
Head Movement and Facial Expression Transfer

from 2D Video to a 3D Model

Mairead Grogan

A dissertation submitted to the University of Dublin, Trinity College,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Interactive Entertainment Technology)

University of Dublin, Trinity College

2013

Declaration

I declare that the work described in this dissertation is, except

where otherwise stated, entirely my own work, and has not been

submitted as an exercise for a degree at this or any other univer-

sity.

Mairead Grogan

August 30, 2013

Permission to Lend and/or Copy

I agree that Trinity College Library may lend or copy this disser-

tation upon request.

Mairead Grogan

August 30, 2013

Acknowledgments

Thanks to Dr. Rozenn Dahyot for the encouragement to work on this particular topic

and for her help throughout the project as my Project Supervisor.

Thanks to the excellent lecturers we had teaching us throughout the M.Sc. in

Interactive Entertainment Technology, for their insightful and encouraging courses and

for many helpful discussions over the year.

Mairead Grogan

iv

Head Movement and Facial Expression Transfer

from 2D Video to a 3D Model

Mairead Grogan

University of Dublin, Trinity College, 2013

Supervisor: Dr. Rozenn Dahyot

The realistic transfer of facial animation from a face in a 2D video to a 3D model

has proved to be a persistent challenge in recent years. In this thesis we propose a

method which transfers both the head movement and facial expressions of a person in

a 2D video to a 3D model. Our method uses corresponding feature points on both the

3D model and 2D face to calculate the rigid head pose of the person in the video. This

position is given by a rotation and a linear transformation. Once these parameters are

calculated, they are used to transform the 3D model so that the head is in the correct

position. The next step is to transfer the expression of the 2D face onto the rotated

3D model. The facial expression is represented by the displacement of the current

set of feature points in the 2D video relative to a set of reference feature points. We

assume that these facial expression feature points only move in 2 dimensions. We

v

then use the displacement vectors to transform the corresponding feature points on

the 3D model. These newly transformed feature points are used to drive a Laplacian

deformation which computes the positions of the remaining non-feature points on the

3D model. The final results constructed using this algorithm are both accurate and

realistic. This method improves upon previous research in the area which assumed

that the head remained static throughout the video. The simple acquisition system of

the input video data ensures that this technique could be implemented in applications

where motion capture or 3D scanning systems are unavailable. Our method can be

used in a wide range of applications including character animation for 3D films, online

avatars, expression exaggeration and reconstructing a video sequence from multiple

viewpoints.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

Chapter 2 Literature review 4

2.1 Facial Animation . 4

2.2 Modelling static facial expressions . 5

2.3 Modelling dynamic facial expressions - Performance Capture 7

2.3.1 Marker based approaches . 8

2.3.2 Markerless approaches . 9

Chapter 3 Head Pose Estimation 16

3.1 The Direct Linear Transformation (DLT) Algorithm 19

3.2 Normalised DLT Algorithm . 21

3.3 EPnP Method . 22

3.4 Experimental Results . 26

3.4.1 Synthesised Data with No Noise 26

3.4.2 Synthesised Data with Added Noise 27

3.4.3 Real Image Data . 29

3.4.4 Talking Face Video . 31

vii

3.5 Comparison of Algorithms . 33

Chapter 4 Expression Transfer 34

4.1 Projection Method . 35

4.2 Transformation Method . 37

4.3 Transforming 3D feature points using Movement Vectors 38

4.4 Laplacian Deformation . 39

4.5 Laplacian Editing . 40

4.6 Iterative Laplacian Editing . 42

4.7 Dual Laplacian Editing . 45

4.8 Results . 46

Chapter 5 Conclusions and Future work 48

5.1 Extreme head rotation . 48

5.2 Stretching and Shrinking . 50

5.2.1 Discontinuities in Rigid Head Motion 51

5.3 Conclusion . 51

Bibliography 53

viii

List of Tables

3.1 Error Results for Synthesised Data . 28

3.2 Error Results for Real Image Data . 31

3.3 DLT Error Results . 33

ix

List of Figures

1.1 This image shows the 68 feature points which were tracked throughout

the Talking Face Video. 3

2.1 A pair of data photographs taken of an actor’s face in [26]. 4

2.2 These are 9 different expressions which were created in [36] by moving

7 different muscles in the face. 6

2.3 This image shows the emotion of surprise recreated on the face model

by Waters in [36]. Here the brows are curved and high, and the eyes are

wide. 6

2.4 These images show a variety of emotions reconstructed by Lee et al. in

[22]. The final image also has the epidermal mesh superimposed on the

model. 7

2.5 A facial expression created by Sifakis et al. using 32 facial muscles (top

left) and simulated on a finite element tetrahedral mesh (top right). The

muscle activations and bone kinematics are estimated to match motion

capture data (bottom left). The final result expression can be seen on

the bottom right. 8

2.6 Results from [38]. These images show the tracked expression on the

actors face to the left, and the reconstructed expression on the model to

the right. 9

2.7 Result of the sinusoidal phase-shifting method for shape acquisition

presented by Zhang et al.[42] (a)-(c) Phase-shifted fringe images. (d)

Wrapped phase map. (e) 2D color image for texture mapping. (f) 3D

wire frame model. (g) 3D shaded model. (h) 3D model with color tex-

ture mapping. 9

x

2.8 This shows a high resolution face model created using the technique

described by Beeler et al. in [4]. 10

2.9 This figure demonstrates the template fitting process used in [41]. (a)

A face template. (b)-(c) Depth maps from different viewpoints. Cor-

responding points are manually identified. (d) The template after it

has been warped using the feature correspondences. (e) Initial mesh

after the warped template has been fitted to the depth maps. (f)-(j) Se-

lected meshes after the initial mesh has been tracked through the whole

sequence using optical flow and depth maps. 11

2.10 The top row shows the target images and the bottom row shows the

results achieved by Pighin et al. [30] of fitting the model to these images. 12

2.11 These images show the results achieved by Zhao et al. in [43]. 14

2.12 These images show the results achieved by Wan et al. in [35]. 14

3.1 This image is taken from [17] and shows that the world coordinate frame

and camera coordinate frame are related via a (3 × 3) rotation matrix

R and a translation t. 17

3.2 The feature points used to calculate the rigid head movement of the face

in each of the experiments. 26

3.3 Results from the first and second experiments with synthesised data.

The top row displays the original images created from the synthesised

data. The second row displays the head position reconstructed when

there was no noise added to the data. The third, fourth and fifth rows

display the results when noise of mean 0 and variance σ = 1, 3 and 10

is added to the image data. 29

3.4 The EPnP results from the first and second experiments with synthesised

data. The top row shows the original images. The second row shows the

results when there was no noise added to the image data. As there was

no error, these images represent an exact reconstruction of the original

images. The third, fourth and fifth rows represent the results when

Gaussian noise of mean zero and variance σ = 1, 3 and 10 were added. 30

xi

3.5 Results from the experiment using real image data of the model. The top

row displays the original images taken of the model. The feature point

positions were manually calculated from these. The second and third

row display the results from the normalised DLT and EPnP methods

respectively. 31

3.6 The results of the normalised DLT algorithm when it was implemented

on Timothy Cootes’ video. The bottom row displays the images taken

from Timothy Cootes’ video. The top row displays results obtained

when the algorithm was applied to the data. 32

3.7 The results of the EPnP algorithm when it was implemented on Timothy

Cootes’ video. The top row displays the images taken from Tim Cootes’

video. The bottom row displays the results obtained when the algorithm

was applied to the data. 32

4.1 The reference image used by Zhao et al. in [43] is shown on the left. A

frame from their video is shown on the right with the 16 feature points

marked in green. 35

4.2 This image shows the 36 feature points chosen to calculate the facial

expression in the video. A corresponding set of feature points were

chosen on the 3D model. This frame is also the reference image used

when the Transformation Method is implemented. 35

4.3 In the image on the left the connected green points represent the posi-

tions of the feature points in a single frame of the video. The connected

blue points represent the positions of the feature points which have been

projected from the 3D model. The difference in facial characteristics can

be seen in this image. The image on the right shows the results of the

mesh deformation when the motion vectors from the Projection Method

are used as constraints. This face should represent a neutral expression.

Stretching and distortion are evident around the lips and nose. 37

4.4 This diagram shows the position of aij and bij, the angles opposite the

edge (i, j) [20]. 40

xii

4.5 These images show the results of the iterative Laplacian deformation.

From left to right, the images show the results when t = 1, t = 3, t = 5

and t = 7. 44

4.6 This image shows a primal mesh and its corresponding dual mesh. The

primal mesh is outlined in green. The corresponding dual mesh is out-

lined in red. 45

4.7 These images show the results of the non-iterative Laplacian deformation

technique. The images on the top row show the image from the video

which was processed. The images below show the model which has been

deformed using Laplacian deformation. 46

4.8 These images show the results of the iterative Laplacian deformation.

From left to right, the images show the results when t = 1, t = 3, t = 5

and t = 7. 46

5.1 Final results. 48

5.2 In each of these images the nose appears to bend in the wrong direction.

The right eye and right hand side of the mouth are also distorted. . . . 49

5.3 This image was taken from [28] and demonstrates some of the variations

in gender, height, weight and age achievable with this model. 50

5.4 These images display the stretching and shrinking artifacts which occur

throughout the result videos. The size of the model face appears to

change when the expressions change. 50

xiii

Chapter 1

Introduction

Non rigid pattern detection, recognition and synthesis are major topics of interest in

computer vision and graphics applications. In particular, the face is a part of the body

which is of great importance in scientific fields such as biometry, psychology, human-

computer interaction, animation, biomechanics, and film and game industries. The

computer games industry alone, worth $ 67 billion in 2012, dedicates a huge amount

of resources to implement state of the art facial capture and reconstruction techniques

to enhance the realism of the characters they create. In the film industry, many actors

performances have been captured and used to animate different characters.

Facial dynamics are also significantly important in verbal communication, and many

researchers have spent time processing lip movements and poses in order to decipher

speech content and perform lip reading. Emotions and gestural messages can also be

interpreted and recreated using facial data. One such application is the use of computer

generated facial expressions to help teach autistic people how to read emotions. Recent

advances in technology have seen engineers create a virtual talking head which is capa-

ble of replicating human emotions with unprecedented realism. Thus the construction

of a highly accurate facial animation system is hugely important in both science and

technology, although significant challenges still exist as no perfect facial animation sys-

tem has yet been created. This has ensured that the face remains a hugely popular

research topic, with new techniques constantly being developed to improve how it is

modelled.

Facial animation has proved to be very challenging for two main reasons. The first

1

is that the face is not a rigid structure, but a flexible surface. This means that it is

very difficult to specify how the face moves. Secondly, we are extremely familiar with

the human face and what motions and expressions are natural for a face. This means

that we notice small deviations from what we think are natural face dynamics and

this has resulted in the ‘uncanny valley’ hypothesis. This holds when the replications

of a human or human face look and move almost exactly like humans, but not quite.

This results in feelings of revulsion among human observers. This is a state which

researchers have been trying to overcome in the last few years.

A huge challenge with expression transfer is the difficulty associated with recreating

realistic expressions on the target 3D model. The aim is to ensure that the 3D model

maintains its own facial characteristics while still reflecting the expression and speech

animation seen in the 2D video. The accuracy of the expressions which are transferred is

another challenge. A simple smile can appear very different depending on the individual

characteristics of the person. This means that a generic smile alone should not be

transferred to the 3D model, but instead the unique smile of the person in the video.

In addition, the recreated animation should be smooth.

However, the transfer of the facial expression alone is not sufficient. The movement

of the head is also key when trying to convey the emotions of the person in the video.

A simple nod or tilt of the head can communicate as much as the expression itself.

Because of this we present a method which reconstructs both the rigid head movement

and facial expression of the person in the video using a 3D model. We implement

a feature point based technique in order to calculate the movement of the head and

present a Laplacian deformation approach to recreate the expression on the model.

The computation is carried out using Matlab R2012b. The 3D model used during

this project is the Basel Face model. This is a Morphable Model which was constructed

from registered 3D scans of 100 male and 100 female faces. Details about the model

and it’s construction are available in [27]. The model mesh consists of 53,490 vertices

which are connected by 160,470 triangles. Two lists of feature point positions are also

provided with the model. The first is a subset of the Farkas points and the second

is a subset of the MPEG4 FDP points. We use these lists to find the feature point

positions needed when calculating the rigid head motion and facial expression of the

person in the video.

The video used in this project was the Talking Face Video by Timothy Cootes [10].

2

This video consists of 5000 frames which display a person engaged in a conversation.

The camera was static and trained on the individual. Throughout the video, although

the person is moving their head, the movement still remains almost entirely within the

image. A set of 68 feature points were chosen and tracked throughout the video. The

tracking was performed semi-automatically and was checked visually in order to ensure

that the positions were generally sufficiently accurate. Figure 1.1 displays a frame from

the video with the 68 feature points labelled. The positions of these feature points are

provided with the video.

Figure 1.1: This image shows the 68 feature points which were tracked throughout the Talking Face
Video.

The rest of this thesis is organised as follows. Chapter 2 discusses the state of

the art research in facial animation and expression transfer. Chapter 3 describes and

compares three methods which were implemented to recreate the head pose of the

person in the video. Chapter 4 discusses how the movement of the feature points on

the face were calculated and used to transfer the facial expression to the 3D model.

Laplacian deformation is then described and the final results are presented. Chapter 5

discusses the limitations of our algorithm and future work that could be carried out.

3

Chapter 2

Literature review

2.1 Facial Animation

Figure 2.1: A pair of data photographs taken of an actor’s face in [26].

Facial animation has been an important topic in computer science since the 1970’s,

when Frederick Parke first published his theses entitled “Computer Generated Anima-

tion of Faces”[26], and “A Parametric Model for Human Faces”[25]. In [26], Parke

outlined a simple way to represent and animate a face with a sequence of expressions.

The surface of the face was approximated using a skin of polygons, with a higher poly-

gon density in areas of higher curvature such as the nose and chin. In order to create

the polygonal skin, polygons were drawn onto one half of an assistant’s face. They

then completed a set of expressions in order to see how well the set of polygons ap-

proximated these expressions. The skin was then determined by recording the vertices

4

of each of the polygons. In order to animate the face, two photographs were taken

of the assistant’s face doing different expressions, one from the side and one from the

front. In order to animate changing expressions, a computer program was developed

which interpolates between two expressions.

Since this paper was published, the area of facial animation has become an impor-

tant research topic across a range of disciplines. The topic can be categorised into the

following areas:

1. Creating facial models.

2. Modelling static facial expressions.

3. Creating dynamic facial expressions.

4. Rendering.

We will review the methods being used to model static facial expressions and create

dynamic ones, focusing on those methods which are closely related to our project.

2.2 Modelling static facial expressions

Many methods have been developed in order to model static facial expressions in a

realistic manner. These involve mapping a set of parameters to the appearance of the

face model. There are two tasks associated with this problem:

1. Developing a suitable parameter set, and

2. Mapping the numerical values of the parameters to the observable changes in the

appearance of the facial model.

There are many parameters which can be taken into consideration when trying to

describe the appearance of the face. These can range from the underlying structure of

the face to it’s physical and biomechanical properties. Using physically based methods

to model the face is an active research area, and aims to animate a human head by

mimicking it’s natural movements. In [36] Waters uses physically based methods to

simulate facial muscle contractions and create several different facial expressions.

5

Figure 2.2: These are 9 different expressions which were created in [36] by moving 7 different muscles
in the face.

Waters presents a muscle model which simulates two types of muscles - linear mus-

cles which pull and sphincter muscles which squeeze (Figure 2.2). Ten muscles were

added to the facial topology and used to create the expressions. However, as very few

muscles were used, only very basic expressions could be reproduced (Figure 2.3).

Figure 2.3: This image shows the emotion of surprise recreated on the face model by Waters in [36].
Here the brows are curved and high, and the eyes are wide.

An extension of muscle-based parametrisation is physics based approaches. These

models include separate layers for muscle and skin. The skin is deformed with virtual

muscles that are attached to the mesh which represents the skin. In [22] Lee et al.

develop an anatomically accurate physics-based model which simulates tissue, skull

and synthetic muscles. A person’s face is first scanned and used to create a polygonal

6

mesh which forms the epidermal layer and an algorithm then constructs the multi-

layered skin and skull structure. Muscles are also inserted which create forces which

deform the tissue and create realistic expressions. Constraints are included which allow

the tissue to slide over the skull without penetrating it. All of these features allow for

realistic animation and ensure that the facial model will be similar to any specific

individual (Figure 2.4).

Figure 2.4: These images show a variety of emotions reconstructed by Lee et al. in [22]. The final
image also has the epidermal mesh superimposed on the model.

In [31], Sifakis et al. also create an anatomically correct model using laser and

MRI scans of a male subject. They use a motion capture system and a set of sur-

face landmarks on the face to track facial movements. They create a system which

automatically determines the muscle activation which tracks the surface landmarks. A

three dimensional non linear finite element method is used to deform the tissue around

the skull and creates a visually plausible animation.

However, simulating facial animations using biomechanical methods is still an active

research area as our limited knowledge of the human skin, muscle and bone structure

makes it difficult to build these models correctly.

2.3 Modelling dynamic facial expressions - Perfor-

mance Capture

Another method of facial animation is performance driven animation, which typically

consists of a non-rigid tracking stage followed by an expression retargeting procedure.

In all of these systems there is a fundamental tradeoff between the quality of the ac-

quired data and the complexity of the acquisition setup. Some systems have been

designed to capture with great accuracy which can create stunning animations, typi-

7

Figure 2.5: A facial expression created by Sifakis et al. using 32 facial muscles (top left) and simulated
on a finite element tetrahedral mesh (top right). The muscle activations and bone kinematics are
estimated to match motion capture data (bottom left). The final result expression can be seen on the
bottom right.

cally used in the film industry. Marker based techniques are usually used for realtime

facial animation because of their robustness. The motion parameters produced create

convincing animations, even when retargeted onto non-human creatures. The more

advanced acquisition systems make use of special equipment such as facial markers

[38, 9, 19], camera arrays [6, 4], and structured light projectors [42, 37].

2.3.1 Marker based approaches

In [38] Williams et al. demonstrated one of the first marker based performance driven

systems. Markers were placed on the performer’s face and were tracked in 2D. The

resulting movements were then projected onto the facial model which was animated in

the cylindrical coordinates of the range data and then converted into 3D meshes with

normals. The result was quite realistic, although it was still very basic and the model

could not have an open mouth or eyes (Figure 2.6).

In [16], Guenter et al. implemented a similar technique. However, unlike Williams,

who tracked in 2D, Guenter et al. tracked in 3D. Again, unlike Williams, who used a

single static texture image of the person’s face, Guenter et al. merged the video streams

from multiple cameras in order to create a single texture map. This was then applied

to the 3D facial model. The texture map sequence captured simultaneously with the

3D deformation data captured many details of expression that would be difficult to

8

Figure 2.6: Results from [38]. These images show the tracked expression on the actors face to the left,
and the reconstructed expression on the model to the right.

capture any other way.

2.3.2 Markerless approaches

For a more realistic representation of the face, markerless approaches such as realtime

3D scanners can capture fine-scale dynamics and are therefore more advantageous.

However these require controlled studio environments and highly specialised sensors.

In [42], Zhang et al. proposed a technique to reconstruct a high resolution face in

real time using structured light techniques (Figure 2.7). The system projects a colour

Figure 2.7: Result of the sinusoidal phase-shifting method for shape acquisition presented by Zhang et
al.[42] (a)-(c) Phase-shifted fringe images. (d) Wrapped phase map. (e) 2D color image for texture
mapping. (f) 3D wire frame model. (g) 3D shaded model. (h) 3D model with color texture mapping.

pattern whose RGB channels are coded with either sinusoidal or trapezoidal fringe

patterns. This results in three grayscale patterns being projected sequentially onto the

9

object. A high speed camera is used to capture these three images and from them the

face can be reconstructed.

Beeler et al. [4] present a method to construct the geometry of a face in a single shot

under normal lighting conditions. Pore-scale geometry can be captured and the results

are similar to those acquired using state of the art equipment. In order to demonstrate

the robustness of their technique, models were reconstructed from captures of faces

of varying gender, age and ethnicity with complex facial expressions. However, this

research does not capture the dynamics of the face, and is solely concerned with creating

a high resolution facial model.

Figure 2.8: This shows a high resolution face model created using the technique described by Beeler et
al. in [4].

In order to capture high resolution facial motion, non rigid registration and tracking

algorithms are used across sequences of input geometry, texture or both. However,

most of these systems are designed to focus on precision and not to achieve interactive

performance in general environments. An example of this type of system is presented

by Zhang et al. in [41]. The acquisition system used in this paper is made up of

synchronised video cameras and structured light projectors which are used to capture

images from several viewpoints. They then implement a technique which generates high

resolution, dynamically controllable face models from these input videos. They also

present tools which enable a user to create new animations and model the movements

in the input video sequence (Figure 2.9).

On the other end of the scale are systems which use only one camera to capture

and model facial dynamics. These systems commonly use 2D parametric shape models

for non-rigid tracking. These systems also require that facial landmarks such as the

corners of the eyes and mouth are accurately tracked. Optical flow is typically applied

10

Figure 2.9: This figure demonstrates the template fitting process used in [41]. (a) A face template.
(b)-(c) Depth maps from different viewpoints. Corresponding points are manually identified. (d) The
template after it has been warped using the feature correspondences. (e) Initial mesh after the warped
template has been fitted to the depth maps. (f)-(j) Selected meshes after the initial mesh has been
tracked through the whole sequence using optical flow and depth maps.

for this purpose. However, noise in the input data makes this type of tracking very

unreliable, especially for less prominent landmarks. In order to make tracking more

robust, geometric constraints among the features are typically incorporated in the flow

computation. This means that the tracking of each feature will be influenced by the

position of the others. Different types of geometric constraints have been proposed [7],

including restriction on feature displacements in expression change [8], adherence to

physically based deformable mesh models [14, 13], and correspondence to face models

constructed from measured examples [30, 5].

In [12], DeCarlo et al. use a simple face model with a small number of parameters

to describe a variety of facial expressions, and extract the motion of the face from a

single video sequence. This research computes forces based on the edges in the input

image and integrates optical flow into the deformable model formulation. Optical flow

provides information that can be used to constrain the motion of the face model. The

shape of the face is also modelled separately from the motion of the face.

In [30] Pighin et al. fit a 3D face model to each frame in the input video in an

analysis-by synthesis approach. The face model uses a linear combination of 3D face

models, each corresponding to a facial expression. This allowed them to match realistic

renderings of faces to the target images and recover parameters that can be used in

animation. When fitting the model, the error function is minimised over the set of

facial expressions and face positions spanned by the model. The parameters extracted

from the image data can then be used to animate a synthetic face.

11

Figure 2.10: The top row shows the target images and the bottom row shows the results achieved by
Pighin et al. [30] of fitting the model to these images.

Chai et al.[8] create a system which allows the user to control the animations of a

3D model by acting out the desired motion in front of a video camera. They developed

a real time facial tracking system which extracts a number of feature points from the

video. A preprocessing motion capture database is then used to translate these low-

quality 2D feature points into high quality facial movements. They also developed an

expression retargeting technique which allowed the synthesized motion to be applied

to a new model.

In [34] Vlasic et al. extract speech-related mouth movements, expressions and three

dimensional pose from a video sequence and use the extracted parameters to drive a 3D

model. The animations can then be seemlessly rendered back into the target footage.

Vlasic et al. use multilinear algebra from a set of 3D face models containing different

identities, expressions and speech movements. These three parameters are learned and

can be controlled independently on the 3D model. The expression and facial movement

in the video are analysed and a set of optimal parameters are calculated which fit those

extracted from the video. These are then used to animate the 3D model.

In [29] Pei et al. propose a method which transfers the speech movements of a

person in a video onto a 3D model. They implement an unsupervised learning process

which extracts intrinsic geometry from the video in order to create 3D key viseme

shapes. These are then uses to form a set of 2D visemes which are then mapped to 3D

face space and used to animate the 3D model.

Recently, deformation transfer between triangle meshes has become an important

research topic in geometric modeling and high resolution 3D face modeling. Research

has also been carried out into the use of Laplacian coordinates or differential coordinates

when deforming a mesh. Laplacian coordinates are calculated for each vertex in a

mesh and they represent the local shape of the mesh around that vertex. In [33]

12

Sorkine et al. proposed a method which represents a surface in terms of its Laplacian

coordinates. They developed an interactive tool which allows the user to deform the

mesh by transforming a number of handle positions. Laplacian deformation is used to

calculate the deformed vertex positions. The local shape of the mesh is maintained

as much as possible given the constraints posed by the user. The main computation

involved is solving a sparse linear system which can be done at interactive rates. They

also demonstrate that this method can be used to transfer details from one mesh to

another, or transplant partial surface meshes.

Much of the research in Laplacian deformation has been based around constructing

a method which can transform the differential coordinates in order to ensure that the

optimal deformed mesh is reconstructed. Yu et al. [39] implement an editing system

which is based on a gradient field. In this case the transformation of the handles is

propagated to all vertices using a weighting scheme based on geodesic distances. Zayer

et al. [40] propose a similar technique but instead propagate along harmonic fields.

In [20], Au et al. present a method which tackles some of the limitations of Sorkine

et al. implementation. They first propose implementing an iterative technique which

updates the Laplacian coordinates at each time step in order to better preserve the local

shape of the mesh. However, they state that if the mesh has irregular connectivity or

complex geometry, the results of the iterative technique may not converge. They then

propose a second method which involves converting the original mesh to its dual mesh

and calculating dual Laplacian coordinates for each of the dual vertices. An iterative

technique is again implemented in order to update the dual Laplacian coordinates.

As the degree of each of the dual vertices is three, the connectivity of the dual mesh

is regular. This removes the instability of the iterative process and gives improved

deformation results.

In [43], Zhao et al. use Laplacian deformation to transfer the expression of a

person in a 2D video onto a 3D model. In order to do this they use a number of

corresponding feature points on the face in the video and on the 3D model. One

assumption made in this publication is that the head remains static throughout the

video and does not change position. In order to capture the facial expression seen in

the video, they calculate the movement vectors of each of the facial features in frame

i. This involves taking a reference image that displays the person in the video with a

neutral expression. They then find the difference between the positions of the feature

13

points in the reference image and those in frame i. These movement vectors are then

used to deform the positions of the corresponding feature points on the 3D model.

Once the feature points have been deformed the final step is to deform the remaining

Figure 2.11: These images show the results achieved by Zhao et al. in [43].

vertices of the model. This is done using Laplacian deformation. The positions of the

deformed feature points are taken to be the handle constraints. The results from this

method can be seen in Figure 2.11. The expression on the model appears to accurately

reflect the expression of the person in the video. However, the assumption that the

head remains static throughout the video limits the data which can be processed using

this technique. In our project we aim to implement a method similar to that of Zhao

et al. but which can be applied to any video. This means that both the rigid head

motion and facial expression of the person in the video need to be recreated.

Figure 2.12: These images show the results achieved by Wan et al. in [35].

Zhao et al. also point out that as their method only considers the 2D facial move-

ments of the face and not the 3D movements, this may cause artifacts in their results.

In [35] Wan et al. overcome this problem by using motion capture data instead of 2D

video data. They capture the facial expression and head movement of the performer

and decompose the data into rigid head motion and change in facial expression. In

order to do this they first calculate the rigid transformation of the head, given by a

rotation and translation. They then apply the inverse transformation to the 3D data

14

in order to remove the rigid head motion from the data. At this stage the data only

represents the change in facial expression. They use 36 markers to capture the facial

expression of the performer and for each marker i they calculate the difference between

the marker’s position in two consecutive frames. These movement vectors are then

used to deform the corresponding feature points on the 3D model. Laplacian defor-

mation is used to calculate the positions of the remaining vertices. The results of this

algorithm can be seen in Figure 2.12 and show that both rigid head rotation and facial

expression have been successfully transferred to the 3D model. We aim to reconstruct

similar results using a video sequence as input data.

15

Chapter 3

Head Pose Estimation

The first step in this project is to estimate the rigid pose of the head for each frame

of a video. We do this by constructing an image of the Basel Face Model using a

virtual camera. There are two assumptions that could be made at this stage of the

project. We could assume that the camera position remains fixed throughout the video

and that the position of the head is changing. In this case, the transformation of the

head would need to be calculated. This is equivalent to calculating the rotation R and

translation t which transforms the world coordinate system to the camera coordinate

system. This can be seen in Figure 3.1. On the other hand, we could assume that the

position of the head remains fixed throughout the video and that the camera position

is changing. This involves calculating the orientation R and centre C̃ of the camera

in the world coordinate system. The (3× 3) orientation matrix R is equivalent to the

rotation matrix which transforms the world coordinate frame to the camera coordinate

frame. When we calculate the centre C̃ we can also use it to find the translation t

using the relation

t = −(RC̃). (3.1)

Therefore both assumptions are essentially equivalent. For this step in the project, we

implement three algorithms which calculate the position and orientation of the camera

in the world coordinate system. We therefore assume that the position of the head is

fixed and calculate the camera centre C̃ and camera orientation R. This will allow us

to recreate the pose of the head with the model for each video frame.

The orientation R and camera centre C̃ are known as the extrinsic camera param-

16

Figure 3.1: This image is taken from [17] and shows that the world coordinate frame and camera
coordinate frame are related via a (3 × 3) rotation matrix R and a translation t.

eters. We let the (3× 3) matrix K,

K =


fx 0 u0

0 fy v0

0 0 1

 , (3.2)

represent the intrinsic camera parameters. The values fx and fy are the horizontal and

vertical focal lengths and (u0, v0) are the coordinates of the principal point. Increasing

the focal length will make the camera zoom in more while decreasing the focal length

will decrease the zoom and make the image appear as if it were taken further away. R,

C̃ and K must be known in order to accurately reconstruct the position of the head in

the video.

The first method that we implement was described in [17] and is known as the

Direct Linear Transformation (DLT) method. Before implementing this algorithm, we

choose a set of feature points on the 3D model and a corresponding set of feature points

on the 2D face. The DLT algorithm then uses these corresponding feature points to

calculate the (3 × 4) camera projection matrix P. The camera projection matrix is a

17

transformation matrix which projects the 3D feature points onto the 2D feature points.

P can be decomposed to find the camera position C̃, camera orientation R and intrinsic

matrix K. P has the following decomposed form

P =


fx 0 u0

0 fy v0

0 0 1


 R




1 0 0 C̃1

0 1 0 C̃2

0 0 1 C̃3

 . (3.3)

where C̃ = (C̃1, C̃2, C̃3)
T . Therefore the DLT algorithm estimates both the extrinsic

and intrinsic camera parameters. All of these are then used to reconstruct the correct

pose of the head.

The second algorithm that we implement is the Normalised DLT algorithm which is

a variation of the DLT algorithm. In [17], Hartley and Zisserman show that the results

of the DLT algorithm depend on the coordinate system in which the feature points

are expressed. This means that the choice of coordinate system is important when

computing an accurate projection matrix P. They describe a method of normalizing

the data before the DLT algorithm is applied. This involves translating the coordinates

of each data set so that the centroids are at the origin. Then the coordinates are scaled

so that on average, for a point x = (x, y, w)T each of x, y and w will have the same

magnitude. The DLT algorithm is then applied to these new normalised data points.

Both the DLT and normalised DLT algorithms estimate the extrinsic and intrinsic

camera parameters. For our final implementation we decided to implement a method

which only estimates the extrinsic camera parameters and assumes that the intrinsic

camera parameters are known. This is equivalent to estimating the camera pose or

‘exterior orientation’ of the camera. In this case, there are 6 parameters that must be

estimated, three for the camera rotation R and three for the position C̃ of the camera

[17].

As we had already implemented the DLT algorithm, we investigated whether the

method could be modified in order to estimate the camera pose given that the intrinsic

camera parameters are known. We found that the DLT algorithm can be used to

estimate an initial camera matrix P and the intrinsic parameters of this matrix can

then be clamped to the desired values. This modified matrix P can then be used to

initialize an iterative technique which estimates suitable values for R and C̃, given the

18

new intrinsic camera parameters. Ideally the fixed intrinsic parameters will be close

to the values originally obtained by the DLT algorithm, however this is not always the

case. If there is a significant difference between these values, an incorrect initial matrix

will be used which may lead to large residuals and hinder the converge of the iterative

technique. Because of this the accuracy of the results obtained may be low [17].

In order to obtain more stable results, we implemented the EPnP algorithm, which

was proposed by Lepetit et al. in [23]. This is a non-iterative method which uses a

number of feature point correspondences to find an accurate estimate of R and C̃.

The central idea associated with this method is to express the 3D feature points in

terms of four control points. This reduces the problem to estimating the coordinates

of these four control points in the camera coordinate system instead of the position of

each of the feature points. As a result, this algorithm proved to be faster than other

state-of-the-art methods at its time of publication.

In the next section we will explain these three algorithms in more detail. We

will also present results from several experiments which were implemented in order to

determine which algorithm is more suitable for our application.

3.1 The Direct Linear Transformation (DLT) Algo-

rithm

The first method implemented is the Direct Linear Transformation method as described

by Hartley and Zisserman in [17]. First, we assume that there are a number of point

correspondences Xi ←→ xi between the 3D model coordinates Xi and the 2D image

points xi. Both Xi and xi are homogeneous coordinates and therefore are of the form

Xi =


Xi

Yi

Zi

Wi

 , xi =


xi

yi

wi

 . (3.4)

19

We let P be the (3 × 4) projection matrix

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 (3.5)

such that xi = PXi. Using this system of three equations, we find that xi× PXi = 0

(× represents the cross product in this case). This gives a set of equations for the i-th

correspondence as follows:

Ai.p = 0 (3.6)

where

Ai =

(
wiXi wiYi wiZi wiWi 0 0 0 0 −xiXi −xiYi −xiZi −xiWi

0 0 0 0 −wiXi −wiYi −wiZi −wiWi −yiXi −yiYi −yiZi −yiWi

)
, (3.7)

p = (p11, p12, p13, p14, p21, p22, p23, p24, p31, p32, p33, p34)
T is a 12 element column vector of

unknowns and 0 = (0, 0)T .

For a set of n correspondences, the equations for each correspondence are stacked

to create a (2n× 12) matrix A:



w1X1 w1Y1 · · · −x1W1

0 0 · · · −y1W1

...
...

. . .
...

w12X12 w12Y12 · · · −x12W12

0 0 · · · −y12W12


. (3.8)

In order to find the projection matrix P, the equation Ap = 0 is solved for p. A

minimum number of 6 correspondences are needed to obtain a solution to Ap = 0.

To ensure the best results are achieved, n > 6 is chosen. In this case, the system is

overdetermined and therefore there is no exact solution apart from the zero solution.

However, one can find an approximate solution, namely a vector p which minimizes a

suitable cost function. In order to avoid the solution p = 0 an additional constraint is

needed. We add a condition on the norm of p, namely that ‖p‖ = 1. Since P is only

defined up to scale, the value of the norm of p is unimportant. Therefore, instead of

solving Ap = 0, we minimize ‖Ap‖ subject to ‖p‖ = 1. In order to compute a suitable

20

value for p we let A = UDVT , the singular value decomposition (SVD) of A. p is

then given by the last column of V. In order to find P, the entries of the vector p are

rearranged as follows:

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 (3.9)

To find the camera centre C̃, camera orientation R and camera intrinsics K, the

camera matrix P must be decomposed. If C =
(
C̃T , 1

)T
is a 4 element column vector

representing the camera centre in homogeneous coordinates, the first thing to note

is that PC = 0. Because of this the SVD of P can be used to find C. Namely,

if P = UDVT , then the last column of V will give the value of C. If we let C =

(C1, C2, C3, C4), then to find the Euclidean coordinates of the camera centre C̃, each

coordinate of C is divided by C4 as follows:

C̃ =
(
C1

C4

,
C2

C4

,
C3

C4

)
. (3.10)

P can be written in terms of K, R and C̃ as follows:

P = KR[I| − C̃], (3.11)

where [I|− C̃] represents the identity matrix concatenated with the vector −C̃. There-

fore we know that the first 3 rows and columns of P make up the matrix KR. We can

then use the RQ decomposition of KR to find both K and R. These can then be used

to capture the correct pose of the model in 3D space. This algorithm is described in

detail in [17].

3.2 Normalised DLT Algorithm

The second method that we implemented was the normalised DLT algorithm. In [17],

Hartley and Zisserman show that the camera projection matrix computed using the

DLT algorithm depends on the coordinate frame in which the points are expressed.

They state that normalising the data improves the accuracy of the results and also

ensures that the algorithm is invariant to arbitrary choices of scale and coordinate

21

origin. The first step is to compute a similarity transformation S which transforms

the 2D points so that their centroid is at the origin. Each 2D point is of the form

x = (x, y, w) and we want to scale each coordinate so that each of x, y and w have

the same average magnitude. Instead of choosing a different scale factor for each

coordinate direction, an isotropic scaling factor is chosen which scales the x and y-

coordinates equally. To achieve this, we ensure that S also scales the coordinates so that

their root-mean-squared (RMS) distance from the origin is
√

2. This means that the

‘average’ point has coordinates of magnitude (1, 1, 1)T . A second similarity transform

S ′ is computed which transforms the 3D points so that their centroid is at the origin

and scales them to ensure that their RMS distance from the origin is
√

3. This ensures

that the ‘average’ point has coordinates of magnitude (1, 1, 1, 1)T . The normalised data

sets are then given by x′ and X′ where x′i = Sxi and X′i = S ′Xi. A projection matrix P̃

is then found by applying the DLT algorithm to the correspondences X′i ←→x′i. The

projection matrix P for the unnormalised data can be found from P̃ as follows:

P = S−1P̃S ′. (3.12)

The projection matrix can then be decomposed using the same method described for

the DLT algorithm. This algorithm is described in detail in [17].

3.3 EPnP Method

The final method that we implement is the EPnP method which was described by

Lepetit et al. in [23]. When implementing this algorithm we let pwi , i = 1, ..., n and

cwj , j = 1, ..., 4 represent the world coordinates of the 3D model and four control

points respectively. We then let pci , i = 1, ...n and ccj, j = 1...4 represent their camera

coordinates. The first step in this algorithm is to express the n 3D world coordinates

as a weighted sum of the four control points:

pwi =
4∑

j=1

αijc
w
j , with

4∑
j=1

αij = 1. (3.13)

Here the αij are the homogeneous barycentric coordinates and are easily found. The

control points can be chosen arbitrarily, however the stability of the algorithm is in-

22

creased if the centroid of the world coordinates is chosen to be one, and the other

three form a basis aligned with the principal directions of the data[23]. Because of

this, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, and {0, 0, 1} were chosen to be the control points in

our implementation.

Next a matrix M is derived in whose kernel the solution will lie. We let K be the

known intrinsic camera matrix and {ui}i=1,...,n be the 2D image coordinates. Then we

have

∀i, ωi

 ui

1

 = Kpci = K
4∑

j=1

αijc
c
j. (3.14)

Here the ωi are scaler projective parameters. This expression can be expanded

by considering the specific 2D coordinates [ui, vi]
T of each image point ui, the 3D

coordinates
[
xcj, y

c
j , z

c
j

]T
of each control point ccj and the intrinsic matrix K,

K =


fx 0 uc

0 fy vc

0 0 1

 . (3.15)

When we substitute these parameters into Equation 3.14 we get the following,

∀i, ωi


ui

vi

1

 =


fx 0 uc

0 fy vc

0 0 1


4∑

j=1

αij


xcj

ycj

zcj

 . (3.16)

The 12 control point coordinates {(xcj, ycj , zcj)}j=1,...,4 and n projective parameters {ωi}i=1,...,n

are the unknown parameters of this linear system. From the last row of Equation 3.16

we know that ωi =
∑4

j=1 αijz
c
j . When this expression is substituted into the first two

rows, we get the following two equations for each reference point:

4∑
j=1

αijfux
c
j + αij(uc − ui)zcj = 0, (3.17)

4∑
j=1

αijfvy
c
j + αij(vc − vi)zcj = 0. (3.18)

As these equations no longer contain ωi, we can concatenate the equations for each

23

of the n reference points and generate a linear system of the form Mx = 0. M is a

(2n× 12) matrix and x =
[
cc1

T , cc2
T , cc3

T , cc4
T
]T

is a 12-vector made up of the unknowns.

Equation 3.17 and 3.18 are rearranged and the coefficients of each reference point make

up the entries of the matrix M. As Equations 3.17 and 3.18 do not involve the image

referential system there is no need to normalize the 2D projections as in the DLT

algorithm [23].

The solution x is then found in the null space of M and we can express it as

x =
N∑
i=1

βivi (3.19)

where vi is the set of columns of the right-singular vectors of M. They are also the

null eigenvectors of the matrix MTM which is a (12 × 12) matrix.

Once the null eigenvectors of MTM are found, all that remains to be computed

are appropriate values for {βi}i=1,...,N which are the coefficients given in Equation 3.19.

In theory, if at least six reference points have been imaged by a perspective camera

and the data is perfect the null-space of MTM should have an exact dimension of

N = 1. However the dimension may vary from 1 to 4 due to the focal length of the

camera, the amount of noise present and the structure of the reference points. In order

to overcome this problem, instead of picking a value for N , solutions are computed for

all four values of N and the value that gives the smallest reprojection error is chosen.

The formula for calculating the reprojection error is given by

res =
∑
i

dist2

K [R|t]

 pwi

1

 ,ui

 . (3.20)

where dist(m̃, n) is the 2D distance between the point n and the point m expressed in

homogeneous coordinates.

Case N = 1: In this case, the equation x = βv holds. In order to solve for β we

let the distance between the control points in the camera coordinate system equal the

distance between them in the world coordinate system. We let v[i] represent a sub-

vector of v corresponding to the coordinates of the control point cci . For example, the

first three elements of v make up the 3-vector v[1]. Given that the distance between

24

pairs of control points must be maintained we get the following equation:

‖βv[i] − βv[j]‖2 = ‖cwi − cwj ‖2. (3.21)

Since we know the distances ‖cwi − cwj ‖ we can compute β using the following formula:

β =

∑
{i,j}∈[1;4] ‖v[i] − v[j]‖ · ‖cwi − cwj ‖∑

{i,j}∈[1;4] ‖v[i] − v[j]‖2
. (3.22)

Case N = 2: In this case we have x = β1v1 + β2v2 and the distance constraints are

given by

‖(β1v[i]
1 + β2v

[i]
2)− (β1v

[j]
1 + β2v

[j]
2)‖2 = ‖cwi − cwj ‖2. (3.23)

In order to solve for β1 and β2, a technique known as linearisation is implemented. It

was previously implemented by Ansar and Daniilidis in [2] in order to estimate point

depths. It involves letting β11 = β1
2, β12 = β1β2 and β22 = β2

2 and then solving a

linear system in [β11, β12, β22]
T . The linear system is made of six equations and can

be written as Lβ = ρ. Here β= [β11, β12, β22]
T , L is a (6 × 3) matrix created from

elements of v1 and v2 and the elements of the 6-vector ρ are the squared distances

‖cwi − cwj ‖2. The pseudoinverse of L is used to solve the system. The values of β1 and

β2 can be refined further using Equation 3.22.

Case N = 3 : Again, the six distance constraints from Equation 3.23 are used and

a linear system Lβ = ρ is obtained. In this case L is a (6 × 6) matrix formed with

elements of v1, v2 and v3 and β= [β11, β12, β13, β22, β23, β33]
T . It is solved in a similar

way to the N = 2 case.

Case N = 4: In this case there are four unknowns, β1, β2, β3 and β4. Although

the distance constraints used in the previous cases still suffice, there are no longer

enough constraints as the linearisation procedure treats all 10 products βab = βaβb as

unknowns. Therefore a technique known as relinearization, which was implemented by

Kipnis and Shamir in [21] was used instead. Further details about this algorithm can

be found in [23].

25

Figure 3.2: The feature points used to calculate the rigid head movement of the face in each of the
experiments.

3.4 Experimental Results

In this section we present the results of several experiments which were used to test

the accuracy of the three methods outlined above. For the DLT and normalised DLT

algorithms we implemented code based on the information in [17]. We also used the

following resources in order to implement the technique in Matlab [3, 11]. When

implementing the EPnP method in Matlab we used code made available by Lepetit et

al. at [24]. We implemented this code and changed certain elements so that it would

be suitable for our application.

3.4.1 Synthesised Data with No Noise

The first implementation involved creating synthetic data from the 3D model and

applying the three algorithms to this data in order to compare their accuracy. First,

the coordinates of 18 feature points on the model face were filled into the (3 × 18)

matrix X. These feature points correspond to those seen in Figure 3.2. Then a (3 ×
4) projection matrix P, where P = KR[I| − C̃], was generated with a given rotation

matrix R, intrinsic matrix K and camera centre C̃. The projection matrix P was then

applied to X to generate the (2 × 18) matrix x. In this case there is no noise present

and x = PX exactly.

26

The DLT algorithm, normalised DLT algorithm and EPnP methods were then

applied to the feature point correspondences xi ←→ Xi. Both the DLT and normalised

DLT algorithms estimated R, C̃ and K. In the case of the EPnP method, we assumed

that the intrinsic matrix K was known and only R and C̃ were estimated. For each

method, an estimated camera projection matrix P̂ was constructed from the estimated

extrinsic and intrinsic parameters.

The error was then calculated for each technique based on the average distance in

pixels between the points in the matrix x representing the original image points, and

the image points x̂ which are created using the estimated projection matrix P̂. The

image points x̂ are created using the equation x̂ = P̂X. The formula for the error is

given by

error =

∑
i (dist(x̂,x))2

n
(3.24)

where dist(a, b) represents the 2D distance between the homogeneous coordinates a

and b. n represents the number of feature points on the face. In this case, n = 18.

In order to calculate the mean error, 50 different projection matrices are used to

create 50 sets of synthesised image points. Each algorithm is then applied to these

data sets and the errors are calculated. If we let errorj represent the error that was

calculated when an algorithm was applied to the j-th data set then the mean error of

this algorithm is given by

mean error =

∑
j errorj

m
, (3.25)

where m is the total number of data sets. In this case m = 50. The mean error and

standard deviation were calculated for each algorithm and the results are presented in

the first row of Table 3.1. The second row of Figure 3.3 and 3.4 show the results of the

normalised DLT and EPnP methods.

The error results in Table 3.1 and the image results in Figures 3.3 and 3.4 show that

the accuracy of both algorithms is good when there is no noise present in the data.

3.4.2 Synthesised Data with Added Noise

For the second implementation the same process was repeated but Gaussian noise

with mean zero and unit variance was added to the synthesised image points. Again

the DLT, normalised DLT and EPnP algorithms were applied and the errors were

27

Table 3.1: Error Results for Synthesised Data

DLT Norm DLT EPnP
Noise Mean Std Dev Mean Std Dev Mean Std
σ = 0 0.0020 0.0014 0.0000 0.0000 0.0006 0.0004
σ = 1 1.4860 0.2101 1.4837 0.2108 1.3880 0.1297
σ = 3 4.6083 0.6616 4.5547 0.6410 4.3788 4.6655
σ = 10 16.4695 2.5147 14.7654 2.2785 14.3641 1.8746

The results above show the mean error and standard deviation for each method when noise of mean
zero and standard deviation σ is added to the synthesised data.

computed. The process was repeated for 50 different projection matrices and the mean

error and standard deviation were calculated as before, shown in Table 3.1. These

figures demonstrate that although the added noise reduces the accuracy of the results,

the errors are low and the estimated projection matrices are accurate. In Figure 3.3

and Figure 3.4 we reconstruct the head pose using the camera parameters estimated

by the normalised DLT and EPnP methods respectively.

The process was repeated with added Gaussian noise of mean zero and variance

3 and again with mean zero and variance 10. Table 3.1 shows that the mean error

for each algorithm increases as the noise increases. In Figure 3.3 we can see that

when the normalised DLT algorithm is implemented, the reconstructed head pose is

quite accurate when the added noise is low. However, inaccuracies begin to arise

when the noise is increased. These inaccuracies are caused by the variance in focal

length. Although the errors calculated demonstrate that the normalised DLT algorithm

accurately estimates a projection matrix P, we found that the variance in the focal

length and camera position caused difficulties when plotting the results with the 3D

model. The result images show that the camera appears to zoom in and out incorrectly,

and when an increased amount of noise is present the orientation of the head in the

recreated image is also incorrect. Although the numerical errors appear to be low, they

do not take these plotting inaccuracies into account.

In comparison, Figure 3.4 displays the head pose reconstructed when the EPnP

method was implemented. These images show very little deviation from the original

pose. Even as the noise increases, the position of the head in the images is almost

identical to the originals. This method appears to create more stable results and

28

Figure 3.3: Results from the first and second experiments with synthesised data. The top row displays
the original images created from the synthesised data. The second row displays the head position
reconstructed when there was no noise added to the data. The third, fourth and fifth rows display the
results when noise of mean 0 and variance σ = 1, 3 and 10 is added to the image data.

the fixed intrinsic camera parameters ensure that the camera does not zoom in and

out incorrectly. As the DLT algorithm is similar to the normalised DLT algorithm

and allows the focal length to vary, it suffers from the same plotting inaccuracies as

the normalised DLT algorithm. The errors are also higher and in [17] Hartley and

Zisserman state that the results of the DLT algorithm will be less accurate than the

normalised DLT algorithm. Therefore we assume that the images created using the

DLT algorithm will be less accurate and suffer from similar instabilities as the DLT

algorithm and do not plot the DLT results.

3.4.3 Real Image Data

In the third implementation, instead of synthesising the image data using given intrinsic

and extrinsic camera parameters, five images of the model were taken and the pixel

coordinate positions of the 18 facial landmarks were manually calculated(Figure 3.5).

For each image a matrix x made up of these landmark positions was created. The

DLT, normalised DLT and EPnP methods were then applied to the correspondences

Xi ←→ xi for each image.

29

Figure 3.4: The EPnP results from the first and second experiments with synthesised data. The top
row shows the original images. The second row shows the results when there was no noise added to
the image data. As there was no error, these images represent an exact reconstruction of the original
images. The third, fourth and fifth rows represent the results when Gaussian noise of mean zero and
variance σ = 1, 3 and 10 were added.

Unlike in the first two experiments, in this case we did not know the intrinsic camera

parameters. This means that a suitable intrinsic matrix K needed to be estimated

before an accurate solution could be found using the EPnP method. In order to do

this, we applied the EPnP method several times with different intrinsic parameters

in K until the reconstructed head pose resembled that in the original images. When

we achieved an accurate reconstruction we then implemented the DLT and normalised

DLT algorithms, calculated the errors and compared the results. These can be seen in

Table 3.2. The reconstructed head poses for the normalised DLT and EPnP algorithms

can be seen in Figure 3.5.

Again the errors in Table 3.2 indicate that the DLT and normalised DLT algorithms

gave a good approximation to P. The high errors seen in the EPnP method are caused

by the inaccuracy of the intrinsic matrix K. However, Figure 3.5 shows that even

though the intrinsic matrix may have been unknown and the errors appear to be higher

for the EPnP method, the reconstructed results are more accurate. Again this is due

30

Figure 3.5: Results from the experiment using real image data of the model. The top row displays the
original images taken of the model. The feature point positions were manually calculated from these.
The second and third row display the results from the normalised DLT and EPnP methods respectively.

to difficulties the varying focal length posed when we were plotting the results. The

errors calculated do not take these inaccuracies into account.

Table 3.2: Error Results for Real Image Data

Algorithm Mean Error Std Deviation
DLT 3.9581 0.8481
Normalised DLT 3.9357 0.8401
Normalised EPnP 81.7413 7.5831

3.4.4 Talking Face Video

In the final implementation the positions of 18 facial landmarks were calculated in a

set of images taken from the Talking Face Video, a video database by Timothy Cootes

(Figure 3.2). For each image the landmark positions were stored in the matrix x

and the DLT, normalised DLT and EPnP algorithms were applied to the correspon-

dences xi ←→ Xi. Again, an intrinsic matrix K was estimated and remained constant

throughout. The process was repeated for 3 sets of 100 images in the database. The

mean error and standard deviation of each algorithm for each set are given in Table 3.3.

Again the error results for the EPnP algorithm are higher than those for the DLT and

31

Figure 3.6: The results of the normalised DLT algorithm when it was implemented on Timothy Cootes’
video. The bottom row displays the images taken from Timothy Cootes’ video. The top row displays
results obtained when the algorithm was applied to the data.

Figure 3.7: The results of the EPnP algorithm when it was implemented on Timothy Cootes’ video.
The top row displays the images taken from Tim Cootes’ video. The bottom row displays the results
obtained when the algorithm was applied to the data.

normalised DLT algorithms. Like the previous experiment, this is because we used

a trial and error method to estimate the intrinsic matrix K when implementing the

EPnP algorithm. The reconstructed images can be seen in Figure 3.6 and 3.7. These

images show that both the normalised DLT and EPnP methods reconstruct the head

pose quite accurately.

We also noted that for each experiment, the figures in Table 3.3 are higher than

those calculated during the previous experiments. This may be due to several factors,

including

• Noise or outliers in the image data.

• Changes in facial expression causing some landmarks to change independently of

the rigid head motion.

32

• The landmarks given in the image may not correspond precisely with those land-

marks on the model. This is due to the individual facial characteristics of the

person in the video. For example, the landmark in the image which lies along the

length of the persons nose may be further down than it’s corresponding landmark

on the model.

Table 3.3: DLT Error Results

DLT Norm DLT EPnP
Mean Std Dev Mean Std Dev Mean Std

Set 1 40.2878 1.0621 31.4040 0.1691 51.6790 2.2643
Set 2 41.9517 3.0134 31.6413 1.1375 51.8112 0.4242
Set 3 41.3970 1.1024 31.1484 0.4217 52.6578 1.3499

3.5 Comparison of Algorithms

From these experiments we can see that when the data is synthesised and the intrinsic

matrix K is known, the errors calculated for the DLT, normalised DLT and EPnP

methods are very similar. However, when the estimated camera parameters were then

used to reconstruct the head pose, the EPnP method produced results that were a lot

more stable than the normalised DLT algorithm. This was caused by the varying focal

lengths calculated by the DLT algorithm. We found it difficult to reconstruct the head

pose accurately when the focal length was allowed to vary for each image. The camera

zoomed in and out and the reconstructed images were therefore inaccurate when a

large amount of noise was added.

When real image data is used and the intrinsic parameters are not known, the errors

for the EPnP method are much larger than those for the normalised DLT algorithm.

This is because the intrinsic matrix must first be estimated and may not be extremely

accurate. However, the reconstructed results are still more stable when the EPnP

method is implemented. For these reasons we decided to implement the EPnP method

when calculating the rigid head movement in our application. We found that the

plotted results were more stable and gave a more accurate reconstruction of the head

position.

33

Chapter 4

Expression Transfer

We have now calculated the rigid head pose of the person in each video frame. The

next step is to estimate their facial expression and transfer it to the 3D model. In order

to do this, we must first calculate the movement of each feature point in every frame

of the 2D video. This method was also implemented by Zhao et al. in [43]. In this

paper 16 feature point correspondences were used to reconstruct the facial expression

of a person in a 2D video. However, as they assumed that the head position was fixed

throughout the video their methods differ from the method we implemented for this

project.

In order to calculate the movement of each of the 16 feature points in frame i, Zhao

et al. took a reference image which showed the person in the video with a neutral

expression on their face. This reference image can be seen in Figure 4.1. They then

computed the pixel coordinates of each of the feature points in the reference image.

They stored these values in a vector F0. They then calculated the position of the

feature points in frame i of the video and stored the values in a vector Fi. The set of

relative movement vectors Ei is the difference between these two vectors,

Ei = Fi − F0. (4.1)

As they assumed there was no head motion in their video, the motion vectors given

by Ei represent how the facial expression of the person in the video changed. However,

in our video both the head position and facial expression of the person are changing

simultaneously. This means that if we implemented the same method as Zhao et al.,

34

Figure 4.1: The reference image used by Zhao et al. in [43] is shown on the left. A frame from their
video is shown on the right with the 16 feature points marked in green.

the vectors Ei would represent both the change in facial expression and head position.

In order to calculate the change in facial expression alone we implement and compare

two methods which are describe below.

4.1 Projection Method

Figure 4.2: This image shows the 36 feature points chosen to calculate the facial expression in the
video. A corresponding set of feature points were chosen on the 3D model. This frame is also the
reference image used when the Transformation Method is implemented.

The first step in the Projection Method is to choose a set of feature points on the

face which will enable us to accurately capture the facial expression of the person. The

35

36 feature points chosen on the 2D face can be seen in Figure 4.2. A corresponding

set of 36 feature points are also calculated on the model. Feature points around the

eyes, eyebrows, nose and mouth are chosen in order to capture when the person smiles,

raises their eyebrows, blinks their eyes and a wide range of other expressions. In order

to calculate how these feature points move we use the 3D model to calculate a set of

2D feature point positions which represent a face that has a neutral expression and has

the same head pose as the person in the video.

For each frame i of the video we implement the EPnP method in order to estimate

the camera orientation R and camera centre C̃. These are then used to calculate the

camera projection matrix P. P is then applied to the coordinates of the 36 3D feature

points on the model. This is equivalent to rotating the model by R, translating it by

the linear transformation t (where t = −RC̃) and then projecting it into 2D. This

produces a set of 36 2D image coordinates which represent an image of the model which

has the same head pose as the person in the video. Figure 4.3 shows this set of 2D

image coordinates as well as the image coordinates of the 36 feature points in the video

frame i. We store the coordinates of the projected 3D feature points in a vector Q0.

We also store the pixel coordinates of the feature points from frame i in a vector Qi.

We then subtract these two vectors in order to calculate the motion vectors Ei of the

feature points in frame i,

Ei = Qi −Q0. (4.2)

This technique removes the rigid head motion information from the motion vector.

However, upon inspection of the motion vectors it becomes apparent that the difference

between Qi and Q0 does not only estimate the difference in expression. As the individ-

ual characteristics of the person in the video are different from those of the 3D model,

this information is also present in the motion vectors. For example, in Figure 4.3 we

can see that the distance between the model’s nose and mouth is longer than that of

the person in video. The shape of the model’s nose is also different to the shape of the

person’s nose in the video. Because of this, the motion vectors calculated also take into

account the individual characteristics of the person in the video. This causes errors to

arise when these motion vectors are used to deform the 3D model later in the project.

Even if the person in the video has a neutral expression, when the model is deformed

36

Figure 4.3: In the image on the left the connected green points represent the positions of the feature
points in a single frame of the video. The connected blue points represent the positions of the feature
points which have been projected from the 3D model. The difference in facial characteristics can be seen
in this image. The image on the right shows the results of the mesh deformation when the motion
vectors from the Projection Method are used as constraints. This face should represent a neutral
expression. Stretching and distortion are evident around the lips and nose.

using these motion vectors the deformation will reflect the difference in facial charac-

teristics. This causes undesirable results such as those shown in Figure 4.3. Because

of these issues we decide to investigate a second method of calculating the movement

vectors.

4.2 Transformation Method

The second method implemented involves using a rigid transformation between 2 sets

of 2D feature points in order to remove the rigid head movement from the data. The

first step is to chose a reference image frame from the video which displays the person

with a neutral expression on their face. The video frame displayed in Figure 4.2 was

chosen as the reference image. For each frame i of the 2D video, the set of feature

points in the reference image (A) is then transformed so that they were aligned with

the set of feature points in frame i (B). In order to calculate the transformation

between sets A and B the centroids of both sets of feature points are translated to

the origin. This transformation was made up of a rotation R and a translation T .

The covariance matrix H of the feature point sets is calculated and the Singular Value

Decomposition of H is used to find the optimal rotation matrix R between sets A and

37

B. The translation T is then given by

T = −R× centroidA + centroidB.(cross product) (4.3)

The information at [18] was used in order to implement this technique.

After this transformation has been applied to set A, the feature points in the ref-

erence image and those in frame i will be aligned. The new transformed positions of

the feature points in the reference image are stored in a vector Q0. The position of the

feature points in frame i are stored in the vector Qi. The movement vectors for frame

i are stored in the vector Ei and are calculated using the following equation:

Ei = Qi −Q0. (4.4)

Although this technique generates accurate movement vectors for most frames of the

video, when the head in the video is not facing straight ahead errors begin to emerge.

This is because the reference image displays the face from a front facing viewpoint.

For example, if the person in the video has a neutral expression but their face is

turned sideways, the facial features will move due to the difference in perspective, not

because of a difference in expression. Although this error is present, we found that the

estimated movement vectors are still reasonably accurate. Because of this we decided

to use the Transformation Method rather than the Projection Method when calculating

the movement vectors.

4.3 Transforming 3D feature points using Move-

ment Vectors

The movement vectors calculated using the Transformation Method are then used to

deform the corresponding feature points on the 3D model. As the model is in 3D, the

feature points should move in three dimensional space. As we calculated the movement

vectors from the 2D video, they only describe the movement of the feature points in

the X and Y directions. However, in [43] Zhao et al. state that for most front facing

facial expressions, the movement of the 3D feature points is a lot greater in the X and

Y directions than in the Z direction. Therefore, like Zhao et al. we assume that the

38

3D feature points only move in the XY plane and do not move in the Z direction.

Under this assumption, we mapped the 2D movement vectors from frame i onto the

3D model.

Generally, the scale of the face in the video and the scale of the 3D model are

not the same. In order to ensure that we move the feature points on the 3D model

by the correct amount we normalise the movement vectors before mapping them onto

the model. Specifically, we calculate the distance between the corners of the mouth

in the reference image, denoted f2, and on the 3D model, denoted f3. Then the set of

normalised movement vectors for frame i is

Mi =
f3
f2
Ei. (4.5)

Once the normalised movement vectors are calculated we then rotate the 3D model

using the rotation matrix R and the translation t so that the model will be in the

correct position. Therefore we are now assuming the the camera is fixed and that the

head is moving. If we let dj = (xj, yj, zj) denote the position of the j-th feature point

on the rotated 3D model and mj = (aj, bj) denote the normalised movement vector

of the j-th feature point in a frame of the video, the transformed position of the 3D

feature point is d̃j = (xj+aj, yj+bj, zj). Now that we have the deformed position of the

36 feature points on the rotated 3D model, the next step is to calculate the deformation

of the remaining vertices. This will be carried out using Laplacian Deformation and

will be explained in the next section.

4.4 Laplacian Deformation

In this section we explain how to calculate the positions of the non-feature points on the

3D model. We have already computed the deformed positions of the feature points and

will use these as constraints in order to deform the rest of the model mesh. We assume

that the model has a triangular mesh and implement Laplacian deformation to deform

it. A lot of research has been carried out in this area and this technique has been

used extensively for deforming 3D models [1] [33] [20]. The main idea is to calculate a

Laplacian coordinate for each vertex in the model mesh. These Laplacian coordinates

capture the local differential information around the vertex. During deformation the

39

Laplacian coordinates are manipulated with respect to handle constraints and are used

to reconstruct the deformed vertex positions. The local shape descriptors are preserved

as much as possible which ensures that distortion of the local shape of the mesh is

minimized [20].

A lot of research in this area focuses on the best method to manipulate the Laplacian

coordinates when they are constrained by handles. They mainly focus on how to

reorient the Laplacian coordinates in the correct way. In [39] Yu et al. propose using

a geodesic distance method in order to propagate the transformation of the handles to

other points on the mesh. The propagated transformations are then used to modify

the Laplacian coordinates of these points. In [40] Zayer et al. propose using harmonic

functions in order to calculate the transformations. The technique that we implement in

this project was proposed by Au et al. in [20]. They aim to retain both parametrization

information(shapes of the triangles) and geometry information (sizes of local features).

4.5 Laplacian Editing

Figure 4.4: This diagram shows the position of aij and bij, the angles opposite the edge (i, j) [20].

Let V = (v1, v2, v3, ..., vn) represent the Euclidean coordinates and L = (l1, l2, l3, ..., ln)

represent the Laplacian coordinates of the mesh. Both V and L are (n× 3) matrices.

Let i∗ represent the index set of vertices which are adjacent to vi. These vertices are

also known as the one-ring neighbourhood of vi. The vertex vi has a corresponding

40

Laplacian coordinate li which represents the local shape of vertex vi. li is defined as:

li =
∑
j∈i∗

wij(vj − vi). (4.6)

wij is the weight of the edge (i, j) which connects vertex vi to vertex vj. In this case

the cotangent weights are used and are defined as

wij = (cot(aij) + cot(bij)). (4.7)

Here aij and bij represent the angles opposite the edge (i, j). These can be seen in

Figure 4.4. The cotangent weights approximate the curvature normal at the vertex vi

[20].

There is a linear relationship between the Laplacian coordinates L and the Eu-

clidean coordinates V. This linear relationship is given by a matrix B and the Lapla-

cian coordinates can be written as L = BV. B is an (n× n) matrix and it’s elements

are derived from wij. In order to calculate the matrix B we must first calculate an

(n× n) matrix W as follows:

Wij =

 wij if (i, j) is an edge

0 otherwise.

We then create an (n × 1) column vector D. D is simply a column vector made up

of ones. We then let w = WD. Therefore the i-th element in the column vector w

represents the sum of the i-th row of the matrix W. We then create a matrix W̃ as

follows:

W̃ij =

 wi if i = j

0 otherwise.

Then the matrix B is

W− W̃. (4.8)

B is referred to as the Laplace operator and its elements are known as Laplacian

coefficients. In order to calculate the deformed vertex coordinates V′, we minimize

‖BV′−L‖2 using the deformed feature point positions calculated in the previous section

as constraints. The idea is to minimize the sum of the squared differences between the

41

Laplacian coordinates before and after deformation. This problem is equivalent to

solving a sparse linear system

AV′ = b (4.9)

in a least squares sense. The first 36 rows of the ((n + 36) × 3) matrix b are made

up of the positions of the deformed feature points on the model. The remaining rows

are derived from L. The matrix A is derived from B and a second (36× n) matrix C

where

Cij =

 1 if the i-th feature point on the 3D model is given by the j-th row of V.

0 otherwise.

Then

A = [CT |BT]T . (4.10)

The built in least squares solver in Matlab was used to solve this linear system in our

implementation.

4.6 Iterative Laplacian Editing

Reconstructing the mesh using the previous method can cause some undesirable results

such as shearing and stretching distortion. This is because the original Laplacian

coordinates do not reflect the deformation of the local features during editing. They

only represent the shape of the model before any deformation has taken place [20].

Therefore constructing the deformed mesh from the original Laplacian coordinates and

the handle constraints would lead to some distortion. In order to overcome this Au et

al. [20] propose implementing an iterative technique which aims to retain two types of

information from the original mesh:

• parameterization information (shape of triangles);

• geometry information(size of local features).

The Laplacian coefficients which make up the matrix B are considered to represent

the local parameterization information. The Laplacian coordinates are considered as

the local geometry information of the mesh since they represent the local difference of

42

vertex positions. Au et al. also state that when deformed surfaces are visually pleasing,

the Laplacian coordinate of each vertex is normal to the local surface. Therefore they

propose a method which aims to ensure that the magnitude of the Laplacian coordinates

and Laplacian coefficients remain similar before and after editing. They also aim to

keep the Laplacian coordinates in the normal direction of the local surface. They

propose an iterative technique which minimizes the parameterization and geometry

distortion by updating both the vertex positions V and the Laplacian coordinates L.

Algorithm
Let Vt and Lt represent the vertex positions and Laplacian coordinates of the model

mesh at time t respectively. Then V0 = V and L0 = L. The vertex coordinates and

Laplacian coordinates are both iteratively updated using the following steps until the

solutions converge and a termination condition is satisfied:

• Step 1: Update the Euclidean coordinates. The Euclidean coordinates

Vt+1 are calculated by solving the following sparse linear system:

ATAVt+1 = ATbt (4.11)

The matrices A and b are derived as described in the previous section.

• Step 2: Update the Laplacian coordinates. Once the Euclidean coordinates

Vt+1 have been calculated the corresponding Laplacian coordinates Lt+1 can

then be computed. These Laplacian coordinates have two properties that must

be preserved at every time step: normal direction and magnitude. In order to

maintain the original feature size of the mesh we ensure that the magnitude of

the Laplacian coordinates remain unchanged. In order to do this, the Laplacian

coordinates are calculated for the vertices Vt+1 using the method described in

the previous section. Each of the Laplacian coordinates are then normalised so

that they have length 1. The new normalised Laplacian coordinates are denoted

nt+1
i . The size of the Laplacian coordinates calculated for the original mesh ‖l0i ‖

are then used to scale each of the normalised Laplacian coordinates so that they

have the same size as the original Laplacian coordinates:

lt+1
i = ‖l0i ‖nt+1

i (4.12)

43

The iterations are terminated when the ratio of changes in vertex positions between two

consecutive time steps is below a certain threshold [20]. When the iterations converge,

the resulting Laplace operator Lt+1 is similar to L0, the Laplace operator calculated

over the original mesh. Their Laplacian coefficients also remain similar which means

the original parameterization information is retained. The Laplacian coordinates are

in the same direction as the curvature normals and their magnitudes remain the same.

This means that the local features remain similar to those of the original mesh.

Figure 4.5: These images show the results of the iterative Laplacian deformation. From left to right,
the images show the results when t = 1, t = 3, t = 5 and t = 7.

When this iterative process was implemented with our model we found that the

results did not converge. Instead, the mesh became distorted and stretched. In [20]

Au et al. state that the iterative process may fail to converge if the mesh has complex

geometry or the one-ring neighbours of a vertex are not coplanar. As there is no

common normal direction for all planes formed by the one-ring neighbours of a vertex,

the local encoding will contain a tangential component which causes tangential drifts

when the iterative process is implemented. The connectivity of the mesh can also affect

the effectiveness of the iterative algorithm. If the mesh has irregular connectivity it is

more likely that the algorithm will fail to converge. A mesh has irregular connectivity

if each of the vertices do not have the same number of neighbours in their one-ring

neighbourhood. However, Au et al. propose another method which is a lot more stable

than the iterative Laplacian editing and which is more likely to converge. This involves

converting the model mesh to its dual mesh and implementing Laplacian deformation

on this mesh. Editing in the dual domain eliminates the instability of the iterative

technique.

44

Figure 4.6: This image shows a primal mesh and its corresponding dual mesh. The primal mesh is
outlined in green. The corresponding dual mesh is outlined in red.

4.7 Dual Laplacian Editing

The dual mesh consists of vertices which are positioned at the centroids of each face

in the primal (original) mesh. This can be seen in Figure 4.6. There is a one to one

mapping between the vertices in the dual mesh and the faces in the original mesh.

There is also a linear relationship between the dual vertices Ṽ = (ṽ1, ṽ2, ṽ3, ..., ṽnd
) and

the primal vertices V. This linear relationship can be described by a matrix J and

Ṽ = JV. J is constructed from the vertex-face incident matrix and it is normalised

so that the sum of each row is equal to one. It is assumed that the input mesh is a

triangular mesh. Under this assumption, each vertex in the dual mesh has a valance

of exactly three. This means that each vertex is only connected to three other vertices

in the dual mesh. Therefore the connectivity of the dual mesh is regular [20].

We define the dual Laplacian coordinate of a dual vertex to be

l̃i =
∑

j∈{1,2,3}
w̃i,j(ṽi,j − ṽi), (4.13)

where ṽi,j, j = {1, 2, 3} are the one-ring neighbours of the dual vertex ṽi. In matrix

form this is equivalent to

l̃ = L̃Ṽ = L̃DV. (4.14)

The dual Laplacian coordinate of ṽi is in the normal direction of the triangle formed by

the neighbours of ṽi. Because of this, there are no tangential drifts and updating the

dual Laplacian coordinates using an iterative technique is a lot more stable than using

45

the primal mesh. Again, in order to calculate the deformed vertices V′ we minimize

‖L̃DV′− l̃‖2. This is equivalent to solving ÃV′ = b̃ in a least squares sense. b̃ and Ã

are created in the same way as A and b, which was described in the previous section.

An iterative technique can also be implemented in the dual domain in a similar way

as that described for the primal domain. Again, the iterations terminate when the

maximum ratio of changes in vertex positions between two consecutive time steps is

below a given threshold [20].

As editing in the dual domain could improve the final results, we began implement-

ing it for this project. However, due to time constraints and the complexity of the

algorithm we did not get it completed.

4.8 Results

Figure 4.7: These images show the results of the non-iterative Laplacian deformation technique. The
images on the top row show the image from the video which was processed. The images below show
the model which has been deformed using Laplacian deformation.

Figure 4.8: These images show the results of the iterative Laplacian deformation. From left to right,
the images show the results when t = 1, t = 3, t = 5 and t = 7.

The results from the non-iterative Laplacian deformation technique can be seen

46

in Figure 4.7. These images show that the expression of the person in the video was

successfully transferred to the 3D model. The 3D model appears to be laughing, smiling

and frowning and these expressions correspond to those seen in the video frames.

However, the accompanying video also shows some stretching and shrinking distortions

when the expression on the model changes. The aim of the iterative Laplacian editing

was to remove these distortions. However, we found that the results of the iterative

technique did not converge. The resulting images can be seen in Figure 4.8. We can

see that the face appears to become even more distorted as the iterations increase.

Because of this, we decided to implement the non-iterative Laplacian editing in order

to transfer the expression of the person in the video to the 3D model.

Figure 4.7 therefore displays the final results of our algorithm. Both the head pose

and the facial expression of the person in the video have been successfully transferred

onto the 3D model. For a single frame of the video, our entire algorithm took 8.818

seconds to process the image and plot the results. The most time consuming part of the

algorithm was solving the sparse linear system in order to calculate the deformed vertex

positions of the mesh. This took 3.773 seconds when a single frame was processed.

Calculating the head pose of the person in the video took 1.209 seconds. The rest of

the time was spent setting up the matrices in order to implement the EPnP methods

and Laplacian deformation algorithm and plotting the results.

47

Chapter 5

Conclusions and Future work

Figure 5.1: Final results.

Figure 5.1 shows the results of our algorithm. Both the head rotation and facial

expression have been realistically transferred to the 3D model. The accompanying

videos demonstrate the life-like transfer of facial expressions such as frowning, laughing,

smiling and eye and eyebrow movements. However, there are still some limitations

evident in our algorithm. We will outline some of these limitations and how they can

be resolved in future.

5.1 Extreme head rotation

The first limitation can be seen in Figure 5.2. These images show the errors in facial

expression which occur when the head in the video frame is turned to the side. This

problem is due to the technique used to calculate the movement vectors of each of the

48

Figure 5.2: In each of these images the nose appears to bend in the wrong direction. The right eye
and right hand side of the mouth are also distorted.

feature points in the video. As the reference image displays a face which is looking

directly at the camera, errors will arise if the position of the head in frame i is not facing

the camera directly. The reference image in this case does not represent a face which

has the same head pose as the face in frame i. The movement vectors calculated will

therefore contain some errors. The difference between the corresponding feature points

will not accurately represent the facial expression, but will also contain information

about the position of the head.

In order to overcome this problem, a method similar to the Projection Method

described in Chapter 4 could be implemented. The idea behind this method is to

first rotate the 3D model so that it was in the correct position. Then, the 3D feature

points of the rotated model are projected into 2D. These projected 2D points are then

compared to the feature points in frame i in order to calculate the movement vectors.

This method was unsuccessful as the individual characteristics of the person in the

video created errors when the movement vectors were calculated.

However, as we are using the Basel Face Model, which is a Morphable Model,

different linear combinations of 199 principal components can be used to create different

identities. When training the model, the training data had gender, height, weight, and

age labelled. It is therefore possible to vary face coefficients in order to manipulate

the gender, height, weight and age of the model. Figure 5.3 demonstrates some of the

variations achievable with this model. The 3D model would then have a similar facial

structure to the person in the video. If this new model was rotated and its feature

points were projected into 2D, the difference between the projected feature points and

49

Figure 5.3: This image was taken from [28] and demonstrates some of the variations in gender, height,
weight and age achievable with this model.

the feature points in frame i would only be due to changes in facial expression. The

errors would be resolved as the facial characteristics of both the model and the face in

the video would be the same. This would mean that even if the face was turned to the

side, the facial animation would still be realistic and the artifacts visible in Figure 5.2

would be removed.

5.2 Stretching and Shrinking

Figure 5.4: These images display the stretching and shrinking artifacts which occur throughout the
result videos. The size of the model face appears to change when the expressions change.

Another artifact which is evident in Figure 5.4 and the accompanying videos is the

50

stretching and shrinking artifacts which occur throughout the video. The face appears

to stretch and shrink as the facial expression changes. These artifacts occur because

we are using the non-iterative Laplacian deformation technique. As described in the

previous chapter, editing could be carried out in the dual domain [20]. This involves

converting the model mesh to its dual mesh and implementing Laplacian deformation

on this mesh. Editing in the dual domain eliminates the instability of the iterative

technique and would eliminate the artifacts seen in Figure 5.4. Another solution would

be to add extra constraints to the shape of the deformed model. For example, the

distance between the ears on the model could be fixed to a particular value. This

would also ensure that the stretching and shrinking was minimized.

5.2.1 Discontinuities in Rigid Head Motion

It can be seen in the accompanying videos that there are some discontinuities in the

rigid head transformation calculated using the EPnP method. These discontinuities

cause the head to change position rapidly between frames. This problem could be

resolved by implementing a smoothing technique which would smooth the resulting

video as a post-process. There are many applications available which are designed to

remove camera jitter from video sequences[15, 32]. Camera jitter can be seen in videos

which are taken with hand held cameras. These applications remove the discontinuities

and ensure that the video runs smoothly.

Another solution would be to implement tracking when calculating the head pose.

This would mean that the position of the head calculated for the previous frame could

be used when calculating the head pose in the current frame. For example, a check

could be implemented that would ensure that the transformation calculated in two

consecutive frames could not differ by more than a given threshold.

5.3 Conclusion

We propose a method which recreates both the rigid head motion and facial expression

of a person in a video using a 3D model. Our experiments show that the transfer results

are successful, reconstructing animations which are life like and correspond with the

movements seen in the video. As the input data is a 2D video, this method does

51

not require a complex acquisition system in order to obtain the data. This method

could therefore be applied to many applications, especially those for which a complex

acquisition system such as motion capture or 3D scanners are unavailable. As the

algorithm creates a 3D reconstruction of the face in the video, the camera position

in the 3D scene could also be changed in order to present the scene from a different

viewpoint. This means that a single video could be used to recreate multiple viewpoints

and could be useful when creating 3D films or video clips. This application would

also be useful when creating virtual avatars, animating characters for 3D films, online

chatting and expression imitation.

52

Bibliography

[1] Differential coordinates for interactive mesh editing. In Proceedings of the Shape

Modeling International 2004, SMI ’04, pages 181–190, Washington, DC, USA,

2004. IEEE Computer Society.

[2] Adnan Ansar and Konstantinos Daniilidis. Linear pose estimation from points or

lines. In Proceedings of the 7th European Conference on Computer Vision-Part

IV, ECCV ’02, pages 282–296, London, UK, UK, 2002. Springer-Verlag.

[3] Daniel Bardsley and Bai Li. 3d reconstruction using the direct linear transform

with a gabor wavelet based correspondence measure, 2007.

[4] Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beardsley, Craig

Gotsman, Robert W. Sumner, and Markus Gross. High-quality passive facial

performance capture using anchor frames. In ACM SIGGRAPH 2011 papers,

SIGGRAPH ’11, pages 75:1–75:10, New York, NY, USA, 2011. ACM.

[5] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces.

In Proceedings of the 26th annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’99, pages 187–194, New York, NY, USA, 1999. ACM

Press/Addison-Wesley Publishing Co.

[6] Derek Bradley, Wolfgang Heidrich, Tiberiu Popa, and Alla Sheffer. High resolution

passive facial performance capture. ACM Trans. Graph., 29(4):41:1–41:10, July

2010.

[7] Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou. 3d shape regression for

real-time facial animation. ACM Trans. Graph., 32(4):41:1–41:10, July 2013.

53

[8] Jin-xiang Chai, Jing Xiao, and Jessica Hodgins. Vision-based control of 3d facial

animation. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-

sium on Computer animation, SCA ’03, pages 193–206, Aire-la-Ville, Switzerland,

Switzerland, 2003. Eurographics Association.

[9] I chen Lin and Ming Ouhyoung. Mirror mocap: Automatic and efficient capture

of dense 3d facial motion parameters from video. the visual computer. J Zhejiang

Univ SCIENCE A, 21:355–372, 2005.

[10] Timothy Cootes. Talking face video.

[11] Matt Dailey. Dlt demo, 2007.

[12] Douglas DeCarlo and Dimitris Metaxas. The integration of optical flow and de-

formable models with applications to human face shape and motion estimation.

In Proceedings of the 1996 Conference on Computer Vision and Pattern Recog-

nition (CVPR ’96), CVPR ’96, pages 231–, Washington, DC, USA, 1996. IEEE

Computer Society.

[13] Douglas Decarlo and Dimitris Metaxas. Optical flow constraints on deformable

models with applications to face tracking. Int. J. Comput. Vision, 38(2):99–127,

July 2000.

[14] Irfan Essa, Sumit Basu, Trevor Darrell, and Alex Pentland. Modeling, tracking and

interactive animation of faces and heads using input from video. In Proceedings of

the Computer Animation, CA ’96, pages 68–, Washington, DC, USA, 1996. IEEE

Computer Society.

[15] Amit Goldstein and Raanan Fattal. Video stabilization using epipolar geometry.

ACM Trans. Graph., 31(5):126:1–126:10, September 2012.

[16] Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, and Fredric Pighin.

Making faces. In Proceedings of the 25th annual conference on Computer graphics

and interactive techniques, SIGGRAPH ’98, pages 55–66, New York, NY, USA,

1998. ACM.

[17] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.

54

[18] Nghia Ho. Finding optimal rotation and translation between corresponding 3d

points, 2013.

[19] Haoda Huang, Jinxiang Chai, Xin Tong, and Hsiang-Tao Wu. Leveraging motion

capture and 3d scanning for high-fidelity facial performance acquisition. ACM

Trans. Graph., 30(4):74:1–74:10, July 2011.

[20] Oscar Kin-Chung Au, Chiew-Lan Tai, Ligang Liu, and Hongbo Fu. Dual laplacian

editing for meshes. IEEE Transactions on Visualization and Computer Graphics,

12(3):386–395, May 2006.

[21] Aviad Kipnis and Adi Shamir. Cryptanalysis of the hfe public key cryptosys-

tem by relinearization. In Advances in Cryptology - CRYPTO ’99, 19th Annual

International Cryptology Conference, Santa Barbara, California, USA, August 15-

19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages

19–30. Springer, 1999.

[22] Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Constructing physics-

based facial models of individuals. In In Proc. Graphics Interface 93, pages 1–8,

1993.

[23] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate

o(n) solution to the pnp problem. Int. J. Comput. Vision, 81(2):155–166, February

2009.

[24] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: Efficient

perspective-n-point camera pose estimation, 2013.

[25] Frederic Ira Parke. A parametric model for human faces. PhD thesis, 1974.

AAI7508697.

[26] Frederick I. Parke. Computer generated animation of faces. In Proceedings of the

ACM annual conference - Volume 1, ACM ’72, pages 451–457, New York, NY,

USA, 1972. ACM.

[27] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas

Vetter. A 3d face model for pose and illumination invariant face recognition. 2009.

55

[28] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas

Vetter. Morphace, 2009.

[29] Yuru Pei and Hongbin Zha. Transferring of speech movements from video to 3d

face space. IEEE Transactions on Visualization and Computer Graphics, 13(1):58–

69, 2007.

[30] Frdric Pighin, Richard Szeliski, and David H. Salesin. Resynthesizing facial ani-

mation through 3d model-based tracking, 1999.

[31] Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. Automatic determination of

facial muscle activations from sparse motion capture marker data. ACM Trans.

Graph., 24(3):417–425, July 2005.

[32] Brandon M. Smith, Li Zhang, Hailin Jin, and Aseem Agarwala. Light field video

stabilization.

[33] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. Lapla-

cian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH

symposium on Geometry processing, SGP ’04, pages 175–184, New York, NY,

USA, 2004. ACM.

[34] Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popović. Face trans-

fer with multilinear models. ACM Trans. Graph., 24(3):426–433, July 2005.

[35] Xianmei Wan and Xiaogang Jin. Data-driven facial expression synthesis via lapla-

cian deformation. Multimedia Tools Appl., 58(1):109–123, May 2012.

[36] Keith Waters. A muscle model for animation three-dimensional facial expression.

SIGGRAPH Comput. Graph., 21(4):17–24, August 1987.

[37] Thibaut Weise, Hao Li, Luc Van Gool, and Mark Pauly. Face/off: live facial

puppetry. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, SCA ’09, pages 7–16, New York, NY, USA, 2009. ACM.

[38] Lance Williams. Performance-driven facial animation. SIGGRAPH Comput.

Graph., 24(4):235–242, September 1990.

56

[39] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and

Heung-Yeung Shum. Mesh editing with poisson-based gradient field manipulation.

In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 644–651, New York,

NY, USA, 2004. ACM.

[40] Rhaleb Zayer, Christian Rssl, Zachi Karni, and Hans-Peter Seidel. Harmonic

guidance for surface deformation. Computer Graphics Forum, 24(3):601–609, 2005.

[41] Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Spacetime faces:

High-resolution capture for modeling and animation. In ACM Annual Conference

on Computer Graphics, pages 548–558, August 2004.

[42] Song Zhang and Peisen Huang. High-resolution, real-time 3d shape acquisition.

In Proceedings of the 2004 Conference on Computer Vision and Pattern Recog-

nition Workshop (CVPRW’04) Volume 3 - Volume 03, CVPRW ’04, pages 28–,

Washington, DC, USA, 2004. IEEE Computer Society.

[43] Hui Zhao and Chiew lan Tai. Subtle facial animation transfer from 2d videos to

3d faces with laplacian deformation.

57

