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The ability to construct photo-realistic virtual worlds and people imbued with motion,

personality and full real-time interactivity still eludes modern games developers. Indeed

hyper-realistic human characters remain a struggle on current computational hardware.

Due to the complexity of a human's motion, the subtle facial cues and posture of

creating inherent emotion, and detailed interactions with the physical world; virtual

humans epitomise the art of real-time rendering.

Much work has been published on creating very realistic motion on a virtual interac-

tive human, using motion capture tools or complex physics based locomotion. Similarly

the physics behind thousands of strands of �owing hair can be accurately represented

in real-time through established principles. Other complex human interactions with

the physical world such as realistic shadows or the behaviour of light passing through

multi-layered skin have not eluded works published on those topics either. Arguably
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the �nal and perhaps most intricate feature of the human body that has yet to be

robustly determined for real-time applications is the human eye.

The purpose of this paper is multi-dimensional. First, we answer why real-time

eyes with photo-realistic �delity are yet to be accomplished in any widespread manner.

Next, we survey the state of the art regarding virtual eyes. A �exible material suite

is presented for real-time eyes that accomplishes near photo-realism, and its e�cacy is

analysed with a perception experiment. Finally the signi�cance of what is necessary

to render the eye, and a robust manner in which this can be achieved is investigated.

The results of the novel, con�gurable shader system demonstrate the versatile e�ects

that it can achieve. The importance of having various levels of detail with which to

render the eyes is especially important for real-time or crowd based applications. The

perception study presented in this paper validates the assumptions made for the shader

system. The survey results on perceived realism correlate with the di�ering levels of

detail used to represent the virtual eyes from various distances to the viewer.
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Chapter 1

1.1 Introduction

Replicating human characters with real-world levels of �delity in virtual environments
encompasses a wide range of study in the art of computer graphics. The ability to do so
is important for many reasons. The perception of the human body: its motion, volume,
and interactions with the physical world are indeed subconsciously imbued within us
from a very young age [89], [12] and [58]. The `cloning' of people in virtual worlds
which are imperceptible from their real world counterparts could in fact be regarded
as the most decisive feat of graphics rendering. Applying those clones to interactive
applications will undoubtedly lead to a sophisticated level of immersion and emotional
attachment to the portrayal of characters in modern games.

O�ine techniques for rendering people already provide photo-realistic imagery. To
animate these characters adds yet another vast layer of complexity to the components of
a successful human representation. The creation of hyper-realistic animations remains
a cumbersome and expensive challenge limited to motion capture techniques which have
a variety of restrictions. When motion is applied to a scene, physics based interactions
must be accounted for which rely on the viewer, the lighting and the surrounding
properties of the virtual world. Thus photo-realistic animations are currently di�cult
to achieve, and often take industrial render farms many hours to create each frame of
animation.

As modern, accelerated hardware evolves at an exponential pace, consumer-level
dedicated graphics processing units (GPUs) are now available with very high levels of
parallel processing throughput. Near photo-realism is now achievable on fully animated
characters at real-time frame rates (around 60 frames displaying per second). Real-time
photo-realistic applications will undoubtedly supply the most immersive experiences for
users, and are hence the focus of this paper.

Consequently, this paper pays special attention to the interactive rendering of one
of the most complex perceptible features of the human body: the eye.
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Figure 1.1: A typical representation of
real-time eyes in a modern game, taken
from Electronic Art's Sims 3TM [93].

Figure 1.2: O�ine eye render-
ing is already photo-realistic, as this
ZbrushTMsculpture demonstrates [80].
There is currently a wide discrepancy
between o�ine and `game-ready' eyes.

1.2 Motivation

There still remains a particularly wide discrepancy between o�ine and real-time results
in human eye rendering. Figures 1.1 and 1.2 demonstrate the stark di�erence between
both practices.

In the past few years, much attention has been paid to animating full human forms
in a realistic manner, as this is the largest and most contributing factor of human
to human perception. As discussed by Ennis [23], and Hertzmann [36], the gait of an
animated character actually holds more signi�cance than the realistic portrayal of many
other features which de�ne the character. Users subconsciously discern the realism of
a virtual entity by witnessing their motions, even at long-range viewing distances.

Other extensive areas of academic study related to the representation of humans
to date include complicated lighting models to represent how the skin is shaded. It
is now possible to display the e�ect of light photons which enter the skin, scatter,
attenuate and exit the skin at extremely close levels of detail in real-time. Perhaps
the most realistic skin demonstration to date is discussed in Chapter 2.5 in further
detail. Another complicated feature of virtual humans is hair rendering. Human hair,
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particularly in motion, remains an intricate task due to the sheer quantities and physical
properties involved in displaying interactive hair strands faithfully.

While a signi�cant volume of literature exists on replicating the physical properties
of human hair and skin, surprisingly little has been published regarding the �nal most
complex and signi�cant feature of the human body: the eyes. This is partially due
to the fact they occupy very little relative space in the body, especially in comparison
to the hair, skin and gait of a character. In fact graphical processing power has been
almost exclusively reserved in the past for realising complex environments and lighting.
GPU horsepower has been primarily set aside for coherently animating the millions of
vertices on the characters that make up a typical gameplay scenario, and rendering
large and obvious entities such as the motion of the body and hair.

Elaborate details visible through light interaction with the eyes are only distinguish-
able at relatively small distances even in the real world. This means that representing
realistic eyes in a timely manner may only really be necessary for close-up facial im-
agery. At further distances they simply do not occupy enough pixels on the screen
to warrant intricate lighting calculations. If there are many characters on the screen
simultaneously as is the case in the majority of modern interactive titles, the required
processing power increases at a linear rate, extending the problem particularly in heav-
ily crowded scenarios. This paper explores that constraint by addressing some of the
common eye components that can be withdrawn, specifying how and why they should
be withdrawn from eye renderings at di�erent resolutions of detail.

With an arsenal of simulatory capabilities, many modern real-time applications
take a �lmic approach to their themes and plot lines. It has therefore become more
prevalent than ever to render human faces at close range, and without doubt the most
signi�cant feature of the human face in these instances is the eyes. This paper intends
to address the realistic portrayal of eyes, but in a `game-ready' fashion. Game-ready
eyes must utilize the full power of a GPU but only when necessary. It is extremely
wasteful to render eyes at the highest resolution of detail and instruction count when
those instructions are not physically capable of displaying on screen, or being perceived
by the user. Assumptions will therefore be examined on what exactly is necessary when
rendering the eye at di�erent distances and angles from the viewer. This is particularly
important in computer games, where many animated characters may occupy the screen
at any one time. Consequently, a game-ready eye must conform to `level of detail' (LoD)
constraints. This allows the programmer to de�ne what components can be assigned,
removed or adapted when rendering the eyes at di�erent levels of detail.

1.2.1 Paper Layout

This report describes three essential steps to realistically represent eyes, and discusses
an accompanying demonstration that is used to gather the drawn conclusions:

3



• The eyes must be as photo-realistic as possible, in order to maintain the best
results perceived by users.

• The eyes must be game-ready: have LoD functionality, and satisfactorily render
many eyes on the screen at any arbitrary distance from the viewer.

• Finally the assumptions for creating the eyes at di�erent �delities of detail must
be validated through a perceptual study in order to ascertain the successes and
�aws of the demonstration. This gives a valuable insight into the signi�cance of
how potential users comprehend the simulation.

Chapter 2 examines the current state of the art for rendering materials related
to the �nal composite of the eye. Each quality is discussed, along with a brief over-
view of some of the key related technologies in use today. Chapter 3 deliberates the
planning and design of the application, of the perception study and of the paper. This
includes the reasons for the choice of platform, and the approach that was taken to
formulating the code. Chapter 4 details the implementation of the shading algorithms
for each quality of the eye, as well as their LoD functionality, and how signi�cant
problems were overcome. Chapter 5 analyses the performance of the programs and
results of the perception study carried out. Chapter 6 re�ects on the importance of
LoD functionality. The results of the perception study are examined, as are precisely
what details may be omitted from the eye rendering, and when it is necessary to do so.
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Chapter 2

State of the Art

The following section includes a survey of related work and projects that pertain to
realistic real-time eye rendering. Due to the broad and detailed nature of this topic,
it has been divided into independent and relevant subjects. François et al. presented
"Image-Based Modeling of the Human Eye" in 2009 [28]. This is a culmination of
many of the following related works, and most importantly achieves the most in-depth
and realistic representation of real-time virtual eyes to date. It is hence a primary focal
point for this paper, and several of the topics relate to the work carried out by those
authors.

2.1 Anatomy of the Eye

Extensive medical literature exists on the anatomy of the human eyeball, as it does for
every part of the body. The eye however is a particularly complex organ with highly
detailed tissues, as unique as a �nger print. Studies of the chief components of the eye
are outlined in this section.

Mann [50] presents a modern comprehensive paper on the composition of the entire
eyeball, with particular attention paid to light entering and leaving the eye. Mas-
ters [51] presented an interesting computational study on the anatomy of the eye. It
was reconstructed by taking many photographs at small degree increments across the
axes of the eye, which were assembled to create a volume rendering of the eye for med-
ical purposes. This is evidently not appropriate for any kind of real-time application,
and the techniques have dated signi�cantly. Much work has been done on the physics
behind the rods and cones of the retina that receive and process light [38]. Work
like this is largely irrelevant to this paper, whose aim is to model light interactions
the viewer sees, not how light is processed. Medical literature also provides in-depth
information on the eye structure as well. The most relevant resource to date is the as-
sessment by François et al. [28] for real-time rendering purposes, who used the medical
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Figure 2.1: A pro�le of the human eye [28].

analysis carried out in [94], [85], [34], [39] and [21]. François et al. [28] note that
Tuchin et al. [94] describe the scattering properties of the sclera. Saude [85] presented
the diameter and index of refraction of the cornea, while Hecht and Zajac [34] note
that light refraction mostly occurs at the outer corneal interface, as its refractive index
is very close to that of the anterior chamber (the area between the iris and the cornea).
Imesch et al. [39] note the importance of melanin in the chromatic characteristics of
the iris, while Eagle [21] notes the scattering properties of di�erent eye colours.

2.2 Capturing and Reconstruction

Capturing and reconstructing visually signi�cant iridal features has been studied using
several techniques. The iris of an eye is intricately multi-layered, and while replicating
it by artistic means gives a great deal of freedom to the developer, it is too often
highly perceptible, often leaving characters straddling the uncanny valley, noted by
Brenton et al [12]. A developer has the option to create a high polygon mesh of the
surface of an eye [62]. This option is largely undesirable: it is time consuming and
requires an esoteric knowledge in order to produce a model with any reasonable degree
of �delity. With the advent of modern hardware, implementing custom shaders on
a simple spherical model lends itself well to carrying out physically based rendering
techniques due to the accelerated parallel nature of the hardware. François et al. [28]
note the following four methods that attempt to reconstruct the human eye:

• Sagar et al. [84] used a simple Gouraud shading model and textures to represent
and render the human eye for surgical practicing purposes.

• Lefohn et al. [47] present a method based on ocularist's studies: they intro-
duce an aesthetically pleasant method for human iris cloning, based on multiple
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hand-designed coloured layers overlaid to create convincing irides. Nevertheless,
painting many semi-transparent layers is a time consuming task.

• Zuo and Schmid [106] generate human irides using synthetic �bers to mimic the
�brous nature of the iris layers. However, this method has been developed for
the evaluation of iris recognition algorithms and does not address the problem of
mimicking and rendering given irides, merely physically assessing them.

• Lam and Baranoski [102] propose a Monte-Carlo based rendering technique to
accurately simulate the light scattering within the iris. This method uses the
anatomical and biophysical properties of the iridal layers. Lam and Baranoski
show that this rendering method can be used to accurately infer physical and
chemical information from the human iris, such as the iridal melanin distribution,
useful for medical purposes. However, this is an o�ine rendering method and does
not address the problem of the human eye cloning.

Each of these methods does not speci�cally deal with the real-time rendering of iri-
des in a realistic and �exible manner. François et al. [28] chose to instead clone the
iris in a novel manner, by using macroscopic photographs. Once the iris image has
been unrefracted and deconvolved, the remaining RGB image can be used to realis-
tically approximate the surface. This is a largely automated process that minimizes
user interaction, and results in a useful map that can apply multi-layered subsurface
scattering to the surface. It is to date the most convincing real-time impression of the
eye's complex surface structure.

2.3 Relief Mapping

In order to build an appropriate picture of the reliefs in the iris, a body of work known
as relief texture mapping is adapted. It is important to note that it forms the basis
for other related sections, and so is explored here. Oliveira et al. [71] �rst presented
Relief Texture Mapping. This paper extends the very basic idea of texture mapping
�rst presented in [14], in order to display varying levels of 3-D surface details and
view motion parallax on polygons. Oliveira uses a two-pass approach: a relief texture
is created: a texture extended with an orthogonal displacement (pre-warp function)
for per-texel (texture element) depth. This pre-warp texture is then mapped onto
a polygon in two steps: it is converted into an ordinary texture using a simple 1-D
forward transform on the CPU, and then mapped in a conventional manner when it is
sent to the GPU. An exact factorization of the 3-D image warping equation outlined
in [54] is used as the pre-warping function to create the relief texture, and the depth
information is computed as the distance from a reference plane to the sampled surface.
Thus, correct views of geometrically rich objects can be obtained by rendering just a few
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Figure 2.2: A simple relief map gives the illusion of geometric micro-details [76].

polygons that are relief texture mapped. Oliveira's relief texture mapping dissertation
[70] provides a more comprehensive overview of the relief mapping technique that is
presented in his published paper.

With the introduction of fragment processors, Policarpo et al. [78] extended and
generalized the relief texture mapping technique for arbitrary polygonal models with
an e�cient implementation on the GPU. They achieved this by performing a ray-
height-�eld intersection in 2-D texture space. The renderings present correct self-
occlusions, interpenetrations, and shadows; and allow for other per-pixel lighting e�ects
by exploiting the programmability of the GPU. This relief texture mapping technique
makes use of texture �ltering (e.g. bilinear), to guarantee that the height �eld surface
will be continuous. As a result, extreme close-up views of the surface can be rendered
without noticeable artifacts. This new relief texture representation is based on two
depth layers instead of one. Dual depth relief textures use one more layer of depth to
represent the back of the object. This signi�cantly increases the quality of the e�ect
as the object has tighter boundaries that are assessed with no extra storage cost and
very small additional computational cost.

Oliveira and Policarpo generalized their relief mapping work once again to include
the ability to represent non-height-�eld mesostructure details in [76]. This technique
allows relief texture mapping to be carried out on multiple layers of a complex surface.
The main contribution is the representation of several layers of depth and normals in
the same domain and range (0 to 1). The ray-surface intersection procedure has also
been adapted to suit an arbitrary number of layers. This situation is illustrated in
Figure 2.4, where a relief texel may contain several pairs of depth and normal values.

One other interesting feature of this paper is the wide angular (but non-perpendicular)
viewing range a�orded to relief impostors due to the sampling of multiple depth and
normal maps. A relief impostor uses a technique that utilizes modern shading hard-
ware to perform ray casting into texture-de�ned volumes that give the illusion of a 3-D

8



Figure 2.3: A relief impostor composed of a single quad, mapped with relief textures
[76].

Figure 2.4: A multi-layered relief texture map accounts for light interactions on multiple
layers of a surface [76].

model. Relief impostors are a resourceful means of a�ording detail to large swathes
of entities at very little computational cost. The techniques described here to produce
them are directly related to relief mapping, subsurface texture mapping and are an
important LoD feature.

The True Impostors technique presented in [82] and published in [83] uses the
pixel shader to ray-cast a view ray through the quad in texture-coordinate space to
intersect the 3D model and compute the color at the intersection point. True Impostors
support self-shadowing on models, re�ections, and refractions, and it is an e�cient
method for �nding distances through volumes. Andújar et al. [6] presented impostors
with increased visual �delity and rendering �exibility. These impostors analyse more
maps in di�erent angles. An algorithm determines the "view-dependent selection of a
minimal set of relief maps that maximise the visual quality of the �nal image", among
other contributions such as generating construction and selection metrics for the maps.
Figure 2.3 demonstrates a relief impostor from di�erent viewing angles, generated from
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Figure 2.5: In conventional relief mapping, a ray-marching algorithm samples a light
ray δ times [77].

just a single quadrilateral. Impostors are hence a valuable technique when rendering
many low level-of-detail entities. While impostors are not used explicitly in this paper,
many of the principles behind them are, and True Impostors would be a valuable
extension for vast crowds of virtual characters.

Relaxed Cone Stepping for Relief Mapping presented in [77] uses a variation on the
ray intersection algorithm depicted in Figure 2.5 where a binary then linear search is
performed to �nd the view ray point of intersection. While the binary search converges
very quickly, the linear search is prone to aliasing due to the step size δ taken. Cone
stepping, �rst proposed in [43] essentially eliminates any artifacts by associating a
circular cone (cone map) with each texel of the depth texture. The angle of each cone
is the maximum angle that would not cause the cone to intersect with the height �eld
(Figure 2.6).

Oliveira and Policarpo's relaxed cone stepping for relief mapping [77] epitomises
their relief studies to date. It incorporates the better accuracy of the binary search
while eliminating the aliasing e�ect of the linear search seen in conventional cone
stepping. The constraint that a cone cannot pierce the surface is removed, and adapted:
"as a viewing ray travels inside a cone, it cannot pierce the relief more than once".
By making the cones as large as possible (relaxing them) with this constraint, the
technique converges to an intersection using a smaller number of steps. The relaxed
cones eliminate the need for a linear search and consequently those associated artifacts.
As the ray pierces the surface once, it is safe to proceed with the fast and more accurate
binary search.
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Figure 2.6: At each pass of the iteration, the viewing ray is advanced along to its
intersection with the cone centered on the current texel until the surface is hit. Relaxed
cone stepping expands the cones to intersect once and only once [77].

2.4 Subsurface Texture Mapping

The subsurface scattering of light is a broad physically based problem to which no one
solution exists. Previous contributions in the area include techniques such as wrap
lighting, normal blurring, texture space di�usion, and depth map techniques which are
brie�y discussed in this chapter, and detailed in [4]. Nishita [63] presented a range of
physically based light scattering models for volumetric objects in natural scenes, such as
clouds or water. Most shading models in real time applications consider the interaction
of light only on the surface of an object. In the real world however, many objects are
slightly translucent and light interacts beneath the surface. Common materials with a
high presence of subsurface scattering include leaves, skin, marble, wax or milk. When
light rays strike a surface, some photons are re�ected away from the surface depending
on its properties. In most cases at least some form light rays are not re�ected. If
they are not re�ected, light enters the material instead, scatters some distance at least
once (often many times) and may be slightly absorbed along the way before it leaves
the surface. For real-time, certain assumptions and approximations must be made as
the physically based radiative transport equation outlined in [16] is too complex for
current hardware [33].

A simple technique that approximates scattering is wrap lighting. Wrap lighting
modi�es the di�use function of the light so it wraps around an object where it would
normally become dark. It is a crude approximation of Oren-Nayar's lighting model
(which simulates rough matte surfaces [60]), [33]. Some improvement was made by
Greene [33] to introduce a colour shift that accounts for the partial absorption of
light, for example when rendering skin a red colour shift could be used [4]. This is still
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Figure 2.7: Advanced real-time subsurface scattering on skin. Interestingly, the devel-
opers may have noted that real-time eyes matching the photo-realistic nature of the skin
in this demonstration is extremely di�cult to achieve - hence the eyes remain closed
[19].

however a simplistic approach to rendering light interaction with complex surfaces.
Jensen et al. [41] presented an o�ine technique for rendering subsurface scattering

as a di�usion process, with a spatial blurring e�ect. This technique blurs the normal
maps of an object to account for some of the visual e�ects of multiple scattering.
Perhaps the best approximation for real-time subsurface scattering to date has been
carried out by d'Eon and Luebke [19]. This technique extends normal blurring, with
texture space di�usion and complex �lters that mimic the e�ect of a multi-layered
heterogeneous structure. The e�ect requires many passes that blur irradiance maps,
di�use and normal maps and combines them to get an e�ective end result, depicted
in Figure 2.7. Depth map techniques are useful for materials exhibiting large-scale
scattering properties. However, they are not as useful when rendering the scattering
properties of the iris as they account for the refraction of light as it passes through an
object entirely.

Mertens et al. [55] and Wang et al. [99] present work adapting the [42] BSSRDF
model (bidirectional subsurface scattering re�ectance distribution function) that is
dipole based. They precompute as much as possible to achieve higher frame rates,
but these techniques deal with uniform materials only.

Donner and Jensen [20] extend these methods again, to include a multipole solution
to subsurface scattering on many layers of material. It provides extremely realistic
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Figure 2.8: The channels of a 2-D texture
encode depth for the scattering of light [29].

Figure 2.9: A �nal subsurface texture
mapped mesh, �rst presented by François et
al. [29].

results close to Monte-Carlo (the most rigorous photon transport available) estimations
but not at interactive frame rates. Hegeman et al. [35] present a volume rendering
subsurface scattering technique, but this does not cater for multi-layered materials
either.

It should also be noted that a common method of representing complex or translu-
cent structures in rendering is to use 3-D volume textures, where many (often hundreds)
of 2-D slices of an object form the basis for its 3-D representation. This technique can
accurately describe the inner composition of an object, such as the body and organs.
One such implementation of GPU accelerated volume textures is presented in [45].
They can have a large memory footprint however, which may be a signi�cant con-
straint for real-time rates. Furthermore, many surfaces (such as those related to the
eye) only have subsurface scattering properties very close to the surface. In this case,
they seem unnecessary and limiting.

The most useful technique pertaining to iris scattering properties is subsurface
texture mapping, also presented by François et al. [29]. This work is a culmination of
many of the techniques discussed, and primarily incorporates the work of Policarpo et
al. [78] on relief mapping. Instead of representing the structure of a material above the
surface of an object though, it uses the 2-D relief map to encode depth information
for any incoming light interactions in the RGBA channels of the image. The red
component is the upper layer and subsequent channels are lower layers of depth. This
approach has a low computation cost with relative simplicity, and results in visually
satisfactory results for complex translucent organic structures. It is therefore ideal for
the complicated structure of the iris. Figure 2.9 depicts the end result of a simple map
resulting in seemingly complex light behaviour beneath the surface of the object.
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2.5 Re�ection

The outer layer of the cornea is coated in a `pre-corneal tear �lm', giving its surface
a distinctive �lm of re�ection. In [28], the eye is cloned for a real-time environment
by �rst taking an iris photograph featuring these corneal re�ections. The virtual eye
is then aligned until its corneal re�ections �t those in the photograph. The bidirec-
tional re�ectance distribution function (BRDF) is the function that de�nes how light
is re�ected upon meeting an opaque surface. Several examples of BRDF models exist.
The popular Phong lighting model [75] is simple and highly e�cient for real time
applications. Cook-Torrance [17] is a more complex but �exible extension of Phong.
These models are based partly on the physics of how light re�ects o� of surfaces, ap-
proximating unnecessary computations for the sake of throughput. Phong models all
light sources as point lights, with each photon consisting of red, green and blue com-
ponents. Phong o�ers two types of re�ection: di�use and specular. Di�use re�ection
is light which is re�ected evenly in all directions away from the surface, predominantly
used in non-shiny surfaces. Specular re�ection is re�ected in a mirror like fashion,
used on shinier surfaces. The light's "angle of re�ection is approximately equal to the
angle of incidence". These re�ections are the cause of specular highlights on surfaces
[13]. Ambient light is modelled as light that arrives equally from all directions, and is
intended to represent light that has spread around the environment through multiple
re�ections.

Figure 2.10: A six face cube-map like
this one is adequate to provide convinc-
ing re�ections for a pseudo environ-
ment. Modern hardware can procedu-
rally generate these every frame [24].

Figure 2.11: Visualisation of the cube-
map construction [27].
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Rendering basic specular re�ection has hence changed very little since its inception.
Re�ecting the environment in real time is an important focus of eye re�ection. Envi-
ronment re�ections were �rst proposed in [11], and Greene [32] extended the idea to
use cube maps in a popular and �exible technique called environment mapping. The
idea is to trace the re�ected view vector back to some environment representation,
such as a six face cube-map that might depict the sky (Figures 2.10, 2.11). The sam-
pled cube-map colour is then applied to the output colour of the material. Cube-maps
can be generated in real-time in a single pass of the geometry shader in the modern
DirectX shader pro�le 4.0, and when coupled with normal maps and other lighting
e�ects can produce a high �delity representation of many di�erent materials. Akenine
and Möller [2] describe in more detail the process of generating glossy re�ections from
environment maps, particularly useful for re�ections prevalent in irides if necessary.

One problem with cloning eyes from photographs as described in [28] is that the
highly re�ective cornea interferes with the quality of the image. Wang et al. [98] deal
with this in a rather speci�c paper on removing re�ections in human irides in order
to gain a clearer representation. François et al. [28] note that this technique does not
accurately recover the iridal colours that are frequently burnt out by strong re�ections.
In their paper they opt for polarizing �lters on both the camera lens and the light in
the environment to minimize re�ections instead.

2.6 Refraction and Unrefraction

The appearance of the iris is augmented by the refractive qualities of the aqueous humor
that �lls the anterior chamber of the eye. It is considered to have a refractive index
close to pure water, as outlined in [34]. In order to assess its true relief and pigment
layout the light must be unrefracted. Refraction is the bending of light as it passes
through one medium to another. In this case, light rays must change their angle of
incidence when entering the cornea from air. Xavier [104] presents an e�cient method
for computing the refraction vector. Oliveira and Brauwers [72] present a real-time
method of refracting light through animated, deformable models without the need for
any preprocessing.

This is unnecessary for our eye rendering as the refractive components of the eye do
not change shape. François et al. [28] therefore incorporate a pre-computed refraction
and Fresnel function into their eye rendering system that e�ciently simulates both by
sampling a set of directions and points on the iris, and linearly interpolating between
the results to build a complete picture of the refraction.
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Figure 2.12: The natural e�ect of light caustics through water is an ongoing research
area in computer graphics [105].

2.7 Caustics

Caustics are another important and complex �eld of research particularly for real-time
rendering. Light caustics are the intricate processes in which light is focused via re�ec-
tion and refraction through a curved surface or object. They can be readily witnessed
as light passes through the inherent uneven surface of water in motion (Figure 2.12),
or in the bottom of any mug. They are particularly relevant to light entering the eye
at glancing angles. Two major classes of caustic rendering techniques exist: image
space and object space [1]. Image space caustics such as Wyman [103] uses images to
capture the e�ect of a caustic volume. Wyman presented a three pass technique, where
the scene is rendered from the point of view of the light, a special depth map called a
photon bu�er tracks where refracted/re�ected light has hit, and each location that has
received light accumulates it into a caustic map. The caustic map is then projected
onto the scene.

Ernst et al. [25] provide an object space technique in which a warped caustic volume
represents how light converges or diverges from a region of the volume as a function of
the distance from a caustic generating region. Converging caustic volumes in a region
focus the light and result in higher intensities and caustic patterns.

François et al. [28] note that the caustics present in irides can be represented by a
much simpler function similar in nature to their refraction function. This is an elegant
solution to the complex problem. It samples a set of re�ected/refracted light rays that
hit a given point and returns a single direction, the result of incoming radiance with a
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weighted sum of the caustic rays. By sampling many points on the iris, again they can
be linearly interpolated to build a greater picture of the caustic behaviour in the iris.

2.8 Hardware Tessellation and Level of Detail

One of the primary contributions of this paper will be to achieve varying levels of
realism when rendering irides for performance e�ciency. Studies regarding the incre-
ment and decrement in levels of detail (LoD) in real-time environments are useful for
a variety of reasons. Cebenoyan [15] notes that lower level detail models can have
fewer polygons, lower quality textures or simpli�ed shaders that still produce satisfy-
ing results. Automated geometric simpli�cation (tessellation) of models is a technique
used in every major game today. Linstrom et al. [48] provided a foundation of this
work, which presents algorithms for tessellating terrain produced via a height �eld in
a seamless manner. This has been extended as hardware has improved, to work such
as Wiley [100] and De Smedt [52] who present more modern techniques combining
the latest graphics APIs, the programmable geometry shader, vertex compression and
adaptive displacement mapping.

Textures (including normal maps and others) are automatically generated and �l-
tered in staggered levels of detail on modern graphics hardware, known as mip-maps.
Ewins et al. [26] analyse how mip-maps should be chosen, and compares some selection
and �ltering algorithms that produce the best results. Today, most graphics hardware
carries out this step automatically. Shaders alone can also be simpli�ed depending
on distance from the viewer, importance or other factors. Olano et al. [69] provide a
description of techniques including geometric simpli�cation and compiler optimizations
that automatically reduces the complexity of an arbitrary shader.

Shader LoD can also involve simplifying lighting calculations by sampling fewer
light rays for example, or streamlining the amount of per-pixel operations that must
occur. Impostors are also an aforementioned impressive form of simplifying detail
[49]. Modern graphics hardware utilising geometry shaders is capable of dynamically
tessellating arbitrary objects, which is another signi�cant area of study [92]. This is
however a less relevant form of LoD for the purposes of this paper, due to the notion
that the iridal detail presented here is maintained by e�ects such as subsurface texture
mapping and not geometrical complexity.

The fact that all modern rendering engines support some form of automated LoD
optimization demonstrates its signi�cance. The cross platform OgreTMrendering engine
[68] for example maintains an interesting assortment of optimization techniques that
can be highly customised. Shaders can automatically choose which material scripts to
implement based on factors such as distance from the camera or pixel count. Models
are geometrically simpli�ed and texture mip-maps are employed based on distance,
among other items such as full impostor support or o�-screen culling.
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2.9 Analysing Shader Performance

One key feature of this paper is to maintain an interactive, ideally real-time (over
50) rate of frames per second. NvidiaTM [64] provide a useful guide on optimising
shading algorithms for e�ciency. Preisz and Garney [79] have several caveats in a
chapter regarding GPU programming e�ciency as well, such as how to �nd shader
programming bottlenecks. Actual shader performance can be measured by useful tools
designed for this purpose. NVidia's PerfHUDTMis a tool for debugging and analysing
Direct3D applications [65], while AMD's equivalent is GPU Shader Analyzer [5].

2.10 Crowds and Perception

Measuring visual �delity is a broad �eld in itself. Studies have shown that humans
have a keen and natural sense for distinguishing even o�ine computer generated char-
acters from the real thing. Surman [89] and Brenton [12] build on and assess the
`uncanny valley' theory �rst hypothesized by Mori [58]. With the advent of hyper-
realistic characters in real-time environments, developers increasingly strive to have
audiences feel a sense of emotional attachment to characters. Much attention has been
paid to rendering skin, hair and complex facial animations, while relatively little work
has been conducted on rendering arguably the most complex and important feature of
the face, the eye. Clearly realistic facial characteristics are the primary identi�er for
evoking emotion. McDonnell and Breidt [53] provide a correlated perception study on
the trustworthiness of virtual characters, while Team Bondi'sTMLA NoireTM is a recent
triple A title that used realistic motion capture and eye tracking to have the player de-
tect lies. Quantic DreamsTMproduced Heavy RainTM, a critically acclaimed cinematic
drama that has several very realistic characters. Anecdotally a fascinating real-time
technical demo of human character performance is located at [18], which provides a
short story centred on one of the most realistic real-time characters rendered to date
(Figure 2.13).

The work of François et al. [28] is e�ectively cloning photographic images for real-
time 3-D. Measuring the success of their eye work is therefore not perception based, but
focuses on comparing luminance pro�les of the rendered images and the photographs.
They also use a root mean square method to determine the percentage of error between
the R, G and B components of the rendering with the photograph. Their �nal result
yields a maximum error of ∼5%, which is indistinguishable.

Eloquently transitioning between levels of detail adds another layer of complexity
to the problem. The work of this dissertation is ideally crowd based at signi�cant
distances. Realistic crowds are important in many areas and again their shader based
rendering is crucially understudied, with many solely focusing on animation and realis-
tic or spontaneous AI for crowds. O'Sullivan and Dobbyn [73] note some useful means
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Figure 2.13: KARA is a robot who displays emotions in a tech demo by Quantic
DreamsTM. This complex demo is rendered in real-time on a Playstation 3, and achieves
photorealism in many instances, particularly regarding the eyes.

of optimizing all aspects of crowds. Elhelw et al. [22] have also provided work that
tracks the viewer's eyes in order to de�ne what features of photographs versus rendered
images are most important in de�ning their realism, with the result that people focus
on areas of high detail in particular.

2.11 Other Relevant Work

Finally, some notable projects relating to the work of rendering eyes, subsurface texture
mapping and relief mapping have been carried out [67], [37], [9], and [86]. These
either do not pertain to eyes speci�cally, are not real-time e�orts, or result in non-exact
clonings, as opposed to François et al. [28].
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Chapter 3

Planning and Design

The following chapter will discuss the initial planning and development stage of the
application and experimentation phases. These major design decisions impacted the
evolution and execution of the project substantially. A brief discussion regarding an
assortment of platform options is described, as well as the impact and caveats of the
�nal decision. A description of the environment choices in which the �nal results were
determined is presented. Finally, the methodology that was applied when writing the
programs is brie�y discussed.

3.1 Platform Choice

This project has been completed using a variety of tools. The primary aspect of the
planning stage is the choice of platform from which to run the application. Several
rendering engines are freely available and provide an open source license or similar for
any products developed via those engines.

Microsoft's XNATMis a widely utilised C# based engine that uses DirectXTMand
their High Level Shading Language (HLSL). The Xbox Live Developer NetworkTM

[57] community behind it is also very active. Several areas of contention are prevalent
with XNA however: It is restricted to C# and HLSL only, commercial applications
must be vetted through the Microsoft's EULA, and applications can only be developed
for a limited number of items, namely the Xbox 360TM, WindowsTMPC and Windows
Phone 7TMoperating systems. One other problematic area is that at the time of writ-
ing, Microsoft's HLSL debugger (PIXTMfor Windows) is unavailable for Visual Studio
2010TMusers due to the migration of their DirectX SDK with Windows 8.

OpenGLTMis a multi-platform graphics API that uses the Graphics Language (GLSL)
for hardware shading [44]. Despite the large community that drives OpenGL, creating
applications using it is arguably a more fragmented process in comparison to a fully-
�edged rendering engine. Models, animation, texture loading, and menus are just a
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few of the items which must be incorporated through separate libraries. While this
leaves the developer with a large degree of freedom, it is inevitably a slower process to
get a demo up and running. IrrlichtTM [40] is another free and open source rendering
engine which was examined, and it supports both OpenGL and the DirectX speci�-
cations. However, many of the tutorials and forums for Irrlicht are not in English.
The UnityTMSDK [97] is a versatile game-making tool which although popular with a
high degree of interoperability, does not provide access to much low level functionality
such as the application-side processing of individual vertices on a model. The most
prominent open source, low level cross platform rendering engine in use today is most
likely Ogre3DTM(Ogre). Ogre was developed by Steve Streeting in 2001 [68], and
stands for Object-Orientated Graphics Rendering Engine. By assuming the role of a
low-level rendering engine only, Ogre's core functionality was the ideal choice for this
project. Ogre was chosen due to the active community forums, support for OpenGL,
DirectX and hence the HLSL, GLSL and Cg shading languages. By using the C++
programming language, virtually any device that supports OpenGL or DirectX is able
run an Ogre application based on the devices capabilities. Ogre has a rich built-in tool
set that permits access to low level data, as well as much higher level functionality such
as libraries for user interface design.

This higher level functionality means it is relatively fast to set up a simple demo with
keyboard and mouse input, debug menus for displaying vital application data, and to
process and display meshes using Ogre's proprietary .mesh format. It was also chosen
to implement the hardware shading using NVidia's Cg speci�cation. This is the third
most popular shading language currently in use on modern programmable hardware. It
is nearly syntactically identical to HLSL. Cg was introduced to provide cross platform
support by targeting either an OpenGL or DirectX device. By using C++ and Cg
in tandem with Ogre's rich framework, an adaptable and powerful application can be
developed with relative ease, which extends the philosophy of this paper.

3.2 Creating the Environment

After setting up the rendering engine, it was decided how the environment should be
planned. The experiments carried out are perceptual in nature, and the application
has been designed with an object orientated approach so as to quickly allow eye models
to be set up with varied parameters. The scene also relies heavily on modifying the
eyes based on a level of detail (LoD) speci�cation. LoD systems, discussed previously
in Chapter 2.8, can be governed by several properties. Arguably the most important
of these is the distance of the mesh from the virtual camera. Thus, a primary input
method for this system is the ability to control the camera with familiar mouse and
keyboard controls. Controlling the camera is also imperative in the development stages.
Many of the e�ects cannot be witnessed without panning or rotating the camera about
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the eye. By performing these motions, the user can truly examine the behaviour of
light and its interactions with the iris and cornea based on the viewing ray.

A simple directional light was set up to illuminate any rendered meshes. Directional
lights are lights without a position and are de�ned by a simple direction vector only.
They are a simpler alternative to point lights which have a world-space position, or
spotlights, which have additional attenuation parameters to create a cone of light which
emanates from a point. A directional light is used when the light source is either
in�nitesimally far away (our sun is one example), or the surface being illuminated is
very small. For our purposes therefore, a directional light is perfect. It also simpli�es
some of the shader calculations that may rely on a light position or fall-o� value,
because they have a constant intensity from all points in the supplied direction.

Finally in order to examine the importance of di�erent forms of iridal re�ectance,
some animated models populate the scene. These are simple test meshes which have
been purchased from the 3D modelling service Turbosquid [95]. In order to populate
the scene with multiple models, several texture maps were created for the same model
to help distinguish between them. The meshes were imported into the modelling pack-
age 3D Studio MaxTM, and rigged using the Character StudioTMbiped system within
3DS Max. Character Studio is a relatively fast tool for setting up simple anima-
tions on a skeletal structure. Motion capture �les which are freely available from the
AutodeskTMsite [7] were employed to add realistic walking and waving motion to the
models. These motions provide an excellent source from which realistic re�ections can
be visualised. The environment is also populated by a large sky box. The sky box is
a cube which encapsulates the entire scene, and is used to represent background de-
tails. A high resolution cube-map photo is seamlessly projected onto the corresponding
faces of the sky box. This cube-map is also used in some of the re�ection calculations
discussed in Chapter 4.5.

The scene itself features a main character surrounded by a crowd of �ve other
models. One character periodically walks past the main model, and another stands
closely to the main character and waves. This set-up provides appropriate motion for
some e�ects on the eyes of the main character, whose face is the focus of the study.
The other characters stand to the side of the main character to form the basis of a
crowd scene which is used for longer distance viewing ranges. Figure 3.1 shows the
simple, complete demonstration scene from an isometric view.

The only other information displayed is a small frames-per-second and rendered
triangle counter, which is necessary for the performance analysis discussed in Chapter
5.1. A conscious choice has been made to hide these counters from the user, as displayed
numeric drops in the frame rate may in�uence decisions in the perception test.
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Figure 3.1: The application scene for demonstration purposes, the perception test sub-
jects do not see the scene like this.

3.3 Coding Approach and Debugging

This project features a relatively large assortment of complex shading designs. When
it came to creating the shaders a coding approach with a gradual, rapid prototyping
methodology was adopted. A development schedule was planned out for each of the
main components of the eye. The creation of even very simple shading techniques
was a valuable learning process, with many unexpected complications along the way.
When problems arose, these were solved by consulting several resources. It was quickly
understood how signi�cant the Ogre `log' �le is. The log is generated by Ogre on
every compilation of the application and shaders, and contains a wealth of diagnostics.
System speci�cations are listed such as the supported shader pro�les on the graphics
card. Any asset loading is declared if successful, and errors and warnings for every �le
are generated.

The active Ogre community forums were also particularly useful, as were real-time
rendering articles and books such as [3], [74] and [37]. The iris was �rst rendered
using a simple Blinn-Phong shader, a small improvement on Phong shading discussed in
Chapter 2.5, �rst published in [10]. This was gradually built upon to include caustics.
Next, subsurface light attenuation and scattering which represents the complex folds
and layers of the iris tissue is calculated. From there the light entering and exiting the
cornea is re�ected and refracted, which was appended to the subsurface and caustic
techniques. The result is a logical division between the iris and corneal shaders, and
they exist as two separate shader programs. Simpli�ed versions of these two large
shaders were then added for LoD experimentation, from the complex end result, to
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extremely simplistic single colours with no re�ection or refraction at all.
The shaders were written in two ways. The simple text editor Notepad++TMwas

the �rst approach. It is a lightweight and convenient manner in which to quickly create
a shader, particularly useful with a Cg syntax highlight plug-in. When signi�cant prob-
lems arose that could not be solved using Ogre's auto-generated debug log, NVidia's
FX ComposerTM [66] shader debugger was deployed. This is a more substantial, fully
�edged shader debugger. No perfect shader debugging tool has been developed to date,
partly due to the sheer complexity of the millions of parallel instructions that execute
on every vertex and fragment. FX Composer is currently (in version 2.5) a relatively
stable shader debugger. It allows per-pixel debugging, stepping through fragment only
instructions, and o�ers a visualisation window amongst other features. Shaders which
are debugged in FX Composer must be in HLSL, but porting between Cg for Ogre and
HLSL for DirectX merely requires swapping coordinate systems from left to right by
transposing any basis transform matrices. Although syntactically identical to HLSL,
Ogre's Cg uses a right-handed, column major rendering coordinate system. DirectX
and HLSL use a left-handed, row major system. This means that any matrices used to
transform vertices from one dimensionality to another in a shader must be transposed
to result in the same calculations. For example, if performing Blinn-Phong shading in
world space, Cg requires the position to be multiplied with the world matrix for the
application to transform the vertex position from object to world space. Since matrix
multiplication is non-commutative, HLSL requires the opposite for the same results.
[46] and [59] provide a useful guides on the mathematics behind rendering coordinate
spaces.
The design of the shader programs themselves has been demarcated by three issues:

• The Ogre framework de�nes each e�ect as a material. Materials are described in
further detail in Chapter 4.2.1. Ogre material scripts de�ne the look of a surface.

• The Cg speci�cation divides vertex and fragment computations in the same man-
ner as the other main shading languages. This division allows the user to specify
calculations to be made at a less accurate but faster per-vertex rate, or at a �ne
per-pixel resolution. This is useful for LoD functionality.

• The materials must be de�ned in an adaptable manner. A wide series of materials
is present in the project, where each one is dependent on the LoD requested by
the mesh onto which it is applied.

3.4 Choosing Levels of Detail

It was decided that the LoD system in place should be governed by the same features
to maintain consistency across each shader �le. Thus there are four levels of detail in

24



total, each seven con�gurable e�ects. The levels range from low quality, to medium,
high and `ultra' levels. This represents a reasonable cross section of very low levels of
detail for crowded, animated scenes viewed from a distance, to macroscopic views of a
single eye. The levels of detail also represent techniques employed in modern computer
games.

Actually choosing what should and should not be calculated at a particular LoD
is one of the contributions of this paper. Hence, several combinations are presented in
the perception study, and the results determine what is necessary at each of the four
levels. Because every amalgamation of view distance, scene description and shader
component LoD represents a combinatorial explosion of possibilities: at least 112 1

for this arbitrary study, some clear assumptions have been made. The lowest levels of
detail should either omit e�ects completely, or use basic colours as placeholders. High
frame rates should be accessible at lower levels of detail even with crowds on-screen.
The highest levels of detail should use high resolution, dynamic maps if possible, and
require the greatest number of instructions in order to execute while still keeping real-
time frame rates.

There are several methods in which an LoD strategy may be approached. It could
be customised to account for the distance of the mesh from the viewer, or the on-screen
pixel count of the mesh. Other aspects that may determine when LoDs are applied
include the amount of meshes with the shader e�ect applied, resource intensive meshes
such as tessellated and animated crowds, or GPU intensive complex particle e�ects
or AI systems. For the purposes of this paper it was decided that the single most
important factor which should a�ect the rendering of the eye is it's on-screen pixel
count. There is nothing else particularly expensive in the scene, so the only other
contributing factor may be distance. For this purpose distance would work well as eyes
are of a consistent size. By considering the pixel count instead though, the eyes may be
of any size and a logical LoD hierarchy will still execute based purely on the screen real-
estate needed to render the eyes. This allows imaginative game developers to concoct
games with eyes of varying screen-sizes with no further consideration necessary for LoD
suitability.

14 levels of detail, each with 7 di�erent e�ects (texture mapping, refraction, re�ection, subsurface
texture mapping, caustics, tessellation and other scleral e�ects) depicted by at least 4 prede�ned
di�erent sections of distance from the camera. This does not take into account using scenes with
or without large or small crowds either, so the evaluation of every possibilty is not plausible for the
purposes of this paper.
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Chapter 4

Implementation

The execution of the shader algorithms is governed by two aspects: the con�ict of
realism versus performance. As discussed real-time computer graphics are on the verge
of achieving photorealistic renders but it remains an immensely complex issue. For truly
interactive performance, it is wasteful to calculate CPU/GPU instructions on details
that are not visible. Polygons may be occluded from the viewer by other geometry.
In which case, modern GPUs cull redundant pixels automatically, but this should be
taken into consideration by the developer. Perhaps there is simply not enough screen
real-estate to render such �ne details, for example on mobile devices, or when the
rendered objects are some far distance in the 3-D world from the viewer. This section
will explore the factors considered when implementing a high degree of realism while
maintaining real-time, smooth frame rates. The Cg shader programs are discussed
along with the LoD system and the perception of the e�ects. Finally, some of the main
problem areas, limitations and potential solutions are presented. All tests were carried
out on a modern consumer grade machine with an Intel i-7 3930K hex-core processor,
an NVidia 680-GTX GPU, and 16 gigabytes of RAM.

4.1 Shader Program Implementation

According to [8], the structure of the cornea has a symmetrical pro�le which can be
algebraically de�ned by the expression:

pz2 − 2Rz + x2 + y2 = 0,

where p = 0.75 and R = −0.78. This is hence the pro�le which de�nes the high
resolution mesh used in the experiments. A programmatic mesh generation tool called
K3DSurf [90] was used to initially de�ne the mesh. This was then imported into 3D
Studio Max 2012 (Max). Some �nal adjustments were made to the vertices, and it was
attached to a base iris and sclera form. The entire mesh was unwrapped using Max's
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UV tools for texturing purposes. The model was exported into an Ogre legible format
(.mesh) using the OgreMaxTM [61] exporter plugin. Ogremax also features con�gurable
tessellation settings which work in tandem with Ogre for the LoD strategy of the mesh.
The correct UVs and tessellation requirements are embedded into the vertices using
the .mesh format.

4.1.1 Ogre Materials

Materials in Ogre are de�ned in versatile material scripts. Material scripts support
inheritance. They de�ne one or more techniques for the material. A technique is
identical to the HLSL implementation, and de�nes exactly what shader code will render
the object that has been passed to it. If more than one technique is de�ned, Ogre allows
the user to fall-back to another technique. Switching to a di�erent technique might be
necessary if the user's GPU does not support the shader model of an e�ect. Another
important reason for switching techniques is when di�erent materials should be used
based on the LoD strategy of the application.

Each technique may comprise of many passes. A pass references the vertex and
fragment shader code that will actually be executed on the mesh, providing a complete
render of the object. Multiple passes can be combined, with di�erent shader settings
to create composite e�ects, such as deferred lighting.

Ogre provides additional LoD functionality within each material script, making
it the perfect platform to quickly experiment perceptual LoD implementations. The
lod_strategy �eld exists to be completely customised for application speci�c material
switching. Another convenient method of creating subtly di�erent materials is the use
of pragma statements. A pragma statement is declared in the material de�nition section
of the script, and essentially acts as a cheap conditional statement. Branching condi-
tional statements and for-loops in shaders are notoriously expensive due to the parallel
and voluminous nature of the calculations being performed. Pragma statements remove
the need to include expensive conditional branches or the need to explicitly de�ne a
separate Cg shader. An example of a simple material script is presented in Appendix
A. It demonstrates techniques, passes and material de�nitions, and features the use of
a pragma statement which chooses whether or not to use a specular contribution. The
following sections will overview the implementation details of each of the components
in the demonstration.

4.2 Texture Mapping

Simple texture mapping is frequently the most important single e�ect on a mesh in a
3-D environment. Not only can di�use colour be presented. Lighting highlights and
shadows, textural clues to the material, and �ne details can be represented with a
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Figure 4.1: A sample of the base di�use texture mip-maps used on the iris.

simple, well-crafted and high resolution map spread across the polygons of a mesh. For
the eye, this detail is most noticeably in the iris. Consequently a high resolution iris
photograph has been used as a base di�use map, and the UV coordinates of the iris
mesh match the layout of the photograph for correct texture mapping.

GPUs have dedicated hardware designed to read textures in a very fast manner
[56]. A high resolution texture wastes processing throughput on the GPU if the details
of that texture are not visible from the angle or position of the in-game camera. In this
case, mip-maps (previously discussed in Chapter 2.8) can be automatically assigned
instead to display the same texture map at lower levels of resolution as necessary.
This is a well-established rendering trick, and subsequently Ogre supports mip-map
generation and display. Hence the iris has four levels of map resolution, one for each
level of detail.

4.3 Refraction

The implementation of real-time refraction is generally done in one of two ways:

• The �rst method is outlined in [87] and [81]. The e�ect is especially non-physics
based, and �ne-tuned by the artist. First the scene is rendered without the
refractive mesh, and saved to a render target. This saves any colour information
behind the mesh. In a perfectly non-refractive surface, this is how the image
would look, with light entering the medium at the same angle it leaves. The light
is perturbed by some form of noise map, such as a normal map with wave patterns
for the surface of water. The perturbed ray is then used to sample the render
target created in the �rst step. The result, depicted in Figure 4.2 is artistically
pleasing. The normal map can be created by an artist for any purpose, and it
may have motion, colour or any other composite in�uence applied to it for very
convincing e�ects. The drawback to this method is that it requires the surface
to be somewhat `noisy', and a reliable normal map is necessary.
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Figure 4.2: An example of a non-
physically based refraction tech-
nique [88]. The wave normal map
features animated UV coordinates
which provide a convincing refrac-
tive wave e�ect.

Figure 4.3: The physically based refraction de-
picted here samples a cube-map to simulate the
perturbation of light rays. [27].

• The second popular method is outlined in [27] and [101]. Here the incident light
ray enters the surface, and is perturbed based on Snell's law of refraction [96].
This physically based law discovered by Ptolemy and rediscovered by Wilebrord
Snellius in 1621 [31], de�nes a metric of light refraction between di�erent surfaces.
A perfectly non-refractive vacuum would have a refractive index of zero. The
interface between air and water is approximately 1.333, and air/glass 1.06. This
index is used to calculate the angle at which the light that enters the object should
be perturbed. The perturbed ray is then used to look up a cube-map texture for
the colour at the pixel where the viewing ray hits the surface. This technique is
much more physically accurate, and suits the refraction of a smooth, non-noisy
surface such as glass or the cornea. One disadvantage however is the reliance on
a cube-map texture. Large dynamic cube-maps are still prohibitively expensive
to create, and crucially static cube-maps do not represent any calculations that
may occur at runtime beneath the refractive surface (post refraction).

The refraction created for this paper is thus a cross between these techniques, and
hence somewhat more �exible. First a render target of the iris and pupil is created.
The view/cornea intersection ray is perturbed based on the highly refractive index at
the interface between the air and the cornea, de�ned in [34] as 1.378. The perturbed
ray is then projected into tangent space in order to lookup the 2-D render target rather
than a 3-D cube-map. The result is a refractive surface which can render any lighting
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e�ects occurring beneath it as well, such as the subsurface-texture mapping of the iris.
One drawback to this technique is that the render target is created at the start, before
any refraction occurs. This means that any further calculations that rely on the light
direction to create the render target in the �rst place are not using refracted light.
One proposed solution would be to refract the light, store its new direction and create
the render-target using the new light direction in an über-shader or a set of smaller
shaders. The e�ect is still however convincing and physically based. In the low and
medium levels of detail, refraction does not occur. This is because at these levels it is
much harder to detect whether or not refraction occurs, as dissected further in Chapter
5.2.

Figure 4.4: The iris is represented
by a plane. Perturbed light rays
look-up the plane in tangent space
to return appropriate pixel colours.

Figure 4.5: Iridal refraction in the shader: left is
the plain di�use colour; right is the refracted iris
giving more realistic magni�ed and perturbed
features.

4.4 Re�ection

The calculation of correct re�ections is of the utmost importance when attaining realism
in a polished surface. Re�ection is simulated in a variety of ways outlined in Chapter
2.5. There are two implementations in this paper, static and dynamic. François et al.
do not indicate if they consider any kind of dynamic re�ection [28]. Both techniques
rely on calculating where the re�ected light vector may travel, and how intense the
re�ected light may be. The re�ected light is used to look up and display the values in
a cube-map of the scene. In order to combine the e�ect of re�ection and refraction,
a Fresnel function is de�ned. The Fresnel function linearly interpolates between the
amount of refractive and re�ective colour based on the viewing angle to the object.
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Figure 4.6: A simulation of water that realistically depicts a mixture of pure re�ection
and pure refraction. The smaller the viewing angle is to the surface (hence further into
the distance), the more re�ection is displayed and the reverse holds true for refraction
[91].

This successfully emulates the real-world behaviour of refraction and re�ection in an
intuitive manner. Examples of the Fresnel correlation between re�ection and refraction
properties of water can be seen if Figure 4.6.

The use of a static cube-map means that the map is de�ned before run-time. The
main disadvantage to this technique is that other objects in the scene, particularly
objects in motion, are not present in the map. A variety of maps may be needed
for di�erent scenes as well. Importantly however, they are extremely e�cient, easier
to implement and are useful for a cheap form of low-resolution or `blurry' re�ection,
such as that present on water. Alternatively, dynamic cube-maps are generated at run-
time. Up until a few years ago dynamic cube-maps were strictly o�ine techniques only.
With the advent of programmable graphics hardware, the six faces of a cube-map can
be generated on a per-frame basis for many objects simultaneously on consumer level
hardware. This means that the entire scene that is to be re�ected can be accurately
represented every frame.

The re�ection of light on the cornea is an important aspect of depicting the eye
with �delity at close-range. However, these e�ects may be wasted at medium to long
range LoDs in many cases, elabortated in Chapter 5 as one of the contributions of this
paper. The decision of static or dynamic cube-maps should be made by balancing the
processing power a�orded by the scene, and assessing the perception of motion in the
re�ective surface for that scene. The dimensions of the cube-map may de�ne an LoD
too. A static, low resolution (for example 128x128 pixels-per-face), may be more than
enough to add some colour to the chaotic nature of water tubulence. In contrast a
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dynamic, medium to high resolution cube-map would represent a smooth, glass like
surface at close range with a robust extent of �delity.

The performance improves signi�cantly when comparing a low-resolution static
cube-map with a high-resolution dynamic map in the application for this paper, dis-
cussed in further detail in Chapter 5.

Figure 4.7: A dynamic cube-map only is demonstrated on the iris, re�ecting the ani-
mated characters in the scene.

4.5 Subsurface Scattering

The most intricate single e�ect in the eye is the computation of light rays that meet
with the iris. Some light is re�ected using a fast and reliable Blinn-Phong lighting
approximation. The remaining light is absorbed into the surface, based on a pre-de�ned
subsurface texture map. As described in Chapter 2.5, this map encodes di�erent levels
of thickness and depth in the separate red, green, blue, and alpha channels of the
texture. The major necessary steps of the implementation are described here.

Conventional lighting models trace the path of light photons from their source,
back to the viewer. Light which has scattered through a translucent surface however,
indirectly a�ects surrounding regions of the surface, from beneath it. In this case the
reverse must occur in order to account for light from other displaced rays: the viewing
ray must be traced back to the light source. The light from beneath the surface which
lies on the viewing ray is assessed and attenuated by the properties of the subsurface
map. Figure 4.8. depicts the two main components of the algorithm.

First the viewing ray is marched along in a number of sample steps. At each step,
the intensity of the light at that point inside the surface is assessed:

1. The current layer where the sample point resides is calculated by looking up the
subsurface texture.
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Figure 4.8: Subsurface texture mapping ray marching algorithm variables. The resulting
light intensity at point P is the summation of light at each sample point M. NSp is the
approximated plane calculated in a pre-processing step [29].

2. The intensity is attenuated by detecting how many layers the light has traversed
through to get to the point, and the scattering properties of each layer is sum-
mated and taken into account.

3. This attenuated intensity is further reduced by assessing the amount of light
which will travel back outwards from the sample point to the surface point along
the viewing ray.

4. The total contribution of surface light is the sum of all sample points along the ray
beneath the surface, up to a prede�ned maximum depth where light contributions
are considered negligible.

Each layer has a set of scattering coe�cients which a�ect the amount of each colour
channel of light that may traverse through the layer. An example table of coe�cients
is outlined in Figure 4.9. One example would be light which passes through blood, in
this case more red light photons would travel through than green or blue. In order
to calculate the point of intersection between the light and the surface which becomes
attenuated upon reaching the sample point along the viewing ray, an approximation
technique is implemented. This approximation technique computes the plane NSp
depicted in Figure 4.8. It is a rather complicated pre-processing step, which assigns a
per-vertex approximated plane evaluated as a weighted average of the tangents within
a certain neighbourhood radius of that vertex. The plane must be calculated for each
vertex and passed into the shader for further calculations.

The luminance values of the iris are directly de�ned by its varying thickness and
scattering properties. Hence darker regions of an iris image physically correspond
to areas where light is more heavily attenuated. Therefore as stated in [28], the
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Figure 4.9: A typical list of light scattering coe�cients in organic tissue [29]. Note
that a layer of blood will have a high coe�cient for the red light channel because it is
naturally closer to pure red.

colour map of the iris is used as the subsurface map that describes the stromal, ABL
and IPE layers of the eye (the foundations of the iris see Figure 2.2). Iridal freckles
and imperfections are considered inconsequential concerning light attenuation for the
purposes of this paper, notably unlike François et al. [28]. A slight ortho-radial
Gaussian blur is also applied to the photograph due to the ABL layer of the iris being
mostly composed of radial furrows. The resulting map used is depicted in Figure 4.10.
Finally in order to account for the volumetric veins in the sclera of the eye, subsurface
texture mapping could be employed here as well using a similar technique. From

Figure 4.10: The subsurface texture map used in the application is similar to the di�use
map due to the luminance values representing morphology thicknesses.

a realism perspective, subsurface texture mapping is ideal to manage the transport
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of light by balancing the e�ciency of the ray marching technique with the GPU's
streamlined ability to lookup texture maps. Non-real-time e�ects such as accurate
Monte-Carlo light models provide very similar results to subsurface texture mapping,
according to François et al. [28].

Figure 4.11: This image from [29] displays
a �sh model with subsurface texture map-
ping using 10 samples (left), and 100 sam-
ples (right).

Figure 4.12: The e�ect of subsurface texture
mapping in the demonstration.

The performance of the technique can be de�ned by several factors. The number of
lights in the scene is not the main bottleneck of the e�ect. Using high resolution di�use
and subsurface maps will increase the �delity of the image at a slight performance
cost. The most signi�cant factor though is the number of sample steps taken in the ray
marching segment of the algorithm. A pictorial comparison is provided in Figure 4.11.
Using only 10 steps for each pixel provides bands of colour where staggered attenuation
occurs. Using 100 steps blurs the colours to produce much better results, but at a
signi�cant performance cost for clear reasons. For this paper, there is no subsurface
texture mapping in the low and medium levels of detail. At the high and ultra LoDs,
20 samples and 200 samples are used respectively. For one eye on the test machine, the
frame rate maintains an average of over 200 for the high LoD and drops to an average
of 45 for the `ultra' setting. This represents a signi�cant performance cost, and was
provided to give an insight between very low and very high �avours of the technique.
An ideal average sample count could be around 50 for arbitrary scenes.

The e�ect is a resourceful and intelligent use of GPU hardware to approximate
complicated structures such as the iris of the eye in a realistic manner.

4.6 Caustics

The caustics e�ect described in Chapter 2.7 has been simpli�ed in comparison to more
accurate techniques. Caustics are most prevalent on the iris when light enters the
cornea at wide, glancing angles. The result lightens the output colour, and is de-
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Figure 4.13: The e�ect of caustics only in the demonstration.

pendent on the main pigment colour of the iris and the colour of the light. For the
implementation of relatively inexpensive but e�ective caustics in this paper, a caustics
map has been applied. This map de�nes patterns which light caustics make in general
terms. The map is summed with the �nal output colour of the iris based on the viewing
angle and the light angle of rays which enter the eye. Figure 4.13 depicts the kind of
e�ect achieved, and as light moves the caustics change shape and fade appropriately.

This method of caustic approximation is very economical in comparison to complex
projective mapping techniques which sum light rays that intersect the same pixel. This
would be implemented in a similar manner to how refraction is calculated, where the
light ray intersection with the iridal plane is tracked. For the purposes of this paper it
has not been implemented, as basic caustic mapping is convincing. Another manner in
which the �delity of the caustics may be increased would be to use a high resolution,
complicated caustics map. Caustics are not present in the medium and low levels of
detail in the application because the e�ect might only occupy a very small number of
pixels. In the high and `ultra' levels, a 256x256 and 1024x1024 resolution caustics map
is used respectively.
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4.7 Tessellation

Tessellating a surface increases the amount of triangles that de�ne the surface. By
adding more polygons, surface details can be represented at a much higher resolution
for a performance cost. With more vertices to `shade' through the rendering pipeline
the performance cost may be very noticeable. If there are too few, meshes will simply
not look good enough as no �ne details can be represented.

Hence tessellation is a key feature built into all modern graphics APIs. The ability
to blend between lower and higher polygonal representations of the details in a mesh
dynamically can be speci�ed in a strategy de�ned by the developer. This allows for
�exible scenes with a high level of �delity only when necessary, freeing up resources to
render other in-game objects. This functionality is well suited for the purposes of this
paper, where changing levels of detail is an important concern. The Ogre rendering
engine has the ability to automatically tessellate models on command through various
interpolation algorithms using di�erent resolutions of mesh from the .mesh �le.

In the application the eyes are tessellated only as a function of the distance they
reside from the viewer, rather than pixel count. This is due to the tessellation algorithm
taking into account the full size of the mesh which is inherently de�ned by its bounding
box. Four levels of mesh resolution are exported from 3DS Max and encoded in the
.mesh �le. The di�erent resolutions range from 150 triangles to over 8,000.

Figure 4.14: Example tessellation.
This dynamically occurs within the ap-
plication.

Figure 4.15: The scleral detail
includes Blinn-Phong normal
mapping at macroscopic view-
ing distances.
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Figure 4.16: The actual LoD results rendered at close range, from low (left) to `ultra'
(right).

Figure 4.17: The `ultra' LoD.

4.8 Other Important E�ects

Some other e�ects complete the demonstration. The sclera and cornea of the eye both
feature Blinn-Phong lighting which provides realistic specular highlights that represent
the light source (in this case the directional light of the sun). Blinn-Phong shading is a
well-established and very fast approximation of light source re�ectance. Coupled with
the other re�ectance e�ects in use, the overall sense of re�ectivity on the pre-corneal
tear �lm on the eye is much more realistically de�ned for no noticeable computational
cost. The small capillary blood vessels visible on the scleral surface of the eye are also
present in several forms of detail. From very small di�use textures without normal
maps, to higher resolution di�use and normal maps. This lessens the calculations
required for long range LoDs. Even at macroscopic ranges though the scleral blood
vessels should remain di�cult to see, and the normal mapping e�ect is only subtly
applied to give a thin layer of unevenness over the sclera.
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Chapter 5

Analysis

Analysing the success of the application created for the purposes of this paper is a multi-
dimensional problem. François et al. [28] focus on truly cloning iris photographs using
an image-based technique. Therefore, the paper measures the success of that technique
by comparing the precise pixel values of the photograph with the real-time renderings.
One contribution of this paper is to analyse instead how various eye renderings are
perceived and perhaps subconsciously assessed by the user. Hence, the perception
study formulates the main governing metric for the success of the application. Several
other factors are important for truly e�cacious results and conclusions. As described,
all eye renderings are to maintain a rate of 50-60 renderings per-second to be considered
real-time. Furthermore, the lowest volume of instructions necessary to be indiscernible
from higher levels of detail at varying distances is also assessed. Once again these
intentions relate to the logical division of realism vs. performance. This section will
discuss di�ering results and performance metrics related to these intentions, and the
nature and outcomes of the perception study.

5.1 Application and Shader Performance Metrics

The application or CPU-bound processes that execute when running the demonstration
are relatively lesser in comparison to the volume of GPU-bound shader instructions. In
fact this application is almost entirely GPU-bound. One signi�cant area of costly CPU
bound instructions is the calculation of the approximated plane on a per-vertex basis,
for each mesh which uses the subsurface texture mapping technique. As this is a pre-
processing step however, it slows down the initialisation of the application by several
seconds on the test machine, but does not hinder the application during the main
rendering loop. Furthermore, the application does not fall below 60 frames per second
unless more than 200 (the maximum) samples per-pixel are used in the subsurface
texture mapping shader. In reality the sample count is a major contributing factor to
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the frame rate of the program. Another important aspect is maintaining satisfactory
eyes on crowds. The `ultra' level of detail maintains a frame rate of around 50 with
the maximum subsurface texture map sample count. This volume of samples is used
to display one eye at very close range for demonstration purposes. The alternative
levels of detail (LoD) maintain real-time frame-rates for many eyes on-screen. Indeed,
the performance of the application is relatively constant for a multitude of characters:
additional tests were performed using 30 (and thus 60 eyes) in a scene which sees a
drop in frame rate to around 15 frames per second. One key factor in this case is that
the LoD remains lower than the `ultra' setting at all times due to the pixel-count LoD
strategy in place.

Some extra performance tests have also been performed on the subsurface texture
mapping shader, the most substantial in the suite. Using Nvidia's FX Composer we can
see it consists of 137 instructions (11 texture look ups and 126 arithmetic calculations)
as a minimum for every pixel: where there is at least 2 samples of the viewing ray.
This is a considerable load on the GPU, and the solution implemented permits the use
of subsurface texture mapping only at high and `ultra' levels of detail.

Another substantial e�ect is the generation of dynamic cube-maps for re�ection
every frame. Using no subsurface scattering whatsoever still grants a frame rate boost
of around 7-10 per-second when using large dynamic cube-maps versus smaller static
counterparts. All other e�ects in the suite that de�ne the eye have a lesser overall
impact on the test machine by comparison. A factor of several frames is gained on the
test machine by using the lowest to medium LoDs. One caveat is that the test machine
uses a relatively powerful GPU (NVidia's GTX-680). Cards with slower clock speeds
would realise more noticeable di�erences in frame rate, particularly when rendering
crowds. Table 5.1 summarises the rate of frames per second rendered using one or two
eyes depending on the LoD. The very lowest form of rendering: a basic mesh with a
very small texture applied grants a frame rate of around 1,000. Again this is due to
the speed of the GPU, and the rendering loop limit constrained by Ogre. Increases in
�delity, as expected provide decreases in performance, up to a point where rendering
one eye at the highest level grants around 50 frames per second.

5.2 Shader Results and Perception Study

Table 5.1 de�nes precisely how each e�ect in the suite is maintained for every level of
detail. The context for the decisions regarding the manner in which each level of detail
should be rendered is driven by the perception study. Thus, the study is partially
designed to see what a designer may remove and when, when tasked with rendering
eyes in-game. The study itself has been conducted on a small group of 10 people. The
group consists of 6 colleagues (with a keen sense for graphical discrepancies), and 4
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Table 5.1: Application Level of Detail Functionality
Level of Detail Low Medium High Ultra
Polygon Count ∼150 ∼500 ∼2000 ∼8000
Di�use Map 128x128 512x512 1024x1024 2048x2048
Refraction None None Physically

Based
Physically Based

Re�ection None Blinn-Phong
with a 128x128
static cube-
map

1024x1024
static cube-
map

2048x2048 dy-
namic cube-map

Subsurface
Map

None None 10 samples
along viewing
ray

200 samples along
viewing ray

Caustics Map None None 256x256 1024x1024
Scleral E�ects 56x56 dif-

fuse map
512x512 di�use
map

Blinn-Phong,
28x28 normal
map

Blinn-Phong,
512x512 normal
map

Frame Rate ∼999 ∼700 ∼200 ∼50

individuals who have not played any real-time applications within the last 6 months.
Having a sample of `non-gamers' provides a more de�ned insight into the perception
of realism in the images.

A collection of 7 di�erent high de�nition video clips was played for each participant.
Each video features two eyes rendered side by side at the same viewing distance from
the camera. The arbitrary distances were selected to supposedly correlate with the
LoDs: far, medium, close and macroscopic ranges of sight. This study aimed to verify
whether the correlation holds true for the assumptions made regarding the LoD deci-
sions. Both eyes are rendered using a cross section of e�ects, and Table 5.2 describes
the combination of distances and LoD in each video. Figure 5.1 depicts a screen capture
from each video. Each clip also features a rotating camera which orbits a 120◦ �eld
of rotation about the `up' axis of the character's face. This is particularly important
because none of the e�ects can be correctly realised without witnessing the behaviour
of light from di�erent angles while in motion. It is also rather suitable because all real-
istic game environments feature some form of animated viewing camera. As previously
described, the scene has been set-up with animated (waving, walking) characters to
present re�ected motion in the eye. This is useful for discovering the impact or lack
thereof for the dynamic re�ection e�ect, which displays the models in their animated
form in the re�ections on the corneal surface.
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Figure 5.1: A collection of stills from each of the 7 cinematics in the perception study.
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Table 5.2: Actual Perception Experiment Levels of Detail
Video Clip # Distance From

Eyes
Left Eye LoD Right Eye LoD

1 Macroscopic Medium Low
2 Macroscopic High Ultra
3 Macroscopic High Medium
4 Near Low Ultra
5 Near Low Medium
6 Near Ultra Low
7 Medium to Far Ultra Low

On watching each cinematic a number of times, a brief questionnaire (presented in
Appendix B) was supplied. If the eyes were distinguishable it was determined whether
they were more or less realistic than each other to the viewer, and a realism rating was
requested. The realism rating is a generic scale ranging from 1 (completely unrealistic)
to 5 (near photo-realistic). The results for each eye, in every video are formulated
in graph 5.2. This graph depicts the average perceived realism for the cross section
of LoDs presented in the collection of videos. A major contributing factor is also
the distance the camera had been placed from the eyes. The chart demonstrates the
viewing distances for the cross section of videos also.

This graph provides at a glance an insight of how the realism has been perceived,
and whether the camera's distance was a major contributing factor. In the experiment
the videos were randomly demonstrated at the varying distances.

5.2.1 Perception Evaluation

Generally we can see that the actual and perceived levels of detail are proportionate,
but heavily modulated by the camera's distance. Figure 5.2 displays an appropriate
increase for the perceived LoDs, directly related to the actual eye LoDs. As the camera
increases in distance, the perceived level of realism becomes less accurate in comparison
to the assumed levels of detail. At the furthest distance from the eyes (in video clip 7),
the lowest level is displayed (along with the ultra LoD), and the subjects awarded a
much higher average realism rating of 2.5, in comparison to other ratings of the lowest
LoD. This implies the e�ectiveness of the lowest LoD is proportionate to the viewing
distances.

For closer distances, the actual and perceived levels of realism are relatively pro-
portionate to one-another. As described, the study was conducted on a cross section of
viewing distances and LoDs only because every combination would become convoluted
for the testers. For example, the furthest distance had only the `ultra' and low levels ex-
amined because these provide the most signi�cant demonstration of what constitutes
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Figure 5.2: For each video clip, the average perceived realism results for each rendered
LoD is analysed.

realism at these viewing ranges. Every combination was tested for the macroscopic
viewing range because this provides the easiest view for users to spot any di�erences.
Another notable trait is the perceived resemblance of the medium and high ranges of
LoD at the macroscopic distance. This implies the di�erences chosen between these
LoDs is suitable even for very close views.

5.3 Feedback and Comparisons

Finally some discussion pertaining to the comments received by users during the ex-
periment is useful to give an insight into their choices. It was noted by several users
that witnessing both eyes and comparing them to one another was slightly o�-putting.
As visible in Figure 5.1, the physical di�erences between the lowest and `ultra' levels
of realism is rather stark. As refraction occurs, the pupil is magni�ed. The iris takes
on a more detailed, darkened hue from the subsurface scattering, and the addition of
di�erent forms of re�ection is also very prevalent. These factors often result in two
strikingly di�erent eyes in the same character which in essence makes judging both
more complex. The purpose of having two di�erent eyes was primarily to see if users
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might notice the di�erence, but a number of e�ects are particularly conspicuous even
at medium to long ranges. A solution to this would be to double the amount of video
clips by having the same two eye LoDs depicted in each video.

The most substantial e�ect noted amongst testers for the eye is the re�ection.
It was noted by 8 users that even simple Blinn-Phong shading adds volume to the
perception of the eye. Having the shape of the eye react to the light by glistening a
specular highlight dramatically increases realism for a very low computational cost.
Furthermore, the dynamic re�ection was only witnessed at the macroscopic viewer
distance from the eye. As discussed this is the second most expensive e�ect, and by
removing it (one of the key di�erences between `ultra' and high levels), results indicate
that only 2 users (which were colleagues) seemed to notice. Medium resolution cube-
maps are important at close to medium viewing ranges, as the low resolution cube-map
was disorientating to several subjects. It was noted that the low-level cube-map looked
especially unrealistic, making the eye seem `see-through'. It was noticed that the lower
resolution caustics map on the high LoD looked unrealistic, and one user felt the high
resolution caustics were unrealistic too. The tessellation was seemingly undetected by
anyone, and the mip-mapped di�use textures were successful too. About half of testers
speci�cally noted the scleral normal mapping e�ects at macroscopic ranges of detail,
and when higher resolution maps were used. The refraction has a large impact on the
view size of the pupil and the folds of detail in the iris. Nearly everyone noticed when
the eye was refracted and when it was not.
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Chapter 6

Conclusion

The results of this paper are scrutinized in more detail over the following section.
Realising truly useful outcomes through the results presented in this paper is a complex
process. This section will discuss some potential application problem areas, result
discrepancies, solutions and future work.

6.1 Complexity Vs. Visual Fidelity

It was noted that throughout the experiment, the subsurface scattering and the sam-
ple count made only a very subtle di�erence when combined with all of the other
e�ects. There is no doubt that this is the most computationally expensive process in
the shaders, a�ecting the colour of each pixel up to 200 times on a per-frame basis.
Despite the relatively subtle and somewhat �awed �nal result, the writing process for
this e�ect was considerably the most bene�cial due to the nature and volume of the
calculations. In this case the bene�ts of the scattering technique when compared to the
adverse e�ect on the frame rates indicate the e�ect is not as necessary as others. This
was made particularly evident during the perception study where no-one explicitly no-
ticed the e�ect. As discussed the high resolution, dynamic cube maps were on average
not necessary either. Similarly, few noticed the di�erence between a high and `ultra'
resolution of re�ection map. In essence the most important ingredients in the rendering
of eyes are some form of re�ection and texture mapping. The refraction is also im-
portant at all but long range viewing distances. Consequently, reducing some of these
e�ects or removing them completely as necessary will improve the frame throughput
of any application using the eye shader suite.
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6.2 Perceived Vs. Actual Detail

Some discrepancies regarding the assumptions do exist in the results, notably for the
right eye in the 4th clip, and the left eye in the 6th. Both eyes in these clips maintain
the `ultra' LoD at medium distances. The conclusion can be drawn that neither has a
higher rating of perceived realism for a potential variety of explanations. The test was
not conducted in a strictly controlled environment, in part due to time constraints.
This may have sub-consciously in�uenced the results.

Another factor is the shader results are not perfect for every layer of detail. As
discussed previously and in the next section some calculations are approximated. In
some cases this leads to a less satisfactory result than intended: the highest level of
realism should really be photo-realistic at all distances rather than just macroscopic
instances. Another signi�cant issue relates to the limited nature of the survey. More
accurate results would of course be achieved with more test subjects, and many more
videos and iterations of the eye renderings.

An often overlooked issue is the nature of subconscious decision making during
surveys. Friedman and Amoo [30] note that people have a remarkable tendency to
ignore either the maximum or minimum option for a rating scale in a description
survey such as this. As an unforeseen side-e�ect, this may also explain why only 6 out
of 140 realism evaluations were a perfect 5, and 3 of those were from the same test
subject. A solution for future work would be a much larger and more detailed survey.

6.3 Criticisms, Solutions and Future Work

The creation process of this project featured several key obstacles. The subsurface
texture mapping was speci�cally di�cult to implement. The only available resource is
the paper from which the e�ect was �rst published [28]. When coding the e�ect, the
paper features two deceptively complicated algorithms in pseudo-code which required
a steep learning curve to dissect and debug.

The refraction implementation is also relatively novel in comparison to standard
techniques summed up in graphics rendering texts. Because the subsurface texture
mapping occurs beneath the surface of the refracted object, it was particularly di�cult
to realize a form which would account for this as well. This is because the subsurface
mapping relies on the refracted light vector, whereas the refraction relies on rendering
what is underneath the surface �rst. This means the current subsurface texture map-
ping result will only completely work without the refraction. Hence, the subsurface
scattering that is achieved in the demo presents the e�ect from one angle only (but is
witnessed at all angles). This circular dependency remains an area of future work, but
with this constraint the results remain satisfactory even at close distances.

Another area of improvement might be to implement an `unrefracted' iris photo-
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graph. A photograph of an iris is naturally refracted because it is being viewed through
the cornea. François et al. [28] unrefract an iris photograph in an o�ine pre-processing
step which uses an image based technique to do so. This is then refracted again in
real-time in order to apply subsurface texture mapping to the iris. For the purposes of
this paper an iris photograph was unrefracted by hand in Adobe PhotoshopTM. The
result however remains relatively satisfactory without using an automated unrefraction
process.

Generating real-time caustics is another area of improvement for the application.
Reliable caustics are a wide and current �eld of graphics study, and perhaps worth
an entire paper alone. The implementation that is used is a simple approximation in
comparison to the current forms of caustics described in Chapter 2.7. By using one of
these techniques instead, a higher level of �delity would be achieved, particularly at
close ranges.

Finally for game purposes the eyes currently do not seamlessly switch between dif-
ferent levels of realism; which was not the focus of this paper. Instead when moving
the camera toward the character, the transitions are somewhat noticeable at certain
angles. This was not a problem during the perception study because each eye main-
tained a constant LoD for the duration of each video. For game-ready eyes, the correct
distance based blending of the materials would satisfactorily lead to a smooth, unno-
ticeable switching in resolutions. LoD transitioning remains a noticeable problem even
in current games, and is one facet of future work that could be undertaken for a more
realistic e�ect.

6.4 Epilogue

This study has presented and addressed a multitude of concepts regarding the creation
and sustainment of real-time eyes in virtual characters. The eyes remain one of the most
important features of the human body, and only now are developers beginning to a�ord
graphical resources to cloning eyes in as realistic a manner as possible. By exploiting
the computational horse power of modern programmable GPUs in an e�ective manner,
photo-realistic eyes may be rendered on arbitrary crowds of virtual characters. The
novel approach to shading virtual eyes in this paper de�nes a �exible manner in which
to designate varying levels of realism for the eyes. There are 7 core e�ects which
work in tandem to produce an eye of closely photographic visual �delity. There are
4 iterations of the each core e�ect which demonstrate the e�cacy and practicality
of LoD functionality in all aspects of real-time rendering. To date François et al. [28]
have created the most in-depth and faithful virtual eye result, but with no level-of-detail
consideration. Modern games such as Beyond : Two Souls from Quantic DreamsTM,
or the next generation Luminous engine from Square EnixTMprovide a glimpse of what
can be expected in the near future (see Figures 6.2 and 6.1).
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This paper discourses the repercussions and extensibility of such an implementation.
It is hoped that real-time applications in the future sustain both photo-realism and
real-time frame rates simultaneously. As the parallel processor returns of future GPUs
begins to diminish, software engineers must rely on techniques such as the system
presented in this paper to attain that goal.

Figure 6.1: The Luminous Engine from Square EnixTMpromises groundbreaking visual
e�ects.

49



Figure 6.2: Actress Ellen Page reimagined in upcoming cinematic thriller Beyond :
Two SoulsTM.
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Appendix A

Figure 3: This simple script in Ogre de�nes a Blinn-Phong material which contains
techniques, passes, LoD functionality and pragma statements. The pragma statement:
-SPECULAR indicates that a specular component will not be used in this pass.
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Appendix B

Figure 4: The perception study featured one sheet for each video. Subjects were also
asked about their experience with computer games, their age, gender and eyesight ability.
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