, limited deliberately in its growth in a lot

of cases based to aid with legibility in mind for later examination. So it is important

to ask if this can really be considered intelligent behavior or not.

The author means intelligence in the sense of game artificial intelligence, which is

not necessarily perfectly aligned with the field of artificial intelligence in computer sci-

ence. Games usually fall under the category of entertainment. The pursuit of creating

artificial players for games isn’t necessarily a scientific exercise in mimicking how hu-

man intelligence works. There is more of a concern with getting the outward or surface

level behavior realistic or believable enough for players to have an entertaining gaming

experience. In this respect, simple state machines or giving the artificial players global

knowledge ordinary players don’t have is acceptable in order to get the game to ship.

The resulting agents don’t have state machine logic or global knowledge at all.

Global knowledge in the case of the games created for this project would be knowing

exactly where the goal was in each level. Yet the evolved agents are able to navigate

obstacles and reach the goal. Observed surface level behavior shows agents completing

the levels so it meets the requirement for games. To a certain degree, they have

internalized or learned the layout of the levels to do this, but in cases where elements

of randomness or multiple levels is used they do make more use of their sensing systems.

With further time and effort, it would be possible to add to the sensing system and run

even more levels with more randomness in them to get even more robust and intelligent

agents.

The resulting agents could be used in place of human created scripts for artificial

players in games. This was the intended goal all along. Given sufficient time to evolve,

they exhibit behavior which appears intelligent. This is not the same as actually

attempting to create something which has the goal of behaving like an intelligent

system by modeling the internals of an intelligent system. An example of doing this

would be to create an artificial neural network.

43

6.2.2 Size of the Levels

The levels chosen for evaluating the levels weren’t very large, taking somewhere from

about thirty seconds to a minute to complete. It was felt that with larger levels, it might

demonstrate greater capabilities of the agents. This definitely is worth investigating

and it may very well in fact be true. Ultimately, the reason for keeping the levels brief

was due to the amount of time it took for solutions to converge. As level complexity

and size increased, the maximum allotted game updates for agents to find a solution

during their evaluation also had to be increased. A level twice as big may take twice

as long to converge (depending on layout). Getting the number of maximum allotted

game updates right was also very important. If this number was too short, it would

be impossible for agents to converge at all and if it was left too high then a lot of

computational resources were wasted.

In order to ensure agents could be evolved in a timely manner, level sizes were then

kept from getting too big. Getting the number of maximum allotted game updates per

agent right was also being experimented with constantly. Larger levels brought greater

uncertainty for the most efficient number. Remember that the overall, total number of

game updates during the evolutionary simulation is multiplied on a per agent basis, so

it has considerable impact on performance.

6.2.3 Language Design

The question of whether or not languages like the ones used in this project were a

good choice is important to ask. A popular or more well-known language subset and

syntax (like the C language for example) could have been chosen instead. This is cer-

tainly a possibility and there are numerous frameworks available which aid in doing

this. Python was chosen as the language for this project and DEAP was then chosen

as the framework, for reasons outlined in the design chapter. While it was possible

to explore other languages and frameworks, for practical purposes and given the in-

cremental, feature driven development approach, it made sense to reuse existing code.

The languages then used for genetic programming had to stem from this. Of course, it

was still possible even then to implement something quite different from the languages

which were used in genetic programming for this project. The lisp-like language was

chosen because it integrates very well into DEAP. Also as stated in the background

44

and state of the art chapter, this kind of branching style representation for a program

in genetic programming is the archetype for genetic programming. It was important

to implement and get right for those reasons. The basic-like like language was cho-

sen because Linear Genetic Programming wanted to be explored and also because it

would be a nice contrast to implement two different languages and variations in GP. It

was also sought to have a more legible structure - rather than having lots of branches

and nested statements, code could be read from top to bottom. It’s also important

to remember that because of the approach was based on feature driven development,

even the language features were designed by feature. The likes of the if and check

statements were created with the need for conditional statements to allow for different

behavior of the agents depending on the level. Same for iterative statements like the

goto, a need arose for a feature where the agents to be able to repeat certain actions

without having to duplicate code - making it easier to read.

6.3 Future Work

The results have been encouraging and suggest further potential research. There is

quite a lot of areas which could be expanded. This section will outline some of those

which are more pertinent.

6.3.1 Co-Evolution

DEAP supports both cooperative and competitive co-evolution out of the box. For

this project this would entail multiple agents being evaluated in the same level. In

cooperative co-evolution both individuals performance would rely on the other agents

they are playing with as well. In order for this to be meaningful, the agents have to be

able to interact with one another in some form. Having the game handle colliding agents

and expanding the sensing system to make agents aware of agents would help achieve

this. Inter-agent communication may also be of use here, just like communication helps

groups co-ordinate with one another in real life as well as virtual worlds in order to

reach a common goal.

Competitive co-evolution might not require communication between agents although

the ability to sense other agents would be useful. Interesting behavior might be ob-

45

served like one agent physically pushing the other out of the way to reach the goal

first or at least get a better score than the other agent. Karl Sims Creatures [40] has

some very interesting examples stemming from competitive co-evolution and it would

be interesting to see what kind of behavior would evolve from competitive co-evolution

in the various games which have been created in this project.

6.3.2 Different Games

There are many more games out there than the ones which are quite different to the

ones created in this project. It would be worth trying the same technique out on

different games to see what kind of results could be achieved. Different games would

present different challenges, such as coming up with a good fitness function for that

particular type of game, defining programming languages which work well for that type

of game and so on.

The basic building blocks are there for both 2D and 3D games. Depending on

the game, the agents may need more sensory information or perhaps could get by

with no sensing system at all. No sensing system would be applicable in games which

have certain ways of solving them, such as a deterministic algorithm - if followed will

guarantee a solution. Actual games which are like this could be certain kinds of maze

or puzzle games. A more detailed sensory system would likely be needed for some

kind of game involving shooting. Currently, the sensing system is very local (in other

words - agents are able to determine if there is food nearby or if they’re bumping into

something but don’t have a detailed vision system). A more detailed vision system

would be needed to sensing enemies from afar and targeting them, that is assuming

there is a cost involved for shooting (like a limited amount of ammunition).

6.3.3 More Robust Agents

While efforts were made to generate agents which could work across multiple levels

and tolerate a certain degree of randomness, improvements could still be made in this

area. This would be especially important if agents had to know general principles

surrounding levels - in the case where procedurally generated levels were being used

for example. If this is not a concern it’s entirely possible that the agents could just

46

learn across all the levels which were created for a given game and eventually come to

master them given enough time to evolve and that would be enough.

If discovering general principles behind given levels are of a concern then more

robust agents are definitely required. In testing this, agents would be required to play

different levels with the hope that they would come to use these general principles also,

just like a good player would. It’s also not unheard of for players to find imbalances or

bugs in the game which can be exploited. Agents can be used to explore the possibilities

and do so faster than human testers.

Actually generating these more robust agents is simply a matter of allowing for

more time for the evolution to work over more levels and incorporating a greater level

of randomness into each level. This seems quite feasible given more computational

power or time.

6.3.4 Integration with Games, Game Engines and Toolkits

It’s quite possible to integrate the approach taken in this project with the various

games, game engines and toolkits both open source and commercial. Research on this

possibility was done very early on during the project. The main reason these avenues

were not pursued was simply due to time constraints.

It takes time to learn and understand the various technologies, on top of that

given commodity hardware was being used, a headless or graphic free mode for the

evolutionary simulations was desired. It’s quite possible to get this to work for various

games, as a lot of popular PC games for example do have server side software for

use in multiplayer games. Such software often has client code integrated without the

graphical overhead to validate the actions performed by the connected clients. The

option of extracting/modifying this code was considered, but modern games are quite

complicated and the effort in actually doing this was more than initially anticipated.

For example, in the Quake III engine, time was spent examining its code base. It

actually contains a custom made virtual machine which evaluates all the client side

actions from players. Going through that code base, deciding what is and isn’t needed

was proving to be quite time consuming. It’s unclear how such extensive modifications

would be in-keeping with the project goals. It was also unclear exactly how long

determining all the important parts, modifying and/or extracting them would take. So

47

simpler, less time consuming methods which could be assured to be completed in the

timeframe were subsequently pursued.

However, there is nothing preventing the technique presented in this project from

being implemented in other games, given sufficient time. The results of which would

be quite important in order to make this approach and the benefits from using it more

widely available and accessible to others.

6.3.5 Evolving Agents using Human Players

As part of the evaluation phase, human players could play with the agents, likely in a

competitive setting. Fitness could then be then determined by the agents score relative

to a player’s score. The main reason this method was not pursued was the amount

of time it would take for the agents to actually learn given that human players had

to play alongside them. It might take thousands of plays of a level with a human for

agents to develop skill against a human player. This would likely be very unfeasible,

except maybe in an online setting if sufficient volunteers could be found. There is also

a hybrid approach, agents can co-evolve competitively or against an agent which has

been developed by humans. After a number of generations, the agents get to play

against a human player and this will influence their fitness. Co-evolving competitively

against human created artificial players is also valuable for determining if there are any

flaws in the human created agents’ behavior which may be exploited by players (both

human and artificial).

48

Appendix

Acronyms

GA Genetic Algorithm

GP Genetic Programming

EDA Estimation of Distribution Algorithm

ECGA Extended Compact Genetic Algorithm

PIPE Probabilistic Incremental Program Evolution

LGP Linear Genetic Programming

ECGP Embedded Cartesian Genetic Programming

49

Bibliography

[1] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven

Worley. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition,

2002.

[2] D. B. Fogel. Nils barricelli - artificial life, coevolution, self-adaptation. Comp.

Intell. Mag., 1(1):41–45, November 2006.

[3] Nichael Lynn Cramer. A representation for the adaptive generation of simple

sequential programs. In Proceedings of the 1st International Conference on Genetic

Algorithms, pages 183–187, Hillsdale, NJ, USA, 1985. L. Erlbaum Associates Inc.

[4] John R. Koza. Genetic programming: on the programming of computers by means

of natural selection. MIT Press, Cambridge, MA, USA, 1992.

[5] Robert I. Mckay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and

Michael O’Neill. Grammar-based genetic programming: a survey. Genetic Pro-

gramming and Evolvable Machines, 11(3-4):365–396, September 2010.

[6] Douglas A. Augusto, Helio J.C. Barbosa, Andre M.S. Barreto, and Heder S.

Bernardino. A new approach for generating numerical constants in grammati-

cal evolution. In Proceedings of the 13th annual conference companion on Genetic

and evolutionary computation, GECCO ’11, pages 193–194, New York, NY, USA,

2011. ACM.

[7] M. Garćıa-Arnau, D. Manrique, J. Rı́os, and A. Rodŕıguez-Patón. Initialization

method for grammar-guided genetic programming. Know.-Based Syst., 20(2):127–

133, March 2007.

50

[8] W.P. Worzel, J. Yu, A.A. Almal, and A.M. Chinnaiyan. Applications of genetic

programming in cancer research. The International Journal of Biochemistry &

Cell Biology, 41(2):405–413, 2009.

[9] J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Ge-

netic programming IV: Routine human-competitive machine intelligence. Springer-

Verlag New York Inc, 2005.

[10] A. Elyasaf, A. Hauptman, and M. Sipper. Ga-freecell: Evolving solvers for the

game of freecell. 2011.

[11] W.B. Langdon and R. Poli. Foundations of genetic programming. Springer-Verlag

New York Inc, 2002.

[12] R. Riolo and B. Worzel. Genetic programming theory and practice, volume 6.

Springer, 2003.

[13] R. Poli and W.B. Langdon. Schema theory for genetic programming with one-

point crossover and point mutation. Evolutionary Computation, 6(3):231–252,

1998.

[14] R. Poli. Exact schema theory for genetic programming and variable-length ge-

netic algorithms with one-point crossover. Genetic Programming and Evolvable

Machines, 2(2):123–163, 2001.

[15] David E. Goldberg, Kalyanmoy Deb, and James H. Clark. Genetic algorithms,

noise, and the sizing of populations. COMPLEX SYSTEMS, 6:333–362, 1991.

[16] H. A. Abbass, Xuan Hoai, and R. I. McKay. Anttag: a new method to compose

computer programs using colonies of ants. In Proceedings of the Evolutionary

Computation on 2002. CEC ’02. Proceedings of the 2002 Congress - Volume 02,

CEC ’02, pages 1654–1659, Washington, DC, USA, 2002. IEEE Computer Society.

[17] Birkan Can and Cathal Heavey. A comparison of genetic programming and artifi-

cial neural networks in metamodeling of discrete-event simulation models. Comput.

Oper. Res., 39(2):424–436, February 2012.

51

[18] Salem Fawaz Adra, Ian Griffin, and Peter J. Fleming. An informed convergence

accelerator for evolutionary multiobjective optimiser. In Proceedings of the 9th

annual conference on Genetic and evolutionary computation, GECCO ’07, pages

734–740, New York, NY, USA, 2007. ACM.

[19] W. Langdon and W. Banzhaf. A simd interpreter for genetic programming on gpu

graphics cards. Genetic Programming, pages 73–85, 2008.

[20] S. Harding and W. Banzhaf. Fast genetic programming on gpus. Genetic Pro-

gramming, pages 90–101, 2007.

[21] Julian Francis Miller and Simon L. Harding. Cartesian genetic programming.

In Proceedings of the 2008 GECCO conference companion on Genetic and evolu-

tionary computation, GECCO ’08, pages 2701–2726, New York, NY, USA, 2008.

ACM.

[22] S.L. Harding and W. Banzhaf. Distributed genetic programming on gpus using

cuda. In Workshop on Parallel Architectures and Bioinspired Algorithms, Raleigh,

USA, 2009.

[23] Zdenek Vasicek and Lukas Sekanina. Hardware accelerators for cartesian genetic

programming. In Proceedings of the 11th European conference on Genetic pro-

gramming, EuroGP’08, pages 230–241, Berlin, Heidelberg, 2008. Springer-Verlag.

[24] W. Weimer, T.V. Nguyen, C. Le Goues, and S. Forrest. Automatically finding

patches using genetic programming. In Proceedings of the 31st International Con-

ference on Software Engineering, pages 364–374. IEEE Computer Society, 2009.

[25] K. Sastry and D.E. Goldberg. Probabilistic model building and competent genetic

programming. GENETIC PROGRAMMING SERIES, 6:205–220, 2003.

[26] J.A. Walker, J.F. Miller, and R. Cavill. A multi-chromosome approach to standard

and embedded cartesian genetic programming. In Proceedings of the 8th annual

conference on Genetic and evolutionary computation, pages 903–910. ACM, 2006.

[27] R. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution.

Evolutionary Computation, 5(2):123–141, 1997.

52

[28] G. Wilson and W. Banzhaf. Deployment of parallel linear genetic programming

using gpus on pc and video game console platforms. Genetic Programming and

Evolvable Machines, 11(2):147–184, 2010.

[29] Garnett Wilson and Wolfgang Banzhaf. A comparison of cartesian genetic pro-

gramming and linear genetic programming. In Proceedings of the 11th European

conference on Genetic programming, EuroGP’08, pages 182–193, Berlin, Heidel-

berg, 2008. Springer-Verlag.

[30] Sean Luke and Liviu Panait. A comparison of bloat control methods for genetic

programming. Evolutionary Computation, 14(3):309–344, 2006.

[31] Sara Silva and Ernesto Costa. Dynamic limits for bloat control in genetic pro-

gramming and a review of past and current bloat theories. Genetic Programming

and Evolvable Machines, 10:141–179, 2009. 10.1007/s10710-008-9075-9.

[32] W.B. Langdon. Quadratic bloat in genetic programming. In Proceedings of the

Genetic and evolutionary Computation Conference (GECCO-2000), pages 451–

458, 2000.

[33] Khaled Badran and Peter Rockett. Multi-class pattern classification using single,

multi-dimensional feature-space feature extraction evolved by multi-objective ge-

netic programming and its application to network intrusion detection. Genetic

Programming and Evolvable Machines, 13:33–63, 2012. 10.1007/s10710-011-9143-

4.

[34] G. Michael Youngblood, Billy Nolen, Michael Ross, and Lawrence B. Holder.

Building test beds for ai with the q3 mod base. In AIIDE, pages 153–154, 2006.

[35] Felix-Antoine Fortin, Francois-Michel De Rainville, Marc-Andre Gardner, Marc

Parizeau, and Christian Gagne. Deap: Evolutionary algorithms made easy. Jour-

nal of Machine Learning Research, 2171–2175(13), jul 2012.

[36] Pygene github repository. http://github.com/blaa/PyGene, Website last visited

on August 29th 2012.

[37] Official pyevolve website. http://pyevolve.sourceforge.net, Website last visited on

August 29th 2012.

53

[38] Official pygame website. http://pygame.org, Website last visited on August 29th

2012.

[39] Official pyglet website. http://pyglet.org, Website last visited on August 29th

2012.

[40] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference

on Computer graphics and interactive techniques, SIGGRAPH ’94, pages 15–22,

New York, NY, USA, 1994. ACM.

54

