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Nowadays mobile and browser games are becoming increasingly popular and more and

more graphically appealing, thanks to recent advancements in software and hardware

technologies.

In March 2011 Khronos Group released the WebGL standard, which allows most ma-

jor browsers to display complex 3D scenes natively, opening up new possibilities for

browser-based game development. While this represents a huge advancement in terms

of rendering capabilities, it does not overcome the issue of timely receiving the amount

of data required to render a 3D scene. Although the network bandwidth available to

the average user has been constantly increasing in the past few years, streaming com-

plex assets still represents a challenging issue. Long download times can easily break

up the flow of a game, making it less appealing, or even worse unplayable.

The dissertation analyses currently available approaches that could be used to over-
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come this issue, focusing in particular on surface mapping, progressive level of detail

and procedural content generation. After surveying the state of the art, it identifies and

describes in more detail several techniques that are well suited for WebGL/OpenGL

ES environments, in terms of hardware and software limitations. It then gives an

overview of how the proposed solutions were implemented in a prototype framework,

consisting of a client-side WebGL browser application, and a server implemented in

JavaScript/Node.js. Lastly, it evaluates the results obtained with the implemented

approaches, supporting the discussion with quantitative measurements where appro-

priate, and identifying current limitations and possible directions for future work.
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Chapter 1

Introduction

1.1 Context

Nowadays mobile and browser games are becoming increasingly popular and more and

more graphically appealing, thanks to recent advancements in software and hardware

technologies.

In March 2011 Khronos Group released the WebGL 1.0 API specification[16], which

is now supported natively by all major browsers, except for Internet Explorer, which

requires a third-party plugin1 to enable its use.

This novel technology makes it possible to render complex 3D environments and models

on compliant browsers, opening up new possibilities for browser-based game develop-

ment. While this represents a huge advancement in terms of rendering capabilities, it

does not overcome the issue of timely receiving the amount of data required to render

a 3D scene. Although the network bandwidth available to the average user has been

constantly increasing in the past few years, streaming complex assets still represents a

challenging issue. Long download times can easily break up the flow of a game, making

it less appealing, or even worse unplayable.

The dissertation aims to tackle this problem, as described in the next section, with a

specific focus on browser-based game development.

1Internet Explorer WebGL plugin [6].
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1.2 Objectives

Given a generic 3D client, which must download all necessary assets from a remote

server, we aim to enable the client to render complex 3D scenes in real-time. Hence,

the main goal of the dissertation is to develop a set of suitable techniques to reduce the

amount of data required by the client at any given time, so that the necessary infor-

mation can always be timely downloaded, without exceeding the available bandwidth

limit (which would temporarily interrupt the rendering of the scene).

The research question is meaningful in all contexts where a 3D client, in order to ren-

der a scene, needs to receive the corresponding data over a bandwidth-limited network.

In this sense, common examples are browser-based 3D games and applications (such

as 3D viewers), as well as some recent multi-player, open-world games developed for

mobile platforms.

Since complex browser-based 3D games are becoming commonplace, we decided to fo-

cus specifically on the WebGL platform, which is quickly emerging as a very common

development choice for browser 3D applications. Nonetheless, due to the sufficient

generality of the presented design and the strong similarities between the WebGL and

OpenGL ES specifications, the implementation could be easily ported to any platform

supporting OpenGL ES 2.0[14] (e.g., smartphones, tablets, . . . ).

In order to fulfil the research question, the following tasks were required:

1. Investigation of a number of research directions, in order to determine a set of

promising techniques that could be used for our purpose. We mainly focused on

the following directions:

• surface mapping,

• progressive level of detail,

• procedural content generation.

2. Identification of which approaches in the state of the art are amenable to an

efficient implementation into the WebGL context.

3. Based on the previous evaluation, design of a suitable solution and development

of a prototype client-server framework implementing it.
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1.3 Structure of the document

The rest of the document is organized as follows:

• Chapter 2: Background surveys current state-of-the-art approaches that could

be applicable to solve the research question at hand. The chapter tries to assess

which solutions are most suitable for the chosen implementation environment,

in terms of performance and feasibility. Also, it gives an overview of WebGL

frameworks available to date.

• Chapter 3: Design provides a high-level, detailed description of the techniques

that were implemented in the prototype. First, the chapter describes two main-

stream surface mapping approaches (parallax and relief mapping) which were

included in the implementation. Then it delves into the mesh simplification al-

gorithm, describing the approach employed to simplify 3D models in order to

achieve progressive rendering. Lastly, it describes a pseudo-random procedural

approach for terrain generation, implemented as a proof of concept of possible

applications of PCG and its benefits.

• Chapter 4: Implementation describes how the techniques presented in the

previous chapter were practically developed into a client-server framework, by

using Node.js as a server-side technology, and any WebGL-enabled browser as a

client.

• Chapter 5: Conclusion first presents and evaluates the results obtained with

the implemented techniques. Then, it briefly sums up the content of the disser-

tation, providing some concluding remarks and possible development directions

for future work and improvements.
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Chapter 2

Background

WebGL is still a relatively new technology, so to date there are not many papers on

relevant topics that specifically address this platform. However, in the past decade

the problem of transmitting complex scenes over the network has been studied, for

instance, in the field of virtual archaeology [44], with some recent results implemented

in WebGL [59]. Of course, the objectives and the scope are slightly different from those

considered in this dissertation.

More specifically, representing archaeological models requires high fidelity to the origi-

nal to be preserved whenever possible, so research efforts are mostly focused on finding

efficient ways of transmitting large 3D models in a progressive way.

In a browser game though, it is probably more important to provide a visually appeal-

ing experience to the user, rather than always preserving high accuracy of the models.

Therefore it makes sense to consider a wider range of approaches:

• Level Of Detail techniques : as described in [44], Level Of Detail (LOD) solutions

can be geometry-based or image-based. Within the first category, progressive

meshes are probably the most used approach, while impostors are the most com-

mon in the latter.

• Procedural content generation: in order to render the game environment, a viable

alternative to transmitting the corresponding geometry over the network is given

by the use of procedural techniques, which allow a drastic reduction in the amount

of data transmitted.
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• Surface mapping : to increase the realism of rendered scenes, surface mapping

techniques may also be applied (e.g., parallax mapping, relief mapping,. . . ).

Before providing an overview of the state of the art, it is worth noting that the cur-

rent WebGL specification is a subset of the OpenGL ES 2.0 standard, which targets

mobile device hardware and is derived from the OpenGL 2.0 specification. Hence,

WebGL lacks support for some of the more recent features offered by OpenGL 3.x/4.x

standards[12, 13] (e.g., hardware instancing, geometry shaders and tessellation are not

available). This fact makes some recent solutions less appealing in terms of perfor-

mance, sometimes ruling them out completely.

In this chapter, we propose a review of the most promising algorithms and techniques

in the previously mentioned research areas. Moreover, we briefly introduce currently

available WebGL frameworks and assess their features.

2.1 Level Of Detail techniques

2.1.1 Geometry-based techniques

Geometry-based approaches employ a series of approximations, derived from an orig-

inal model by progressively reducing the amount of geometric data, at the same time

trying to preserve the visual quality of the output.

It is worth noting that, consistently with the topic of the dissertation, we are especially

interested in techniques that allow both smooth geomorphing1 and efficient transmis-

sion of the different LODs.

To date, mesh simplification algorithms can be categorized into three major classes,

based on the underlying approach:

• Edge contraction.

• Vertex clustering.

• Re-synthesis.

1Geomorphing is the process of interpolating between models having different levels of detail, in
order to avoid suddenly switching between different levels.
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Edge contraction

In the past 15 years there has been great interest in this class of algorithms. Most of

them differ only in the metric used to decide which edge should be contracted at each

simplification step.

The majority employ different forms of quadric error metrics in order to keep track of

the progressively simplified surfaces and evaluate the quality of the approximation.

As stated in [63], the major drawback of most edge-contraction based approaches lies

in the fact that the input mesh must be manifold2 in order to perform edge collapsing.

Whenever there is no guarantee that the input is well-formed, a preliminary clean up

of the mesh is required. This is typically not a major issue with game graphics assets,

since it only adds an offline pre-processing step. However, it may cause a performance

hit if the simplification needs to be performed in real-time. Algorithms based on edge

contraction are also usually hard to parallelise, since the iterative approach used to

collapse the edges is inherently sequential.

One of the earliest and most successful proposals in this class is the progressive mesh

(PM) algorithm, as introduced by Hoppe in [31, 32]. A PM is a representation scheme

for storing and transmitting arbitrary triangle meshes that allows smooth geomorphing

of subsequent LOD approximations, progressive transmission of models and mesh com-

pression. The simplification process can be applied to arbitrary meshes and preserves

scalar appearance attributes (e.g., colour values, UV texture mapping and normals). It

has been implemented in the DirectX API for several years now, so it can be considered

an industrial-strength solution.

Given an input mesh M, its PM form consists of a coarser mesh M0, plus a sequence

of n detail records providing the information needed to iteratively refine M0 into the

input mesh M = Mn. Basically, each record defines a vertex split, an elementary trans-

formation which adds an additional vertex to the transformed mesh.

In other words, PM(M ) defines a continuous mesh sequence M0, M1,. . . , Mn, from

which LODs of increasing accuracy can be easily computed. Thus, progressive mesh

forms can provide a continuous-resolution, lossless representation of a given input mesh.

In order to build the PM for an input mesh M, the algorithm applies to it a set of three

2A mesh is considered well-formed/manifold when it does not have any topological inconsistency,
such as having three or more polygons sharing an edge, or two or more corners touching each other[18].
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transformations (edge collapse, edge split and edge swap), although the edge collapse

operation alone is already sufficient to effectively simplify the mesh.

Through a sequence of edge collapses the given mesh M = Mn is transformed into

the base mesh M0. It is worth noting that, for i = 1,. . . , n, the quality of the Mi

intermediate approximation completely depends on the criterion the algorithm uses to

select the vertices to be collapsed, and on the way it computes the attributes to be

assigned to the unified vertex (e.g., position). Usually it is a trade-off between speed

and output quality, chosen according to application requirements. Figure 2.1 shows a

sample output of the progressive mesh simplification process.

Figure 2.1: From left to right: M0 (150 faces), M175 (500 faces), M425 (1000 faces), Mn

(13525 faces)[32].

An alternative edge-contraction approach is proposed in [27], where a generalized sim-

plification algorithm is described. It is based on iterative contraction of vertex pairs

and uses quadric error metrics to assess the quality of the approximation. Unlike

more traditional edge-contraction based approaches though, it is able to cope with

non-manifold input meshes without the need for a clean-up preliminary phase. Also,

in general it does not preserve mesh topology, because two disjoint components of a

triangle mesh can potentially be joined by the algorithm. Not preserving the original

topology is not necessarily a drawback, because two distinct shapes might well look

like a single one if seen from a distance. However, it might not suit animated models:

artifacts known as webbing, consisting of smears between originally unconnected parts

of the model, may easily appear if topology is not preserved.

An important matter, regarding the use of progressive meshes into a networked ap-

plication context (and more in general any LOD technique that requires a significant

amount of data to be sent over the network), concerns the way LOD approximations
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are transmitted to the recipient.

In [64], Zheng et al. propose a transmission model for progressive meshes, suitable for

client-server multi-resolution rendering systems, where the server maintains the com-

plete mesh structure, while the client only holds and renders the necessary portion of

the model. To achieve interactivity despite network latency, a predictive parallel strat-

egy is used. Client and server processes run in parallel, employing the rendering time

to make up for network latency. A view-parameters prediction mechanism (depicted

at high-level in Figure 2.2) is used to synchronize client and server, without imposing

significant requirements in terms of extra memory. Even with long round-trip times,

the system manages to overlap the network latencies for multiple frames, keeping vi-

sually acceptable rendering quality.

Figure 2.2: View-parameter based predictive mesh transmission system.

In [38], Li et al. describe a middleware solution for the transmission of triangle-based

compressed 3D mesh representations (such as PMs) that targets progressive rendering

systems, with specific focus on handling missing data over lossy networks. The mid-

dleware stands between the application layer and the transport layer and employs a

combination of reliable and slower (TCP) and unreliable and faster (UDP) transmis-

sion channels, as a trade-off between delay (due to network latency) and distortion of

the rendered output (due to missing data).

Although the system is probably too consuming in terms of resources to be integrated

on the client side of a WebGL application, some of the key features could be inte-

grated in an ad-hoc implementation. More specifically, the following seem desirable

components for such a system:
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• selection of the data to be transmitted based on client-side quality requirements,

• packet loss handling,

• monitoring of the distortion due to missing mesh data.

In [19] Cheng et al. describe an approach that specifically targets the transmission of

progressive meshes. In order to allow scalability to a large amount of clients, they base

the transmission on a receiver-driven protocol, where the sender is not responsible for

deciding the transmission order of the data. As a first step, the server forwards the

base mesh (coarsest approximation of the unsimplified model) to each client. Later,

based on explicit client requests, it forwards the refinements, consisting of sequences of

vertex-split3 operations that allow the reconstruction of progressively more detailed ap-

proximations. The sending order is determined by the receiver, based on an algorithm

(partly run on the GPU) that takes into consideration current visibility and expected

visual contribution, in order to decide which refinements should be required first.

In [41] Maglo et al. present a view-dependent, event-based framework for the trans-

mission of progressive meshes within a client-server web architecture. The X3D[17]

XML format is extended with the information required to stream progressive LODs, as

originally described in [25]. Although the proposed solution features good compression

performance and produces good-quality intermediate levels of detail, it mainly focuses

on the visualization of a limited number of models representing scientific data, and

only takes into account a single attribute (colour) during vertex decimation. Thus, as

presented in the paper, it does not allow the simplification and transmission of typical

models used in games, which generally specify multiple attributes (such as normal and

texture coordinates) for the vertices.

Vertex clustering

Rossignac et. al in [56] present one of the earliest mesh simplification algorithms based

on vertex clustering. Vertices are clustered with respect to geometrical proximity, ac-

cording to an uniformly divided surrounding grid. All vertices falling within a given

cell are replaced by a unique vertex, which is chosen based on some importance metric,

3Recall from the past discussion about progressive meshes that the vertex split is the inverse of the
edge collapse operation.
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computed by averaging per-vertex weights, or by a higher order approximation (such

as error quadrics).

After the clustering phase, the algorithm identifies and discards all degenerate4 trian-

gles. Figure 2.3 illustrates a high-level view of the algorithm. During the Grading step

a weight table W is created and a weight is computed for each vertex. The Triangula-

tion step occurs only if the input is a polygonal mesh, instead of a triangle mesh. The

Synthesis step corresponds to the choice of the representative vertex for each cluster,

while in the Elimination phase all degenerate triangles get discarded. Finally, the Ad-

just normals step calculates normal values for each simplified triangle.

Figure 2.3: Vertex-clustering algorithm steps.

Low[39] describes a slightly modified version of the approach, where floating cells are

employed for clustering, rather than using an equally subdivided surrounding grid. The

cells are generated aggregating vertices in order of importance, as follows:

1. All vertices are sorted in non-increasing order with respect to their weight.

2. The highest-weight vertex is identified as the center of the new clustering cell; all

vertices that are within the cell are replaced by a representative vertex (which is

not put in the sorted list).

3. The previous step is repeated for the current highest-weight vertex.

4A triangle is called degenerate when its vertices are collinear. It is also referred to as a zero-area
triangle[18].
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The modified algorithm features better quality approximations for each LOD and pre-

serves a larger number of important features, due to the fact that using the highest-

weight vertex as the center of the floating cell greatly reduces the probability that

two vertices having heavy weight get clustered together. Moreover, for each cell the

maximum error, with respect to the highest-weight vertex, is always limited by half of

the cell diagonal value.

Some major disadvantages of the illustrated vertex clustering techniques are:

• they do not provide a built-in mechanism to control the complexity (number of

triangles) of the generated simplification;

• they do not cope well with preserving details from the input mesh;

• they are not flexible enough to allow different levels of simplification for different

regions of the mesh, based on their complexity;

• they do not consider connectivity information, so they are not able to preserve

input topology.

The vertex clustering approach was recently used by Willmott[63] as a starting point

to develop a real-time mesh simplification algorithm, capable of handling ill-formed

meshes without preliminary clean-up steps. The algorithm also features a finer-grain

control over the simplification process, allowing to trade a loss of detail in flat areas

for preserving more details in complex areas.

Re-synthesis

The approaches based on re-synthesis tackle mesh simplification by re-triangulating

part (or all) of the mesh. As stated in [63], they typically accept only manifold inputs

and are generally quite complex to implement. Also, they are significantly slower than

edge contraction and vertex clustering solutions.

One of the main approaches is vertex decimation, as described in [58]. The algorithm

applies local operations on the geometry and topology of the input mesh, iterating

multiple times through all the vertices by executing the following three steps:

1. characterize the local vertex geometry and topology,
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2. evaluate the decimation criteria,

3. triangulate the resulting hole.

At every iteration each vertex is a potential candidate for removal: the first step

identifies the local topology and geometry of a given vertex, classifying it as:

• simple, where the vertex is surrounded by a cycle of triangles, with each edge

using the vertex part of exactly two triangles;

• complex, if the vertex is surrounded as above, but an edge is not used by two

triangles, or a triangle that is not in the cycle uses the vertex (in these cases the

input mesh is not well formed);

• boundary, if the vertex is on the boundary of the input mesh;

• interior edge, if the vertex is simple and is used by two feature edges5;

• corner vertex, if the vertex is simple and it is used by three or more feature edges.

Complex vertices cannot be removed. All other types are potential candidates: if a

vertex satisfies the decimation criteria6, it is deleted together with all the triangles

having it as a vertex. Then a local triangulation is applied to close the hole caused by

the deletion.

The algorithm stops when the termination criterion (typically the reduction goal, in

terms of decimated triangles, or a percentage of the initial amount) is met.

Figure 2.4 shows a simplification output produced by the vertex decimation approach.

Another solution based on re-synthesis is described in [33], where a bounded approx-

imation approach is used, which guarantees that the output mesh approximates the

input within a predefined tolerance: every vertex v in the input will lie within a user-

specified ε distance in the simplified mesh. Faces are iteratively merged, and finally

replaced with a superface (that is, a triangulation of the edges formed with other face

clusters).

5If the dihedral angle between two adjacent triangles is greater than a specified feature angle, then
a feature edge exists.

6Default decimation criteria are vertex distance to plane for simple vertices, and vertex distance to
edge for boundary and corner vertices. If the distance is less than some threshold value, the vertex
can be deleted.

12



Figure 2.4: Vertex decimation simplification output[58].

2.1.2 Impostors

In their simplest form, impostors are 2D image textures mapped onto a rectangular

card (also known as billboard)[18], in order to replace highly detailed geometry with a

flat, quickly rendered image that gives the illusion of a complex object. Thus, the ren-

dering effort is proportional to the number of pixels the impostor covers on the screen,

instead of the number of vertices of the mimicked object. The impostor quadrilateral

is opaque where the object is present, and transparent everywhere else.

Impostors are best suited to mimic static objects, especially if multiple instances of

the same objects are present in the scene with similar viewing angles, allowing for

re-instancing of the same impostor. Compared to using low-polygon approximations

of complex objects, impostors usually provide better visual quality without high ren-

dering costs. Another advantage is that the texture image can be processed with a

low-pass filter to create an out-of-focus effect, in order to simulate depth of field.

In principle, an impostor provides an accurate representation only from a specific view-

ing direction, with the visual output quality rapidly degrading as the viewing angle is

modified. To overcome such issue, several advanced variations of the original solution

have been proposed.

In [54], Risser presents a technique called true impostors, where multiple depth layers

representing non-height-field surface data are associated with billboards. As with the
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original impostor technique, this approach performs a rotation of the impostor around

its center, so that it always faces the camera. However, instead of using a static tex-

ture, it exploits the pixel shader programmability to perform ray-casting of the view

vector through the billboard quad in texture-coordinate space7, in order to intersect

the 3D model and determine the colour at the intersection.

True impostors support self-shadowing, reflections and refractions. Figure 2.5 shows a

sample scene where a large number of impostors is employed. In [53] true impostors

are improved by allowing rendering of a texture volume onto the three visible faces of

a box. Although more expensive than the original algorithm, this approach overcomes

the usual restriction on viewing direction, achieving true volumetric rendering as well.

Figure 2.5: A model of Jupiter consisting of a quarter million impostors[53].

In [21], Decoret et al. propose a different variation on the basic technique, called multi-

mesh impostor (MMI), where impostors are composed of multiple layers of textured

meshes, which can be dynamically updated during visualization. The basic idea is to

combine pre-generated and dynamically updated impostors into a single approach, al-

lowing the use of cheaper pre-calculated representations where necessary, but also sup-

porting a gradual transition to dynamic updates for better quality, when feasible within

the given frame-time constraints. Moreover, this approach can bound de-occlusion er-

rors to a user-specified amount, thus providing some sort of (coarse) control on output

visual quality.

7Texture-coordinate space is defined by a frame with the center of the quad as the origin.
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2.2 Procedural content generation

In this section, we discuss some techniques that allow us to procedurally generate game

assets at runtime, thus reducing the amount of geometry data that needs to go over

the network in order to display the scene on the browser.

For game content generation, a key requirement is the predictability of the generation

process (e.g., in a multiplayer game we would need to make sure that the server and

all clients share the same game environment), so we are interested in pseudo-random

approaches that generate outputs based on a (common) seed. There is a wide scientific

and technical literature on the topic, covering many different algorithms and types of

content (e.g., urban and outdoor environments), some of which are designed to exploit

GPU computing capabilities.

As we will detail in the following subsections, unfortunately not all recent approaches

that run on the GPU are suitable for the WebGL platform. As mentioned before, sev-

eral hardware capabilities, such as geometry shaders and tessellation, are not accessible

via the API. Therefore, some recent procedural techniques, which for performance rea-

sons heavily rely on these new features, cannot be at present considered viable options.

2.2.1 Outdoor environment generation

In [55] Rohleder and Netzel outline a procedural content generation approach performed

on the GPU. The system combines the following components:

1. a real-time algorithm which employs fractal Brownian noise to generate and ren-

der infinite, deterministic heightmap-based terrains,

2. a thermal erosion algorithm (implemented as in [4]) to increase the realism of the

generated heightmap,

3. a random tree distribution approach that takes into account information describ-

ing the previously generated terrain,

4. a semi-realistic sky model based on Rayleigh-Mie atmospheric scattering simula-

tion.
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The height map generation step relies on an underlying GPU implementation of Per-

lin noise[50], which is invoked whenever a new portion of the height map needs to be

created. In order to do so, the terrain is split in a number of smaller nodes, with the

camera initially placed at the center of all nodes. UV coordinates used for noise gen-

eration are determined based on the position of nodes in world space, and the camera

direction.

To add more realism to the generated terrain, output is further processed by applying

a thermal erosion pass, computed in the pixel shader in two steps. Then a normal map

is generated, by applying a Sobel filter to the height map.

The following phase is tree placement, which consists of two separate steps. First a

tree-density map is generated in the pixel shader, mimicking growth based on slope

and height of the terrain (which are derived from normal and height maps). Then

instancing is used to efficiently render trees based on the tree-density map, starting

from those that are close to the camera, and imposing an upper limit to their number

in order to avoid performance issues.

Lastly, the Rayleigh-Mie scattering simulation is applied, with an implementation that

follows the outline provided in [49] and exploits multiple render targets (MRT) to

achieve better performance8.

The approach as a whole manages to produce large outdoor environments with good

quality of the generated terrain, still achieving quite high frame rates on modern hard-

ware.

In [34], Kamal et al. describe a solution for a parametrically-controlled generation

of mountainous terrains. The approach focuses on generating pseudo-random terrain

around distinguishing features (namely, positions with specified heights that the algo-

rithm will try to recreate in the output), with the goal of mimicking existing geograph-

ical regions by feeding their rough description as an input to the algorithm. Although

promising, it does not appear to be a suitable solution for the generation of game

environments, since it is not easily applicable to more varied terrain types.

8Unfortunately, MRTs is another lacking feature in WebGL, so the Rayleigh-Mie approach cannot
be implemented in the most effective way.
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2.2.2 Procedural vegetation generation

A typical application of procedural techniques is the generation of semi-realistic veg-

etation in large outdoor environments. In [65] Zioma describes an approach which

procedurally synthesizes believable motions of trees affected by a wind field. The tech-

nique takes advantage of GPU processing power by performing computations in the

vertex shader. Instead of applying proper physical simulation methods, which are too

time consuming to produce believable results in real-time, it models tree movements

by means of a stochastic process.

Tree dynamics are synthesized by combining noise functions according to a set of pre-

defined rules, while the wind field is defined as a bi-dimensional vector field, much

similarly to the way fluids are defined in grid-based simulations.

For simulation purposes, each tree consists of a trunk and a number of branches com-

posed by a single segment (that is, the branch flexibility is taken into account only

as an optional rendering effect). The algorithm considers different simulation LODs,

depending on the distance from the camera, because, as the viewer approaches the tree,

the importance of branch movements becomes more significant than the trunk move-

ment. Trunk animation is simulated by combining two noise functions (representing

motions parallel and perpendicular to the wind direction), while branch motions are

computed based on a set of rules, depending on the orientation of the branches with

respect to the direction of the wind.

In order to introduce some additional variations in the movement of branches, a phase

shift parameter, which is assigned to each branch in a pre-processing step, affects the

function used to generate the motion. All simulation is performed in the vertex shader,

by passing wind field state (as a 2D texture), bone hierarchy and tree parameters as

inputs. The approach leverages hardware instancing9 to achieve higher performance,

managing to render visually believable (although not strictly physically correct) ani-

mations for large numbers of trees in real time.

9Note that HW instancing is not available in WebGL and an application-level implementation in
Javascript is at least an order of magnitude slower. However, unofficial experimental extensions could
be used to expose HW instancing capabilities[10].
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2.2.3 Urban environment generation

In [29] a real-time solution for generating ’pseudo-infinite’ cities is presented (which

could likely be adapted to create urban game environments). Building generation pa-

rameters are created by a pseudo-random number generator, seeded on integers deriving

from the building’s position. All geometrical components of the city are generated as

they appear in the viewing frustum of the camera, and only buildings and streets sur-

rounding the camera position are generated and stored in memory, in order to limit

memory requirements. The shape of a building is determined by its location. Since the

amount of memory used by the algorithm remains more or less constant, the generated

virtual city can be explored to a pseudo-infinite extent.

In [42], Marvie et al. introduce a novel rendering approach, called procedural geometry

mapping, that combines rule-based grammars with surface mapping in order to render

believable cityscapes at quasi-interactive framerates. The method performs real-time

generation of procedural buildings, avoiding the need for actual geometry storage, and

is based on a GPU, per-pixel lazy development of façade grammars. The approach dras-

tically reduces memory requirements compared to more classical solutions, because the

computations for objects spanning large areas are performed in image space, and as

such do not depend on the actual size of the object, but only on the number of pixels

it covers in the viewport.

The algorithm considers building footprints, and for each façade the bounding volume

is projected towards the camera. For each pixel the split grammar is lazily developed

in order to find potentially visible split rules and terminal shapes. To achieve better

visual output, the approach employs normal and relief mapping to add further geomet-

ric details, and supports per-pixel self-shadowing for the façades.

Figure 2.6 shows a sample output of the procedural geometry mapping method. The

algorithm applies four different LODs, depending on the distance of the façade from

the viewer, performing smooth geomorphing between them: flat buildings (a), macro-

scopic geometry and shadowing (b), normal mapping (c) and relief mapping (d).

The major drawbacks of this solution are the low framerate achieved when applied to

complex cityscapes (which at present makes it a less than ideal solution for real-time

applications), and the distortion-due inconsistencies of the façades, arising when the

approach is applied to highly-curved meshes.
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Figure 2.6: Cityscape with ≈10000 façades and the four different LODs employed[42].

Another content generation solution based on grammars is proposed by Magdics[40].

The framework is based on a context-free, parametric L-grammar, which is developed

completely on the GPU in real-time. Many kinds of objects (e.g., buildings and veg-

etation) can be described by means of these formal grammars, and then procedurally

generated at runtime. The approach also features an algorithm that effectively per-

forms discrete collision detection against the scene, thus allowing proper interaction

with the procedurally generated geometry.

As with the other procedural rendering techniques, only the potentially visible part of

the scene is generated. Object instancing is performed completely on the GPU, and the

solution achieves high framerates even when large numbers of objects are procedurally

generated and tested for collision. Additionally, the paper shows how a grammar can

be translated automatically to a shader program performing the procedural generation.

2.3 Surface mapping

In order to increase the realism of the rendered scenes, without requiring huge amounts

of geometric data, surface mapping techniques may also be applied. Besides simple

normal mapping, there are more advanced approaches that can be used to give the il-

lusion of more realistic, highly detailed surfaces. The majority of the surface mapping
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solutions detailed in the following are refinements of two major approaches: parallax

mapping and relief mapping.

Relief texture mapping was presented for the first time in [47]. It is an extension to

texture mapping, supporting the representation of 3D surface details and view motion

parallax. The results are quite good for both static and moving viewpoints.

Parallax mapping was introduced by Kaneko et al. in [35], and represents the mo-

tion parallax effect on a single polygon surface by using per-pixel texture coordinate

addressing. The result is a per-pixel level representation of view-dependent surface

characteristics for each polygon.

The next subsections outline several advanced techniques, currently widely used in the

game development industry, which improve on the approaches mentioned above.

2.3.1 Parallax occlusion mapping

As described in [23], parallax occlusion mapping (POM) consists of a high-precision

ray-tracing intersection calculation, as illustrated in Figure 2.7.

0.0 1.0

0.0

1.0
UV Texture space

Correct projection
Eye ray False projection

linearly  interpolated
         intersection

Figure 2.7: Parallax Occlusion Mapping.

The approach differs from the GPU implementation of relief mapping described in [52]

in the way it determines the intersection point. After performing the linear search

that discovers the points (p, r) and (k, l), defining the segment on which the actual

intersection point lies, instead of using a binary search to find it, the ray is directly

tested against the segment. Hence, the height profile is effectively approximated as a
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piecewise linear curve.

Tatarchuk in [60] describes an advanced solution based on POM. The main features of

the approach are:

• real-time per-pixel ray tracing performed on the GPU using an adaptive height

field scheme, which reduces the presence of visual artifacts at oblique angles,

• estimation of light visibility for the displaced surface, which makes it possible to

compute real-time soft shadows due to self-occlusions,

• an adaptive LOD control system10, which enables the approach to control compu-

tational complexity at the fragment shader level, based on per-pixel information.

The system also features smooth transitions between different LODs.

2.3.2 Per-pixel displacement mapping with distance functions

In [22], Donnelly describes a GPU implementation of the displacement mapping tech-

nique, which allows small-scale displacement on a per-pixel basis. As most recent

techniques, this approach considers displacement mapping as a ray-tracing problem,

and computes the texture coordinates corresponding to the point where the viewing ray

intersects the displayed surface. In order to do that, a three-dimensional distance map

is pre-computed, which provides distances between points in space and the displayed

surface.

The main advantage, with respect to algorithms that sample the height map at uni-

formly spaced locations (as in [52]), is that using a pre-computed map eliminates the

chance of “overshooting” the correct intersection point, which can cause visible aliasing

or gaps in the rendered geometry.

The distance map of the surface is defined by means of a distance function dist(p, S) =

min{d(p, q) : q ∈ S}, where S is the surface and p is a point in texture space, which

returns the distance from p to the closest point on the surface S. In practical terms, the

distance map for S is a 3D texture that stores, for each point p, the value of dist(p, S).

Conceptually, the algorithm follows the sphere-tracing approach presented in [30] for

ray-tracing of implicit surfaces, but it applies that to the rendering of displacement

maps.

10Note that this feature is only available on GPUs that support texture LOD.
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The solution performs quite well even with surfaces that are generally problematic for

surface mapping (e.g., displaced text): Figure 2.8 shows the output of the technique

on such a case, with no visible artifacts. However, it still suffers from distortion when

applied to high-curvature regions.

Figure 2.8: Per-pixel displacement mapping applied to text[22].

2.3.3 Relaxed cone step mapping

In [51], Policarpo and Oliveira improve on the GPU implementation of relief mapping

presented in [52], by introducing a variation called relaxed cone stepping. The previ-

ous implementations of relief mapping performed ray-height-field intersection using a

binary search, which refines the result produced by some linear search procedure. As

already mentioned, the linear search phase is prone to aliasing, because it can “over-

shoot” some thin structures due to an overly large step size. To tackle this issue,

the new approach employs a variation of pre-computed cone maps (described in [24]),

called quad-directional cone step maps, which use four different radii for each fragment

(one for each cardinal direction: north, west, east, south).

The approach combines together simple cone step mapping and binary search, by re-

laxing the restriction used to define the radii of the cones. The linear search used in

previous relief mapping variations is replaced with a space-leaping approach, followed

by the usual binary search. The algorithm is more efficient than simple cone step

mapping because it allows wider cones (thus having faster convergence), and produces

better-quality output, since it still uses the binary search to refine the result of the

intersection test. Figure 2.9 illustrates a sample output of the technique.
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Figure 2.9: Relaxed cone stepping with different viewing ray directions and tiling
factors[51].

Relaxed cone stepping has the same features of the previous versions of relief mapping,

so it is able to correctly handle self-shadowing, silhouettes and intersections with non-

height field surfaces. Moreover, having removed the linear search step for the more

accurate cone stepping, it is less prone to artifacts, although maintaining comparable

performance.

2.3.4 Quadtree displacement mapping with height blending

In [23], Drobot illustrates a novel technique that combines the strengths of the solu-

tions outlined in the previous sections. The quadtree displacement mapping with height

blending (QDMHB) approach specifically targets console hardware (which does not

features most of the advanced capabilities available on latest GPUs11). The algorithm

makes use of space-leaping techniques to avoid empty spaces, and exploits texture MIP

levels to store the height quadtree, which can be prepared at runtime. Conceptually,

it is a GPU implementation of the hierarchical ray-tracing algorithm for terrain ren-

dering in [20], which uses heigh field pyramids, with bounding information stored in a

mipmap chain.

Moreover, the approach was extended with a soft-shadows computation method that

11This fact should make the approach suitable for a WebGL implementation, according to the
previous discussion about the capabilities of the API.
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takes advantage of the quadtree structure and can also compute an ambient occlusion

term. It also allows LODs in order to achieve better performance, and employs an

effective surface blending method. The final result is a scalable, efficient and accurate

displacement mapping of blended surfaces, which also includes ambient occlusion and

soft-penumbra soft shadowing. Figure 2.10 illustrates a sample rendering output of

this technique.

Figure 2.10: Quadtree displacement mapping with height blending[23].

According to [23], QDMBH tends to produce higher quality results than relaxed cone

stepping and POM when applied to highly-detailed surfaces, with a comparable or

lower amount of iterations.

2.4 WebGL frameworks

Although WebGL is still a novel technology, there have already been many attempts to

wrap the exposed low-level API into higher-level 3D engines. While most frameworks

are just prototypes, with very little documentation (if any), some of them offer a good

set of functionalities and are quite well documented, so that they have reached a certain

level of popularity among the web development community.

Based on [9], the following subsections introduce the most popular frameworks to date,

highlighting their most prominent features.
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2.4.1 CopperLicht

CopperLicht[2] is a commercial grade JavaScript 3D engine for creating games and

applications that run into the Web browser, which exploits WebGL to render hardware

accelerated 3D graphics. It is based on the well-known OpenGL engine Irrlicht, and is

probably the most complete and advanced solution among available frameworks. Its

major features are:

• scene graph support,

• 3D scene/world editor, known as CopperCube12,

• skyboxes,

• billboards,

• automatic re-ordering of transparent objects at render time,

• optional 3D mesh binary compilation (which allows for reduced bandwidth re-

quirements),

• integrated support for the most common 3D modelling formats,

• scenegraph-based 3D picking,

• optimised 3D maths library,

• collision detection and simple physics system,

• 3D skeletal animation support, with built-in importers for several formats (Milk-

shape ms3D, DirectX and B3D),

• cross-browser input management.

12Note that although CopperLicht is freely available, CopperCube is only available by purchasing
a commercial license.
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2.4.2 Three.js

Three.js[15] is an open-source, lightweight, cross-browser JavaScript library for creating

and displaying animated 3D graphics on the browser. It offers both a SVG and a

WebGL renderer, and includes the following features:

• scene graph support,

• camera system (both perspective and orthographic),

• animation support (both keyframe and morph-based),

• different light types (ambient, directional, point and spot lights),

• built-in shading models (flat, Lambertian, Gouraud, Phong),

• 3D model support for several popular formats (Blender, Wavefront OBJ, 3DS-

Max),

• built-in maths library,

• ready-to-use post-processing effect shaders.

2.4.3 GLGE

GLGE[5] is a Javascript library intended to ease the use of WebGL, which masks

the involved nature of the API and offers a higher-level interface to Web developers.

Although the framework is still under heavy development, it already offers the following

features:

• keyframe animation,

• COLLADA[1] format support,

• reflection and refraction effects,

• normal and parallax mapping,

• fog and environment mapping,

• integration with JigLibJS[7] rigid body physics library.
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Chapter 3

Design

In this chapter, we provide a detailed description of the approaches that we propose to

use for delivering geometric complexity to the client in real-time, without requiring the

transmission of large amounts of data. In the following we focus on high-level design,

deliberately leaving out the discussion of some implementation details and low-level

issues, which will be the topic of Chapter 4.

The general architecture of the framework consists of a server and a set of N clients,

as illustrated in Figure 3.1.

Figure 3.1: General framework architecture.

All clients render the exact same 3D scene, although possibly with different levels of

detail and from different viewpoints, depending on local settings and camera position.

The server is in charge of transmitting the required data to the clients on-demand, while

the clients are supposed to timely request the data they need to render the scene.

The rest of the chapter is divided into three sections, corresponding to the three major

contribution areas of the dissertation: surface mapping, progressive level of detail and
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procedural content generation.

3.1 Surface mapping

As stated in the previous chapter, surface mapping techniques are used to give the

illusion of geometric detail on surfaces that are actually described by a simple (usually

flat) mesh. These approaches can increase the perceived amount of detail at the cost

of some additional processing, and a small amount of extra data (typically a height

map associated to the texture applied to the surface). Hence, we decided to include

in the implementation two major techniques that have been successfully implemented

in some commercial titles in the past few years: parallax mapping and relief mapping.

Although, as stated in the background section, there exist some improvements on these

techniques that produce slightly better visual outputs, these two serve well as a proof

of concept of the surface mapping approach as a whole.

3.1.1 Parallax mapping

Parallax mapping was introduced by Kaneko et al. in [35], and approximates the mo-

tion parallax effect on a single polygon surface. The algorithm that we are going to

describe in the following is detailed in [62], and is a slightly enhanced version of the

original approach, which can be easily implemented in GLSL.

The parallax effect is the apparent motion that the areas of a non-flat surface exhibit

with respect to one another, due to a change in the position of the viewer. The al-

gorithm tries to approximate the effect by modifying the texture coordinates of each

pixel, based on the corresponding surface height values.

Before delving into the algorithm itself, the concept of tangent space must be intro-

duced. The tangent space consists of a coordinate system that is oriented relative to

the surface: the three orthogonal axes defining it are tangent, bi-tangent (often referred

to as bi-normal) and normal. While the normal is a vector perpendicular to the plane

of the surface, tangent and bi-tangent lie on it. If the given surface is not flat, the

tangent space will of course vary over the surface.

The concept of tangent space is fundamental to understand parallax and relief map-

ping, since they both require us to compute the intersection of the surface with the
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vector departing from the viewer’s position towards the point the viewer is looking at.

In order to do that, the vector needs to be transformed into the same coordinate system

of the height map associated to the surface, which is precisely the tangent space.

To be able to apply the parallax mapping algorithm to compute the displaced texture

coordinates, for each pixel the following inputs are required:

• the original texture coordinates,

• the height value at the point,

• the eye vector in tangent space coordinates.

With simple texturing, when a texture representing an uneven geometry is mapped

onto a flat polygon, the corresponding surface appears flattened. This is due to the

fact that in general the point displayed (point A in Figure 3.2) does not correspond to

the one at the intersection of the eye vector with the real surface (point B).

Figure 3.2: Simple texturing on an uneven surface.

The core idea at the base of parallax mapping is to correct the texture mapping, so that

the coordinates correspond to point B instead of A. In general, the algorithm shifts

lower areas towards the viewer, while higher areas are shifted away (thus effectively

simulating the parallax effect). The amount of displacement applied to the incorrect

UV coordinates is determined based on the height value at the point, as illustrated in

Figure 3.3.

In order to represent height values, an extra map is associated to the regular texture,

with a one-to-one correspondence between texels and height values, which are normal-

ized in the range [0.0, 1.0]. Both texture coordinates and height values are in tangent
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Figure 3.3: Parallax mapping: offset computation.

space, so as already mentioned the eye vector needs to be transformed into that space

to correctly perform the necessary computations. The usual approach is to generate

the eye vector on a per-vertex basis, by subtracting the position on the surface from

the viewer position. The resulting vector is then put into tangent space, based on

the rotation matrix constructed with the vertex tangent, bi-tangent and normal at-

tributes. The transformed vector value is then linearly interpolated to be processed at

the pixel-level, where it is normalized before starting to compute the texture displace-

ment values.

The coordinate offset at a given point P is computed as follows:

1. the height value h corresponding to the original texture coordinates T is retrieved

from the height map,

2. h is scaled by a factor s and subsequently biased by a term b (resulting in a new

height hnew = h · s+ b),

3. the offset is obtained by tracing a vector parallel to the polygon, starting at the

point situated directly above P on the surface, and directed towards the eye

vector. The computed vector is added to the original coordinates to obtain the

displaced coordinates T ′ = T + (hnew · Vx,y/Vz), where Vx,y and Vz represent the

bi-dimensional vector constructed from the x and y components of the normalized

eye vector V , and its z component.

It is worth noting that the choice of the factor s and the bias term b affects the quality of

the visual output and should be made considering the topology and physical properties
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of the simulated surface. For surfaces featuring regular patterns (e.g., brick walls) a

good value for the scaling factor is given by the average surface thickness, divided by

the side of the area covered by the texture. A good value for b is typically 1
2
s, so that

the remapped height field range does not exclude the 0.0 value, corresponding to the

intersection of the real surface with the polygon used to model it. Finally, T ′ is used

to retrieve the proper texel value for the pixel at hand.

The algorithm presented so far is the classic version of parallax mapping, which makes

the assumption that the point at coordinates T ′ has the same height as the point at

coordinates T . This is generally not true, especially for irregular surfaces. Typically,

the steeper the viewing angle is, the smaller the computed offset gets, which usually

makes the assumption nearly correct. However, at shallow angles the offset value tends

to infinity, while the probability that T ′ and T index similar heights becomes in general

very small. This results in artifacts and noticeable distortions in the visual output, due

to totally inconsistent texel values.

A practical solution to the problem consists in conservatively limiting the offset value,

so that it can never be greater than hnew, as depicted in Figure 3.4.

Figure 3.4: Parallax mapping: limited offset computation.

Thus, the revised equation for the offset computation becomes T ′ = T + (hnew · Vx,y),
which effectively limits the offset to being no greater than the height value at T .

Considering that parallax mapping is itself an approximation, this solution is quite

reasonable and reduces the parallax effect enough to preserve visual quality at shallow

angles.

Although parallax mapping is quite an inexpensive technique, it still produces good
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results. However, it has some strong limitations: besides the issue with shallow viewing

angles, it is also unable to detect self-occlusion (that is, areas of the simulated surface

that occlude other ones) and in general tends to produce better results when applied to

height maps that have smooth gradients, while it can result in artifacts and distortions

when used with steep gradients.

3.1.2 Relief mapping

Relief texture mapping was presented for the first time in [47] and is an extension to

texture mapping, which supports the representation of 3D surface details and view mo-

tion parallax, by using image warping techniques. The results are quite good for both

static and moving viewpoints. In the following we describe an enhanced, GPU-friendly

version of the original algorithm, as presented in [52], which allows us to map relief

textures onto arbitrary polygonal models.

Similarly to the previously illustrated parallax mapping, this technique uses a height

map of values normalized in the range [0, 1], expressed in tangent space, in order to

compute a displacement of the original texture, based on the eye vector. However, due

to the different approach, relief mapping can produce correct self-occlusions, interpen-

etrations and, with some additional processing, simple forms of shadows. Compared to

parallax mapping, it also produces more consistent close-up results, usually generating

less noticeable artifacts and texture distortions (if any), although at the same time

producing a more pronounced relief effect.

The foundation of the algorithm is the ray-height-field intersection, which is computed

on a per-pixel basis. Apart from the transformation into tangent space of the eye vector

(which is required in order to perform the intersection with the height field), all other

operations are performed per fragment, so that the per-vertex computations required

to apply this technique are in fact the same as for parallax mapping.

At high-level, the algorithm consists of the following steps, which are performed for

each fragment (note that the computation of the eye vector is performed per-vertex,

as with parallax mapping):

1. compute EV (normalised, tangent-space-transformed eye vector associated to the

current fragment),

2. compute texture coordinates of the point B, where EV intersects depth value
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1.0, by using EV and A, the point corresponding to the texture coordinates of

the fragment,

3. finally compute the intersection between EV and the height field surface by

applying a binary search starting with points A, B,

4. use the texture coordinates of the intersection point to perform shading, that is:

use it to index any map associated to the fragment (diffuse map, textures, . . . ).

The general idea is illustrated in Figure 3.5.

Figure 3.5: Relief mapping: ray intersection with a height field using binary search.

A depth of 0.0 and 1.0 are associated to point A and B, respectively. Every step, the

current interval is split in half and the averaged depth and texture coordinates of the

endpoints are assigned to the midpoint (which for the first step corresponds to point

1 in the illustration). The computed texture coordinates are used to access the depth

map and determine whether the point is inside the height field surface (that is, the

computed depth is lower than the stored depth) or not.

The search goes on, with one endpoint outside the surface and one inside it, until an

iteration limit is reached. In [52], eight iterations are suggested as a satisfactory trade-

off between the quality of the computed intersection and the processing cost required

to determine it. In practice, that corresponds to subdividing the height field in 28

equal-size intervals.

As it is, the binary search may produce an incorrect intersection approximation. As

shown in Figure 3.6, the issue arises if the ray intersects the height field surface in
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Figure 3.6: Relief mapping: overshooting issue with binary search.

more than one point. In this example, point 1 is the first midpoint calculated between

A and B and, since it stands above the height field surface, the binary search would

go deeper, although the ray has already pierced the surface before. As a result, it

would completely overshoot the correct intersection, and finally return point 3 as the

intersection point.

Fortunately, the problem can be efficiently overcome by coupling the binary search with

a preliminary linear search, which starts from point A and samples the AB segment

at regular intervals of configurable length δ, as illustrated in Figure 3.7. The search

Figure 3.7: Relief mapping: linear search.

stops as soon as it finds the first point situated under the height surface. The value of

δ should vary on a per-pixel basis, as a function of the angle between the transformed
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eye vector EV and the interpolated per-pixel normal value. As the angle increases, δ

decreases, thus effectively forcing a finer grain linear search in order to avoid missing

possible intersections.

Once the first point under the height field surface is found, the binary search is per-

formed using that point and the one previously sampled by the linear search (which

by definition stood above the surface). Since the sampled interval is smaller, a lower

number of binary-search steps is generally enough to achieve the same results as with

binary search alone.

3.2 Progressive Level Of Detail

As mentioned in Chapter 2, progressive rendering and transmission of 3D models do

not represent a novel research topic. While new ways of efficiently transmitting large

3D models are still actively researched for the purpose of visualizing remote scientific

data, polygon simplification does not undergo a lot of research anymore.

The reason is that for most applications the increased GPU processing power now

allows us to simply push large amounts of geometric data on the graphics processor,

without noticeably affecting the rendering frame rate.

However, simplification still makes sense in some cases:

• most mobile devices still do not have fast dedicated graphics processors, so they

cannot yet afford to draw high amounts of polygons at acceptable frame rates,

• browser-based 3D applications (such as WebGL and Flash games) can lever-

age HW acceleration to render the 3D scenes, but with respect to downloading

the models on-demand they are limited, by available network bandwidth, in the

amount of data they can feed to the GPU without interrupting the rendering

flow. If waiting for possibly long times to pre-cache required data is not an op-

tion, this issue severely limits the complexity of the scene that could be rendered

in real-time, especially if we consider average mobile connection bandwidths.

Therefore, we propose to reduce the amount of data that is sent over the network, by

implementing an automatic simplification approach, run on the server side, which pro-

duces a sequence of Level Of Detail (LOD) approximations of decreasing complexity
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and size. Such LODs can then be requested by clients on demand, based on their own

requirements.

As described in Section 2.1, several different simplification approaches have been pro-

posed in the past. Since we are focusing on simplifying and transmitting typical game

models, the chosen approach should exhibit good results when applied to models having

reasonably low polygon counts, and should take into account not only vertex positions,

but also common vertex attributes (e.g., normals, UV mapping). It must also allow

progressive transmission, so that the client can start rendering a model as soon as it

gets its coarsest LOD.

For such reasons, we decided to implement a general polygon reduction approach known

as vertex contraction. In this category, the two most known techniques are progressive

meshes, originally presented by Hoppe in [31], and the Garland-Heckbert simplification

algorithm, introduced in [26]. Both were originally developed to simplify models with-

out vertex attributes, and later extended to cope with attribute simplification, under

certain assumptions, in [57] and [27] respectively.

In the following we provide a high-level description of the solution implemented in

the prototype, which is based on the basic idea of the Garland-Heckbert algorithm,

although it uses an alternative metric to drive vertex contraction, and a different ap-

proach to cope with vertex attributes.

The original algorithm is founded on iterative vertex contraction and can be applied

to manifold, as well as non-manifold meshes. It contracts couples of vertices (that is,

it makes a single vertex out of the two) based on a cost metric. It is worth noting

that the algorithm can potentially contract any couple of vertices (V1, V2) in the mesh,

provided that they form a valid pair, where (V1, V2) is a valid pair if |V1 − V2| ≤ τ for

some threshold value τ ≥ 0, or there exists an edge with V1 and V2 as endpoints. Since

disjoint components of the input mesh could be joined during the contraction process,

the algorithm does not necessarily preserve mesh topology.

Although contracting vertices that are not connected by an edge is not necessarily a

drawback, because distinct features of a mesh could well look like a single one from

afar, it can potentially generate a so-called webbing effect, which consists in having

features which would clearly be separated in the original model, but result somehow

“glued” together in the simplified version. The effect is particularly noticeable for an-

imated models.
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3.2.1 Vertex placement

Given a valid couple of vertices (V1, V2), Garland and Heckbert in [26] describe several

ways of computing the position where the vertex Vs, which replaces them, should be

placed. These are:

• subset placement : one simple and fast solution consists in selecting V1 or V2,

based on which one of the two has the best metric;

• midpoint placement : the contracted vertex position is determined as Vs = (V1 +

V2) / 2. This can be considered an alternative to subset placement, or used in

conjunction with it as an additional option, to be used if the averaged position

exhibits a better metric than the two endpoints;

• optimal placement : a more expensive choice is to compute a position that would

produce the best possible cost metric for the substituting vertex. Depending on

the function defining the cost metric, this problem may not admit a solution or,

if the solution exists, it may not be unique. For the metric suggested by Garland

and Heckbert, the problem is reduced to inverting the matrix defining the error

at the vertex. If it is not invertible, the algorithm tries to find a point minimizing

the metric along the segment (V1, V2), resorting to midpoint/endpoint selection

if that attempt fails.

For the actual implementation, we decided to apply subset placement, because it is

faster than the other options (since no additional costs are computed in order to choose

placement) and it is also more amenable to progressive transmission (see Section 3.2.5

for details).

3.2.2 Mesh simplification algorithm

The approach we propose is a constrained version of the general Garland-Heckbert

algorithm, in the sense that:

• the input mesh is assumed to be manifold,
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• the τ value is set to 0, so that only edge contractions (also referred to as edge

collapses) are allowed,

• the input mesh is assumed to be triangulated, in order to make the implementa-

tion of the algorithm a bit simpler1.

The concept of edge collapse is depicted in Figure 3.8.

Figure 3.8: Mesh simplification: a potential sequence of edge collapses.

First, edge (3, 1) is selected for contraction (that is, vertex 3 is thrown away, and

substituted with vertex 1 as an endpoint in every edge it was part of). Then, edge

(4, 1) is collapsed, and finally edge (6, 5) is. Typically, at each collapse one vertex, two

faces, and three edges are removed.

From a high-level perspective, the algorithm processes a given mesh M0 and performs

a series of n edge contractions, which results in a sequence of meshes M0,M1, . . . ,Mn,

where the generic Mi differs from the previous mesh (if any) only for a single edge

contraction.

The simplification algorithm can be divided into the following steps:

1. Compute the cost metric for every edge in the mesh.

2. Select the minimum cost edge (u, v) and collapse it. The process consists of three

distinct parts:

2.1: remove any triangles that have both u and v as vertices (that is, remove any

triangle on the edge (u, v)),

1Note that in practice this does not represent a serious limitation, because a non-compliant mesh
can be easily triangulated with the help of any 3D modelling tool, or in a pre-processing step.
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2.2: adjust mesh topology, by updating the remaining triangles that have u as a

vertex to use v instead,

2.3: remove vertex u.

3. Recompute the cost metric for the edges that have been affected by the collapse.

4. Go back to step 2 until there are no more collapsible edges, or the desired level

of simplification for the input mesh has been reached.

Figure 3.9 shows the output produced by applying the approach to a sample input

mesh: the model on the left is the original unprocessed mesh, while the other two are

its 50% simplification and 20% simplification, respectively.

Figure 3.9: Mesh simplification: sample output.

3.2.3 Cost metric

So far we have described the algorithm, and mentioned that a cost metric is used to

determine which edge should be collapsed, but we have not detailed the metric itself.

Past research literature offers plenty of cost metrics that have been explored in asso-

ciation with edge contraction techniques, some of which produce very good results in

terms of visual quality of the approximations and mesh topology preservation. How-

ever, most of them are computationally quite expensive and, most significantly, target

the simplification of models with a high polygon count.

As previously stated, our goal is to achieve good quality simplification of relatively low

-polygon models, so we opted for a cost metric proposed by Melax in [43], which we

believe to be better suited for the task and comparatively faster to compute.
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The metric tries to measure the visual change that each edge contraction would intro-

duce in the mesh, by means of a comparison involving face normals and edge lengths.

The heuristic tends to preserve detail in high-curvature surfaces, simplifying first nearly

co-planar areas, which are likely to maintain similarity to the original, even when de-

scribed with a reduced number of faces.

Triangle normals are computed with a commonplace approach, by taking the cross

product of two edges of the triangle2. Therefore, for a triangle < p1, p2, p3 >, if we use

the vector U = p2 − p1 and the vector V = p3 − p1, then the normal is computed as

N = U × V .

The following formula determines the cost of contracting a given edge (u, v).

C[(u, v)] = ‖u− v‖ ×max
f∈Tu

{ min
h∈T(u,v)

{(1− f.normal · h.normal) / 2}} (3.1)

Basically, the cost of collapsing an edge is defined as a curvature term, multiplied by

the edge length, so that the cost of the collapse grows proportionally to the length of

the edge. The curvature term is computed by comparing the scalar products of face

normals, in order to determine the triangle adjacent to u that faces furthest away from

the other triangles along edge (u, v).

It is worth noting that the proposed metric considers edge contractions to have a di-

rection, which means that contracting edge (a, b) does not necessarily have the same

cost as collapsing edge (b, a). The lower the cost for an edge, the smaller the expected

visual change generated when contracting that specific edge.

The metric works reasonably well in most cases, usually computing costs that put off

the simplification of corner vertices until no other candidates are available. This fact

is generally positive, because it forces simplifications to preserve the overall original

shape of the model and its symmetries.

However, in order to try to enforce shape and feature preservation even more, we intro-

duced an additional check on top of the original metric, which can be easily disabled

on a per-mesh basis if, for some specific inputs, the visual output quality happens to be

better without it. The extra check is applied during the cost computation step: when-

ever a new potential minimum cost is computed, before updating the best contraction

2Note that, since the order of the vertices employed for the computation affects the direction of
the normal, this has to be selected consistently all over the mesh.
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candidate, the normal attributes of the edge endpoint vertices u and v are compared.

The idea is again to use normals to measure the amount of visual change introduced

by the collapse: more specifically, if the angle between u and v normal attributes is

greater than 90 degrees, the edge is discarded as a possible candidate. This can be

inexpensively checked by verifying whether or not the scalar product between the two

vectors is less than zero: if that is the case, than the angle is greater than 90 degrees.

With the additional check, the algorithm typically manages to preserve more distinctive

features of the input model, at the cost of some extra computations, since the normal

attributes of the involved vertices need to be computed when the check is performed

(see Section 3.2.4 for details about a common way to compute such attributes). Figure

3.10 illustrates the point: with the additional check enabled, the overall shape of the

ship is better preserved at the lower levels of detail.

Figure 3.10: Mesh simplification: sample output with and without the extra check on
normals.

3.2.4 Surface attributes

The simplification approach that was described in the previous sections does not take

into account any vertex attribute, save for its position. Hence, its applicability is quite
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restricted, because in general the 3D models used in a game specify a set of attributes

for each vertex, typically consisting at least of normal vector and UV coordinates.

Therefore, we decided to extend the approach to be able to cope with these two com-

monplace surface attributes.

With respect to vertex normal attributes, there are at least two possible strategies

that the simplification approach can adopt to handle them. Assuming that the loaded

model defines the normal attribute for every vertex in the mesh, a first possible attempt

would be to simply retain the value associated to each vertex, without modifying it,

through the entire simplification process (that is, each vertex that is not removed from

the simplified mesh keeps its original normal value, unconcerned of any change to the

mesh topology caused by the simplification process).

Unfortunately, this strategy is very likely to generate lighting artifacts, since vertex

normal values will not in fact reflect the actual face normals in the simplified LODs.

To avoid, or at least mitigate this issue, an alternative approach consists in disregarding

vertex normal attributes (if present) when the input mesh is loaded, and recalculating

them during the simplification steps, using the updated triangle topology. Since all face

normals are consistently updated during the simplification process in order to compute

the cost metric, this strategy implies only a small additional cost: for each vertex, the

normal is computed as the normalized sum of the normals of the triangles the vertex

is part of, as expressed by the following equation.

V.normal = ‖
∑
f∈TV

f.normal‖ (3.2)

As regards UV mapping, the problem is quite hard to solve in the general case. Hence,

we focused on trying to achieve acceptable results, assuming that the mapping is used

to index a single texture. Unlike the vertex normals, the UV mapping cannot be

discarded at loading time, since the information would be lost and could not be consis-

tently replaced. It is important to notice that in general the mesh could exhibit some

degree of vertex position replication, because there may be couples of vertices V and

U that are defined by the exact same position coordinates x, y, z, but differ for their

UV mapping.

If the algorithm is run as it is, with the only difference that each vertex has an associ-

ated UV mapping attribute, the results are pretty disappointing. The algorithm works
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as expected if the input does not contain any position replication (that is, the UV co-

ordinates are continuous over the surface), but it produces very poor approximations

otherwise. Figure 3.11 illustrates the results.

Figure 3.11: Mesh simplification: flawed UV-mapped output.

The illustration on the left represents the original mesh, whereas the image on the

right is a 70% LOD approximation. It is immediately clear that the vertex replication

is causing problems to the algorithm, which is generating “holes” in the mesh.

Therefore, we extended the algorithm to act slightly differently when applied to meshes

with UV coordinates specified. Basically, each time an edge (u, v) is collapsed, so that

vertex u is “moved” onto vertex v, the algorithm also checks which vertices share their

position with u, and update their spatial coordinates with the position of v, leaving the

UV mapping untouched. With this single modification, the approach becomes able to

cope with texture coordinates in a much more effective way.

The idea, although conceptually quite simple, works reasonably well on meshes ex-

hibiting a majority of high-curvature surfaces, as the one illustrated in Figure 3.12.

However, the simplification still generates some holes in models having a more geomet-

rical shape, especially at the lower approximation levels, or when the input mesh has

already a very low initial polygon count.

Overall, it is worth noting that lower level simplifications are supposed to be used

when the lack of detail should be hardly visible, at least up to a certain extent. Thus,

even though depending on the input mesh some holes may occur in the lower-detail

approximations, it may still be possible to employ them, since there is a good chance

that the imperfections will go unnoticed because of their relatively low screen coverage.

As the reader may have noticed, we have not mentioned at all the possible application
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Figure 3.12: Mesh simplification: corrected UV-mapped output.

of the simplification algorithm to animated meshes. Since the problem is already quite

difficult to solve when dealing with simple attributes, such as normals and UV coordi-

nates, we decided to leave the simplification of animated meshes as a possible research

direction for future work (see Chapter 5 for additional information).

3.2.5 LOD selection and transmission

So far the discussion of the mesh simplification approach has been centred around the

algorithm itself and its possible extensions. However, generating the LODs for a given

input mesh is only part of the problem at hand. The other main issues consist in LOD

selection and its transmission from the server.

One problem that needs to be mentioned with respect to the rendering of LOD se-

quences is the phenomenon called popping, which is basically a noticeable, abrupt

change in the appearance of the model, happening when different LODs are swapped.

The greater is the change in shape between the swapped levels, the more noticeable

becomes the effect. In order to mitigate the popping effect, morphing can be applied:
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with this approach, the vertices of one LOD are mapped to the next one, in order to

create a smooth transition over a short amount of time. In the case of the simplification

algorithm, the information needed to perform the morphing may be extracted from the

edge collapse sequence.

Although the selection of the level of detail could potentially be performed on the

server, it makes more sense to let the client decide which LOD should get displayed,

based on some kind of client-side metric, updated every time the 3D scene changes.

Since the focus of the dissertation with respect to progressive rendering is on LOD

generation rather than LOD selection, which is itself quite a broad and complex topic,

the following discussion will only provide a brief overview of the matter.

Given a sequence of LOD approximations for an object, some of the most prominent

factors that could drive the selection are:

• client rendering capabilities (that is, graphics hardware limiting the amount of

geometry that can be rendered with acceptable frame rates),

• object distance from the view point,

• camera field of view3 (FOV),

• screen-space coverage of the object.

The first one is somewhat orthogonal to the others: if the scene cannot be smoothly

rendered, then the level of detail should be decreased until an acceptable frame rate is

achieved, regardless of other considerations. Assuming the GPU can handle the load,

the remaining options are part of typical metrics used to determine the minimum level

of approximation required for each model.

The distance between the model and the viewpoint/camera can be quickly computed as

the magnitude of a simple vector subtraction if we consider a fixed point of the object,

such as its geometric centre, as a reference. Otherwise, assuming that the object is a

convex polyhedron, the distance of its closest point to the viewpoint could be found

by using one of several, relatively more expensive techniques, such as JGK.

The viewpoint-object distance is then compared to a sequence of thresholds to deter-

mine which level of detail should be selected (where the coarsest level is associated

3Field of view is defined as the extent of the observable game world that is displayed at a given
moment.
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with the farthest range, then the second-coarsest, and so on).

However, as described in [36], this is a simple but not optimal way to select the level of

detail, because it does not take into account the field of view of the camera: if the FOV

is very narrow (that is, the camera is zoomed), then the object could appear larger on

screen even if it is distant from the camera, so that selecting a coarse LOD would be

wrong.

Another issue associated to the use of basic distance thresholding is the fact that, if the

model repeatedly crosses back and forth the threshold line within a short time span,

the constant switch between levels of detail is likely to produce a noticeable flickering

effect.

Instead of the simple distance from the camera, a better, related metric is the screen-

space coverage of the object (that is, its projected size on the display), which takes

into account both object-viewpoint distance and camera FOV.

More exactly, the magnification factor of the object is used, which is defined as the

ratio between the screen size of the object and its physical size: the higher the value,

the more detailed the model should become. Introducing screen size into the metric

accounts for both object-viewpoint distance and camera field of view.

The magnification factor M is derived by transforming object position in view space,

and then computing

M = scalex / viewz (3.3)

where scalex represents the scaling parameter used in the projection equation:

screenx = (viewx × scalex) / viewz + centerx (3.4)

The viewz measurement, which accounts for camera distance, is expressed in world

units, while scalex is measured in pixels, as it is related to camera FOV. Thus, M is

defined in pixels per world unit. When M increases, more pixels are used per world

unit, because the object becomes relatively larger on screen, thus a more detailed LOD

should be used.

With respect to the flickering effect that happens when using a single threshold value

for comparisons, a possible workaround comes from using hysteresis thresholding, which

consists in thresholding against a range of values. Basically, as long as the compared

value falls within the range defined by the lower and upper thresholds corresponding
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to the current LOD, the selection does not vary. This approach mitigates the flickering

issue, since toggling between levels of detail is less likely to happen.

As regards the transmission of the LODs to the client, in the perspective of sending

as little data as possible over the network to reduce the time needed to fetch model

approximations, it makes sense to build on the client side a simple caching system

for the LODs. At the cost of the extra memory necessary to cache them, the client

has the benefit of downloading each LOD only the first time it is needed, while every

subsequent request will be served directly from the cache.

Moreover, it is worth noting that there are two possible ways to deliver the actual data

from server to client:

• to transmit each LOD as a separate entity (that is, like it was a stand-alone 3D

model),

• to send only the “difference” with respect to the previous, coarser LOD. This ob-

viously implies that at least the very first transmission for a given model consists

of a whole LOD (possibly the coarsest one). The idea is to use the edge collapse

ordered sequence to perform a sort of progressive transmission. The information

required to perform such a transmission can be extracted and saved at simplifica-

tion time on the server, by storing the vertex to which each vertex is contracted,

and sorting the vertices by the order in which they were collapsed. Thus, when a

more detailed level is required, in order to allow the client to reconstruct the LOD

from the one it has already got, only the extra vertices and the data required to

reconfigure the mesh topology (that is, the indices defining the triangles) need to

be sent.

3.3 Procedural Content Generation

Procedural content generation (PCG) refers to the process of generating (game) con-

tents algorithmically. It has been used in game development for a long time, mainly

with the following goals:

• re-playability : an element of (apparent) unpredictability is introduced into the

game content, so that the user could potentially play again the same part of
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the game without having the same experience (e.g., secondary features of a level

could be procedurally generated in a platform game);

• pseudo-infinite environment generation: the environment is procedurally gener-

ated to allow the player to explore extremely large (possibly boundless) environ-

ments, which 3D artists could not generate by hand within reasonable amounts

of time.

Examples of mainstream applications of PCG are: dungeon generation (widely used in

role-playing games, such as Diablo), terrain generation (commonplace in many real-

time strategy titles, such as Civilization) and rule-based vegetation generation.

Although technically not restricted to that, game PCG is almost always associated to

some kind of pseudo-random number generation, which is the source of the variability

in the generated contents.

It is worth noting how a seedable, good quality pseudo-random number generator4

(PRNG) were to be preferred to truly random generators, since it allows repeatability

of the output. The term seedable denotes the possibility of feeding the generator with

an input string (the seed) at creation time, which determines the sequence of pseudo-

random outputs.

Repeatability is important for several reasons. First, it simplifies a lot the debug

of procedural content generators. Moreover, in a multi-player environment, it allows

to generate the exact same content on every client, which is typically a mandatory

requirement for playability reason. Hence, from now on the discussion will assume

the use of a seedable PRNG whenever the generation of pseudo-random numbers is

required.

In the following section we describe an approach that allows real-time procedural terrain

generation. The proposed solution, although limited to the generation of a specific type

of game environment, demonstrates how PCG techniques can be applied to reduce the

amount of data required to render the environment.

4Here, by good quality pseudo-random generator we refer to generators that do not exhibit recog-
nizable patterns in their pseudo-random output.
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3.3.1 Procedural terrain generation

Terrain generation is arguably the PCG application that has undergone the greatest

amount of research to date: many different real-time solutions have been proposed,

some of which are entirely performed on the GPU. Unfortunately, as already stated

the WebGL API does not yet expose some of the most recent GPU capabilities, and

this fact rules out some interesting techniques, such as [28].

However, in the following we describe an approach that can perform real-time terrain

generation on a WebGL client, is parametrizable and allows output repeatability.

Fractal terrain generation

As described in [48], most terrain generation techniques, including the one implemented

in the prototype, use some form of 1/f noise, which is also referred to as pink or flicker

noise. This kind of noise allows us to generate surfaces that exhibit fractal behaviour,

which resembles to a certain extent the morphology of natural terrain. Formally, it is

characterised by the following formula:

S(f) =
1

fa
, (3.5)

where S(f) is the power function of frequency, known as spectral density, and a is a

value close to 1. There are many different methods to generate pink noise, of which

the most commonly used are:

• Spectral synthesis : 1/f noise is simulated by accumulating a certain number

of layers (called octaves) of noise, each one contributing on a single frequency.

The octaves are created by producing evenly spaced pseudo-random numbers,

corresponding to each octave’s frequency, and filling in the remaining values by

interpolation. The performance and quality of the output of spectral synthesis

depend significantly on the underlying PRNG.

• Midpoint displacement : the value of each noise cell is computed in a single pass,

by applying a divide and conquer approach, which recursively computes values

that are half-way between already known cells, by averaging values from those

cells, and then pseudo-randomly offsetting the result inside a range that depends
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on the current level of recursion. Ideally, the offsets should have a Gaussian

distribution inside the range. In practice though, uniformly distributed values

are faster to compute and still provide acceptable results.

• Simplex noise (which is a revised version of classic Perlin noise, as described in

[50]): this approach generates high-quality noise (that is, with no noticeable di-

rectional artifacts) and is quite fast, as it is amenable to a GPU implementation

in the fragment shader. However, since it relies on look-up tables to generate

pseudo-randomness, seeding the algorithm is not as simple as with a fairly stan-

dard PRNG, and would also require a larger amount of data to compose a seed.

Based on the considerations above, we decided to use midpoint displacement to gen-

erate the fractal terrain. More specifically, we implemented it by using the diamond-

square algorithm, which represents a good trade-off between generation speed and

output quality.

Diamond-square algorithm

The diamond-square algorithm, as described in [48], takes a bi-dimensional grid as

input, which, for the sake of simplifying the implementation, should be square, with

dimension (2N + 1)× (2N + 1) (the plus one is required to have the midpoints placed

exactly on the grid intersections). The only height values that need to be initialized in

the input are those of the four corners, which can potentially be zero as well.

Figure 3.13 graphically illustrates the basic idea of the algorithm, for a small 5× 5 2D

grid.

Figure 3.13: Diamond-square algorithm iterative subdivision.

In the preliminary step, the four corner values (highlighted in red) are initialized.
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Then at step 1 (the diamond step) the midpoint value (highlighted in red) is computed,

by averaging the four corners (highlighted in blue), and offsetting the result by some

pseudo-random value in the range [0, rangeScale].

During step 2 (the square step) the remaining midpoints (highlighted in red) are com-

puted, averaging the corresponding four corner values and offsetting the average by a

pseudo-random value in [0, rangeScale], as done in the previous step. Note that the

grid is assumed to wrap around, in order to enable the selection of corner points for

the midpoints that are located on the borders.

Step 3 and 4 illustrate the next iterations, which fill in all remaining uninitialized

points.

The rangeScale parameter is quite important, because it controls the amount of varia-

tion in height that the terrain is allowed to have at a given point. In order to get more

consistent results, it is generally varied dynamically during the algorithm execution,

by halving its value at the start of each grid subdivision.

The number of subdivisions performed by the algorithm is obviously equal to log2(M−
1), where M is the edge length of the grid. Conceptually, the higher the number of

iterations (and therefore the larger the grid size), the finer the grain of the surface

tessellation. Figure 3.14 illustrates the increasing complexity at different subdivision

stages: after the first pass, only nine points have been computed and the corresponding

wireframe surface is extremely coarse, but after only five passes, the surface is already

composed of a high number of triangles.

Figure 3.14: Diamond-square algorithm: tessellation granularity.

A good trade-off value for the number of subdivisions is 8, which corresponds to a

dimension of 257× 257 for the grid. An example of terrain surface generated with the

suggested size is shown in Figure 3.15.

With that value, the surface is complex enough to effectively simulate a terrain. More-
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Figure 3.15: Procedural terrain generation: wireframe example output.

over, a larger dimension, although producing a finer-grain tessellation, would not allow

to perform the process in real-time, thus making the approach impractical for gener-

ating terrain patches on the fly.

It is worth noting that in order to use the diamond-square algorithm within a patch-

based terrain system, patch borders require an extra post-processing step, since in

general there will be visible discontinuities in the height values at the edges of adjacent

patches. However, the problem can be effectively mitigated, by considering a sort of

“transition area” around the border of the most recently added patch. In order to

smooth the transition, the height values in this area would be recomputed by inter-

polating their current values with the values from the corresponding, equal-size area

around the border of the adjacent, pre-existing terrain patch.

Procedural height-based texturing

So far we have described how to procedurally create a terrain patch, but we have not

discussed how it should be rendered. In fact, this choice is crucial in determining a

believable terrain.

The simplest solution is to map a single, high-resolution seamless texture over the

terrain patches. Unfortunately, this does not look right at all, because the texture

pattern is easily recognised by the human eye. Also, it does not take into account in
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any way the terrain height at the given point, so the result tends to appear flat.

Therefore, we decided to use a different approach that, although computationally more

expensive than simple texturing, produces quite believable results. The approach is

run entirely on the GPU and combines several low-resolution textures on a per-pixel

basis, in order to determine the final colour of a given point.

The fundamental idea is to have a set of height zones, each one associated with a

texture, which contribute to the colour of the fragment in a measure that depends on

the height value at the point. The version implemented in the prototype uses four

zones and associated textures, which are depicted in Figure 3.16.

Figure 3.16: Procedural height-based texturing: texture reference set.

However, it might be possible to achieve even better results by increasing the number

of height zones, thus applying a finer-grain procedural texturing. At a high level, the

routine is described by the following steps, which are applied for each fragment, and

perform an additive blending between the textures:

1. Receive the per-vertex, interpolated texture coordinates u, v and height value h.

2. Compute the height range for each zone, which is defined as the difference between

the maximum and minimum altitudes associated to the zone.

3. Calculate the weight for each zone as:

zone.weight = max(0, (zone.range− |(h− zone.max)|) / zone.range), (3.6)

4. Compute the final colour as:

fragmentColour =
∑

z∈heightZones

z.weight · z.texture[u, v] (3.7)
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A significant aspect in this approach is the choice of which tiling factor tf should to be

applied to the textures. If the scale is too small, the blend will show visible patterns.

On the other extreme, if the scale is too large, the terrain will have a coarse-grained,

”pixelated” look, due to the insufficient resolution of the textures. We empirically

found that a good value for tf is

tf = 10× terrainScale, (3.8)

where terrainScale is the scale factor applied to the rendered terrain grid. Figure 3.17

illustrates the textured version of the previously shown terrain sample.

Figure 3.17: Procedural height-based texturing.

Feature injection

Many kinds of games can potentially benefit from using procedurally generated ter-

rains. However, most often than not, because of mandatory game design requirements,

the game environment needs to satisfy some constraints, such as the presence of specific

features at predetermined positions.

Hence, a nice feature for a game-oriented procedural terrain generation system would

be the capability of injecting specific features into the creation process, so that they

are reproduced in the output.
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We slightly modified the original generation algorithm to take into account feature

injection. The fundamental idea is to bias the generation process by introducing into

the grid a certain amount of pre-generated height values, and let the algorithm fill

the rest. The pre-initialized height values are simply provided as a list of 3D points

(whose components are the value itself, and the corresponding map coordinates), which

is scanned when the grid is generated.

We investigated two possible ways of handling the pre-computed heights in the algo-

rithm:

1. To compute a new value even for pre-computed heights: this approach basically

runs the diamond-square algorithm in an additive fashion, so that the value

computed for the midpoint is added to its current value.

2. To leave pre-computed values as they are.

With both approaches, the effectiveness of feature injection is significantly dependant

on the complexity of the behaviour we would like to introduce on the surface. For

instance, given the fact that the algorithm as it is tends to simulate non-eroded terrains,

it is quite hard, if possible at all, to inject steep and sharp features, such as single high

mountain peaks.

Also, the number and placement of the pre-initialized height values is crucial in driving

the injection process.

With respect to both the options specified above, we noticed that quite interesting

features can be reproduced, without the need to specify a large amount of height values

in the corresponding areas. However, if new values are generated for pre-computed

height points, the output tends to be less consistent over different PRNG seeds, because

of the larger variability introduced in the area.

Figure 3.18 illustrates a quite successful attempt to inject a mountain valley feature in

the middle of a terrain patch.

The pre-computed height list contains 1
16

of the height values in the area covered by

the valley, and the non-additive method was used to handle them. The screenshots

differ for the underlying PRNG seed, but the feature is consistently reproduced in all

of them.
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Figure 3.18: Procedural terrain generation: feature injection sample output.
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Chapter 4

Implementation

In this chapter, we complete the description of the proposed solution, illustrating the

remaining relevant implementation details. Before that, we briefly discuss some general

implementation choices, and introduce all the external libraries that were used.

4.1 Implementation choices

Implementation language

In the implemented prototype framework, all application and server code was entirely

written in JavaScript. On the client side, this was the only option to access the WebGL

API.

On the other hand, many other programming languages (e.g., PHP, Java, . . . ) could

have been used for developing the server. However, we decided to use the increasingly

popular combination of JavaScript and Node.js1[11], mainly for the following reasons.

• Code re-usability. If the framework were used as a base to develop an actual

multi-player browser game, it is highly likely that some part of the game logic

would require the same code to be run both on the clients and the server alike.

With that in mind, although the benefit was minimal for the actual prototype,

using a single programming language for both application and server code was

the ideal choice.

1Node.js is a relatively new development technology, which enables the use of the JavaScript
programming language for coding server-side applications.
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• Scalability. Node.js exhibits a very low memory footprint per open connection,

so it represents a sensible choice for developing data-intensive applications, which

could potentially need hundreds or thousands of open connections at the same

time. Moreover, Node.js has a completely modular architecture (so that new

functionalities can be easily plugged in), and is capable of offloading computa-

tionally intensive routines onto background threads.

• Fast prototyping. JavaScript represents a good trade-off between code execution

speed and ”development-friendliness”, with effective debugging tools available

for both client-side and server-side code.

External libraries

Besides the already mentioned WebGL and Node.js libraries, in order to avoid writing

large amounts of boilerplate code, we also made use of several other external libraries:

• sylvester : matrix/vector manipulation library, also available as a Node.js module;

• node-static: Node.js module providing basic server functionalities for static con-

tent (such as non-dynamic HTML pages, shader programs, images, . . . );

• zlib: Node.js module implementing gzip compression/decompression functionali-

ties;

• glMatrix : client-side matrix/vector library, featuring specific functions to ease

matrix manipulation within WebGL applications;

• custom-seed : a replacement for the standard JavaScript pseudo-random number

generator, which enables custom seeding of the Math.random() function[3].

Transmission formats and compression

In order to transmit the required data structures to the clients, one or more data-

interchange formats have to be agreed between client and server. Complex data is sent

with both the progressive LOD and the procedural terrain generation approaches.

Since the first needs to transfer much more data than the latter, we primarily investi-

gated which format would best suit the transmission of mesh data structures, described
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by arrays of vertex positions, texture coordinates, normal attributes, and indices. We

narrowed the range of options to two possible alternatives: using the Extensible 3D

Graphics format (X3D)[17], or a custom format based on the JavaScript Object Nota-

tion (JSON)[8].

JSON is a language-independent, lightweight data-interchange format, structured as

simple text, and conceptually based on two basic structures:

• collections of name/value pairs (called objects in JSON), which are enclosed in

curly braces, where each name is followed by a colon and its associated value,

and name/value pairs are separated by commas;

• ordered lists of values (JSON arrays), which are enclosed in square brackets, with

values separated by commas.

Values can be null, double quoted strings, numbers, boolean values, objects or arrays.

Hence, nesting of arrays and objects is allowed, so that marshalling and un-marshalling

of complex data structures to and from JSON strings is usually an easy process.

X3D is a file format used to represent and communicate 3D objects using XML. It

is the evolution of the Virtual Reality Modeling Language (VRML), and allows us to

describe complex 3D scenes for use in engineering and scientific visualization, CAD and

multimedia applications. Being a XML-based language, the major strengths of X3D

are its easy extendibility and the possibility of syntactically checking X3D documents,

by feeding them (along with the XML Schema defining the X3D language) to a generic

XML validator tool.

Unfortunately, these features come with the following costs:

1. Overhead is introduced in the transmitted data, since all mandatory X3D-related

information needs to be specified in addition to the actual data, in order to get

compliant, valid X3D files.

2. A X3D parser is required on the client side. Since writing one from scratch would

be a very demanding task, the best option is to integrate an existing one into

the application. For WebGL applications, a sensible choice is represented by the

X3DOM parser, since it is HTML5-compatible. However, this would considerably

increase the amount of application code that needs to be downloaded in form of

JavaScript files, even though only a small set of its features would be employed.
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Since we were not interested in producing LOD representations that could be used

in environments other than the prototype framework, we considered implementing a

X3D-based transmission system to be overkill with respect to the prototype simple

requirements. Hence, we decided to transfer all data structures, for both progressive

LOD and PCG approaches, with simple JSON objects and arrays (see the correspond-

ing sections for further details).

It is worth spending a few words about the use of data compression. There are several

good reasons to apply compression to transferred data:

1. JSON-formatted structures are basically strings, so they are amenable to generic

compression (e.g., gzip) with good compression rates. In fact, almost all data

transfers (HTML pages, JavaScript files, . . . ), except for already compressed

textures, can benefit from compression in terms of reduced transfer times.

2. Gzip compression of outbound data flows can be integrated in the Node.js server

application by using the aforementioned zlib module, at the cost of some extra-

processing time before the data is actually sent.

3. All browsers are capable of accepting gzip compressed content and efficiently

decompress it upon reception. This is performed automatically, provided that

the corresponding header is specified when the request is sent to the server.

Since the inflation routine is quite fast, it is generally more convenient to receive

compressed content, rather than downloading its uncompressed version.

Hence, the reference implementation by default applies compression to all transfers

of uncompressed data (that is, any data type, save for already compressed textures),

as long as the balance between the reduced download time and the extra-processing

time is favourable. In practice, this means that all client requests specify compressed

content as accepted. On the server side, provided that the received request accepts

compressed content, all outbound data is compressed, except for the procedural terrain

generation initial parameters, which are so small that adding the compression headers

would actually increase the total amount of sent data.
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4.2 Surface mapping

A high-level description of all the involved algorithms was provided in Section 3.1, for

both parallax and relief mapping. However, it is worth extending that discussion with

some relevant implementation details.

First, we did not describe how the height map is represented in the actual implementa-

tion. Although the height values could be embedded in the texture map, by using the

alpha channel2, we decided to use a separate grayscale image associated to the texture,

with the convention that the brighter the point, the greater its height. An example of

a texture and associated height map is shown in Figure 4.1.

Figure 4.1: Parallax/Relief Mapping: texture and height-map.

Tangent space computation

A key aspect of parallax and relief mapping implementations is the transformation of

the eye vector in tangent space. In Chapter 3 we assumed that each vertex had normal,

tangent and bi-tangent attributes, which were used to build the required transforma-

tion matrix in the vertex shader. However, very often 3D models only specify the

normal attribute. In such cases, we need a way to compute the other two attributes.

The approach used in the implementation is described in [37], and works for arbitrary

triangle meshes.

We first consider how to compute the attributes for a single triangle T , defined by ver-

tices P0,P1 and P2, with associated texture coordinates (u0, v0), (u1, v1) and (u2, v2).

First, the following quantities are computed:

• Q1 = P1 −P0 and Q2 = P2 −P0,

2This approach assumes that the original texture does not contain transparency information.
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• (s1, t1) = (u1, v1)− (u0, v0) and (s2, t2) = (u2, v2)− (u0, v0).

Then the following equations need to be solved for T and B:

• Q1 = s1T + t1B

• Q2 = s2T + t2B

The equations form a system with six unknowns and six equations (three for the x, y,

z components of T, and the same for B). The system can be written in matrix form as:(
(Q1)x (Q1)y (Q1)z
(Q2)x (Q2)y (Q2)z

)
=

(
s1 t1

s2 t2

)(
Tx Ty Tz

Bx By Bz

)

and solved by multiplying both sides by the inverse of the (s, t) matrix:(
Tx Ty Tz

Bx By Bz

)
=

1

s1t2 − s2t1

(
t2 −t1
−s2 s1

)(
(Q1)x (Q1)y (Q1)z
(Q2)x (Q2)y (Q2)z

)

The solution provides us with the non-normalised tangent and bi-tangent vectors T

and B. The per-vertex tangent and bi-tangent attributes are respectively computed as

the normalised sum of tangents and bi-tangents of the faces the vertex is part of3.

It is important to note that the resulting tangent, bi-tangent and normal attributes are

not necessarily perfectly orthogonal to one another. Assuming they are close to that,

Gram-Schmidt orthogonalization can be used to rectify this issue, without introducing

relevant distortions. Thus, non-normalised tangent and bi-tangent attributes T′ and B′

can be computed, for a vertex having normal attribute N, with the following formulas:

• T′ = T− (N ·T)N,

• B′ = B− (N ·B)N− (T′ ·B)T′/T2.

Once all the necessary vertex attributes are available, parallax and relief mapping can

be computed with the GLSL shaders described in the following.

3The approach is exactly the same one described in Section 3.2.4 for vertex normals.
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Eye vector transformation

The proposed implementation calculates the eye vector transformation in the vertex

shader, but this step could be alternatively performed in the fragment shader, with

slightly different results, by passing the eye vector and the normal, tangent and bi-

tangent attributes to it, as varying variables.

Table 4.1 illustrates the vertex shader code used for both parallax and relief mapping.

varying vec2 vTextureCoord;

varying vec3 vEyeDir;

attribute vec3 aVertexTangent;

attribute vec3 aVertexBitangent;

attribute vec3 aVertexNormal;

attribute vec3 aVertexPosition;

attribute vec2 aTextureCoordinates;

uniform vec3 uEye;

uniform mat4 uMVMatrix;

uniform mat4 uPMatrix;

void main (void) {

gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

vTextureCoord = aTextureCoordinates;

// Compute the direction of (Eye Position - vertex position)

vec3 eyeDir = vec3(uEye - aVertexPosition);

normalize(eyeDir);

// Put the Eye Direction into tangent space

vEyeDir.x = dot(aVertexTangent, eyeDir);

vEyeDir.y = dot(aVertexBitangent, eyeDir);

vEyeDir.z = dot(aVertexNormal , eyeDir);

}

Table 4.1: Parallax/Relief Mapping: vertex shader.

Note how the transformation matrix is not built explicitly, since the x, y, z components

of the eye vector, transformed in tangent space, can be computed with three separate

scalar products.
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Parallax and relief mapping: per-fragment computations

As already stated, the fragment shader is where the parallax and relief mapping actually

differ. The corresponding code for the parallax shader is shown in Table 4.2.

precision highp float; // Set precision specifier

varying vec2 vTextureCoord;

varying vec3 vEyeDir;

// scale and bias depend on the physical

// properties of the simulated surface

uniform float uScale;

uniform float uBias;

uniform sampler2D uTextureSampler; // Texture

uniform sampler2D uHMSampler; // Height-map

void main (void) {

// Normalize eye vector

vec3 eyeDirN = normalize(vEyeDir);

// Sample height-map value and compute the offset

vec4 offset = texture2D(uHMSampler, vTextureCoord);

offset = offset * uScale + uBias;

// Calculate the limited offset and the resulting UV coordinates

vec2 texCoords = offset * eyeDirN.xy + vTextureCoord;

gl_FragColor = texture2D(uTextureSampler, texCoords);

}

Table 4.2: Parallax Mapping: fragment shader.

The shader computes the limited version of parallax mapping, as described in Section

3.1.1. Texture and height map are passed to the program as uniform input 2D samplers.

Scale and bias factors are also provided by the application, so that they can be adjusted

with respect to the surface being simulated. The code in the main function does not

need any specific comment, as it implements exactly the steps detailed in the high-level

description of the approach.

The fragment shader code implementing the relief mapping technique is shown in Table

4.3.

The structure of the shader is somewhat similar to the parallax mapping shader. The

ray intersection computation is performed in the computeIntersection function, shown

in Table 4.4.
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precision highp float; // Set precision specifier

varying vec2 vTextureCoord;

varying vec3 vEyeDir;

uniform sampler2D uTextureSampler; // Texture

uniform sampler2D uHMSampler; // Height-map

// This function performs the linear and binary

// searches to find the intersection

vec2 computeIntersection (sampler2D hMap, vec2 uv, vec3 eyeVector);

void main (void) {

// Normalize eye vector

vec3 eyeDirN = normalize(vEyeDir);

vec2 texCoords = computeIntersection(uHMSampler, vTextureCoord,

eyeDirN);

gl_FragColor =texture2D(uTextureSampler, texCoords);

}

Table 4.3: Relief Mapping: fragment shader.

The function performs a linear search first, sampling the search interval with step size

equal to 1.0/linearSteps, in order to find the interval containing the correct intersection

point. Then, it computes an approximation of the intersection point by performing 8

steps of bisection on the interval. For the sake of clarity, it is worth noting that height

values are used, rather than depth values (as illustrated in Section 3.1.2), so that the

same height map can be used for both parallax and relief mapping techniques.

4.3 Progressive Level Of Detail

In order to complete the discussion about progressive level of detail, it is worth exam-

ining the actual implementation of mesh simplification, LOD transmission and LOD

selection in somewhat more detail.

Mesh simplification

As stated in Chapter 3, the mesh simplification routine is run entirely on the server

side. At startup time, the server computes the sequence of discrete levels of detail for

each model. The simplification is performed using several ad-hoc structures:
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vec2 computeIntersection (sampler2D hMap, vec2 uv, vec3 eyeVector) {
const int linearSteps = 10; // Linear search step width = 1/linearSteps

const int binarySteps = 8; // Number of binary search steps

float height = 1.0;

float step = 1.0/linearSteps;

int currStep;

vec4 tHeight = texture2D(hMap, uv);

vec2 delta = vec2(-eyeVector.x, -eyeVector.y) / eyeVector.z;

// Linear search

for (int i = 1; i <= linearSteps; i++) {
if (tHeight.x <= height) {

height -= step;

currStep = i;

tHeight = texture2D(hMap, uv - delta * height);

}
}

// currStep - 1 is above the surface,

// so use that and currStep for the following bisection

currStep--;

height += step;

// binary search

for (int i = 0; i < binarySteps; i++) {
step *= 0.5;

height -= step;

tHeight = texture2D(hMap, uv - delta * height);

if (tHeight.x >= height) {
height += step;

}
}

return uv - delta * height;

}

Table 4.4: Relief Mapping: per-fragment intersection.

• Mesh: container class, which encapsulates the lists of Vertex and Triangle objects

defining the model. It also stores a reference to the current best candidate for

contraction.

• Triangle: an object containing references to the three Vertex instances which

define the triangle, and its own normal vector.

• Vertex : class storing all information about a vertex and its attributes. Each

instance contains the position, UV mapping and normal attributes of the corre-

sponding vertex. Moreover, each Vertex object P stores information relevant to

66



the simplification process:

– the collapse candidate vertex Q, which is the other endpoint of the edge

(P,Q), where (P,Q) is the best possible candidate for contraction within

the set of edges departing from P ;

– the cost of collapsing (P,Q) (based on the metric described in Section 3.2.3),

which is used at the Mesh-object level to determine the overall best con-

traction option;

– references to all its neighbouring vertices and the triangles it is part of, in

order to efficiently apply changes caused by collapses.

It is worth spending a few words to clarify how the input structures for the mesh

simplification algorithm are built. Current implementation accepts input 3D models

in Wavefront Object Format (OBJ): a custom parser is in charge of creating the Mesh

object, based on the OBJ representation4. The parser is capable of importing any

triangulated mesh, with or without normal and/or UV mapping vertex attributes.

Note that the resulting Mesh object has vertex normals re-computed, as described in

Section 3.2.4, and replicated vertices in case of UV attribute discontinuities over the

surface of the model.

Since progressive LODs are only generated once (at startup time), optimising the

execution speed of the algorithm was not a primary goal, and current implementation

simplifies the models sequentially, one by one. However, it is worth noting that Node.js

provides a module (threads-a-gogo), which enables applications to perform efficient

parallel data processing on multi-core processors. The mechanism could be easily

plugged into current implementation, by running the simplification of different models

on separate threads, and collecting the computed discrete LOD sequence through a

callback function, which would be fired by the spawn thread upon completion.

Transmission

As anticipated in Section 4.1, meshes are sent to the client using JSON objects, the

format of which is described in Table 4.5.

43D models that are not in OBJ format can be easily exported in such format with most 3D
modelling tools (e.g., Blender).
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{
vertexPositions: [...],

vertexNormals: [...],

vertexTextureCoords: [...],

indices: [...]

}

Table 4.5: Progressive LOD: mesh transmission format.

The object properties have the following meaning:

• vertexPositions : an array of floats, which represent the x, y, z position compo-

nents of the vertices defining the mesh, so that the array will have the form

[(V0)x, (V0)y, (V0)z, (V1)x, (V1)y, (V1)z, . . .].

• vertexNormals : an array of floats, representing the x, y, z components of the nor-

mal attributes associated to the vertices. The normals are defined in the same or-

der used for vertex positions. Therefore, assuming that Ni is the normal attribute

of vertex Vi, the array will be defined as [(N0)x, (N0)y, (N0)z, (N1)x, (N1)y, (N1)z, . . .].

• vertexTextureCoords : an array of floats in the range [0, 1], which define the u, v

coordinates at each vertex. As with normals, the values are specified in the same

order as vertex positions.

• indices : an array of integers, representing the vertex indices, with respect to the

order used in the vertexPositions array, that define the triangles of the mesh.

Once the client receives the JSON object, it parses each property and fills the GPU

buffers with their content, setting the correct item size for each one of them, depending

on the type of data (e.g., 3 for the position buffer, since each elements consists of x, y

and z components). Note that this operation is extremely fast, since it is performed

using JavaScript typed arrays5, instead of regular arrays.

As mentioned before, the greatest benefit of using JSON objects to deliver the mesh

description is that only the required information is transmitted, with no additional

5JavaScript typed arrays allow for interoperability with native binary data. They were introduced
shortly after the first WebGL draft was published, in order to provide a faster way to feed data to the
GPU.
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overhead. Moreover, the object format could be easily extended with new properties if

needed (e.g., to send additional attributes, such as tangent, bi-tangent, blend weights,

. . . ).

By default, the server keeps all simplified models in memory, into a hash-table as-

sociating each model name with the corresponding array of discrete LODs, so that

they can be quickly served to the requesting clients. However, due to possible memory

constraints, this may become prohibitive when a large number of models is simplified.

Hence, the server can optionally save the intermediate levels of detail to file (in JSON

format), so that they can be served as static content, which allows the server to save

memory, at the cost of an increased delivery time.

Each time a client needs to receive a specific LOD, it sends an asynchronous XML-

HttpRequest to the server, specifying the name of the model and the desired level of

detail as parameters, where the index 0 corresponds to the 100% LOD (that is, the orig-

inal mesh M0) and 1, 2, . . . , n to increasingly coarser approximations M1,M2, . . . ,Mn.

Once the corresponding data is received, a callback function takes care of filling the

proper GPU buffers, as previously explained.

The framework also provides a mechanism to receive only incremental updates: the

client sends an upgrade request, specifying model name and currently available LOD

Mj, and the server replies with the list of changes that need to be performed to build

the more detailed LOD Mj−1. In practice, the list consists of a sequence of vertices

(and corresponding normal and UV attributes) that need to be substituted into the

arrays corresponding to Mj, or added to them. Also, the server sends the list of indices

that defines the triangles of Mj−1, which replaces the previous index array.

Once the necessary changes are applied, the client can fill the relative GPU buffers

with the updated information. In order for this mechanism to work efficiently, the

client has to store the arrays corresponding to the currently available LOD, instead of

throwing them away once the GPU buffers are filled. Moreover, the server has to sort

the vertices during simplification, so that they are consistently ordered, and the client

does not have to re-order the corresponding arrays when switching from a coarser LOD

to a finer one. This is easily implemented by sorting the vertices in the order in which

they were collapsed.
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LOD selection

As described in Section 3.2.5, LOD selection is performed on the client on a per-model

basis, based on its magnification factor. The metric is recalculated at each update

cycle, in order to consistently refresh the selected LODs.

At present, the prototype does not perform any morphing between subsequent levels

of detail, so popping effects may be noticeable if the LODs are very different from

each other in terms of mesh topology. A simple form of morphing, based on linear

interpolation of the vertex attributes, could probably be added without too much

effort. However, linear interpolation works well when the values vary continuously.

Thus, discontinuities in the texture coordinate mapping would still produce popping

effects, if the interpolated value crossed a texture seam.

Current client implementation interprets the selected LOD as the minimum level of

detail required for properly displaying the model at the given time. In other words,

if currently available LOD is more detailed, the client just renders that instead of the

selected one. An alternative approach would possibly cache all retrieved LODs, in order

to enable the client to display lower levels of detail, without re-downloading them.

However, the solution would require more memory on the client-side, and it would

potentially benefit only configurations having low-end GPUs. Hence, we decided not

to implement this alternative into the WebGL client, although it could be a smarter

choice for a version of the framework targeting mobile development.

4.4 Procedural terrain generation

As previously mentioned, in order to procedurally generate the terrain, the client needs

to fetch a set of initial configuration parameters from the server. In Section 4.1, we

anticipated that this information is transferred using JSON as an interchange format.

The expected object structure is shown in Table 4.6.

The parameters have the following meaning:

• patchSize: a single integer6, which determines the size of the 2D grid used for

terrain generation;

6Note that the client expects an integer of the form 2n + 1, for n ∈ Z+.
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{
patchSize: ...,

scaleFactor: ...,

seed: ‘‘...’’

}

Table 4.6: Procedural terrain generation: initial configuration format.

• scaleFactor : a float value, which determines the scale of the pseudo-random

variation applied in the computation of midpoint values;

• seed : the common seed used on every client to initialize the custom PRNG, im-

plemented by the custom-seed library. The value is computed at startup time by

concatenating a predefined amount of bytes from a local entropy source. For in-

stance, this could be implemented on Unix/Linux systems by reading the output

of the dev/urandom process. Fortunately, Node.js provides an ad-hoc function for

generating random bytes, which takes care of finding a proper source of entropy,

based on the underlying operating system, and returns the requested number of

bytes.

In order to apply feature injection, the set of predefined heights is sent with a different

JSON object, consisting of two properties:

• patchCoordinates : an array of two integer values, which specify the horizontal

and vertical offsets of the patch with respect to the one at the origin of the map

(that is, the first patch generated);

• precomputedHeights : conceptually this would be an array of objects, each having

X, Y and height properties. X and Y would specify the point on the grid, while

height would provide the pre-computed height value to be set. However, to limit

the amount of extra strings inserted in the JSON object, precomputedHeights

consists of an array of simple numbers, which is split in groups of three on the

client side. The first two are assumed to be the x and y coordinates of the point

on the 2D grid, while the third is the pre-computed height.

If feature injection is enabled, whenever a client has to generate a new patch of ter-

rain, it sends a request to the server containing the corresponding patch coordinates.
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The server replies with the proper JSON object, containing a (possibly empty) set of

predefined height values, which are used on the client to bias the terrain generation

process for the corresponding patch.

Procedural texturing

As already mentioned in Chapter 3, the procedural terrain generation consists of the

actual surface generation, which is performed in application code, and its procedural

texturing, which is run entirely on the GPU. In order to render the terrain, the 2D

grid of height values is converted to a triangle-strip mesh, having a number of vertices

equal to the number of points defining the grid.

The position and texture coordinates of each vertex are determined as follows:

• the x and z position components are computed from the horizontal and vertical

coordinates of the corresponding point on the grid, multiplied by a scale factor,

which determines the extent of the area occupied by the patch in world space;

• the y component is equal to the height value of the surface at the corresponding

point;

• the UV mapping is procedurally generated to consistently map the texture(s) on

the surface.

The vertex shader code for rendering the terrain is quite trivial, as it just passes the

texture coordinates and the height value to the fragment shader. Tables 4.7 and 4.8

illustrate the fragment shader. The code implements exactly the same steps described

at a high level in Section 3.3.1.

As a collateral benefit of applying procedural texturing to the surface, the terrain

becomes amenable to a simple form of animation, where the height values of the points

on the grid potentially vary over time. Although current prototype does not implement

this feature, it could be easily added by:

1. Adding a targetHeight attribute to each vertex in the mesh.

2. Morphing the height value passed from the vertex shader to the fragment shader,

over a predefined amount of time, from the original y position of the vertex

towards the targetHeight value.
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precision highp float; // Set precision specifier

struct ZoneLevel {
float min;

float max;

};

varying vec2 vTextureCoord;

varying vec3 vHeight;

// min-max height ranges for each zone (sand, grass, ...)

uniform ZoneLevel uSandLevel;

uniform ZoneLevel uGrassLevel;

uniform ZoneLevel uHillLevel;

uniform ZoneLevel uSnowLevel;

uniform sampler2D uSandSampler; // Sand texture

uniform sampler2D uGrassSampler; // Grass texture

uniform sampler2D uHillSampler; // Hill texture

uniform sampler2D uSnowSampler; // Snow texture

// This function implements the weighted blend between the

// four low-resolution textures

vec4 blendTerrain();

void main (void) {

gl_FragColor = blendTerrain();

}

Table 4.7: Procedural terrain texturing: fragment shader.

Since the final colour for each pixel is determined procedurally at render time, the

variation in height would be reflected in a change in the texturing output, which would

progressively adapt to the different altitude at the point.
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vec4 blendTerrain () {
// base color

vec4 terrainColor = vec4(0.0, 0.0, 0.0, 1.0);

float height = vHeight;

float regionMin = 0.0;

float regionMax = 0.0;

float regionRange = 0.0;

float regionWeight = 0.0;

// sand

regionMin = uSandLevel.min;

regionMax = uSandLevel.max;

regionRange = regionMax - regionMin;

regionWeight = (regionRange - abs(height - regionMax)) /

regionRange;

regionWeight = max(0, regionWeight);

terrainColor += regionWeight * texture2D(uSandSampler,

vec2(vTextureCoord.s, vTextureCoord.t));

// grass

regionMin = uGrassLevel.min;

regionMax = uGrassLevel.max;

regionRange = regionMax - regionMin;

regionWeight = (regionRange - abs(height - regionMax)) /

regionRange;

regionWeight = max(0, regionWeight);

terrainColor += regionWeight * texture2D(uGrassSampler,

vec2(vTextureCoord.s, vTextureCoord.t));

// analogous code for other height ranges and textures

//...

return terrainColor;

}

Table 4.8: Procedural terrain texturing: per-fragment blend.
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Chapter 5

Results and Conclusion

In this chapter we present an evaluation of the results obtained with the previously

detailed techniques, supporting them with quantitative measurements where appro-

priate, and identifying their current limitations. We then point out several possible

directions for future work and improvement, finally providing some concluding remarks

concerning the proposed solution as a whole.

5.1 Results evaluation

All the measurements presented in this section were performed on an average laptop,

with the following configuration:

• CPU : Intel core i5 - 2.26 Ghz,

• GPU : ATI Radeon 5650 HD Mobility,

• Browser : Mozilla Firefox, ver. 14.0.1.

For some types of data that the clients receive from the server, it makes sense to

assess expected download times, as they directly affect the amount of time required to

actually start rendering a scene. Therefore, a reference download speed has to be set

for the measurements.

The theoretical download bandwidth limit for current HSDPA hardware is 14.4Mbit/s.
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However, most mobile Internet providers do not have enough resources to offer high

download speeds, so in practice the limit is much lower. Based on recent surveys

([46] for mobile broadband providers and [45] for fixed-line providers), we decided

to consider, for benchmark purposes, a lower threshold of 2Mbit/s (average HSDPA

download speed in the UK) and a higher one of 15.91Mbit/s (average download speed

for European consumer broadband services).

5.1.1 Progressive Level Of Detail

Whenever the mesh simplification algorithm is able to produce acceptable-quality sim-

plifications of the input model, progressive LOD can be an effective method to reduce

the amount of data that is required to begin rendering the mesh.

To evaluate the performance of the approach, the models illustrated in Figure 5.1 were

used as a reference. As previously stated, the proposed solution focuses on models with

a low polygon count. Hence, all of them were chosen following this primary criterion.

However, since we want to show both the benefits and the limitations of the approach,

we included samples that exhibit different visual-quality levels in their approximations,

in order to try to identify the reasons behind the different results.

Figure 5.1: A set of sample models used to evaluate the results of progressive LOD.

The reference set contains the following three models:

1. ”Bunny”, consisting of a mesh with a high degree of curvature and a considerable

number of shared vertices, as evident from the ratio between vertex and triangle

counts, indicated in Table 5.1.
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2. ”Space fighter”, which has a more geometric shape, with a certain number of thin

features and a lower percentage of shared vertices.

3. ”Frigate”, having a fairly simple geometric shape, about half of the shared vertices

of the ”Bunny” model (in percentage), and an extremely low triangle count.

Figure 5.2 shows the texture-mapped versions of the reference models.

Figure 5.2: Textured reference models.

Table 5.1 provides a measurement of the potential benefits of using progressive level of

detail, compared to simply downloading the original mesh. As expected, with respect

to the input model, the approximations have sizes that are proportional to the level of

simplification. Hence, depending on the quality of the lower LODs (in terms of texture

distortion and presence of “holes” in the mesh), the client is able to start rendering

all the models that do not require close-up details, in only a small fraction of the time

necessary for the fully detailed scene.

It is worth noting that these figures regard the uncompressed JSON representation of

the meshes. As stated in Chapter 4, in practice sent data can be compressed on the

server side and decompressed on the fly on the client side, so that the download time

can be further reduced (on average to 1
4
, compared to the uncompressed LOD data).

We now evaluate current limitations of the mesh simplification algorithm, by analysing

its output for the reference models.

We first consider an initial sequence of approximations generated without taking into

account UV mapping, which causes vertex replication wherever the texture coordinates

attribute is not continuous on the surface of the mesh. Figures 5.3, 5.4, 5.5 and 5.6
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Model / LOD Vertex Count Triangle Count Size (KB)
Expected DL Time

(s) [2 Mbit/s]
Expected DL Time
(s) [15.9 Mbit/s]

Bunny / 100% 549 902 92,3 0,3605 0,0453
Bunny / 70% 385 685 67 0,2617 0,0329
Bunny / 50% 275 516 48 0,1875 0,0236
Bunny / 30% 165 300 28,5 0,1113 0,014
Bunny / 10% 55 86 9,3 0,0363 0,0046

Frigate / 100% 338 298 44,8 0,175 0,022
Frigate / 70% 238 211 32,3 0,1262 0,0159
Frigate / 50% 170 133 26,2 0,1023 0,0129
Frigate / 30% 102 76 15,8 0,0617 0,0078
Frigate / 10% 34 25 5 0,0195 0,0025

Space fighter/ 100% 1239 950 180,7 0,7059 0,0888
Space fighter/ 70% 868 748 137,5 0,5371 0,0675
Space fighter/ 50% 620 553 98,6 0,3852 0,0484
Space fighter/ 30% 372 367 59,2 0,2313 0,0291
Space fighter/ 10% 124 150 19,9 0,0777 0,0098

Table 5.1: Comparison between different levels of detail.

illustrate how the reference models look like, once simplified at the 70%, 50%, 30% and

20% level, respectively.

Figure 5.3: Sample models: 70% LOD.

When not considering UV coordinates, the algorithm produces consistent results on

all the reference models. It preserves model shapes reasonably well, even at the lower

levels of detail, and tends to maintain symmetries, which helps improve the overall
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Figure 5.4: Sample models: 50% LOD.

Figure 5.5: Sample models: 30% LOD.

Figure 5.6: Sample models: 20% LOD.
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quality of the approximations.

Up to a certain extent, it also manages to keep thin features (as is shown by the ”Space

fighter” sample): even if they are not preserved exactly, this is not a major drawback,

since from afar the precise shape of these features would not be clearly distinguishable.

As mentioned in Section 3.2.4, if UV mapping is taken into account, the mesh simpli-

fication algorithm does not exhibit the same consistency in the results. We purposely

inserted the ”Frigate” sample in the reference set, because it is a good representation

of a category of models that the algorithm is not capable of handling properly.

Figures 5.7, 5.8 and 5.9 show the textured sample models at the 70%, 50% and 30%

LODs, respectively.

Figure 5.7: Textured sample models: 70% LOD.

By inspection of the output, it is quite evident that the quality of the simplifications

is acceptable for the ”Bunny” model, although at the 30% LOD, even if the mesh has

no “holes”, the texture starts warping a little.

With respect to the ”Space fighter” sample, the results are not as good, but face preser-

vation still degrades nicely: some “holes” are introduced in the simplified meshes as

the approximation process becomes more aggressive, but the original shape is over-

all preserved until the 30% level, where the alteration becomes evident, along with a

prominent texture warp.

Unfortunately, the levels of detail for the ”Frigate” mesh become noticeably flawed

from the 70% LOD onwards, to the extent that the coarsest approximations are not

usable at all, as evident from the other outputs.

The existence of a relation, between the quality of the simplification and the percentage
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Figure 5.8: Textured sample models: 50% LOD.

of replicated vertices, becomes evident when considering the different properties of the

models. In other words, if texture coordinates are continuous over the surface (such as

on a textured plane), then the simplification is expected to produce very good-quality

LODs. However, when discontinuities are introduced in the UV mapping, thus caus-

ing vertex replication, the simplification quality starts degrading. If the number of

replicated vertices becomes quite significant compared to the vertex count (as with the

third sample mesh), our approach is not able to produce usable approximations at the

coarsest levels.

Figure 5.9: Textured sample models: 30% LOD.

Typically, every model consisting of a non-planar mesh has a certain amount of dis-

continuities in the texture mapping attribute, corresponding to the areas where the

texture map was “cut” to better adapt to the mesh topology. The proposed approach

is able to tolerate relatively sparse discontinuities, but degenerates if the number of
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discontinuities (hence, the amount of replicated vertices) weighs too much on the total

vertex count, such as in the ”Frigate” sample.

It is worth comparing this result with several approaches, described in the literature,

which attempted to extend edge contraction to handle vertex attributes.

In [57], Sander et al. try to extend Hoppe’s PM approach, in order to create a com-

mon texture parametrization for the entire progressive mesh sequence of a given input

model, by minimising texture stretch and deviation over all the meshes. However, this

requires several pre and post-processing steps, which involve partitioning the mesh into

charts, and then creating an ad-hoc texture atlas to sample texture maps. Moreover,

in the examples presented in the article, only colour and normal maps are considered,

with no results shown for texture maps.

As regards the original Garland-Heckbert approach, its extension, introduced in [27],

modifies the general metric to take into account vertex attributes. As described in the

paper, the approach produces the best results when attributes vary continuously over

the surface of the mesh. If that is not the case, vertices need to be replicated along the

seams, as with our solution. The Authors suggest that forcing boundary constraints to

maintain the seam might produce acceptable results, although they do not show any

example simplification of textured, non-planar meshes with discontinuities. Moreover,

they explicitly assert that, if constraints proliferate beyond a certain extent, the sug-

gested solution would not work well. In other words, if texture discontinuities are not

sparse enough, the quality of the simplifications is bound to decrease.

Although based on a different simplification idea (vertex clustering instead of edge

contraction), it is worth mentioning the approach described in [63]. In fact, to date

that appears to be the only technique that has been extensively used in production.

Most importantly, it seems to be able to produce good results with arbitrary meshes,

coping well with thin features, multiple attributes with discontinuities, and animation

information, such as blend weights and indices.

5.1.2 Procedural terrain generation

The performance of the procedural terrain generation technique was assessed with

respect to two factors:

• execution time,
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• amount of transferred data, compared to using a set of meshes describing the

same surface.

We measured the execution time of the algorithm for a single patch of terrain, and

compared the results obtained with different grid sizes, to determine which ones are

suitable for real-time terrain generation.

In order to have statistically meaningful measurements, the execution times were com-

puted as an average over 1000 different generations. The results are shown in Table

5.2.

Terrain Patch Size Triangle Count
Generation Time *

(ms) [min]
Generation Time *

(ms) [average]
Generation Time *

(ms) [max]
129 X 129 32893 9 9,592 44
257 X 257 131325 36 38,508 79
513 X 513 524797 142 149,65 182

1025 X 1025 2100221 564 591,671 698
          *: data acquired over 1000 generations

Table 5.2: Terrain generation performance assessment.

The algorithm is quite fast for grids of small and medium size: 129×129 and 257×257

patches can certainly be generated in real-time. With a grid of size 1025 × 1025,

the algorithm becomes too slow for real-time generation, while the intermediate size

(513×513) is still amenable to real-time use, provided that the generation is performed

by a background process, so as to avoid blocking frame rendering1.

However, from our tests, a 257× 257 size seems to be the best trade-off between speed

and visual quality of the output, because it quickly produces a surface that is enough

tessellated to appear quite realistic. Also, that size fits well with using low-resolution

textures in the procedural texturing phase.

With the intent of estimating the benefits of procedural terrain generation, in terms

of reduced download times, we also measured the average size of the meshes corre-

sponding to the surface generated by the algorithm. Table 5.3 illustrates the results,

as well as expected download times for the four different patch sizes. Note that those

figures could be reduced, by compressing the transmitted JSON representation of the

meshes (as stated before, the weight would be decreased to slightly more than 1
4

of the

original).

1JavaScript code can be run in the background by using HTML 5 Web worker [61] objects, sup-
ported on all major browser, save for Internet Explorer.
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Terrain Patch Size
Equivalent Model

Size * (KB)
Expected DL Time

(s) [2 Mbit/s]
Expected DL Time
(s) [15.9 Mbit/s]

129 X 129 1038 4,0547 0,5098
257 X 257 4330 16,9141 2,1267
513 X 513 18173 70,9883 8,9258

1025 X 1025 75932 296,6094 37,2947
               *: uncompressed JSON format

Table 5.3: Procedurally generated terrain patches: equivalent model sizes.

However, even if compression was used, in order to render non-procedurally generated

terrain the client would constantly need to download new patches from the server,

which would likely result in missing terrain parts, if the required data is not timely

received.

Our approach, if feature injection is not used, only needs to initially fetch the set of

configuration parameters. Once this very small packet (∼ 80 bytes) is received, the

algorithm can generate an arbitrary number of patches, with no need for further data.

When using feature injection, the comparison still remains extremely favourable, since

the generation algorithm only needs to receive the pre-initialized points, and only for

those terrain patches that actually have injected features in them.

On average, specifying height values for 10 points of a grid requires 300 bytes of data

from the server. Of course, to further reduce the impact of feature injection with re-

spect to download times, the lists of pre-initialized points can be compressed. As an

example, injecting the mountain valley shown in Section 3.3.1 requires ∼ 38 KB of

data (less than 10 KB if compressed).

Regarding the limitations of current implementation, they can be synthesized by the

following points.

1. The solution is not able to generate caves and arches. Unfortunately, this is a

limitation of the algorithm itself. These behaviours could still be reproduced, by

using a sort of degenerate feature injection, where all points in the area occupied

by the feature are specified. That way, an arch or a cave could be simply “put

in place”. However, the size of the required data would increase to that of the

mesh describing the entire surface of the feature, so this is a feasible workaround

only if these cases happen rarely.
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2. The simulated terrain is not affected by erosion. However, a post-processing pass

could be easily added to simulate that, at the cost of extra computations.

3. The diamond-square algorithm can occasionally introduce artifacts in the gen-

erated surface, which show up as localized spikes or creases (as in Figure 5.10).

This issue could be addressed by analysing the generated surface and smoothing

affected areas, if any. However, this phenomenon only happens very rarely, and

when it does it is often hardly noticeable, once procedural texturing has been

applied.

Figure 5.10: Diamond-square algorithm artifacts.

5.1.3 Surface mapping

As regards parallax and relief mapping, it is important to point out that the main rea-

son for implementing them was to prove that mainstream surface mapping approaches

are amenable to an efficient, GPU-based implementation in WebGL/OpenGL ES.

With respect to download times, a quantitative evaluation of these techniques would

require a comparison between the size of the extra data (that is, the height map) down-

loaded, and the size of a hypothetical model describing the simulated surface. However,

estimating the geometric complexity of such a mesh is not trivial, which makes it hard

to setup a direct measurement. Since finding an alternative way to compare the two

quantities falls beyond the scope of the dissertation, we decided not to provide quan-

titative results for parallax and relief mapping.
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For reference, we provide a visual comparison of the different results achieved by ap-

plying the two approaches to the same inputs. Figure 5.11 shows a close-up view of the

same surface, rendered with simple texturing, parallax and relief mapping, respectively.

Texture mapping Parallax mapping Relief mapping

Figure 5.11: Simple texturing, parallax and relief mapping close up view.

It is worth noting how the offset produced by parallax mapping is limited (as described

in Section 3.1.1), while in the corresponding scene rendered with relief mapping the

protrusion effect is more pronounced.

5.2 Future work

Concerning the progressive LOD implementation, as previously described the mesh

simplification algorithm has some limitations. Hence, the algorithm and the related

cost metric could be improved by:

• taking into account a wider range of vertex attributes, possibly considering their

value in the cost metric;

• properly handling non-sparse attribute discontinuities, which currently represent

the major obstacle to a broad use of the simplification approach;

• enforcing strict preservation of thin features;

• extending the algorithm to the simplification of animated meshes.

With respect to the procedural terrain generation approach used in the framework,

an interesting improvement would be the addition of an erosion factor to the current
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algorithm. Moreover, as already mentioned, when the next major update to the WebGL

API specification will be released, it is very likely that recent GPU features (namely,

HW instancing and geometry shaders) will become available, so that more complex,

GPU-based terrain generation algorithms (such as [28]) will not be precluded any more.

As regards extending the framework with additional PCG techniques, there are many

pre-existing approaches that are amenable to a direct implementation on the WebGL

platform, or could be easily adapted. For instance, PCG could be used for:

• vegetation generation, based on some type of rule-based system, such as the one

described in [40];

• urban environments, for instance generated with approaches using a custom-

seeded PRNG, as the one presented in [29].

A harder research direction, but well worth the effort, would be the combination of

two or more procedural techniques into a single solution (e.g., extending current terrain

generation system with procedurally generated rural environments and vegetation).

Although the two surface mapping techniques implemented in the framework are ar-

guably the most used in commercial game development, there are some newer ap-

proaches that might be worth exploring. More specifically, parallax occlusion mapping

([60]) and quadtree displacement mapping ([23]) seem promising candidates to investi-

gate, in terms of execution speed and visual quality of the simulated surfaces.

5.3 Concluding remarks

The dissertation explored several different research directions, with the intent of identi-

fying a set of approaches that allows a 3D client to render complex scenes with limited

amounts of data.

The main motivation behind the research was to enable WebGL/OpenGL ES clients

to render 3D scenes in real-time, based on data streamed from a remote server. Hence,

we focused on techniques which effectively reduce the amount of data that the client

must receive to begin rendering the scene.

The proposed approaches were then integrated in a prototype framework, ideally de-

signed to be used as a barebones multi-player game architecture, the implementation
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of which consists of a JavaScript/Node.js server, and a WebGL browser application as

a client.

Although obviously susceptible to improvements and extensions, the prototype clearly

shows how surface mapping, progressive level of detail and PCG techniques could be

successfully applied for developing 3D browser games and applications, so that down-

load times are drastically reduced to enable rendering in real-time, but the complexity

of the scenes is preserved.

As a final remark, it is worth noting that the WebGL client implementation also works

on mobile devices, if the corresponding version of Firefox is used2. Therefore, it is tech-

nically possible to run the same WebGL application both on desktop computers and on

mobile devices. However, since mobile CPUs and GPUs are usually significantly less

powerful than their PC counterparts, it would make sense to investigate proper client-

side parametrizations, so that the techniques implemented in the framework could be

dynamically adjusted to be used, with smooth frame rates, even on mobile hardware.

2The implementation was tested on Firefox Mobile Beta (ver. 15.0), on a Samsung Nexus S.
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